WorldWideScience

Sample records for parabolic equation calculations

  1. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  2. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  3. Numerical Solution of Parabolic Equations

    DEFF Research Database (Denmark)

    Østerby, Ole

    These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...... ? and how do boundary value approximations affect the overall order of the method. Knowledge of a reliable order and error estimate enables us to determine (near-)optimal step sizes to meet a prescribed error tolerance, and possibly to extrapolate to get (higher order and) better accuracy at a minimal...... expense. Problems in two space dimensions are effectively handled using the Alternating Direction Implicit (ADI) technique. We present a systematic way of incorporating inhomogeneous terms and derivative boundary conditions in ADI methods as well as mixed derivative terms....

  4. International Workshop on Elliptic and Parabolic Equations

    CERN Document Server

    Schrohe, Elmar; Seiler, Jörg; Walker, Christoph

    2015-01-01

    This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.

  5. Controllability and stabilization of parabolic equations

    CERN Document Server

    Barbu, Viorel

    2018-01-01

    This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear diff...

  6. Partial differential equations of parabolic type

    CERN Document Server

    Friedman, Avner

    2008-01-01

    This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta

  7. An inverse problem in a parabolic equation

    Directory of Open Access Journals (Sweden)

    Zhilin Li

    1998-11-01

    Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.

  8. Nonlinear anisotropic parabolic equations in Lm

    Directory of Open Access Journals (Sweden)

    Fares Mokhtari

    2014-01-01

    Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].

  9. Degenerate parabolic stochastic partial differential equations

    Czech Academy of Sciences Publication Activity Database

    span class="emphasis">Hofmanová, Martinaspan>

    2013-01-01

    Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf

  10. Moving interfaces and quasilinear parabolic evolution equations

    CERN Document Server

    Prüss, Jan

    2016-01-01

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...

  11. Solving Variable Coefficient Fourth-Order Parabolic Equation by ...

    African Journals Online (AJOL)

    Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

  12. Elliptic and parabolic equations for measures

    Energy Technology Data Exchange (ETDEWEB)

    Bogachev, Vladimir I [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Krylov, Nikolai V [University of Minnesota, Minneapolis, MN (United States); Roeckner, Michael [Universitat Bielefeld, Bielefeld (Germany)

    2009-12-31

    This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L{sup p}-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.

  13. Vector domain decomposition schemes for parabolic equations

    Science.gov (United States)

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  14. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-01-01

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular

  15. Numerical Schemes for Rough Parabolic Equations

    Energy Technology Data Exchange (ETDEWEB)

    Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)

    2012-04-15

    This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.

  16. Optimal Wentzell Boundary Control of Parabolic Equations

    International Nuclear Information System (INIS)

    Luo, Yousong

    2017-01-01

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  17. Optimal Wentzell Boundary Control of Parabolic Equations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)

    2017-04-15

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  18. The parabolic equation method for outdoor sound propagation

    DEFF Research Database (Denmark)

    Arranz, Marta Galindo

    The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...

  19. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  20. Telescopic projective methods for parabolic differential equations

    CERN Document Server

    Gear, C W

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.

  1. Telescopic projective methods for parabolic differential equations

    International Nuclear Information System (INIS)

    Gear, C.W.; Kevrekidis, Ioannis G.

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components

  2. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  3. Linear and quasi-linear equations of parabolic type

    CERN Document Server

    Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N

    1968-01-01

    Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

  4. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  5. An introduction to geometric theory of fully nonlinear parabolic equations

    International Nuclear Information System (INIS)

    Lunardi, A.

    1991-01-01

    We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs

  6. On some perturbation techniques for quasi-linear parabolic equations

    Directory of Open Access Journals (Sweden)

    Igor Malyshev

    1990-01-01

    Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in “explicit” form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.

  7. The fundamental solutions for fractional evolution equations of parabolic type

    Directory of Open Access Journals (Sweden)

    Mahmoud M. El-Borai

    2004-01-01

    Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.

  8. Chernoff's distribution and parabolic partial differential equations

    NARCIS (Netherlands)

    P. Groeneboom; S.P. Lalley; N.M. Temme (Nico)

    2013-01-01

    textabstractWe give an alternative route to the derivation of the distribution of the maximum and the location of the maximum of one-sided and two-sided Brownian motion with a negative parabolic drift, using the Feynman-Kac formula with stopping times. The derivation also uses an interesting

  9. Determination of source terms in a degenerate parabolic equation

    International Nuclear Information System (INIS)

    Cannarsa, P; Tort, J; Yamamoto, M

    2010-01-01

    In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation

  10. Real-time optical laboratory solution of parabolic differential equations

    Science.gov (United States)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  11. Interior Gradient Estimates for Nonuniformly Parabolic Equations II

    Directory of Open Access Journals (Sweden)

    Lieberman Gary M

    2007-01-01

    Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.

  12. On the Schauder estimates of solutions to parabolic equations

    International Nuclear Information System (INIS)

    Han Qing

    1998-01-01

    This paper gives a priori estimates on asymptotic polynomials of solutions to parabolic differential equations at any points. This leads to a pointwise version of Schauder estimates. The result improves the classical Schauder estimates in a way that the estimates of solutions and their derivatives at one point depend on the coefficient and nonhomogeneous terms at this particular point

  13. Stability test for a parabolic partial differential equation

    NARCIS (Netherlands)

    Vajta, Miklos

    2001-01-01

    The paper describes a stability test applied to coupled parabolic partial differential equations. The PDE's describe the temperature distribution of composite structures with linear inner heat sources. The distributed transfer functions are developed based on the transmission matrix of each layer.

  14. Almost periodic solutions to systems of parabolic equations

    Directory of Open Access Journals (Sweden)

    Janpou Nee

    1994-01-01

    Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.

  15. Rothe's method for parabolic equations on non-cylindrical domains

    Czech Academy of Sciences Publication Activity Database

    Dasht, J.; Engström, J.; Kufner, Alois; Persson, L.E.

    2006-01-01

    Roč. 1, č. 1 (2006), s. 59-80 ISSN 0973-2306 Institutional research plan: CEZ:AV0Z10190503 Keywords : parabolic equations * non-cylindrical domains * Rothe's method * time-discretization Subject RIV: BA - General Mathematics

  16. Stability and instability of stationary solutions for sublinear parabolic equations

    Science.gov (United States)

    Kajikiya, Ryuji

    2018-01-01

    In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.

  17. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-05-13

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.

  18. Darboux transformations and linear parabolic partial differential equations

    International Nuclear Information System (INIS)

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  19. Harnack's Inequality for Degenerate and Singular Parabolic Equations

    CERN Document Server

    DiBenedetto, Emmanuele; Vespri, Vincenzo

    2012-01-01

    Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive

  20. Compressible stability of growing boundary layers using parabolized stability equations

    Science.gov (United States)

    Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.

    1991-01-01

    The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.

  1. Regularization algorithm within two-parameters for identification heat-coefficient in the parabolic equation

    International Nuclear Information System (INIS)

    Hinestroza Gutierrez, D.

    2006-08-01

    In this work a new and promising algorithm based on the minimization of especial functional that depends on two regularization parameters is considered for the identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)

  2. Regularization algorithm within two-parameters for identification heat-coefficient in the parabolic equation

    International Nuclear Information System (INIS)

    Hinestroza Gutierrez, D.

    2006-12-01

    In this work a new and promising algorithm based in the minimization of especial functional that depends on two regularization parameters is considered for identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)

  3. Role of secondary instability theory and parabolized stability equations in transition modeling

    Science.gov (United States)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  4. ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION

    KAUST Repository

    MARKOWICH, P. A.

    2009-10-01

    We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.

  5. ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION

    KAUST Repository

    MARKOWICH, P. A.; MATEVOSYAN, N.; PIETSCHMANN, J.-F.; WOLFRAM, M.-T.

    2009-01-01

    We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.

  6. On the behaviour of solutions of parabolic equations for large values of time

    International Nuclear Information System (INIS)

    Denisov, V N

    2005-01-01

    This paper is a survey of classical and new results on stabilization of solutions of the Cauchy problem and mixed problems for second-order linear parabolic equations. Proofs are given for some new results about exact sufficient conditions on the behaviour of lower-order coefficients of the parabolic equation; these conditions ensure stabilization of a solution of the Cauchy problem for the parabolic equation in the class of bounded or increasing initial functions

  7. Approximation of entropy solutions to degenerate nonlinear parabolic equations

    Science.gov (United States)

    Abreu, Eduardo; Colombeau, Mathilde; Panov, Evgeny Yu

    2017-12-01

    We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space L^∞, whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and L^1-stability. We prove that the sequence of approximate solutions is strongly L^1-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.

  8. Stochastic modeling of mode interactions via linear parabolized stability equations

    Science.gov (United States)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  9. An upwind algorithm for the parabolized Navier-Stokes equations

    Science.gov (United States)

    Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.

    1986-01-01

    A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method does not require the addition of user specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming scheme in terms of accuracy, stability, computer time and storage, and programming effort. The new algorithm has been validated by applying it to three laminar test cases including flat plate boundary-layer flow, hypersonic flow past a 15 deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with the results obtained using the conventional Beam-Warming algorithm.

  10. Identifying Initial Condition in Degenerate Parabolic Equation with Singular Potential

    Directory of Open Access Journals (Sweden)

    K. Atifi

    2017-01-01

    Full Text Available A hybrid algorithm and regularization method are proposed, for the first time, to solve the one-dimensional degenerate inverse heat conduction problem to estimate the initial temperature distribution from point measurements. The evolution of the heat is given by a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is based on a hybrid genetic algorithm (married genetic with descent method type gradient. Some numerical experiments are given.

  11. INERTIAL MANIFOLDS FOR NONAUTONOMOUS SEMILINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The present paper deals with the long-time behavior of a class of nonautonomous retarded semilinear parabolic differential equations. When the time delays are small enough and the spectral gap conditions hold, the inertial manifolds of the nonautonomous retard parabolic equations are constructed by using the Lyapunov-Perron method.

  12. Recovering a coefficient in a parabolic equation using an iterative approach

    Science.gov (United States)

    Azhibekova, Aliya S.

    2016-06-01

    In this paper we are concerned with the problem of determining a coefficient in a parabolic equation using an iterative approach. We investigate an inverse coefficient problem in the difference form. To recover the coefficient, we minimize a residual functional between the observed and calculated values. This is done in a constructive way by fitting a finite-difference approximation to the inverse problem. We obtain some theoretical estimates for a direct and adjoint problem. Using these estimates we prove monotonicity of the objective functional and the convergence of iteration sequences.

  13. Efficient solution of parabolic equations by Krylov approximation methods

    Science.gov (United States)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  14. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  15. Upwind algorithm for the parabolized Navier-Stokes equations

    Science.gov (United States)

    Lawrence, Scott L.; Tannehill, John C.; Chausee, Denny S.

    1989-01-01

    A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes equations. This method does not require the addition of user-specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming (1978) scheme in terms of accuracy, stability, computer time and storage requirements, and programming effort. The new algorithm has been validated by applying it to three laminar test cases, including flat-plate boundary-layer flow, hypersonic flow past a 15-deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with results obtained using the conventional Beam-Warming algorithm.

  16. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  17. Stability in terms of two measures for a class of semilinear impulsive parabolic equations

    International Nuclear Information System (INIS)

    Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I

    2013-01-01

    The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.

  18. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    OpenAIRE

    Sun, Jiebao; Zhang, Dazhi; Wu, Boying

    2011-01-01

    We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  19. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Jiebao Sun

    2011-01-01

    parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  20. Existence of the Optimal Control for Stochastic Boundary Control Problems Governed by Semilinear Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Weifeng Wang

    2014-01-01

    Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.

  1. Sound field computations in the Bay of Bengal using parabolic equation method

    Digital Repository Service at National Institute of Oceanography (India)

    Navelkar, G.S.; Somayajulu, Y.K.; Murty, C.S.

    Effect of the cold core eddy in the Bay of Bengal on acoustic propagation was analysed by parabolic equation (PE) method. Source depth, frequency and propagation range considered respectively for the two numerical experiments are 150 m, 400 Hz, 650...

  2. Identifying the principal coefficient of parabolic equations with non-divergent form

    International Nuclear Information System (INIS)

    Jiang, L S; Bian, B J

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well

  3. Identifying the principal coefficient of parabolic equations with non-divergent form

    Science.gov (United States)

    Jiang, L. S.; Bian, B. J.

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.

  4. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    Science.gov (United States)

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  5. Integration of equations of parabolic type by the method of nets

    CERN Document Server

    Saul'Yev, V K; Stark, M; Ulam, S

    1964-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff

  6. Modeling mode interactions in boundary layer flows via the Parabolized Floquet Equations

    OpenAIRE

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanović, Mihailo R.

    2017-01-01

    In this paper, we develop a linear model to study interactions between different modes in slowly-growing boundary layer flows. Our method consists of two steps. First, we augment the Blasius boundary layer profile with a disturbance field resulting from the linear Parabolized Stability Equations (PSE) to obtain the modified base flow; and, second, we combine Floquet analysis with the linear PSE to capture the spatial evolution of flow fluctuations. This procedure yields the Parabolized Floque...

  7. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity

    International Nuclear Information System (INIS)

    Leiler, Gregor; Rezzolla, Luciano

    2006-01-01

    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion

  8. Identifying an unknown function in a parabolic equation with overspecified data via He's variational iteration method

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Tatari, Mehdi

    2008-01-01

    In this research, the He's variational iteration technique is used for computing an unknown time-dependent parameter in an inverse quasilinear parabolic partial differential equation. Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and physics, as they appear in various engineering models. The He's variational iteration method is an analytical procedure for finding solutions of differential equations, is based on the use of Lagrange multipliers for identification of an optimal value of a parameter in a functional. To show the efficiency of the new approach, several test problems are presented for one-, two- and three-dimensional cases

  9. Implications of a wavepacket formulation for the nonlinear parabolized stability equations to hypersonic boundary layers

    Science.gov (United States)

    Kuehl, Joseph

    2016-11-01

    The parabolized stability equations (PSE) have been developed as an efficient and powerful tool for studying the stability of advection-dominated laminar flows. In this work, a new "wavepacket" formulation of the PSE is presented. This method accounts for the influence of finite-bandwidth-frequency distributions on nonlinear stability calculations. The methodology is motivated by convolution integrals and is found to appropriately represent nonlinear energy transfer between primary modes and harmonics, in particular nonlinear feedback, via a "nonlinear coupling coefficient." It is found that traditional discrete mode formulations overestimate nonlinear feedback by approximately 70%. This results in smaller maximum disturbance amplitudes than those observed experimentally. The new formulation corrects this overestimation, accounts for the generation of side lobes responsible for spectral broadening and results in disturbance saturation amplitudes consistent with experiment. A Mach 6 flared-cone example is presented. Support from the AFOSR Young Investigator Program via Grant FA9550-15-1-0129 is gratefully acknowledges.

  10. Some blow-up problems for a semilinear parabolic equation with a potential

    Science.gov (United States)

    Cheng, Ting; Zheng, Gao-Feng

    The blow-up rate estimate for the solution to a semilinear parabolic equation u=Δu+V(x)|u in Ω×(0,T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x,0)=Mφ(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006].

  11. Parabolic Equation Modeling of Propagation over Terrain Using Digital Elevation Model

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Guan

    2018-01-01

    Full Text Available The parabolic equation method based on digital elevation model (DEM is applied on propagation predictions over irregular terrains. Starting from a parabolic approximation to the Helmholtz equation, a wide-angle parabolic equation is deduced under the assumption of forward propagation and the split-step Fourier transform algorithm is used to solve it. The application of DEM is extended to the Cartesian coordinate system and expected to provide a precise representation of a three-dimensional surface with high efficiency. In order to validate the accuracy, a perfectly conducting Gaussian terrain profile is simulated and the results are compared with the shift map. As a consequence, a good agreement is observed. Besides, another example is given to provide a theoretical basis and reference for DEM selection. The simulation results demonstrate that the prediction errors will be obvious only when the resolution of the DEM used is much larger than the range step in the PE method.

  12. A gradient estimate for solutions to parabolic equations with discontinuous coefficients

    Directory of Open Access Journals (Sweden)

    Jishan Fan

    2013-04-01

    Full Text Available Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. That is, we gave a gradient estimate for parabolic equations of divergence forms with piecewise smooth coefficients. The coefficients are assumed to be independent of time and their discontinuities are likewise the previous elliptic equations. As an application of this estimate, we also gave a pointwise gradient estimate for the fundamental solution of a parabolic operator with piecewise smooth coefficients. Both gradient estimates are independent of the distances between manifolds of discontinuities.

  13. Efficient Method for Calculating the Composite Stiffness of Parabolic Leaf Springs with Variable Stiffness for Vehicle Rear Suspension

    Directory of Open Access Journals (Sweden)

    Wen-ku Shi

    2016-01-01

    Full Text Available The composite stiffness of parabolic leaf springs with variable stiffness is difficult to calculate using traditional integral equations. Numerical integration or FEA may be used but will require computer-aided software and long calculation times. An efficient method for calculating the composite stiffness of parabolic leaf springs with variable stiffness is developed and evaluated to reduce the complexity of calculation and shorten the calculation time. A simplified model for double-leaf springs with variable stiffness is built, and a composite stiffness calculation method for the model is derived using displacement superposition and material deformation continuity. The proposed method can be applied on triple-leaf and multileaf springs. The accuracy of the calculation method is verified by the rig test and FEA analysis. Finally, several parameters that should be considered during the design process of springs are discussed. The rig test and FEA analytical results indicate that the calculated results are acceptable. The proposed method can provide guidance for the design and production of parabolic leaf springs with variable stiffness. The composite stiffness of the leaf spring can be calculated quickly and accurately when the basic parameters of the leaf spring are known.

  14. Fast analysis of wide-band scattering from electrically large targets with time-domain parabolic equation method

    Science.gov (United States)

    He, Zi; Chen, Ru-Shan

    2016-03-01

    An efficient three-dimensional time domain parabolic equation (TDPE) method is proposed to fast analyze the narrow-angle wideband EM scattering properties of electrically large targets. The finite difference (FD) of Crank-Nicolson (CN) scheme is used as the traditional tool to solve the time-domain parabolic equation. However, a huge computational resource is required when the meshes become dense. Therefore, the alternating direction implicit (ADI) scheme is introduced to discretize the time-domain parabolic equation. In this way, the reduced transient scattered fields can be calculated line by line in each transverse plane for any time step with unconditional stability. As a result, less computational resources are required for the proposed ADI-based TDPE method when compared with both the traditional CN-based TDPE method and the finite-different time-domain (FDTD) method. By employing the rotating TDPE method, the complete bistatic RCS can be obtained with encouraging accuracy for any observed angle. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed method.

  15. Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations

    KAUST Repository

    Lorz, Alexander

    2011-01-17

    Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.

  16. Stability estimates for solution of IBVP to fractional parabolic differential and difference equations

    Science.gov (United States)

    Ashyralyev, Allaberen; Cakir, Zafer

    2016-08-01

    In this work, we investigate initial-boundary value problems for fractional parabolic equations with the Neumann boundary condition. Stability estimates for the solution of this problem are established. Difference schemes for approximate solution of initial-boundary value problem are constructed. Furthermore, we give theorem on coercive stability estimates for the solution of the difference schemes.

  17. Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form

    Directory of Open Access Journals (Sweden)

    Kairi Kasemets

    2013-01-01

    Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.

  18. Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space

    International Nuclear Information System (INIS)

    Du Kai; Qiu, Jinniao; Tang Shanjian

    2012-01-01

    This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.

  19. New model reduction technique for a class of parabolic partial differential equations

    NARCIS (Netherlands)

    Vajta, Miklos

    1991-01-01

    A model reduction (or lumping) technique for a class of parabolic-type partial differential equations is given, and its application is discussed. The frequency response of the temperature distribution in any multilayer solid is developed and given by a matrix expression. The distributed transfer

  20. ε-neighbourhoods of orbits of parabolic diffeomorphisms and cohomological equations

    International Nuclear Information System (INIS)

    Resman, Maja

    2014-01-01

    In this article, we study the analyticity of (directed) areas of ε-neighbourhoods of orbits of parabolic germs. The article is motivated by the question of analytic classification using ε-neighbourhoods of orbits in the simplest formal class. We show that the coefficient in front of the ε 2 term in the asymptotic expansion in ε, which we call the principal part of the area, is a sectorially analytic function in the initial point of the orbit. It satisfies a cohomological equation similar to the standard trivialization equation for parabolic diffeomorphisms. We give necessary and sufficient conditions on a diffeomorphism f for the existence of a globally analytic solution of this equation. Furthermore, we introduce a new classification type for diffeomorphisms implied by this new equation and investigate the relative position of its classes with respect to the analytic classes. (paper)

  1. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  2. Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations

    KAUST Repository

    Lorz, Alexander; Mirrahimi, Sepideh; Perthame, Benoî t

    2011-01-01

    simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.

  3. Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations

    Directory of Open Access Journals (Sweden)

    M. G. Crandall

    1999-07-01

    Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.

  4. Improved stochastic approximation methods for discretized parabolic partial differential equations

    Science.gov (United States)

    Guiaş, Flavius

    2016-12-01

    We present improvements of the stochastic direct simulation method, a known numerical scheme based on Markov jump processes which is used for approximating solutions of ordinary differential equations. This scheme is suited especially for spatial discretizations of evolution partial differential equations (PDEs). By exploiting the full path simulation of the stochastic method, we use this first approximation as a predictor and construct improved approximations by Picard iterations, Runge-Kutta steps, or a combination. This has as consequence an increased order of convergence. We illustrate the features of the improved method at a standard benchmark problem, a reaction-diffusion equation modeling a combustion process in one space dimension (1D) and two space dimensions (2D).

  5. Cauchy problem for a parabolic equation with Bessel operator and Riemann–Liouville partial derivative

    Directory of Open Access Journals (Sweden)

    Fatima G. Khushtova

    2016-03-01

    Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.

  6. An accurate solution of parabolic equations by expansion in ultraspherical polynomials

    International Nuclear Information System (INIS)

    Doha, E.H.

    1986-11-01

    An ultraspherical expansion technique is applied to obtain numerically the solution of the third boundary value problem for linear parabolic partial differential equation in one-space variable. The differential equation with its boundary and initial conditions is reduced to a system of ordinary differential equations for the coefficients of the expansion. This system may be solved analytically or numerically in a step-by-step manner. The method in its present form may be considered as a generalization of that of Dew and Scraton. The extension of the method to the polar-type equations is also considered. (author). 12 refs, 1 tab

  7. Existence of extremal periodic solutions for quasilinear parabolic equations

    Directory of Open Access Journals (Sweden)

    Siegfried Carl

    1997-01-01

    bounded domain under periodic Dirichlet boundary conditions. Our main goal is to prove the existence of extremal solutions among all solutions lying in a sector formed by appropriately defined upper and lower solutions. The main tools used in the proof of our result are recently obtained abstract results on nonlinear evolution equations, comparison and truncation techniques and suitably constructed special testfunction.

  8. Parabolic equations in biology growth, reaction, movement and diffusion

    CERN Document Server

    Perthame, Benoît

    2015-01-01

    This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.

  9. Conditional stability in determination of initial data for stochastic parabolic equations

    International Nuclear Information System (INIS)

    Yuan, Ganghua

    2017-01-01

    In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper. (paper)

  10. Conditional stability in determination of initial data for stochastic parabolic equations

    Science.gov (United States)

    Yuan, Ganghua

    2017-03-01

    In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper.

  11. Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold

    Czech Academy of Sciences Publication Activity Database

    Krisztin, T.; Rezunenko, Oleksandr

    2016-01-01

    Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf

  12. Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries

    International Nuclear Information System (INIS)

    Karimov, Ruslan Kh; Kozhevnikova, Larisa M

    2010-01-01

    The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain D=(0,∞)xΩ. Upper bounds are obtained, which give the rate of decay of the solutions as t→∞ as a function of the geometry of the unbounded domain Ω subset of R n , n≥2. Bibliography: 18 titles.

  13. A note on numerical solution of a parabolic-Schrödinger equation

    Science.gov (United States)

    Ozdemir, Yildirim; Alp, Mustafa

    2016-08-01

    In the present study, a nonlocal boundary value problem for a parabolic-Schrödinger equation is considered. The stability estimates for the solution of the given problem is established. The first and second order of difference schemes are presented for approximately solving a specific nonlocal boundary problem. The theoretical statements for the solution of these difference schemes are supported by the result of numerical examples.

  14. A gradient estimate for solutions to parabolic equations with discontinuous coefficients

    OpenAIRE

    Fan, Jishan; Kim, Kyoungsun; Nagayasu, Sei; Nakamura, Gen

    2011-01-01

    Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. T...

  15. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    2015-01-01

    Roč. 14, č. 5 (2015), s. 1685-1704 ISSN 1534-0392 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic evolution equations * state-dependent delay * global attractor * finite-dimension * exponential attractor Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444705.pdf

  16. Justification of the averaging method for parabolic equations containing rapidly oscillating terms with large amplitudes

    International Nuclear Information System (INIS)

    Levenshtam, V B

    2006-01-01

    We justify the averaging method for abstract parabolic equations with stationary principal part that contain non-linearities (subordinate to the principal part) some of whose terms are rapidly oscillating in time with zero mean and are proportional to the square root of the frequency of oscillation. Our interest in the exponent 1/2 is motivated by the fact that terms proportional to lower powers of the frequency have no influence on the average. For linear equations of the same type, we justify an algorithm for the study of the stability of solutions in the case when the stationary averaged problem has eigenvalues on the imaginary axis (the critical case)

  17. OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA

    KAUST Repository

    GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA

    2014-01-01

    AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.

  18. Application of the implicit MacCormack scheme to the parabolized Navier-Stokes equations

    Science.gov (United States)

    Lawrence, J. L.; Tannehill, J. C.; Chaussee, D. S.

    1984-01-01

    MacCormack's implicit finite-difference scheme was used to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method for solving the PNS equations does not require the inversion of block tridiagonal systems of algebraic equations and permits the original explicit MacCormack scheme to be employed in those regions where implicit treatment is not needed. The advantages and disadvantages of the present adaptation are discussed in relation to those of the conventional Beam-Warming scheme for a flat plate boundary layer test case. Comparisons are made for accuracy, stability, computer time, computer storage, and ease of implementation. The present method was also applied to a second test case of hypersonic laminar flow over a 15% compression corner. The computed results compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.

  19. Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis

    Directory of Open Access Journals (Sweden)

    Mathias Jais

    2008-01-01

    Full Text Available We consider the solvability of the semilinear parabolic differential equation \\[\\frac{\\partial u}{\\partial t}(x,t- \\Delta u(x,t + c(x,tu(x,t = \\mathcal{P}(u + \\gamma (x,t\\] in a cylinder \\(D=\\Omega \\times (0,T\\, where \\(\\mathcal{P}\\ is a hysteresis operator of Preisach type. We show that the corresponding initial boundary value problems have unique classical solutions. We further show that using this existence and uniqueness result, one can determine the properties of the Preisach operator \\(\\mathcal{P}\\ from overdetermined boundary data.

  20. Stabilization of the solution of a doubly nonlinear parabolic equation

    International Nuclear Information System (INIS)

    Andriyanova, È R; Mukminov, F Kh

    2013-01-01

    The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x→∞ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles

  1. Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source

    Directory of Open Access Journals (Sweden)

    Pan Zheng

    2012-01-01

    Full Text Available We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|∇um|p−2∇ul+uq,  (x,t∈RN×(0,T, where N≥1, p>2 , and m, l,  q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions.

  2. Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field

    International Nuclear Information System (INIS)

    Hyman, J.M.; Rosenau, P.

    1984-01-01

    We analyse the evolutionary behavior of the solution of a pair of coupled quasilinear parabolic equations modeling the diffusion of heat and mass of a magnetically confined plasma. The solutions's behavior, due to the nonlinear diffusion coefficients, exhibits many new phenomena. In short time, the solution converges into a highly organized symmetric pattern that is almost completely independent of initial data. The asymptotic dynamics then become very simple and take place in a finite dimensional space. These conclusions are backed by extensive numerical experimentation

  3. Existence and uniqueness to the Cauchy problem for linear and semilinear parabolic equations with local conditions⋆

    Directory of Open Access Journals (Sweden)

    Rubio Gerardo

    2011-03-01

    Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.

  4. Implementation of compact finite-difference method to parabolized Navier-Stokes equations

    International Nuclear Information System (INIS)

    Esfahanian, V.; Hejranfar, K.; Darian, H.M.

    2005-01-01

    The numerical simulation of the Parabolized Navier-Stokes (PNS) equations for supersonic/hypersonic flow field is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming. A shock fitting procedure is utilized to obtain the accurate solution in the vicinity of the shock. The computations are performed for hypersonic axisymmetric flow over a blunt cone. The present results for the flow field along with those of the second-order method are presented and accuracy analysis is performed to insure the fourth-order accuracy of the method. (author)

  5. Holder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations II: singular case

    Directory of Open Access Journals (Sweden)

    Sukjung Hwang

    2015-11-01

    Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1

  6. Stability analysis of a boundary layer over a hump using parabolized stability equations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, B; Park, D H; Park, S O, E-mail: sopark@kaist.ac.kr [Division of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Gusong-dong, Yusong-gu, Daejeon 305-701 (Korea, Republic of)

    2011-10-15

    Parabolized stability equations (PSEs) were used to investigate the stability of boundary layer flows over a small hump. The applicability of PSEs to flows with a small separation bubble was examined by comparing the result with DNS data. It was found that PSEs can efficiently track the disturbance waves with an acceptable accuracy in spite of a small separation bubble. A typical evolution scenario of Tollmien-Schlichting (TS) wave is presented. The adverse pressure gradient and the flow separation due to the hump have a strong effect on the amplification of the disturbances. The effect of hump width and height is also examined. When the width of the hump is reduced, the amplification factor is increased. The height of the hump is found to obviously influence the stability only when it is greater than the critical layer thickness.

  7. On Stability of Exact Transparent Boundary Condition for the Parabolic Equation in Rectangular Computational Domain

    Science.gov (United States)

    Feshchenko, R. M.

    Recently a new exact transparent boundary condition (TBC) for the 3D parabolic wave equation (PWE) in rectangular computational domain was derived. However in the obtained form it does not appear to be unconditionally stable when used with, for instance, the Crank-Nicolson finite-difference scheme. In this paper two new formulations of the TBC for the 3D PWE in rectangular computational domain are reported, which are likely to be unconditionally stable. They are based on an unconditionally stable fully discrete TBC for the Crank-Nicolson scheme for the 2D PWE. These new forms of the TBC can be used for numerical solution of the 3D PWE when a higher precision is required.

  8. Stability analysis of a boundary layer over a hump using parabolized stability equations

    International Nuclear Information System (INIS)

    Gao, B; Park, D H; Park, S O

    2011-01-01

    Parabolized stability equations (PSEs) were used to investigate the stability of boundary layer flows over a small hump. The applicability of PSEs to flows with a small separation bubble was examined by comparing the result with DNS data. It was found that PSEs can efficiently track the disturbance waves with an acceptable accuracy in spite of a small separation bubble. A typical evolution scenario of Tollmien-Schlichting (TS) wave is presented. The adverse pressure gradient and the flow separation due to the hump have a strong effect on the amplification of the disturbances. The effect of hump width and height is also examined. When the width of the hump is reduced, the amplification factor is increased. The height of the hump is found to obviously influence the stability only when it is greater than the critical layer thickness.

  9. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

    KAUST Repository

    Pani, Amiya K.

    2010-06-06

    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

  10. Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation

    KAUST Repository

    Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.

  11. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

    KAUST Repository

    Pani, Amiya K.; Yadav, Sangita

    2010-01-01

    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

  12. A Note on the Asymptotic Behavior of Parabolic Monge-Ampère Equations on Riemannian Manifolds

    Directory of Open Access Journals (Sweden)

    Qiang Ru

    2013-01-01

    Full Text Available We study the asymptotic behavior of the parabolic Monge-Ampère equation in , in , where is a compact complete Riemannian manifold, λ is a positive real parameter, and is a smooth function. We show a meaningful asymptotic result which is more general than those in Huisken, 1997.

  13. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data

    KAUST Repository

    Goswami, Deepjyoti; Pani, Amiya K.; Yadav, Sangita

    2013-01-01

    In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a

  14. The Initial and Neumann Boundary Value Problem for a Class Parabolic Monge-Ampère Equation

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2013-01-01

    Full Text Available We consider the existence, uniqueness, and asymptotic behavior of a classical solution to the initial and Neumann boundary value problem for a class nonlinear parabolic equation of Monge-Ampère type. We show that such solution exists for all times and is unique. It converges eventually to a solution that satisfies a Neumann type problem for nonlinear elliptic equation of Monge-Ampère type.

  15. Modeling boundary-layer transition in DNS and LES using Parabolized Stability Equations

    Science.gov (United States)

    Lozano-Duran, Adrian; Hack, M. J. Philipp; Moin, Parviz

    2016-11-01

    The modeling of the laminar region and the prediction of the point of transition remain key challenges in the numerical simulation of boundary layers. The issue is of particular relevance for wall-modeled large eddy simulations which require 10 to 100 times higher grid resolution in the thin laminar region than in the turbulent regime. Our study examines the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate, yet computationally efficient treatment of the growth of disturbances in the pre-transitional flow regime. The PSE captures the nonlinear interactions that eventually induce breakdown to turbulence, and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the point of transition is the solution of the Navier-Stokes equations, it provides a natural inflow condition for large eddy and direct simulations by avoiding unphysical transients. We show that in a classical H-type transition scenario, a combined PSE/DNS approach can reproduce the skin-friction distribution obtained in reference direct numerical simulations. The computational cost in the laminar region is reduced by several orders of magnitude. Funded by the Air Force Office of Scientific Research.

  16. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Science.gov (United States)

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  17. Differential invariants of generic parabolic Monge–Ampère equations

    International Nuclear Information System (INIS)

    Ferraioli, D Catalano; Vinogradov, A M

    2012-01-01

    Some new results on the geometry of classical parabolic Monge–Ampère equations (PMAs) are presented. PMAs are either integrable, or non-integrable according to the integrability of its characteristic distribution. All integrable PMAs are locally equivalent to the equation u xx = 0. We study non-integrable PMAs by associating with each of them a one-dimensional distribution on the corresponding first-order jet manifold, called the directing distribution. According to some property of this distribution, non-integrable PMAs are subdivided into three classes, one generic and two special. Generic PMAs are completely characterized by their directing distributions, and we study canonical models of the latter, projective curve bundles (PCB). A PCB is a one-dimensional sub-bundle of the projectivized cotangent bundle of a four-dimensional manifold. Differential invariants of projective curves composing such a bundle are used to construct a series of contact differential invariants for corresponding PMAs. These give a solution of the equivalence problem for generic PMAs with respect to contact transformations. The introduced invariants measure the nonlinearity of PMAs in an exact manner. (paper)

  18. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations

    Science.gov (United States)

    Korte, John J.

    1991-01-01

    An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required

  19. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  20. A model reduction approach to numerical inversion for a parabolic partial differential equation

    International Nuclear Information System (INIS)

    Borcea, Liliana; Druskin, Vladimir; Zaslavsky, Mikhail; Mamonov, Alexander V

    2014-01-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss–Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments. (paper)

  1. A model reduction approach to numerical inversion for a parabolic partial differential equation

    Science.gov (United States)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  2. Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities

    International Nuclear Information System (INIS)

    Itasse, Maxime; Brazier, Jean-Philippe; Léon, Olivier; Casalis, Grégoire

    2015-01-01

    Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m 1 , n 1 ), (m 2 , n 2 ), such that the difference in azimuth and in frequency matches the desired “target” mode (m 1 − m 2 , n 1 − n 2 ). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes

  3. Difference scheme for a singularly perturbed parabolic convection-diffusion equation in the presence of perturbations

    Science.gov (United States)

    Shishkin, G. I.

    2015-11-01

    An initial-boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation with a perturbation parameter ɛ (ɛ ∈ (0, 1]) multiplying the highest order derivative. The stability of a standard difference scheme based on monotone approximations of the problem on a uniform mesh is analyzed, and the behavior of discrete solutions in the presence of perturbations is examined. The scheme does not converge ɛ-uniformly in the maximum norm as the number of its grid nodes is increased. When the solution of the difference scheme converges, which occurs if N -1 ≪ ɛ and N -1 0 ≪ 1, where N and N 0 are the numbers of grid intervals in x and t, respectively, the scheme is not ɛ-uniformly well conditioned or stable to data perturbations in the grid problem and to computer perturbations. For the standard difference scheme in the presence of data perturbations in the grid problem and/or computer perturbations, conditions on the "parameters" of the difference scheme and of the computer (namely, on ɛ, N, N 0, admissible data perturbations in the grid problem, and admissible computer perturbations) are obtained that ensure the convergence of the perturbed solutions. Additionally, the conditions are obtained under which the perturbed numerical solution has the same order of convergence as the solution of the unperturbed standard difference scheme.

  4. Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients

    KAUST Repository

    Nobile, Fabio; Tempone, Raul

    2009-01-01

    We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.

  5. Recovering the source and initial value simultaneously in a parabolic equation

    International Nuclear Information System (INIS)

    Zheng, Guang-Hui; Wei, Ting

    2014-01-01

    In this paper, we consider an inverse problem to simultaneously reconstruct the source term and initial data associated with a parabolic equation based on the additional temperature data at a terminal time t = T and the temperature data on an accessible part of a boundary. The conditional stability and uniqueness of the inverse problem are established. We apply a variational regularization method to recover the source and initial value. The existence, uniqueness and stability of the minimizer of the corresponding variational problem are obtained. Taking the minimizer as a regularized solution for the inverse problem, under an a priori and an a posteriori parameter choice rule, the convergence rates of the regularized solution under a source condition are also given. Furthermore, the source condition is characterized by an optimal control approach. Finally, we use a conjugate gradient method and a stopping criterion given by Morozov's discrepancy principle to solve the variational problem. Numerical experiments are provided to demonstrate the feasibility of the method. (papers)

  6. Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients

    KAUST Repository

    Nobile, Fabio

    2009-11-05

    We consider the problem of numerically approximating statistical moments of the solution of a time- dependent linear parabolic partial differential equation (PDE), whose coefficients and/or forcing terms are spatially correlated random fields. The stochastic coefficients of the PDE are approximated by truncated Karhunen-Loève expansions driven by a finite number of uncorrelated random variables. After approxi- mating the stochastic coefficients, the original stochastic PDE turns into a new deterministic parametric PDE of the same type, the dimension of the parameter set being equal to the number of random variables introduced. After proving that the solution of the parametric PDE problem is analytic with respect to the parameters, we consider global polynomial approximations based on tensor product, total degree or sparse polynomial spaces and constructed by either a Stochastic Galerkin or a Stochastic Collocation approach. We derive convergence rates for the different cases and present numerical results that show how these approaches are a valid alternative to the more traditional Monte Carlo Method for this class of problems. © 2009 John Wiley & Sons, Ltd.

  7. A compactness lemma of Aubin type and its application to degenerate parabolic equations

    Directory of Open Access Journals (Sweden)

    Anvarbek Meirmanov

    2014-10-01

    Full Text Available Let $\\Omega\\subset \\mathbb{R}^{n}$ be a regular domain and $\\Phi(s\\in C_{\\rm loc}(\\mathbb{R}$ be a given function. If $\\mathfrak{M}\\subset L_2(0,T;W^1_2(\\Omega \\cap L_{\\infty}(\\Omega\\times (0,T$ is bounded and the set $\\{\\partial_t\\Phi(v|\\,v\\in \\mathfrak{M}\\}$ is bounded in $L_2(0,T;W^{-1}_2(\\Omega$, then there is a sequence $\\{v_k\\}\\in \\mathfrak{M}$ such that $v_k\\rightharpoonup v \\in L^2(0,T;W^1_2(\\Omega$, and $v_k\\to v$, $\\Phi(v_k\\to \\Phi(v$ a.e. in $\\Omega_T=\\Omega\\times (0,T$. This assertion is applied to prove solvability of the one-dimensional initial and boundary-value problem for a degenerate parabolic equation arising in the Buckley-Leverett model of two-phase filtration. We prove existence and uniqueness of a weak solution, establish the property of finite speed of propagation and construct a self-similar solution.

  8. Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)

    2015-08-15

    Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.

  9. Stabilization of a semilinear parabolic equation in the exterior of a bounded domain by means of boundary controls

    International Nuclear Information System (INIS)

    Gorshkov, A V

    2003-01-01

    The problem of the stabilization of a semilinear equation in the exterior of a bounded domain is considered. In view of the impossibility of an exponential stabilization of the form e -σt of the solution of a parabolic equation in an unbounded domain no matter what the boundary control is, one poses the problem of power-like stabilization by means of a boundary control. For a fixed initial condition and parameter k>0 of the rate of stabilization the existence of a boundary control such that the solution approaches zero at the rate 1/t k is demonstrated

  10. On a second order of accuracy stable difference scheme for the solution of a source identification problem for hyperbolic-parabolic equations

    Science.gov (United States)

    Ashyralyyeva, Maral; Ashyraliyev, Maksat

    2016-08-01

    In the present paper, a second order of accuracy difference scheme for the approximate solution of a source identification problem for hyperbolic-parabolic equations is constructed. Theorem on stability estimates for the solution of this difference scheme and their first and second order difference derivatives is presented. In applications, this abstract result permits us to obtain the stability estimates for the solutions of difference schemes for approximate solutions of two source identification problems for hyperbolic-parabolic equations.

  11. Difference equations in massive higher order calculations

    International Nuclear Information System (INIS)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.; Schneider, C.

    2007-07-01

    The calculation of massive 2-loop operator matrix elements, required for the higher order Wilson coefficients for heavy flavor production in deeply inelastic scattering, leads to new types of multiple infinite sums over harmonic sums and related functions, which depend on the Mellin parameter N. We report on the solution of these sums through higher order difference equations using the summation package Sigma. (orig.)

  12. The new pooled cohort equations risk calculator

    DEFF Research Database (Denmark)

    Preiss, David; Kristensen, Søren L

    2015-01-01

    disease and any measure of social deprivation. An early criticism of the Pooled Cohort Equations Risk Calculator has been its alleged overestimation of ASCVD risk which, if confirmed in the general population, is likely to result in statin therapy being prescribed to many individuals at lower risk than...

  13. Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations

    NARCIS (Netherlands)

    Radu, F.A.; Pop, I.S.; Knabner, P.; Bermúdez de Castro, A.; Gómez, D.; Quintela, P.; Salgado, P.

    2006-01-01

    In this paper we discuss some iterative approaches for solving the nonlinear algebraic systems encountered as fully discrete counterparts of some degenerate (fast diffusion) parabolic problems. After regularization, we combine a mixed finite element discretization with the Euler implicit scheme. For

  14. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    Science.gov (United States)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  15. Study of the Electromagnetic Waves Propagation over the Improved Fractal Sea Surface Based on Parabolic Equation Method

    Directory of Open Access Journals (Sweden)

    Wenwan Ding

    2016-01-01

    Full Text Available An improved fractal sea surface model, which can describe the capillary waves very well, is introduced to simulate the one-dimension rough sea surface. In this model, the propagation of electromagnetic waves (EWs is computed by the parabolic equation (PE method using the finite-difference (FD algorithm. The numerical simulation results of the introduced model are compared with those of the Miller-Brown model and the Elfouhaily spectrum inversion model. It has been shown that the effects of the fine structure of the sea surface on the EWs propagation in the introduced model are more apparent than those in the other two models.

  16. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    International Nuclear Information System (INIS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s 2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful

  17. Functional stochastic differential equations: mathematical theory of nonlinear parabolic systems with applications in field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Doering, C.R.

    1985-01-01

    Applications of nonlinear parabolic stochastic differential equations with additive colored noise in equilibrium and nonequilibrium statistical mechanics and quantum field theory are developed in detail, providing a new unified mathematical approach to many problems. The existence and uniqueness of solutions to these equations is established, and some of the properties of the solutions are investigated. In particular, asymptotic expansions for the correlation functions of the solutions are introduced and compared to rigorous nonperturbative bounds on the moments. It is found that the perturbative analysis is in qualitative disagreement with the exact result in models corresponding to cut-off self-interacting nonperturbatively renormalizable scalar quantum field theories. For these theories the nonlinearities cannot be considered as perturbations of the linearized theory

  18. Carleman estimates, observability inequalities and null controllability for interior degenerate nonsmooth parabolic equations

    CERN Document Server

    Fragnelli, Genni

    2016-01-01

    The authors consider a parabolic problem with degeneracy in the interior of the spatial domain, and they focus on observability results through Carleman estimates for the associated adjoint problem. The novelties of the present paper are two. First, the coefficient of the leading operator only belongs to a Sobolev space. Second, the degeneracy point is allowed to lie even in the interior of the control region, so that no previous result can be adapted to this situation; however, different cases can be handled, and new controllability results are established as a consequence.

  19. Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains

    International Nuclear Information System (INIS)

    Shishkov, A E; Shchelkov, A G

    1999-01-01

    A new approach (not based on the techniques of barriers) to the study of asymptotic properties of the generalized solutions of parabolic initial boundary-value problems with finite-time blow-up of the boundary values is proposed. Precise conditions on the blow-up pattern are found that guarantee uniform localization of the solution for an arbitrary compactly supported initial function. The main result of the paper consists in obtaining precise sufficient conditions for the singular (or blow-up) set of an arbitrary solution to remain within the boundary of the domain

  20. A class of quasilinear parabolic equations with infinite delay and application to a problem of viscoelasticity

    Science.gov (United States)

    Renardy, M.

    A semigroup approach to differential-delay equations is developed which reduces such equations to ordinary differential equations on a Banach space of histories and seems more suitable for certain partial integro-differential equations than the standard theory. The method is applied to prove a local-time existence theorem for equations of the form utt = g( uxt, uxt) x, where {∂g}/{∂u xt} > 0 . On a formal level, it is demonstrated that the stretching of filaments of viscoelastic liquids can be described by an equation of this form.

  1. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data

    KAUST Repository

    Goswami, Deepjyoti

    2013-05-01

    In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L2 L2-error estimates are derived for semidiscrete approximations, when the initial condition is in L2 L2. Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L2, L 2, which improves upon the results available in the literature. © 2013 Springer Science+Business Media New York.

  2. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  3. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  4. Fujita Exponent for a Nonlinear Degenerate Parabolic Equation with Localized Source

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2014-01-01

    Full Text Available This paper is devoted to understand the blow-up properties of reaction-diffusion equations which combine a localized reaction term with nonlinear diffusion. In particular, we study the critical exponent of a p-Laplacian equation with a localized reaction. We obtain the Fujita exponent qc of the equation.

  5. A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations

    Science.gov (United States)

    White, J. A.; Morrison, J. H.

    1999-01-01

    A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.

  6. A geometric theory for semilinear almost-periodic parabolic partial differential equations on RN

    International Nuclear Information System (INIS)

    Vuillermot, P.A.

    1991-01-01

    In this short expository article we review various applications of some geometric methods which have been recently devised to investigate the long time behaviour of classical solutions to certain semilinear almost-periodic reaction-diffusion equations on R N . As a consequence, we also show how to construct almost-periodic attractors for such equations and how to investigate their stability properties. The class of problems which we analyse here contains in particular well known equations of population genetics. (author). 17 refs

  7. Poisson Stochastic Process and Basic Schauder and Sobolev Estimates in the Theory of Parabolic Equations

    Science.gov (United States)

    Krylov, N. V.; Priola, E.

    2017-09-01

    We show, among other things, how knowing Schauder or Sobolev-space estimates for the one-dimensional heat equation allows one to derive their multidimensional analogs for equations with coefficients depending only on the time variable with the same constants as in the case of the one-dimensional heat equation. The method is quite general and is based on using the Poisson stochastic process. It also applies to equations involving non-local operators. It looks like no other methods are available at this time and it is a very challenging problem to find a purely analytical approach to proving such results.

  8. On stability of the solutions of inverse problem for determining the right-hand side of a degenerate parabolic equation with two independent variables

    Science.gov (United States)

    Kamynin, V. L.; Bukharova, T. I.

    2017-01-01

    We prove the estimates of stability with respect to perturbations of input data for the solutions of inverse problems for degenerate parabolic equations with unbounded coefficients. An important feature of these estimates is that the constants in these estimates are written out explicitly by the input data of the problem.

  9. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    Science.gov (United States)

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  10. Class of unconditionally stable second-order implicit schemes for hyperbolic and parabolic equations

    International Nuclear Information System (INIS)

    Lui, H.C.

    The linearized Burgers equation is considered as a model u/sub t/ tau/sub x/ = bu/sub xx/, where the subscripts t and x denote the derivatives of the function u with respect to time t and space x; a and b are constants (b greater than or equal to 0). Numerical schemes for solving the equation are described that are second-order accurate, unconditionally stable, and dissipative of higher order. (U.S.)

  11. Development of Vector Parabolic Equation Technique for Propagation in Urban and Tunnel Environments

    Science.gov (United States)

    2010-09-01

    that of the former is geared towards determining the transport amplitude, having found the eikonal by some other means. Among the principal...FOR MODELING RADIO TRANSMISSION LOSS 1761 We can then use the following asymptotic ansatz (10) where (11) and is the tunnel width [26]. The eikonal is a...equation and equating terms of the same order of , we can define the eikonal and find the vector PE [4] for the straight waveguide (12) where is the

  12. Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part

    Directory of Open Access Journals (Sweden)

    Bixiang Wang

    2013-08-01

    Full Text Available We prove the existence and uniqueness of random attractors for the p-Laplace equation driven simultaneously by non-autonomous deterministic and stochastic forcing. The nonlinearity of the equation is allowed to have a polynomial growth rate of any order which may be greater than p. We further establish the upper semicontinuity of random attractors as the intensity of noise approaches zero. In addition, we show the pathwise periodicity of random attractors when all non-autonomous deterministic forcing terms are time periodic.

  13. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    Science.gov (United States)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  14. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    Science.gov (United States)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  15. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Science.gov (United States)

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  16. Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation

    Science.gov (United States)

    Cotté, B.

    2018-05-01

    This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.

  17. Stable multiple-layer stationary solutions of a semilinear parabolic equation in two-dimensional domains

    Directory of Open Access Journals (Sweden)

    Arnaldo Simal do Nascimento

    1997-12-01

    Full Text Available We use $Gamma$--convergence to prove existence of stable multiple--layer stationary solutions (stable patterns to the reaction--diffusion equation. $$ eqalign{ {partial v_varepsilon over partial t} =& varepsilon^2, hbox{div}, (k_1(xabla v_varepsilon + k_2(x(v_varepsilon -alpha(Beta-v_varepsilon (v_varepsilon -gamma_varepsilon(x,,hbox{ in }Omegaimes{Bbb R}^+ cr &v_varepsilon(x,0 = v_0 quad {partial v_varepsilon over partial widehat{n}} = 0,, quadhbox{ for } xin partialOmega,, t >0,.} $$ Given nested simple closed curves in ${Bbb R}^2$, we give sufficient conditions on their curvature so that the reaction--diffusion problem possesses a family of stable patterns. In particular, we extend to two-dimensional domains and to a spatially inhomogeneous source term, a previous result by Yanagida and Miyata.

  18. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations

    KAUST Repository

    Jin, Bangti

    2013-01-01

    We consider the initial boundary value problem for a homogeneous time-fractional diffusion equation with an initial condition ν(x) and a homogeneous Dirichlet boundary condition in a bounded convex polygonal domain Ω. We study two semidiscrete approximation schemes, i.e., the Galerkin finite element method (FEM) and lumped mass Galerkin FEM, using piecewise linear functions. We establish almost optimal with respect to the data regularity error estimates, including the cases of smooth and nonsmooth initial data, i.e., ν ∈ H2(Ω) ∩ H0 1(Ω) and ν ∈ L2(Ω). For the lumped mass method, the optimal L2-norm error estimate is valid only under an additional assumption on the mesh, which in two dimensions is known to be satisfied for symmetric meshes. Finally, we present some numerical results that give insight into the reliability of the theoretical study. © 2013 Society for Industrial and Applied Mathematics.

  19. Standardization of equations for radiochemical calculations

    International Nuclear Information System (INIS)

    Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.; Jones, H.W.

    1994-01-01

    In mid 1993, the Fernald Environmental Restoration Management Corporation (FERMCO), with USEPA approval implemented a project quality assurance plan containing performance-based specifications for radiochemical sample analyses conducted in support of the Fernald site remediation activities. FERMCO's initial approach to acquiring performance-based radioanalytical services was to provide limited guidance regarding equations for computation of the quantities required in each analysis report. It became evident that there was a significant divergence of opinion on how to compute some very basic radiochemical quantities. The use of a standardized set of equations was needed in order to ensure comparability of data from different laboratories. In a remediation project of this magnitude, use of multiple laboratories is a virtual necessity. Consequently comparability of data becomes an extremely important issue. A critical issue in the Remedial Investigation/Feasibility Study (RI/FS) phase of the dean up project is to avoid the occurrence of excessive false positive sample results. Such results could lead to unnecessary clean up and significant additional cost. This paper describes the specific formulas FERMCO is currently using to define such quantities as net sample count rate, sample radionuclide concentration, radiometric tracer and gravimetric carrier recovery. Equations have also been produced to define the uncertainty in each of the above quantities. Equations for the Total Propagated Uncertainty (TPU) and for a sample-specific Minimum Detectable Concentration (MDC) have also been specified. Generalized equations have been reformulated to address the specific conditions which apply to the analysis of FERMCO samples. In particular, FERMCO requires results which have been corrected for the radioactivity in the blank while in other instances, sample results without blank correction are required

  20. Viscous-inviscid interaction using the parabolized Navier-Stokes equations

    DEFF Research Database (Denmark)

    Filippone, Antonino; Sørensen, Jens Nørkær

    1997-01-01

    adaptive grid is used.The interaction is achieved by iterative updatingof the boundary conditions, through the wall transpiration concept. The Navier-Stokes equationsare discretized on a semi-staggered grid.Space-marching integration is performed starting from the stagnation streamline ontwo independent......A numerical model for the calculation of incompressible viscous flows past airfoils andwings has been developed. The approach is based on a strong viscous-inviscid coupling of aboundary element method with the Navier-Stokesequations in vorticity-streamfunction formulation.A semi-adaptive or fully...

  1. Stabilization of the norm of the solution of a mixed problem in an unbounded domain for parabolic equations of orders 4 and 6

    International Nuclear Information System (INIS)

    Mukminov, F Kh; Bikkulov, I M

    2004-01-01

    The behaviour as t→∞ of the solution of a mixed problem for parabolic equations in an unbounded domain with two exits to infinity is studied. A certain class of domains is distinguished, in which an estimate characterizing the stabilization of solutions and determined by the geometry of the domain is established. This estimate is proved to be sharp in a certain sense for a broad class of domains with two exits to infinity.

  2. Differential and Difference Boundary Value Problem for Loaded Third-Order Pseudo-Parabolic Differential Equations and Difference Methods for Their Numerical Solution

    Science.gov (United States)

    Beshtokov, M. Kh.

    2017-12-01

    Boundary value problems for loaded third-order pseudo-parabolic equations with variable coefficients are considered. A priori estimates for the solutions of the problems in the differential and difference formulations are obtained. These a priori estimates imply the uniqueness and stability of the solution with respect to the initial data and the right-hand side on a layer, as well as the convergence of the solution of each difference problem to the solution of the corresponding differential problem.

  3. Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients

    Science.gov (United States)

    Beshtokov, M. Kh.

    2016-10-01

    A nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients is considered. For solving this problem, a priori estimates in the differential and difference forms are obtained. The a priori estimates imply the uniqueness and stability of the solution on a layer with respect to the initial data and the right-hand side and the convergence of the solution of the difference problem to the solution of the differential problem.

  4. Estimates of the stabilization rate as t→∞ of solutions of the first mixed problem for a quasilinear system of second-order parabolic equations

    International Nuclear Information System (INIS)

    Kozhevnikova, L M; Mukminov, F Kh

    2000-01-01

    A quasilinear system of parabolic equations with energy inequality is considered in a cylindrical domain {t>0}xΩ. In a broad class of unbounded domains Ω two geometric characteristics of a domain are identified which determine the rate of convergence to zero as t→∞ of the L 2 -norm of a solution. Under additional assumptions on the coefficients of the quasilinear system estimates of the derivatives and uniform estimates of the solution are obtained; they are proved to be best possible in the order of convergence to zero in the case of one semilinear equation

  5. On a free boundary problem for a strongly degenerate quasilinear parabolic equation with an application to a model of pressure filtration

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, R.; Frid, H.; Karlsen, K.H.

    2002-07-01

    We consider a free boundary problem of a quasilinear strongly degenerate parabolic equation arising from a model of pressure filtration of flocculated suspensions. We provide definitions of generalized solutions of the free boundary problem in the framework of L2 divergence-measure fields. The formulation of boundary conditions is based on a Gauss-Green theorem for divergence-measure fields on bounded domains with Lipschitz deformable boundaries and avoids referring to traces of the solution. This allows to consider generalized solutions from a larger class than BV. Thus it is not necessary to derive the usual uniform estimates on spatial and time derivatives of the solutions of the corresponding regularized problem requires in the BV approach. We first prove existence and uniqueness of the solution of the regularized parabolic free boundary problem and then apply the vanishing viscosity method to prove existence of a generalized solution to the degenerate free boundary problem. (author)

  6. Programmable calculator programs to solve softwood volume and value equations.

    Science.gov (United States)

    Janet K. Ayer. Sachet

    1982-01-01

    This paper presents product value and product volume equations as programs for handheld calculators. These tree equations are for inland Douglas-fir, young-growth Douglas-fir, western white pine, ponderosa pine, and western larch. Operating instructions and an example are included.

  7. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  8. Equation for calculation of nitrogen solubility in iron alloys

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.

    1989-01-01

    Equation for calculating nitrogen solubility in multicomponent iron melts in a wide range of partial pressures (1-1600 kPa), of doping component concentrations and temperatures (1773-2373 K) is proposed. Comparative analysis of experimental and calculated values of nitrogen solubility has demonstrated a principle possibility of applying the equation proposed for evaluating absorption ability to nitrogen of industrial nitrogen containing steels and ferroalloys subjected to melting or remelting in plasma or other melting devices

  9. The Numerical Calculation of Traveling Wave Solutions of Nonlinear Parabolic Equations on the Line.

    Science.gov (United States)

    1984-02-01

    kc(i~~ +’~ which can be rewrittenw W (T is) Ic (sic) - (+ Using the convolution formulas and the expression for the inverse transform of-I (se e.g...2i 2f 1 2 c) + 4f1 1- f 3] 1 We now have: f ) (0,0,4) ; (2.17) f2 3(U) (0,0,0*) x 3 -, (0,,) . 3u ’ The inverse transform of (2.15) is given by: E

  10. The Numerical Solution of the Navier-Stokes Equations for Laminar, Incompressible Flow past a Parabolic Cylinder

    NARCIS (Netherlands)

    Botta, E.F.F.; Dijkstra, D.; Veldman, A.E.P.

    1972-01-01

    The numerical method of solution for the semi-infinite flat plate has been extended to the case of the parabolic cylinder. Results are presented for the skin friction, the friction drag, the pressure and the pressure drag. The drag coefficients have been checked by means of an application of the

  11. An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects

    Science.gov (United States)

    Grinevich, P. G.; Santini, P. M.

    2016-10-01

    Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form v t = v x v y - ∂ x -1 ∂ y [ v y + v x 2], where the formal integral ∂ x -1 becomes the asymmetric integral - int_x^∞ {dx'} . We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f( X, Y) over a parabola in the plane ( X, Y) can be expressed in terms of the integrals of f( X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.

  12. Optimal Control Method of Parabolic Partial Differential Equations and Its Application to Heat Transfer Model in Continuous Cast Secondary Cooling Zone

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Our work is devoted to a class of optimal control problems of parabolic partial differential equations. Because of the partial differential equations constraints, it is rather difficult to solve the optimization problem. The gradient of the cost function can be found by the adjoint problem approach. Based on the adjoint problem approach, the gradient of cost function is proved to be Lipschitz continuous. An improved conjugate method is applied to solve this optimization problem and this algorithm is proved to be convergent. This method is applied to set-point values in continuous cast secondary cooling zone. Based on the real data in a plant, the simulation experiments show that the method can ensure the steel billet quality. From these experiment results, it is concluded that the improved conjugate gradient algorithm is convergent and the method is effective in optimal control problem of partial differential equations.

  13. Recursive integral equations with positive kernel for lattice calculations

    International Nuclear Information System (INIS)

    Illuminati, F.; Isopi, M.

    1990-11-01

    A Kirkwood-Salzburg integral equation, with positive defined kernel, for the states of lattice models of statistical mechanics and quantum field theory is derived. The equation is defined in the thermodynamic limit, and its iterative solution is convergent. Moreover, positivity leads to an exact a priori bound on the iteration. The equation's relevance as a reliable algorithm for lattice calculations is therefore suggested, and it is illustrated with a simple application. It should provide a viable alternative to Monte Carlo methods for models of statistical mechanics and lattice gauge theories. 10 refs

  14. Changes of the calculation equation for σMUF

    International Nuclear Information System (INIS)

    Yoshida, Hideki; Niiyama, Toshitaka; Sonobe, Kentaro

    2002-01-01

    The error variance (σ MUF 2 ) of the material accountancy for the material balance is used for evaluating the MUF of the conventional material accountancy and the near real time material accountancy (NRTA). The σ MUF 2 calculated by the error propagation using the material accounting data and the measurement error. The error propagation equation of σ MUF 2 written on the text of 'The statistical concepts and technique for IAEA safeguards (IAEA/SG/SCT5)'. There are some assumptions in order to simplify the equation. These assumptions are available in the assessment of the facility design. However when the σ MUF 2 of the actual MUF is calculated, it is necessary to drop some assumptions and modify the adapted equation. Furthermore, because the material balance is more frequently taken for NRTA, the inventory of all times cannot be always re-measured at each time. To be solved the matter, the error propagation equation has to be modified. For a reprocessing plant which has material in solution, the equation has been improved to obtain more exact equation. In this paper we present the changes of the error propagation for σ MUF 2 and explain the features. (author)

  15. Nonlinear parabolic equations with blowing-up coefficients with respect to the unknown and with soft measure data

    Directory of Open Access Journals (Sweden)

    Khaled Zaki

    2016-12-01

    Full Text Available We establish the existence of solutions for the nonlinear parabolic problem with Dirichlet homogeneous boundary conditions, $$ \\frac{\\partial u}{\\partial t} - \\sum_{i=1}^N\\frac{\\partial}{\\partial x_i} \\Big( d_i(u\\frac{\\partial u}{\\partial x_i} \\Big =\\mu,\\quad u(t=0=u_0, $$ in a bounded domain. The coefficients $d_i(s$ are continuous on an interval $]-\\infty,m[$, there exists an index p such that $d_p(u$ blows up at a finite value m of the unknown u, and $\\mu$ is a diffuse measure.

  16. Opacity calculations and Saha's equation for high Z elements

    International Nuclear Information System (INIS)

    Godwal, B.K.; Sikka, S.K.

    1977-01-01

    Opacity calculations are needed for energy transport by radiation for high Z element plasmas as these have been suggested as temper materials in laser, electron beam and heavy ion fusion schemes. The pressure ionised modified form of Saha's ionisation equation has been used to obtain the free electron density, populations of various ionic species and the populations of various energy states for a given ion. Results are presented for two typical elements; tungsten and uranium. The ionisation potential have been evaluated using the Bohr's formula with suitable effective screened charges for ions. The results show that for uranium, even at a temperature of 10 kev, the K shell is intact. The reliability of the Saha's equation solution has been checked by comparing the equation of state (total pressure vs total energy curve) with that given by the Thomas-Fermi-Dirac equation of state. The agreement between the two is good from temperature upwards of 0.2 kev. (author)

  17. Weakly nonparallel and curvature effects on stationary crossflow instability: Comparison of results from multiple-scales analysis and parabolized stability equations

    Science.gov (United States)

    Singer, Bart A.; Choudhari, Meelan; Li, Fei

    1995-01-01

    A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.

  18. Parametric equations for calculation of macroscopic cross sections

    International Nuclear Information System (INIS)

    Botelho, Mario Hugo; Carvalho, Fernando

    2015-01-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  19. Coercive properties of elliptic-parabolic operator

    International Nuclear Information System (INIS)

    Duong Min Duc.

    1987-06-01

    Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs

  20. Parallel SOR methods with a parabolic-diffusion acceleration technique for solving an unstructured-grid Poisson equation on 3D arbitrary geometries

    Science.gov (United States)

    Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.

    2016-05-01

    This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.

  1. Numerical analysis of the asymptotic behavior of solutions of a boundary problem for a nonlinear parabolic equation

    International Nuclear Information System (INIS)

    Vasileva, D.P.

    1993-01-01

    Blow-up and global time self-similar solutions of a boundary problem for a nonlinear equation u t = Δ u σ+1 + u β are found in the case β = σ + 1. It is shown that they describe the asymptotic behavior of a wide class of initial perturbations. A numerical investigation of the solutions in the case β>σ + 1 is also made. A hypothesis is done that the behavior for large times of global time solutions is described by the self-similar solutions of the equation without source.(author). 20 refs.; 9 figs

  2. Automatic calculation of supersymmetric renormalization group equations and loop corrections

    Science.gov (United States)

    Staub, Florian

    2011-03-01

    SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose

  3. On the dynamics of a non-local parabolic equation arising from the Gierer-Meinhardt system

    Science.gov (United States)

    Kavallaris, Nikos I.; Suzuki, Takashi

    2017-05-01

    The purpose of the current paper is to contribute to the comprehension of the dynamics of the shadow system of an activator-inhibitor system known as a Gierer-Meinhardt model. Shadow systems are intended to work as an intermediate step between single equations and reaction-diffusion systems. In the case where the inhibitor’s response to the activator’s growth is rather weak, then the shadow system of the Gierer-Meinhardt model is reduced to a single though non-local equation whose dynamics will be investigated. We mainly focus on the derivation of blow-up results for this non-local equation which can be seen as instability patterns of the shadow system. In particular, a diffusion driven instability (DDI), or Turing instability, in the neighbourhood of a constant stationary solution, which it is destabilised via diffusion-driven blow-up, is obtained. The latter actually indicates the formation of some unstable patterns, whilst some stability results of global-in-time solutions towards non-constant steady states guarantee the occurrence of some stable patterns.

  4. Superconvergence of Finite Element Approximations to Parabolic and Hyperbolic Integro-Differential Equations%抛物型和双曲型积分-微分方程有限元逼近的超收敛性质

    Institute of Scientific and Technical Information of China (English)

    张铁; 李长军

    2001-01-01

    The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.

  5. Calculation of similarity solutions of partial differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1980-08-01

    When a partial differential equation in two independent variables is invariant to a group G of stretching transformations, it has similarity solutions that can be found by solving an ordinary differential equation. Under broad conditions, this ordinary differential equation is also invariant to another stretching group G', related to G. The invariance of the ordinary differential equation to G' can be used to simplify its solution, particularly if it is of second order. Then a method of Lie's can be used to reduce it to a first-order equation, the study of which is greatly facilitated by analysis of its direction field. The method developed here is applied to three examples: Blasius's equation for boundary layer flow over a flat plate and two nonlinear diffusion equations, cc/sub t/ = c/sub zz/ and c/sub t/ = (cc/sub z/)/sub z/

  6. Theoretical Study of the Compound Parabolic Trough Solar Collector

    OpenAIRE

    Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen

    2012-01-01

    Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  7. Strongly nonlinear parabolic variational inequalities.

    Science.gov (United States)

    Browder, F E; Brézis, H

    1980-02-01

    An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.

  8. a numerical analysis of the energy behavior of a parabolic trough ...

    African Journals Online (AJOL)

    M. Ghodbane

    A computer program was developed in Matlab after discretization equations. For the calculation of energy balance was asks these assumptions: The heat transfer fluid is incompressible;. The parabolic shape is symmetrical;. The ambient temperature around the concentrator is uniform;. The effect of the shadow of ...

  9. Equations for calculating interfacial drag and shear from void fraction correlations

    International Nuclear Information System (INIS)

    Putney, J.M.

    1988-12-01

    Equations are developed for calculating interfacial drag and shear coefficients for dispersed vapour flows from void fraction correlations. The equations have a sound physical basis and lead to physically correct coefficients in all flow situations. (author)

  10. Calculation of Volterra kernels for solutions of nonlinear differential equations

    NARCIS (Netherlands)

    van Hemmen, JL; Kistler, WM; Thomas, EGF

    2000-01-01

    We consider vector-valued autonomous differential equations of the form x' = f(x) + phi with analytic f and investigate the nonanticipative solution operator phi bar right arrow A(phi) in terms of its Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of

  11. Optimum biasing of integral equations in Monte Carlo calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1979-01-01

    In solving integral equations and estimating average values with the Monte Carlo method, biasing functions may be used to reduce the variancee of the estimates. A simple derivation was used to prove the existence of a zero-variance collision estimator if a specific biasing function and survival probability are applied. This optimum biasing function is the same as that used for the well known zero-variance last-event estimator

  12. Biased calculations: Numeric anchors influence answers to math equations

    Directory of Open Access Journals (Sweden)

    Andrew R. Smith

    2011-02-01

    Full Text Available People must often perform calculations in order to produce a numeric estimate (e.g., a grocery-store shopper estimating the total price of his or her shopping cart contents. The current studies were designed to test whether estimates based on calculations are influenced by comparisons with irrelevant anchors. Previous research has demonstrated that estimates across a wide range of contexts assimilate toward anchors, but none has examined estimates based on calculations. In two studies, we had participants compare the answers to math problems with anchors. In both studies, participants' estimates assimilated toward the anchor values. This effect was moderated by time limit such that the anchoring effects were larger when the participants' ability to engage in calculations was limited by a restrictive time limit.

  13. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  14. Multistate electron transfer dynamics in the condensed phase: Exact calculations from the reduced hierarchy equations of motion approach

    International Nuclear Information System (INIS)

    Tanaka, Midori; Tanimura, Yoshitaka

    2010-01-01

    Multiple displaced oscillators coupled to an Ohmic heat bath are used to describe electron transfer (ET) in a dissipative environment. By performing a canonical transformation, the model is reduced to a multilevel system coupled to a heat bath with the Brownian spectral distribution. A reduced hierarchy equations of motion approach is introduced for numerically rigorous simulation of the dynamics of the three-level system with various oscillator configurations, for different nonadiabatic coupling strengths and damping rates, and at different temperatures. The time evolution of the reduced density matrix elements illustrates the interplay of coherences between the electronic and vibrational states. The ET reaction rates, defined as a flux-flux correlation function, are calculated using the linear response of the system to an external perturbation as a function of activation energy. The results exhibit an asymmetric inverted parabolic profile in a small activation regime due to the presence of the intermediate state between the reactant and product states and a slowly decaying profile in a large activation energy regime, which arises from the quantum coherent transitions.

  15. Elementary exact calculations of degree growth and entropy for discrete equations.

    Science.gov (United States)

    Halburd, R G

    2017-05-01

    Second-order discrete equations are studied over the field of rational functions [Formula: see text], where z is a variable not appearing in the equation. The exact degree of each iterate as a function of z can be calculated easily using the standard calculations that arise in singularity confinement analysis, even when the singularities are not confined. This produces elementary yet rigorous entropy calculations.

  16. Shock wave convergence in water with parabolic wall boundaries

    International Nuclear Information System (INIS)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-01-01

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger

  17. A parabolic model for dimple potentials

    International Nuclear Information System (INIS)

    Aydin, Melike Cibik; Uncu, Haydar; Deniz, Coskun

    2013-01-01

    We study the truncated parabolic function and demonstrate that it is a representation of the Dirac δ function. We also show that the truncated parabolic function, used as a potential in the Schrödinger equation, has the same bound state spectrum, tunneling and reflection amplitudes as the Dirac δ potential, as the width of the parabola approximates to zero. Dirac δ potential is used to model dimple potentials which are utilized to increase the phase-space density of a Bose–Einstein condensate in a harmonic trap. We show that a harmonic trap with a δ function at the origin is a limiting case of the harmonic trap with a symmetric truncated parabolic potential around the origin. Hence, the truncated parabolic is a better candidate for modeling the dimple potentials. (paper)

  18. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    Directory of Open Access Journals (Sweden)

    Thomas Gomez

    2018-04-01

    Full Text Available Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods. Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numerical complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. This technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.

  19. Numerical calculation of the cross section by the solution of the wave equation

    International Nuclear Information System (INIS)

    Drewko, J.

    1982-01-01

    A numerical method of solving of the wave equation is described for chosen vibrational eigenfunctions. A prepared program calculates the total cross sections for the resonant vibrational excitation for diatomic molecules on the basis of introduced molecular data. (author)

  20. The transition equation of the state intensities for exciton model and the calculation program

    International Nuclear Information System (INIS)

    Yu Xian; Zheng Jiwen; Liu Guoxing; Chen Keliang

    1995-01-01

    An equation set of the exciton model is given and calculation program is developed. The process of approaching to equilibrium state has been investigated with the program for 12 C + 64 Ni reaction at energy 72 MeV

  1. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    2017-02-01

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.

  2. Calculation of NARM's Equilibrium with Peng-Robinson Equation of State

    Institute of Scientific and Technical Information of China (English)

    LI Tingxun; GUO Kaihua; WANG Ruzhu; FAN Shuanshi

    2001-01-01

    The liquid molar volumes of nonazeotropic refrigerant mixtures (NARM), calculated with Peng Robinson (PR)equation, were compared with vapor -liquid equilibrium experimental data in this paper. Provided with coreaction coefficient kij, the discrepancies of liquid molar volume data for R22+Rl14 and R22+R142b using PR equation are 7.7% and 8.1% , respectively. When HBT (Hankinson-Brobst-Thomson) equation was joined with PR equation, the deviations are reduced to less than 1.5% for both R22+Rl14 and R22+R142b.

  3. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  4. On parabolic external maps

    DEFF Research Database (Denmark)

    Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao

    2017-01-01

    We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...

  5. Studies with Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC

    CERN Document Server

    Solfaroli Camillocci, Matteo; Timko, Helga; Wenninger, Jorg; CERN. Geneva. ATS Department

    2018-01-01

    Measurements performed with a Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC. Three attempts have been performed with a pilot bunch and one with nominal bunch (1.1x1011 p/bunch).

  6. Gradient-type methods in inverse parabolic problems

    International Nuclear Information System (INIS)

    Kabanikhin, Sergey; Penenko, Aleksey

    2008-01-01

    This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.

  7. Calculation of statistic estimates of kinetic parameters from substrate uncompetitive inhibition equation using the median method

    Directory of Open Access Journals (Sweden)

    Pedro L. Valencia

    2017-04-01

    Full Text Available We provide initial rate data from enzymatic reaction experiments and tis processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974. The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters Vmax and Km from the Michaelis–Menten equation. In this opportunity we present the procedure to applicate the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensibility to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation Vmax, Km and Ks were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].

  8. New Equations for Calculating Principal and Fine-Structure Atomic Spectra for Single and Multi-Electron Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Surdoval, Wayne A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Berry, David A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shultz, Travis R. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2018-03-09

    A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation and its relationship to the new equations are presented.

  9. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2014-03-21

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.

  10. Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence

    OpenAIRE

    Hardouin, Charlotte; Minchenko, Andrei; Ovchinnikov, Alexey

    2015-01-01

    The main motivation of our work is to create an efficient algorithm that decides hypertranscendence of solutions of linear differential equations, via the parameterized differential and Galois theories. To achieve this, we expand the representation theory of linear differential algebraic groups and develop new algorithms that calculate unipotent radicals of parameterized differential Galois groups for differential equations whose coefficients are rational functions. P. Berman and M.F. Singer ...

  11. Choosing of mode and calculation of multiple regression equation parameters in X-ray radiometric analysis

    International Nuclear Information System (INIS)

    Mamikonyan, S.V.; Berezkin, V.V.; Lyubimova, S.V.; Svetajlo, Yu.N.; Shchekin, K.I.

    1978-01-01

    A method to derive multiple regression equations for X-ray radiometric analysis is described. Te method is realized in the form of the REGRA program in an algorithmic language. The subprograms included in the program are describe. In analyzing cement for Mg, Al, Si, Ca and Fe contents as an example, the obtainment of working equations in the course of calculations by the program is shown to simpliy the realization of computing devices in instruments for X-ray radiometric analysis

  12. Statistical Average of Spin Operators for Calculation of Three-Component Magnetization (II): Solution of Equation

    International Nuclear Information System (INIS)

    Wang Huaiyu; Long Yao; Chen Nanxian

    2006-01-01

    In this paper, the solution of Chebyshev equation with its argument being greater than 1 is obtained. The initial value of the derivative of the solution is the expression of magnetization, which is valid for any spin quantum number S. The Chebyshev equation is transformed from an ordinary differential equation obtained when we dealt with Heisenberg model, in order to calculate all three components of magnetization, by many-body Green's function under random phase approximation. The Chebyshev functions with argument being greater than 1 are discussed. This paper shows that the Chebyshev polynomials with their argument being greater than 1 have their physical application.

  13. Nonperturbative non-Markovian quantum master equation: Validity and limitation to calculate nonlinear response functions

    Science.gov (United States)

    Ishizaki, Akihito; Tanimura, Yoshitaka

    2008-05-01

    Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a harmonic bath with colored noise in which the system-bath coupling operator does not necessarily commute with the system Hamiltonian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order perturbative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While the equation describes the exact dynamics of the density matrix beyond weak system-bath interactions, it does not have the capability to calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that can handle quantal system-bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.

  14. A Poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows

    Science.gov (United States)

    Sohn, J. L.; Heinrich, J. C.

    1990-01-01

    The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.

  15. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  16. Simple renormalization group method for calculating geometrical and other equations of states

    International Nuclear Information System (INIS)

    Tsallis, C.; Schwaccheim, G.; Coniglio, A.

    1984-01-01

    A real space renormalization group procedure to calculate geometrical and thermal equations of states for the entire range of values of the external parameters is described. Its use is as simple as a Mean Field Approximation; however, it yields non trivial results and can be systematically improved. Such a procedure is illustrated by calculating, for all bond concentrations, the site mass density for the complete and the backbone percolating infinite clusters in square lattice: the results are quite satisfactory. (Author) [pt

  17. A short proof of increased parabolic regularity

    Directory of Open Access Journals (Sweden)

    Stephen Pankavich

    2015-08-01

    Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.

  18. Analytical calculation of an invariant curve for Chew-Low equations

    International Nuclear Information System (INIS)

    Gerdt, V.P.

    1978-01-01

    The local structure of the one-parameter set of invariant curves for Chew-Low equations having the form of the convergent series is considered. Coefficients of this series βsub(i)(C) are polynomials in set parameter C. The transition to the general solution of Chew-Low equations is carried out by replacing the parameter C by arbitrary even, real, meromorphic function C(w) with the property C(w+1)=-C(w). The procedure for calculation of coefficients βsub(i)(C), which is based on the solution of nonlinear functional eqtions, following from Chew-Low equations, is developed. First twelve coefficients βsub(i)(C) are calculated analytically by computer, using program system SCHOONSCHIP

  19. Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste

    International Nuclear Information System (INIS)

    HU, T.A.

    1999-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement within a factor of two to three

  20. Coupled, parabolic-marching method for the prediction of three-dimensional viscous incompressible turbomachinery flows. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, K.R.

    1988-10-01

    A new coupled parabolic-marching method was developed to solve the three-dimensional incompressible Navier-Stokes equation for turbulent turbomachinery flows. Earlier space-marching methods were analyzed to determine their global stability during multiple passes of the computational domain. The methods were found to be unconditionally unstable even when an extra equation for the pressure, namely the Poisson equation for the pressure, was used between passes of the domain. Relaxation of one constraint during the solution process was found to be necessary for the successful calculation of a complex flow.Thus, the method of pseudocompressibility was introduced into the partially parabolized Navier-Stokes equation to relax the mass flow constraint during a forward-marching integration as well as globally stable during successive passes of the domain. With consistent discretization, the new method was found to be convergent.

  1. Variational Calculation for the Equation of State of Hot Asymmetric Nuclear Matter

    International Nuclear Information System (INIS)

    Togashi, Hajime; Kanzawa, Hiroaki; Takano, Masatoshi

    2010-01-01

    We calculate the equation of state (EOS) of asymmetric nuclear matter at finite temperatures with the cluster variational method based on the realistic nuclear Hamiltonian composed of the AV18 and UIX nuclear potentials. The free energy is calculated with an extension of the variational method proposed by Schmidt and Pandharipande. The obtained thermodynamic quantities such as entropy, internal energy, pressure and chemical potential derived from the free energy are reasonable. It is also found that the present variational calculation is self-consistent. These thermodynamic quantities are essential ingredients in our project for constructing a new nuclear EOS applicable to supernova simulations.

  2. Calculation of crystalline lens power in chickens with a customized version of Bennett's equation.

    Science.gov (United States)

    Iribarren, Rafael; Rozema, Jos J; Schaeffel, Frank; Morgan, Ian G

    2014-03-01

    This paper customizes Bennett's equation for calculating lens power in chicken eyes from refraction, keratometry and biometry. Previously published data on refraction, corneal power, anterior chamber depth, lens thickness, lens radii of curvature, axial length and eye power in chickens aged 10-90 days were used to estimate Gullstrand's lens power and Bennett's lens power for chicken eyes, and to calculate the lens equivalent refractive index. Bennett's A and B constants for the front and back surface powers of the lens were calculated for data measured from day 10 to 90 at 10 day intervals, and mean customized constants were calculated. The mean customized constants for Bennett's equation for chicks were A=0.574±0.023 and B=0.379±0.021. As found previously, lens power decreases with age in chicks, while corneal power decreases and axial length increases. The lens equivalent refractive index decreases with age from 10 to 90 days after hatching. Bennett's equation can be used to calculate lens power in chicken eyes for studies on animal myopia, using standard biometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  4. A Direct Radiative Transfer Equation Solver for Path Loss Calculation of Underwater Optical Wireless Channels

    KAUST Repository

    Li, Changping

    2014-11-10

    In this report, we propose a fast numerical solution for the steady state radiative transfer equation in order to calculate the path loss due to light absorption and scattering in various type of underwater channels. In the proposed scheme, we apply a direct non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. The accuracy and efficiency of the proposed scheme is validated by Monte Carlo simulations.

  5. A Direct Radiative Transfer Equation Solver for Path Loss Calculation of Underwater Optical Wireless Channels

    KAUST Repository

    Li, Changping; Park, Ki-Hong; Alouini, Mohamed-Slim

    2014-01-01

    In this report, we propose a fast numerical solution for the steady state radiative transfer equation in order to calculate the path loss due to light absorption and scattering in various type of underwater channels. In the proposed scheme, we apply a direct non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. The accuracy and efficiency of the proposed scheme is validated by Monte Carlo simulations.

  6. Application of the method of integral equations to calculating the electrodynamic characteristics of periodically corrugated waveguides

    International Nuclear Information System (INIS)

    Belov, V.E.; Rodygin, L.V.; Fil'chenko, S.E.; Yunakovskii, A.D.

    1988-01-01

    A method is described for calculating the electrodynamic characteristics of periodically corrugated waveguide systems. This method is based on representing the field as the solution of the Helmholtz vector equation in the form of a simple layer potential, transformed with the use of the Floquet conditions. Systems of compound integral equations based on a weighted vector function of the simple layer potential are derived for waveguides with azimuthally symmetric and helical corrugations. A numerical realization of the Fourier method is cited for seeking the dispersion relation of azimuthally symmetric waves of a circular corrugated waveguide

  7. A nodal collocation method for the calculation of the lambda modes of the P L equations

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdu, G.

    2005-01-01

    P L equations are classical approximations to the neutron transport equation admitting a diffusive form. Using this property, a nodal collocation method is developed for the P L approximations, which is based on the expansion of the flux in terms of orthonormal Legendre polynomials. This method approximates the differential lambda modes problem by an algebraic eigenvalue problem from which the fundamental and the subcritical modes of the system can be calculated. To test the performance of this method, two problems have been considered, a homogeneous slab, which admits an analytical solution, and a seven-region slab corresponding to a more realistic problem

  8. A four-equation friction model for water hammer calculation in quasi-rigid pipelines

    International Nuclear Information System (INIS)

    Ghodhbani, Abdelaziz; Haj Taïeb, Ezzeddine

    2017-01-01

    Friction coupling affects water hammer evolution in pipelines according to the initial flow regime. Unsteady friction models are only validated with uncoupled formulation. On the other hand, coupled models such as four-equation model, provide more accurate prediction of water hammer since fluid-structure interaction (FSI) is taken into account, but they are limited to steady-state friction formulation. This paper deals with the creation of the “four-equation friction model” which is based on the incorporation of the unsteady head loss given by an unsteady friction model into the four-equation model. For transient laminar flow cases, the Zielke model is considered. The proposed model is applied to a quasi-rigid pipe with axial moving valve, and then calculated by the method of characteristics (MOC). Damping and shape of the numerical solution are in good agreement with experimental data. Thus, the proposed model can be incorporated into a new computer code. - Highlights: • Both Zielke model and four-equation model are insufficient to predict water hammer. • The four-equation friction model proposed is obtained by incorporating the unsteady head loss in the four-equation model. • The solution obtained by the proposed model is in good agreement with experimental data. • The wave-speed adjustment scheme is more efficient than interpolations schemes.

  9. The two-wave X-ray field calculated by means of integral-equation methods

    International Nuclear Information System (INIS)

    Bremer, J.

    1984-01-01

    The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)

  10. Calculation of the power factor using the neutron diffusion hybrid equation

    International Nuclear Information System (INIS)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino

    2013-01-01

    Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.

  11. Computational partial differential equations using Matlab

    CERN Document Server

    Li, Jichun

    2008-01-01

    Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE

  12. Correction of the calculation of beam loading based in the RF power diffusion equation

    International Nuclear Information System (INIS)

    Silva, R. da.

    1980-01-01

    It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt

  13. Calculation of Rayleigh type sums for zeros of the equation arising in spectral problem

    Science.gov (United States)

    Kostin, A. B.; Sherstyukov, V. B.

    2017-12-01

    For zeros of the equation (arising in the oblique derivative problem) μ J n ‧ ( μ ) cos α + i n J n ( μ ) sin α = 0 , μ ∈ ℂ , with parameters n ∈ ℤ, α ∈ [-π/2, π/2] and the Bessel function Jn (μ) special summation relationships are proved. The obtained results are consistent with the theory of well-known Rayleigh sums calculating by zeros of the Bessel function.

  14. Method for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations

    CSIR Research Space (South Africa)

    Kirton, A

    2010-08-01

    Full Text Available for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations A KIRTON B SCHOLES S ARCHIBALD CSIR Ecosystem Processes and Dynamics, Natural Resources and the Environment P.O. BOX 395, Pretoria, 0001, South... intervals (confidence intervals for predicted values) for allometric estimates can be obtained using an example of estimating tree biomass from stem diameter. It explains how to deal with relationships which are in the power function form - a common form...

  15. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...

  16. A model expansion criterion for treating surface topography in ray path calculations using the eikonal equation

    International Nuclear Information System (INIS)

    Ma, Ting; Zhang, Zhongjie

    2014-01-01

    Irregular surface topography has revolutionized how seismic traveltime is calculated and the data are processed. There are two main schemes for dealing with an irregular surface in the seismic first-arrival traveltime calculation: (1) expanding the model and (2) flattening the surface irregularities. In the first scheme, a notional infill medium is added above the surface to expand the physical space into a regular space, as required by the eikonal equation solver. Here, we evaluate the chosen propagation velocity in the infill medium through ray path tracking with the eikonal equation-solved traveltime field, and observe that the ray paths will be physically unrealistic for some values of this propagation velocity. The choice of a suitable propagation velocity in the infill medium is crucial for seismic processing of irregular topography. Our model expansion criterion for dealing with surface topography in the calculation of traveltime and ray paths using the eikonal equation highlights the importance of both the propagation velocity of the infill physical medium and the topography gradient. (paper)

  17. Abstract of programs for nuclear reactor calculation and kinetic equations solution

    International Nuclear Information System (INIS)

    Marakazov, A.A.

    1977-01-01

    The collection includes about 50 annotations of programmes,developed in the Kurchatov Atomic Energy Institute in 1971-1976. The programmes are intended for calculating the neutron flux, for solving systems of multigroup equations in P 3 approximation, for calculating the reactor cell, for analysing the system stability, breeding ratio etc. The programme annotations are compiled according to the following diagram: 1.Programme title. 2.Computer type. 3.Physical problem. 4.Solution method. 5.Calculation limitations. 6.Characteristic computer time. 7.Programme characteristic features. 8.Bound programmes. 9.Programme state. 10.Literature allusions in the programme. 11.Required memory resourses. 12.Programming language. 13.Operation system. 14.Names of authors and place of programme adjusting

  18. Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State

    International Nuclear Information System (INIS)

    Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion

    2008-01-01

    A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry

  19. Calculation of prevalence estimates through differential equations: application to stroke-related disability.

    Science.gov (United States)

    Mar, Javier; Sainz-Ezkerra, María; Moler-Cuiral, Jose Antonio

    2008-01-01

    Neurological diseases now make up 6.3% of the global burden of disease mainly because they cause disability. To assess disability, prevalence estimates are needed. The objective of this study is to apply a method based on differential equations to calculate the prevalence of stroke-related disability. On the basis of a flow diagram, a set of differential equations for each age group was constructed. The linear system was solved analytically and numerically. The parameters of the system were obtained from the literature. The model was validated and calibrated by comparison with previous results. The stroke prevalence rate per 100,000 men was 828, and the rate for stroke-related disability was 331. The rates steadily rose with age, but the group between the ages of 65 and 74 years had the highest total number of individuals. Differential equations are useful to represent the natural history of neurological diseases and to make possible the calculation of the prevalence for the various states of disability. In our experience, when compared with the results obtained by Markov models, the benefit of the continuous use of time outweighs the mathematical requirements of our model. (c) 2008 S. Karger AG, Basel.

  20. Well-posedness of nonlocal parabolic differential problems with dependent operators.

    Science.gov (United States)

    Ashyralyev, Allaberen; Hanalyev, Asker

    2014-01-01

    The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  1. Cyclotron heating rate in a parabolic mirror

    International Nuclear Information System (INIS)

    Smith, P.K.

    1984-01-01

    Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)

  2. A Study on the Consistency of Discretization Equation in Unsteady Heat Transfer Calculations

    Directory of Open Access Journals (Sweden)

    Wenhua Zhang

    2013-01-01

    Full Text Available The previous studies on the consistency of discretization equation mainly focused on the finite difference method, but the issue of consistency still remains with several problems far from totally solved in the actual numerical computation. For instance, the consistency problem is involved in the numerical case where the boundary variables are solved explicitly while the variables away from the boundary are solved implicitly. And when the coefficient of discretization equation of nonlinear numerical case is the function of variables, calculating the coefficient explicitly and the variables implicitly might also give rise to consistency problem. Thus the present paper mainly researches the consistency problems involved in the explicit treatment of the second and third boundary conditions and that of thermal conductivity which is the function of temperature. The numerical results indicate that the consistency problem should be paid more attention and not be neglected in the practical computation.

  3. Flux form Semi-Lagrangian methods for parabolic problems

    Directory of Open Access Journals (Sweden)

    Bonaventura Luca

    2016-09-01

    Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.

  4. A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates

    Directory of Open Access Journals (Sweden)

    Shibata Darryl

    2010-01-01

    Full Text Available Abstract Background The purpose of this article is to present a relatively easy to understand cancer model where transformation occurs when the first cell, among many at risk within a colon, accumulates a set of driver mutations. The analysis of this model yields a simple algebraic equation, which takes as inputs the number of stem cells, mutation and division rates, and the number of driver mutations, and makes predictions about cancer epidemiology. Methods The equation [p = 1 - (1 - (1 - (1 - udkNm ] calculates the probability of cancer (p and contains five parameters: the number of divisions (d, the number of stem cells (N × m, the number of critical rate-limiting pathway driver mutations (k, and the mutation rate (u. In this model progression to cancer "starts" at conception and mutations accumulate with cell division. Transformation occurs when a critical number of rate-limiting pathway mutations first accumulates within a single stem cell. Results When applied to several colorectal cancer data sets, parameter values consistent with crypt stem cell biology and normal mutation rates were able to match the increase in cancer with aging, and the mutation frequencies found in cancer genomes. The equation can help explain how cancer risks may vary with age, height, germline mutations, and aspirin use. APC mutations may shorten pathways to cancer by effectively increasing the numbers of stem cells at risk. Conclusions The equation illustrates that age-related increases in cancer frequencies may result from relatively normal division and mutation rates. Although this equation does not encompass all of the known complexity of cancer, it may be useful, especially in a teaching setting, to help illustrate relationships between small and large cancer features.

  5. A reduction method for phase equilibrium calculations with cubic equations of state

    Directory of Open Access Journals (Sweden)

    D. V. Nichita

    2006-09-01

    Full Text Available In this work we propose a new reduction method for phase equilibrium calculations using a general form of cubic equations of state (CEOS. The energy term in the CEOS is a quadratic form, which is diagonalized by applying a linear transformation. The number of the reduction parameters is related to the rank of the matrix C with elements (1-Cij, where Cij denotes the binary interaction parameters (BIPs. The dimensionality of the problem depends only on the number of reduction parameters, and is independent of the number of components in the mixture.

  6. Interaction and collective effects in classical-equations-of-motion calculations

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1981-01-01

    We discuss results obtained with the classical-equations-of-motion (CEOM) approach, with particular reference to interaction (potential energy) and collective effects in central collisions of equal mass nuclei. The essence of the CEOM approach is the classical calculation of all A = A/sub P/ + A/sub T/ trajectories using a 2-body potential V between all pairs of nucleons; V = V/sub short/ + V/sub long/ has a short range repulsion and a longer range attractive tail. In contrast to hydrodynamics, the CEOM approach is microscopic and includes transparency and nonequilibrium effects

  7. Backscattering Properties of Nonspherical Ice Particles Calculated by Geometrical-Optics-Integral-Equation Method

    Directory of Open Access Journals (Sweden)

    Masuda Kazuhiko

    2016-01-01

    Full Text Available Backscattering properties of ice crystal models (Voronoi aggregates (VA, hexagonal columns (COL, and six-branched bullet rosettes (BR6 are calculated by using geometrical-opticsintegral-equation (GOIE method. Characteristics of depolarization ratio (δ and lidar ratio (L of the crystal models are examined. δ (L values are 0.2~0.3 (4~50, 0.3~0.4 (10~25, and 0.5~0.6 (50~100 for COL, BR6, and VA, respectively, at wavelength λ=0.532 μm. It is found that small deformation of COL model could produce significant changes in δ and L.

  8. The Dirac equation in electronic structure calculations: Accurate evaluation of DFT predictions for actinides

    International Nuclear Information System (INIS)

    Wills, John M.; Mattsson, Ann E.

    2012-01-01

    Brooks, Johansson, and Skriver, using the LMTO-ASA method and considerable insight, were able to explain many of the ground state properties of the actinides. In the many years since this work was done, electronic structure calculations of increasing sophistication have been applied to actinide elements and compounds, attempting to quantify the applicability of DFT to actinides and actinide compounds and to try to incorporate other methodologies (i.e. DMFT) into DFT calculations. Through these calculations, the limits of both available density functionals and ad hoc methodologies are starting to become clear. However, it has also become clear that approximations used to incorporate relativity are not adequate to provide rigorous tests of the underlying equations of DFT, not to mention ad hoc additions. In this talk, we describe the result of full-potential LMTO calculations for the elemental actinides, comparing results obtained with a full Dirac basis with those obtained from scalar-relativistic bases, with and without variational spin-orbit. This comparison shows that the scalar relativistic treatment of actinides does not have sufficient accuracy to provide a rigorous test of theory and that variational spin-orbit introduces uncontrolled errors in the results of electronic structure calculations on actinide elements.

  9. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  10. REGRES: A FORTRAN-77 program to calculate nonparametric and ``structural'' parametric solutions to bivariate regression equations

    Science.gov (United States)

    Rock, N. M. S.; Duffy, T. R.

    REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.

  11. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  12. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  13. Calculational and experimental approaches to the equation of state of irradiated fuel

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schumacher, G.

    1977-07-01

    The oxygen potential is an important parameter for the estimation of the vapor pressure of mixed oxide fuel and fission products. Dissolved fission products can have great influence on this potential in hypostoichiometric fuel. Therefore an attempt was made to calculate oxygen potentials of uranium-plutonium mixed oxides which contain fission products using models based on the equilibrium of oxygen defects. Vapor pressures have been calculated applying these data. The results of the calculation with various models differ especially at high temperatures above 4,000 K. Experimental work has been done to determine the vapor pressure of oxide fuel material at temperatures between 3,000 K and 5,000 K using laser beam heating. A measuring technique and a detailed evaluation model of laser evaporation measurements have been developed. The evaluation model describes the complex phenomena occurring during surface evaporation of liquid oxide fuel. Vapor pressure measurements with UO 2 have been carried out in the temperature region up to 4,500 K. With thermodynamic calculations the required equilibrium vapor pressures (EOS) can be derived from the vapor pressures measured. The caloric equation-of-state of the liquid-vapor equilibrium of the fuel up to temperatures of 5,000 K has been considered theoretically. (orig.) [de

  14. Reverberation Modelling Using a Parabolic Equation Method

    Science.gov (United States)

    2012-10-01

    estimations de la réverbération effectuées par la méthode de l’équation parabolique sont comparables aux résultats déjà publiés par d’autres auteurs ...équation parabolique pour le sonar passif. Recherches futures : Les auteurs du présent rapport recommandent la tenue d’autres études afin de...2 2.3 PECan – Theory

  15. Microscopic equation of state calculations: 1. Nuclear matter. 2. Liquid helium 3

    International Nuclear Information System (INIS)

    Heyer, J.P.

    1989-01-01

    A new method for calculating the equation of state of extended Fermi systems is proposed and applied to nuclear matter and liquid 3 He. New techniques are developed for summing up the particle-particle (pp) and particle-hole (ph) ring diagrams to all orders in the calculation of the ground state shift ΔE 0 for many-body systems. Analytic expressions for ΔE pp P 0 , the contribution from all of the pp ring diagrams to ΔE 0 , and ΔE ph 0 , the corresponding contribution from all of the ph ring diagrams, have been obtained. It has been shown that the pp ring diagram sum may be written as an integral over frequency, involving the particle-particle Green's function. A similar integral expression is derived for the ph ring diagram sum. Two methods are developed for carrying out the frequency integrations, namely the multipole and transition amplitude methods. These methods have been tested on an exactly-solvable many-fermion model, a modified Lipkin model, and compared. The author has studied the instability of nuclear matter at both zero and finite temperature within the pp ring diagram framework. He has found using the Gogny D1 effective nucleon-nucleon interaction, complex eigenvalues of an RPA-type secular equation are obtained in a well-defined temperature-density region. When complex eigenvalues occur, the thermodynamic potential becomes complex. The possible connection between the occurrence of complex eigenvalues and liquid-gas phase separation is discussed. The pp ring diagrams are also found to lower the compression modulus of nuclear matter. Lastly, the pp ring diagram method is applied to the calculation of the ground state energy of normal and spin-polarized liquid 3 He. We have found a binding energy per particle (BE/A) of 1.45 degree K and 1.79 degree K for the normal and spin-polarized systems, respectively

  16. Numerical performance of the parabolized ADM (PADM) formulation of General Relativity

    OpenAIRE

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2007-01-01

    In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...

  17. Use of the Boltzmann equation for calculating the scattering law in gas mixtures

    International Nuclear Information System (INIS)

    Eder, O.J.; Lackner, T.

    1989-01-01

    A new approach is presented for the calculation of the dynamical incoherent structure factor S s (q, ω) for a dilute binary gas mixture. The starting point is the linearized one-dimensional Boltzmann equation for a mixture of particles interacting via a quasi-Maxwell potential (V(r) ≅ 1/r ν , ν=4). It is shown how - in the Fourier-Laplace space (q, ω) - the solution of the Boltzman equation can be expressed as an infinite continued fraction. The well known hydrodynamic limit (q→0) and the free gas limit (q→∞) are correctly reproduced as the appropriate limits of the continued fraction. A brief comparison between S s (q, ω) for two interaction potentials (quasi-Maxwell potential, ν=4, and hard core potential, ν=∞) is presented, and it is found that, after scaling the variables to the respective diffusion coefficients, only little dependence on the potential remains. Furthermore, for a one-component system in three dimensions results are summarized for the dynamical incoherent and coherent structure factor. (orig.) [de

  18. Numerical Calculation and Exergy Equations of Spray Heat Exchanger Attached to a Main Fan Diffuser

    Science.gov (United States)

    Cui, H.; Wang, H.; Chen, S.

    2015-04-01

    In the present study, the energy depreciation rule of spray heat exchanger, which is attached to a main fan diffuser, is analyzed based on the second law of thermodynamics. Firstly, the exergy equations of the exchanger are deduced. The equations are numerically calculated by the fourth-order Runge-Kutta method, and the exergy destruction is quantitatively effected by the exchanger structure parameters, working fluid (polluted air, i.e., PA; sprayed water, i.e., SW) initial state parameters and the ambient reference parameters. The results are showed: (1) heat transfer is given priority to latent transfer at the bottom of the exchanger, and heat transfer of convection and is equivalent to that of condensation in the upper. (2) With the decrease of initial temperature of SW droplet, the decrease of PA velocity or the ambient reference temperature, and with the increase of a SW droplet size or initial PA temperature, exergy destruction both increase. (3) The exergy efficiency of the exchanger is 72.1 %. An approach to analyze the energy potential of the exchanger may be provided for engineering designs.

  19. Efficient implementation of core-excitation Bethe-Salpeter equation calculations

    Science.gov (United States)

    Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.

    2015-12-01

    We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.

  20. Calculating the renormalisation group equations of a SUSY model with Susyno

    Science.gov (United States)

    Fonseca, Renato M.

    2012-10-01

    Susyno is a Mathematica package dedicated to the computation of the 2-loop renormalisation group equations of a supersymmetric model based on any gauge group (the only exception being multiple U(1) groups) and for any field content. Program summary Program title: Susyno Catalogue identifier: AEMX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30829 No. of bytes in distributed program, including test data, etc.: 650170 Distribution format: tar.gz Programming language: Mathematica 7 or higher. Computer: All systems that Mathematica 7+ is available for (PC, Mac). Operating system: Any platform supporting Mathematica 7+ (Windows, Linux, Mac OS). Classification: 4.2, 5, 11.1. Nature of problem: Calculating the renormalisation group equations of a supersymmetric model involves using long and complicated general formulae [1, 2]. In addition, to apply them it is necessary to know the Lagrangian in its full form. Building the complete Lagrangian of models with small representations of SU(2) and SU(3) might be easy but in the general case of arbitrary representations of an arbitrary gauge group, this task can be hard, lengthy and error prone. Solution method: The Susyno package uses group theoretical functions to calculate the super-potential and the soft-SUSY-breaking Lagrangian of a supersymmetric model, and calculates the two-loop RGEs of the model using the general equations of [1, 2]. Susyno works for models based on any representation(s) of any gauge group (the only exception being multiple U(1) groups). Restrictions: As the program is based on the formalism of [1, 2], it shares its limitations. Running time can also be a significant restriction, in particular for models with many fields. Unusual features

  1. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    Science.gov (United States)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  2. On the calculation of linear stability with the aid of asymptotic solutions of Orr-Sommerfeld equation, 1

    International Nuclear Information System (INIS)

    Fujimura, Kaoru

    1980-11-01

    The numerical treatment of Orr-Sommerfeld equation which is the fundamental equation of linear hydrodynamic stability theory is described. Present calculation procedure is applied to the two-dimensional quasi-parallel flow for which linearized disturbance equation (Orr-Sommerfeld equation) contains one simple turning point and αR >> 1. The numerical procedure for this problem and one numerical example for Jeffery-Hamel flow (J-H III 1 ) are presented. These treatment can be extended to the other velocity profiles by slight midifications. (author)

  3. Complex energy eigenvalues of a linear potential with a parabolical barrier

    International Nuclear Information System (INIS)

    Malherbe, J.B.

    1978-01-01

    The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af

  4. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  5. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Mozolevski, I.E.

    2001-01-01

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  6. Calculation of coherent synchrotron radiation in toroidal waveguides by paraxial wave equation

    Directory of Open Access Journals (Sweden)

    D. R. Gillingham

    2007-05-01

    Full Text Available A new technique for the simulation of coherent synchrotron radiation (CSR and space-charge fields from a single electron bunch in straight or toroidal rectangular waveguide sections has been developed. It is based on the integration of the paraxial approximation to the wave equations, using the perturbation technique where the bending radius is large compared to the dimension of the waveguide. We have implemented an unconditionally stable integration method in the time domain with transparent boundary conditions that allows the use of a minimally sized computational domain about the bunch. This technique explicitly enforces the causality condition so that no portion of the fields can propagate faster than the speed of light, can be used with arbitrary three-dimensional charge distributions, and contains corrections for finite energy. We have also developed a method for the calculation of the transverse forces within the bunch including space-charge. This method has been developed for incorporation with a particle-in-cell code so that we may self-consistently model CSR and space-charge in combinations of bending sections with a fully dynamic electron bunch in an efficient manner. In this paper we describe the model and methods for calculation of the fields in detail and compare results to theory wherever possible.

  7. A deterministic partial differential equation model for dose calculation in electron radiotherapy.

    Science.gov (United States)

    Duclous, R; Dubroca, B; Frank, M

    2010-07-07

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g.Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung

  8. A deterministic partial differential equation model for dose calculation in electron radiotherapy

    Science.gov (United States)

    Duclous, R.; Dubroca, B.; Frank, M.

    2010-07-01

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g. Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung

  9. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  10. Incompressible Navier-Stokes and parabolized Navier-Stokes solution procedures and computational techniques

    Science.gov (United States)

    Rubin, S. G.

    1982-01-01

    Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.

  11. Numerical performance of the parabolized ADM formulation of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2008-01-01

    In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.

  12. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Science.gov (United States)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  13. Integration of differential equations by the pseudo-linear (PL) approximation

    International Nuclear Information System (INIS)

    Bonalumi, Riccardo A.

    1998-01-01

    A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method

  14. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich–Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson–Kirkham–Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye–Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich–Rosenfeld equation were fitted by least-squares on measured solution densities.The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng–Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The

  15. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Science.gov (United States)

    Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the

  16. Monotone difference schemes for weakly coupled elliptic and parabolic systems

    NARCIS (Netherlands)

    P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)

    2017-01-01

    textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is

  17. A parabolic singular perturbation problem with an internal layer

    NARCIS (Netherlands)

    Grasman, J.; Shih, S.D.

    2004-01-01

    A method is presented to approximate with singular perturbation methods a parabolic differential equation for the quarter plane with a discontinuity at the corner. This discontinuity gives rise to an internal layer. It is necessary to match the local solution in this layer with the one in a corner

  18. 3-D resistive MHD calculations for tokamak plasmas: beyond the simple reduced set of equations

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Hender, T.C.; Hicks, H.R.; Holmes, J.A.; Lynch, V.E.; Masden, B.F.

    1983-01-01

    Numerical studies of the resistive stability of tokamak plasmas in cylindrical geometry have been performed using: (1) the full set of resistive Magnetohydrodynamic (MHD) equations and (2) an extended version of the reduced set of resistive MHD equations including diamagnetic and electron temperature effects. In particular, the nonlinear interaction of tearing modes of many helicities has been investigated. The numerical results confirm many of the features uncovered previously using the simple reduced equations. (author)

  19. Parabolic solar concentrator

    Science.gov (United States)

    Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.

    2006-08-01

    In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.

  20. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    Energy Technology Data Exchange (ETDEWEB)

    Kidon, Lyran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Wilner, Eli Y. [School of Physics and Astronomy, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rabani, Eran [The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978 (Israel); Department of Chemistry, University of California and Lawrence Berkeley National Laboratory, Berkeley California 94720-1460 (United States)

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  1. Calculation of the critical buckling of a lattice based on the integral form of the transport equation

    International Nuclear Information System (INIS)

    Benoist, P.

    1990-06-01

    The migration area, which relates the buckling to the multiplication factor, can be calculated by means of the Deniz formula. This formula involves the direct and adjoint angular fluxes. It is shown in this note that it is possible, using the integral form of the transport equation, to establish an equivalent formula in which only angle-integrated quantities appear. This formulation is more suitable for the calculation by the collision probably method [fr

  2. Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management

    Science.gov (United States)

    Koleva, M. N.

    2011-11-01

    In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.

  3. Calculations of stationary solutions for the non linear viscous resistive MHD equations in slab geometry

    International Nuclear Information System (INIS)

    Edery, D.

    1983-11-01

    The reduced system of the non linear resistive MHD equations is used in the 2-D one helicity approximation in the numerical computations of stationary tearing modes. The critical magnetic Raynolds number S (S=tausub(r)/tausub(H) where tausub(R) and tausub(H) are respectively the characteristic resistive and hydro magnetic times) and the corresponding linear solution are computed as a starting approximation for the full non linear equations. These equations are then treated numerically by an iterative procedure which is shown to be rapidly convergent. A numerical application is given in the last part of this paper

  4. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations

    International Nuclear Information System (INIS)

    Gilles, D.

    2005-01-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  5. Development of the balance equations model for calculation of ion charge-state distribution in ECR ion sources

    International Nuclear Information System (INIS)

    Filippov, A.V.; Shirkov, G.D.; Consoli, F.; Gammino, S.; Ciavola, G.; Celona, L.; Barbarino, S.

    2008-01-01

    The investigation of the widespread model for the calculation of ion charge-state distributions (CSD) in electron cyclotron-resonance ion source based on the set of balance equations is given. The modification of this model that allows one to describe the confinement and accumulation processes of highly charged ions in ECR plasma for gas mixing case more precisely is discussed. The new approach for the time confinement calculation (ions and electrons) based on the theory of Pastukhov is offered, viz. - calculation of confinement times during two step minimization of special type functionals. The results obtained by this approach have been compared with available experimental data

  6. Solving the neutron diffusion equation on combinatorial geometry computational cells for reactor physics calculations

    International Nuclear Information System (INIS)

    Azmy, Y. Y.

    2004-01-01

    An approach is developed for solving the neutron diffusion equation on combinatorial geometry computational cells, that is computational cells composed by combinatorial operations involving simple-shaped component cells. The only constraint on the component cells from which the combinatorial cells are assembled is that they possess a legitimate discretization of the underlying diffusion equation. We use the Finite Difference (FD) approximation of the x, y-geometry diffusion equation in this work. Performing the same combinatorial operations involved in composing the combinatorial cell on these discrete-variable equations yields equations that employ new discrete variables defined only on the combinatorial cell's volume and faces. The only approximation involved in this process, beyond the truncation error committed in discretizing the diffusion equation over each component cell, is a consistent-order Legendre series expansion. Preliminary results for simple configurations establish the accuracy of the solution to the combinatorial geometry solution compared to straight FD as the system dimensions decrease. Furthermore numerical results validate the consistent Legendre-series expansion order by illustrating the second order accuracy of the combinatorial geometry solution, the same as standard FD. Nevertheless the magnitude of the error for the new approach is larger than FD's since it incorporates the additional truncated series approximation. (authors)

  7. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  8. Perturbation theory for continuous stochastic equations

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lutovinov, V.S.

    1987-01-01

    The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)

  9. Resolution of the multigroup scattering equation in a one-dimensional geometry and subsidiary calculations: the MUDE code; Resolution de l'equation multigroupe de la diffusion dans une geometrie a une dimension et calculs annexes: code MUDE

    Energy Technology Data Exchange (ETDEWEB)

    Bore, C; Dandeu, Y; Saint-Amand, Ch [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    MUDE is a nuclear code written in FORTRAN II for IBM 7090-7094. It resolves a system of difference equations approximating to the one-dimensional multigroup neutron scattering problem. More precisely, this code makes it possible to: 1. Calculate the critical condition of a reactor (k{sub eff}, critical radius, critical composition) and the corresponding fluxes; 2. Calculate the associated fluxes and various subsidiary results; 3. Carry out perturbation calculations; 4. Study the propagation of fluxes at a distance; 5. Estimate the relative contributions of the cross sections (macroscopic or microscopic); 6. Study the changes with time of the composition of the reactor. (authors) [French] MUDE est un code nucleaire ecrit en FORTRAN II pour IBM 7090-7094. Il resout un systeme d'equations aux differences approchant le probleme de diffusion neutronique multigroupe a une dimension. Plus precisement ce code permet de: 1. Calculer la condition critique d'un reacteur (k{sub eff}, rayon critique, composition critique) et les flux correspondants; 2. Calculer les flux adjoints et divers resultats connexes; 3. Effectuer des calculs de perturbation; 4. Etudier la propagation des flux a longue distance; 5. Ponderer des sections efficaces (macroscopiques ou microscopiques); 6. Etudier l'evolution de la composition du reacteur au cours du temps. (auteurs)

  10. Spheroidal corrections to the spherical and parabolic bases of the hydrogen atom

    International Nuclear Information System (INIS)

    Mardyan, L.G.; Pogosyan, G.S.; Sisakyan, A.N.

    1986-01-01

    This paper introduces the bases of the hydrogen atom and obtains recursion relations that determine the expansion of the spheroidal basis with respect to its parabolic basis. The leading spheroidal corrections to the spherical and parabolic bases are calculated by perturbation theory

  11. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

    International Nuclear Information System (INIS)

    Yasa, F.; Anli, F.; Guengoer, S.

    2007-01-01

    We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

  12. A comparative study of the parabolized Navier-Stokes code using various grid-generation techniques

    Science.gov (United States)

    Kaul, U. K.; Chaussee, D. S.

    1985-01-01

    The parabolized Navier-Stokes (PNS) equations are used to calculate the flow-field characteristics about the hypersonic research aircraft X-24C. A comparison of the results obtained using elliptic, hyperbolic and algebraic grid generators is presented. The outer bow shock is treated as a sharp discontinuity, and the discontinuities within the shock layer are captured. Surface pressures and heat-transfer results at angles of attack of 6 deg and 20 deg, obtained using the three grid generators, are compared. The PNS equations are marched downstream over the body in both Cartesian and cylindrical base coordinate systems, and the results are compared. A robust marching procedure is demonstrated by successfully using large marching-step sizes with the implicit shock fitting procedure. A correlation is found between the marching-step size, Reynolds number and the angle of attack at fixed values of smoothing and stability coefficients for the marching scheme.

  13. Macroscopic and microscopic description of HE-HI collisions; classical equations of motion calculations

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1978-01-01

    The study of high energy heavy ion reactions includes the three principle a priori approaches used for central collisions, namely, hydrodynamics, cascade--Boltzman equation, and the classical equations of motion. While no clearly justified central or near central collisions are found, the classical equations of motion are used to illustrate some general features of these reactions. It is expected that the hot nuclear matter produced in such collisions is a dense, viscous, and thermally conductive fluid with important nonequilibrium and nonclassical features, rapidity, distribution, noncentral collisions, potential dependent effects for a given two-body scattering, and c.m. cross sections for a central collision with given parameters are among the properties considered. 12 references

  14. Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Salomon, M.

    1992-07-01

    We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs

  15. A modified SOR method for the Poisson equation in unsteady free-surface flow calculations.

    NARCIS (Netherlands)

    Botta, E.F.F.; Ellenbroek, Marcellinus Hermannus Maria

    1985-01-01

    Convergence difficulties that sometimes occur if the successive overrelaxation (SOR) method is applied to the Poisson equation on a region with irregular free boundaries are analyzed. It is shown that these difficulties are related to the treatment of the free boundaries and caused by the appearance

  16. New equations to calculate 3D joint centres in the lower extremities

    DEFF Research Database (Denmark)

    Sandau, Martin; Heimbürger, Rikke V; Villa, Chiara

    2015-01-01

    Biomechanical movement analysis in 3D requires estimation of joint centres in the lower extremities and this estimation is based on extrapolation from markers placed on anatomical landmarks. The purpose of the present study was to quantify the accuracy of three established set of equations and pr...

  17. Extension of a GIS procedure for calculating the RUSLE equation LS factor

    NARCIS (Netherlands)

    Zhang, H.; Yang, Q.; Li, R.; Liu, Q.; Moore, D.; He, P.; Ritsema, C.J.; Geissen, V.

    2013-01-01

    The Universal Soil Loss Equation (USLE) and revised USLE (RUSLE) are often used to estimate soil erosion at regional landscape scales, however a major limitation is the difficulty in extracting the LS factor. The geographic information system-based (GIS-based) methods which have been developed for

  18. New equations to calculate temperature correction factors for PO2 in human blood.

    Science.gov (United States)

    Inaba, H; Ohwada, T; Sato, J; Mizuguchi, T; Hirasawa, H

    1986-01-01

    Effects of hemoglobin concentration (Hb), pH, and body temperature (T) on the relationships between delta log PO2/delta T and PO2 were studied by means of a mathematical model using a Newton-Raphson iteration method. The functions between delta log PO2/delta T and PO2 were affected by the above three factors. New equations considering the effects of Hb, pH, and T were proposed by modifying the equation reported by Severinghaus: delta log PO2/delta T = (L +(U-L)/(A(vPO237)B + 1))(10(-2) where U = 3.15-0.45(7.4-pH37) L = 0.68-0.09(7.4-pH37) A = 5.86(exp10(0.074(T)-0.294(7.4-pH37)-11))((Hb)0.913) B = 6.33(exp10(-0.0051(T)))((Hb)-0.113) + 0.24(7.4-pH37) and vPO237 is virtual PO237 which may exist when PO237 is corrected to standard conditions (pH = 7.4, BE = 0) by the following equations: vPO237 = PO237(exp10(fB(7.4-pH37)-0.0013(BE))) fB = (PO237/26.6)0.08-1.52 where fB is the Bohr factor. The above equations provided values of delta log PO2/delta T which fit closely to those obtained by the complex iteration method with maximum differences of less than 1.3 X 10(-3) at T = 27, indicating that maximum % errors for PO2 at T (PO2T) are less than 3.0% at T = 27 and that our equations can be applied over a wide range of Hb, pH37 and T.

  19. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    International Nuclear Information System (INIS)

    Song, T.; Ma, Q.; Sun, X.W.; Liu, Z.J.; Fu, Z.J.; Wei, X.P.; Wang, T.; Tian, J.H.

    2016-01-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  20. Empirical equations of the solvent extraction of the energetic inputs, uranium and plutonium, calculated by using the program Microsoft Excel

    International Nuclear Information System (INIS)

    Bento, Dercio Lopes

    2006-01-01

    PUREX is one of the purification process for irradiated nuclear fuel. In the flowchart the program uses various uranium and plutonium extraction phases by using organic solvent contained in the aqueous phase obtained in the dissolution of the fuel element. A posterior extraction U and Pu are changed to the aqueous phase. So it is fundamental to know the distribution coefficient (dS), at the temperature (tc), of the substances among the two immiscible phases, for better calculation the suitable flowchart. A mathematical model was elaborated based on experimental data, for the calculation of the dS and applied to a referential band of substance concentrations in the aqueous phase (xS) and organic (yS). By using the program Excel, we personalized the empirical equations calculated by the root mean square. The relative deviation, among the calculated values and the experimental ones are the standards

  1. Nucleon matter equation of state, particle number fluctuations, and shear viscosity within UrQMD box calculations

    Science.gov (United States)

    Motornenko, A.; Bravina, L.; Gorenstein, M. I.; Magner, A. G.; Zabrodin, E.

    2018-03-01

    Properties of equilibrated nucleon system are studied within the ultra-relativistic quantum molecular dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD-equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity η are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.

  2. Conversion of solar radiation using parabolic mirrors

    Directory of Open Access Journals (Sweden)

    Jolanta Fieducik

    2017-08-01

    Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.

  3. Sasakian and Parabolic Higgs Bundles

    Science.gov (United States)

    Biswas, Indranil; Mj, Mahan

    2018-03-01

    Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.

  4. Analytic semigroups and optimal regularity in parabolic problems

    CERN Document Server

    Lunardi, Alessandra

    2012-01-01

    The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p

  5. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  6. Lectures on partial differential equations

    CERN Document Server

    Petrovsky, I G

    1992-01-01

    Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.

  7. Calculation of proper values {lambda}{sub mn}(c) of the spheroidal equation; Calcul des valeurs propres {lambda}{sub mn}(c) de l'equation spheroidale

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J M [CEA Limeil Valenton, 94 - Villeneuve-Saint-Georges (France)

    1969-05-01

    The aim of this report is to find, with a fair accuracy, a proper value {lambda}{sub mn}(c) for the spheroidal differential equation: d/dz[(1-z{sup 2})du/dz]+[ {lambda} - c{sup 2}z{sup 2} - m{sup 2}/(1-z{sup 2})]u = 0 obtained by the separation of the three variables of the wave equation: {delta}{sup 2}u + k{sup 2}u = 0 with rotational elongated or flattened ellipsoidal coordinates. The program drawn up calculates {lambda}{sub mn}(c) for any values of (mnc) chosen in the zones 0 {<=} | m | {<=} 10, a whole number; |m| {<=} n {<=} 20, n a whole number; 0 {<=} |c | {<=} 30; previous work has covered a smaller field of values. The function to be solved by the approximation method of the Newton-Raphson type, and the initial value, are chosen so as to converge towards the required solution. (author) [French] L'objet de ce rapport est de rechercher avec une tres bonne approximation, une valeur propre {lambda}{sub mn}(c) de l'equation differentielle spheroidale: d/dz[(1-z{sup 2})du/dz]+[ {lambda} - c{sup 2}z{sup 2} - m{sup 2}/1-z{sup 2}]u = 0 obtenue par separation des 3 variables de l'equation des ondes: {delta}{sup 2}u + k{sup 2}u = 0 en coordonnees des ellipsoides de revolution allonges ou aplatis. Le programme etabli calcule {lambda}{sub mn}(c) quel que soit le jeu (mnc) choisi dans le domaine 0 {<=} | m | {<=} 10 entier; |m| {<=} n {<=} 20, n entier; 0 {<=} |c | {<=} 30; alors que les etudes precedentes portaient sur un domaine plus restreint. La fonction a resoudre par la methode d'approximation du type NEWTON-RAPHSON et la valeur initiale, sont choisies de facon a converger vers la solution desiree. (auteur)

  8. Self-consistent calculation of the coupling constant in the Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Cherny, A.Yu.; Brand, J.

    2004-01-01

    A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs due to medium effects and the trapping potential, e.g., in quasi-1D or quasi-2D systems. It is shown that a simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the condensate and a two-body wave function describing the behavior of a pair of bosons in the Bose-Einstein condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme that admit analytical estimations are considered and compared to the literature. In addition to the well-known cases of low-dimensional trapping, crossover regimes can be studied. The values of the kinetic, interaction, external, and release energies in low dimensions are also evaluated and contributions due to short-range correlations are found to be substantial

  9. Influence of constitutive equations and calculation methods on the results of inelastic analysis of benchmark problems

    International Nuclear Information System (INIS)

    Konter, A.W.A.; Kusters, G.M.A.

    1981-01-01

    Several constitutive equations are used to analyse the structural behaviour of a simply supported beam and circular plate loaded at its center, both tested at 1100 0 F. The time-independent plastic behaviour has been analysed with the isotropic and kinematic hardening model as well as with the ORNL 10th cycle model and the fraction model of Besseling. The time-dependent creep behaviour has been analysed using the isotropic hardening rules and the ORNL auxiliary hardening rules. No interaction of the creep and plastic behaviour was taken into account. Especially for cyclic loading conditions, large differences occur in the predictions of the inelastic behaviour. Good agreement between theory and prediction can be obtained with models which accurately account for the ratio of kinematic and saturating isotropic hardening of the used material. (orig./HP)

  10. Design and Realisation of a Parabolic Solar Cooker

    International Nuclear Information System (INIS)

    Ouannene, M; Chaouachi, B; Gabsi, S

    2009-01-01

    The sun s energy is really powerful. Solar energy is renewable and it s free. We can use it to make electricity, to heat buildings and to cook. The field of cooking consumes many fossil fuels such as gas and wood. Million people cannot find enough gas and/or wood to cook, so using solar cookers is a good idea. During this work, we designed, built and studied a parabolic solar cooker. The characteristic equations and the experimental results are given

  11. Fixed point of the parabolic renormalization operator

    CERN Document Server

    Lanford III, Oscar E

    2014-01-01

    This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point.   Inside, readers will find a detailed introduction into the theory of parabolic bifurcation,  Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization.   The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...

  12. On the Use of a Direct Radiative Transfer Equation Solver for Path Loss Calculation in Underwater Optical Wireless Channels

    KAUST Repository

    Li, Changping; Park, Kihong; Alouini, Mohamed-Slim

    2015-01-01

    In this letter, we propose a fast numerical solution for the steady state radiative transfer equation based on the approach in [1] in order to calculate the optical path loss of light propagation suffering from attenuation due to the absorption and scattering in various water types. We apply an optimal non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. Finally, we extend the resulting radiance in 2-dimensional to 3-dimensional by the azimuthal symmetric assumption to compute the received optical power under the given receiver aperture and field of view. The accuracy and efficiency of the proposed scheme are validated by uniform RTE solver and Monte Carlo simulations.

  13. On the Use of a Direct Radiative Transfer Equation Solver for Path Loss Calculation in Underwater Optical Wireless Channels

    KAUST Repository

    Li, Changping

    2015-07-22

    In this letter, we propose a fast numerical solution for the steady state radiative transfer equation based on the approach in [1] in order to calculate the optical path loss of light propagation suffering from attenuation due to the absorption and scattering in various water types. We apply an optimal non-uniform method to discretize the angular space and an upwind type finite difference method to discretize the spatial space. A Gauss-Seidel iterative method is then applied to solve the fully discretized system of linear equations. Finally, we extend the resulting radiance in 2-dimensional to 3-dimensional by the azimuthal symmetric assumption to compute the received optical power under the given receiver aperture and field of view. The accuracy and efficiency of the proposed scheme are validated by uniform RTE solver and Monte Carlo simulations.

  14. State equation approximation of transfer matrices and its application to the phase domain calculation of electromagnetic transients

    International Nuclear Information System (INIS)

    Soysal, A.O.; Semlyen, A.

    1994-01-01

    A general methodology is presented for the state equation approximation of a multiple input-output linear system from transfer matrix data. A complex transformation matrix, obtained by eigen analysis at a fixed frequency, is used for diagonalization of the transfer matrix over the whole frequency range. A scalar estimation procedure is applied for identification of the modal transfer functions. The state equations in the original coordinates are obtained by inverse transformation. An iterative Gauss-Newton refinement process is used to reduce the overall error of the approximation. The developed methodology is applied to the phase domain modeling of untransposed transmission lines. The approach makes it possible to perform EMTP calculations directly in the phase domain. This results in conceptual simplification and savings in computation time since modal transformations are not needed in the sequences of the transient analysis. The presented procedure is compared with the conventional modal approach in terms of accuracy and computation time

  15. Geodesics without differential equations: general relativistic calculations for introductory modern physics classes

    International Nuclear Information System (INIS)

    Rowland, D R

    2006-01-01

    Introductory courses covering modern physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics

  16. Multi-Center Electronic Structure Calculations for Plasma Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B G; Johnson, D D; Alam, A

    2010-12-14

    We report on an approach for computing electronic structure utilizing solid-state multi-center scattering techniques, but generalized to finite temperatures to model plasmas. This approach has the advantage of handling mixtures at a fundamental level without the imposition of ad hoc continuum lowering models, and incorporates bonding and charge exchange, as well as multi-center effects in the calculation of the continuum density of states.

  17. Microscopic classical equations of motion calculations of high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Panos, C.N.

    1979-01-01

    Classical microscopic nonrelativistic calculations are made for collisions between equal-mass-nuclei projectile and target with A/sub P/ = A/sub T/ = 20 for laboratory energies E/sub L/ = 117, 400, and 800 MeV/A/sub P/ and also between nuclei with A/sub P/ = A/sub T/ = 40 for E/sub L/ = 400 MeV/A/sub P/. For a given initial configuration of the projectile and target nucleons the trajectories of all nucleons are calculated classically with two-body forces between all pairs of nucleons. The implementation of the CEOM calculations is discussed in detail. More limited relativistic calculations for single initial configurations are also made. The configurations representing the initial nuclei are chosen to have a reasonable radius and kinetic energy; however, they do not saturate with the two-body potentials used. The trajectory information is analyzed to give a large number of position and momentum dependent quantities such as densities, rapidity distributions, inclusive double differential cross sections, etc. The results show that a central collision (b = 0) proceeds in three stages, an initial transparent stage, a strongly interacting stage where the dissipation is large, and finally an expansion stage for which there is considerable dissipation. Appreciable potential energy effects were found for b = 0; however, the final distributions were very similar for the scattering equivalent potentials. For lower energies (E/sub L/ approx. = 100 MeV) there is some evidence of fusion into large fragments. The thermal models for b = 0 are tested. Noncentral collisions show typical nonequilibrium and transparency features. The multiplicity distribution is obtained for A/sub P/ = A/sub T/ = 20 and E/sub L/ = 800 MeV. A comparison of the impact parameter-integrated inclusive double differential cross sections is made with the experimental data for A/sub P/ = A/sub T/ = 20, E/sub L/ = 800 MeV and shows fair agreement

  18. A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines

    Science.gov (United States)

    Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.

    1988-01-01

    The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)

  19. Calculation of a CO sub 2 gasdynamic laser with selective thermal excitation and an unstable resonator

    Energy Technology Data Exchange (ETDEWEB)

    Kuz' min, A.I.; Lavrov, A.V.; Chernysheva, N.V. (Leningradskii Gosudarstvennyi Universitet, Leningrad (USSR))

    1989-03-01

    The problem of calculating an unstable telescopic resonator for a CO{sub 2} gasdynamic laser with selective thermal excitation is studied. Parabolized Navier-Stokes equations and equations of field propagation in the resonator are used to describe the GDL in the geometric optic approximation. The efficiency is studied as a function of the magnification factor and of the distance between the mirrors. 19 refs.

  20. Calculation of the Intensity of electrical field at the end of the loaded path in the solid-state nuclear track detectors by using the numerical calculation of Laplace equations

    International Nuclear Information System (INIS)

    Kolahdooz, M.; Abotalebi, A.; Sheikh Aleslam, F.

    2011-01-01

    The goal of this article is calculation of the electric field at the end of loaded path in solid-state track detectors. For the calculation, Laplace-Equation has been solved numerically. By solving the equation, upon considering a specific potential at the boundary of the region, in addition to calculating the electric field at the end of path, the parameters which are affecting the electric field have also been investigated.

  1. On calculation of difference in specific heats at constant pressure and constant volume using an empiric Nernst-Lindeman equation

    International Nuclear Information System (INIS)

    Leont'ev, K.L.

    1981-01-01

    Known theoretical and empirical formulae are considered for the difference in specific heats at constant pressure and volume. On the basis of the Grunaiser law on the ratio of specific heat to thermal expansion and on the basis of the correlation proposed by the author, between this ratio and average velocity of elastic waves obtained in a new expression for the difference in specific heats and determined are conditions at which empiric Nernst-Lindeman equation can be considered to be strict. Results of calculations for metals with fcc lattice are presented

  2. Stable solution of the energy equation for the calculation of transitory regimes of natural convection in sodium circuits

    International Nuclear Information System (INIS)

    Walsh, L.M.

    1988-01-01

    A new treatment is given to the problem studied in the previous work 'Conveccao Natural em um Circuito Termico a Sodio' (1981) by the same author. It consists of another method of the solution of the energy equation. It was obtained some stability in the numerical calculation independent of the value of the step; it was also obtained a considerable reduction in the machine time. A new program is being elaborated for testing the time reduction as compared to the previous one. (author) [pt

  3. On the calculation of the eigenvalues of the Faddeev equation kernel on the nonphysical sheet of energy

    International Nuclear Information System (INIS)

    Moeller, K.

    1978-01-01

    A system of three particles is considered which interacts by rank-1 separable potential. For the Faddeev equation kernel of this system a method is proposed for calculating the eigenvalues on the nonphysical sheet of the three-particle cms-energy. From the consideration of the analytical structure of the eigenvalues in the energy plane it follows that the analytical continuations of the eigenvalues from the physical to the nonphysical region are different above and below the three-particle threshold. In this paper the continuation below the threshold is discussed. (author)

  4. 3He(d,p)4He reaction calculation with three-body Faddeev equations

    International Nuclear Information System (INIS)

    Oryu, S.; Uzu, E.; Sunahara, H.; Yamada, T.; Tabaru, G.; Hino, T.

    1998-01-01

    In order to investigate the 3 He-n-p system as a three-body problem, we have formulated 3 He-n and 3 H-p effective potentials using both a microscopic treatment and a phenomenological approach. In the microscopic treatment, potentials are generated by means of the resonating group method (RGM) based on the Minnesota nucleon-nucleon potential. These potentials are converted into separable form by means of the microscopic Pauli correct (MPC) method. The MPC potentials are properly formulated to avoid Pauli forbidden states. The phenomenological potentials are obtained by modifying parameters of the EST approximation to the Paris nucleon-nucleon potential, such that they fit the low-energy 3 He-n, 3 H-p, and 3 He-p phase shifts. Therefore, they describe the 3 He-n differential cross section, the polarization observables, and the energy levels of 4 He. The 3 He-n-p Faddeev equations are solved numerically. We reproduce correctly the ground state and the first excited state of 5 Li. Furthermore, the Paris-type potential is used to investigate the 3 He(d,p) 4 He reaction at a deuteron bombarding energy of 270 MeV, where the system is treated as a three-body problem. Results for the polarized and unpolarized differential cross sections demonstrate convergence of the Born series. (orig.)

  5. Improvement Design of Parabolic Trough

    Science.gov (United States)

    Ihsan, S. I.; Safian, M. A. I. M.; Taufek, M. A. M.; Mohiuddin, A. K. M.

    2017-03-01

    The performance of parabolic trough solar collector (PTSC) has been evaluated using different heat transfer working fluids; namely water and SAE20 W50 engine oil. New and slightly improved PTSC was developed to run the experimental study. Under the meteorological conditions of Malaysia, authors found that PTSC can operate at a higher temperature than water collector but the performance efficiency of collector using engine oil is much lower than the water collector.

  6. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo

    2015-01-01

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  7. Calculation and experimental estimation of the equation of state of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bober, M; Breitung, W; Karow, H U; Schumacher, G [Gesellschaft fuer Kernforschung mbH, INR Kernforschungszentrum, Karlsruhe (Germany)

    1977-07-01

    The gas pressure development in an irradiated mixed oxide fuel is mainly influenced by fission gases and volatile fission products in the temperature range below the melting point and by the fuel material itself and the less volatile fission products in the temperature region above 4000 K. Besides the temperature the important factors for the vapor pressure are the oxygen potential of the fuel and the concentration of fission products in the fuel. As demonstrated previously the oxygen potential influences strongly the pressure of vapor species above (U Pu)O{sub 2}. The pressure of the species U, UO, UO{sub 2}, Pu, PuO, PuO{sub 2} varies over a range of more than five orders of magnitude by variation of the oxygen potential at 2000 K. Similar effects were observed with oxides of the fission products. Fission products dissolved in mixed oxide fuel on the other hand can influence significantly the oxygen potential of the irradiated mixed oxide. In the first paragraph of the paper an attempt is made to calculate oxygen potentials of mixed oxides containing dissolved fission products. The model used is based on the equilibrium of oxygen defects in the mixed oxide. The chemical state and distribution of fission products is a further behavior that should be considered in calculation of the local and overall pressures and behavior of the fuel. Fission products were transported during the irradiation time and collect at different positions within the fuel pin. This process can produce high local concentrations of fission products, thus enabling elements with low overall concentrations to reach their saturation pressure. The distribution of fission products and their behavior in irradiated mixed oxide fuel is described in the second paragraph. The third paragraph deals with the calculation of vapor pressures that has been conducted using a model described for uranium-plutonium mixed oxides. This model is based on the law of mass action and provides vapor pressures as a

  8. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs

  9. LINPACK, Subroutine Library for Linear Equation System Solution and Matrix Calculation

    International Nuclear Information System (INIS)

    Dongarra, J.J.

    1979-01-01

    1 - Description of problem or function: LINPACK is a collection of FORTRAN subroutines which analyze and solve various classes of systems of simultaneous linear algebraic equations. The collection deals with general, banded, symmetric indefinite, symmetric positive definite, triangular, and tridiagonal square matrices, as well as with least squares problems and the QR and singular value decompositions of rectangular matrices. A subroutine-naming convention is employed in which each subroutine name consists of five letters which represent a coded specification (TXXYY) of the computation done by that subroutine. The first letter, T, indicates the matrix data type. Standard FORTRAN allows the use of three such types: S REAL, D DOUBLE PRECISION, and C COMPLEX. In addition, some FORTRAN systems allow a double-precision complex type: Z COMPLEX*16. The second and third letters of the subroutine name, XX, indicate the form of the matrix or its decomposition: GE: General, GB: General band, PO: Positive definite, PP: Positive definite packed, PB: Positive definite band, SI: Symmetric indefinite, SP: Symmetric indefinite packed, HI: Hermitian indefinite, HP: Hermitian indefinite packed, TR: Triangular, GT: General tridiagonal, PT: Positive definite tridiagonal, CH: Cholesky decomposition, QR: Orthogonal-triangular decomposition, SV: Singular value decomposition. The final two letters, YY, indicate the computation done by the particular subroutine: FA: Factor, CO: Factor and estimate condition, SL: Solve, DI: Determinant and/or inverse and/or inertia, DC: Decompose, UD: Update, DD: Down-date, EX Exchange. The following chart shows all the LINPACK subroutines. The initial 'S' in the names may be replaced by D, C or Z and the initial 'C' in the complex-only names may be replaced by a Z. SGE: FA, CO, SL, DI; SGB: FA, CO, SL, DI; SPO: FA, CO, SL, DI; SPP: FA, CO, SL, DI; SPB: FA, CO, SL, DI; SSI: FA, CO, SL, DI; SSP: FA, CO, SL, DI; CHI: FA, CO, SL, DI; CHP: FA, CO, SL, DI; STR

  10. Calculation of bulk etch rate’s semi-empirical equation for polymer track membranes in stationary and dynamic modes

    Directory of Open Access Journals (Sweden)

    A. Mashentseva

    2013-05-01

    Full Text Available One of the most urgent and extremely social problems in environmental safeties area in Kazakhstan is providing the population of all regions of the country with quality drinking water. Development of filter elements based on nuclear track-etch membranes may be considered as one of best solutions this problem. The values of bulk etch rate and activation energy were calculated in view the effect of temperature, alkaline solution concentration as well as stirring effect. The semi-empirical equation of the bulk etch rate for PET track membranes was calculated. As a result of theoretical and experimental studies a semi-empirical equation of the bulk etch rate VB=3.4∙1012∙C2.07∙exp(-0.825/kT for 12 microns PET film, irradiated by ions 84Kr15+ (energy of 1.75 MeV/nucleon at the heavy ion accelerator DC-60 in Astana branch of the INP NNC RK, was obtained. 

  11. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    Science.gov (United States)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  12. Calculating the true level of predictors significance when carrying out the procedure of regression equation specification

    Directory of Open Access Journals (Sweden)

    Nikita A. Moiseev

    2017-01-01

    other, and in case if one of them is significant, the other will almost certainly show the same significance. On the other hand, if the sample variance-covariance matrix tends to be diagonal and the number of observations tends to infinity, the proposed numerical method will return corrections close to the simple correction. In the case when the number of observations is much greater than the number of potential predictors, then the Shehata and White corrections give approximately the same corrections with the proposed numerical method. However, in much more common cases, when the number of observations is comparable to the number of potential predictors, the existing methods demonstrate significant inaccuracies. When the number of potential predictors is greater than the available number of observations, it seems impossible to calculate the true p-values. Therefore, it is recommended not to consider such datasets when constructing regression models, since only the fulfillment of the above condition ensures calculation of unbiased p-value corrections. The proposed method is easy to program and can be integrated into any statistical software package.

  13. SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X; Gao, H [Shanghai Jiao Tong University, Shanghai, Shanghai (China); Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pair production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang

  14. Seismic tomography analysis using finite differential calculation of the eikonal equation and reciplocal principle; Eikonal equation no sabunkaiho to sohan genri wo riyoshita danseiha tomography kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, M; Ashida, Y; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)

    1996-10-01

    This paper describes the seismic tomography analysis of underground structures using finite differential calculation (FDC) and a reciprocal principle which points out that a propagation path is constant even if a source and receiver are exchanged with each other. Tomography analysis generally determines a ray length across each underground cell structure by ray tracing method to modify each cell slowness (inverse of velocity). Travel time field was determined by FDC of eikonal equation among ray tracing methods, and a wave propagation path was determined by reciprocity of elastic wave to carry out inversion. In conventional methods, since a wave length is assumed to be infinitesimal by ray theory, false modified slowness structures frequently appears depending on the density of a ray. Wave propagates in a certain width, and is affected by environment. The slowness was thus modified on the basis of the wave propagation path with a certain width by using not ray-tracing but reciprocity. By this modification, false structures were hardly found under a fine grid, and several propagation paths could be considered. 6 refs., 9 figs.

  15. Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology

    International Nuclear Information System (INIS)

    Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.

    2015-01-01

    We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)

  16. Performance of Infinitely Wide Parabolic and Inclined Slider Bearings Lubricated with Couple Stress or Magnetic Fluids

    Science.gov (United States)

    Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene

    2011-10-01

    The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.

  17. Laser propagation and compton scattering in parabolic plasma channel

    CERN Document Server

    Dongguo, L; Yokoya, K; Hirose, T

    2003-01-01

    A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)

  18. Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type

    International Nuclear Information System (INIS)

    Beauchard, K; Cannarsa, P; Yamamoto, M

    2014-01-01

    The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators of interest to this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse source problems for such operators, with locally distributed measurements in an arbitrary space dimension. For this purpose, we follow a mixed strategy which combines the approach due to Lebeau and Robbiano, relying on Fourier decomposition and Carleman inequalities for heat equations with non-smooth coefficients (solved by the Fourier modes). As a corollary, we obtain a direct proof of the observability of multidimensional Grushin-type parabolic equations, with locally distributed observations—which is equivalent to null controllability with locally distributed controls. (paper)

  19. The Euler’s Graphical User Interface Spreadsheet Calculator for Solving Ordinary Differential Equations by Visual Basic for Application Programming

    Science.gov (United States)

    Gaik Tay, Kim; Cheong, Tau Han; Foong Lee, Ming; Kek, Sie Long; Abdul-Kahar, Rosmila

    2017-08-01

    In the previous work on Euler’s spreadsheet calculator for solving an ordinary differential equation, the Visual Basic for Application (VBA) programming was used, however, a graphical user interface was not developed to capture users input. This weakness may make users confuse on the input and output since those input and output are displayed in the same worksheet. Besides, the existing Euler’s spreadsheet calculator is not interactive as there is no prompt message if there is a mistake in inputting the parameters. On top of that, there are no users’ instructions to guide users to input the derivative function. Hence, in this paper, we improved previous limitations by developing a user-friendly and interactive graphical user interface. This improvement is aimed to capture users’ input with users’ instructions and interactive prompt error messages by using VBA programming. This Euler’s graphical user interface spreadsheet calculator is not acted as a black box as users can click on any cells in the worksheet to see the formula used to implement the numerical scheme. In this way, it could enhance self-learning and life-long learning in implementing the numerical scheme in a spreadsheet and later in any programming language.

  20. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  1. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Djouder, M.; Kermoun, F.; Mitiche, M. D.; Lamrous, O.

    2016-01-01

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere

  2. Regression equations for calculation of z scores for echocardiographic measurements of right heart structures in healthy Han Chinese children.

    Science.gov (United States)

    Wang, Shan-Shan; Zhang, Yu-Qi; Chen, Shu-Bao; Huang, Guo-Ying; Zhang, Hong-Yan; Zhang, Zhi-Fang; Wu, Lan-Ping; Hong, Wen-Jing; Shen, Rong; Liu, Yi-Qing; Zhu, Jun-Xue

    2017-06-01

    Clinical decision making in children with congenital and acquired heart disease relies on measurements of cardiac structures using two-dimensional echocardiography. We aimed to establish z-score regression equations for right heart structures in healthy Chinese Han children. Two-dimensional and M-mode echocardiography was performed in 515 patients. We measured the dimensions of the pulmonary valve annulus (PVA), main pulmonary artery (MPA), left pulmonary artery (LPA), right pulmonary artery (RPA), right ventricular outflow tract at end-diastole (RVOTd) and at end-systole (RVOTs), tricuspid valve annulus (TVA), right ventricular inflow tract at end-diastole (RVIDd) and at end-systole (RVIDs), and right atrium (RA). Regression analyses were conducted to relate the measurements of right heart structures to 4body surface area (BSA). Right ventricular outflow-tract fractional shortening (RVOTFS) was also calculated. Several models were used, and the best model was chosen to establish a z-score calculator. PVA, MPA, LPA, RPA, RVOTd, RVOTs, TVA, RVIDd, RVIDs, and RA (R 2  = 0.786, 0.705, 0.728, 0.701, 0.706, 0.824, 0.804, 0.663, 0.626, and 0.793, respectively) had a cubic polynomial relationship with BSA; specifically, measurement (M) = β0 + β1 × BSA + β2 × BSA 2  + β3 × BSA. 3 RVOTFS (0.28 ± 0.02) fell within a narrow range (0.12-0.51). Our results provide reference values for z scores and regression equations for right heart structures in Han Chinese children. These data may help interpreting the routine clinical measurement of right heart structures in children with congenital or acquired heart disease. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:293-303, 2017. © 2017 Wiley Periodicals, Inc.

  3. Two new designs of parabolic solar collectors

    Directory of Open Access Journals (Sweden)

    Karimi Sadaghiyani Omid

    2014-01-01

    Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.

  4. Differential equations inverse and direct problems

    CERN Document Server

    Favini, Angelo

    2006-01-01

    DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA

  5. Effects of an electric field on the confined hydrogen atom in a parabolic potential well

    International Nuclear Information System (INIS)

    Xie Wenfang

    2009-01-01

    Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.

  6. Distribution-valued weak solutions to a parabolic problem arising in financial mathematics

    Directory of Open Access Journals (Sweden)

    Michael Eydenberg

    2009-07-01

    Full Text Available We study distribution-valued solutions to a parabolic problem that arises from a model of the Black-Scholes equation in option pricing. We give a minor generalization of known existence and uniqueness results for solutions in bounded domains $Omega subset mathbb{R}^{n+1}$ to give existence of solutions for certain classes of distributions $fin mathcal{D}'(Omega$. We also study growth conditions for smooth solutions of certain parabolic equations on $mathbb{R}^nimes (0,T$ that have initial values in the space of distributions.

  7. Solar parabolic dish technology evaluation report

    Science.gov (United States)

    Lucas, J. W.

    1984-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.

  8. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    Science.gov (United States)

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values. © 2011 American Institute of Physics

  9. Model equations for Calculating Rn-gas Concentrations in Air of Uranium Exploratory Tunnels, Allouga, West-Central Sinai , Egypt

    International Nuclear Information System (INIS)

    Abdel-Monem, A.A.; Soliman, S.F.H.; Abd El-Kader, F.H.; El-Naggar, A.M.; Eissa, H.M.; Abd El-Hafez, A.A.

    2001-01-01

    Gabal Allouga area is located some 40 km due east from Abu Zenima town on the east coast of the Gulf of Suez, West-Central Sinai, Egypt. A network of exploratory tunnels totaling 670m in length and approximately 2x2 m in cross section, were excavated within a paleosol clayey bed. They host (Fe, Mn)-, Cu-, and U-mineralizations. Portions of the tunnels are naturally ventilated and others portions are non-ventilated and show ground water seepage through fractures. Model equations were developed for calculating the Rn-gas concentrations in the air of the tunnels under dry conditions where Rn-gas transport is mainly by air flow through porous media as well as for wet conditions where Rn-gas transport is mainly by ground water flow into the tunnels. Under dry conditions the model calculated Rn-gas concentrations(15.2-60.6 PCi/1) are consistent with measured values by active techniques (3.26-22.85 pCi/1) and by SSNTD techniques (19-69.1 pCi/1) when the Rn-emanation coefficient (alpha= 0.05-0.2), the emanating rock thickness (X=10 cm) and U-concentration averages 30 ppm. Under wet and non-ventilated conditions the model calculated Rn-gas concentrations (159-1248 pCi/1) are consistent with the measured values by active techniques (231-1348 pCi/1) and by SSNTD techniques (144-999pCi/1), when the Rn-emanation coefficient (alpha=0.1-0.25), the ground water flow (F=0.04-0.10 ml/s -1 cm -2 ) and U-concertrations (100-250ppm)

  10. Convergence of shock waves between conical and parabolic boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2016-07-15

    Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.

  11. Biases and statistical errors in Monte Carlo burnup calculations: an unbiased stochastic scheme to solve Boltzmann/Bateman coupled equations

    International Nuclear Information System (INIS)

    Dumonteil, E.; Diop, C.M.

    2011-01-01

    External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation

  12. DIFFERENTIAL EQUATION SIMULATION IN CALCULATION OF LATERAL AND TRANSVERSE-LONGITUDINAL BENDING OF FRAME STRUCTURES WITHOUT AND WITH DUE ACCOUNT OF VISCOELASTIC MATERIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. M. Ovsianko

    2012-01-01

    Full Text Available The paper reveals a brand-new direction in simulation of frame and continual structures while calculating static and dynamic loads and stability.  An electronic model has been synthesized  for an investigated object and then it has been analyzed not with the help of  specialized analog computing techniques but by means of high-performance software package for electronic circuit calculation using a personal computer.The given paper contains exact algebraic equations corresponding to differential equations for lateral bending calculation of frame structures without and with due account of viscoelastic material properties in compliance with the Kelvin model.The exact algebraic equation for a beam on elastic supports (or elastic Winkler foundation has been derived for quartic differential equation.The paper presents a number of exact algebraic equations which are equivalent to differential equations for transverse-longitudinal bending calculation of frame structures without and with due account of viscoelastic material properties when lateral and longitudinal loads are applied in the form of  impulses with any periods of their duration and any interchangeability. 

  13. Time-dependent integral equations of neutron transport for calculating the kinetics of nuclear reactors by the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.

  14. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

    Energy Technology Data Exchange (ETDEWEB)

    Epifanovsky, Evgeny [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588 (United States); Klein, Kerstin; Gauss, Jürgen [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany); Stopkowicz, Stella [Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, N-0315 Oslo (Norway); Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    2015-08-14

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

  15. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  16. Tracking local control of a parabolic trough collector

    International Nuclear Information System (INIS)

    Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.

    1992-01-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  17. Optimal control for parabolic-hyperbolic system with time delay

    International Nuclear Information System (INIS)

    Kowalewski, A.

    1985-07-01

    In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)

  18. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  19. Comparison of Benedict-Webb-Rubin, Starling and Lee-Kesler equations of state for use in P-V-T calculations

    International Nuclear Information System (INIS)

    McFee, D.G.; Mueller, K.H.; Lielmezs, J.

    1982-01-01

    By means of the available experimental gas compressibility data, the predictive accuracy of the Benedict-Webb-Rubin, Starling and Lee-Kesler equations was tested over wide temperature and pressure ranges for the following commonly used industrial gases: CH 4 , C 2 H 6 , C 3 H 8 , CO 2 , Ar, He, H 2 and N 2 . The root mean square (RMS) percent errors calculated over the T-P range investigated for all compounds, showed a degree of superiority and ease of use of the Lee-Kesler equation over the Benedict-Webb-Rubin and Starling equations. In order to treat quantal fluids H 2 and He, the Benedict-Webb-Rubin equation was modified by making constant B 0 temperature dependent, while the Starling and Lee-Kesler equations were rewritten through inclusion of quantum effect corrected pseudo-critical state parameters. (orig.)

  20. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  1. Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

    OpenAIRE

    Rohit Tripathi; Sumit Tiwari; G. N. Tiwari

    2016-01-01

    In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...

  2. Time-optimal control of infinite order distributed parabolic systems involving time lags

    Directory of Open Access Journals (Sweden)

    G.M. Bahaa

    2014-06-01

    Full Text Available A time-optimal control problem for linear infinite order distributed parabolic systems involving constant time lags appear both in the state equation and in the boundary condition is presented. Some particular properties of the optimal control are discussed.

  3. Stability analysis of impulsive parabolic complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)

    2011-11-15

    Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  4. Stability analysis of impulsive parabolic complex networks

    International Nuclear Information System (INIS)

    Wang Jinliang; Wu Huaining

    2011-01-01

    Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  5. Solutions to variational inequalities of parabolic type

    Science.gov (United States)

    Zhu, Yuanguo

    2006-09-01

    The existence of strong solutions to a kind of variational inequality of parabolic type is investigated by the theory of semigroups of linear operators. As an application, an abstract semi permeable media problem is studied.

  6. A point focusing double parabolic trough concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Murphree, Quincy C. [Kentucky Mountain Bible College, Vancleve, KY (United States)

    2001-07-01

    This article shows that a point focusing solar concentrator can be made from two reflective parabolic troughs, a primary and a secondary, by orienting their longitudinal axes in perpendicular directions and separating them by the difference of their focal lengths along the optical axis. This offers a new alternative to the conventional 3-D paraboloidal concentrator permitting more flexibility in designs for applications requiring high concentrations. Both advantages and disadvantages are discussed. The intensity concentration ratio distribution is calculated in the focal plane and has elliptically shaped contours due to the inherent compensation of errant rays by the concave secondary. The ratio of the major to minor axes was 2.61 for the case considered, resulting in a concentration {approx}2.61 times that of a comparable concentrator without the compensation afforded by a concave secondary. Still, geometrical constraints limit the concentration to about 2000 suns for mirror quality errors of 5 mr. Optimisation of the compensation effect holds potential for improved performance for other concentrator designs. Finally, the functional dependence of the peak concentration and shading factor upon design parameters are presented. (Author)

  7. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    Science.gov (United States)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  8. Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanshi; Bhaskaran-Nair, Kiran; Apra, Edoardo; Govind, Niranjan; Kowalski, Karol

    2014-10-02

    In this paper we discuss the application of novel parallel implementation of the coupled cluster (CC) and equation-of-motion coupled cluster methods (EOMCC) in calculations of excitation energies of triplet states in beta-carotene. Calculated excitation energies are compared with experimental data, where available. We also provide a detailed description of the new parallel algorithms for iterative CC and EOMCC models involving single and doubles excitations.

  9. Statistical mechanics of stochastic neural networks: Relationship between the self-consistent signal-to-noise analysis, Thouless-Anderson-Palmer equation, and replica symmetric calculation approaches

    International Nuclear Information System (INIS)

    Shiino, Masatoshi; Yamana, Michiko

    2004-01-01

    We study the statistical mechanical aspects of stochastic analog neural network models for associative memory with correlation type learning. We take three approaches to derive the set of the order parameter equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis (SCSNA), the Thouless-Anderson-Palmer (TAP) equation, and the replica symmetric calculation. On the basis of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expressions for the local fields

  10. The Dirac Equation in the algebraic approximation. VII. A comparison of molecular finite difference and finite basis set calculations using distributed Gaussian basis sets

    NARCIS (Netherlands)

    Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E

    2001-01-01

    A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and

  11. The flow of an incompressible electroconductive fluid past a thin airfoil. The parabolic profile

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-04-01

    Full Text Available We study the two-dimensional steady flow of an ideal incompressible perfectly conducting fluid past an insulating thin parabolic airfoil. We consider the linearized Euler and Maxwell equations and Ohm's law. We use the integral representations for the velocity, magnetic induction and pressure and the boundary conditions to obtain an integral equation for the jump of the pressure across the airfoil. We give some graphic representations for the lift coefficient, velocity and magnetic induction.

  12. Comparing the measured basal metabolic rates in patients with chronic disorders of consciousness to the estimated basal metabolic rate calculated from common predictive equations.

    Science.gov (United States)

    Xiao, Guizhen; Xie, Qiuyou; He, Yanbin; Wang, Ziwen; Chen, Yan; Jiang, Mengliu; Ni, Xiaoxiao; Wang, Qinxian; Murong, Min; Guo, Yequn; Qiu, Xiaowen; Yu, Ronghao

    2017-10-01

    Accurately predicting the basal metabolic rate (BMR) of patients in a vegetative state (VS) or minimally conscious state (MCS) is critical to proper nutritional therapy, but commonly used equations have not been shown to be accurate. Therefore, we compared the BMR measured by indirect calorimetry (IC) to BMR values estimated using common predictive equations in VS and MCS patients. Body composition variables were measured using the bioelectric impedance analysis (BIA) technique. BMR was measured by IC in 82 patients (64 men and 18 women) with VS or MCS. Patients were classified by body mass index as underweight (BMR was estimated for each group using the Harris-Benedict (H-B), Schofield, or Cunningham equations and compared to the measured BMR using Bland-Altman analyses. For the underweight group, there was a significant difference between the measured BMR values and the estimated BMR values calculated using the H-B, Schofield, and Cunningham equations (p BMR values estimated using the H-B and Cunningham equations were different significantly from the measured BMR (p BMR in the normal-weight group. The Schofield equation showed the best concordance (only 41.5%) with the BMR values measured by IC. None of the commonly used equations to estimate BMR were suitable for the VS or MCS populations. Indirect calorimetry is the preferred way to avoid either over or underestimate of BMR values. Copyright © 2016. Published by Elsevier Ltd.

  13. Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Alexander; Merk, Bruno [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Hirsch, Tobias; Pitz-Paal, Robert [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Solarforschung

    2014-06-15

    In the present feasibility study the system code ATHLET, which originates from nuclear engineering, is applied to a parabolic trough test facility. A model of the DISS (DIrect Solar Steam) test facility at Plataforma Solar de Almeria in Spain is assembled and the results of the simulations are compared to measured data and the simulation results of the Modelica library 'DissDyn'. A profound comparison between ATHLET Mod 3.0 Cycle A and the 'DissDyn' library reveals the capabilities of these codes. The calculated mass and energy balance in the ATHLET simulations are in good agreement with the results of the measurements and confirm the applicability for thermodynamic simulations of DSG processes in principle. Supplementary, the capabilities of the 6-equation model with transient momentum balances in ATHLET are used to study the slip between liquid and gas phases and to investigate pressure wave oscillations after a sudden valve closure. (orig.)

  14. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  15. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  16. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.

    Science.gov (United States)

    Soneson, Joshua E

    2017-04-01

    Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.

  17. Block Iterative Methods for Elliptic and Parabolic Difference Equations.

    Science.gov (United States)

    1981-09-01

    S V PARTER, M STEUERWALT N0OO14-7A-C-0341 UNCLASSIFIED CSTR -447 NL ENN.EEEEEN LLf SCOMPUTER SCIENCES c~DEPARTMENT SUniversity of Wisconsin- SMadison...suggests that iterative algorithms that solve for several points at once will converge more rapidly than point algorithms . The Gaussian elimination... algorithm is seen in this light to converge in one step. Frankel [14], Young [34], Arms, Gates, and Zondek [1], and Varga [32], using the algebraic structure

  18. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs

  19. Coupling of atom-by-atom calculations of extended defects with B kick-out equations: application to the simulation of boron ted

    International Nuclear Information System (INIS)

    Lampin, E.; Cristiano, F.; Lamrani, Y.; Colombeau, B.

    2004-01-01

    We present simulations of B TED based on a complete calculation of the extended defect growth/shrinkage during annealing. The Si self-interstitial supersaturation calculated at the extended defect depth is coupled to the set of equations for the B kick-out diffusion through a generation/recombination term in the diffusion equation of the Si self-interstitials. The simulations are compared to the measurements performed on a Si wafer containing several B marker layers, where the amount of TED varies from one peak to the other. The good agreement obtained on this experiment is very promising for the application of these calculations to the case of ultra-shallow B + implants

  20. Parallel computing for homogeneous diffusion and transport equations in neutronics; Calcul parallele pour les equations de diffusion et de transport homogenes en neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Pinchedez, K

    1999-06-01

    Parallel computing meets the ever-increasing requirements for neutronic computer code speed and accuracy. In this work, two different approaches have been considered. We first parallelized the sequential algorithm used by the neutronics code CRONOS developed at the French Atomic Energy Commission. The algorithm computes the dominant eigenvalue associated with PN simplified transport equations by a mixed finite element method. Several parallel algorithms have been developed on distributed memory machines. The performances of the parallel algorithms have been studied experimentally by implementation on a T3D Cray and theoretically by complexity models. A comparison of various parallel algorithms has confirmed the chosen implementations. We next applied a domain sub-division technique to the two-group diffusion Eigen problem. In the modal synthesis-based method, the global spectrum is determined from the partial spectra associated with sub-domains. Then the Eigen problem is expanded on a family composed, on the one hand, from eigenfunctions associated with the sub-domains and, on the other hand, from functions corresponding to the contribution from the interface between the sub-domains. For a 2-D homogeneous core, this modal method has been validated and its accuracy has been measured. (author)

  1. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

  2. Stability of the Filter Equation for a Time-Dependent Signal on Rd

    International Nuclear Information System (INIS)

    Stannat, Wilhelm

    2005-01-01

    Stability of the pathwise filter equation for a time-dependent signal process induced by a d-dimensional stochastic differential equation and a linear observation is studied, using a variational approach. A lower bound for the rate of stability is identified in terms of the mass-gap of a parabolic ground state transform associated with the generator of the signal process and the square of the observation. The lower bound can be easily calculated a priori and provides hints on how precisely to measure the signal in order to reach a certain rate of stability. Ergodicity of the signal process is not needed

  3. Effect of non-parabolicity on the binding energy of a hydrogenic donor in quantum well with a magnetic field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    A hydrogenic donor in a quantum well in the presence of a magnetic field perpendicular to the barrier is considered in the effective mass approximation. The non-parabolicity of the subband is included in the Hamiltonian by an energy-dependent effective mass. The donor binding energy is calculated variationally for different well widths and the effect of non-parabolicity is discussed in the light of recent experimental results. (author)

  4. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  5. Model calculations of doubly closed shell nuclei in the integral-differential equation approach describing the two body correlations

    International Nuclear Information System (INIS)

    Brizzi, R.; Fabre de la Ripelle, M.; Lassaut, M.

    1999-01-01

    The binding energies and root mean square radii obtained from the Integro-Differential Equation Approach (IDEA) and from the Weight Function Approximation (WFA) of the IDEA for an even number of bosons and for 12 C, 16 O and 40 Ca are compared to those recently obtained by the Variational Monte Carlo, Fermi Hypernetted Chain and Coupled Cluster expansion method with model potentials. The IDEA provides numbers very similar to those obtained by other methods although it takes only two-body correlations into account. The analytical expression of the wave function for the WFA is given for bosons in ground state when the interaction pair is outside the potential range. Due to its simple structure, the equations of the IDEA can easily be extended to realistic interaction for nuclei like it has already been done for the tri-nucleon and the 4 He. (authors)

  6. Useful Equations for Calculating the Induced Voltage Inside a Faraday Cage that has been Struck by Lightning; TOPICAL

    International Nuclear Information System (INIS)

    JORGENSON, ROY E.; WARNE, LARRY K.

    2001-01-01

    One of the tasks performed routinely by the Electromagnetics and Plasma Physics Analysis Department at Sandia National Laboratories is analyzing the effects of direct-strike lightning on Faraday cages that protect sensitive items. The Faraday cages analyzed thus far have many features in common. This report is an attempt to collect equations and other information that have been routinely used in the past in order to facilitate future analysis

  7. A Semi-linear Backward Parabolic Cauchy Problem with Unbounded Coefficients of Hamilton–Jacobi–Bellman Type and Applications to Optimal Control

    Energy Technology Data Exchange (ETDEWEB)

    Addona, Davide, E-mail: d.addona@campus.unimib.it [Università degli Studi di Milano Bicocca, (MILANO BICOCCA) Dipartimento di Matematica (Italy)

    2015-08-15

    We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.

  8. Eilenberger equation for rotating superfluid 3He and calculation of the upper critical angular velocity Ω/sub c/2

    International Nuclear Information System (INIS)

    Schopohl, N.

    1980-01-01

    On the basis of Gorkov's formulation of superconductivity theory, generalized Eilenberger equations are derived which apply to rotating superfluid 3 He in the presence of a magnetic field h and finite superflow v. In analyogy to conventional type II superconductors, the possibility of vortex solutions in discussed. An implicit equation determining the upper critical angular velocity Ω/sub c/2 as a function of temperature T, magnetic field h, and superflow v parallel to the rotation axis is-inferred from the linearized Eilenberger equations. In contrast to the case of slowly rotating 3 He-A, the solution of the eigenvalue problem determining the order parameter Δ near the the upper critical angular velocity admits no coreless vortex no coreless solutions. The space-dependent amplitude of the order parameter is analogous to Abrikosov's vortex array solution, while the spin-orbit part is given either by a polar-state type or an Anderson-Brinkman-Morel (ABM)-state-type eigensolution. Among the possible eigensolutions the polar-state type yields for vanishing superflow v the highest critical rotation frequency. For finite superflow v parallel to the rotation axis, however, the ABM-state-type solution is stabilized in comparison to the polar state for Vertical BarvVertical Bar> or approx. =0.2π(Tc/sub c/0/T/sub F/)v/sub f/ at zero temperature

  9. Tokamak m = 1 magnetohydrodynamic calculations in toroidal geometry using a full set of nonlinear resistive magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Charlton, L.A.; Carreras, B.A.; Holmes, J.A.; Lynch, V.E.

    1988-01-01

    The linear stability and nonlinear evolution of the resistive m = 1 mode in tokamaks is studied using a full set of resistive magnetohydrodynamic (MHD) equations in toroidal geometry. The modification of the linear and nonlinear properties of the mode by a combination of strong toroidal effects and low resistivity is the focus of this work. Linearly there is a transition from resistive kink to resistive tearing behavior as the aspect ratio and resistivity are reduced, and there is a corresponding modification of the nonlinear behavior, including a slowing of the island growth and development of a Rutherford regime, as the tearing regime is approached. In order to study the sensitivity of the stability and evolution to assumptions concerning the equation of state, two sets of full nonlinear resistive MHD equations (a pressure convection set and an incompressible set) are used. Both sets give more stable nonlinear behavior as the aspect ratio is reduced. The pressure convection set shows a transition from a Kadomtsev reconnection at large aspect ratio to a saturation at small aspect ratio. The incompressible set yields Kadomtsev reconnection for all aspect ratios, but with a significant lengthening of the reconnection time and development of a Rutherford regime at an aspect ratio approaching the transition from a resistive kink mode to a tearing mode. The pressure convection set gives an incomplete reconnection similar to that sometimes seen experimentally. The pressure convection set is, however, strictly justified only at high beta

  10. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Soekmen, I.

    2007-01-01

    We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions

  11. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    Energy Technology Data Exchange (ETDEWEB)

    Myint, P. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Firoozabadi, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-27

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO2) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data [1]. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi [2], and the CO2 activity coefficient model by Duan and Sun [3]. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO2, pure water, and both CO2-rich and aqueous (H2O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun’s model yields accurate results for the partial molar enthalpy of CO2. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H2O-CO2-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  12. Temperature Performance Evaluation of Parabolic Dishes Covered ...

    African Journals Online (AJOL)

    Aweda

    The parabolic dish with glass material gave the highest temperature of .... 3: Second day variation temperature and time using different materials. 8. 10 .... the sun rays at that particular time. ... especially between 11:00 am and 3:00 pm when.

  13. Gradient remediability in linear distributed parabolic systems ...

    African Journals Online (AJOL)

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  14. Temperature Performance Evaluation of Parabolic Dishes Covered ...

    African Journals Online (AJOL)

    Solar radiation reaching the earth is considered to be affected by some parameters like diffusion. This radiation is reflected or scattered by air molecules, cloud and aerosols (dust). Parabolic dishes made of different materials (glass, foil and painted surface) were used to concentrate energy on a copper calorimeter filled with ...

  15. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  16. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  17. Weyl states and Fermi arcs in parabolic bands

    Science.gov (United States)

    Doria, Mauro M.; Perali, Andrea

    2017-07-01

    Weyl fermions are shown to exist inside a parabolic band in a single electronic layer, where the kinetic energy of carriers is given by the non-relativistic Schroedinger equation. There are Fermi arcs as a direct consequence of the folding of a ring-shaped Fermi surface inside the first Brillouin zone. Our results stem from the decomposition of the kinetic energy into the sum of the square of the Weyl state, the coupling to the local magnetic field and the Rashba interaction. The Weyl fermions break the space and time reflection symmetries present in the kinetic energy, thus allowing for the onset of a weak three-dimensional magnetic field around the layer. This field brings topological stability to the current-carrying states through a Chern number. In the special limit for which the Weyl state becomes gapless, this magnetic interaction is shown to be purely attractive, thus suggesting the onset of a superconducting condensate of zero helicity states.

  18. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  19. Approach to calculation of mass spectra and two-photon decays of c c¯ mesons in the framework of Bethe-Salpeter equation

    Science.gov (United States)

    Bhatnagar, Shashank; Alemu, Lmenew

    2018-02-01

    In this work we calculate the mass spectra of charmonium for 1 P ,…,4 P states of 0++ and 1++, for 1 S ,…,5 S states of 0-+, and for 1 S ,…,4 D states of 1- along with the two-photon decay widths of the ground and first excited states of 0++ quarkonia for the process O++→γ γ in the framework of a QCD-motivated Bethe-Salpeter equation (BSE). In this 4 ×4 BSE framework, the coupled Salpeter equations are first shown to decouple for the confining part of the interaction (under the heavy-quark approximation) and are analytically solved, and later the one-gluon-exchange interaction is perturbatively incorporated, leading to mass spectral equations for various quarkonia. The analytic forms of wave functions obtained are used for the calculation of the two-photon decay widths of χc 0. Our results are in reasonable agreement with data (where available) and other models.

  20. Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators

    Directory of Open Access Journals (Sweden)

    Allaberen Ashyralyev

    2014-01-01

    Full Text Available The nonlocal boundary value problem for the parabolic differential equation v'(t+A(tv(t=f(t  (0≤t≤T,  v(0=v(λ+φ,  0<λ≤T in an arbitrary Banach space E with the dependent linear positive operator A(t is investigated. The well-posedness of this problem is established in Banach spaces C0β,γ(Eα-β of all Eα-β-valued continuous functions φ(t on [0,T] satisfying a Hölder condition with a weight (t+τγ. New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  1. Analytic method for solitary solutions of some partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr

    2007-10-22

    In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.

  2. Analytic method for solitary solutions of some partial differential equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2007-01-01

    In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation

  3. Study of iterative synthesis method by deflation in the resolution of neutron diffusion equation applied to fast reactors calculation

    International Nuclear Information System (INIS)

    Reis Filho, P.E.G. dos

    1982-01-01

    A new synthesis method to substitute for the classical method of finite diferences for XYZ geometry (geometry of critical experiments in fast reactors), is developed. The new method allows a fine energy group division, that is, finer than the 6 groups division used in calculations of power core specification. (E.G.) [pt

  4. Calculation of temperatures in condensed phase of burning PMMA by equation of Michelson, Mullar and Le Chatelier

    Science.gov (United States)

    Turgumbayeva, R. Kh; Abdikarimov, M. N.; Sagintayeva, S. S.

    2018-05-01

    Results of studying an aerosol of the dioxide of sulfur and pentoxide of phosphorus released into the atmosphere by the chemical company for processing of phosphorit are presented. Influence of the direction and speed of wind on sulfur dioxide distribution and pentoxide of phosphorus in a ground layer of the atmosphere is studied, and the points of the direction of wind leading to pollution of the atmosphere of the nearby city are allocated. The statistical analysis of environmental pollution is carried out by the method of the correlation and regression analysis. The equations of dependence of the amount of the sulfur dioxide and pentoxide of phosphorus, released into the atmosphere, on the volume, released by the enterprise of production, are defined. The obtained results are recommended for control, regulation and management of the environment.

  5. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Science.gov (United States)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  6. Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem

    Directory of Open Access Journals (Sweden)

    Baiyu Wang

    2014-01-01

    Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.

  7. Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2012-01-01

    Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf

  8. Annealed asymptotics for the parabolic Anderson model with a moving catalyst

    NARCIS (Netherlands)

    Gärtner, J.; Heydenreich, M.O.

    2006-01-01

    This paper deals with the solution u to the parabolic Anderson equation ¿u/¿t=¿¿u+¿u on the lattice . We consider the case where the potential ¿ is time-dependent and has the form ¿(t,x)=d0(x-Yt) with Yt being a simple random walk with jump rate 2d. The solution u may be interpreted as the

  9. Classical behavior of few-electron parabolic quantum dots

    International Nuclear Information System (INIS)

    Ciftja, O.

    2009-01-01

    Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.

  10. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  11. Thermal analysis of a compound parabolic concentrator for refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Naghelli; Best, Roberto [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    The refrigeration system designed at the Centro de Investigacion en Energia (CIE), Mexico is able to produce, in optimal conditions, one hundred kilograms per day of ice by means of solar energy. A continuous absorption ammonia-water refrigeration cycle is employed. In its actual state, heat supply to the system is provided through a bank of evacuated tube solar collectors. Their principal difficulties encountered in this system are the indirect heat losses due to the coupling of the falling film generator to the solar heating subsystem that requires a heat transfer gradient and higher collector operating temperatures. Also the high initial cost of the evacuated tube collectors is a barrier for an economical feasible system. Currently, new types of solar collectors are being considered, more efficient and reliable, with a potentially lower cost. This type of collectors known as Compound Parabolic Collectors (CPC) succeed in working at the required temperatures for absorption refrigeration systems. Therefore, a new system is suggested and it is proposed to use a CPC array, where heat losses by the indirect heating system are avoided. In this work a simple method was developed in order to establish the energy balances in a CPC, with a steel tubular receiver without an evacuated glass shell. The receptor's model considers a bidimensional system in stationary state and it supposes a continuous medium. Four nonlinear, simultaneous equations were obtained to predict heat exchange among various components in the system. These equations were utilized in a computer program to analyze the collector performance under various operating conditions. Consequently, the prediction of temperature distribution with respect to position permits to calculate length and arrangement of the CPC for a determined refrigeration application. [Spanish] El sistema de refrigeracion en el Centro de Investigacion en Energia (CIE) Mexico es capaz de producir en condiciones optimas 100

  12. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  13. Comparison of the Koster-Slater and the equation-of-motion method for calculation of the electronic structure of defects in compound semiconductors

    International Nuclear Information System (INIS)

    Tit, N.; Halley, J.W.

    1992-01-01

    Traditional methods of calculating the electronic structure of defects in semiconductors rely on matrix-diagonalization methods which use the unperturbed crystalline wave functions as a basis. Equation-of-motion (EOM) methods, on the other hand, give excellent results with strong disorder and many defects and make no use of the basis of unperturbed wave functions, but require self-averaging properties of the wave functions which appear superficially to make them unsuitable for study of local properties. We show here that EOM methods are better than traditional methods for calculating the electronic structure of essentially any finite-range impurity potential. The reason is basically that the numerical cost of the traditional Green's-function methods grows approximately as R 7 o/Iper sitet/P, where R is the range of the potential, whereas the cost of the EOM methods per site is independent of the range of the potential. Our detailed calculations on a model of an oxygen vacancy in rutile TiO 2 show that a crossover occurs very soon, so that equation-of-motion methods are better than the traditional ones in the case of potentials of realistic range

  14. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    Science.gov (United States)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  15. Volume Estimates in Chronic Hemodialysis Patients by the Watson Equation and Bioimpedance Spectroscopy and the Impact on the Kt/Vurea calculation.

    Science.gov (United States)

    Noori, Nazanin; Wald, Ron; Sharma Parpia, Arti; Goldstein, Marc B

    2018-01-01

    Accurate assessment of total body water (TBW) is essential for the evaluation of dialysis adequacy (Kt/V urea ). The Watson formula, which is recommended for the calculation of TBW, was derived in healthy volunteers thereby leading to potentially inaccurate TBW estimates in maintenance hemodialysis recipients. Bioimpedance spectroscopy (BIS) may be a robust alternative for the measurement of TBW in hemodialysis recipients. The primary objective of this study was to evaluate the accuracy of Watson formula-derived TBW estimates as compared with TBW measured with BIS. Second, we aimed to identify the anthropometric characteristics that are most likely to generate inaccuracy when using the Watson formula to calculate TBW. Finally, we derived novel anthropometric equations for the more accurate estimation of TBW. This was a cross-sectional study of prevalent in-center HD patients at St Michael's Hospital. One hundred eighty-four hemodialysis patients (109 men and 75 women) were evaluated in this study. Anthropometric measurements including weight, height, waist circumference, midarm circumference, and 4-site skinfold (biceps, triceps, subscapular, and suprailiac) thickness were measured; fat mass was measured using the formula by Durnin and Womersley. We measured TBW by BIS using the Body Composition Monitor (Fresenius Medical Care, Bad Homburg, Germany). We used the Bland-Altman method to calculate the difference between the TBW derived from the Watson method and the BIS. To derive new equations for TBW estimation, Pearson's correlation coefficients between BIS-TBW (the reference test) and other variables were examined. We used the least squares regression analysis to develop parsimonious equations to predict TBW. TBW values based on the Watson method had a high correlation with BIS-TBW (correlation coefficients = 0.87 and P Watson formula overestimated TBW by 5.1 (4.5-5.8) liters and 3.8 (3.0-4.5) liters, in men and women, respectively. Higher fat mass and waist

  16. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul

    2016-01-01

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  17. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio

    2015-01-07

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  18. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio

    2016-01-06

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  19. Calculation of thermodynamic properties of sodium and potassium vapors on the base of semiempirical state equation. Group integrals and virial coefficients

    International Nuclear Information System (INIS)

    Reva, T.D.; Semenov, A.M.

    1984-01-01

    Statistically significant estimations of the second, third and fourth group integrals of sodium and potassium vapors were obtained in the framework of the initial atom method on the basis of semiempirical equation of state derived by the authors. Possibility is duscussed of estimating dimer, trimer and tetramer concentrations from these data with account of unideality of vapors. High rate of convergence of density and pressure group expansion is demonstrated. Virial coefficients were calculated. It is shown that virial expansions of thermodynamic functions diverge at elevated densities of the gases under study. The estimations of senior virial coefficients of sodium and potassium vapors available in literature were proved to be faulty

  20. Calculation of the Aqueous Thermodynamic Properties of Citric Acid Cycle Intermediates and Precursors and the Estimation of High Temperature and Pressure Equation of State Parameters

    Directory of Open Access Journals (Sweden)

    Mitchell Schulte

    2009-06-01

    Full Text Available The citric acid cycle (CAC is the central pathway of energy transfer for many organisms, and understanding the origin of this pathway may provide insight into the origins of metabolism. In order to assess the thermodynamics of this key pathway for microorganisms that inhabit a wide variety of environments, especially those found in high temperature environments, we have calculated the properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for the major components of the CAC. While a significant amount of data is not available for many of the constituents of this fundamental pathway, methods exist that allow estimation of these missing data.

  1. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    Science.gov (United States)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  2. Mechatronic Prototype of Parabolic Solar Tracker

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2016-06-01

    Full Text Available In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  3. Mechatronic Prototype of Parabolic Solar Tracker.

    Science.gov (United States)

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  4. Parabolic dish collectors - A solar option

    Science.gov (United States)

    Truscello, V. C.

    1981-05-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  5. Nanofocusing Parabolic Refractive X-Ray Lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV

  6. Nanofocusing parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Frehse, F.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A.S.; Snigirev, A.; Snigireva, I.; Schug, C.; Schroeder, W.H.

    2003-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV

  7. Structured inverse modeling in parabolic diffusion processess

    OpenAIRE

    Schulz, Volker; Siebenborn, Martin; Welker, Kathrin

    2014-01-01

    Often, the unknown diffusivity in diffusive processes is structured by piecewise constant patches. This paper is devoted to efficient methods for the determination of such structured diffusion parameters by exploiting shape calculus. A novel shape gradient is derived in parabolic processes. Furthermore quasi-Newton techniques are used in order to accelerate shape gradient based iterations in shape space. Numerical investigations support the theoretical results.

  8. Building a parabolic solar concentrator prototype

    International Nuclear Information System (INIS)

    Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  9. Revision to the humidity correction equation in the calculation formulae of the air refractive index based on a phase step interferometer with three frequency-stabilized lasers

    International Nuclear Information System (INIS)

    Chen, Qianghua; Zhang, Mengce; Liu, Shuaijie; He, Yongxi; Luo, Huifu; Luo, Jun; Lv, Weiwei

    2016-01-01

    At present the formulae proposed by G Boensch and E Potulski in 1998 (Boensch and Potulski 1998 Metrologia 35 133–9) are mostly used to calculate the air refractive index. However, the humidity correction equation in the formulae is derived by using the light source of a Cd lamp whose light frequency stability is poor and at a narrow temperature range, around 20 °C. So it is no longer suitable in present optical precision measurements. To solve this problem, we propose a refractive index measurement system based on phase step interferometer with three frequency stabilized lasers (532 nm, 633 nm, 780 nm), corrected coefficients of the humidity are measured and a corresponding revised humidity correction equation is acquired. Meanwhile, the application temperature range is extended from 14.6 °C to 25.0 °C. The experiment comparison results at the temperature of 22.2–23.2 °C show the accuracy by the presented equation is better than that of Boensch and Potulski. (paper)

  10. The calculated reference value of the tubular extraction rate in infants and children. An attempt to use a new regression equation

    International Nuclear Information System (INIS)

    Watanabe, Nami; Sugai Yukio; Komatani, Akio; Yamaguchi, Koichi; Takahashi, Kazuei

    1999-01-01

    This study was designed to investigate the empirical tubular extraction rate (TER) of the normal renal function in childhood and then propose a new equation to obtain TER theoretically. The empirical TER was calculated using Russell's method for determination of single-sample plasma clearance and 99m Tc-MAG 3 in 40 patients with renal disease younger than 10 years of age who were classified as having normal renal function using diagnostic criteria defined by the Paediatric Task Group of EANM. First, we investigated the relationships of the empirical value of absolute TER to age, body weight, body surface area (BSA) and distribution volume. Next we investigated the relationships of the empirical value of BSA corrected TER to age, body weight, BSA and distribution volume. Linear relationship was indicated between the absolute TER and each body dimensional factors, especially regarding to BSA, its correlation coefficient was 0.90 (p value). The BSA-corrected TER showed a logarithmic relationship with BSA, but linear regression did not show any significant correlation. Therefore, it was thought that the normal value of TER could be calculated theoretically using the body surface area, and here we proposed the following linear regression equation; Theoretical TER (ml/min/1.73 m 2 )=(-39.8+257.2 x BSA)/BSA/1.73. The theoretical TER could be one of the reference values of the renal function in the period of the renal maturation. (author)

  11. Cálculo do volume na equação de van der Waals pelo método de cardano Volume calculation in van der Waals equation by the cardano method

    Directory of Open Access Journals (Sweden)

    Nelson H. T. Lemes

    2010-01-01

    Full Text Available Analytical solutions of a cubic equation with real coefficients are established using the Cardano method. The method is first applied to simple third order equation. Calculation of volume in the van der Waals equation of state is afterwards established. These results are exemplified to calculate the volumes below and above critical temperatures. Analytical and numerical values for the compressibility factor are presented as a function of the pressure. As a final example, coexistence volumes in the liquid-vapor equilibrium are calculated. The Cardano approach is very simple to apply, requiring only elementary operations, indicating an attractive method to be used in teaching elementary thermodynamics.

  12. Solution of the non-stationary electron Boltzmann equation for a weakly ionized collision dominated plasma

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.

    A detailed description is presented of calculating the nonstationary electron distribution function in a weakly ionized collision-dominated plasma from the Boltzmann kinetic equation respecting the effects of the time-dependent electric field, collision processes and the electron formation and loss. The finite difference approximation was used for numerical solution. Using the Crank-Nicolson method and parabolic interpolation between the grid points the Boltzmann equation was transformed to a system of linear equations which was then solved by iterations at a preset accuracy. Using the calculated distribution function values, the macroscopic plasma parameters were determined and the balance of electron density and energy checked in each time step. The mathematical procedure is illustrated using a neon plasma perturbed by a rectangular electric pulse. The time development shown of the distribution function at moments when the pulse was switched on and off demonstrates the great stability of the numerical solution. (J.U.)

  13. Analysis of the stress-deformed condition of the disassembly parabolic antenna

    Science.gov (United States)

    Odinets, M. N.; Kaygorodtseva, N. V.; Krysova, I. V.

    2018-01-01

    Active development of satellite communications and computer-aided design systems raises the problem of designing parabolic antennas on a new round of development. The aim of the work was to investigate the influence of the design of the mirror of a parabolic antenna on its endurance under wind load. The research task was an automated analysis of the stress-deformed condition of various designs of computer models of a paraboloid mirror (segmented or holistic) at modeling the exploitation conditions. The peculiarity of the research was that the assembly model of the antenna’s mirror was subjected to rigid connections on the contacting surfaces of the segments and only then the finite element grid was generated. The analysis showed the advantage of the design of the demountable antenna, which consists of cyclic segments, in front of the construction of the holistic antenna. Calculation of the stress-deformed condition of the antennas allows us to conclude that dividing the design of the antenna’s mirror on parabolic and cyclic segments increases it strength and rigidity. In the future, this can be used to minimize the mass of antenna and the dimensions of the disassembled antenna. The presented way of modeling a mirror of a parabolic antenna using to the method of the finite-element analysis can be used in the production of antennas.

  14. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    International Nuclear Information System (INIS)

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  15. Monte Carlo calculations of the elastic moduli and pressure-volume-temperature equation of state for hexahydro-1,3,5-trinitro-1,3,5-triazine

    International Nuclear Information System (INIS)

    Sewell, Thomas D.; Bennett, Carl M.

    2000-01-01

    Isothermal-isobaric Monte Carlo calculations were used to obtain predictions of the elastic coefficients and derived engineering moduli and Poisson ratios for crystalline hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The elastic coefficients were computed using the strain fluctuation formula due to Rahman and Parrinello [J. Chem. Phys. 76, 2662 (1982)]. Calculations were performed as a function of temperature (218 K≤T≤333 K) and hydrostatic pressure (0 GPa≤p≤4 GPa). The predicted values of the moduli and Poisson ratios under ambient conditions are in accord with general expectations for molecular crystals and with a very recent, unpublished determination for RDX. The moduli exhibit a sensitive pressure dependence whereas the Poisson ratios are relatively independent of pressure. The temperature dependence of the moduli is comparable to the precision of the results. However, the crystal does exhibit thermal softening for most pressures. An additional product of the calculations is information about the pressure-volume-temperature (pVT) equation of state. We obtain near-quantitative agreement with experiment for the case of hydrostatic compression and reasonable, but not quantitative, correspondence for thermal expansion. The results indicate a significant dependence of the thermal expansion coefficients on hydrostatic pressure. (c) 2000 American Institute of Physics

  16. Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves

    Science.gov (United States)

    Chang, Yu-Hsuan; Lin, De-Hone

    2014-01-01

    Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.

  17. Alignment method for parabolic trough solar concentrators

    Science.gov (United States)

    Diver, Richard B [Albuquerque, NM

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  18. Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control

    International Nuclear Information System (INIS)

    Masiero, Federica

    2005-01-01

    Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations

  19. Study on the optical properties of the off-axis parabolic collimator with eccentric pupil

    Science.gov (United States)

    Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin

    2017-02-01

    The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.

  20. Effective inclusion of polarization effects in calculations of the oscillator strengths and transition energies in atoms and molecules using the equation-of-motion method

    International Nuclear Information System (INIS)

    Glushkov, A.V.; Kol'tsova, N.Yu.

    1994-01-01

    Equations of motion were solved by a modified method in a quasi-particle representation of the density functional taking into account the most important polarization effects, including the so-called 2p-2h two-particle-two-hole interactions. Based on these calculations, spectroscopic data on energies and oscillator strengths of the helium atom (the test computation), carbon monoxide, nitrogen molecule, and ethylene are presented that refine some previously reported experimental and theoretical results. It is shown that in some cases the inclusion of polarization corrections introduced by 2p-2h effects is of basic importance because it provides up to ∼30% contribution to the energies and oscillator strengths. 23 refs., 5 tabs

  1. Solving the transport equation by Monte Carlo method and application for biological shield calculations; Resavanje transportne jednacine Monte Carlo metodom i njena primena u zadacima proracuna bioloskog stita

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1977-07-01

    General sampling Monte Carlo scheme for neutron transport equation has been described. Programme TRANSFER for neutron beam transmission analysis has been used to calculate the neutron leakage spectrum, detector efficiency and neutron angular distribution of the example problem (author) [Serbo-Croat] U radu se najpre razmatraju osnovni problemi resavanja transportne jednacine i nacin kako Monte Karlo metoda omogucuje da se prevazidju neki od njih: visedimenzionalnost zadatka, problem dubokog prodiranja i dovoljno fino tretiranje efikasnih preseka. Dalje, govori se o iskustvima sa primenom Monte Karlo metode u Laboratoriji za nuklearnu energetiku i tehnicku fiziku i o primeni ove metode na probleme zastite. Na kraju dati su i analizirani ilustrativni primeri proracuna transporta neutrona kroz ravan sloj zastitnog materijala koriscenjem Monte Karlo programa TRANSFER (author)

  2. Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse

    Science.gov (United States)

    Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan

    2011-11-01

    A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.

  3. A parabolic mirror x-ray collimator

    Science.gov (United States)

    Franks, A.; Jackson, K.; Yacoot, A.

    2000-05-01

    A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.

  4. Moduli of Parabolic Higgs Bundles and Atiyah Algebroids

    DEFF Research Database (Denmark)

    Logares, Marina; Martens, Johan

    2010-01-01

    In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...

  5. Moduli space of Parabolic vector bundles over hyperelliptic curves

    Indian Academy of Sciences (India)

    27

    This has been generalized for higher dimensional varieties by Maruyama ... Key words and phrases. Parabolic structure .... Let E be a vector bundle of rank r on X. Recall that a parabolic ..... Let us understand this picture geometrically. Let ω1 ...

  6. Photoionization cross section in a spherical quantum dot: Effects of some parabolic confining electric potentials

    Directory of Open Access Journals (Sweden)

    M. Tshipa

    2017-12-01

    Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.

  7. An evolution infinity Laplace equation modelling dynamic elasto-plastic torsion

    Science.gov (United States)

    Messelmi, Farid

    2017-12-01

    We consider in this paper a parabolic partial differential equation involving the infinity Laplace operator and a Leray-Lions operator with no coercitive assumption. We prove the existence and uniqueness of the corresponding approached problem and we show that at the limit the solution solves the parabolic variational inequality arising in the elasto-plastic torsion problem.

  8. Nonlinear variational inequalities of semilinear parabolic type

    Directory of Open Access Journals (Sweden)

    Park Jong-Yeoul

    2001-01-01

    Full Text Available The existence of solutions for the nonlinear functional differential equation governed by the variational inequality is studied. The regularity and a variation of solutions of the equation are also given.

  9. Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot

    International Nuclear Information System (INIS)

    Sivakami, A.; Mahendran, M.

    2010-01-01

    The binding energy of a shallow hydrogenic impurity in a spherical quantum dot under hydrostatic pressure with square well potential is calculated using a variational approach within the effective mass approximation. The effect of conduction band non-parabolicity on these energies is also estimated. The binding energy is computed for GaAs spherical quantum dot as a function of dot size, hydrostatic pressure both in the presence and absence of the band non-parabolicity effect. Our results show that (i) the hydrostatic pressure increases the impurity binding energy when dot radius increases for a given pressure, (ii) the hydrostatic pressure with the band non-parabolicity effect effectively increases the binding energy such that the variation is large for smaller dots and (iii) the maximum contribution by the non-parabolicity effect is about 15% for narrow dots. Our results are in good agreement with Perez-Merchancano et al. [J. Phys. Condens. Matter 19 (2007) 026225] who have not considered the conduction band non-parabolicity effect.

  10. F John's stability conditions versus A Carasso's SECB constraint for backward parabolic problems

    International Nuclear Information System (INIS)

    Lee, Jinwoo; Sheen, Dongwoo

    2009-01-01

    In order to solve backward parabolic problems John (1960 Commun. Pure. Appl. Math.13 551–85) introduced the two constraints ||u(T)|| ≤ M and ||u(0) − g|| ≤ δ where u(t) satisfies the backward heat equation for t in (0, T) with the initial data u(0). The slow evolution from the continuation boundary (SECB) constraint was introduced by Carasso (1994 SIAM J. Numer. Anal. 31 1535–57) to attain continuous dependence on data for backward parabolic problems even at the continuation boundary t = T. The additional 'SECB constraint' guarantees a significant improvement in stability up to t = T. In this paper, we prove that the same type of stability can be obtained by using only two constraints among the three. More precisely, we show that the a priori boundedness condition ||u(T)|| ≤ M is redundant. This implies that Carasso's SECB condition can be used to replace the a priori boundedness condition of John with an improved stability estimate. Also, a new class of regularized solutions is introduced for backward parabolic problems with an SECB constraint. The new regularized solutions are optimally stable and we also provide a constructive scheme to compute. Finally, numerical examples are provided

  11. Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region

    International Nuclear Information System (INIS)

    Marif, Yacine; Benmoussa, Hocine; Bouguettaia, Hamza; Belhadj, Mohamed M.; Zerrouki, Moussa

    2014-01-01

    Highlights: • The parabolic trough collector performance is examined. • The finite difference method is proposed and validated. • Two fluids are considered water and TherminolVP-1™. - Abstract: In order to determine the optical and thermal performance of a solar parabolic trough collector under the climate conditions of Algerian Sahara, a computer program based on one dimensional implicit finite difference method with energy balance approach has been developed. The absorber pipe, glass envelope and fluid were divided into several segments and the partial derivation in the differential equations was replaced by the backward finite difference terms in each segment. Two fluids were considered, liquid water and TherminolVP-1™ synthetic oil. Furthermore, the intensity of the direct solar radiation was estimated by monthly average values of the atmospheric Linke turbidity factor for different tracking systems. According to the simulation findings, the one axis polar East–West and horizontal East–West tracking systems were most desirable for a parabolic trough collector throughout the whole year. In addition, it is found that the thermal efficiency was about 69.73–72.24%, which decreases with the high synthetic oil fluid temperatures and increases in the lower water temperature by 2%

  12. Optical analysis and performance evaluation of a solar parabolic dish concentrator

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available In this study, the optical design of a solar parabolic dish concentrator is presented. The parabolic dish concentrator consists from 11 curvilinear trapezoidal reflective petals made of polymethyl methacrylate with special reflective coating. The dish diameter is equal to 3.8 m and the theoretical focal point distance is 2.26 m. Numerical simulations are made with the commercial software TracePro from Lambda Research, USA, and the final optimum position between absorber and reflector was calculated to 2.075 m; lower than focus distance. This paper presents results for the optimum position and the optimum diameter of the receiver. The decision for selecting these parameters is based on the calculation of the total flux over the flat and corrugated pipe receiver surface; in its central region and in the peripheral region. The simulation results could be useful reference for designing and optimizing of solar parabolic dish concentrators as for as for CFD analysis, heat transfer and fluid flow analysis in corrugated spiral heat absorbers. [Projekat Ministarstva nauke Republike Srbije, br. III42006: Research and development of energy and environmentally highly effective polygeneration systems based on renewable energy resources i br. III45016: Fabrication and characterization of nanophotonic functional structures in biomedicine and informatics

  13. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    Science.gov (United States)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  14. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  15. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  16. Heat transfer analysis of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2011-01-01

    Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.

  17. Tracking local control of a parabolic trough collector; Control local de seguimiento cilindro parabolico ACE20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona, J I; Alberdi, J; Gamero, E; Blanco, J

    1992-07-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  18. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  19. Calculations of non-adiabatic couplings within equation-of-motion coupled-cluster framework: Theory, implementation, and validation against multi-reference methods

    Science.gov (United States)

    Faraji, Shirin; Matsika, Spiridoula; Krylov, Anna I.

    2018-01-01

    We report an implementation of non-adiabatic coupling (NAC) forces within the equation-of-motion coupled-cluster with single and double excitations (EOM-CCSD) framework via the summed-state approach. Using illustrative examples, we compare NAC forces computed with EOM-CCSD and multi-reference (MR) wave functions (for selected cases, we also consider configuration interaction singles). In addition to the magnitude of the NAC vectors, we analyze their direction, which is important for the calculations of the rate of non-adiabatic transitions. Our benchmark set comprises three doublet radical-cations (hexatriene, cyclohexadiene, and uracil), neutral uracil, and sodium-doped ammonia clusters. When the characters of the states agree among different methods, we observe good agreement between the respective NAC vectors, both in the Franck-Condon region and away. In the cases of large discrepancies between the methods, the disagreement can be attributed to the difference in the states' character, which, in some cases, is very sensitive to electron correlation, both within single-reference and multi-reference frameworks. The numeric results confirm that the accuracy of NAC vectors depends critically on the quality of the underlying wave functions. Within their domain of applicability, EOM-CC methods provide a viable alternative to MR approaches.

  20. Parabolic features and the erosion rate on Venus

    Science.gov (United States)

    Strom, Robert G.

    1993-01-01

    The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.

  1. Câbles electriques - Calcul du courant admissible - Partie 1: Equations de l'intensité du courant admissible (facteur de charge 100%) et calcul des pertes - Section 2: Facteurs de pertes par courants de Foucault dans les gaines dans le cas de deux circuits disposés en nappe

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1993-01-01

    Câbles electriques - Calcul du courant admissible - Partie 1: Equations de l'intensité du courant admissible (facteur de charge 100%) et calcul des pertes - Section 2: Facteurs de pertes par courants de Foucault dans les gaines dans le cas de deux circuits disposés en nappe

  2. A New Algorithm for System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Abdujabar Rasulov

    2014-01-01

    Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.

  3. Classification of conformal representations induced from the maximal cuspidal parabolic

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, V. K., E-mail: dobrev@inrne.bas.bg [Scuola Internazionale Superiore di Studi Avanzati (Italy)

    2017-03-15

    In the present paper we continue the project of systematic construction of invariant differential operators on the example of representations of the conformal algebra induced from the maximal cuspidal parabolic.

  4. Packing of equal discs on a parabolic spiral lattice

    International Nuclear Information System (INIS)

    Xudong, F.; Bursill, L.A.; Julin, P.

    1989-01-01

    A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures

  5. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low

  6. A note on Chudnovskyʼs Fuchsian equations

    Science.gov (United States)

    Brezhnev, Yurii V.

    We show that four exceptional Fuchsian equations, each determined by the four parabolic singularities, known as the Chudnovsky equations, are transformed into each other by algebraic transformations. We describe equivalence of these equations and their counterparts on tori. The latters are the Fuchsian equations on elliptic curves and their equivalence is characterized by transcendental transformations which are represented explicitly in terms of elliptic and theta functions.

  7. Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations

    OpenAIRE

    Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril

    2011-01-01

    We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...

  8. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2012-03-01

    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  9. Beryllium parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Lengeler, B.; Schroer, C.G.; Kuhlmann, M.; Benner, B.; Guenzler, T.F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given

  10. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    Science.gov (United States)

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  11. Numerical Methods for Partial Differential Equations

    CERN Document Server

    Guo, Ben-yu

    1987-01-01

    These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.

  12. A semi-parabolic wake model for large offshore wind farms based on the open source CFD solver OpenFOAM

    Directory of Open Access Journals (Sweden)

    Cabezón D.

    2014-01-01

    Full Text Available Wake effect represents one of the main sources of energy loss and uncertainty when designing offshore wind farms. Traditionally analytical models have been used to optimize and estimate power deficits. However these models have shown to underestimate wake effect and consequently overestimate output power [1, 2]. This means that analytical models can be very helpful at optimizing preliminary layouts but not as accurate as needed for an ultimate fine design. Different techniques can be found in the literature to study wind turbine wakes that include simplified kinematic models and more advanced field models, that solve flow equations with different turbulence closure schemes. See the review papers of Crespo et al. [3], Vermeer et al. [4], and Sanderse et al. [5]. Purely elliptic Computational Fluid Dynamics (CFD models based on the actuator disk technique have been developed during the last years [6–8]. They consider wind turbine rotor as a disk where a distribution of axial forces act over the incoming air. It is a fair approach but it can still be computationally expensive for big wind farms in an operative mode. With this technique still active, an alternative approach inspired on the parabolic wake models [9, 10] is proposed. Wind turbine rotors continue to be represented as actuator disks but now the domain is split into subdomains containing one or more wind turbines. The output of each subdomain is mapped onto the input boundary of the next one until the end of the domain is reached, getting a considerable decrease on computational time, by a factor of order 10. As the model is based on the open source CFD solver OpenFOAM, it can be parallelized to speed-up convergence. The near wake is calculated so no initial wind speed deficit profiles have to be supposed as in totally parabolic models and alternative turbulence models, such as the anisotropic Reynolds Stress Model (RSM can be used. Traditional problems of elliptic models related to

  13. KABAM Version 1.0 User's Guide and Technical Documentation - Appendix F -Description of Equations Used to Calculate the BCF, BAF, BMF, and BSAF Values

    Science.gov (United States)

    Describes equations for bioconcentration, bioaccumulation, biomagnification and biota-sediment accumulation factors used in KABAM V1.0. KABAM is a simulation model used to predict pesticide concentrations in aquatic regions for use in exposure assessments.

  14. New finite volume methods for approximating partial differential equations on arbitrary meshes

    International Nuclear Information System (INIS)

    Hermeline, F.

    2008-12-01

    This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)

  15. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing; Calculo Numerico del Transporte mediante la Ecuacion Cinetica de Deriva para Plasmas en Geometria Magnetica Toroidal: Convergencia y Comprobaciones

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-12-11

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs.

  16. Use of fast Fourier transforms for solving partial differential equations in physics

    CERN Document Server

    Le Bail, R C

    1972-01-01

    The use of fast Fourier techniques for the direct solution of an important class of elliptic, parabolic, and hyperbolic partial differential equations in two dimensions is described. Extensions to higher-order and higher-dimension equations as well as to integrodifferential equations are presented, and several numerical examples with their resulting precision and timing are reported. (12 refs).

  17. Macroscopic and microscopic description of HE-HI collisions; classical equations of motion calculations. [Rapidity, cross sections, central and noncentral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A. R.

    1978-01-01

    The study of high energy heavy ion reactions includes the three principle a priori approaches used for central collisions, namely, hydrodynamics, cascade--Boltzman equation, and the classical equations of motion. While no clearly justified central or near central collisions are found, the classical equations of motion are used to illustrate some general features of these reactions. It is expected that the hot nuclear matter produced in such collisions is a dense, viscous, and thermally conductive fluid with important nonequilibrium and nonclassical features, rapidity, distribution, noncentral collisions, potential dependent effects for a given two-body scattering, and c.m. cross sections for a central collision with given parameters are among the properties considered. 12 references. (JFP)

  18. Thermodynamic analysis of a new design of temperature controlled parabolic trough collector

    International Nuclear Information System (INIS)

    Ceylan, İlhan; Ergun, Alper

    2013-01-01

    Highlights: • This new design parabolic trough collector has been made as temperature control. • The TCPTC system is very appropriate for the industrial systems which require high temperatures. • With TCPTC can provide hot water with low solar radiation. • TCPTC system costs are cheaper than other systems (thermo siphon systems, pomp systems, etc.). - Abstract: Numerous types of solar water heater are used throughout the world. These heaters can be classified into two groups as pumped systems and thermo siphon systems. However, water temperature cannot be controlled by these systems. In this study, a new temperature-controlled parabolic trough collector (TCPTC) was designed and analyzed experimentally. The analysis was made at a temperature range of 40–100 °C, with at intervals of 10 °C. A detailed analysis was performed by calculating energy efficiencies, exergy efficiencies, water temperatures and water amounts. The highest energy efficiency of TCPTC was calculated as 61.2 for 100 °C. As the set temperature increased, the energy efficiency increased as well. The highest exergy efficiency was calculated as 63 for 70 °C. However, as the set temperature increased, the exergy efficiency did not increase. Optimum exergy efficiency was obtained for 70 °C

  19. Optimising position control of a solar parabolic trough

    Directory of Open Access Journals (Sweden)

    Puramanathan Naidoo

    2011-03-01

    Full Text Available In today’s climate of growing energy needs and increasing environmental concerns, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy. This study is based on the implementation of a mathematical computation – the PSA (Plataforma Solar de Almeria computation developed at PSA (the European Test Centre for solar energy applications – embedded in a control algorithm to locate the position of the sun. Tests were conducted on a solar parabolic trough (SPT constructed at the Solar Thermal Applications Research Laboratory of the Mangosuthu University of Technology (Durban, South Africa for optimal position control using the PSA value. The designed control algorithm embedded in an industrial Siemens S7-314 C-2PtP programmable logic controller compared the PSA computation to a measured position of the SPT to optimally rotate the SPT to a desired position with the constant movement of the sun. The two main angles of the sun relative to the position of the SPT on earth, the zenith angle and the azimuth angle, both calculated in the PSA from the vertical and horizontal planes, respectively, were applied to the control algorithm to generate an appropriate final tracking angle within a 0.007 radian (0° 24′ 3.6″ tolerance, in accordance to the construction specifications and solar collector testing standards of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 1991. These values, together with the longitude and latitude applicable to the geographical location of the SPT, were processed in the control software to rotate the SPT to an optimal position with respect to the position of the sun in its daily path, for solar-to-thermal conversion.

  20. Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations

    DEFF Research Database (Denmark)

    Sørensen, Dan Erik Krarup

    1996-01-01

    We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...

  1. Interaction Potential between Parabolic Rotator and an Outside Particle

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-01-01

    Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.

  2. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  3. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds

    NARCIS (Netherlands)

    Zhang, Hongming; Wei, Jicheng; Yang, Qinke; Baartman, Jantiene E.M.; Gai, Lingtong; Yang, Xiaomei; Li, Shu Qin; Yu, Jiantao; Ritsema, Coen J.; Geissen, Violette

    2017-01-01

    The Universal Soil Loss Equation (USLE) and its revised version (RUSLE) are often used to estimate soil erosion at regional landscape scales. USLE/RUSLE contain parameters for slope length factor (L) and slope steepness factor (S), usually combined as LS. However a major limitation is the difficulty

  4. Modifying Spearman's Attenuation Equation to Yield Partial Corrections for Measurement Error--With Application to Sample Size Calculations

    Science.gov (United States)

    Nicewander, W. Alan

    2018-01-01

    Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…

  5. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  6. Global Carleman estimates for degenerate parabolic operators with applications

    CERN Document Server

    Cannarsa, P; Vancostenoble, J

    2016-01-01

    Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics. This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic diffusion flow, and appears naturally in climatology models.

  7. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters

  8. Maximum principles for boundary-degenerate linear parabolic differential operators

    OpenAIRE

    Feehan, Paul M. N.

    2013-01-01

    We develop weak and strong maximum principles for boundary-degenerate, linear, parabolic, second-order partial differential operators, $Lu := -u_t-\\tr(aD^2u)-\\langle b, Du\\rangle + cu$, with \\emph{partial} Dirichlet boundary conditions. The coefficient, $a(t,x)$, is assumed to vanish along a non-empty open subset, $\\mydirac_0!\\sQ$, called the \\emph{degenerate boundary portion}, of the parabolic boundary, $\\mydirac!\\sQ$, of the domain $\\sQ\\subset\\RR^{d+1}$, while $a(t,x)$ may be non-zero at po...

  9. Hermitian-Einstein metrics on parabolic stable bundles

    International Nuclear Information System (INIS)

    Li Jiayu; Narasimhan, M.S.

    1995-12-01

    Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs

  10. From ordinary to partial differential equations

    CERN Document Server

    Esposito, Giampiero

    2017-01-01

    This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.

  11. A fast algorithm for parabolic PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers

    International Nuclear Information System (INIS)

    Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.

    2015-01-01

    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method

  12. A fast algorithm for parabolic PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers

    Energy Technology Data Exchange (ETDEWEB)

    Bakhos, Tania, E-mail: taniab@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University (United States); Saibaba, Arvind K. [Department of Electrical and Computer Engineering, Tufts University (United States); Kitanidis, Peter K. [Institute for Computational and Mathematical Engineering, Stanford University (United States); Department of Civil and Environmental Engineering, Stanford University (United States)

    2015-10-15

    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.

  13. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  14. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics; Methodes deterministes de resolution des equations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdiec, S

    2007-03-15

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  15. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University ... off design weather conditions as well. Keywords: Parabolic Trough Collector (PTC);. Heat Transfer ... of a conventional Rankine cycle power plant with solar fields that are used to increase the temperature of heat ...

  16. A parabolic-hyperbolic system modelling a moving cell

    Directory of Open Access Journals (Sweden)

    Fabiana Cardetti

    2009-08-01

    Full Text Available In this article, we study the existence and uniqueness of local solutions for a moving boundary problem governed by a coupled parabolic-hyperbolic system. The results can be applied to cell movement, extending a result obtained by Choi, Groulx, and Lui in 2005.

  17. Parabolic cyclinder functions : examples of error bounds for asymptotic expansions

    NARCIS (Netherlands)

    R. Vidunas; N.M. Temme (Nico)

    2002-01-01

    textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.

  18. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    Heat Transfer Fluid (HTF); TRNSYS power plant model; STEC library; Solar Advisor Model (SAM);. TRNSYS solar field model; Solar Electric. Generation System (SEGS). INTRODUCTION. Parabolic troughs are currently most used means of power generation option of solar sources. Solar electric generation systems (SEGs) ...

  19. Parabolic Trough Solar Power for Competitive U.S. Markets

    International Nuclear Information System (INIS)

    Price, Henry W.

    1998-01-01

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market

  20. Attractors for a class of doubly nonlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Hamid El Ouardi

    2006-03-01

    Full Text Available In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\\left[ L^{\\infty }(\\Omega \\right] ^{2}$ and ${\\prod_{i=1}^{2}}{B_{\\infty }^{1+\\sigma_{i},p_{i}}( \\Omega } $.