WorldWideScience

Sample records for pantoea agglomerans plant

  1. Genotypic comparison of Pantoea agglomerans plant and clinical strains

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2009-09-01

    Full Text Available Abstract Background Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2 organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP fingerprinting. Results Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P

  2. Draft genome sequences of Pantoea agglomerans and Pantoea vagans isolates associated with termites

    DEFF Research Database (Denmark)

    Palmer, Marike; de Maayer, Pieter; Thomas-Poulsen, Michael

    2016-01-01

    The genus Pantoea incorporates many economically and clinically important species. The plant-associated species, Pantoea agglomerans and Pantoea vagans, are closely related and are often isolated from similar environments. Plasmids conferring certain metabolic capabilities are also shared amongst...... these two species. The genomes of two isolates obtained from fungus-growing termites in South Africa were sequenced, assembled and annotated. A high number of orthologous genes are conserved within and between these species. The difference in genome size between P. agglomerans MP2 (4,733,829 bp) and P...

  3. Pantoea agglomerans : a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    Full Text Available Pantoea agglomerans , a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of P. agglomerans isolated by them and described as ‘Immunopotentiator from Pantoea agglomerans 1 (IP-PA1’ reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that P. agglomerans occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the Plasmodium parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti- Plasmodium effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. Pantoea agglomerans has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic production, competition mechanisms or induction of

  4. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    Full Text Available [i][/i][i]Pantoea agglomerans[/i], a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of [i]P. agglomerans[/i] isolated by them and described as ‘Immunopotentiator from [i]Pantoea agglomerans[/i] 1 (IP-PA1’ reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that [i]P. agglomerans[/i] occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the [i]Plasmodium[/i] parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti-[i]Plasmodium[/i] effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. [i]Pantoea agglomerans[/i] has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic

  5. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2016-06-02

    Pantoea agglomerans, a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others) which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of P. agglomerans isolated by them and described as 'Immunopotentiator from Pantoea agglomerans 1 (IP-PA1)' reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that P. agglomerans occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the Plasmodium parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti-Plasmodium effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. Pantoea agglomerans has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic production, competition mechanisms or induction of plant resistance. Its use as

  6. Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5.

    Science.gov (United States)

    Shariati J, Vahid; Malboobi, Mohammad Ali; Tabrizi, Zeinab; Tavakol, Elahe; Owilia, Parviz; Safari, Maryam

    2017-11-15

    In this study, we provide a comparative genomic analysis of Pantoea agglomerans strain P5 and 10 closely related strains based on phylogenetic analyses. A next-generation shotgun strategy was implemented using the Illumina HiSeq 2500 technology followed by core- and pan-genome analysis. The genome of P. agglomerans strain P5 contains an assembly size of 5082485 bp with 55.4% G + C content. P. agglomerans consists of 2981 core and 3159 accessory genes for Coding DNA Sequences (CDSs) based on the pan-genome analysis. Strain P5 can be grouped closely with strains PG734 and 299 R using pan and core genes, respectively. All the predicted and annotated gene sequences were allocated to KEGG pathways. Accordingly,  genes involved in plant growth-promoting (PGP) ability, including phosphate solubilization, IAA and siderophore production, acetoin and 2,3-butanediol synthesis and bacterial secretion, were assigned. This study provides an in-depth view of the PGP characteristics of strain P5, highlighting its potential use in agriculture as a biofertilizer.

  7. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight

    Science.gov (United States)

    Microencapsulation and controlled release of Pantoea agglomerans strain E325 (E325), which is an antagonist to bacterial pathogen (Erwinia amylovora) of fire blight, a devastating disease of apple and pear, have been investigated. Uniform core-shell alginate microcapsules (AMCs), 60-300 µm in diamet...

  8. Endophthalmitis caused by Pantoea agglomerans: clinical features, antibiotic sensitivities, and outcomes

    Directory of Open Access Journals (Sweden)

    Venincasa VD

    2015-07-01

    Full Text Available Vincent D Venincasa, Ajay E Kuriyan, Harry W Flynn Jr, Jayanth Sridhar, Darlene Miller Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA Purpose: To report the clinical findings, antibiotic sensitivities, and visual outcomes associated with endophthalmitis caused by Pantoea agglomerans.Methods: A consecutive case series of patients with vitreous culture-positive endophthalmitis caused by P. agglomerans from January 1, 1990 to December 31, 2012 at a large university referral center. Findings from the current study were compared to prior published studies.Results: Of the three study patients that were identified, clinical settings included trauma (n=2 and post-cataract surgery (n=1. Presenting visual acuity was hand motion or worse in all three cases. All isolates were sensitive to ceftazidime, gentamicin, imipenem, and fluoroquinolones. All isolates were resistant to ampicillin. Initial treatment strategies were vitreous tap and intravitreal antibiotic injection (n=1 and pars plana vitrectomy with intravitreal antibiotic injection (n=2. At last follow-up, one patient had no light perception vision, while the other two had best-corrected visual acuity of 20/200 and 20/400.Conclusion: All Pantoea isolates were sensitive to ceftazidime, gentamicin, imipenem, and fluoroquinolones. All patients in the current study received at least one intravitreal antibiotic to which P. agglomerans was shown to be sensitive in vitro. In spite of this, the visual outcomes were generally poor.Keywords: ocular infection, trauma, antibiotic resistance

  9. Investigation of Viability of Pantoea agglomerans (Formerly Erwinia herbicola) After Aerosolization From Media Containing Enriching and Coating Chemicals

    Science.gov (United States)

    2008-02-01

    conducted. 14. ABSTRACT Percent viability of the sensitive bacteria Pantoea agglomerans (ATCC_33243, formerly Erwinia herbicola or Eh), is an important ...effect of several nitrogen and carbon sources on the growth of Eh (strain CPA-2). Synthetic yeast extract enhanced maximum growth and disaccharides...recently-evolved pathogens? Mol. Plant Pathology 2003; 20, pp 307-314. 4. Vanneste, J.L.; Yu, J.; Beer , S.V. Role of antibiotic production by Erwinia

  10. Biological control of fire blight in pear orchards with a formulation of Pantoea agglomerans strain Eh 24 Controle biológico de fire blight em pereiras empregando uma formulação de Pantoea agglomerans Eh 24

    Directory of Open Access Journals (Sweden)

    Hatice Özaktan

    2004-09-01

    Full Text Available Biological control by using epiphytic bacteria against Erwinia amylovora has been considered as an alternative method for controlling the disease. Talc-based formulation of Pantoea agglomerans strain Eh-24 was applied at 30% and 100% bloom on two pear orchards which were selected from different locations in the Aegean Region in Turkey. Pear orchard trials were replicated for two years (1999 and 2000 in each place. Talc-based formulation of P. agglomerans strain Eh-24 was sprayed on pear trees which were naturally infected with E. amylovora. In the orchard trials conducted in 1999 and 2000, talc-based formulation of P. agglomerans strain Eh-24 reduced the percentage of blighted blossoms on pear orchards by 63% to 76%, approximately. Copper oxychloride+maneb was less effective in reducing the incidence of blossom infection by E. amylovora in each pear orchard than the bioformulation treatment. P. agglomerans strain Eh-24 labelled with StrR+ was applied at 30% and 100% bloom to monitor the colonization and population dynamics of P. agglomerans on pear blossoms. The population size of P. agglomerans strain Eh-24 strR+ on pear blossoms increased from 2x10(4 to 1.3x10(6 cfu per blossom over 18 days.Controle biológico de Erwinia amylovora através do uso de bactérias epifíticas tem sido considerado um método alternativo para o controle de "fire blight". Uma formulação de Pantoea agglomerans Eh 24 em talco foi utilizada em pereiras a 30% e a 100% de floração, em duas plantações selecionadas na região Aegean da Turquia. Os experimentos foram repetidos duas vezes (1999 e 2000 em cada plantação. A formulação de P. agglomerans foi aspergida nas pereiras naturalmente infectadas com E. amylovora. Nos experimentos de 1999 e 2000, a redução da porcentagem de ocorrência de "fire blight" foi reduzida aproximadamente em 63% e em 76%, respectivamente. Oxicloreto de cobre + maneb foi menos eficiente na redução da infecção por E. amylovora do

  11. ECOLOGY OF PANTOEA AGGLOMERANS 2066-7 STRAIN: A BIOLOGICAL CONTROL OF BACTERIA ONION DISEASES

    Directory of Open Access Journals (Sweden)

    Soumia Sadik

    2016-06-01

    Full Text Available The growth response of the biocontrol agent Pantoea agglomerans 2066-7 to change in water activity (aw, temperature, and pH was determined in vitro in basic medium. The minimum temperature at which 2066-7 was able to grow was 7°C, and the growth of 2066-7 did not change at varying pH levels (4–10.34. The best growth was obtained at a water activity of 0.98 in all media modified with the four solutes (glucose, glycerol, NaCl and polyethylene glycol. The solute used to reduce water activity had a great influence on bacterial growth, especially at unfavorable conditions (low temperature. This study has defined the range of environmental conditions (aw, pH, and temperature over which the bacteria may be developed for biological control of plant diseases.

  12. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens - focus on cotton dust.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2015-01-01

    The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola) is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS) as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor) that cause

  13. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II--Deleterious effects: Dust-borne endotoxins and allergens--focus on grain dust, other agricultural dusts and wood dust.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-01-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained

  14. New Blue Pigment Produced by Pantoea agglomerans and Its Production Characteristics at Various Temperatures ▿

    OpenAIRE

    Fujikawa, Hiroshi; Akimoto, Ryo

    2010-01-01

    A bacterium capable of producing a deep blue pigment was isolated from the environment and identified as Pantoea agglomerans. The pigment production characteristics of the bacterium under various conditions were studied. The optimal agar plate ingredients for pigment production by the bacterium were first studied: the optimal ingredients were 5 g/liter glucose, 10 g/liter tryptic soy broth, and 40 g/liter glycerol at pH 6.4. Bacterial cells grew on the agar plate during the incubation, while ...

  15. Pantoea agglomerans : a mysterious bacterium of evil and good. Part II. Deleterious effects: Dust-borne endotoxins and allergens – focus on grain dust, other agricultural dusts and wood dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available Pantoea agglomerans , a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of [i]P. agglomerans[/i] in grain as well as in the settled grain and flour dust was found to be high, ranging from 10 4 –10 8 CFU/g, while in the air polluted with grain or flour dust it ranged from 10 3 –10 5 CFU/m 3 and formed 73.2–96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS. The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10–50 nm that could be described as the ‘endotoxin super-macromolecules’. A highly significant relationship was found (R=0.804, P=0.000927 between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS. Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA, endotoxin nanoparticles isolated in sucrose gradient (VECN, and mixture of

  16. Pantoea agglomerans: a marvelous bacterium of evil and good.Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans, Erwinia herbicola is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor

  17. Pantoea agglomerans : a marvelous bacterium of evil and good. Part I. Deleterious effects: Dust-borne endotoxins and allergens – focus on cotton dust

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2015-12-01

    Full Text Available The ubiquitous Gram-negative bacterium Pantoea agglomerans (synonyms: Enterobacter agglomerans , Erwinia herbicola is known both as an epiphytic microbe developing on the surface of plants and as an endophytic organism living inside the plants. The bacterium occurs also abundantly in plant and animal products, in the body of arthropods and other animals, in water, soil, dust and air, and occasionally in humans. From the human viewpoint, the role of this organism is ambiguous, both deleterious and beneficial: on one side it causes disorders in people exposed to inhalation of organic dusts and diseases of crops, and on the other side it produces substances effective in the treatment of cancer and other diseases of humans and animals, suppresses the development of various plant pathogens, promotes plant growth, and appears as a potentially efficient biofertilizer and bioremediator. P. agglomerans was identified as a predominant bacterium on cotton plant grown all over the world, usually as an epiphyte, rarely as pathogen. It is particularly numerous on cotton bract after senescence. During processing of cotton in mills, bacteria and their products are released with cotton dust into air and are inhaled by workers, causing respiratory and general disorders, usually defined as byssinosis. The most adverse substance is endotoxin, a heteropolymer macromolecule present in the outermost part of the cell wall, consisting of lipopolysaccharide (LPS as a major constituent, phospholipids and protein. The numerous experiments carried out in last quarter of XXth century on laboratory animals and human volunteers supported a convincing evidence that the inhaled endotoxin produced by P. agglomerans causes numerous pathologic effects similar to those elicited by cotton dust, such as influx of free lung cells into airways and activation of alveolar macrophages which secrete mediators (prostaglandins, platelet-activating factor, interleukin-1, tumor necrosis factor

  18. Klebsiella pneumoniae inoculants for enhancing plant growth

    Science.gov (United States)

    Triplett, Eric W [Middleton, WI; Kaeppler, Shawn M [Oregon, WI; Chelius, Marisa K [Greeley, CO

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  19. Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans

    Science.gov (United States)

    Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Cardoso, A. F. R.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.

    2018-06-01

    Since infection is a common cause of delayed wound healing, it is important to understand the effect of low-level laser therapy (LLLT) in bacterial mechanisms. In this study we evaluated the effects of LLLT on antibiotic resistance, division rate, and biofilm formation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries in humans and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the susceptibility of an antimicrobial to ampicillin and piperacillin  +  tazobactam, quantification of areas of bacterial colonies, and biofilm formation of bacterial cells. Fluence, wavelength, and emission mode were used in the therapeutic protocols for wound healing. The data showed no changes in the areas of the colonies, but dichromatic laser radiation decreased biofilm formation, while a monochromatic red laser at low dose increased biofilm formation and infrared at high dose decreased antibiotic resistance to ampicillin. LLLT modulates antibiotic resistance and biofilm formation of P. agglomerans, but these depend on the laser irradiation parameters, since dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation. Thus, simultaneous dichromatic low-level red and infrared lasers could be a new option for the treatment of infected wounds, reducing biofilm formation, without altering antibiotic resistance and the division rate of P. agglomerans cultures.

  20. Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daling [College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Guangce [College of Marine Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 (China); Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Qiao, Hongjin; Cai, Jinling [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)

    2008-11-15

    A new fermentative hydrogen-producing bacterium was isolated from mangrove sludge and identified as Pantoea agglomerans using light microscopic examination, biological tests and 16S rRNA gene sequence analysis. The isolated bacterium, designated as P. agglomerans BH-18, is a new strain that has never been optimized as a potential hydrogen-producing bacterium. In this study, the culture conditions and the hydrogen-producing ability of P. agglomerans BH-18 were examined. The strain was a salt-tolerant facultative anaerobe with the initial optimum pH value at 8.0-9.0 and temperature at 30 C on cell growth. During fermentation, hydrogen started to evolve when cell growth entered late-exponential phase and was mainly produced in the stationary phase. The strain was able to produce hydrogen over a wide range of initial pH from 5 to 10, with an optimum initial pH of 6. The level of hydrogen production was affected by the initial glucose concentration, and the optimum value was found to be 10 g glucose/l. The maximum hydrogen-producing yield (2246 ml/l) and overall hydrogen production rate (160 ml/l/h) were obtained at an initial glucose concentration of 10 g/l and an initial pH value of 7.2 in marine culture conditions. In particular, the level of hydrogen production was also affected by the salt concentration. Hydrogen production reached a higher level in fresh culture conditions than in marine ones. In marine conditions, hydrogen productivity was 108 ml/l/h at an initial glucose concentration of 20 g/l and pH value of 7.2, whereas, it increased by 27% in fresh conditions. In addition, this strain could produce hydrogen using glucose and many other carbon sources such as fructose, sucrose, sorbitol and so on. As a result, it is possible that P. agglomerans BH-18 is used for biohydrogen production and biological treatment of mariculture wastewater and marine organic waste. (author)

  1. Microbial Fe (III) reduction and hydrogen production by a transposon-mutagenized strain of Pantoea agglomerans BH18

    International Nuclear Information System (INIS)

    Liu, Hongyan; Wang, Guangce

    2015-01-01

    Based on the transposon-mutagenized library of Pantoea agglomerans BH18, mutant screens were conducted to obtain the strain with the highest Fe (III) reduction and hydrogen production. Of these transposon-mutagenized mutants, the mutant strain TB230 was screened for high Fe (III)-reducing efficiency and hydrogen production. The PCR amplification and kanamycin resistance selection results indicated that the transposon insertion of the mutant strain TB230 was stable. Hydrogen production of the mutant strain TB230 was (2.21 ± 0.34) mol H 2 /mol glucose, which increased hydrogen production by over 40% compared with that of the wild type strain. The accumulation concentration of Fe (II) in the medium of the mutant strain TB230 with Fe (OH) 3 as the sole electron acceptor was (7.39 ± 0.49) mmol/l, which was approximately 3-fold greater than that of the wild type strain. The mutant strain TB230 showed high Fe (III)-reducing activity and hydrogen production by adopting glucose and pyruvate as the carbon source. In addition, the mutant strain TB230 was capable of Fe (III) reduction and hydrogen production under fresh or marine conditions. This result indicates that the mutant strain with high microbial Fe (III) reduction and hydrogen production is beneficial for the improvement of anaerobic performance. - Highlights: • The mutant strain TB230 was a transposon-mutagenized strain of Pantoea agglomerans BH18. • Strain TB230 was screened for high Fe (III)-reducing efficiency and hydrogen production. • H 2 yield and Fe (III)-reducing activity were 2.21 ± 0.34 and 7.39 ± 0.49 in marine condition. • Strain TB230 was capable of Fe (III) reduction and hydrogen production in fresh or marine condition

  2. Revealing the inventory of type III effectors in Pantoea agglomerans gall-forming pathovars using draft genome sequences and a machine-learning approach.

    Science.gov (United States)

    Nissan, Gal; Gershovits, Michael; Morozov, Michael; Chalupowicz, Laura; Sessa, Guido; Manulis-Sasson, Shulamit; Barash, Isaac; Pupko, Tal

    2018-02-01

    Pantoea agglomerans, a widespread epiphytic bacterium, has evolved into a hypersensitive response and pathogenicity (hrp)-dependent and host-specific gall-forming pathogen by the acquisition of a pathogenicity plasmid containing a type III secretion system (T3SS) and its effectors (T3Es). Pantoea agglomerans pv. betae (Pab) elicits galls on beet (Beta vulgaris) and gypsophila (Gypsophila paniculata), whereas P. agglomerans pv. gypsophilae (Pag) incites galls on gypsophila and a hypersensitive response (HR) on beet. Draft genome sequences were generated and employed in combination with a machine-learning approach and a translocation assay into beet roots to identify the pools of T3Es in the two pathovars. The genomes of the sequenced Pab4188 and Pag824-1 strains have a similar size (∼5 MB) and GC content (∼55%). Mutational analysis revealed that, in Pab4188, eight T3Es (HsvB, HsvG, PseB, DspA/E, HopAY1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on beet and gypsophila. In Pag824-1, nine T3Es (HsvG, HsvB, PthG, DspA/E, HopAY1, HopD1, HopX2, HopAF1 and HrpK) contribute to pathogenicity on gypsophila, whereas the PthG effector triggers HR on beet. HsvB, HsvG, PthG and PseB appear to endow pathovar specificities to Pab and Pag, and no homologous T3Es were identified for these proteins in other phytopathogenic bacteria. Conversely, the remaining T3Es contribute to the virulence of both pathovars, and homologous T3Es were found in other phytopathogenic bacteria. Remarkably, HsvG and HsvB, which act as host-specific transcription factors, displayed the largest contribution to disease development. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. Impact of modified diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates.

    Science.gov (United States)

    Gomes, L C; Deschamps, J; Briandet, R; Mergulhão, F J

    2018-07-20

    This work investigated the effects of diamond-like carbon (DLC) coatings on the architecture and biocide reactivity of dual-species biofilms mimicking food processing contaminants. Biofilms were grown using industrial isolates of Escherichia coli and Pantoea agglomerans on bare stainless steel (SST) and on two DLC surface coatings (a-C:H:Si:O designated by SICON® and a-C:H:Si designated by SICAN) in order to evaluate their antifouling activities. Quantification and spatial organization in single- and dual-species biofilms were examined by confocal laser scanning microscopy (CLSM) using a strain specific labelling procedure. Those assays revealed that the E. coli isolate exhibited a higher adhesion to the modified surfaces and a decreased susceptibility to disinfectant in presence of P. agglomerans than alone in axenic culture. While SICON® reduced the short-term growth of E. coli in axenic conditions, both DLC surfaces increased the E. coli colonization in presence of P. agglomerans. However, both modified surfaces triggered a significantly higher log reduction of E. coli cells within mixed-species biofilms, thus the use of SICON® and SICAN surfaces may be a good approach to facilitate the disinfection process in critical areas of food processing plants. This study presents a new illustration of the importance of interspecies interactions in surface-associated community functions, and of the need to evaluate the effectiveness of hygienic strategies with relevant multi-species consortia. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Contact lens-related polymicrobial keratitis from Pantoea agglomerans and Escherichia vulneris

    Directory of Open Access Journals (Sweden)

    Vincent D. Venincasa

    2016-04-01

    Conclusions: This is the first report of P. agglomerans and E. vulneris keratitis in association with contact lens wear. Both strains of P. agglomerans and E. vulneris were pansensitive to all tested antibiotics.

  5. New blue pigment produced by Pantoea agglomerans and its production characteristics at various temperatures.

    Science.gov (United States)

    Fujikawa, Hiroshi; Akimoto, Ryo

    2011-01-01

    A bacterium capable of producing a deep blue pigment was isolated from the environment and identified as Pantoea agglomerans. The pigment production characteristics of the bacterium under various conditions were studied. The optimal agar plate ingredients for pigment production by the bacterium were first studied: the optimal ingredients were 5 g/liter glucose, 10 g/liter tryptic soy broth, and 40 g/liter glycerol at pH 6.4. Bacterial cells grew on the agar plate during the incubation, while the pigment spread into the agar plate, meaning that it is water soluble. Pigment production was affected by the initial cell density. Namely, at higher initial cell densities ranging from 10(6.3) to 10(8.2) CFU/cm(2) on the agar plate, faster pigment production was observed, but no blue pigment was produced at a very high initial density of 10(9.1) CFU/cm(2). Thus, the cell population of 10(8.2) CFU/cm(2) was used for subsequent study. Although the bacterium was capable of growing at temperatures above and below 10°C, it could produce the pigment only at temperatures of ≥10°C. Moreover, the pigment production was faster at higher temperatures in the range of 10 to 20°C. Pigment production at various temperature patterns was well described by a new logistic model. These results suggested that the bacterium could be used in the development of a microbial temperature indicator for the low-temperature-storage management of foods and clinical materials. To our knowledge, there is no other P. agglomerans strain capable of producing a blue pigment and the pigment is a new one of microbial origin.

  6. Use of Gentamicine sulfate for the control of Pantoea agglomerans, contaminant of the Solanum tuberosum L cv. Desirée in vitro multiplication

    Directory of Open Access Journals (Sweden)

    Yelenys Alvarado-Capó

    2006-10-01

    Full Text Available Bacterial contamination is one of the principal problems of plant tissue culture. The use of natural or synthetic antimicrobial substances represent an alternative for it solution. In potato micropropagation bacterial contamination produce serious damages. In this paper the effect of Gentamicine sulfate on control of high frequently contaminant was evaluated. The microorganism was isolated from media culture of potato cv. Desirée in vitro plants in multiplication stage. Traditional tintorial, bioquemical and physiological test were performed for bacteria identification together with BIOLOG bacteria identification system. Besides, the minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC of Gentamicine sulfate were determined and it antimicrobial and phytotoxic effect in multiplication stage were evaluated too. Pantoea agglomerans was identificated as potato contaminant and show sensibility to Gentamicine sulfate. The MIC was 0.625 mg.l-1 and the MBC was 1.25 mg.l-1. The antibiotics controlled the contamination in the 80% of contaminated explants without phytotoxicity at 2.5 mg.l-1. Key words: bacteria, in vitro culture, microbial contamination, potato

  7. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Torres, S. K.; Campos, V. L., E-mail: vcampos@udec.cl; Leon, C. G. [Universidad de Concepcion, Laboratorio de Microbiologia Ambiental, Departamento de Microbiologia (Chile); Rodriguez-Llamazares, S. M. [Centro de Investigacion de Polimeros Avanzados (CIPA) (Chile); Rojas, S. M.; Gonzalez, M. [Universidad de Concepcion, Laboratorio de Fisiologia Vascular, Departamento de Fisiologia (Chile); Smith, C. [Universidad de Concepcion, Departamento de Microbiologia (Chile); Mondaca, M. A. [Universidad de Concepcion, Laboratorio de Microbiologia Ambiental, Departamento de Microbiologia (Chile)

    2012-11-15

    The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

  8. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity

    International Nuclear Information System (INIS)

    Torres, S. K.; Campos, V. L.; León, C. G.; Rodríguez-Llamazares, S. M.; Rojas, S. M.; González, M.; Smith, C.; Mondaca, M. A.

    2012-01-01

    The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biologic properties of Se nanoparticles, e.g., antioxidant activity, are dependent on the nanoparticle size; smaller particles have greater activity. In this study, the bio-reduction of selenite by Pantoea agglomerans strain UC-32 under aerobic conditions and room temperature to produce bioactive Se nanoparticles smaller than 100 nm was demonstrated. Isolation and purification of the nanoparticles was performed by alkaline lysis. These purified nanoparticles were stabilized with l-cysteine (4 mM). The visualization and characterization of nanoparticles were performed by transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy. The antioxidant activity of nanoparticles was determined by production of reactive oxygen species using human umbilical vein endothelial cells. Transmission electron microscopy images showed the accumulation of spherical selenium nanoparticles as intracellular and extracellular deposits. The size of Se nanoparticles varied with incubation time. Amorphous Se nanoparticles with size in the order of 100 nm were obtained before 24 h of incubation; but, at 24 h of incubation, the size of the majority of the nanoparticles was in the desirable order of 100 nm and they were not aggregated. Energy dispersive spectroscopy spectra indicated that nanoparticles were composed entirely of selenium. Antioxidant activity of stabilized selenium nanoparticles demonstrated high antioxidant activity when compared to selenite and selenium nanoparticles without stabilization. Stabilized biologically synthetized selenium (0) nanoparticles with size less than 100 nm have a potential application as a food additive with antioxidant properties relevant to human health.

  9. Kinetics of bacterial potentiometric titrations: the effect of equilibration time on buffering capacity of Pantoea agglomerans suspensions.

    Science.gov (United States)

    Kapetas, Leon; Ngwenya, Bryne T; Macdonald, Alan M; Elphick, Stephen C

    2011-07-15

    Several recent studies have made use of continuous acid-base titration data to describe the surface chemistry of bacterial cells as a basis for accurately modelling metal adsorption to bacteria and other biomaterials of potential industrial importance. These studies do not share a common protocol; rather they titrate in different pH ranges and they use different stability criteria to define equilibration time during titration. In the present study we investigate the kinetics of bacterial titrations and test the effect they have on the derivation of functional group concentrations and acidity constants. We titrated suspensions of Pantoea agglomerans by varying the equilibration time between successive titrant additions until stability of 0.1 or 0.001 mV s(-1) was attained. We show that under longer equilibration times, titration results are less reproducible and suspensions exhibit marginally higher buffering. Fluorescence images suggest that cell lysis is not responsible for these effects. Rather, high DOC values and titration reversibility hysterisis after long equilibration times suggest that variability in buffering is due to the presence of bacterial exudates, as demonstrated by titrating supernatants separated from suspensions of different equilibration times. It is recommended that an optimal equilibration time is always determined with variable stability control and preliminary reversibility titration experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Pantoea allii sp. nov., isolated from onion plants and seed.

    Science.gov (United States)

    Brady, Carrie L; Goszczynska, Teresa; Venter, Stephanus N; Cleenwerck, Ilse; De Vos, Paul; Gitaitis, Ronald D; Coutinho, Teresa A

    2011-04-01

    Eight yellow-pigmented, Gram-negative, rod-shaped, oxidase-negative, motile, facultatively anaerobic bacteria were isolated from onion seed in South Africa and from an onion plant exhibiting centre rot symptoms in the USA. The isolates were assigned to the genus Pantoea on the basis of phenotypic and biochemical tests. 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA), based on gyrB, rpoB, infB and atpD sequences, confirmed the allocation of the isolates to the genus Pantoea. MLSA further indicated that the isolates represented a novel species, which was phylogenetically most closely related to Pantoea ananatis and Pantoea stewartii. Amplified fragment length polymorphism analysis also placed the isolates into a cluster separate from P. ananatis and P. stewartii. Compared with type strains of species of the genus Pantoea that showed >97 % 16S rRNA gene sequence similarity with strain BD 390(T), the isolates exhibited 11-55 % whole-genome DNA-DNA relatedness, which confirmed the classification of the isolates in a novel species. The most useful phenotypic characteristics for the differentiation of the isolates from their closest phylogenetic neighbours are production of acid from amygdalin and utilization of adonitol and sorbitol. A novel species, Pantoea allii sp. nov., is proposed, with type strain BD 390(T) ( = LMG 24248(T)).

  11. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital.

    Science.gov (United States)

    Markovska, Rumyana Donkova; Stoeva, Temenuga Jekova; Bojkova, Kalina Dineva; Mitov, Ivan Gergov

    2014-04-01

    Forty-two extended-spectrum beta-lactamase (ESBL)-producing isolates of Enterobacter aerogenes, Enterobacter cloacae, Pantoea agglomerans, and Serratia marcescens, collected consecutively during the period January-November 2011 from the University Hospital in Varna, Bulgaria, were studied to characterize their ESBLs by isoelectric focusing, group-specific PCR, and sequencing. The epidemiological relationship was evaluated by random amplified polymorphic DNA analysis (RAPD). Transferability of ESBL genes was determined by conjugation experiments. Plasmid analysis was done by replicon typing and PstI fingerprinting. The overall rate of ESBL production was 20%. The most widespread enzyme was CTX-M-3, found in 64%. It was dominant in E. aerogenes (100%) and S. marcescens (83%). SHV-12, CTX-M-3, and CTX-M-15 were found among E. cloacae isolates in 50%, 35%, and 45%, respectively. Three main CTX-M-3-producing epidemic clones of E. aerogenes and S. marcescens have been detected. Among E. cloacae isolates, six different RAPD profiles were discerned. The plasmids harboring blaCTX-M-3 belonged to IncL/M type and demonstrated similar PstI fingerprinting profiles. IncFII plasmids were detected in two CTX-M-15-producing E. cloacae isolates. Our results demonstrate wide intrahospital dissemination of clonal E. aerogenes and S. marcescens isolates, carrying IncL/M conjugative plasmids.

  12. Detecting cotton boll rot with an electronic nose

    Science.gov (United States)

    South Carolina Boll Rot is an emerging disease of cotton, Gossypium hirsutum L., caused by the opportunistic bacteria, Pantoea agglomerans (Ewing and Fife). Unlike typical fungal diseases, bolls infected with P. agglomerans continue to appear normal externally, complicating early and rapid detectio...

  13. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  14. Mineral phosphate solubilization by wild type and radiation induced mutants of pantoea dispersa and pantoea terrae

    International Nuclear Information System (INIS)

    Murugesan, Senthilkumar; Lee, Young Keun; Kim, Jung Hun

    2009-01-01

    Three mineral phosphate solubilizing (MPS) bacteria where isolated from rhizosphere soil samples of common bean and weed plants. 16S rDNA analysis indicated that the isolate P2 and P3 are closely related to Pantoea dispersa while isolate P4 is closely related to Pantoea terrae. Islates P2 and P3 recorded 381.60 μg ml -1 of tricalcium phosphate (TCP) solubilization respectively on 3 days incubation. Isolate P4 recorded the TCP solubilization of 215.85 μg ml -1 and the pH was dropped to 4.44 on 24 h incubation. Further incubation of P4 sharply decreased the available phosphorous to 28.94 μg ml -1 and pH level was raised to 6.32. Gamma radiation induced mutagenesis was carried out at LD 99 dose of the wild type strains. The total of 14 mutant clones with enhanced MPS activity and 4 clones with decreased activity were selected based on solubilization index (SI) and phosphate solubilization assay. Mutant P2-M1 recorded the highest P-solubilizing potential among any other wild or mutnat clones by releasing 504.21 μg ml -1 of phosphorous i.e. 35% higher than its wild type by the end of day 5. A comparative evaluation of TCP solubilization by wild type isolates of Pantoea and their mutants, led to select three MPS mutant clones such as P2-M1, P3-M2 and P3-M4 with a potential to release >471.67 μg ml 1 of phosphorous from TCP. These over expressing mutant clones are considered as suitable candidates for biofertilization

  15. The Immunogenicity of a Biological Simulant: Strategies for the Improvement of Antibody-Based Detection

    National Research Council Canada - National Science Library

    Grahame, David A; Gencic, Simonida; Bronk, Burt V

    2005-01-01

    .... The bacterium Pantoea agglomerans (formerly Erwinia herbicola, Eh) presently is used to simulate vegetative biological agents, however, anti-Eh antibodies of high affinity and specificity are needed...

  16. The survival of pathogens in soil treated with wastewater sludge and in potatoes grown in such soil.

    Science.gov (United States)

    Chale-Matsau, J R B; Snyman, H G

    2006-01-01

    The prevalence of pathogens on potatoes (Solanum tuberosum) grown in soil amended with a pathogen rich wastewater sludge was investigated. Bacteria of the family Enterobacteriaceae are important pathogens causing intestinal and systemic illness of humans and other animals. Type B sludge was used. Sludges investigated are the high metal and the low metal sludges. Microorganisms in the sludge-amended soil were using culture-based technique. Salmonella and E. coli were observed in tested soil samples. No microorganisms were isolated from control samples taken throughout the process of the experiment. At harvest time, some of the potato samples from LMS soil were contaminated. These potatoes were subjected to further investigation using molecular techniques (polymerase chain reaction) with fD1 and rP2 as primers. Organisms identified from the sequenced potato peel samples with the BLAST search tool included Enterobacter agglomerans (Pantoea agglomerans), several Buttiauxella spp., Pectobacterium spp., Erwinia spp. and a few Pantoea spp. Other than the E. agglomerans, which is commonly found in the gut and upper respiratory tract of humans and in the environment, all the other species identified were found to be mainly either plant or soil pathogens. The E. agglomerans are not primary pathogens but secondary opportunistic pathogens particularly in immunocompromised individuals. These results suggest that growing high risk crops using wastewater sludge contaminated soil may lead to limited infestation of produce with primary pathogens. It appears that the use of HMS due to early pathogen die-off provides less risk of infection than the LMS. However, proper treatment of wastewater sludge to reduce pathogen load is essential prior to its use as soil conditioner.

  17. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands.

    Science.gov (United States)

    Venkadesaperumal, Gopu; Amaresan, Natrajan; Kumar, Krishna

    2014-01-01

    Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans) and EM9 (Exiguobacterium sp.) of 24 studied isolates. Seeds (Chili and tomato) inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  18. Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands

    Directory of Open Access Journals (Sweden)

    Gopu Venkadesaperumal

    2014-12-01

    Full Text Available Twenty four bacterial strains from four different regions of mud volcano and lime cave were isolated to estimate their diversity, plant growth promoting and biocontrol activities to use them as inoculant strains in the fields. An excellent antagonistic effect against four plant pathogens and plant growth promoting properties such as IAA production, HCN production, phosphate solubilization, siderophore production, starch hydrolysis and hydrolytic enzymes syntheses were identified in OM5 (Pantoea agglomerans and EM9 (Exiguobacterium sp. of 24 studied isolates. Seeds (Chili and tomato inoculation with plant growth promoting strains resulted in increased percentage of seedling emergence, root length and plant weight. Results indicated that co-inoculation gave a more pronounced effects on seedling emergence, secondary root numbers, primary root length and stem length, while inoculation by alone isolate showed a lower effect. Our results suggest that the mixed inocula of OM5 and EM9 strains as biofertilizers could significantly increase the production of food crops in Andaman archipelago by means of sustainable and organic agricultural system.

  19. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System

    OpenAIRE

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T.; Lindow, Steven E.

    2016-01-01

    © 2016 Ionescu et al. Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate h...

  20. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    Science.gov (United States)

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  1. Chryseobacterium indologenes improves survival of the ...

    African Journals Online (AJOL)

    ), Pantoea agglomerans (4 and 5), Enterobacter asburiae (6) and Bacillus megaterium (7), were isolated together from a nest of Crematogaster biroi. In the duel species competition experiments, C. violaceum (3) inhibited the growth of C.

  2. Phylogenomic, Pan-genomic, Pathogenomic and Evolutionary Genomic Insights into the Agronomically Relevant Enterobacteria Pantoea ananatis and Pantoea stewartii

    Directory of Open Access Journals (Sweden)

    Pieter De Maayer

    2017-09-01

    Full Text Available Pantoea ananatis is ubiquitously found in the environment and causes disease on a wide range of plant hosts. By contrast, its sister species, Pantoea stewartii subsp. stewartii is the host-specific causative agent of the devastating maize disease Stewart’s wilt. This pathogen has a restricted lifecycle, overwintering in an insect vector before being introduced into susceptible maize cultivars, causing disease and returning to overwinter in its vector. The other subspecies of P. stewartii subsp. indologenes, has been isolated from different plant hosts and is predicted to proliferate in different environmental niches. Here we have, by the use of comparative genomics and a comprehensive suite of bioinformatic tools, analyzed the genomes of ten P. stewartii and nineteen P. ananatis strains. Our phylogenomic analyses have revealed that there are two distinct clades within P. ananatis while far less phylogenetic diversity was observed among the P. stewartii subspecies. Pan-genome analyses revealed a large core genome comprising of 3,571 protein coding sequences is shared among the twenty-nine compared strains. Furthermore, we showed that an extensive accessory genome made up largely by a mobilome of plasmids, integrated prophages, integrative and conjugative elements and insertion elements has resulted in extensive diversification of P. stewartii and P. ananatis. While these organisms share many pathogenicity determinants, our comparative genomic analyses show that they differ in terms of the secretion systems they encode. The genomic differences identified in this study have allowed us to postulate on the divergent evolutionary histories of the analyzed P. ananatis and P. stewartii strains and on the molecular basis underlying their ecological success and host range.

  3. Phylogenomic, Pan-genomic, Pathogenomic and Evolutionary Genomic Insights into the Agronomically Relevant Enterobacteria Pantoea ananatis and Pantoea stewartii.

    Science.gov (United States)

    De Maayer, Pieter; Aliyu, Habibu; Vikram, Surendra; Blom, Jochen; Duffy, Brion; Cowan, Don A; Smits, Theo H M; Venter, Stephanus N; Coutinho, Teresa A

    2017-01-01

    Pantoea ananatis is ubiquitously found in the environment and causes disease on a wide range of plant hosts. By contrast, its sister species, Pantoea stewartii subsp. stewartii is the host-specific causative agent of the devastating maize disease Stewart's wilt. This pathogen has a restricted lifecycle, overwintering in an insect vector before being introduced into susceptible maize cultivars, causing disease and returning to overwinter in its vector. The other subspecies of P. stewartii subsp. indologenes , has been isolated from different plant hosts and is predicted to proliferate in different environmental niches. Here we have, by the use of comparative genomics and a comprehensive suite of bioinformatic tools, analyzed the genomes of ten P. stewartii and nineteen P. ananatis strains. Our phylogenomic analyses have revealed that there are two distinct clades within P. ananatis while far less phylogenetic diversity was observed among the P. stewartii subspecies. Pan-genome analyses revealed a large core genome comprising of 3,571 protein coding sequences is shared among the twenty-nine compared strains. Furthermore, we showed that an extensive accessory genome made up largely by a mobilome of plasmids, integrated prophages, integrative and conjugative elements and insertion elements has resulted in extensive diversification of P. stewartii and P. ananatis . While these organisms share many pathogenicity determinants, our comparative genomic analyses show that they differ in terms of the secretion systems they encode. The genomic differences identified in this study have allowed us to postulate on the divergent evolutionary histories of the analyzed P. ananatis and P. stewartii strains and on the molecular basis underlying their ecological success and host range.

  4. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    Science.gov (United States)

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-11-30

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops.

  5. Identification and elimination of bacterial contamination during in vitro propagation of Guadua angustifolia Kunth.

    Science.gov (United States)

    Nadha, Harleen Kaur; Salwan, Richa; Kasana, Ramesh Chand; Anand, Manju; Sood, Anil

    2012-04-01

    Guadua angustifolia Kunth is a very important bamboo species with significant utility in pharmaceutical, paper, charcoal, and construction industries. Microbial contamination is a major problem encountered during establishment of in vitro cultures of Guadua. This study has been designed to analyze the identity of contaminating bacteria and to develop the strategy to eliminate them during micropropagation of Guadua. We isolated and consequently analyzed partial sequence analysis of the 16S rRNA gene to identify two contaminating bacteria as (1) Pantoea agglomerans and (2) Pantoea ananatis. In addition, we also- performed antibiotic sensitivity testing on these bacterial isolates. We identified kanamycin and streptomycin sulfate as potentially useful antibiotics in eliminating the contaminating bacteria. We grew shoots on multiplication medium containing BAP (2 mg/l) and adenine sulfate (10 mg/l) supplemented with kanamycin (10 μg/ml) for 10 days and transferred them to fresh medium without antibiotics and found that bacterial growth was inhibited. Moreover, we observed intensive formation of high-quality shoots. Streptomycin sulfate also inhibited bacterial growth but at higher concentration. We also demonstrated that shoots grown in streptomycin sulfate tended to be shorter and had yellow leaves. Thus, we have developed a novel strategy to identify and inhibit intriguing microbial contaminations of (1) Pantoea agglomerans and (2) Pantoea ananatis during establishment of in vitro cultures of Guadua. This would improve in vitro establishment of an important bamboo, Guadua angustifolia Kunth for large scale propagation.

  6. Potential transmission of Pantoea spp. and Serratia marcescens (Enterobacteriales: Enterobacteriaceae) to plants by Lygus hesperus (Hemiptera: Miridae)

    Science.gov (United States)

    Lygus hesperus Knight (Hemiptera: Miridae) is a key agricultural pest in the western United States. In a recent study, proteins from Pantoea ananatis and Serratia marcescens (Enterobacteriales: Enterobacteriaceae) were identified in diet that was stylet-probed and fed upon by L. hesperus adults. P...

  7. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    Daniela Franco Carvalho Jacobucci

    2009-08-01

    Full Text Available Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as the height (cm of the emulsion layers formed. The 72 h incubation experiment resulted in a COD (Chemical Oxygen Demand reduction of 76% with Planococcus citreus strain and 70% with Pantoea agglomerans.The COD reduction with bacterial biosurfactants was over 50% in 24 h of incubation. The COD reduction showed that these strains and the surfactants produced could be used in bioremediation processes.Duas bactérias isoladas de solo contaminado com derivados de petróleo, Pantoea agglomerans e Planococcus citreus, produzem biosurfactantes utilizando respectivamente 1.5% de querosene e óleo de oliva como únicas fontes de carbono. As bactérias e os biosurfactantes produzidos foram adicionados a um efluente oleoso obtido de uma indústria nacional de sabão e margarina. As atividades de emulsificação foram determinadas pelo aumento da absorbância das emulsões óleo em água a 610 nm, enquanto que as emulsões do tipo água em óleo foram expressas em centímetros, pela altura do halo de espumas formado. A redução da demanda química de oxigênio (COD mostra que as linhagens e os biosurfactantes produzidos podem ser utilizados em processos de biorremediação.

  8. Enterobacteriaceae in gut of honey bee (Apis mellifera and the antibiotic resistance of the isolates

    Directory of Open Access Journals (Sweden)

    Jaroslav Gasper

    2017-11-01

    Full Text Available Bacterial species of Enterobacteriaceae and the antimicrobial resistance of the isolates were detected in Apis mellifera L. bees gut. Gut content was cultivated on Meat peptone and McConkey agars at 30 and 37 °C, then, the isolates were identified with MALDI TOF MS Biotyper. Isolated strains were tested for antibiotic resistance to penicillins, cephalosporins, carbapenems, fluoroquinolones and aminoglycosides. Altogether, 12 species representing Enterobacteriaceae family were isolated. Firmicutes and Candida  were represented by Bacillus megaterium and Issatchenkia orientalis  . Isolated Enterobacteriaceae  species were  Enterobacter cloacae, Hafnia alvei, Klebsiella oxytoca, Morganella morganii, Serratia marcescens, Ser. liquefaciens, Raoultella ornithinolytica, R. planticola, R. terrigena, Pantoea ananatis, P. agglomerans, Rahnella aquatilis. Enterobacter cloacae, Hafnia alvei, Klebsiella oxytoca, Morganella morganii, Serratia marcescens, Ser. liquefaciens isolates exhibited the antimicrobial resistance more frequently than Raoultella ornithinolytica, R. planticola, R. terrigena, Pantoea ananatis, P. agglomerans, Rahnella aquatilis. Microflora of gut of bees could serve as a source of resistant microorganisms.

  9. POTENSI BAKTERI ENDOFIT DALAM MENEKAN PENYAKIT LAYU STEWART (PANTOEA STEWARTII SUBSP. STEWARTII PADA TANAMAN JAGUNG

    Directory of Open Access Journals (Sweden)

    Haliatur Rahma

    2017-04-01

    Full Text Available Potential of endophytic bacteria to control stewart wilt disease (Pantoea stewartii subsp. stewartii in maize. The purpose of this study was to explore endophytic bacteria from seedling, maize roots and grass roots as well as to test the ability of endophytic bacteria which could potentially suppress stewart wilt disease development in maize. Characterization of endophytic bacteria as biocontrol agents including: do not induce HR on tobacco, synthesize IAA, dissolve phosphate, produce siderophores, and antibiotic to Pantoea stewartii subsp. stewartii (Pnss. The results of research shoed 17 isolates of endophytic bacteria potentially as candidate biocontrol agents. Nine isolates were able to produce IAA, siderofores and phosphatase; two isolates produce IAA and phosphatase; six isolates produce IAA. Six isolates ie: AR1, AJ34, AJ15, AJ19, and AJ14 AN6, can increase maize plant resistance and suppress stewart wilt disease severity with a range of 48.95-55.60%.

  10. In-vitro inhibiton of Pantoea ananatis by antagonistic bacteria

    Science.gov (United States)

    Karagöz, Kenan

    2017-04-01

    Like most cultivated crops, onions (Allium cepa L.) are plagued by phytopathogenic bacteria. Although bacterial diseases of onion occur sporadically, they can cause loss of yield, in the range of a few percent up to 40%. Center rot of onion caused by Pantoea ananatis is the one of the major bacterial disease. Cultural methods and copper compounds often are recommended for control of bacterial diseases, but these are insufficient and the use of some chemicals has adverse effects. For these reasons, biological control is important manner for control of plant disease. In this study; it was researched that in-vitro inhibition effect of 271bacterial strains on P. ananatis in-vitro. Commercially available streptomycin, kanamycin and tetracycline disks were used as control. In consequence; three isolates show more or less inhibitory effect against P. ananatis.

  11. Natural History of Multi-Drug Resistant Organisms in a New Military Medical Facility

    Science.gov (United States)

    2012-10-01

    Sink  Staphylococcus schleiferi ssp  coagulans   Surgical Ward  06.316  Room Sink  Acinetobacter baumannii  Surgical Ward  06.316  Toilet seat...Telephone  Bacillus  megaterium  Maternity Ward  05.326  Call box  Pantoea agglomerans  Maternity Ward  05.326  Toilet rail  Staphylococcus aureus

  12. Environmental Assessment: For Joint Biological Point Detection System (JBPDS) at Multiple Test Ranges, Eglin Air Force Base, Florida

    Science.gov (United States)

    2003-06-01

    found in orchards and is a common microflora on fruits and vegetables. Information is limited regarding this microorganism, although it is being...are expected. Erwinia herbicola reclassified as Pantoea agglomerans (EH) EH is found in orchards and is a common micro flora on fruits and...may over time develop a resistance to BT. Soil microbiota may be affected by the persistence of BT in soils (ECOTOXNET, 1996). Fish in Holley

  13. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Raheleh eSheibani-Tezerji

    2015-05-01

    Full Text Available The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7 and S8, which were isolated from maize seeds of healthy plants. Plant inoculation experiments revealed that each of these strains exhibited a different phenotype ranging from weak pathogenic (S7, commensal (S8, to a beneficial, growth-promoting effect (S6 in maize. We performed a comparative genomics analysis in order to find genetic determinants responsible for the differences observed. Recent studies provided exciting insight into the genetic drivers of niche adaption and functional diversification of the genus Pantoea. However, we report here for the first time on the analysis of P. ananatis strains colonizing the same ecological niche but showing distinct interaction strategies with the host plant. Our comparative analysis revealed that genomes of these three strains are highly similar. However, genomic differences in genes encoding protein secretion systems and putative effectors, and transposase/integrases/phage related genes could be observed.

  14. Influence of endogenous plasmids on phenotypes of Pantoea vagans strain C9-1 associated with epiphytic fitness

    Science.gov (United States)

    Pantoea vagans strain C9-1 is an effective biological control agent for fire blight of pear and apple. C9-1 carries three circular plasmids: pPag1 (168 kb), pPag2 (166 kb), and pPag3 (530 kb). Of these, pPag3, a member of the large Pantoea plasmid family, was proposed to contribute to epiphytic fitn...

  15. Characterization of Pantoea ananatis Isolated from Garlic and Shallot

    Directory of Open Access Journals (Sweden)

    Nanik Nurjanah

    2017-12-01

    Full Text Available The new disease on garlic (Allium sativum and shallot (A. cepa L. aggregatum group have been found in several production centers of garlic and shallot in Tawangmangu and Temanggung, Central Java. The infected plants showed symptoms of leaf blight accompanied by chlorosis. The objective of this study was to determine the pathogen that causes leaf blight and chlorosis based on the phenotypic characterization and gyrB gene sequences analysis. The research started from the isolation of pathogen, physiological and biochemical test, DNA extraction, and sequence analysis of gyrB using gyrB 01-F and gyrB 02-R primer. The results showed that the isolated bacterial pathogen have a yellow pigment, slimy colonies with regular borders, convex, gram-negative, non-spore, facultative anaerobic, motile, catalase production, indole production, and acid production from D-glucose, D-mannitol, sucrose, and lactose. From the pathogenicity test, it was found that the bacteria produced the typical symptom of leaf blight. Characterization of pathogens based on gyrB gene sequence revealed that the pathogen was placed in the group of Pantoea ananatis.   Intisari Penyakit baru pada bawang putih (Allium sativum dan bawang merah (A. cepa L. aggregatum group telah ditemukan di beberapa sentra produksi bawang putih dan bawang merah di Tawangmangu dan Temanggung, Jawa Tengah. Tanaman yang terinfeksi menunjukkan gejala hawar daun disertai klorosis. Tujuan penelitian untuk mengetahui karakter patogen berdasarkan fenotipik dan sekuen gen gyrB. Penelitian dimulai dengan isolasi bagian tanaman yang sakit, uji fisiologi dan biokimia, ekstraksi DNA dengan metode CTAB/NaCl dan amplifikasi gen gyrB menggunakan primer gyrB 01-F and gyrB 02-R. Hasil uji menunjukkan koloni berlendir, cembung, pigmen berwarna kuning, gram negative, tidak berspora, aerob fakultatif, motil, produksi katalase, indol, membentuk asam dari D-glukosa, D-monnitol, sukrosa dan laktosa, dan patogenesitas positif

  16. The effects of Pantoea sp. strain Y4-4 on alfalfa in the remediation of heavy-metal-contaminated soil, and auxiliary impacts of plant residues on the remediation of saline-alkali soils.

    Science.gov (United States)

    Li, Shuhuan; Wang, Jie; Gao, Nanxiong; Liu, Lizhu; Chen, Yahua

    2017-04-01

    The plant-growth-promoting rhizobacterium (PGPR) Y4-4 was isolated from plant rhizosphere soil and identified as Pantoea sp. by 16S rRNA sequence analysis. The effects of strain Y4-4 on alfalfa grown in heavy-metals-contaminated soil was investigated using a pot experiment. In a Cu-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 22.6% and 21%, and Cu accumulation increased by 15%. In a Pb-Zn-rich environment, the shoot dry mass and total dry mass of plants inoculated with strain Y4-4 increased by 23.4% and 22%, and Zn accumulation increased by 30.3%. In addition, the salt tolerance and biomass of wheat seedlings could be improved by applying strain Y4-4 mixed with plant residue as a result of the Cu-rich plant residues providing copper nutrition to wheat. This study offers an efficient PGPR with strong salt tolerance and a safe strategy for the post-treatment of plant residue.

  17. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts.

    Science.gov (United States)

    De Maayer, Pieter; Chan, Wai Yin; Rubagotti, Enrico; Venter, Stephanus N; Toth, Ian K; Birch, Paul R J; Coutinho, Teresa A

    2014-05-27

    Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of

  18. Pantoea hericii sp. nov., Isolated from the Fruiting Bodies of Hericium erinaceus.

    Science.gov (United States)

    Rong, Chengbo; Ma, Yuanwei; Wang, Shouxian; Liu, Yu; Chen, Sanfeng; Huang, Bin; Wang, Jing; Xu, Feng

    2016-06-01

    Three Gram-negative, facultatively anaerobic bacterial isolates were obtained from the fruiting bodies of the edible mushroom Hericium erinaceus showing symptoms of soft rot disease in Beijing, China. Sequences of partial 16S rRNA gene placed these isolates in the genus Pantoea. Multilocus sequence analysis based on the partial sequences of atpD, gyrB, infB and rpoB revealed P. eucalypti and P. anthophila as their closest phylogenetic relatives and indicated that these isolates constituted a possible novel species. DNA-DNA hybridization studies confirmed the classification of these isolates as a novel species and phenotypic tests allowed for differentiation from the closest phylogenetic neighbours. The name Pantoea hericii sp. nov. [Type strain LMG 28847(T) = CGMCC 1.15224(T) = JZB 2120024(T)] is proposed.

  19. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    Science.gov (United States)

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  20. [Phytopathogenic bacteria of couch-grass in the crops of wheat].

    Science.gov (United States)

    Iakovleva, L M; Patyka, V F; Gvozdiak, R I; Shcherbina, T N

    2009-01-01

    Bacterialdiseases of weeds in the crops of wheat on the fields of Kyiv and Vinnytsya regions of Ukraine Elytrigia repens (L.) Nevski Agropyrum repens L. were revealed. The following symptoms of bacterial affections: the leaves wither, oval or hatched necrotic spots on green leaves, necroses on the stalks, empty-ears, partial blackening of the ear axes, awns, caryopsises, scales, water-soaked or dark brown with violet shade spots on the rhizomes were found. During the vegetation period bacteria were isolated from the affected plants which caused pathological process in the couch-grass and wheat. The pathogenic bacteria were identified as Pseudomonas syringae, P. viridiflava, Pseudomonas sp., Erwinia carotovora pv. carotovora, Pantoea agglomerans, the part of yellow-pigmentary isolates were not identified. Some Psyringae were isolated from the rhizomes during winterthawing. The paper is presented in Ukrainian.

  1. La inoculación de plantas con Pantoea sp., bacteria solubilizadora de fosfatos, incrementa la concentración de P en los tejidos foliares Plant inoculation with Pantoea sp., phosphate solubilising-bacteria increases P concentration in leaf tissues

    Directory of Open Access Journals (Sweden)

    Ortega-Rodés Patricia

    2008-07-01

    Full Text Available El fósforo (P es un macronutriente mineral esencial para las plantas. Aunque puede encontrarse en los suelos en diferentes formas minerales, la baja solubilidad de estos disminuye su disponibilidad para las plantas, y el nutriente debe aplicarse como fertilizante a los cultivos. Las reservas mundiales de P son limitadas y tendrán una reducción considerable en los próximos años. Usar microorganismos solubilizadores de fosfatos como inoculante para los cultivos es una alternativa biotecnológica para incrementar la disponibilidad del nutriente. Pantoea sp. (cepa 9C es una bacteria endofítica fijadora de nitrógeno, aislada del interior de tallos de la caña de azúcar (Loiret et ál., 2004; este microorganismo produjo halos de solubilización con tamaños de hasta 6 mm en medio sólido NBRI-P en 7 días a 30 ºC, y en ese tiempo y condiciones solubilizó Ca3(PO42 en el medio líquido hasta acumular 1128 μg P mL-1. La bacteria sobrevivió durante 35 días en un sustrato preparado con mezcla de Vermiculita y suelo ferralítico rojo (Cambisol Ferrálico, ródico, alcanzando poblaciones de 3,2 x 1015 células g-1. Plantas de rábano (Raphanus sativus, L. var. Scarlet Globe, de alta demanda de P y crecimiento rápido, usadas como modelo y cultivadas en suelos inoculados con el microorganismo, absorbieron más P que las plantas no inoculadas, alcanzando en los tejidos foliares concentraciones ≥ 3500 ppm P base seca. Palabras clave: bacteria endofítica; solubilización de fosfatos; rábano (Raphanus sativus, L.; caña de azúcar (Saccharum híbrido.Phosphorus is an essential mineral macronutrient for plant growth and development. Although it can be found in soils in different mineral forms, its low solubility decrease its availability for plants; the nutrient should be added to crops as fertiliser. World sources of P are limited and in the near future they will suffer a remarkable decrease. Using P solubiliser microorganisms as

  2. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees.

    Science.gov (United States)

    Rezzonico, Fabio; Smits, Theo H M; Born, Yannick; Blom, Jochen; Frey, Jürg E; Goesmann, Alexander; Cleenwerck, Ilse; de Vos, Paul; Bonaterra, Anna; Duffy, Brion; Montesinos, Emilio

    2016-03-01

    A survey to obtain potential antagonists of pome fruit tree diseases yielded two yellow epiphytic bacterial isolates morphologically similar to Pantoea agglomerans , but showing no biocontrol activity. Whole-cell MALDI-TOF mass spectrometry and analysis of 16S rRNA gene and gyrB sequences suggested the possibility of a novel species with a phylogenetic position in either the genus Pantoea or the genus Erwinia . Multi-locus sequence analysis (MLSA) placed the two strains in the genus Erwinia and supported their classification as a novel species. The strains showed general phenotypic characteristics typical of this genus and results of DNA-DNA hybridizations confirmed that they represent a single novel species. Both strains showed a DNA G+C content, as determined by HPLC, of 54.5 mol% and could be discriminated from phylogenetically related species of the genus Erwinia by their ability to utilize potassium gluconate, potassium 2-ketogluconate, maltose, melibiose and raffinose. Whole-genome sequencing of strain EM595 T revealed the presence of a chromosomal carotenoid biosynthesis gene cluster similar to those found in species of the genera Cronobacter and Pantoea that explains the pigmentation of the strain, which is atypical for the genus Erwinia . Additional strains belonging to the same species were recovered from different plant hosts in three different continents, revealing the cosmopolitan nature of this epiphyte. The name Erwinia gerundensis sp. nov. is proposed, with EM595 T ( = LMG 28990 T  = CCOS 903 T ) as the designated type strain.

  3. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    Science.gov (United States)

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  4. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    Science.gov (United States)

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.

  5. Tingkat Keterjadian Penyakit Layu Stewart pada Benih dan Respon beberapa Varietas Jagung terhadap Infeksi Pantoea stewartii subsp. stewartii

    Directory of Open Access Journals (Sweden)

    Haliatur Rahma

    2014-03-01

    Full Text Available Disease incidence of Stewart’s wilt on the seed and response of several maize varieties to Pantoea stewartii subp. stewartii. Stewart’s wilt disease of maize is caused by Pantoea stewartii subsp. stewartii.  This bacterium is seed-borne pathogens, when attacked maize caused yield lost 40-100%.  The objective of this research was to detemine the incidence level of stewart’s wilt disease, growth of some varieties of maize and their response to stewart’s wilt pathogens Pantoea stewartii subsp. stewartii.  The research was conducted in the Laboratory of Bacteriology and Greenhouse Cikabayan IPB from November 2011 to March 2012. In experiment I, nineteen samples of maize were used for symptom test  in the maize seedling stage, using Randomized Block Design with three replications. Experiment II used a Randomized Block Design with 2 factors: maize varieties (8 hybrids varieties, 3 open pollinated varieties, and 7 sweet corn varieties and bacteria isolates  (BGR 2, BGR 4, BGR 28, BGR7 and PSM 27, with three replications. The results showed in experiment I, the incidence of stewart’s wilt disease ranged 2.00 – 15.33%, germination and vigor index of maize seed were 68.00 – 95.33% and 55.33 – 90.67% respectively.  While in experiment II, hybrid and open pollinated of maize varieties were resistant to moderately susceptible   while all sweet corn varieties were susceptible to infection of Pantoea stewartii subsp. stewartii.

  6. The catabolite repressor/activator, Cra, bridges a connection between carbon metabolism and host colonization in the plant drought resistance-promoting bacterium Pantoea alhagi LTYR-11Z.

    Science.gov (United States)

    Zhang, Lei; Li, Muhang; Li, Qiqi; Chen, Chaoqiong; Qu, Meng; Li, Mengyun; Wang, Yao; Shen, Xihui

    2018-04-27

    Efficient root colonization is a prerequisite for application of plant growth promoting (PGP) bacteria in improving health and yield of agricultural crops. We have recently identified an endophytic bacterium Pantoea alhagi LTYR-11Z with multiple PGP properties that effectively colonizes the root system of wheat and improves its growth and drought tolerance. To identify novel regulatory genes required for wheat colonization, we screened a LTYR-11Z transposon (Tn) insertion library and found cra to be a colonization-related gene. By using RNA-seq analysis, we found that transcriptional levels of an eps operon, the ydiV gene encoding an anti-FlhD 4 C 2 factor and the yedQ gene encoding an enzyme for synthesis of cyclic dimeric GMP (c-di-GMP) were significantly downregulated in the mutant Δ cra. Further studies demonstrated that Cra directly binds to the promoters of the eps operon, ydiV and yedQ and activates their expression, thus inhibiting motility and promoting exopolysaccharides (EPS) production and biofilm formation. Consistent with previous findings that Cra plays a role in transcriptional regulation in response to carbon source availability, the activating effects of Cra were much more pronounced when LTYR-11Z was grown within a gluconeogenic environment than when it was grown within a glycolytic environment. We further demonstrate that the ability of LTYR-11Z to colonize wheat roots is modulated by the availability of carbon sources. All together, these results uncover a novel strategy utilized by LTYR-11Z to achieve host colonization in response to carbon nutrition in the environment, in which Cra bridges a connection between carbon metabolism and colonization capacity of LTYR-11Z. IMPORTANCE Rapid and appropriate response to environmental signals is crucial for bacteria to adapt to competitive environments and to establish interactions with their hosts. Efficient colonization and persistence within the host is controlled by various regulatory factors that

  7. Microbial resistance and frequency of extended-spectrum beta-lactamase (ESBL in isolated from blood cultures

    Directory of Open Access Journals (Sweden)

    Ruan Carlos Gomes da Silva

    2014-12-01

    Full Text Available Introduction:The emergence and spread of isolated carriers of extended-spectrum beta-lactamase (ESBL have complicated the treatment of nosocomial infections, since its production is not easily identified by the sensitivity tests, routinely performed in clinical laboratories, leading to difficulties in the hospital control of resistant microorganisms and antibiotics misuse.Objective:The objective of this study was to analyze the resistance profile and the frequency of ESBL in Gram-negative bacteria isolated from blood cultures. A hundred bacterial samples from blood cultures of adult patients were analyzed, which were phenotypically identified by biochemical tests of carbohydrates fermentation and submitted to determination of the resistance profile by disc diffusion test and ESBL screening by disc approximation and disc replacement methods.Results:Among the bacterial samples tested, 30 were identified as Gram-negative bacteria, predominantly by Proteus mirabilis, Pantoea agglomerans, and Escherichia coli. Of these, 73.33% were positive for the detection of ESBL by phenotypic tests, and was found mainly in Pantoea agglomerans, Proteus mirabilis, and Enterobacter cloacae.Conclusion:The increase in the occurrence of ESBL in different Enterobacteriaceae shows the importance of the amplification of detection in other species than Escherichia coli or Klebsiella sp., so that the assistance to the patient is not restrained, since these resistant bacteria cannot be detected by the laboratories. Considering the frequency of ESBL in this study, we highlight the importance of its detection, aiming to its contribution to the development of improvements in the health care policies of hospitals.

  8. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory.

    Science.gov (United States)

    Medina, R F; Nachappa, P; Tamborindeguy, C

    2011-04-01

    Host-associated differentiation (HAD) is the presence of genetically divergent, host-associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  9. Biofilm formation as a method of survival of Escherichia coli and Pantoea spp in the marine environment

    Science.gov (United States)

    Buzoleva, L. S.; Golozubova, Y. S.; Eskova, A. I.; Kim, A. V.; Bogatyrenko, E. A.

    2018-01-01

    The article shows the formation of biofilms of bacteria Escherichia and Pantoea, which were isolated from sea water, both in monoculture and in associations with marine heterotrophs. It studied the influence of the nutrient medium and temperature on the biofilm-forming properties of marine strains. The highest biofilm formation properties were found in monoculture in family enterobacteria compared to saprophytic marine bacteria, regardless of the medium and the culture temperature. In association with saprophytes, Pantoea spp. possess more pronounced biofilm-forming properties at 37 ° C compared to the control than at 22 ° C and 5 ° C irrespective of the culture medium. Escherichia coli, in association with saprophytes, have less pronounced biofilm formation properties than monoculture, regardless of the temperature and culture medium.

  10. Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

    Directory of Open Access Journals (Sweden)

    Min Keun Kim

    2017-06-01

    Full Text Available RcsA is a positive activator of extracellular polysaccharide (EPS synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.

  11. Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoea dispersa strain GPK.

    Science.gov (United States)

    Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B

    2013-05-01

    This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. © 2013 The Society for Applied Microbiology.

  12. Novel Glucose-1-Phosphatase with High Phytase Activity and Unusual Metal Ion Activation from Soil Bacterium Pantoea sp. Strain 3.5.1.

    Science.gov (United States)

    Suleimanova, Aliya D; Beinhauer, Astrid; Valeeva, Liia R; Chastukhina, Inna B; Balaban, Nelly P; Shakirov, Eugene V; Greiner, Ralf; Sharipova, Margarita R

    2015-10-01

    Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants.

    Science.gov (United States)

    Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W

    2016-06-01

    Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.

  14. Unusual microorganisms and antimicrobial resistances in a group of Syrian migrants: Sentinel surveillance data from an asylum seekers centre in Italy.

    Science.gov (United States)

    Angeletti, Silvia; Ceccarelli, Giancarlo; Vita, Serena; Dicuonzo, Giordano; Lopalco, Maurizio; Dedej, Etleva; Blasi, Aletheia; Antonelli, Francesca; Conti, Alessia; De Cesaris, Marina; Farchi, Francesca; Lo Presti, Alessandra; Ciccozzi, Massimo

    2016-01-01

    Three years of civil war in Syria have caused death and increase of communicable diseases. The suffering population has been forced to migrate creating a fertile condition for epidemic spread of infection within the refugee camps. Forty-eight Syrian migrants, upon their arrival in Italy, were accommodated at the asylum seekers centre of Castelnuovo di Porto. They received a physical examination and were subjected to microbiological surveillance by blood, rectal, pharyngeal and nasal swabs collection and delivering to the Clinical Pathology and Microbiology Laboratory of the University Campus Bio-Medico of Rome. All refugees resulted negative for HBV, HCV and HIV infections. In swabs a large number of unusual gram-negative bacteria species were isolated, such as Pseudomonas putida, Pseudomonas monteilii, Pseudomonas fulva, Pseudomonas moselii, Aeromonas veronii, Aeromonas caviae, Aeromonas hydrophila, Acinteobacter guilloviae, Acinteobacter lowffii; Acinetobacter johnsonii; Acinteobacter tjernbergae; Pantoea agglomerans; Pantoea calida. Among isolates, strains resistant to carbapenems, ESBL producers and methicillin resistant were found. The microbiological surveillance performed represents a useful action to understand refugees health status and to trace unusual microorganisms movement even carriers of antimicrobial resistance during migrants traveling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    Science.gov (United States)

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  16. A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host.

    Science.gov (United States)

    Stavrinides, John; No, Alexander; Ochman, Howard

    2010-01-01

    Aphids are typically exposed to a variety of epiphytic and phytopathogenic bacteria, many of which have entomopathogenic potential. Here we describe the interaction between Pantoea stewartii ssp. stewartii DC283 (DC283), an enteric phytopathogen and causal agent of Stewart's wilt, and the pea aphid, Acyrthosiphon pisum. When ingested by aphids, DC283 establishes and aggregates in the crop and gut, preventing honeydew flow and excretion, resulting in aphid death in 72 h. A mutagenesis screen identified a single locus, termed ucp1 (youcannot pass), whose disruption abolishes aphid pathogenicity. Moreover, the expression of ucp1 in Escherichia coli is sufficient to mediate the hindgut aggregation phenotype by this normally avirulent species. Ucp1 is related to six other proteins in the DC283 genome, each having a common N-terminal region and a divergent C-terminus, but only ucp1 has a role in pathogenicity. Based on predicted motifs and secondary structure, Ucp1 is a membrane-bound protein that functions in bacterial adhesion and promotes the formation of aggregates that are lethal to the insect host. These results illustrate that the enteric plant pathogenic bacteria have the capacity to exploit alternative non-plant hosts, and retain genetic determinants for colonizing the gut.

  17. Recovery of surface bacteria from and surface sanitization of cantaloupes.

    Science.gov (United States)

    Barak, Jeri D; Chue, Bryan; Mills, Daniel C

    2003-10-01

    Practical, effective methods that could be implemented in a food service establishment (restaurant or delicatessen) for the surface sanitization of cantaloupes were microbiologically evaluated. Cantaloupes (Cucumis melo L. var. reticulates) were immersed in an inoculum containing Salmonella enterica serovar Poona or Pantoea agglomerans at ca. 10(4) to 10(5) CFU/ml. An efficient method for the recovery of bacteria from the cantaloupe surface was developed and validated. The method consisted of washing the entire melon with Butterfield's buffer containing 1% Tween 80 in a plastic bag placed inside a plastic pail affixed to an orbital shaker. Levels of S. enterica Poona recovered by washing the entire melon were significantly higher than those recovered by the more common laboratory method of blending the rind. P. agglomerans can be used as a non-pathogenic proxy for S. enterica Poona. A three-compartment surface sanitization method consisting of washing with an antimicrobial soap solution, scrubbing with a brush in tap water, and immersion in 150 ppm of sodium hypochlorite reduced the initial level of recoverable viable bacteria by 99.8%. When examined separately, scrubbing with a vegetable brush in tap water, washing with soap, and dipping in chlorine were found to reduce the bacterial load by 70, 80, and 90%, respectively.

  18. Diversity and Antimicrobial Properties of Lactic Acid Bacteria Isolated from Rhizosphere of Olive Trees and Desert Truffles of Tunisia

    Directory of Open Access Journals (Sweden)

    Imene Fhoula

    2013-01-01

    Full Text Available A total of 119 lactic acid bacteria (LAB were isolated, by culture-dependant method, from rhizosphere samples of olive trees and desert truffles and evaluated for different biotechnological properties. Using the variability of the intergenic spacer 16S-23S and 16S rRNA gene sequences, the isolates were identified as the genera Lactococcus, Pediococcus, Lactobacillus, Weissella, and Enterococcus. All the strains showed proteolytic activity with variable rates 42% were EPS producers, while only 10% showed the ability to grow in 9% NaCl. In addition, a low rate of antibiotic resistance was detected among rhizospheric enterococci. Furthermore, a strong antibacterial activity against plant and/or pathogenic bacteria of Stenotrophomonas maltophilia, Pantoea agglomerans, Pseudomonas savastanoi, the food-borne Staphylococcus aureus, and Listeria monocytogenes was recorded. Antifungal activity evaluation showed that Botrytis cinerea was the most inhibited fungus followed by Penicillium expansum, Verticillium dahliae, and Aspergillus niger. Most of the active strains belonged to the genera Enterococcus and Weissella. This study led to suggest that environmental-derived LAB strains could be selected for technological application to control pathogenic bacteria and to protect food safety from postharvest deleterious microbiota.

  19. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp.

    Science.gov (United States)

    Pérez Pulido, Rubén; Toledo, Julia; Grande, M José; Gálvez, Antonio; Lucas, Rosario

    2015-03-02

    In the present study, pulp obtained from cherimoya pulp (Annona cherimola) was inoculated with epiphytic microbiota collected from cherimoya fruits, and supplemented or not with the circular bacteriocin enterocin AS-48 (50μg/g) and then packed under vacuum. Samples supplemented or not with enterocin were treated by high hydrostatic pressure (600MPa, 8min) and then stored at 5°C for 30days. The single AS-48 treatment only delayed microbial growth non-significantly (p>0.05). HHP treatment reduced microbial counts by five log cycles, but it did not prevent further growth of survivors by day 7. The combined treatment (AS-48+HHP) was the most effective, keeping bacterial cell densities at ≤1.5 log CFU/g for up to 15days. 16S rRNA gene pyrosequencing analysis was done on amplicon libraries from the growth on TSA plates seeded with ten-fold dilutions of pulp suspensions and incubated at 22°C for 24h. The results obtained are limited by the experimental conditions used in the study, and only concern the bacterial fraction that was selected by the TSA and growth conditions used. Pantoea (Pantoea agglomerans, Pantoea vagans) were the operational taxonomic units (OTUs) detected at highest relative abundance in bacterial biomass grown from control samples for the first 7days of storage, followed by Enterococcus gallinarum and Leuconostoc mesenteroides during late storage. The single HHP treatment significantly reduced the relative abundance of OTUs belonging to Pantoea and strongly increased that of endosporeformers (mainly Bacillus firmus and Bacillus stratosphericus) early after treatment, although Pantoea became again the predominant OTUs during storage. Samples singly treated with enterocin AS-48 revealed a strong inhibition of E. gallinarum as well as an early decrease in the relative abundance of Pantoea and an increased relative abundance of OTUs belonging to other Gram-negative species (mainly from genera Serratia and Pseudomonas). The strong microbial

  20. Metabolic versatility and antibacterial metabolite biosynthesis are distinguishing genomic features of the fire blight antagonist Pantoea vagans C9-1.

    Directory of Open Access Journals (Sweden)

    Theo H M Smits

    Full Text Available BACKGROUND: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. PRINCIPAL FINDINGS: Genome analysis indicated two major factors Contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. CONCLUSIONS: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems.

  1. Pantoea ananatis Genetic Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated with Onion Pathogenicity

    Directory of Open Access Journals (Sweden)

    Shaun P. Stice

    2018-02-01

    Full Text Available Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA and repetitive extragenic palindrome repeat (rep-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.

  2. Microflora en semillas de frijol

    Directory of Open Access Journals (Sweden)

    Jos\\u00E9 B. Membre\\u00F1o

    2001-01-01

    Full Text Available Microflora en semillas de frijol (Phaseolus vulgaris L.. Se estudió la microflora bacteriana presente en semillas de frijol y su relación con Xanthomonas campestris pv. phaseoli (Xcp, en 118 genotipos procedentes de VIDAC-98, INTA- Nicaragua, TARS-USDA e Isabela-P.R. Se utilizaron cinco métodos de aislamiento: semilla desinfectada con hipoclorito de sodio, semilla en caldo nutritivo refrigerada por una hora, dispersión de 0,1 ml de suspensión de semillas en medio sólido, siembra líquida de 1 ml de suspensión y semilla en caldo nutritivo, agitado y refrigerado por 24 horas. Se aislaron 104 colonias amarillas de 41 genotipos. Treinta y seis colonias fueron KOH positivo (Gram negativo, 68 negativo (Gram positivo y 34 hidrolizaron almidón. Las colonias de pigmentación amarilla resultaron no patogénicas bajo condiciones de invernadero. Estas se identificaron con el sistema BIOLOG como: Pantoea agglomerans (25, Xanthomonas campestris (2, Enterobacter agglomerans (2, Sphingomonas paucimobilis (2, Pseudomonas fluorescens y Flavimonas oryzihabitans. En adición, los genotipos portaron colonias con pigmentación distinta a la amarilla. En las pruebas de antagonismo se identificaron colonias con actividad de deoxyribonucleasa y de antibiosis a Xcp. De éstas, 15 colonias inhibieron a Xcp significativamente. Se identificaron los hongos Rhizoctonia solani, Penicillium spp., Fusarium spp., Aspergillus flavus, Rhizopus nigricans y Macrophomina phaseolina en un 52,9 % del total de genotipos evaluados

  3. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2011-11-01

    Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.

  4. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii.

    Science.gov (United States)

    Koutsoudis, Maria D; Tsaltas, Dimitrios; Minogue, Timothy D; von Bodman, Susanne B

    2006-04-11

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.

  5. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8.

    Science.gov (United States)

    Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N

    2012-04-01

    The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.

  6. Deteksi dan Identifikasi Dickeya sp. sebagai Organisme Pengganggu Tumbuhan Karantina A2 pada Tanaman Kentang di Jawa

    Directory of Open Access Journals (Sweden)

    Haerani Haerani

    2015-09-01

    Full Text Available Erwinia chrysanthemi (currently Dickeya sp. is one of the A2 quarantine pest that must be concerned of its distribution on potato in Indonesia. The aim of this study is to detect and identify E. chrysanthemi from potato in Java. A total of 400 samples of potato plants showing symptoms of soft rot were obtained from several potato areas in Pangalengan and Garut (West Java, Dieng (Central Java, and Batu-Malang (East Java. Disease incidence was determined by indirect enzyme-linked immunosorbent assay (I-ELISA using polyclonal antiserum. E.chrysanthemi was isolated from plant samples with positive ELISA results. Furthermore, bacterial isolates were characterized by GEN III OmniLog ID System and PCR using specific primers Ec3F/Ec4R, as well as the universal 16S rRNA primer pair of 27F/1429R. The incidence of E. chrysanthemi based on ELISA was obtained. Based on physiological characters; Gram, catalase, oxidase, and oxidation-fermentation, there were 4 isolates similar to the genus of Erwinia. However, the results of Gen III OmniLog System, PCR, and nucleotide sequences analysis of 16S rRNA confirmed that none of the isolates were identified as E.chrysanthemi. Otherwise, those 4 isolates were identified as Pseudomonas oryzihabitans, Pantoea agglomerans, and Pseudomonas viridiflava. The result of this study indicated that the existence of E. chrysanthemi as an A2 quarantine pest on potato in Java can not be confirmed and remains as an A1 quarantine pest.

  7. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  8. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  9. Microbial degradation of phosmet on blueberry fruit and in aqueous systems by indigenous bacterial flora on lowbush blueberries (Vaccinium angustifolium).

    Science.gov (United States)

    Crowe, K M; Bushway, A A; Bushway, R J; Davis-Dentici, K

    2007-10-01

    Phosmet-adapted bacteria isolated from lowbush blueberries (Vaccinium angustifolium) were evaluated for their ability to degrade phosmet on blueberry fruit and in minimal salt solutions. Microbial metabolism of phosmet by isolates of Enterobacter agglomerans and Pseudomonas fluorescens resulted in significant reductions (P blueberries and in minimal salt solutions. Thus, the role of adapted strains of E. agglomerans and P. fluorescens in degrading phosmet on blueberries represents an extensive plant-microorganism relationship, which is essential to determination of phosmet persistence under pre- and postharvest conditions.

  10. Isolation and selection of plant growth-promoting bacteria associated with sugarcane

    Directory of Open Access Journals (Sweden)

    Ariana Alves Rodrigues

    2016-06-01

    Full Text Available Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN, ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.

  11. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1.

    Science.gov (United States)

    Ma, Jiangshan; Zhang, Keke; Huang, Mei; Hector, Stanton B; Liu, Bin; Tong, Chunyi; Liu, Qian; Zeng, Jiarui; Gao, Yan; Xu, Ting; Liu, Ying; Liu, Xuanming; Zhu, Yonghua

    2016-01-01

    Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe 2+  + H 2 O 2  + H +  → Fe 3+  + OH· + H 2 O), similar to that of white-rot and brown-rot fungi. The aim of this work is to investigate the existence of this Fenton-based oxidation mechanism in the rice straw degradation process of P. ananatis Sd-1. After 3 days incubation of unpretreated rice straw with P. ananatis Sd-1, the percentage in weight reduction of rice straw as well as its cellulose, hemicellulose, and lignin components reached 46.7, 43.1, 42.9, and 37.9 %, respectively. The addition of different hydroxyl radical scavengers resulted in a significant decline ( P  Fenton reagent treatment. In addition to the increased total iron ion concentration throughout the rice straw decomposition process, the Fe 3+ -reducing capacity of P. ananatis Sd-1 was induced by rice straw and predominantly contributed by aromatic compounds metabolites. The transcript levels of the glucose-methanol-choline oxidoreductase gene related to hydrogen peroxide production were significantly up-regulated (at least P  Fenton-like reactions. Our results confirmed the Fenton chemistry-assisted degradation model in P. ananatis Sd-1. We are among the first to show that a Fenton-based oxidation mechanism exists in a bacteria degradation system, which provides a new perspective for how natural plant biomass is decomposed by bacteria. This degradative system may offer an alternative approach to the fungi system for lignocellulosic biofuels production.

  12. Bacteria in a woody fungal disease: characterization of bacterial communities in wood tissues of esca-foliar symptomatic and asymptomatic grapevines

    Directory of Open Access Journals (Sweden)

    Emilie eBruez

    2015-10-01

    Full Text Available Esca is a grapevine trunk disease (GTD associated with different pathogenic fungi inhabiting the woody tissues. Bacteria can also be found in such tissues and they may interact with these fungal colonizers. Although such types of microbial interaction have been observed for wood diseases in many trees, this has never been studied for grapevine. In this study, the bacterial microflora of different vine status (esca-symptomatic and asymptomatic, different anatomical part (trunk and cordon and different type of tissues (necrotic or not have been studied. Based on Single Strand Conformation Polymorphism (SSCP analyses, data showed that (i specific complexes of bacterial microflora colonize the wood of both necrotic and non-necrotic tissues of esca-foliar symptomatic and asymptomatic vines, and also that (ii depending on the anatomical part of the plant, cordon or trunk, differences could be observed between the bacterial communities. Such differences were also revealed through the Community-Level Physiological Profiling (CLPP with Biolog Ecoplates™. Two hundred seventeen bacterial strains were also isolated from plants samples and then assigned to bacterial species based on the 16S rRNA genes. Although Bacillus spp. and Pantoea agglomerans were the two most commonly isolated species from all kinds of tissues, various other taxa were also isolated. Inoculation of vine cuttings with 14 different bacterial species, and one GTD fungus, Neofusicoccum parvum, showed no impact of these bacteria on the size of the wood necroses caused by N. parvum. This study showed, therefore, that bacterial communities differ according to the anatomical part (trunk or cordon and/or the type of tissue (necrotic or non necrotic of wood of grapevine plants showing external symptoms of esca disease. However, research into bacteria having a role in GTD development needs further studies.

  13. Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2011-04-01

    Full Text Available Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were 2.6~2.7×106, 4.6×105, 1.2×106 CFU/g of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at 28℃, the microbial diversity had been changed. The total aerobic bacterial numbers increased to 1.1~4.6×108, 4.9×107, and 7.6×108 CFU/g of fresh weight for lettuce, perilla leaf, and chicory that is about 102 times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48% was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.

  14. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    Science.gov (United States)

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  15. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    International Nuclear Information System (INIS)

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-01-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate

  16. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Science.gov (United States)

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  17. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Directory of Open Access Journals (Sweden)

    Yuridia Mercado-Flores

    2011-08-01

    Full Text Available Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease.

  18. Microbial Diversity of Betula Trees: Pollen, Catkins, Leaves Relatively of Flowering

    Directory of Open Access Journals (Sweden)

    Tetiana V. Shevtsova

    2016-01-01

    Full Text Available Quantitative microbiological analysis by dilution plating method of pollen and additional male and female catkins, leaves of Betula verrucosa Ehrh. and its two cultivars: ‘Purpurea’ and ‘Youngii’ relatively of flowering period of Betula has been realized with the aim to provide new knowledge of the microbiological quality of anemophilous pollen for processing and its further application. Qualitative microbiological analysis with MALDI-TOF MS Biotyper was used in the identification of aerobic, anaerobic mesophilic bacteria and coliforms. Mixed microbiota was determined, consisting of aerobic (4.68–4.89 log cfu/g and anaerobic (3.30–3.48 log cfu/g mesophilic bacteria, lactobacilli (0–3.48 log cfu/g, coliform bacteria (0–4.57 log cfu/g, fungi and yeast (3.78–3.95 log cfu/g on the pollen grains, that indicates acceptable quality in comparison with the microbiological quality parameters for bee pollen. Pantoea agglomerans was found associated with pollen of Betula verrucosa Ehrh. Recommendations on the collection of anemophilous pollen were established.

  19. Culture-Dependent and -Independent Methods to Investigate the Predominant Microorganisms Associated with Wet Processed Coffee.

    Science.gov (United States)

    Feng, Xiaomin; Dong, Honghong; Yang, Pan; Yang, Ruijuan; Lu, Jun; Lv, Jie; Sheng, Jun

    2016-08-01

    The fermentation process of Yunnan arabica coffee is a typical wet fermentation. Its excellent quality is closely related to microbes in the process of fermentation. The purpose of this study was to isolate and identify the microorganisms in the wet method of coffee processing in Yunnan Province, China. Microbial community structure and dominant bacterial species were evaluated by traditional cultivated separation method and PCR-DGGE technology, and were further analyzed in combination with the changes of organic acid content, activity of pectinase, and physical parameters (pH and temperature). A large number of microorganisms which can produce pectinase were found. Among them, Enterobacter cowanii, Pantoea agglomerans, Enterobacteriaceae bacterium, and Rahnella aquatilis were the predominant gram-negative bacteria, Bacillus cereus was the predominant gram-positive bacterium, Pichia kluyveri, Hanseniaspora uvarum, and Pichia fermentans were the predominant yeasts, and all those are pectinase-producing microorganisms. As for the contents of organic acids, oxalic was the highest, followed by acetic and lactic acids. Butyrate and propionate, which were unfavorable during the fermentation period, were barely discovered.

  20. Pseudomonas, Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone.

    Science.gov (United States)

    Daskalakis, M I; Magoulas, A; Kotoulas, G; Catsikis, I; Bakolas, A; Karageorgis, A P; Mavridou, A; Doulia, D; Rigas, F

    2013-08-01

    Bacterially induced calcium carbonate precipitation from various isolates was investigated aiming at developing an environmentally friendly technique for ornamental stone protection and restoration. Micro-organisms isolated from stone samples and identified using 16S rDNA and biochemical tests promoted calcium carbonate precipitation in solid and novel liquid growth media. Biomineral morphology was studied on marble samples with scanning electron microscopy. Most isolates demonstrated specimen weight increase, covering partially or even completely the marble surfaces mainly with vaterite. The conditions under which vaterite precipitated and its stability throughout the experimental runs are presented. A growth medium that facilitated bacterial growth of different species and promoted biomineralization was formulated. Most isolates induced biomineralization of CaCO3 . Micro-organisms may actually be a milestone in the investigation of vaterite formation facilitating our understanding of geomicrobiological interactions. Pseudomonas, Pantoea and Cupriavidus strains could be candidates for bioconsolidation of ornamental stone protection. Characterization of biomineralization capacity of different bacterial species improves understanding of the bacterially induced mineralization processes and enriches the list of candidates for biorestoration applications. Knowledge of biomineral morphology assists in differentiating mineral from biologically induced precipitates. © 2013 The Society for Applied Microbiology.

  1. Avaliação de produtos químicos comerciais, in vitro e in vivo, no controle da doença foliar, mancha branca do milho, causada por Pantoea ananatis Evaluation of commercial chemical products, in vitro and in vivo in the control of foliar disease, maize white spot, caused by Pantoea ananais

    Directory of Open Access Journals (Sweden)

    Cleide Aparecida Bomfeti

    2007-03-01

    Full Text Available Uma bactéria identificada como Pantoea ananatis foi recentemente isolada de lesões jovens da doença mancha branca do milho de plantas naturalmente infectadas. Esta bateria reproduziu sintomas semelhantes aos da doença quando inoculada em plantas de milho em casa de vegetação. Estudos anteriores realizados por outros autores demonstraram que o controle desta doença em condições de campo foi obtido pelo uso de fungicidas, principalmente o Mancozeb, nas fases iniciais de seu desenvolvimento. O objetivo deste estudo foi avaliar a freqüência de isolamento da bactéria P. ananatis a partir de plantas infectadas coletadas na região de Londrina, Estado do Paraná, e reproduzir sintomas da doença através de inoculações artificiais em plantas de milho em casa de vegetação. Utilizando os produtos químicos testados anteriormente por outros autores para o controle desta doença a campo, foi também objetivo deste trabalho avaliar o potencial destes produtos na inibição da bactéria tanto em condições de laboratório como em condições de infecção natural. Os resultados mostraram que P. ananatis foi isolada em 40% das lesões jovens coletadas a campo e quando inoculada em casa de vegetação sob condições controladas reproduziu sintomas semelhantes aos observados a campo. Entre os produtos químicos testados, o fungicida Mancozeb mostrou-se eficiente no controle da doença a campo, em concordância com os relatos anteriores. Este produto inibiu completamente o crescimento da bactéria em laboratório, explicando os resultados obtidos a campo. Os demais produtos não foram eficientes no controle a campo e eles também não inibiram a bactéria em laboratório. Estes resultados representam evidências adicionais de que a bactéria P. ananatis é o agente causal da doença mancha branca do milho.A bacterium identified as Pantoea ananatis was recently isolated from young lesions of the disease maize white spot from infected plants in

  2. Antibiotic resistance in bacteria isolated from vegetables with regards to the marketing stage (farm vs. supermarket).

    Science.gov (United States)

    Schwaiger, Karin; Helmke, Katharina; Hölzel, Christina Susanne; Bauer, Johann

    2011-08-15

    The aim of this study was to elucidate whether and to what extent fresh produce from Germany plays a role as a carrier and reservoir of antibiotic resistant bacteria. For this purpose, 1001 vegetables (fruit, root, bulbous vegetables, salads and cereals) were collected from 13 farms and 11 supermarkets in Germany and examined bacteriologically. Phenotypic resistance of Enterobacter cloacae (n=172); Enterobacter gergoviae (n=92); Pantoea agglomerans (n=96); Pseudomonas aeruginosa (n=295); Pseudomonas putida (n=106) and Enterococcus faecalis (n=100) against up to 30 antibiotics was determined by using the microdilution method. Resistance to ß-lactams was most frequently expressed by P. agglomerans and E. gergoviae against cefaclor (41% and 29%). Relatively high resistance rates were also observed for doxycycline (23%), erythromycin (21%) and rifampicin (65%) in E. faecalis, for spectinomycin (28%) and mezlocillin (12%) in E. cloacae, as well as for streptomycin (19%) in P. putida. In P. aeruginosa, relatively low resistance rates were observed for the aminoglycosides amikacin, apramicin, gentamicin, neomycin, netilmicin and tobramycin (bacteria isolated from farm samples were higher than those of the retail markets whenever significant differences were observed. This suggests that expressing resistance is at the expense of bacterial viability, since vegetables purchased directly at the farm are probably fresher than at the supermarket, and they have not been exposed to stress factors. However, this should not keep the customer from buying directly at the farm, since the overall resistance rates were not higher than observed in bacteria from human or animal origin. Instead, peeling or washing vegetables before eating them raw is highly recommended, since it reduces not only the risk of contact with pathogens, but also that of ingesting and spreading antibiotic resistant bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Xanthomonads and other yellow-pigmented, Xanthomonas-like bacteria associated with tomato seeds in Tanzania

    DEFF Research Database (Denmark)

    Mbega, Ernest Rashid; Wulff, Ednar Gadelha; Mabagala, R.B.

    2012-01-01

    of Xanthomonas campestris pv. malvacearum, were pathogenic on tomato and pepper plants. Strains identified by Biolog as Sphingomonas sanguinis and Sphingomonas terrae also incited black rot symptoms on pepper leaves. However, bacterial strains belonging to the genus Stenotrophomonas, Chryseobacterium, Pantoea...... and Flavobacterium were not pathogenic on tomato and pepper. Phylogenetic analysis showed that strains of the genus Xanthomonas are more closely related to Stenotrophomonas and Pantoea compared to the other bacterial genera found in tomato seeds....

  4. Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium.

    Science.gov (United States)

    Effantin, Géraldine; Rivasseau, Corinne; Gromova, Marina; Bligny, Richard; Hugouvieux-Cotte-Pattat, Nicole

    2011-11-01

    Plant pathogenic bacteria of the genera Dickeya and Pectobacterium are broad-host-range necrotrophs which cause soft-rot diseases in important crops. A metabolomic analysis, based on (13)C-NMR spectroscopy, was used to characterize the plant-bacteria interaction. Metabolic profiles revealed a decline in plant sugars and amino acids during infection and the concomitant appearance of a compound identified as 2,3-butanediol. Butanediol is the major metabolite found in macerated tissues of various host plants. It is accumulated during the symptomatic phase of the disease. Different species of Dickeya or Pectobacterium secrete high levels of butanediol during plant infection. Butanediol has been described as a signalling molecule involved in plant/bacterium interactions and, notably, able to induce plant systemic resistance. The bud genes, involved in butanediol production, are conserved in the phytopathogenic enterobacteria of the genera Dickeya, Pectobacterium, Erwinia, Pantoea and Brenneria. Inactivation of the bud genes of Dickeya dadantii revealed that the virulence of budA, budB and budR mutants was clearly reduced. The genes budA, budB and budC are highly expressed during plant infection. These data highlight the importance of butanediol metabolism in limiting acidification of the plant tissue during the development of the soft-rot disease caused by pectinolytic enterobacteria. © 2011 Blackwell Publishing Ltd.

  5. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  6. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System

    Directory of Open Access Journals (Sweden)

    Michael Ionescu

    2016-07-01

    Full Text Available Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF. We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa. X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1 had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing.

  7. Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India

    Directory of Open Access Journals (Sweden)

    Fenella Mary War Nongkhlaw

    2014-12-01

    Full Text Available The present study was aimed to investigate the endophytic and epiphytic bacteria associated with selected ethnomedicinal plants from the pristine subtropical forests of Meghalaya and analyse them for plant growth promotion and antagonistic ability. This study is an attempt to explore plant associated bacteria which are beneficial to host plants, and thus aid in the conservation of ethnomedicinal plants of the studied subtropical forests, which are dwindling due to exploitation. The plant growth promotion parameters like indole acetic acid (IAA production, mineral phosphate solubilisation, acid phosphatase activity, presence of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC gene, nitrogen fixation, cellulose digestion, chitin and pectin degradation were screened among the isolates. The study revealed significant differences in bacterial population not only between the epiphytic and endophytic microhabitats, but also amongst the host plants. Out of the 70 isolated plant associated bacteria, Bacillus sp., Serratia sp., Pseudomonas sp., Pantoea sp., and Lysinibacillus sp. showed potent plant growth promotion properties. Bacillus siamensis C53 and B. subtilis cenB showed significant antagonistic activity against the tested pathogens. This study indicated the isolates inhabiting the plants prevalent in the subtropical sacred forests could be explored for use as plant growth promoters while practising the cultivation and conservation of ethnomedicinal plants. Rev. Biol. Trop. 62 (4: 1295-1308. Epub 2014 December 01.

  8. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  9. Identification of Apis mellifera gut microbiota with MALDI TOF MS Biotyper

    Directory of Open Access Journals (Sweden)

    Jaroslav Gasper

    2017-05-01

    Full Text Available The honey bee, Apis mellifera, is critically important for the pollination of many economically important crops. Continued colony losses have called for a deeper understanding of both symbiotic and pathogenic microbial interactions, particularly as they relate to food storage and the pollination environment. Therefore, the aim of this study was to explore and characterize the bacteria colonizing the alimentary tract of the native honey bees using MALDI TOF MS Biotyper. Content of the intestinal tract was cultured for isolation of Gram-negative, Gram-positive microorganisms and yeasts. Then, the identification of isolates with MALDI-TOF MS Biotyper was done. Results showed that the most abundant genera in bees’ samples were Lactobacillus, Pseudomonas and Serratia. Altogether, 12 genera with 21 bacterial species and one yeast genus with two species were isolated. Bacteria were represented with Acidovorax facilis, Lactobacillus gasseri, L. amylovorus, L. kunkeei, L. fructivorans, Pseudomonas oryzihabitans, Ps. brenneri, Ps. indica, Micrococcus luteus, Serratia fonticola, Ser. marcescens, Ser. ureilytica, Hafnia alvei, Candida magnolia, Bacillus oleronius, B. horneckiae, Issatchenkia orientalis, Pantoea agglomerans, Enterobacter cloacae, Staphylococcus epidermidis, Staph. pasteuri, Shewanella profunda.  The results of the study shows that the microflora of the bees gut is heterogenic and depend of locality and resources of environment for bees.

  10. Galactooligosaccharide Production from Pantoea anthophila Strains Isolated from “Tejuino”, a Mexican Traditional Fermented Beverage

    Directory of Open Access Journals (Sweden)

    Claudia V. Yañez-Ñeco

    2017-08-01

    Full Text Available Two Pantoea anthophila bacterial strains were isolated from “tejuino”, a traditional Mexican beverage, and studied as β-galactosidase producers for galactooligosaccharides synthesis. Using 400 g/L of lactose, 50 °C, and 15 U/mL of β-galactosidase activity with ethanol-permeabilized cells, the maximum galactooligosaccharides (GOS yield determined by High performance anion exchange chromatography with pulse amperometric detection (HPAEC-PAD was 136 g/L (34% w/w of total sugars at 96% of lactose conversion for Bac 55.2 and 145 g/L (36% w/w of total sugars at 94% of lactose conversion for Bac 69.1. The main synthesized products were the disaccharides allolactose [Gal-β(1 → 6-Glc] and 6-galactobiose [Gal-β(1 → 6-Gal], as well as the trisaccharides 3′-galactosyl-lactose [Gal-β(1 → 3-Gal-β(1 → 4-Glc], 6-galactotriose [Gal-β(1 → 6-Gal-β(1 → 6-Gal], 3′-galactosyl-allolactose [Gal-β(1 → 3-Gal-β(1 → 6-Glc], and 6′-galactosyl-lactose [Gal-β(1 → 6-Gal-β(1 → 4-Glc]. The β-galactosidases present in both strains showed a high transgalactosylation activity and formed principally β(1 → 3 and β(1 → 6 linkages. Considering the stability and bifidogenic properties of GOS containing such types of bonds, P. anthophila strains Bac 55.2 and Bac 69.1 possess a high potential as novel biocatalysts for prebiotic industrial production.

  11. Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt

    Directory of Open Access Journals (Sweden)

    Amira L. Hanna

    2013-01-01

    Full Text Available North Sinai deserts were surveyed for the predominant plant cover and for the culturable bacteria nesting their roots and shoots. Among 43 plant species reported, 13 are perennial (e.g. Fagonia spp., Pancratium spp. and 30 annuals (e.g. Bromus spp., Erodium spp.. Eleven species possessed rhizo-sheath, e.g. Cyperus capitatus, Panicum turgidum and Trisetaria koelerioides. Microbiological analyses demonstrated: the great diversity and richness of associated culturable bacteria, in particular nitrogen-fixing bacteria (diazotrophs; the majority of bacterial residents were of true and/or putative diazotrophic nature; the bacterial populations followed an increasing density gradient towards the root surfaces; sizeable populations were able to reside inside the root (endorhizosphere and shoot (endophyllosphere tissues. Three hundred bacterial isolates were secured from studied spheres. The majority of nitrogen-fixing bacilli isolates belonged to Bacillus megaterium, Bacillus pumilus, Bacillus polymexa, Bacillus macerans, Bacillus circulans and Bacillus licheniformis. The family Enterobacteriaceae represented by Enterobacter agglomerans, Enterobacter sackazakii, Enterobacter cloacae, Serratia adorifera, Serratia liquefaciens and Klebsiella oxytoca. The non-Enterobacteriaceae population was rich in Pantoae spp., Agrobacterium rdiobacter, Pseudomonas vesicularis, Pseudomonas putida, Stenotrophomonas maltophilia, Ochrobactrum anthropi, Sphingomonas paucimobilis and Chrysemonas luteola. Gluconacetobacter diazotrophicus were reported inside root and shoot tissues of a number of tested plants. The dense bacterial populations reported speak well to the very possible significant role played by the endophytic bacterial populations in the survival, in respect of nutrition and health, of existing plants. Such groups of diazotrophs are good candidates, as bio-preparates, to support the growth of future field crops grown in deserts of north Sinai and irrigated by the

  12. Different flour microbial communities drive to sourdoughs characterized by diverse bacterial strains and free amino acid profiles

    Directory of Open Access Journals (Sweden)

    GIUSEPPE CELANO

    2016-11-01

    Full Text Available This work aimed to investigate whether different microbial assemblies in flour may influence the microbiological and biochemical characteristics of traditional sourdough. To reach this purpose, members of lactic acid bacteria, enterobacteria, and yeasts were isolated from durum wheat flour. Secondly, the isolated microorganisms (Pediococcus pentosaceus, Saccharomyces cerevisiae, Pantoea agglomerans, and Escherichia hermanni were inoculated in doughs prepared with irradiated flour (gamma rays at 10 kGy, so that eight different microbial assemblies were obtained. Two non-inoculated controls were prepared, one of which (C-IF using irradiated flour and the other (C using non-irradiated flour.As shown by plate counts, irradiation of flour caused total inactivation of yeasts and a decrease of all the other microbial populations. However acidification occurred also in the dough C-IF, due to metabolic activity of P. pentosaceus that had survived irradiation. After six fermentations, P. pentosaceus was the dominant lactic acid bacterium species in all the sourdoughs produced with irradiated flour (IF. Yet, IF-based sourdoughs broadly differed from each other in terms of strains of P. pentosaceus, probably due to the different microorganisms initially inoculated. Quantitative and qualitative differences of free amino acids concentration were found among the sourdoughs, possibly because of different microbial communities. In addition, as shown by culture-independent analysis (16S metagenetics, irradiation of flour lowered and modified microbial diversity of sourdough ecosystem.

  13. Identification and antimicrobial resistance of members from the Enterobacteriaceae family isolated from canaries (Serinus canaria

    Directory of Open Access Journals (Sweden)

    Ruben V. Horn

    2015-06-01

    Full Text Available Abstract: The Enterobacteriaceae family contains potentially zoonotic bacteria, and their presence in canaries is often reported, though the current status of these in bird flocks is unknown. Therefore, this study aimed to identify the most common genera of enterobacteria from canaries (Serinus canaria and their antimicrobial resistance profiles. From February to June of 2013, a total of 387 cloacal swab samples from eight domiciliary breeding locations of Fortaleza city, Brazil, were collected and 58 necropsies were performed in canaries, which belonged to the Laboratory of Ornithological Studies. The samples were submitted to microbiological procedure using buffered peptone water and MacConkey agar. Colonies were selected according to their morphological characteristics on selective agar and submitted for biochemical identification and antimicrobial susceptibility. A total of 61 isolates were obtained, of which 42 were from cloacal swabs and 19 from necropsies. The most isolated bacteria was Escherichia coli with twenty five strains, followed by fourteen Klebsiellaspp., twelve Enterobacterspp., seven Pantoea agglomerans, two Serratiaspp. and one Proteus mirabilis. The antimicrobial to which the strains presented most resistance was sulfonamides with 55.7%, followed by ampicillin with 54.1% and tetracycline with 39.3%. The total of multidrug-resistant bacteria (MDR was 34 (55.7%. In conclusion, canaries harbor members of the Enterobacteriaceae family and common strains present a high antimicrobial resistance rate, with a high frequency of MDR bacteria.

  14. Perlakuan Panas Kering dan Bakterisida untuk Menekan Infeksi Pantoea stewartii subsp. stewartii pada Benih Jagung Manis

    Directory of Open Access Journals (Sweden)

    Suswi Nalis

    2015-09-01

    Full Text Available Stewart’s Wilt is an important bacterial disease of sweet corn caused by Pantoea stewartii subsp. stewartii (synonim Erwinia stewartii. This bacteria is a seed transmitted pathogen therefore seed treatment is one method to control stewart’s wilt. The aim of this research was to study the effectiveness of dry heat, bactericide treatment, and their combinations to eliminate P. stewartii subsp. stewartii infection on sweet corn seed without damaging seed quality. The research was conducted in 3 experiments. Experiment I was conducted to determine the treatment window of dry heat and bactericide treatment. The treatment was carried out on sweet corn seed using the P. stewartii subsp. stewartii in vitro. Experiment II was conducted to study dry heat and bactericide treatment on sweet corn seed infested by P. stewartii subsp. stewartii. Experiment III was conducted to study combination of dry heat and bactericide treatment on sweet corn seed infested by P. stewartii subsp. stewartii. The results showed that dry heat treatment at 50 °C for 24 hours was able to eliminate pathogen populations in vitro but was unable to eliminate the 128 pathogen on infected seed (in vivo. Germination tests indicated that seed treatments with dry heat up to 55 °C did not decrease the germination level. The use of bactericide treatment in 100 ppm could reduce the population of bacteria on sweet corn seeds. Bactericide concentration of 150 and 200 ppm could decrease the population of bacteria on sweet corn seeds, however it could cause phytotoxic effect. The combination of bactericide (100 ppm, w/v with dry heat treatment (55 °C for 24 hours was able to eliminate bacteria on infected seed with seed germination above 85%.

  15. Phenanthrene and Pyrene Modify the Composition and Structure of the Cultivable Endophytic Bacterial Community in Ryegrass (Lolium multiflorum Lam

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-11-01

    Full Text Available This study provides new insights into the dynamics of bacterial community structure during phytoremediation. The communities of cultivable autochthonous endophytic bacteria in ryegrass exposed to polycyclic aromatic hydrocarbons (PAHs were investigated with regard to their potential to biodegrade PAHs. Bacterial counts and 16S rRNA gene sequence were used in the microbiological evaluation. A total of 33 endophytic bacterial strains were isolated from ryegrass plants, which represented 15 different genera and eight different classes, respectively. Moreover, PAH contamination modified the composition and structure of the endophytic bacterial community in the plants. Bacillus sp., Pantoea sp., Pseudomonas sp., Arthrobacter sp., Pedobacter sp. and Delftia sp. were only isolated from the seedlings exposed to PAHs. Furthermore, the dominant genera in roots shifted from Enterobacter sp. to Serratia sp., Bacillus sp., Pantoea sp., and Stenotrophomonas sp., which could highly biodegrade phenanthrene (PHE. However, the diversity of endophytic bacterial community was decreased by exposure to the mixture of PAHs, and increased by respective exposure to PHE and pyrene (PYR, while the abundance was increased by PAH exposure. The results clearly indicated that the exposure of plants to PAHs would be beneficial for improving the effectiveness of phytoremediation of PAHs.

  16. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    Science.gov (United States)

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  17. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil.

    Science.gov (United States)

    Afzal, Muhammad; Yousaf, Sohail; Reichenauer, Thomas G; Sessitsch, Angela

    2012-01-01

    Plants in combination with microorganisms can remediate soils, which are contaminated with organic pollutants such as petroleum hydrocarbons. Inoculation of plants with degrading bacteria is one approach to improve remediation processes, but is often not successful due to the competition with resident microorganisms. It is therefore of high importance to address the persistence and colonization behavior of inoculant strains. The objective of this study was to determine whether the inoculation method (seed imbibement and soil inoculation) influences bacterial colonization, plant growth promotion and hydrocarbon degradation. Italian ryegrass was grown in non-sterilized soil polluted with diesel and inoculated with different alkane-degrading strains Pantoea sp. ITSI10, Pantoea sp. BTRH79 and Pseudomonas sp. MixRI75 individually as well as in combination. Inoculation generally had a beneficial effect on plant biomass production and hydrocarbon degradation, however, strains inoculated in soil performed better than applied by seed imbibement. Performance correlated with the colonization efficiency of the inoculated strains. The highest hydrocarbon degradation was observed in the treatment, in which all three strains were inoculated in combination into soil. Our study revealed that besides the degradation potential and competitive ability of inoculant strains the inoculation method plays an important role in determining the success of microbial inoculation.

  18. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System.

    Science.gov (United States)

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T; Lindow, Steven E

    2016-07-19

    Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. X. fastidiosa, having a complicated lifestyle in which it moves and multiplies within plants but also must be vectored by insects, utilizes DSF-based quorum sensing to partition the expression of traits needed for these two processes within different cells in this population based on local cellular density. The finding that it can produce a variety of DSF species in a strongly

  19. Rosmarinic Acid from Eelgrass Shows Nematicidal and Antibacterial Activities against Pine Wood Nematode and Its Carrying Bacteria

    Directory of Open Access Journals (Sweden)

    Qunqun Guo

    2012-11-01

    Full Text Available Pine wilt disease (PWD, a destructive disease for pine trees, is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus and additional bacteria. In this study, extracts of Zostera marina showed a high nematicidal activity against PWN and some of the bacteria that it carries. Light yellow crystals were obtained from extracts of Z. marina through solvent extraction, followed by chromatography on AB-8 resin and crystallization. The NMR and HPLC analysis showed that the isolated compound was rosmarinic acid (RosA. RosA showed effective nematicidal activity, of which the LC50 (50% lethal concentration to PWN at 24 h, 48 h and 72 h was 1.18 mg/g, 1.05 mg/g and 0.95 mg/g, respectively. To get a high yield rate of RosA from Z. marina, single factor experiments and an L9 (34 orthogonal experiment were performed. This extraction process involved 70% ethanol for 3 h at 40 °C. The extraction dosage was 1:50 (w/v. The highest yield of RosA from Zostera was 3.13 mg/g DW (dried weight. The crude extracts of Zostera marina (10 mg/mL and RosA (1 mg/mL also showed inhibitory effects to some bacterial strains carried by PWN: Klebsiella sp., Stenotrophomonas maltophilia, Streptomyces sp. and Pantoea agglomerans. The results of these studies provide clues for preparing pesticide to control PWD from Z. marina.

  20. Genome-Wide Comparative Functional Analyses Reveal Adaptations of Salmonella sv. Newport to a Plant Colonization Lifestyle

    Directory of Open Access Journals (Sweden)

    Marcos H. de Moraes

    2018-05-01

    Full Text Available Outbreaks of salmonellosis linked to the consumption of vegetables have been disproportionately associated with strains of serovar Newport. We tested the hypothesis that strains of sv. Newport have evolved unique adaptations to persistence in plants that are not shared by strains of other Salmonella serovars. We used a genome-wide mutant screen to compare growth in tomato fruit of a sv. Newport strain from an outbreak traced to tomatoes, and a sv. Typhimurium strain from animals. Most genes in the sv. Newport strain that were selected during persistence in tomatoes were shared with, and similarly selected in, the sv. Typhimurium strain. Many of their functions are linked to central metabolism, including amino acid biosynthetic pathways, iron acquisition, and maintenance of cell structure. One exception was a greater need for the core genes involved in purine metabolism in sv. Typhimurium than in sv. Newport. We discovered a gene, papA, that was unique to sv. Newport and contributed to the strain’s fitness in tomatoes. The papA gene was present in about 25% of sv. Newport Group III genomes and generally absent from other Salmonella genomes. Homologs of papA were detected in the genomes of Pantoea, Dickeya, and Pectobacterium, members of the Enterobacteriacea family that can colonize both plants and animals.

  1. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    International Nuclear Information System (INIS)

    Lee, Young Keun; Murugesan, Senthilkumar

    2009-01-01

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg -1 protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg -1 protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg -1 protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg -1 protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg -1 protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions

  2. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Murugesan, Senthilkumar [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg{sup -1} protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg{sup -1} protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg{sup -1} protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg{sup -1} protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg{sup -1} protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions.

  3. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil.

    Directory of Open Access Journals (Sweden)

    Muhammad Arslan

    Full Text Available Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.

  4. Nutrients Can Enhance the Abundance and Expression of Alkane Hydroxylase CYP153 Gene in the Rhizosphere of Ryegrass Planted in Hydrocarbon-Polluted Soil

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M.

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination. PMID:25360680

  5. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus, from India and its possible role in indoxacarb degradation

    Directory of Open Access Journals (Sweden)

    Shanivarsanthe Leelesh Ramya

    2016-06-01

    Full Text Available Abstract Diamondback moth (DBM, Plutella xylostella (Linnaeus, is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n = 13 and adults (n = 12 of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%, followed by bacilli (15.4%. Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%, bacilli (16.7% and flavobacteria (16.7%. Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32 µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus – KC985225 and Pantoea agglomerans – KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26 µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.

  6. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology

    International Nuclear Information System (INIS)

    Trois, Cristina; Coulon, Frederic; Polge de Combret, Cecile; Martins, Jean M.F.; Oxarango, Laurent

    2010-01-01

    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l -1 . Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency.

  7. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Trois, Cristina, E-mail: troisc@ukzn.ac.za [Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban 4041 (South Africa); Coulon, Frederic; Polge de Combret, Cecile [Centre for Resource Management and Efficiency, School of Applied Sciences, Cranfield University, MK43 0AL (United Kingdom); Martins, Jean M.F.; Oxarango, Laurent [Laboratoire d' etude de Transferts en Hydrologie et Environnement, UMR 5564 (CNRS/INPG/IRD/UJF), Universite de Grenoble, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-09-15

    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l{sup -1}. Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency.

  8. 2D fluorescence spectra measurement of six kinds of bioagents simulants by short range Lidar

    Science.gov (United States)

    Sanpedro, Man

    2018-02-01

    Pantoea agglomerans (Pan), Staphylococcus aureus (Sta), Bacillus globigii (BG) and Escherichia coli (EH), these four kinds of bioagents simulants of were cultured and then their growth curves were measured, the generation time was 0.99h, 0.835h, 1.07h and 1.909h, respectively. A small short range fluorescence lidar working at wavelengths of 266nm and 355nm was designed and used to measure the two-dimensional fluorescence spectra of bioagents simulants in the amino acid segment and NADH segment, respectively. In a controllable fluorescence measurement chamber, the two-dimensional fluorescence spectra of vegetative liquid bacterial aerosols as well as BSA and OVA, two protein toxinic simulants were measured with a resolution of 4nm. The two-dimensional fluorescence spectral shape of Pan, Sta, EH and BG, BSA and OVA were consistent with the standard fluorescent component tryptophan in the amino acid band with FWHM of 60nm, but the central wavelength of the fluorescence spectra of these simulants blue/purple shifted obviously as affected by the external biochemical environment, concentration and ratio of different bacterial internal fluorophores, so the energy level between the excited state and the ground state of the fluorescence molecule increased. Differently, weak NADH fluorescence spectra with 100nm FWHM inside the four vegetative bacteria aerosols were detected, but Rayleigh scattering, Raman scattering contribution of water, nitrogen in the fluorescence spectra could not be effectively extracted. The second - order derivative fluorescence spectra of four simulants showed that the high - order processing and recognition of the fluorescence spectra was feasible.

  9. Disease: H01343 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available erobacteriaceae, is known as an emerging phytopathogen infecting a wide range of im... H01343 Pantoea ananatis infection Pantoea ananatis, a gram-negative, motile rod belonging to the family Ent

  10. Biosorption of heavy metal by thermotolerant polymerproducing bacterial cells and the bioflocculant

    Directory of Open Access Journals (Sweden)

    Saithong Kaewchai

    2002-07-01

    Full Text Available Three strains of thermotolerant polymer-producing bacteria; Bacillus subtilis WD 90, Bacillus subtilis SM 29, and Enterobacter agglomerans SM 38 as well as their biofloculants were used to investigate on the adsorption of heavy metal, nickel and cadmium. The effects of pH and concentrations of heavy metal were investigated. The optimum pH for nickel and cadmium adsorption by the dried cells of E. agglomerans SM 38 were found to be 7.0 (25.5% removal and 8.0 (32% removal, respectively. For B. subtilis WD 90 and B. subtilis SM 29, the optimum pH at 8.0 exhibited the nickel removal of 27% and 25%, respectively, and cadmium removal of 28% and 28.5%, respectively. The heavy metal adsorption by the dried cells and wet cells of E. agglomerans SM 38 were slightly increased with increasing initial concentrations of nickel and cadmium up to 60 and 30 ppm, respectively. The bioflocculant of B. subtilis WD 90 and B. subtilis SM 29 showed the highest nickel removal of 90.7% and 87.0% respectively, while the cadmium removal was 90.9 and 91.4%, respectively. The optimum pH for adsorption of both nickel and cadmium by the bioflocculant of E. agglomerans SM 38 was 7.0 with the removal of 92.8 and 84.2%, respectively. The optimum nickel concentration for adsorption by the bioflocculant of E. agglomerans SM 38 was 10 ppm, with the removal of 92.5%, and rather stable up to 60 ppm. The optimum cadmium concentration for adsorption by the bioflocculant of B. subtilis SM 29 was 60 ppm at pH 8.0 with the removal of 85.7%. Therefore, the bioflocculant of the three isolates gave higher heavy metal adsorption than the cells.

  11. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  12. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  13. Determination of plant growth promoting potential of enterobacteria isolated from the rhizosphere of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Luis H. León Mendoza

    2014-12-01

    Full Text Available The yellow maize is the third most important crop in Peru and part of the chain maize-poultry-pig, significant impact on the national economic and social activity, however, in 2011, only 40% of the corn offered corresponded to the domestic industry. Looking for alternatives to reduce the use of chemical fertilizers, have performed investigations with plant growth promoting rhizobacteria. Bacteria were isolated from the rhizosphere of maize from districts Monsefú and Reque, Lambayeque. Dilution was made into sterile saline 0.87% NaCl w/v and plated on MacConkey agar, incubating at 30°C for 48 hours. 269 pure cultures of bacteria were obtained, the biochemical reaction was investigated in agar Triple sugar iron agar Iron Lysine, agar Citrate Simons, peptone broth, red broth methyl Voges-Proskauer and nitrate broth, was identified 66% as Enterobacteriaceae of genera Pantoea (49%, Klebsiella (17%, Kluyvera (16%, Serratia (11%, Citrobacter (4% and Hafnia (3%. The native enterobacteria were quantified to 31.67 ppm of fixed nitrogen as ammonia; 54.25 ppm indole acetic acid and 4,78 ppm solubilized phosphorus, activity proteolytic and chitinolytic and antagonistic activity of Fusarium verticillioides were also determined. 16% of native enterobacteria did not affect the emergence of hard yellow maize, 77% affected positively and 7% affected negatively. In turn, none bacteria affected survival. Was demonstrated the potential plant growth promoter of enterobacteria isolated from field crops in the region of Lambayeque.

  14. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    Science.gov (United States)

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Adhesion to brown trout skin mucus, antagonism against cyst adhesion and pathogenicity to rainbow trout of some inhibitory bacteria against Saprolegnia parasitica .

    Science.gov (United States)

    Carbajal-González, M T; Fregeneda-Grandes, J M; González-Palacios, C; Aller-Gancedo, J M

    2013-04-29

    Biological control of saprolegniosis with bacteria might be an alternative to the use of chemical compounds. Among criteria for the selection of such bacteria are their absence of pathogenicity to fish and their ability to prevent adhesion of the pathogen to the skin mucus. The pathogenicity to rainbow trout of 21 bacterial isolates with in vitro inhibitory activity against Saprolegnia parasitica was studied. Fifteen of the isolates, identified as Aeromonas sobria, Pantoea agglomerans, Pseudomonas fluorescens, Serratia fonticola, Xanthomonas retroflexus and Yersinia kristensenii, were non-pathogenic when injected into rainbow trout. Their capacity to adhere to the skin mucus of male and female brown trout and to reduce the adhesion of S. parasitica cysts under exclusion, competition and displacement conditions was tested. The 15 bacterial isolates showed a low adhesion rate, ranging between 1.7% (for an A. sobria isolate) and 15.3% (a P. fluorescens isolate). This adhesion was greater in the case of mucus from male brown trout than from females. Similarities in the adhesion to male mucus and other substrates and correlation to that observed to polystyrene suggest that adhesion to skin mucus does not depend on the substrate. A high percentage (88.9%) of the S. parasitica cysts adhered to the skin mucus of male brown trout. Almost all of the bacteria reduced this adhesion ratio significantly under exclusion and competition conditions. However, only half of the isolates displaced cysts from skin mucus, and more bacterial cells were necessary for this effect. A novel method to study the adhesion of S. parasitica cysts to skin mucus of trout and their interactions with inhibitory bacteria is described.

  16. Culture-based and denaturing gradient gel electrophoresis analysis of the bacterial community from Chungkookjang, a traditional Korean fermented soybean food.

    Science.gov (United States)

    Hong, Sung Wook; Choi, Jae Young; Chung, Kun Sub

    2012-10-01

    The bacterial community of Chungkookjang and raw rice-straw collected from various areas in South Korea was investigated using both culture-dependent and culture-independent methods. Pure cultures were isolated from Chungkookjang and raw rice-straw on tryptic soy agar plates with 72 to 121 colonies and identified by 16S rDNA gene sequence analysis, respectively. The traditional culture-based method and denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rDNA confirmed that Pantoea agglomerans and B. subtilis were identified as predominant in the raw rice-straw and Chungkookjang, respectively, from Iljuk district of Gyeonggi province, P. ananatis and B. licheniformis were identified as predominant in the raw rice-straw and Chungkookjang from Wonju district of Gangwon province, and Microbacterium sp. and B. licheniformis were identified as predominant in the raw rice-straw and Chungkookjang from Sunchang district of Jeolla province. Other strains, such as Bacillus, Enterococcus, Pseudomonas, Rhodococcus, and uncultured bacteria were also present in raw rice-straw and Chungkookjang. A comprehensive analysis of these microorganisms would provide a more detailed understanding of the biologically active components of Chungkookjang and help improve its quality. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis can be successfully applied to a fermented food to detect unculturable or more species than the culture-dependent method. This technique is an effective and convenient culture-independent method for studying the bacterial community in Chungkookjang. In this study, the bacterial community of Chungkookjang collected from various areas in South Korea was investigated using both culture-dependent and culture-independent methods. © 2012 Institute of Food Technologists®

  17. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system.

    Science.gov (United States)

    Richter, S S; Sercia, L; Branda, J A; Burnham, C-A D; Bythrow, M; Ferraro, M J; Garner, O B; Ginocchio, C C; Jennemann, R; Lewinski, M A; Manji, R; Mochon, A B; Rychert, J A; Westblade, L F; Procop, G W

    2013-12-01

    This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l'Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer's instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7% of the 965 isolates tested, with 83.8% correct to the species level and 12.8% limited to a genus-level identification. There was no identification for 1.7% of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.

  18. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Hamzah, A.; Wong, K.K.; Hasan, F.N.; Mustafa, S.; Khoo, K.S.; Sarmani, S.B.

    2013-01-01

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  19. Draft genome sequence of Pantoea agglomerans JM1, a strain isolated from soil polluted by industrial production of Beta-Lactam antibiotics that exhibits valacyclovir-like hydrolase activity

    Czech Academy of Sciences Publication Activity Database

    Zahradník, Jiří; Plačková, Martina; Palyzová, Andrea; Marešová, Helena; Kyslíková, Eva; Kyslík, Pavel

    2017-01-01

    Roč. 5, č. 38 (2017), č. článku e00921-17. ISSN 2169-8287 Institutional support: RVO:61388971 Keywords : 6 nitro 3 (phenylacetamido)benzoic acid * beta lactam antibiotic * topoisomerase (ATP hydrolysing) B Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  20. Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of Pantoea ananatis.

    Science.gov (United States)

    Nischwitz, C; Gitaitis, R; Sanders, H; Langston, D; Mullinix, B; Torrance, R; Boyhan, G; Zolobowska, L

    2007-10-01

    ABSTRACT A survey was conducted to evaluate differences in fatty acid methyl ester (FAME) profiles among strains of Pantoea ananatis, causal agent of center rot of onion (Allium cepa), isolated from 15 different onion cultivars in three different sites in Georgia. Differences in FAME composition were determined by plotting principal components (PCs) in two-dimensional plots. Euclidean distance squared (ED(2)) values indicated a high degree of similarity among strains. Plotting of PCs calculated from P. ananatis strains capable of growing on media amended with copper sulfate pentahydrate (200 mug/ml) indicated that copper-tolerant strains grouped into tight clusters separate from clusters formed by wild-type strains. However, unlike copper-sensitive strains, the copper-tolerant strains tended to cluster by location. A total of 80, 60, and 73% of the strains from Tift1, Tift2, and Tattnall, respectively, exhibited either confluent growth or partial growth on copper-amended medium. However, all strains were sensitive to a mixture of copper sulfate pentahydrate (200 mug/ml) and maneb (40 mug/ml). When copper-tolerant clones were analyzed and compared with their wild-type parents, in all cases the plotting of PCs developed from copper-tolerant clones formed tight clusters separate from clusters formed by the parents. Eigenvalues generated from these tests indicated that two components provided a good summary of the data, accounting for 98, 98, and 96% of the standardized variance for strains Pna 1-15B, Pna 1-12B, and Pna 2-5A, respectively. Furthermore, feature 4 (cis-9-hexadecenoic acid/2-hydroxy-13-methyltetradecanoic acid) and feature 7 (cis-9/trans-12/cis-7-octadecenoic acid) were the highest or second highest absolute values for PC1 in all three strains of the parents versus copper-tolerant clones, and hexadecanoic acid was the highest absolute value for PC2 in all three strains. Along with those fatty acids, dodecanoic acid and feature 3 (3-hydroxytetradecanoic

  1. Relationship Between Piercing-Sucking Insect Control and Internal Lint and Seed Rot in Southeastern Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Medrano, Enrique G; Bell, Alois A; Greene, Jeremy K; Roberts, Phillip M; Bacheler, Jack S; Marois, James J; Wright, David L; Esquivel, Jesus F; Nichols, Robert L; Duke, Sara

    2015-08-01

    In 1999, crop consultants scouting for stink bugs (Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The disease has subsequently been reported in fields throughout the southeastern Cotton Belt. Externally, diseased bolls appeared undamaged; internally, green fruit contain pink to dark brown, damp, deformed lint, and necrotic seeds. In greenhouse experiments, we demonstrated transmission of the opportunistic bacterium Pantoea agglomerans by the southern green stink bug, Nezara viridula (L.). Here, green bolls were sampled from stink bug management plots (insecticide protected or nontreated) from four South Atlantic coast states (North Carolina, South Carolina, Georgia, and Florida) to determine disease incidence in the field and its association with piercing-sucking insects feeding. A logistic regression analysis of the boll damage data revealed that disease was 24 times more likely to occur (P = 0.004) in bolls collected from plots in Florida, where evidence of pest pressure was highest, than in bolls harvested in NC with the lowest detected insect pressure. Fruit from plots treated with insecticide, a treatment which reduced transmission agent numbers, were 4 times less likely to be diseased than bolls from unprotected sites (P = 0.002). Overall, punctured bolls were 125 times more likely to also have disease symptoms than nonpunctured bolls, irrespective of whether or not plots were protected with insecticides (P = 0.0001). Much of the damage to cotton bolls that is commonly attributed to stink bug feeding is likely the resulting effect of vectored pathogens. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  2. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    Science.gov (United States)

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  3. Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri.

    Science.gov (United States)

    Li, Y; Nishino, N

    2011-04-01

    To understand the effects of lactic acid bacteria (LAB) inoculation on fermentation products, aerobic stability and microbial communities of silage. Wilted Italian ryegrass was stored in laboratory silos with and without inoculation of Lactobacillus rhamnosus and Lactobacillus buchneri. The silos were opened after 14, 56 and 120 days and then subjected to aerobic deterioration for 7 days. Intensive alcoholic fermentation was found in untreated silage; the sum of ethanol and 2,3-butanediol content at day 14 was about 7 times higher than that of lactic and volatile fatty acids. Alcoholic fermentation was suppressed by L. rhamnosus and L. buchneri inoculation and lactic acid and acetic acid became the dominant fermentation products, respectively. Silages were deteriorated in untreated and L. rhamnosus-inoculated silages, whereas no spoilage was found in L. buchneri-inoculated silage. Enterobacteria such as Erwinia persicina, Pantoea agglomerans and Rahnella aquatilis were detected in untreated silage, whereas some of these bacteria disappeared or became faint with L. rhamnosus treatment. When silage was deteriorated, Lactobacillus brevis and Bacillus pumilus were observed in untreated and L. rhamnosus-inoculated communities, respectively. The inoculated LAB species was detectable in addition to untreated bacterial communities. Saccharomyces cerevisiae and Pichia anomala were the main fungi in untreated and L. rhamnosus-inoculated silages; however, P. anomala was not visibly seen in L. buchneri-inoculated silage either at silo opening or after exposure to air. Inoculation with L. rhamnosus can suppress alcoholic fermentation of wilted grass silage with elimination of enterobacteria at the beginning of fermentation. Addition of L. buchneri may improve aerobic stability, with distinct inhibitory effect observed on P. anomala after silo opening. Bacterial and fungal community analyses help us to understand how inoculated LAB can function to improve the fermentation and

  4. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    Science.gov (United States)

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; Niedzwiedzki, Dariusz M.; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J.; Jackson, Philip J.; Martin, Elizabeth C.; Li, Ying; Holten, Dewey; Neil Hunter, C.

    2015-01-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the

  5. Isolation and 16s rdna sequence analysis of bacteria from dieback affected mango orchards in southern pakistan

    International Nuclear Information System (INIS)

    Khan, I.A.; Khan, A.; Asif, H.; Azim, M.K.; Muhlbach, H.P.

    2014-01-01

    A broad range of microorganisms are involved in various mango plant diseases such as fungi, algae and bacteria. In order to study the role of bacteria in mango dieback, a survey of infected mango plants in southern Pakistan was carried out. A number of bacterial isolates were obtained from healthy looking and infected mango trees, and their characterization was undertaken by colony PCR and subsequent sequence analysis of 16S rDNA. These analyses revealed the presence of various genera including Acinetobacter, Bacillus, Burkholderia, Cronobacter, Curtobacterium, Enterobacter, Erwinia, Exiguobacterium, Halotelea, Lysinibacillus, Micrococcus, Microbacterium, Pantoea, Pseudomonas, Salmonella and Staphylococcus. It is noteworthy that several members of these genera have been reported as plant pathogens. The present study provided baseline information regarding the phytopathogenic bacteria associated with mango trees in southern Pakistan. (author)

  6. Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilum turcicum in maize.

    Science.gov (United States)

    Sartori, Melina; Nesci, Andrea; García, Julián; Passone, María A; Montemarani, Analía; Etcheverry, Miriam

    Eight potential biological control agents (BCAs) were evaluated in planta in order to assess their effectiveness in reducing disease severity of northern leaf blight caused by Exserohilum turcicum. The assay was carried out in greenhouse. Twenty-six-day-old plants, V4 phenological stage, were inoculated with antagonists by foliar spray. Only one biocontrol agent was used per treatment. Ten days after this procedure, all treatments were inoculated with E. turcicum by foliar application. Treatments performed were: C-Et: control of E. turcicum; T1: isolate 1 (Enterococcus genus)+E. turcicum; T2: isolate 2 (Corynebacterium genus)+E. turcicum; T3: isolate 3 (Pantoea genus)+E. turcicum; T4: isolate 4 (Corynebacterium genus)+E. turcicum; T5: isolate 5 (Pantoea genus)+E. turcicum; T6: isolate 6 (Bacillus genus)+E. turcicum; T7: isolate 7 (Bacillus genus)+E. turcicum; T8: isolate 8 (Bacillus genus)+E. turcicum. Monitoring of antagonists on the phyllosphere was performed at different times. Furthermore, the percentage of infected leaves and, plant and leaf incidence were determined. Foliar application of different bacteria significantly reduced the leaf blight between 30-78% and 39-56% at 20 and 39 days respectively. It was observed that in the V10 stage of maize plants, isolate 8 (Bacillus spp.) caused the greatest effect on reducing the severity of northern leaf blight. Moreover, isolate 8 was the potential BCA that showed more stability in the phyllosphere. At 39 days, all potential biocontrol agents had a significant effect on controlling the disease caused by E. turcicum. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce

    Science.gov (United States)

    Rastogi, Gurdeep; Sbodio, Adrian; Tech, Jan J; Suslow, Trevor V; Coaker, Gitta L; Leveau, Johan H J

    2012-01-01

    The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009–2010 crop cycle. Total bacterial populations averaged between 105 and 106 per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial ‘core' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment. PMID:22534606

  8. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce.

    Science.gov (United States)

    Rastogi, Gurdeep; Sbodio, Adrian; Tech, Jan J; Suslow, Trevor V; Coaker, Gitta L; Leveau, Johan H J

    2012-10-01

    The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009-2010 crop cycle. Total bacterial populations averaged between 10(5) and 10(6) per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial 'core' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment.

  9. Evaluation of Plant- Compost -Microorganisms Synergy for the Remediation of Diesel contaminated Soil: Success Stories from the Field Station

    Science.gov (United States)

    Hussain, Imran; Wimmer, Bernhard; Soja, Gerhard; Sessitsch, Angela; Reichenauer, Thomas G.

    2016-04-01

    and four replicates; T1 was only planted with Lolium multiflorum and Lotus corniculatus, T2 was planted with both above mentioned plants inoculated with microbial consortium (mixture of strains: Pantoea sp. strains, ITSI10, BTRH79 and Pseudomonas sp. strain, MixRI75)and T3 was kept unplanted to support bioremediation. Germination percentage (GP) was monitored weekly until three weeks after seed sowing. Biometric parameters (plant height, fresh and dry weight of shoots) and leaf chlorophyll content were recorded in periodic intervals. Soil samples were taken in regular intervals (after every 6 month) and PHC content was measured by GC-FID. In the presentation we will report about the development of plants and the degradation of petroleum hydrocarbons in Lysimeter. The degradation of TPH will be reported for 7 layers inside each Lysimeter as well as in leachate samples.

  10. Identification and Characterization of Novel Biocontrol Bacterial

    Directory of Open Access Journals (Sweden)

    Young Cheol Kim

    2014-09-01

    Full Text Available Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera

  11. Products of different chemical groups to control maize white spotProdutos de diferentes grupos químicos no controle da mancha branca do milho

    Directory of Open Access Journals (Sweden)

    Eliseu dos Santos Pedro

    2012-12-01

    Full Text Available The aim of this work was the evaluation of different products used to control maize white spot, a leaf disease caused by the bacterium Pantoea ananatis. Six products from different chemical groups were used for this experiment, and they were tested on the susceptible hybrid HS200. Parameters, such as severity (%, area under disease progress curve (AUDPC, and productivity, have been estimated. The treatment with oxytetracyline resulted higher grain productivity for maize. Natural products, such as Rocksil and Pyroligneous acid, even though they are used as supplement for plants, were not effective in controlling the maize white spot. O objetivo deste trabalho foi avaliar a eficiência de diferentes produtos no controle da mancha branca do milho, doença foliar causada pela bactéria Pantoea ananatis. Para o experimento foram utilizados seis produtos pertencentes a diferentes grupos químicos, testados no híbrido suscetível HS200. Avaliaramse as variáveis severidade, área abaixo da curva de progresso da doença (AACPD e a produtividade de grãos. O tratamento com oxitetraciclina resultou maior produtividade de grãos da cultura do milho. Produtos naturais testados no experimento, como Rocksil e Ácido Pirolenhoso, utilizados como suplementos nutricionais para as plantas, não foram eficientes no controle da mancha branca do milho.

  12. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    Science.gov (United States)

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  13. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis.

    Science.gov (United States)

    Facey, Paul D; Méric, Guillaume; Hitchings, Matthew D; Pachebat, Justin A; Hegarty, Matt J; Chen, Xiaorui; Morgan, Laura V A; Hoeppner, James E; Whitten, Miranda M A; Kirk, William D J; Dyson, Paul J; Sheppard, Sam K; Del Sol, Ricardo

    2015-07-15

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. © The Author(s) 2015. Published by

  14. Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc).

    Science.gov (United States)

    Andersson, R A; Eriksson, A R; Heikinheimo, R; Mäe, A; Pirhonen, M; Kõiv, V; Hyytiäinen, H; Tuikkala, A; Palva, E T

    2000-04-01

    The production of the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, the extracellular cell wall-degrading enzymes, is partly controlled by the diffusible signal molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL). OHHL is synthesized by the product of the expI/carI gene. Linked to expI we found a gene encoding a putative transcriptional regulator of the LuxR-family. This gene, expR(Ecc), is transcribed convergently to the expI gene and the two open reading frames are partially overlapping. The ExpR(Ecc) protein showed extensive amino acid sequence similarity to the repressor EsaR from Pantoea stewartii subsp. stewartii (formerly Erwinia stewartii subsp. stewartii) and to the ExpR(Ech) protein of Erwinia chrysanthemi. Inactivation of the E. carotovora subsp. carotovora expR(Ecc) gene caused no decrease in virulence or production of virulence determinants in vitro. In contrast, there was a slight increase in the maceration capacity of the mutant strain. The effects of ExpR(Ecc) were probably mediated by changes in OHHL levels. Inactivation of expR(Ecc) resulted in increased OHHL levels during early logarithmic growth. In addition, overexpression of expR(Ecc) caused a clear decrease in the production of virulence determinants and part of this effect was likely to be caused by OHHL binding to ExpR(Ecc). ExpR(Ecc) did not appear to exhibit transcriptional regulation of expI, but the effect on OHHL was apparently due to other mechanisms.

  15. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Mirza, Muhammad Sajjad; Khan, Qaiser M

    2013-04-01

    Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Isolation and characterization of three benzylisoquinoline alkaloids from Thalictrum minus L. and their antibacterial activity against bovine mastitis.

    Science.gov (United States)

    Mushtaq, Saleem; Rather, Muzafar Ahmad; Qazi, Parvaiz H; Aga, Mushtaq A; Shah, Aabid Manzoor; Shah, Aiyatullah; Ali, Md Niamat

    2016-12-04

    The roots of Thalictrum minus are traditionally used in the treatment of inflammation and infectious diseases such as bovine mastitis. However, there are no reports available in literature till date regarding the antibacterial studies of T. minus against bovine mastitis. The present study was undertaken to evaluate the antibacterial potential of crude extract of T. minus (root) and some of its isolated constituents against bovine mastitis in order to scientifically validate its traditional use. A total of three alkaloid compounds were isolated from the DCM: MeOH extract of roots of T. minus using silica gel column chromatography. Structural elucidation of the isolated compounds was done by using spectroscopic techniques like mass spectrometry and NMR spectroscopy. Pathogens were isolated from cases of bovine mastitis and identified by using 16S rRNA gene sequencing. The broth micro-dilution method was used to evaluate the antibacterial activities of DCM: MeOH extract and isolated compounds against mastitis pathogens. The three isolated compounds were identified as benzylisoquinoline alkaloids (1) 5'-Hydroxythalidasine, (2) Thalrugosaminine and (3) O-Methylthalicberine. Compounds (2) and (3) are reported for the first time from the roots of T. minus. Five mastitis pathogens viz., Staphylococcus xylosus, Staphylococcus lentus, Staphylococcus equorum, Enterococcus faecalis and Pantoea agglomerans were identified on the basis of sequence analysis of isolates using the nucleotide BLAST algorithm. This study reports for the first time the isolation and molecular characterization of mastitis pathogens from Kashmir valley, India. The DCM: MeOH extract exhibited broad spectrum antibacterial activities that varied between the bacterial species (MIC=250-500µg/ml). 5'-Hydroxythalidasine and Thalrugosaminine showed promising antibacterial activity with MIC values of 64-128µg/ml while Staphylococcus species were found to be the most sensitive strains. The antibacterial

  17. Increasing potassium (K release from K-containing minerals in the presence of insoluble phosphate by bacteria

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Sarikhani

    2016-03-01

    Full Text Available Introduction: Phosphorus and potassium are major essential macronutrients for biological growth and development. Application of soil microorganisms is one approach to enhance crop growth. Some bacteria are efficient in releasing K and solubilizing P from mineral sources but their behavior was not studied more in presence together. Materials and methods: In this study the ability of seven bacterial strains, including Pseudomonas putida P13, P. putida Tabriz, P. fluorescens Tabriz, P. fluorescens Chao, Pantoea agglomerans P5, Azotobacter sp. and Bacillus megaterium JK3 to release mineral K from muscovite and biotite with application of insoluble (Ca3(PO42 or soluble (Na2HPO4 P-sources was investigated. Nutrient Broth was used to prepare an overnight culture of bacteria to inoculate in Aleksandrov medium, which was used to study the dissolution of silicate minerals. It should be mentioned that Aleksandrov medium was used to determine the amount of released P from tricalcium phosphate (TCP while muscovite was added to the medium as a sole source of potassium. Concentration of P was determined spectrophotometrically by ammonium-vanadate-molybdate method and K was determined by flame photometry. Results: The insoluble P-source led to a significantly increased released K into assay medium (66%, and the net release of K from the biotite was significantly enhanced. Among bacterial strains, the highest mean of released K was observed with P. putida P13 which released more K (27% than the control. The amounts of released K from micas in the presence of insoluble and soluble phosphate by P. putida P13 were 8.25 and 4.87 mg/g, respectively. Discussion and conclusion: Application of insoluble phosphate could increase K release from mica minerals. The enhanced releasing of mineral K might be attributed to the release of organic acids from the bacteria, a mechanism which plays a pivotal role in solubilizing phosphate from inorganic source of phosphate.

  18. Evaluation of the role of Carnobacterium piscicola in spoilage of vacuum- and modified-atmosphere-packed cold-smoked salmon stored at 5 degrees C

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Dalgaard, Paw; Huss, Hans Henrik

    1998-01-01

    -packed salmon was dominated by a Vibrio sp., resembling V. marinus, Enterobacteriaceae (Enterobacter agglomerans, Serratia liquefaciens and Rahnella aquatilis) and occasionally Aeromonas hydrophila. Irrespective of the addition of nisin and/or CO2- atmosphere, the LAB microflora was dominated by Carnobacterium...

  19. Classification of plant associated bacteria using RIF, a computationally derived DNA marker.

    Directory of Open Access Journals (Sweden)

    Kevin L Schneider

    Full Text Available A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF. Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS. Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF

  20. Effect of elevated oxygen and carbon dioxide on the surface growth of vegetable-associated micro-organisms

    NARCIS (Netherlands)

    Amanatidou, A.; Smid, E.J.; Gorris, L.G.M.

    1999-01-01

    The impact of a novel type of Modified Atmosphere (MA), referred to as high O2-MA, on micro-organisms associated with the spoilage of minimally-processed vegetables was studied. Pure cultures of Pseudomonas fluorescens, Enterobacter agglomerans, Aureobacterium strain 27, Candida guilliermondii, C.

  1. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Science.gov (United States)

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  2. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanideratum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  3. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Eman M. Khalaf

    2018-02-01

    Full Text Available The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum. The endophytes were also assayed in planta (leaf disk and detached leaf bioassays for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169 exhibited antagonism to the five phytopathogens, of which 68% (50/73 of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169 of endophytes emitted host defense inducing VOCs (acetoin/diacetyl and 62% (104/169 secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated

  4. Biopesticides from plants: Calceolaria integrifolia s.l.

    Science.gov (United States)

    Céspedes, Carlos L; Salazar, Juan R; Ariza-Castolo, Armando; Yamaguchi, Lydia; Avila, José G; Aqueveque, Pedro; Kubo, Isao; Alarcón, Julio

    2014-07-01

    The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures

  5. Using microorganisms to aid in hydrocarbon degradation

    International Nuclear Information System (INIS)

    Black, W.; Zamora, J.

    1993-01-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO 2 evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans

  6. Screening for lipase-producing Enterobacter agglomerans for ...

    African Journals Online (AJOL)

    Olive oil, sesame oil and tea oil as raw materials can be catalyzed to biodiesel by the lipase of this strain at 30°C and 180 rpm. And the yield reached 54.51% with sesame oil as raw material, even when they contained 92.4% (w/v) water in the starting materials. This strain will potentially serve as a promising alternative ...

  7. Bacterial endophytes enhance phytostabilization in soils contaminated with uranium and lead.

    Science.gov (United States)

    Ahsan, Muhammad Tayyab; Najam-Ul-Haq, Muhammad; Idrees, Muhammad; Ullah, Inayat; Afzal, Muhammad

    2017-10-03

    The combined use of plants and bacteria is a promising approach for the remediation of polluted soil. In the current study, the potential of bacterial endophytes in partnership with Leptochloa fusca (L.) Kunth was evaluated for the remediation of uranium (U)- and lead (Pb)-contaminated soil. L. fusca was vegetated in contaminated soil and inoculated with three different endophytic bacterial strains, Pantoea stewartii ASI11, Enterobacter sp. HU38, and Microbacterium arborescens HU33, individually as well as in combination. The results showed that the L. fusca can grow in the contaminated soil. Bacterial inoculation improved plant growth and phytoremediation capacity: this manifested in the form of a 22-51% increase in root length, 25-62% increase in shoot height, 10-21% increase in chlorophyll content, and 17-59% more plant biomass in U- and Pb-contaminated soils as compared to plants without bacterial inoculation. Although L. fusca plants showed potential to accumulate U and Pb in their root and shoot on their own, bacterial consortia further enhanced metal uptake capacity by 53-88% for U and 58-97% for Pb. Our results indicate that the combination of L. fusca and endophytic bacterial consortia can effectively be used for the phytostabilization of both U- and Pb-contaminated soils.

  8. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  9. Isolation of hydrogen-producing bacteria from biodigesters

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.V.; Servulo, E.F.C.; Da Silva, I.M.; Martelli, H.L.

    1984-01-01

    Two H2-producing strains belonging to the Enterobacteriaceae were isolated from biodigesters, fed sugarcane distillation slops, from acetone-butanol fermentation, under anaerobic conditions. H2 and CO2 were the only gases produced from glucose. H2 was 40.87% of the total gas produced by Citrobacter freundii, and 57.74% when Enterobacter agglomerans was assayed.

  10. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    Science.gov (United States)

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  11. Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems

    Directory of Open Access Journals (Sweden)

    M. C. Montero-Calasanz

    2013-01-01

    Full Text Available Southern Spain is the largest olive oil producer region in the world. In recent years organic agriculture systems have grown exponentially so that new alternative systems to produce organic olive cuttings are needed. Several bacterial isolates, namely Pantoea sp. AG9, Chryseobacterium sp. AG13, Chryseobacterium sp. CT348, Pseudomonas sp. CT364 and Azospirillum brasilense Cd (ATCC 29729, have been used to induce rooting in olive semi-hardwood cuttings of Arbequina, Hojiblanca and Picual cultivars of olive (Olea europea L. The first four strains were previously selected as auxin-producing bacteria and by their ability to promote rooting in model plants. They have been classified on the basis of their 16S rDNA gene sequence. The known auxin producer A. brasilense Cd strain has been used as a reference. The inoculation of olive cuttings was performed in two different ways: (i by dipping cuttings in a liquid bacterial culture or (ii by immersing them in a paste made of solid bacterial inoculant and sterile water. Under nursery conditions all of the tested bacterial strains were able to induce the rooting of olive cuttings to a similar or greater extent than the control cuttings treated with indole-3-butyric acid (IBA. The olive cultivars responded differently depending on the bacterial strain and the inoculation method. The strain that consistently gave the best results was Pantoea sp. AG9, the only one of the tested bacterial strains to express the enzyme 1-aminocyclopropane-1-carboxylate (ACC deaminase. The results are also discussed in terms of potential commercial interest and nursery feasibility performance of these strains.

  12. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  13. Plant Host Finding by Parasitic Plants: A New Perspective on Plant to Plant Communication

    OpenAIRE

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much d...

  14. Plant host finding by parasitic plants: A new perspective on plant to plant communication

    Science.gov (United States)

    Mark C. Mescher; Justin B. Runyon; Consuelo M. De Moraes

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-...

  15. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    Science.gov (United States)

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  16. Plant stress signalling: understanding and exploiting plant-plant interactions.

    Science.gov (United States)

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  17. Plant-soil feedbacks: role of plant functional group and plant traits

    NARCIS (Netherlands)

    Cortois, R.; Schröder-Georgi, T.; Weigelt, A.; van der Putten, W.H.; De Deyn, G.B.

    2016-01-01

    Plant-soil feedback (PSF), plant trait and functional group concepts advanced our understanding of plant community dynamics, but how they are interlinked is poorly known. To test how plant functional groups (FGs: graminoids, small herbs, tall herbs, legumes) and plant traits relate to PSF, we grew

  18. Isolation and molecular identification of endophytic diazotrophs from seeds and stems of three cereal crops.

    Directory of Open Access Journals (Sweden)

    Huawei Liu

    Full Text Available Ten strains of endophytic diazotroph were isolated and identified from the plants collected from three different agricultural crop species, wheat, rice and maize, using the nitrogen-free selective isolation conditions. The nitrogen-fixing ability of endophytic diazotroph was verified by the nifH-PCR assay that showed positive nitrogen fixation ability. These identified strains were classified by 879F-RAPD and 16S rRNA sequence analysis. RAPD analyses revealed that the 10 strains were clustered into seven 879F-RAPD groups, suggesting a clonal origin. 16S rRNA sequencing analyses allowed the assignment of the 10 strains to known groups of nitrogen-fixing bacteria, including organisms from the genera Paenibacillus, Enterobacter, Klebsiella and Pantoea. These representative genus are not endophytic diazotrophs in the conventional sense. They may have obtained nitrogen fixation ability through lateral gene transfer, however, the evolutionary forces of lateral gene transfer are not well known. Molecular identification results from 16S rRNA analyses were also confirmed by morphological and biochemical data. The test strains SH6A and MZB showed positive effect on the growth of plants.

  19. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.

  20. LNG plant combined with power plant

    International Nuclear Information System (INIS)

    Aoki, I.; Kikkawa, Y.

    1997-01-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs

  1. citohistochemistry, Biocatalytic Effectors (EBc©, source of infection, biological control, agrosystems

    Directory of Open Access Journals (Sweden)

    Marcia M. Rojas

    2015-11-01

    Full Text Available Among the efforts done in Cuba to the sustainability in the agricultural system, one of them is the use of bioproducts, which have a relevant economic, ecological and social impact. The sugarcane is one of main crops in our country and it has a great importance at world level. In the present work is demonstrated the effect of different carbon and nitrogen sources in the growth of 5 entophytic bacteria (three of Gluconacetobacter diazotrophicus, one of Bacillus licheniformis and one of Enterobacter agglomerans were demonstrated. As the same form are studied the influence of juices from five varieties, as well as, different concentrations of fitohormones indole3acetic acid and giberelic acid on the growth. Was demonstrated that asparagine and ammonium sulfate as nitrogen sources added to LGI medium enhance the growth a major growth of the studied endophytic bacteria. The LGI medium supplied with juices of sugarcane enhance the growth of microorganisms (p≤0,05 and don't exist any relationships among the origin of the juice and the strains. On the other hand, the fitohormones at low concentrations don't affect the growth but at high levels of these hormones inhibit the growth. It's necessary to study the factors that have influence on the interaction between the plant and endophytes to use their potentialities as plant growth promoters.

  2. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  3. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    Science.gov (United States)

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  4. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  5. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  6. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Quaglino, Fabio; Bianco, Piero A

    2014-07-21

    Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured

  7. Chemical signaling between plants and plant-pathogenic bacteria.

    Science.gov (United States)

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  8. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    Science.gov (United States)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  9. Four planting devices for planting no-till maize

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2015-05-01

    Full Text Available An experiment was conducted at the CSIR-Crops Research Institute (CSIR-CRI Experimental station at Ejura in Ghana to compare the efficiency of four devices for planting no-till maize: Tractor drawn seeder, Chinese made jab planter, Locally made jab planter and a Cutlass. It took two (2 hours 48 minutes to plant one hectare of maize with the tractor drawn seeder, which was significantly (p less than 1% faster than all the planting methods. Cutlass was the slowest planting device lasting more than 14 hours per hectare. There was no significant difference in planting time between the Chinese planter and local planter. Economic analysis showed that cutlass planting produced the highest net benefit, whilst tractor drawn seeder produced the least benefit. In this study cutlass planting was done with precision by collaborating farmers. In actual farm situation however, hired laborers (planting gangs often plant in haste which often results in poor plant population leading to low yields. Tractor drawn seeders or jab planters could reduce drudgery in planting and encourage farm expansion.

  10. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  12. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  13. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    Science.gov (United States)

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  14. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  15. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    Science.gov (United States)

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  16. 7 CFR 302.2 - Movement of plants and plant products.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of plants and plant products. 302.2 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS § 302.2 Movement of plants and plant products. Inspection or documentation of the plant health status of...

  17. PLANT BIOPRINTING: NOVEL PERSPECTIVE FOR PLANT BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Adhityo WICAKSONO

    2015-12-01

    Full Text Available Bioprinting is a technical innovation that has revolutionized tissue engineering. Using conventional printer cartridges filled with cells as well as a suitable scaffold, major advances have been made in the biomedical field, and it is now possible to print skin, bones, blood vessels, and even organs. Unlike animal systems, the application of bioprinting in simple plant tissue cells is still in a nascent phase and has yet to be studied. One major advantage of plants is that all living parts are reprogrammable in the form of totipotent cells. Plant bioprinting may improve scientists’understanding of plant shape and morphogenesis, and could serve for the mass production of desired tissues or plants, or even the production of plant-based biomaterial for industrial uses. This perspectives paper explores these possibilities using knowledge on what is known about bioprinting in other biosystems.

  18. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits.

    Science.gov (United States)

    Voon, W W Y; Rukayadi, Y; Meor Hussin, A S

    2016-05-01

    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively. Biocellulose (BC) is pure extracellular cellulose that is formed by many micro-organisms in the presence of carbon source and acidic condition. It can replace plant-based cellulose in multifarious applications due to its unique characteristics. In this study, three potential biocellulose-producing bacterial strains were obtained from Malaysian acidic fruits and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. This study reports for the first time the new biocellulose-producing bacterial strains isolated from Malaysian acidic fruits. © 2016 The

  19. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  20. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Science.gov (United States)

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  1. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    Science.gov (United States)

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  2. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  3. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome

    Directory of Open Access Journals (Sweden)

    Armin eErlacher

    2014-04-01

    Full Text Available Lettuce belongs to the most commonly raw eaten food worldwide and its microbiome plays an important role for both human and plant health. Yet, little is known about the impact of potentially occurring pathogens and beneficial inoculants of the indigenous microorganisms associated with lettuce. To address this question we studied the impact of the phytopathogenic fungus Rhizoctonia solani and the biological control agent Bacillus amyloliquefaciens FZB42 on the indigenous rhizosphere and phyllosphere community of greenhouse-grown lettuce at two plant stages. The rhizosphere and phyllosphere gammaproteobacterial microbiomes of lettuce plants showed clear differences in their overall and core microbiome composition as well as in corresponding diversity indices. The rhizosphere was dominated by Xanthomonadaceae (48% and Pseudomonadaceae (37% with Rhodanobacter, Pseudoxanthomonas, Dokdonella, Luteimonas, Steroidobacter, Thermomonas as core inhabitants, while the dominating taxa associated to phyllosphere were Pseudomonadaceae (54%, Moraxellaceae (16% and Enterobacteriaceae (25% with Alkanindiges, Pantoea and a group of Enterobacteriaceae unclassified at genus level. The preferential occurrence of enterics in the phyllosphere was the most significant difference between both habitats. Additional enhancement of enterics on the phyllosphere was observed in bottom rot diseased lettuce plants, while Acinetobacter and Alkanindiges were identified as indicators of healthy plants. Interestingly, the microbial diversity was enhanced by treatment with both the pathogen, and the co-inoculated biological control agent. The highest impact and bacterial diversity was found by Rhizoctonia inoculation, but FZB42 lowered the impact of Rhizoctonia on the microbiome. This study shows that the indigenous microbiome shifts as a consequence to pathogen attack but FZB42 can compensate these effects, which supports their role as biocontrol agent and suggests a novel mode of

  4. Pseudomonas savastanoi pv. savastanoi: some like it knot.

    Science.gov (United States)

    Ramos, Cayo; Matas, Isabel M; Bardaji, Leire; Aragón, Isabel M; Murillo, Jesús

    2012-12-01

    wounds. Populations are very unevenly distributed in the plant, and suffer drastic fluctuations throughout the year, with maximum numbers of bacteria occurring during rainy and warm months. Populations of P. savastanoi pv. savastanoi are normally associated with nonpathogenic bacteria, both epiphytically and endophytically, and have been demonstrated to form mutualistic consortia with Erwinia toletana and Pantoea agglomerans, which could result in increased bacterial populations and disease symptoms. Based on preventive measures, mostly sanitary and cultural practices. Integrated control programmes benefit from regular applications of copper formulations, which should be maintained for at least a few years for maximum benefit. Olive cultivars vary in their susceptibility to olive knot, but there are no known cultivars with full resistance to the pathogen. http://www.pseudomonas-syringae.org/; http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; ASAP access to the P. savastanoi pv. savastanoi NCPPB 3335 genome sequence https://asap.ahabs.wisc.edu/asap/logon.php. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  5. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Science.gov (United States)

    Elhakeem, Ali; Markovic, Dimitrije; Broberg, Anders; Anten, Niels P R; Ninkovic, Velemir

    2018-01-01

    Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution) or untouched plants (C_solution). The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  6. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Directory of Open Access Journals (Sweden)

    Ali Elhakeem

    Full Text Available Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution or untouched plants (C_solution. The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  7. Design of plant safety model in plant enterprise engineering environment

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Suzuki, Kazuhiko; Shimada, Yukiyasu

    2001-01-01

    Plant enterprise engineering environment (PEEE) is an approach aiming to manage the plant through its lifecycle. In such environment, safety is considered as the common objective for all activities throughout the plant lifecycle. One approach to achieve plant safety is to embed safety aspects within each function and activity within such environment. One ideal way to enable safety aspects within each automated function is through modeling. This paper proposes a theoretical approach to design plant safety model as integrated with the plant lifecycle model within such environment. Object-oriented modeling approach is used to construct the plant safety model using OO CASE tool on the basis of unified modeling language (UML). Multiple views are defined for plant objects to express static, dynamic, and functional semantics of these objects. Process safety aspects are mapped to each model element and inherited from design to operation stage, as it is naturally embedded within plant's objects. By developing and realizing the plant safety model, safer plant operation can be achieved and plant safety can be assured

  8. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  9. Plants, plant pathogens, and microgravity--a deadly trio

    Science.gov (United States)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  10. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  11. Dipping Strawberry Plants in Fungicides before Planting to Control Anthracnose

    Directory of Open Access Journals (Sweden)

    Myeong Hyeon Nam

    2014-03-01

    Full Text Available Anthracnose crown rot (ACR, caused by Colletotrichum fructicola, is a serious disease of strawberry in Korea. The primary inoculums of ACR were symptomless strawberry plants, plant debris, and other host plants. To effectively control anthracnose in symptomless transplanted strawberries, it is necessary to use diseasefree plants, detect the disease early, and apply a fungicide. Therefore, in 2010 and 2011, we evaluated the efficacy of pre-plant fungicide dips by using strawberry transplants infected by C. fructicola for the control of anthracnose. Dipping plants in prochloraz-Mn for 10 min before planting was most effective for controlling anthracnose in symptomless strawberry plants and resulted in more than 76% control efficacy. Azoxystrobin showed a control efficacy of over 40%, but plants treated with pyraclostrobin, mancozeb and iminoctadine tris showed high disease severity. The control efficacy of the dip treatment with prochloraz-Mn did not differ with temperature and time. Treatment with prochloraz-Mn for more than an hour caused growth suppression in strawberry plants. Therefore, the development of anthracnose can be effectively reduced by dipping strawberry plants for 10 min in prochloraz-Mn before planting.

  12. Plant traits related to nitrogen uptake influence plant-microbe competition.

    Science.gov (United States)

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  13. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  14. Conservation law of plants' energy value dependence of plants ...

    African Journals Online (AJOL)

    The plants differences in biochemical composition are analyzed, and the conservation law of energy value in plants is obtained. The link between the need for the nutrients and the plants biochemical composition is examined, Liebig's law is specified. Keywords: plant's biochemical composition, biochemistry, energy value in ...

  15. An Automated and Continuous Plant Weight Measurement System for Plant Factory.

    Science.gov (United States)

    Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.

  16. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    Directory of Open Access Journals (Sweden)

    Wei-Tai eChen

    2016-03-01

    Full Text Available In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analogue electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.

  17. Plant walkdown

    International Nuclear Information System (INIS)

    Kostov, M.

    2000-01-01

    This report covers the following: preparatory steps for performing plant walk-down; the objective of the first plant walk-down; plant walk-down procedures; earthquake screening evaluation; walk-down documentation; second plant walk-down. The following objectives concerning the plant walk-down(s) were achieved. The plant system configuration is verified in order to proceed with event tree and fault tree analyses. Systems interactions, other types of dependencies or plant unique features are identified. he safety related components that are judged to generically possess high capacities (i.e., larger than the earthquake review level) have been verified to contain no weaknesses. Further analyses needed to establish the capacities of remaining safety-related components are identified and necessary field data are obtained. Information on components is obtained to assist in HCLPF (fragility) evaluation and peer review of the seismic margin study

  18. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  19. PlantDB – a versatile database for managing plant research

    Directory of Open Access Journals (Sweden)

    Gruissem Wilhelm

    2008-01-01

    Full Text Available Abstract Background Research in plant science laboratories often involves usage of many different species, cultivars, ecotypes, mutants, alleles or transgenic lines. This creates a great challenge to keep track of the identity of experimental plants and stored samples or seeds. Results Here, we describe PlantDB – a Microsoft® Office Access database – with a user-friendly front-end for managing information relevant for experimental plants. PlantDB can hold information about plants of different species, cultivars or genetic composition. Introduction of a concise identifier system allows easy generation of pedigree trees. In addition, all information about any experimental plant – from growth conditions and dates over extracted samples such as RNA to files containing images of the plants – can be linked unequivocally. Conclusion We have been using PlantDB for several years in our laboratory and found that it greatly facilitates access to relevant information.

  20. Top 10 plant viruses in molecular plant pathology.

    Science.gov (United States)

    Scholthof, Karen-Beth G; Adkins, Scott; Czosnek, Henryk; Palukaitis, Peter; Jacquot, Emmanuel; Hohn, Thomas; Hohn, Barbara; Saunders, Keith; Candresse, Thierry; Ahlquist, Paul; Hemenway, Cynthia; Foster, Gary D

    2011-12-01

    Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  1. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  2. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  3. [Review on application of plant growth retardants in medicinal plants cultivation].

    Science.gov (United States)

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  4. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  5. Analysis of plant height between male sterile plants obtained by space flight and male fertile plants in Maize

    International Nuclear Information System (INIS)

    Cao Moju; Huang Wenchao; Pan Guangtang; Rong Tingzhao; Zhu Yingguo

    2004-01-01

    F 2 fertility segregation population and the sister-cross fertility segregation population, which descended from the male sterile material, were analysed by their plant height of different growing stage between 2 populations of male sterile plants and male fertile plants. The plant height of different fertility plants come to the significance at 0.01 level in different stage through the whole growing period. The differences become more and more large with the development of plants, the maximum difference happens in adult stage. The increasing amount of different stage also shows significance at 0.01 level between two kinds of different fertility plants

  6. Configuration management of plant modifications for nuclear power plants

    International Nuclear Information System (INIS)

    Ritsch, W.J.

    1987-01-01

    Due to the increasing complexity of nuclear power plant operation, regulatory pressure, and the large numbers of people required to operate and support the stations, the control of plant modifications at these plants needs to be expanded and improved. The aerospace and defense industries, as well as the owners or operators of large energy projects have established configuration management programs (CMPs) to control plant design changes. These programs are composed of well-defined functions for identifying, evaluating, recording, tracking, issuing, and documenting the established baseline conditions, as well as required changes to these baseline conditions. The purpose of this paper is to describe a recommended CMP for plant modifications consisting of a computerized data base installed on the utility's computer to provide a central storage of plant design and operations data necessary to control the following activities as they are affected by plant design changes: training; record management; operations; maintenance; health physics; planning/scheduling; procurement/inventory control; outage management (including modifications); and emergency response

  7. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  8. Perspectives on plant vulnerabilities ampersand other plant and containment improvements

    International Nuclear Information System (INIS)

    LaChance, J.; Kolaczkowski, A.; Kahn, J.

    1996-01-01

    The primary goal of the Individual Plant Examination (IPE) Program was for licensees to identify plant-unique vulnerabilities and actions to address these vulnerabilities. A review of these vulnerabilities and plant improvements that were identified in the IPEs was performed as part of the IPE Insights Program sponsored by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this effort was to characterize the identified vulnerabilities and the impact of suggested plant improvements. No specific definition for open-quotes vulnerabilityclose quotes was provided in NRC Generic Letter 88-20 or in the subsequent NRC IPE submittal guidance documented in NUREG-1335. Thus licensees were left to use their own definitions. Only 20% of the plants explicitly stated that they had vulnerabilities. However, most licensees identified other plant improvements to address issues not explicitly classified as vulnerabilities, but pertaining to areas in which overall plant safety could potentially be increased. The various definitions of open-quotes vulnerabilityclose quotes used by the licensees, explicitly identified vulnerabilities, proposed plant improvements to address these vulnerabilities, and other plant improvements are summarized and discussed

  9. Life management plants at nuclear power plants PWR

    International Nuclear Information System (INIS)

    Esteban, G.

    2014-01-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  10. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  11. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  12. Making Plant-Support Structures From Waste Plant Fiber

    Science.gov (United States)

    Morrow, Robert C.; < oscjmocl. < attjew K/; {ertzbprm. A,amda; Ej (e. Cjad); Hunt, John

    2006-01-01

    Environmentally benign, biodegradable structures for supporting growing plants can be made in a process based on recycling of such waste plant fiber materials as wheat straw or of such derivative materials as paper and cardboard. Examples of structures that can be made in this way include plant plugs, pots, planter-lining mats, plant fences, and root and shoot barriers. No chemical binders are used in the process. First, the plant material is chopped into smaller particles. The particles are leached with water or steam to remove material that can inhibit plant growth, yielding a fibrous slurry. If the desired structures are plugs or sheets, then the slurry is formed into the desired shapes in a pulp molding subprocess. If the desired structures are root and shoot barriers, pots, or fences, then the slurry is compression-molded to the desired shapes in a heated press. The processed materials in these structures have properties similar to those of commercial pressboard, but unlike pressboard, these materials contain no additives. These structures have been found to withstand one growth cycle, even when wet

  13. Chapter 15. Plant pathology and managing wildland plant disease systems

    Science.gov (United States)

    David L. Nelson

    2004-01-01

    Obtaining specific, reliable knowledge on plant diseases is essential in wildland shrub resource management. However, plant disease is one of the most neglected areas of wildland resources experimental research. This section is a discussion of plant pathology and how to use it in managing plant disease systems.

  14. Biogeographical diversity of plant associated microbes in arcto-alpine plants

    NARCIS (Netherlands)

    Kumar, Manoj Gopala Krishnan

    2016-01-01

    Terrestrial plants and microbes have co-evolved since the emergence of the former on Earth. Associations with microorganisms can be either beneficial or detrimental for plants. Microbes can be found in the soil surrounding the plant roots, but also in all plant tissues, including seeds. In

  15. Exotic plant species attack revegetation plants in post-coal mining areas

    Science.gov (United States)

    Yusuf, Muhammad; Arisoesilaningsih, Endang

    2017-11-01

    This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.

  16. Electronic plants

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  17. Stress tolerant plants

    OpenAIRE

    Rubio, Vicente; Iniesto Sánchez, Elisa; Irigoyen Miguel, María Luisa

    2014-01-01

    [EN] The invention relates to transgenic plants and methods for modulating abscisic acid (ABA) perception and signal transduction in plants. The plants find use in increasing yield in plants, particularly under abiotic stress.

  18. The application of plant information system on third Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liu Wangtian

    2005-01-01

    Plant overall control has been applied in Qinshan Nuclear Power Plant, which enhances the security of plant operation, but it is not enough to improve the technical administration level. In order to integrate the overall information and to improve the technical administration level more. Third Qinshan Nuclear Power Plant applies the plant information system. This thesis introduces the application of plant information system in Third Qinshan Nuclear Power Plant and the effect to the plant after the system is carried into execution, in addition, it does more analysis and exceptions for application of plant information system in the future. (authors)

  19. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

    Science.gov (United States)

    Johnston-Monje, David; Raizada, Manish N

    2011-01-01

    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate

  20. Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology

    Science.gov (United States)

    Johnston-Monje, David; Raizada, Manish N.

    2011-01-01

    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate

  1. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

    Directory of Open Access Journals (Sweden)

    David Johnston-Monje

    Full Text Available Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte to modern maize (corn and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed

  2. Linking plant nutritional status to plant-microbe interactions.

    Science.gov (United States)

    Carvalhais, Lilia C; Dennis, Paul G; Fan, Ben; Fedoseyenko, Dmitri; Kierul, Kinga; Becker, Anke; von Wiren, Nicolaus; Borriss, Rainer

    2013-01-01

    Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N), phosphate (P), iron (Fe) and potassium (K) deficiencies on the transcriptome of the plant growth promoting rhizobacterium (PGPR) Bacillus amyloliquefaciens FZB42. The largest shifts in gene expression patterns were observed in cells exposed to exudates from N-, followed by P-deficient plants. Exudates from N-deprived maize triggered a general stress response in FZB42 in the exponential growth phase, which was evidenced by the suppression of numerous genes involved in protein synthesis. Exudates from P-deficient plants induced bacterial genes involved in chemotaxis and motility whilst exudates released by Fe and K deficient plants did not cause dramatic changes in the bacterial transcriptome during exponential growth phase. Global transcriptional changes in bacteria elicited by nutrient deficient maize exudates were significantly correlated with concentrations of the amino acids aspartate, valine and glutamate in root exudates suggesting that transcriptional profiling of FZB42 associated with metabolomics of N, P, Fe and K-deficient maize root exudates is a powerful approach to better understand plant-microbe interactions under conditions of nutritional stress.

  3. Plant diversity and plant identity influence Fusarium communities in soil.

    Science.gov (United States)

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  4. Plant Density Effect in Different Planting Dates on Growth Indices, Yield and

    Directory of Open Access Journals (Sweden)

    F Azizi

    2013-04-01

    Full Text Available In order to determine the appropriate plant density in different planting dates for sweet corn cultivar KSC403su, an experiment was conducted using a randomized complete block design in split plot lay out with three replications at Seed and Plant Improvement Institute in Karaj in 2006. Three planting dates (22 May, 5 June and 22 June were assigned as main plots and three plant densities (65000, 75000 and 85000 plants per hectare were considered as sub plots. Effect of planting date on row/ear, 1000 kernels weight, biological yield and harvest index was significant at 1% probability level and it was significant at 5% probability level for kernels/ear row and grain yield. All traits decreased with postponement of planting date to 5 June except for row/ear, kernels/row and grain yield. More delay in planting from 22 May to 22 June caused that grain yield was decreased significantly about 32.5% (from 14.45 to 9.78 ton/ha. Effect of plant density was significant at 1% probability level for all the traits. All of the traits decreased significantly with increasing plant density except for biological yield. The highest grain yield was resulted from 65000 plants per hectare density (14.20 ton/ha. Interaction effect of planting date and plant density was significant at 5% probability level for biological yield and harvest index but it wasn’t significant for the other traits. Growth indices decreased with delay in planting date and increasing plant density. Only leaf area index increased in more plant densities. From the results of this experiment it might be resulted that appropriate planting date to produce the highest grain yield is 22 May to 5 June for sweet corn cultivar KSC403su and also the highest grain yield can obtain from 65000 plants per hectare density.

  5. Medicinal Plants.

    Science.gov (United States)

    Phillipson, J. David

    1997-01-01

    Highlights the demand for medicinal plants as pharmaceuticals and the demand for health care treatments worldwide and the issues that arise from this. Discusses new drugs from plants, anticancer drugs, antiviral drugs, antimalarial drugs, herbal remedies, quality, safety, efficacy, and conservation of plants. Contains 30 references. (JRH)

  6. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  7. Plant simulator

    International Nuclear Information System (INIS)

    Fukumitsu, Hiroyuki

    1998-01-01

    A simulator of a reactor plant of the present invention comprises a plurality of distributed computers, an indication processing section and an operation section. The simulation calculation functions of various kinds of plant models in the plant are shared by the plurality of computers. The indication processing section controls collection of data of the plant simulated by the computers and instructions of an operator. The operation section is operated by the operator and the results of operation are transmitted to the indication processing section, to conduct operation trainings and display the results of the simulation. Each of the computers and the indication processing portion are connected with each other by a network having a memory for common use. Data such as the results of calculation of plant models and various kinds of parameters of the plant required commonly to the calculators and the indication processing section are stored in the common memory, and adapted to be used by way of the network. (N.H.)

  8. [Distribution of HCB discharged from a chemical plant in plants].

    Science.gov (United States)

    Chen, Jing; Wang, Lin-Ling; Lu, Xiao-Hua; Yuan, Song-Hu; Liu, Xi-Xiang; Wang, Yue; Zhao, Qian; Mei, Ling-Fang

    2009-04-15

    The distribution characteristics of hexachlorobenzene (HCB) in plant and rhizosphere soil in contamination conduit, a nearby river and a cropland were studied and the impact factors were also discussed. The results are summarized as follows: the range of the HCB concentration in plant and rhizosphere soil in investigation area were respectively from 4.45 microg x kg(-1) to 1,189.89 microg x kg(-1) (dw) and from 27.93 microg x kg(-1) to 3,480.71 microg x kg(-1) (dw). Higher enrichment of HCB in woodplant than herbs due to higher fat concentration in woodplant in the contamination conduit and the rich concentrtion factor of woodplant and herbs were 0.41-2.55 and 0.01-1.34. The range of HCB concentrations in plants in nearby croplands was significantly wide (4.45-333.1 microg x kg(-1)) while HCB concentrations in different parts of plant were various, e.g. HCB concentrations in fruit, root and shoot of taro were 318.77 microg x kg(-1), 281.02 microg x kg(-1) and 10.94 microg x kg(-1). There was a remarkable positive relation between the concentrations of HCB in plant and fat concentration of plant while no relativity between the concentrations of HCB in plant and those in ground soils in the contamination conduit and cropland. The concentration levels of HCB in plant and rhizosphere soil in river were dramatically decreased with increasing distance from contaminated conduit. There was a remarkable positive relation between the concentrations of HCB in plant and those in ground soils but no relation between concentrations of HCB in plant and fat concentration of plant in river. The distribution characteristics of HCB in plants were influenced by contaminated levels, fat concentration and Partition-transfer model.

  9. Plant extraction process

    DEFF Research Database (Denmark)

    2006-01-01

    A method for producing a plant extract comprises incubating a plant material with an enzyme composition comprising a lipolytic enzyme.......A method for producing a plant extract comprises incubating a plant material with an enzyme composition comprising a lipolytic enzyme....

  10. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions

    NARCIS (Netherlands)

    Lucas-Barbosa, Dani

    2016-01-01

    Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected.

  11. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    NARCIS (Netherlands)

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a

  12. Plutonium Plant, Trombay

    International Nuclear Information System (INIS)

    Yadav, J.S.; Agarwal, K.

    2017-01-01

    The journey of Indian nuclear fuel reprocessing started with the commissioning of Plutonium Plant (PP) at Trombay on 22"n"d January, 1965 with an aim to reprocess the spent fuel from research reactor CIRUS. The basic process chosen for the plant was Plutonium Uranium Reduction EXtraction (PUREX) process. In seventies, the plant was subjected to major design modifications and replacement of hardware, which later met the additional demand from research reactor DHRUVA. The augmented plutonium plant has been operating since 1983. Experience gained from this plant was very much helpful to design future reprocessing plant in the country

  13. [Intoxications with plants].

    Science.gov (United States)

    Kupper, Jacqueline; Reichert, Cornelia

    2009-05-01

    Ingestions of plants rarely lead to life-threatening intoxications. Highly toxic plants, which can cause death, are monkshood (Aconitum sp.), yew (Taxus sp.) and autumn crocus (Colchicum autumnale). Lethal ingestions of monkshood and yew are usually suicides, intoxications with autumn crocus are mostly accidental ingestions of the leaves mistaken for wild garlic (Allium ursinum). Severe intoxications can occur with plants of the nightshade family like deadly nightshade (Atropa belladonna), angel's trumpet (Datura suaveolens) or jimsonweed (Datura stramonium). These plants are ingested for their psychoactive effects. Ingestion of plant material by children most often only causes minor symptoms or no symptoms at all, as children usually do not eat great quantities of the plants. They are especially attracted by the colorful berries. There are plants with mostly cardiovascular effects like monkshood, yew and Digitalis sp. Some of the most dangerous plants belong to this group. Plants of the nightshade family cause an anticholinergic syndrome. With golden chain (Laburnum anagyroides), castor bean (Ricinus communis) and raw beans (Phaseolus vulgaris) we see severe gastrointestinal effects. Autumn crocus contains a cell toxin, colchicine, which leads to multiorgan failure. Different plants are irritative or even caustic to the skin. Treatment is usually symptomatic. Activated charcoal is administered within one hour after ingestion (1 g/kg). Endoscopic removal of plant material can be considered with ingestions of great quantities of highly toxic plants. Administration of repeated doses of charcoal (1-2 g/h every 2-4 hours) may be effective in case of oleander poisoning. There exist only two antidotes: Anti-digoxin Fab fragments can be used with cardenolide glycoside-containing plants (Digitalis sp., Oleander). Physostigmine is the antidote for severe anticholinergic symptoms of the CNS. Antibodies against colchicine, having been developed in France, are not available at

  14. Plant life management and maintenance technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Ikegami, Tsukasa; Aoki, Masataka; Shimura, Takao; Kaimori, Kimihiro; Koike, Masahiro

    2001-01-01

    Nuclear power generation occupying an important position for energy source in Japan and supplying about one third of total electric power usage is now required for further upgrading of its economics under regulation relaxation of electric power business. And, under execution retardation of its new planning plant, it becomes important to operate the already established plants for longer term and to secure their stability. Therefore, technical development in response to the plant life elongation is promoted under cooperation of the Ministry of Economics and Industries, electric power companies, literate, and plant manufacturers. Under such conditions, the Hitachi, Ltd. has progressed some technical developments on check inspection, repairs and maintenance for succession of the already established nuclear power plants for longer term under securing of their safety and reliability. And in future, by proposing the check inspection and maintenance program combined with these technologies, it is planned to exert promotion of maintenance program with minimum total cost from a viewpoint of its plant life. Here were described on technologies exerted in the Hitachi, Ltd. such as construction of plant maintenance program in response to plant life elongation agreeing with actual condition of each plant, yearly change mechanism grasping, life evaluation on instruments and materials necessary for maintenance, adequate check inspection, repairs and exchange, and so forth. (G.K.)

  15. Plant life management

    International Nuclear Information System (INIS)

    Charbonneau, S.; Framatome, J.B.

    1992-01-01

    Plant life assessment and extension studies have been performed by numerous companies all over the world. Critical equipment has been identified as well as various degradation mechanisms involved in the plant aging process. Nowadays one has to think what to implement to improve the existing situation in the Nuclear Power Plant (NPP). FRAMATOME has undertaken this thought process in order to find the right answers and bring them to utilities facing either critical concern for plant life extension or the problem of management of power plant potential longevity. This is why we prepared a Plant Life Improvement Action Plan, comprising 10 (ten) major items described hereafter using examples of work performed by FRAMATOME for its utility customers desiring to manage the lives of their plants, both in France with EDF and abroad

  16. Plant Research '75

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Research is reported on stomatal regulation of the gas exchanges between plant and environment; inhibitory effects in flower formation; plant growth and development through hormones; hormone action; development and nitrogen fixation in algae; primary cell wall glycoprotein ectensin; enzymic mechanisms and control of polysaccharide and glycoprotein synthesis; molecular studies of membrane studies; sensory transduction in plants; regulation of formation of protein complexes and enzymes in higher plant cell and mechanism of sulfur dioxide toxicity in plants. (PCS)

  17. Plant air systems safety study: Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    1982-05-01

    The Portsmouth Gaseous Diffusion Plant Air System facilities and operations are reviewed for potential safety problems not covered by standard industrial safety procedures. Information is presented under the following section headings: facility and process description (general); air plant equipment; air distribution system; safety systems; accident analysis; plant air system safety overview; and conclusion

  18. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    Directory of Open Access Journals (Sweden)

    Malia A. Gehan

    2017-12-01

    Full Text Available Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

  19. Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de sementes de soja Diversity and biotechnological potential of endophytic bacterial community of soybean seeds

    Directory of Open Access Journals (Sweden)

    Laura de Castro Assumpção

    2009-05-01

    identification by means of partially sequencing the 16S rDNA were used in community characterization. The isolates with best biotechnological potential were inoculated in seeds to evaluate their ability to promote plant growth. Twelve ribotypes were identify by means of ARDRA and classified as: Acinetobacter, Bacillus, Brevibacterium, Chryseobacterium, Citrobacter, Curtobacterium, Enterobacter, Methylobacterium, Microbacterium, Micromonospora, Pantoea, Paenibacillus, Pseudomonas, Ochrobactrum, Streptomyces and Tsukamurella. As for the biotechnological potential of the community, 18% of the isolates were able to antagonize phytopathogenic fungi, 100% to synthesize IAA, and 39% to solubilize phosphate. The strain 67A(57 of Enterobacter sp. increased significantly the dry root biomass. Inoculation of promising isolates did not promote growth in soybean plants in most of the cases.

  20. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere.

    Science.gov (United States)

    Venkatachalam, S; Ranjan, K; Prasanna, R; Ramakrishnan, B; Thapa, S; Kanchan, A

    2016-07-01

    The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  2. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

    Science.gov (United States)

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang

    2017-08-08

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta , and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta -connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

  3. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups

    Directory of Open Access Journals (Sweden)

    Huang Hsien-Da

    2008-11-01

    Full Text Available Abstract Background The elucidation of transcriptional regulation in plant genes is important area of research for plant scientists, following the mapping of various plant genomes, such as A. thaliana, O. sativa and Z. mays. A variety of bioinformatic servers or databases of plant promoters have been established, although most have been focused only on annotating transcription factor binding sites in a single gene and have neglected some important regulatory elements (tandem repeats and CpG/CpNpG islands in promoter regions. Additionally, the combinatorial interaction of transcription factors (TFs is important in regulating the gene group that is associated with the same expression pattern. Therefore, a tool for detecting the co-regulation of transcription factors in a group of gene promoters is required. Results This study develops a database-assisted system, PlantPAN (Plant Promoter Analysis Navigator, for recognizing combinatorial cis-regulatory elements with a distance constraint in sets of plant genes. The system collects the plant transcription factor binding profiles from PLACE, TRANSFAC (public release 7.0, AGRIS, and JASPER databases and allows users to input a group of gene IDs or promoter sequences, enabling the co-occurrence of combinatorial transcription factor binding sites (TFBSs within a defined distance (20 bp to 200 bp to be identified. Furthermore, the new resource enables other regulatory features in a plant promoter, such as CpG/CpNpG islands and tandem repeats, to be displayed. The regulatory elements in the conserved regions of the promoters across homologous genes are detected and presented. Conclusion In addition to providing a user-friendly input/output interface, PlantPAN has numerous advantages in the analysis of a plant promoter. Several case studies have established the effectiveness of PlantPAN. This novel analytical resource is now freely available at http://PlantPAN.mbc.nctu.edu.tw.

  4. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  5. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    International Nuclear Information System (INIS)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis

  6. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables.

    Science.gov (United States)

    Jackson, Colin R; Randolph, Kevin C; Osborn, Shelly L; Tyler, Heather L

    2013-12-01

    Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Total culturable bacteria on salad vegetables ranged from 8.0 × 10(3) to 5.5 × 10(8) CFU g(-1). The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 10(3) to 5.8 × 10(5) CFU g(-1). Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by traditional

  7. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables

    Science.gov (United States)

    2013-01-01

    Background Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Results Total culturable bacteria on salad vegetables ranged from 8.0 × 103 to 5.5 × 108 CFU g-1. The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 103 to 5.8 × 105 CFU g-1. Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by

  8. Gas turbine cogeneration plant for textile dyeing plant in Italy

    International Nuclear Information System (INIS)

    Tonetti, P.E.

    1991-01-01

    This paper reports the information (i.e., notes on specific plant component weaknesses and defects, e.g., exchanger tube fouling, improper positioning of temperature probes, incorrect choice of flow valves, etc., and relative remedial actions) gained during a one year cogeneration plant debugging campaign at the Colorama textile dyeing plant in Italy. The cogeneration plant consists of a Solar Saturn MK III gas turbine (1,080 kw at terminals, 500 degrees C exhaust gas temperature); a double (steam and hot water) circuit waste heat boiler contemporaneously producing, with 100 degrees C supply water, 4 tonnes/h steam at 5 bars and 9 cubic meters/h of 20 to 80 degrees C hot water; and a 1,470 kVA generator operating at 3 kV connected by a 3kV/15kV transformer to the national grid. The plant is protected against fire by independent halon fire protection systems, one for the gas turbine plant, the other, for the control room. A modem connects the plant control and monitoring system with the firm which supplied the equipment. The plant operator cites an urgent national requirement for trained cogeneration equipment technical consultants and designers in order to better promote the use of innovative cogeneration technology by Italian industry

  9. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli.

    Science.gov (United States)

    Leonard, Simon; Hommais, Florence; Nasser, William; Reverchon, Sylvie

    2017-05-01

    Plant pathogenic bacteria attack numerous agricultural crops, causing devastating effects on plant productivity and yield. They survive in diverse environments, both in plants, as pathogens, and also outside their hosts as saprophytes. Hence, they are confronted with numerous changing environmental parameters. During infection, plant pathogens have to deal with stressful conditions, such as acidic, oxidative and osmotic stresses; anaerobiosis; plant defenses; and contact with antimicrobial compounds. These adverse conditions can reduce bacterial survival and compromise disease initiation and propagation. Successful bacterial plant pathogens must detect potential hosts and also coordinate their possibly conflicting programs for survival and virulence. Consequently, these bacteria have a strong and finely tuned capacity for sensing and responding to environmental and plant stimuli. This review summarizes our current knowledge of the signals and genetic circuits that affect survival and virulence factor expression in three important and well-studied plant pathogenic bacteria with wide host ranges and the capacity for long-term environmental survival. These are: Ralstonia solanacerarum, a vascular pathogen that causes wilt disease; Agrobacterium tumefaciens, a biotrophic tumorigenic pathogen responsible for crown gall disease and Dickeya, a brute force apoplastic pathogen responsible for soft-rot disease. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Plant diagnosis device

    International Nuclear Information System (INIS)

    Tozuka, Shin-ichi.

    1996-01-01

    Standard data approximately defined are inputted as 1:1 functional data between at least two or more plant data and each of plant data are inputted. Diagnosis data corresponding to each of process data are formed based on the functional data. Limit value data to be a threshold value which determines whether the diagnosis data are in a predetermined state or not are formed. The diagnosis data and the limit value data are displayed in a recognizable state. If diagnosis data of a plurality of plants are displayed simultaneously, all of the plant data are substantially the same value with one standard datum if the plant is in a normal state. When abnormality should occur in the plant, the difference between the diagnosis data and the standard data is remarkable, and the difference between the diagnosis data of other normal plant data and the standard data are also made remarkably, accordingly, the display of a plurality of diagnosis data is scattered thereby capable of diagnosing the abnormality of the plant. (N.H.)

  11. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of

  12. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  13. Plant dynamics studies towards design of plant protection system for PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K., E-mail: natesan@igcar.gov.in [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kasinathan, N.; Velusamy, K.; Selvaraj, P.; Chellapandi, P. [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Analysis of various design basis events in a fast breeder reactor towards design of plant protection system. Black-Right-Pointing-Pointer Plant dynamic modeling of a sodium cooled fast breeder reactor. Black-Right-Pointing-Pointer Selection of optimum set of plant parameters for considering best plant availability. - Abstract: Prototype fast breeder reactor (PFBR) is a 500 MWe (1250 MWt) liquid sodium cooled pool type reactor currently under construction in India. For a safe and efficient operation of the plant, it is necessary that the reactor is protected from all the transients that may occur in the plant. In order to accomplish this, adequate number of SCRAM parameters is required in the plant protection system with reliable instrumentation. For identifying the SCRAM parameters, the neutronic and thermal hydraulic responses of the plant for various possible events need to be established. Towards this, a one dimensional plant dynamics code DYANA-P has been developed with thermal hydraulic models for reactor core, hot and cold pools, intermediate heat exchangers, pipelines, steam generator, primary sodium circuits and secondary sodium circuits. The code also incorporates neutron kinetics and reactivity feedback models. By a comprehensive plant dynamics study an optimum list of SCRAM parameters and the maximum permissible response time for various instruments used for deriving them have been arrived at.

  14. Employing modern power plant simulators in nuclear power plants

    International Nuclear Information System (INIS)

    Niedorf, V.; Storm, J.

    2005-01-01

    At the present state of the art, modern power plant simulators are characterized by new qualitative features, thus enabling operators to use them far beyond the traditional field of training. In its first part, this contribution presents an overview of the requirements to be met by simulators for multivalent uses. In part two, a survey of the uses and perspectives of simulation technology in power plants is presented on the basis of experience accumulated by Rheinmetall Defence Electronics (RDE).Modern simulators are shown to have applications by far exceeding traditional training areas. Modular client - sever systems on standard computers allow inexpensive uses to be designed at several levels, thus minimizing maintenance cost. Complex development and running time environments, like the SEMS developed by RDE, have made power plant simulators the workhorses of power plant engineers in all power plant areas. (orig.)

  15. Plant-plant interactions in the restoration of Mediterranean drylands

    Science.gov (United States)

    Valdecantos, Alejandro; Fuentes, David; Smanis, Athanasios

    2014-05-01

    Plant-plant interactions are complex and dependent of both local abiotic features of the ecosystem and biotic relationships with other plants and animals. The net result of these interactions may be positive, negative or neutral resulting in facilitation, competition or neutralism, respectively (role of phylogeny). It has been proposed that competition is stronger between those individuals that share functional traits than between unrelated ones. The relative interaction effect of one plant on a neighbour may change in relation to resource availability - especially water in drylands. In addition, plants develop above and belowground biomass with time increasing the level and, eventually, changing the intensity and/or the direction of the interaction. In the framework of the restoration of degraded drylands, many studies have focused on the positive (nurse) effects of adult trees, shrubs and even grasses on artificially planted seedlings by improving the microclimate or providing protection against herbivores, but little is known about the interactions between seedlings of different life traits planted together under natural field conditions. In 2010 we established planting plots in two contrasted sites under semiarid Mediterranean climate and introduced one year old seedlings in different combinations of three species, two shrubs (Olea europaea and Pistacia lentiscus) and one grass (Stipa tenacissima). Half of the planting holes in each site were implemented with low-cost ecotechnological inputs to increase water availability by forcing runoff production and promoting deep infiltration (small plastic fabric + dry well). This resulted in four levels of abiotic stress. Biotic interactions were assessed by monitoring seedling survival and growth for three years after planting. The Relative Interaction Index (RII) of S. tenacissima on O. europaea was almost flat and close to 0 along the stress gradient since the beginning of the study suggesting limited interaction

  16. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  17. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    Science.gov (United States)

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  18. Effects of plant diversity on the concentration of secondary plant metabolites and the density of arthropods on focal plants in the field

    NARCIS (Netherlands)

    Kostenko, O.; Mulder, Patrick P. J.; Courbois, Matthijs; Bezemer, T. Martijn

    2017-01-01

    1.The diversity of the surrounding plant community can directly affect the abundance of insects on a focal plant as well as the size and quality of that focal plant. However, to what extent the effects of plant diversity on the arthropod community on a focal plant are mediated by host plant quality

  19. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Plant neurobiology and green plant intelligence : science, metaphors and nonsense

    NARCIS (Netherlands)

    Struik, P.C.; Yin, X.; Meinke, H.B.

    2008-01-01

    This paper analyses the recent debates on the emerging science of plant neurobiology, which claims that the individual green plant should be considered as an intelligent organism. Plant neurobiology tries to use elements from animal physiology as elegant metaphors to trigger the imagination in

  1. Improvement of plant reliability in PT. Badak LNG plant

    International Nuclear Information System (INIS)

    Achmad, S.; Somantri, A.

    1997-01-01

    PT. Badak's LNG sales commitment has been steadily increasing, therefore, there has been more emphasis to improve and maintain the LNG plant reliability. From plant operation historical records, Badak LNG plant experienced a high number of LNG process train trips and down time for 1977 through 1988. The highest annual number of LNG plant trips (50 times) occurred in 1983 and the longest LNG process train down time (1259 train-hours) occurred in 1988. Since 1989, PT. Badak has been able to reduce the number of LNG process train trips and down time significantly. In 1994 the number of LNG process train trips and was 18 times and the longest LNG process train down time was 377 train-hours. This plant reliability improvement was achieved by implementing plant reliability improvement programs beginning with the design of the new facilities and continuing with the maintenance and modification of the existing facilities. To improve reliability of the existing facilities, PT. Badak has been implementing comprehensive maintenance programs, to reduce the frequency and down time of the plant, such as Preventive and Predictive Maintenance as well as procurement material improvement since PT. Badak location is in a remote area. By implementing the comprehensive reliability maintenance, PT. Badak has been able to reduce the LNG process train trips to 18 and down time to 337 train hours in 1994 with the subsequent maintenance cost reduction. The average PT. Badak plant availability from 1985 to 1995 is 94.59%. New facilities were designed according to the established PT. Badak design philosophy, master plan and specification. Design of new facilities was modified to avoid certain problems from past experience. (au)

  2. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes.

    Science.gov (United States)

    Brader, Günter; Compant, Stéphane; Vescio, Kathryn; Mitter, Birgit; Trognitz, Friederike; Ma, Li-Jun; Sessitsch, Angela

    2017-08-04

    Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.

  3. MIPS PlantsDB: a database framework for comparative plant genome research.

    Science.gov (United States)

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  4. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Science.gov (United States)

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  5. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Alexander Bucksch

    2017-06-01

    Full Text Available The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

  6. Reassessing apoptosis in plants.

    Science.gov (United States)

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  7. Ethno-Botanical Survey Of Medicinal Plants In The Plant Genetic ...

    African Journals Online (AJOL)

    The ethno-botanical uses and mode of administration of twenty-nine medicinal plants found in the arboretum of the Plant Genetic Resource Centre located at Bunso in the Eastern region of Ghana against some disease conditions are hereby documented. Key words: Ethnobotany, medicinal plants, arboretum, Ghana. Nig.

  8. Kansas Power Plants

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Power Plants database depicts, as point features, the locations of the various types of power plant locations in Kansas. The locations of the power plants...

  9. Gender in Plants

    Indian Academy of Sciences (India)

    What is the difference between plant sex and plant gender? Why does stress .... environmental sex determination is often predictable. Sunlit patches favour .... ensures that these self-incompatible plants receive cross-pollen only. i emporal ...

  10. Hydroelectric Power Plants Dobsina

    International Nuclear Information System (INIS)

    Majercak, V.; Srenkelova, Z.; Kristak, J.G.

    1997-01-01

    In this brochure the Hydroelectric Power Plants Dobsina, (VED), subsidiary of the utility Slovenske Elektrarne, a.s. (Slovak Electric, plc. Bratislava) are presented. VED is mainly aimed at generating peak-load electrical energy and maintenance of operational equipment. Reaching its goals, company is first of all focused on reliability of production, economy and effectiveness, keeping principles of work safety and industry safety standards and also ecology. VED operates eight hydroelectric power plants, from which PVE Ruzin I and PVE Dobsina I are pump storage ones and they are controlled directly by the Slovak Energy Dispatch Centre located in Zilina thought the system LS 3200. Those power plants participate in secondary regulation of electrical network of Slovakia. They are used to compensate balance in reference to foreign electrical networks and they are put into operation independently from VED. Activity of the branch is focused mainly on support of fulfilment of such an important aim as electric network regulation. Beginnings of the subsidiary Hydroelectric Power Plants Dobsina are related to the year of 1948. After commissioning of the pump storage Hydroelectric Power Plants Dobsina in 1953, the plant started to carry out its mission. Since that time the subsidiary has been enlarged by other seven power plants, through which it is fulfilling its missions nowadays. The characteristics of these hydroelectric power plants (The pump-storage power plant Dobsina, Small hydroelectric power plant Dobsina II, Small hydroelectric power plant Rakovec, Small hydroelectric power plant Svedlar, Hydroelectric power plant Domasa, The pump-storage power plant Ruzin, and Small hydroelectric power plant Krompachy) are described in detail. Employees welfare and public relations are presented

  11. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    Science.gov (United States)

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  12. Air pollution impedes plant-to-plant communication, but what is the signal?

    Science.gov (United States)

    Blande, James D; Li, Tao; Holopainen, Jarmo K

    2011-07-01

    Since the first reports that undamaged plants gain defensive benefits following exposure to damaged neighbors, the idea that plants may signal to each other has attracted much interest. There has also been substantial debate concerning the ecological significance of the process and the evolutionary drivers. Part of this debate has centered on the distance over which signaling between plants occurs in nature. In a recent study we showed that an ozone concentration of 80 ppb, commonly encountered in nature, significantly reduces the distance over which plant-plant signaling occurs in lima bean. We went on to show that degradation of herbivore-induced plant volatiles by ozone is the likely mechanism for this. The key question remaining from our work was that if ozone is degrading the signal in transit between plants, which chemicals are responsible for transmitting the signal in purer air? Here we present the results of a small scale experiment testing the role of the two most significant herbivore-induced terpenes and discuss our results in terms of other reported functions for these chemicals in plant-plant signaling.

  13. Effects of planting date and plant density on crop growth of cut chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Challa, H.

    2002-01-01

    The effects of planting date (season) and plant density (32, 48 or 64 plants m-2) on growth of cut chrysanthemum (Chrysanthemum (Indicum group)) were investigated in six greenhouse experiments, applying the expolinear growth equation. Final plant fresh and dry mass and number of flowers per plant

  14. Plant diversity increases spatio?temporal niche complementarity in plant?pollinator interactions

    OpenAIRE

    Venjakob, Christine; Klein, Alexandra?Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-01-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four...

  15. Alien plant invasions and native plant extinctions: a six-threshold framework

    Science.gov (United States)

    Downey, Paul O.; Richardson, David M.

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader

  16. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  17. Anatomical Alterations in Plant Tissues Induced by Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Juan E. Palomares-Rius

    2017-11-01

    Full Text Available Plant-parasitic nematodes (PPNs interact with plants in different ways, for example, through subtle feeding behavior, migrating destructively through infected tissues, or acting as virus-vectors for nepoviruses. They are all obligate biotrophic parasites as they derive their nutrients from living cells which they modify using pharyngeal gland secretions prior to food ingestion. Some of them can also shield themselves against plant defenses to sustain a relatively long lasting interaction while feeding. This paper is centered on cell types or organs that are newly induced in plants during PPN parasitism, including recent approaches to their study based on molecular biology combined with cell biology-histopathology. This issue has already been reviewed extensively for major PPNs (i.e., root-knot or cyst nematodes, but not for other genera (viz. Nacobbus aberrans, Rotylenchulus spp.. PPNs have evolved with plants and this co-evolution process has allowed the induction of new types of plant cells necessary for their parasitism. There are four basic types of feeding cells: (i non-hypertrophied nurse cells; (ii single giant cells; (iii syncytia; and (iv coenocytes. Variations in the structure of these cells within each group are also present between some genera depending on the nematode species viz. Meloidogyne or Rotylenchulus. This variability of feeding sites may be related in some way to PPN life style (migratory ectoparasites, sedentary ectoparasites, migratory ecto-endoparasites, migratory endoparasites, or sedentary endoparasites. Apart from their co-evolution with plants, the response of plant cells and roots are closely related to feeding behavior, the anatomy of the nematode (mainly stylet size, which could reach different types of cells in the plant, and the secretory fluids produced in the pharyngeal glands. These secretory fluids are injected through the stylet into perforated cells where they modify plant cytoplasm prior to food removal

  18. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    Science.gov (United States)

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  19. Plant-based raw material: Improved food quality for better nutrition via plant genomics

    NARCIS (Netherlands)

    Meer, van der I.M.; Bovy, A.G.; Bosch, H.J.

    2001-01-01

    Plants form the basis of the human food chain. Characteristics of plants are therefore crucial to the quantity and quality of human food. In this review, it is discussed how technological developments in the area of plant genomics and plant genetics help to mobilise the potential of plants to

  20. Fiscal 1981 Sunshine Project research report. Development of hydrothermal power plant. Development of binary cycle power plant. Conceptual plant design; 1981 nendo nessui riyo hatsuden plant no kaihatsu / binary cycle hatsuden plant no kaihatsu seika hokokusho . Plant gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Conceptual design was made on a 10MW class binary cycle power plant for a demonstration plant superior in reliability and profitability, under most realistic current geothermal field conditions. In the design, study was made on heat balance, main pipe system, equipment allocation, and electric system for a plant system configuration, and study was also made on preheater, evaporator, condenser, turbine and others for plant component equipment. Further study was made on optimization of mist cooling condenser, instrumentation, control, utility, and environmental measures. The following basic data were obtained through the conceptual design: plant inlet hot water temperature: 130 degrees C, plant outlet hot water temperature: 70 degrees C, hot water flow rate: 1,415t/h, working fluid: R-114, R-114 pressure in evaporator: 11.98kg/cm{sup 2} abs, R-114 evaporation temperature: 91.1 degrees C, R-114 condensation temperature: 31.0 degrees C, R- 114 flow rate: 2,265t/h, site area: 106.5m x 102.4m, building area: 48.7m x 16.8m, and building height: 13.0m. (NEDO)

  1. Native plant community response to alien plant invasion and removal

    Directory of Open Access Journals (Sweden)

    Jara ANDREU

    2011-01-01

    Full Text Available Given the potential ecological impacts of invasive species, removal of alien plants has become an important management challenge and a high priority for environmental managers. To consider that a removal effort has been successful requires both, the effective elimination of alien plants and the restoration of the native plant community back to its historical composition and function. We present a conceptual framework based on observational and experimental data that compares invaded, non-invaded and removal sites to quantify invaders’ impacts and native plant recover after their removal. We also conduct a meta-analysis to quantitatively evaluate the impacts of plant invaders and the consequences of their removal on the native plant community, across a variety of ecosystems around the world. Our results that invasion by alien plants is responsible for a local decline in native species richness and abundance. Our analysis also provides evidence that after removal, the native vegetation has the potential to recover to a pre-invasion target state. Our review reveal that observational and experimental approaches are rarely used in concert, and that reference sites are scarcely employed to assess native species recovery after removal. However, we believe that comparing invaded, non-invaded and removal sites offer the opportunity to obtain scientific information with relevance for management.

  2. Measuring competition in plant communities where it is difficult to distinguish individual plants

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2011-01-01

    A novel method for measuring plant-plant interactions in undisturbed semi-natural and natural plant communities where it is difficult to distinguish individual plants is discussed. It is assumed that the ecological success of the different plant species in the plant community may be adequately...... measured by plant cover and vertical density (a measure that is correlated to the 3-dimensional space occupancy and biomass). Both plant cover and vertical density are measured in a standard pin-point analysis in the beginning and at the end of the growing season. In the outlined competition model....... The method allows direct measurements of the competitive effects of neighbouringzplants on plant performance and the estimation of parameters that describe the ecological processes of plantplant interactions during the growing season as well as the process of survival and recruitment between growing seasons...

  3. Role of land-based prototype plants in propulsion nuclear power plants engineering

    International Nuclear Information System (INIS)

    Voronin, V.E.; Prokhorov, Yu.A.

    1993-01-01

    Prototype plants provide a powerful tool for accomplishing tasks of development and construction of newly designed new power plants (NPPs). Leaving aside momentary political or economical considerations, one should admit that the use of prototype plants in testing of new NPPs is quite a necessity. To make the most of prototype plant, its commissioning should precede lead plant construction by 2-3 years. To make good use of prototype plants, a set of basic requirements should be fulfilled: greatest possible identity beteen the facility under test and a new series NPP; provision of high performance data acquisitoin, processing and storage firmware and a modelling system using update computer technique; and developed science infrastructure, engineering support and adequate maintenance. Prototype plants should comply with safety requirements to meet environmental protection standards

  4. The use of plants to protect plants and food against fungal pathogens

    African Journals Online (AJOL)

    Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal ...

  5. Origin and evolution of female plant from an identical male plant, in carica papaya

    International Nuclear Information System (INIS)

    Tariq, R.M.

    2014-01-01

    A field study was carried during January 2011 to March, 2013, to confirm the origin and evolution of female plant from an identical male plant in, a dioecious plant, the Carica papaya L. The plants were grown from the seeds of a normal female plant fruit. The grown, plants were identified as XX, XY and XYh (in March - April, 2012) on the basis of male and female flower bearing. The identical male plants, which usually bear only male (unisexual) flowers having calyx, corrolla and androecium, were observed also to bear bisexual flower, having calyx, corrolla, and gynoecium (ovary fused with androecium ). The fruits were set having the bisexual flowers in the identical male (hermaphrodite) plant. These fruits were kept under observation from setting to ripening stage. The ripened fruits were harvested from the identical male plants and 90-95% fruits from these plants were found with the seeds. Plants grown from these male fruit seeds produced all three type of plants i.e., male, female and hermaphrodite. This study indicated that an identical male (XYh) plant produced the female (XX) plant naturally, because of the XXY= XYh condition, which can contribute basic genetic material to male and female plants i.e an identical male (XYh = XXY= 2N +1 = 18+1= 19) produced all three type of plants, the pure male, the hermaphrodite and the female plant, originated from a single source of an identical male, as shown here. XYh = XXY g XY + XX + XXY. The propagation of all three sexes of Carica papaya from a single source of an identical male plant seeds is the first report in the world. (author)

  6. Design of comprehensive plant information system considering maintenance indicators in nuclear power plant

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Yamamoto, Akio

    2013-01-01

    A safety of a nuclear power plant must be ensured and maintained through its entire plant life. For this plant life cycle safety (PLCS), a comprehensive plant information system, in which an each maintenance record of the plant is taken into consideration, is of importance. In this paper, a development of a plant chart, which is a part of the information system, has been developed based on a defense-in-depth concept that is one of the most important concept to ensure the plant safety. In the chart, an updated probability of loss of a component or function is used as a maintenance indicator and a probabilistic risk assessment (PRA) method is applied to quantify the plant status in the chart. (author)

  7. [Psychoactive plant species--actual list of plants prohibited in Poland].

    Science.gov (United States)

    Simonienko, Katarzyna; Waszkiewicz, Napoleon; Szulc, Agata

    2013-01-01

    According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520.) the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where--among primeval cultures--are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  8. TRANSGENIC PLANT CONTAINMENT

    Science.gov (United States)

    The new technology using plant genetics to produce chemicals, pharmaceuticals, and therapeuitics in a wide array of new plant forms requires sufficient testing to ensure that these new plant introductions are benign in the environment. A recent effort to provide necessary guidan...

  9. Biofuelled heating plants

    International Nuclear Information System (INIS)

    Gulliksson, Hans; Wennerstaal, L.; Zethraeus, B.; Johansson, Bert-Aake

    2001-11-01

    The purpose of this report is to serve as a basis to enable establishment and operation of small and medium-sized bio-fuel plants, district heating plants and local district heating plants. Furthermore, the purpose of this report is to serve as a guideline and basis when realizing projects, from the first concept to established plant. Taking into account all the phases, from selection of heating system, fuel type, selection of technical solutions, authorization request or application to operate a plant, planning, construction and buying, inspection, performance test, take-over and control system of the plant. Another purpose of the report is to make sure that best available technology is used and to contribute to continuous development of the technology. The report deals mainly with bio-fuelled plants in the effect range 0.3 to10 MW. The term 'plant' refers to combined power and heating plants as well as 'simpler' district heating plants. The last-mentioned is also often referred to as 'local heating plant'. In this context, the term bio fuel refers to a wide range of fuel types. The term bio fuel includes processed fractions like powders, pellets, and briquettes along with unprocessed fractions, such as by-products from the forest industry; chips and bark. Bio fuels also include straw, energy crops and cereal waste products, but these have not been expressly studied in this report. The report is structured with appendixes regarding the various phases of the projects, with the purpose of serving as a helping handbook, or manual for new establishment, helping out with technical and administrative advice and environmental requirements. Plants of this size are already expanding considerably, and the need for guiding principles for design/technology and environmental requirements is great. These guiding principles should comply with the environmental legislation requirements, and must contain advice and recommendations for bio fuel plants in this effect range, also in

  10. Annual Plant Reviews

    DEFF Research Database (Denmark)

    , three dimensional structures and functions of each protein in a biological system. In plant science, the number of proteome studies is rapidly expanding after the completion of the Arabidopsis thaliana genome sequence, and proteome analyses of other important or emerging model systems and crop plants...... are in progress or are being initiated. Proteome analysis in plants is subject to the same obstacles and limitations as in other organisms, but the nature of plant tissues, with their rigid cell walls and complex variety of secondary metabolites, means that extra challenges are involved that may not be faced when...... analysing other organisms. This volume aims to highlight the ways in which proteome analysis has been used to probe the complexities of plant biochemistry and physiology. It is aimed at researchers in plant biochemistry, genomics, transcriptomics and metabolomics who wish to gain an up-to-date insight...

  11. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    OpenAIRE

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a minute-to-minute basis from July 2002 until April 2003. Data collected included, amongst others, crop transpiration from lysimeter data (2 m2), canopy temperature using infrared sensors, rockwool water...

  12. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  13. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  14. Novel weapons testing: are invasive plants more chemically defended than native plants?

    Directory of Open Access Journals (Sweden)

    Eric M Lind

    2010-05-01

    Full Text Available Exotic species have been hypothesized to successfully invade new habitats by virtue of possessing novel biochemistry that repels native enemies. Despite the pivotal long-term consequences of invasion for native food-webs, to date there are no experimental studies examining directly whether exotic plants are any more or less biochemically deterrent than native plants to native herbivores.In a direct test of this hypothesis using herbivore feeding assays with chemical extracts from 19 invasive plants and 21 co-occurring native plants, we show that invasive plant biochemistry is no more deterrent (on average to a native generalist herbivore than extracts from native plants. There was no relationship between extract deterrence and length of time since introduction, suggesting that time has not mitigated putative biochemical novelty. Moreover, the least deterrent plant extracts were from the most abundant species in the field, a pattern that held for both native and exotic plants. Analysis of chemical deterrence in context with morphological defenses and growth-related traits showed that native and exotic plants had similar trade-offs among traits.Overall, our results suggest that particular invasive species may possess deterrent secondary chemistry, but it does not appear to be a general pattern resulting from evolutionary mismatches between exotic plants and native herbivores. Thus, fundamentally similar processes may promote the ecological success of both native and exotic species.

  15. Competition overwhelms the positive plant-soil feedback generated by an invasive plant.

    Science.gov (United States)

    Crawford, Kerri M; Knight, Tiffany M

    2017-01-01

    Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant-soil feedbacks. We tested how community context altered plant-soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant-soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant-soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant-soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.

  16. Plant foods and plant-based diets: protective against childhood obesity?

    Science.gov (United States)

    Newby, P K

    2009-05-01

    The objective of this article is to review the epidemiologic literature examining the role of plant foods and plant-based diets in the prevention of childhood obesity. Available data suggest a protective effect of ready-to-eat cereal on risk of obesity, although prospective studies are still needed. Studies on fruit and vegetables; grains other than cereal; high-protein foods, including beans, legumes, and soy; fiber; and plant-based dietary patterns are inconsistent or generally null. The evidence base is limited, and most studies are fraught with methodologic limitations, including cross-sectional design, inadequate adjustment for potential confounders, and lack of consideration of reporting errors, stage of growth, and genetic influences. Well-designed prospective studies are needed. The lack of evidence showing an association between plant-based diets and childhood obesity does not mean that such diets should not be encouraged. Plant foods are highlighted in the Dietary Guidelines for Americans, and children do not meet the current recommendations for most plant foods. Although the advice to consume a plant-based, low-energy-dense diet is sound, ethical questions arise concerning the relatively high price of these diets in the United States and the way in which such diets are perceived in other parts of the world. Reducing the burden of childhood obesity, eliminating health disparities, and preventing the further spread of the disease around the globe will require not only policy interventions to ensure that plant foods are affordable and accessible to children of all income levels but also awareness of sociocultural norms that affect consumption.

  17. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    Science.gov (United States)

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase

  18. Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks

    NARCIS (Netherlands)

    Xue, W.; Bezemer, T.M.; Berendse, Frank

    2018-01-01

    Backgrounds and aims Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in

  19. Development of the Chinshan plant analyzer and its assessment with plant data

    International Nuclear Information System (INIS)

    Shihjen Wang; Chunsheng Chien; Jungyuh Jang; Shawcuang Lee

    1993-01-01

    To apply fast and accurate simulation techniques to Taiwanese nuclear power plants, plant analyzer technology was transferred to Taiwan from the Brookhaven National Laboratory (BNL) through a cooperative program. The Chinshan plant analyzer is developed on the AD100 peripheral processor systems, based on the BNL boiling water reactor plant analyzer. The BNL plant analyzer was first converted from MPS10 programming for AD10 to ADSIM programming for AD100. It was then modified for the Taiwan Power Company's Chinshan power station. The simulation speed of the Chinshan plant analyzer is eight times faster than real time. A load rejection transient performed at 100% of full power during startup tests was simulated with the Chinshan plant analyzer, and the results were benchmarked against test data. The comparison shows good agreement between calculated results and test data

  20. Major plant retrofits at Monticello nuclear generating plant

    International Nuclear Information System (INIS)

    Larsen, D.E.; Hogg, C.B.

    1986-01-01

    For the past several years, Northern States Power (NSP) has been making major plant retrofits to Monticello Nuclear generating Station in order to improve plant availability and upgrade the plant components for the potential extension of the operating license (life extension). This paper discusses in detail three major retrofits that have been completed or in the process of completion; recirculation loop piping replacement, reactor pressure vessel (RPV) water level-instrumentation modification, core spray piping replacement, the authors will address the scope of work, design and installation concerns, and life extension considerations during the design and procurement process for these three projects

  1. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China

    Science.gov (United States)

    Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants. PMID:27391239

  2. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Directory of Open Access Journals (Sweden)

    Liping Li

    Full Text Available With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM, the Uygur Medicine (UM, and the Kazak Medicine (KM for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1 medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2 medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3 CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1, in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2, for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  3. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Science.gov (United States)

    Li, Liping; Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  4. Better plants through mutations

    International Nuclear Information System (INIS)

    1988-01-01

    This is a public relations film describing problems associated with the genetic improvement of crop plants through induced mutations. Mutations are the ultimate source of genetic variation in plants. Mutation induction is now established as a practical tool in plant breeding. The Joint FAO/IAEA Division and the IAEA's laboratory at Seibersdorf have supported research and practical implementation of mutation breeding of both seed propagated and vegetatively propagated plants. Plant biotechnology based on in vitro culture and recombinant DNA technology will make a further significant contribution to plant breeding

  5. Does chemical aposematic (warning) signaling occur between host plants and their potential parasitic plants?

    Science.gov (United States)

    Lev-Yadun, Simcha

    2013-07-01

    Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward parasitic plants, which reduce the level of, slow the directional parasite growth (attack) toward the signaling hosts, or even cause parasitic plants to grow away from them in response to these chemicals. Chemical host aposematism toward parasitic plants may be a common but overlooked defense from parasitic plants.

  6. New plant releases from the USDA-NRCS Aberdeen, Idaho, Plant Materials Center

    Science.gov (United States)

    L. St. John; P. Blaker

    2001-01-01

    The Plant Materials Center at Aberdeen, Idaho, is operated by the United States Department of Agriculture, Natural Resources Conservation Service. The purpose of the Plant Materials Center is to evaluate and release plant materials for conservation use and to develop and transfer new technology for the establishment and management of plants. The Center serves portions...

  7. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    Directory of Open Access Journals (Sweden)

    Martina eKöberl

    2013-12-01

    Full Text Available Past medicinal plant research primarily focused on bioactive phytochemicals, however the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is i to introduce novel insights into the plant microbiome with a focus on medicinal plants, ii to provide details about plant- and microbe-derived ingredients of medicinal plants, and iii to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn. cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  8. Applicability of the 'constructional fire prevention for industrial plants' to power plants

    International Nuclear Information System (INIS)

    Hammacher, P.

    1978-01-01

    Power plants, especially nuclear power plants, are considered because of their high value and large construction volume to be among the most important industrial constructions of our time. They have a very exposed position from the point of view of fire prevention because of their constructional and operational concept. The efforts in the Federal Republic of Germany to standardize laws and regulations for fire prevention in industrial plants (industrial construction code, DIN 18230) must be supported if only because they would simplify the licensing procedure. However these regulations cannot be applied in many cases and especially in the main buildings of thermal power plants without restricting or even endangering the function or the safety of such plants. At the present state of the art many parts of the power plant can surely be defined as 'fire safe'. Fire endangered plant components and rooms are protected according to their importance by different measures (constructional measures, fire-fighting equipments, extractors for flue gases and for heat, fire-brigade of the plant). (orig.) [de

  9. Plant or Animal?

    Science.gov (United States)

    Bowman, Frank; Matthews, Catherine E.

    1996-01-01

    Presents activities that use marine organisms with plant-like appearances to help students build classification skills and illustrate some of the less obvious differences between plants and animals. Compares mechanisms by which sessile plants and animals deal with common problems such as obtaining energy, defending themselves, successfully…

  10. Stainless steels in power plant and plant construction. Papers

    International Nuclear Information System (INIS)

    1994-01-01

    The conference report comprises 14 papers on the corrosion characteristics of stainless steels in power plant and plant engineering. 9 papers are available as separate records in the ENERGY database. (MM) [de

  11. PLANT-MICROBIAL INTERACTIONS IN THE RHIZOSPHERE – STRATEGIES FOR PLANT GROWTH-PROMOTION

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-03-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are a group of bacteria that can actively colonize plant rootsand enhance plant growth using different mechanisms: production of plant growth regulators like indoleacetic acid,gibberellic acid, cytokinins and ethylene(Zahir et al., 2003, providing the host plant with fixed nitrogen, solubilizationof soil phosphorus, enhance Fe uptake, biocontrol, reducing the concentration of heavy metals. PGPR are perfectcandidates to be used as biofertilizers – eco-friendly alternative to common applied chemical fertilizer in today’sagriculture. The most important benefit of PGPR usage is related to the reduction of environmental pollution in conditionof increasing crop yield. This review presents the main mechanisms involved in PGPR promotion of plant growth.

  12. Alien plant invasions and native plant extinctions: a six-threshold framework.

    Science.gov (United States)

    Downey, Paul O; Richardson, David M

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat

  13. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  14. Plant analyzer for high-speed interactive simulation of BWR plant transients

    International Nuclear Information System (INIS)

    Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Wulff, W.; Cerbone, R.J.

    1984-01-01

    A combination of advanced modeling techniques and modern, special-purpose peripheral minicomputer technology was utilized to develop a plant analyzer which affords realistic predictions of plant transients and severe off-normal events in LWR power plants through on-line simulations at speeds up to 10 times faster than actual process speeds. The mathematical models account for nonequilibrium, nonhomogeneous two-phase flow effects in the coolant, for acoustical effects in the steam line and for the dynamics of the entire balance of the plant. Reactor core models include point kinetics with reactivity feedback due to void fraction, fuel temperature, coolant temperature, and boron concentration as well as a conduction model for predicting fuel and clad temperatures. Control systems and trip logic for plant protection systems are also simulated. The AD10 of Applied Dynamics International, a special-purpose peripheral processor, is used as the principal hardware of the plant analyzer

  15. Do invasive alien plants benefit more from global environmental change than native plants?

    Science.gov (United States)

    Liu, Yanjie; Oduor, Ayub M O; Zhang, Zhen; Manea, Anthony; Tooth, Ifeanna M; Leishman, Michelle R; Xu, Xingliang; van Kleunen, Mark

    2017-08-01

    Invasive alien plant species threaten native biodiversity, disrupt ecosystem functions and can cause large economic damage. Plant invasions have been predicted to further increase under ongoing global environmental change. Numerous case studies have compared the performance of invasive and native plant species in response to global environmental change components (i.e. changes in mean levels of precipitation, temperature, atmospheric CO 2 concentration or nitrogen deposition). Individually, these studies usually involve low numbers of species and therefore the results cannot be generalized. Therefore, we performed a phylogenetically controlled meta-analysis to assess whether there is a general pattern of differences in invasive and native plant performance under each component of global environmental change. We compiled a database of studies that reported performance measures for 74 invasive alien plant species and 117 native plant species in response to one of the above-mentioned global environmental change components. We found that elevated temperature and CO 2 enrichment increased the performance of invasive alien plants more strongly than was the case for native plants. Invasive alien plants tended to also have a slightly stronger positive response to increased N deposition and increased precipitation than native plants, but these differences were not significant (N deposition: P = 0.051; increased precipitation: P = 0.679). Invasive alien plants tended to have a slightly stronger negative response to decreased precipitation than native plants, although this difference was also not significant (P = 0.060). So while drought could potentially reduce plant invasion, increases in the four other components of global environmental change considered, particularly global warming and atmospheric CO 2 enrichment, may further increase the spread of invasive plants in the future. © 2017 John Wiley & Sons Ltd.

  16. Plants and men in space - A new field in plant physiology

    Science.gov (United States)

    Andre, M.; Macelroy, R. D.

    1990-01-01

    Results are presented on a comparison of nutritional values of and human psychological responses to algae and of higher plants considered for growth as food on long-term missions in space, together with the technological complexities of growing these plants. The comparison shows the advantages of higher plants, with results suggesting that a high level of material recycling can be obtained. It is noted that the issue of space gravity may be not a major problem for plants because of the possibility that phototropism can provide an alternative sense of direction. Problems of waste recycling can be solved in association with plant cultivation, and a high degree of autonomy of food production can be obtained.

  17. Countermeasure to plant life management of the nuclear power plants out of Japan

    International Nuclear Information System (INIS)

    1999-01-01

    Some investigations on countermeasure to plant life management of the nuclear power plants were begun since beginning of 1990s under cooperation with Ministry of International Trade and Industry and all electric power companies under consideration of recent state on abroad and at concept of preventive conservation implementation against the plant life management. As a result, the Tokyo Electric Power Company, the Kansai Electric Power Company and the Japan Atomic Power Company settled each program on countermeasure to plant life management of the Fukushima-1 Power Plant, the Mihama-1 Power Plant and the Tsuruga-1 Power Plant, respectively, which were reported to the Atomic Energy Safety Commission to issue on February, 1999, after deliberation in the Adviser Group of Ministry of International Trade and Industry. Such investigations on countermeasure to the plant life management are also conducted out of Japan in parallel to those in Japan, which contain programs reflecting states of operation and maintenance of nuclear power plants and atmosphere around atomic energy in each country. Here were described on some present states of the countermeasures to plant life management in U.S.A., France, Germany, Sweden, England and so forth. (G.K.)

  18. Experimental plant for sludge composting. Plant experimental de compostaje de lodos

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, A.; Caellas, N.; Amengual, A.; Calafact, J.

    1993-01-01

    Results and expertise collected during the first year of exploitation of a compost experimental plant located in Mallorca (Spain): The plant is treating sludge from the biological treatment plant of water at the town of Felanitx and the compost produced is used in agriculture. (Author)

  19. PlantCARE, a plant cis-acting regulatory element database

    OpenAIRE

    Rombauts, Stephane; Déhais, Patrice; Van Montagu, Marc; Rouzé, Pierre

    1999-01-01

    PlantCARE is a database of plant cis- acting regulatory elements, enhancers and repressors. Besides the transcription motifs found on a sequence, it also offers a link to the EMBL entry that contains the full gene sequence as well as a description of the conditions in which a motif becomes functional. The information on these sites is given by matrices, consensus and individual site sequences on particular genes, depending on the available information. PlantCARE is a relational database avail...

  20. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  1. Plant innate immunity

    Indian Academy of Sciences (India)

    Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and ...

  2. Plant life extensions for German nuclear power plants? Controversial discussion profit taking of nuclear power plant operators

    International Nuclear Information System (INIS)

    Matthes, Felix C.

    2009-10-01

    The discussion on the plant life extensions for German nuclear power plants beyond the residual quantity of electricity particularly focus on three aspects: Effects for the emission of carbon dioxide as a greenhouse gas; Development of the electricity price for which a reduction or attenuation is postulated due to a plant life extension; Skimming of additional profits at operating companies and their use in the safeguarding of the future (development of renewable energies, support of energy efficiency, promotion of the research, consolidation of the public budget, and so on). Under this aspect, the author of the contribution under consideration reports on the profit taking of nuclear power plant operators. The presented analysis considers three aspects: (a) Specification of the quantity structures for the investigated model of plant life extension; (b) The decisive parameter is the revenue situation and thus the price development for electricity at wholesale markets; (c) Determination and evaluation of the course in time of the profit taking.

  3. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.

    Science.gov (United States)

    Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico

    2017-11-14

    Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.

  4. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants

    International Nuclear Information System (INIS)

    Feretic, Danilo; Cavlina, Nikola

    2010-01-01

    The aim of this paper is to compare potential energy options for future electricity generation. The paper considers comparison of discounted total cost of electricity generated by nuclear power plant and by combined natural gas and wind plants, having in total equal electricity generation. Large uncertainty in the future fuel costs makes planning of optimal power generating mix very difficult to justify. Probabilistic method is used in the analysis which allows inclusion of uncertainties in future electricity generating cost prediction. Additionally, an informative functional relation between nuclear plant investment cost, natural gas price and wind plant efficiency, that determines competitive power generation between considered options, is also shown. Limiting conditions for nuclear power plant competitiveness vs. fossil and wind plants are presented. (authors)

  5. Community-level plant-soil feedbacks explain landscape distribution of native and non-native plants.

    Science.gov (United States)

    Kulmatiski, Andrew

    2018-02-01

    Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa , and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata . Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors

  6. Kenyan medicinal plants used as antivenin: a comparison of plant usage

    Directory of Open Access Journals (Sweden)

    Kisangau Daniel P

    2006-02-01

    Full Text Available Abstract The success of snake bite healers is vaguely understood in Kenya, partly due to their unknown materia medica and occult-mystical nature of their practice. A comparison is made of plants used in snake bite treatments by two culturally distinct African groups (the Kamba and Luo. Thirty two plants used for snakebite treatment are documented. The majority of the antidotes are prepared from freshly collected plant material – frequently leaves. Though knowledge of snake bite conditions etiological perceptions of the ethnic groups is similar, field ethnobotanical data suggests that plant species used by the two ethnic groups are independently derived. Antivenin medicinal plants effectively illustrate the cultural context of medicine. Randomness or the use of a variety of species in different families appears to be a feature of traditional snake bite treatments. A high degree of informant consensus for the species was observed. The study indicates rural Kenya inhabitants rely on medicinal plants for healthcare.

  7. Economics of farm biogas plants. Status of 4 plants 1988-92

    International Nuclear Information System (INIS)

    Hjort-Gregersen, K.

    1994-06-01

    For the four biogas plants balance sheets have been prepared to show the operating results. Operating income and cost are a mixture of actual accounts, estimates, and calculations. The results are shown both with and without taxes. Only one of the four plants can present a positive result before tax. Three of the plants, however, have positive results after tax. This stresses the importance of the fact that the part of the energy production that is used on the farm is not taxed. The analyses show that one of the plants in 1992 obtained an income, that makes it feasible to assume that the plant would be profitable provided in gets 30% of investment subsidy. An important condition for this is a relatively high gas yield which hardly can be obtained by digesting manures alone. Some of the most important unsolved problems of farm-based biogas plants are the missing possibilities of selling heat, the operating reliability, and the repair costs for generators. (LN)

  8. The prediction of the LWR plant accident based on the measured plant data

    International Nuclear Information System (INIS)

    Miettinen, J.; Schmuck, P.

    2005-01-01

    In case of accident affecting a nuclear reactor, it is essential to anticipate the possible development of the situation to efficiently succeed in emergency response actions, i.e. firstly to be early warned, to get sufficient information on the plant: and as far as possible. The ASTRID (Assessment of Source Term for Emergency Response based on Installation Data) project consists in developing a methodology: of expertise to; structure the work of technical teams and to facilitate cross competence communications among EP players and a qualified computer tool that could be commonly used by the European countries to reliably predict source term in case of an accident in a light water reactor, using the information available on the plant. In many accident conditions the team of analysts may be located far away from the plant experiencing the accident and their decision making is based on the on-line plant data transmitted into the crisis centre in an interval of 30 - 600 seconds. The plant condition has to be diagnosed based on this information, In the ASTRID project the plant status diagnostics has been studied for the European reactor types including BWR, PWR and VVER plants. The directly measured plant data may be used for estimations of the break size from the primary system and its locations. The break size prediction may be based on the pressurizer level, reactor vessel level, primary pressure and steam generator level in the case of the steam generator tube rupture. In the ASTRID project the break predictions concept was developed and its validity for different plant types and is presented in the paper, when the plant data has been created with the plant specific thermohydraulic simulation model. The tracking simulator attempts to follow the plant behavior on-line based on the measured plant data for the main process parameters and most important boundary conditions. When the plant state tracking fails, the plant may be experiencing an accident, and the tracking

  9. Proteomic Contributions to Medicinal Plant Research: From Plant Metabolism to Pharmacological Action

    Directory of Open Access Journals (Sweden)

    Akiko Hashiguchi

    2017-12-01

    Full Text Available Herbal medicine is a clinical practice of utilizing medicinal plant derivatives for therapeutic purposes. It has an enduring history worldwide and plays a significant role in the fight against various diseases. Herbal drug combinations often exhibit synergistic therapeutic action compared with single-constituent dosage, and can also enhance the cytotoxicity induced by chemotherapeutic drugs. To explore the mechanism underlying the pharmacological action of herbs, proteomic approaches have been applied to the physiology of medicinal plants and its effects on animals. This review article focuses on the existing proteomics-based medicinal plant research and discusses the following topics: (i plant metabolic pathways that synthesize an array of bioactive compounds; (ii pharmacological action of plants tested using in vivo and in vitro studies; and (iii the application of proteomic approaches to indigenous plants with scarce sequence information. The accumulation of proteomic information in a biological or medicinal context may help in formulating the effective use of medicinal plants.

  10. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...... Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from...

  11. Plants get sick too!

    Science.gov (United States)

    Although many people may never have given consideration to plant health, plants can suffer from a wide range of diseases. These plant diseases are caused by micro-organisms, including bacteria, fungi, and viruses. The audience will be introduced to short case studies of several plant diseases that m...

  12. A retrospective of an unconventionally trained plant pathologist: plant diseases to molecular plant pathology.

    Science.gov (United States)

    Ouchi, Seiji

    2006-01-01

    Plant pathology evolved from its mycology-oriented origins into a science dealing with biochemical mechanisms of diseases, along with enhanced crop production through disease control. This retrospective describes first my personal experience from my introduction to plant pathology, to the establishment of the concept of accessibility as a model pertaining to genetically defined basic compatibility induced by pathogens. I then refer to the development of molecular plant pathology from physiological and biochemical plant pathology fostered by the growth in recombinant technology in the second half of the past century. This progress was best reflected by the U.S.-Japan Seminar Series held at 4-5-year intervals from 1966 to 2003 and documented by publications in major journals of our discipline. These seminars emphasized that progress in science has always been supported by the invention of novel techniques and that knowledge integrated from modern genomics and subsequent proteomics should contribute to the progress of basic life sciences and, more importantly, to the elaboration of rational measures for disease control.

  13. Plants and fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Garber, K

    1962-01-01

    A report is given about the contents of fluorine in soil and different plants. It is stated that spinach and several spice herbages are rich in fluorine (0.98 - 21.8 ppm) while in other plants are not more than 5 ppm maximum. An exception is found in Thea sinensis with 178 ppm and more. Tea is, therefore, a source of fluorine for contamination of the human body. An increase of the fluorine contents of plants by manuring with F-salts or mineral manure is possible but of long duration. Damage to plants by uptake of fluorine from soil as well as in a gaseous condition from the atmosphere are described. The rate of damage is related to the type of soil in which the plant is grown.

  14. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  15. Plant Betterment as Anticipated Measure For Plant Life Management

    International Nuclear Information System (INIS)

    Louvat, J. P.

    1991-01-01

    A lot of modifications have been made since critically on each of the 28 standardized 900 MW class PWR units in France. Most of this technical upgrading was accomplished to facilitate operation, improve availability, or bring the unit design in line with evolving regulatory requirements, but a substantial part of the modifications was dedicated to Plant Life Management. As part of the program launched by EDF for plant life management, this paper introduces the Frustum's contribution for plant betterment and enhancement of reactor operation concurrently to ensure or extend plant service life. The solutions contemplated in this field are provided to reduce the frequency of unexpected reactor trip occurrences, to mitigate their negative effects or to smooth off the reactor operation and thus the magnitude of associated transients. The lifetime evaluation of NPP is basically an economical exercise, which tries to determine how long the operation of the plant will remain competitive, taking into account the long term perspective maintenance costs. There cannot be any conflict between lifetime and safety considerations, based upon the pituitary requisite that the safety requirement must be met at any time of the operation. Plant life management needs a consistent approach that can not be improvised on a case by case basis. Instead, it must be kept in mind from the very beginning of unit operation. This is the sense of the backfitting and technical upgrading carried out in France for the PWRs of the 900 MW class. It is thanks to this necessary anticipation that plant life will be actually managed, giving benefit both from the standpoint of availability and from that of the service lives of sensitive components. Substantial savings will thus be obtained

  16. Top 10 plant pathogenic bacteria in molecular plant pathology.

    Science.gov (United States)

    Mansfield, John; Genin, Stephane; Magori, Shimpei; Citovsky, Vitaly; Sriariyanum, Malinee; Ronald, Pamela; Dow, Max; Verdier, Valérie; Beer, Steven V; Machado, Marcos A; Toth, Ian; Salmond, George; Foster, Gary D

    2012-08-01

    Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10. © 2012 The Authors. Molecular Plant Pathology © 2012 BSPP and Blackwell Publishing Ltd.

  17. Plant growth and gas balance in a plant and mushroom cultivation system

    Science.gov (United States)

    Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I.

    1994-11-01

    In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem.

  18. Plant neighbor identity influences plant biochemistry and physiology related to defense.

    Science.gov (United States)

    Broz, Amanda K; Broeckling, Corey D; De-la-Peña, Clelia; Lewis, Matthew R; Greene, Erick; Callaway, Ragan M; Sumner, Lloyd W; Vivanco, Jorge M

    2010-06-17

    Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  19. Plant monitoring device

    International Nuclear Information System (INIS)

    Moriyama, Kunio.

    1991-01-01

    The monitoring device of the present invention is most suitable to early detection for equipment abnormality, or monitoring of state upon transient conditions such as startup and shutdown of an electric power plant, a large-scaled thermonuclear device and an accelerator plant. That is, in existent moitoring devices, acquired data are stored and the present operation states are monitored in comparison. A plant operation aquisition data reproduction section is disposed to the device. From the past operation conditions stored in the plant operation data aquisition reproducing section, the number of operation cycles that agrees with the present plant operation conditions is sought, to determine the agreed aquired data. Since these aquired data are time sequential data measured based on the standard time determined by the operation sequence, aquired data can be reproduced successively on every sample pitches. With such a constitution, aquired data under the same operation conditions as the present conditions are displayed together with the measured data. Accordingly, accurate monitoring can be conducted from the start-up to the shutdown of the plant. (I.S.)

  20. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Directory of Open Access Journals (Sweden)

    Jun Hong

    2016-06-01

    Full Text Available As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  1. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    Science.gov (United States)

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  2. From IPE [individual plant examinations] to IPEEE [individual plant examination of external events

    International Nuclear Information System (INIS)

    Newton, I.M.

    1994-01-01

    In addition to doing individual plant examinations (IPEs) which assess risk to nuclear plants from internal factors, all US plants are now also required to analyse external events and submit an IPEEE (Individual Plant Examination of External Events). Specifically, the IPEEEs require an assessment of plant-specific risks from the following types of initiating events: seismic events; fire; wind; tornadoes; flooding; accidents involving transportation or nearby facilities, such as oil refineries. (author)

  3. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  4. 78 FR 41866 - Restructuring of Regulations on the Importation of Plants for Planting

    Science.gov (United States)

    2013-07-12

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Parts 319 and 340 [Docket No. APHIS-2008-0011] RIN 0579-AD75 Restructuring of Regulations on the Importation of Plants for Planting AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Proposed rule; reopening of...

  5. Sizes of secondary plant components for modularized IRIS balance of plant design

    International Nuclear Information System (INIS)

    Williamson, Martin; Townsend, Lawrence

    2003-01-01

    Herein we report on a conceptual design for a balance of plant (BOP) layout to coordinate with IRIS-like plants. The report consists of results of calculations that sizes of various BOP components. These calculations include the thermodynamic analyses and general sizing of the components in order to determine plant capability and plant layout for studies on modularity and transportability. Mathematical modeling of the BOP system involves a modified ORCENT2 code as well as standard heat transfer methods. Using typical values for PWR type plants, a general BOP design, and IRIS steam generator values, an ORCENT2 heat balance is carried out for the secondary side of the plant. Using the ORCENT2 output, standard heat transfer methods are then used to calculate system performance and component sizes. (author)

  6. Comparative studies between nuclear power plants and hydroelectric power plants

    International Nuclear Information System (INIS)

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  7. Plants' essential chemical elements

    Science.gov (United States)

    Kevin T. Smith

    2007-01-01

    Every garden center and hardware store sells fertilizer guaranteed to "feed" plants. In a strict sense, we can't feed plants. Food contains an energy source. Green plants capture solar energy and make their own food through photosynthesis! Photosynthesis and other metabolic processes require chemical elements in appropriate doses for plants to survive...

  8. Role of Blossoms in Watermelon Seed Infestation by Acidovorax avenae subsp. citrulli.

    Science.gov (United States)

    Walcott, R R; Gitaitis, R D; Castro, A C

    2003-05-01

    ABSTRACT The role of watermelon blossom inoculation in seed infestation by Acidovorax avenae subsp. citrulli was investigated. Approximately 98% (84/87) of fruit developed from blossoms inoculated with 1 x 10(7) or 1 x 10(9) CFU of A. avenae subsp. citrulli per blossom were asymptomatic. Using immunomagnetic separation and the polymerase chain reaction, A. avenae subsp. citrulli was detected in 44% of the seed lots assayed, despite the lack of fruit symptoms. Furthermore, viable colonies were recovered from 31% of the seed lots. Of these lots, 27% also yielded seedlings expressing bacterial fruit blotch symptoms when planted under conditions of 30 degrees C and 90% relative humidity. A. avenae subsp. citrulli was detected and recovered from the pulp of 33 and 19%, respectively, of symptomless fruit whose blossoms were inoculated with A. avenae subsp. citrulli. The ability to penetrate watermelon flowers was not unique to A. avenae subsp. citrulli, because blossoms inoculated with Pantoea ananatis also resulted in infested seed and pulp. The data indicate that watermelon blossoms are a potential site of ingress for fruit and seed infestation by A. avenae subsp. citrulli.

  9. MICROBIOTA OF PINUS POLLEN AS ADJUVANT FACTOR OF ALLERGY

    Directory of Open Access Journals (Sweden)

    Tetiana Shevtsova

    2016-06-01

    Full Text Available Bacteria, their endotoxin and mold found on pollen can be a reason of respiratory symptoms in sensitized individuals. This question concerns an anemophilous pollen more acute. In this work quantitative by dilution plating method and qualitative microbial analysis by MALDI-TOF MS Biotyper of pollen and other plants organs of Pinus sylvestris L., P. nigra Arnold, P. mugo Turra, P. armandii Franch., P. wallichiana A.B. Jacks from Nitra, Slovakia are performed which shows quantitative and species differences in mesophilic aerobic (0.00-6.27 log cfu/g and anaerobic bacteria (0.00-3.70 log cfu/g, enterococci (0.00 log cfu/g, coliform bacteria (0.00-5.29 log cfu/g, lactobacilli (0.00-4.20 log cfu/g, microscopic fungi and yeasts (2.60-5.29 log cfu/g content. Representatives of Pseudomonas (14, Bacillus (2, Acinetobacter (1, Arthrobacter (1, Pantoea (1, Klebsiella (1, Penicillium (6, Aspergillus (4, Cladosporium (1, Debaryomyces (1 genera were revealed on pine trees. The allergenic potential of the identified association of microorganisms on pollen has been evaluated based on published data. The results may be useful for aerobiologists, allergists and microbiologists, at least at the local level.

  10. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  11. Remediation Using Plants and Plant Enzymes: A Progress Report

    National Research Council Canada - National Science Library

    1995-01-01

    .... In every case, the sources are plants growing near the sediment. The use of plants for remediation of hazardous materials such as TNT or other munitions like RDX and HMX has led to a new approach to remediation-- phytoremediation...

  12. Nuclear power plants. The market for services, retrofitting, construction of new plants and dismantling of older plants in Europe through 2030

    International Nuclear Information System (INIS)

    Briese, Dirk; Hoemske, Tom

    2010-01-01

    The power plant scene in Europe is characterized by new power plant projects and retrofitting projects everywhere. This is due to the ageing of existing power plants and to increasing energy demand. Currently, there are projects for 48 power plant units with an installed capacity of 70 GW. According to a study of the nuclear power plant sector, about 16 GW will probably be constructed prior to 2030. The reference scenario presented in this article assumes a dynamic increase of 15 thousand million Euros per annum through 2016/2018. (orig.)

  13. Multinationals and plant survival

    DEFF Research Database (Denmark)

    Bandick, Roger

    2010-01-01

    The aim of this paper is twofold: first, to investigate how different ownership structures affect plant survival, and second, to analyze how the presence of foreign multinational enterprises (MNEs) affects domestic plants’ survival. Using a unique and detailed data set on the Swedish manufacturing...... sector, I am able to separate plants into those owned by foreign MNEs, domestic MNEs, exporting non-MNEs, and purely domestic firms. In line with previous findings, the result, when conditioned on other factors affecting survival, shows that foreign MNE plants have lower survival rates than non......-MNE plants. However, separating the non-MNEs into exporters and non-exporters, the result shows that foreign MNE plants have higher survival rates than non-exporting non-MNEs, while the survival rates of foreign MNE plants and exporting non-MNE plants do not seem to differ. Moreover, the simple non...

  14. Plants and people

    Science.gov (United States)

    Kathryn Lynch

    2012-01-01

    Salal! Salmonberries! Sword ferns! The Northwest is home to a great number of native plant species that humans have used for centuries. Sadly, many local children are unaware of the history and culture connecting people and plants. Yet, from the beginning of time, plants have provided us food, medicine, and material for clothing, shelter, transportation, decoration,...

  15. Diagnosing plant problems

    Science.gov (United States)

    Cheryl A. Smith

    2008-01-01

    Diagnosing Christmas tree problems can be a challenge, requiring a basic knowledge of plant culture and physiology, the effect of environmental influences on plant health, and the ability to identify the possible causes of plant problems. Developing a solution or remedy to the problem depends on a proper diagnosis, a process that requires recognition of a problem and...

  16. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle

    DEFF Research Database (Denmark)

    Hwang, Jae-Ung; Song, Won-Yong; Hong, Daewoong

    2016-01-01

    Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental...... to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant....

  17. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    Full Text Available Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In

  18. Plant DB link - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...e Site Policy | Contact Us Plant DB link - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  19. Plant-soil feedbacks and the coexistence of competing plants

    NARCIS (Netherlands)

    Revilla Rimbach, Tomas; Veen, G. F. (Ciska); Eppinga, Maarten B.; Weissing, Franz J.

    Plant-soil feedbacks can have important implications for the interactions among plants. Understanding these effects is a major challenge since it is inherently difficult to measure and manipulate highly diverse soil communities. Mathematical models may advance this understanding by making the

  20. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions.

    Science.gov (United States)

    Berger, Susanne; Sinha, Alok K; Roitsch, Thomas

    2007-01-01

    Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease or death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.

  1. Are Famine Food Plants Also Ethnomedicinal Plants? An Ethnomedicinal Appraisal of Famine Food Plants of Two Districts of Bangladesh

    Science.gov (United States)

    Azam, Fardous Mohammad Safiul; Biswas, Anup; Mannan, Abdul; Afsana, Nusrat Anik; Jahan, Rownak

    2014-01-01

    Plants have served as sources of food and medicines for human beings since their advent. During famines or conditions of food scarcity, people throughout the world depend on unconventional plant items to satiate their hunger and meet their nutritional needs. Malnourished people often suffer from various diseases, much more than people eating a balanced diet. We are hypothesizing that the unconventional food plants that people eat during times of scarcity of their normal diet are also medicinal plants and thus can play a role in satiating hunger, meeting nutritional needs, and serving therapeutic purposes. Towards testing our hypothesis, surveys were carried out among the low income people of four villages in Lalmonirhat and Nilphamari districts of Bangladesh. People and particularly the low income people of these two districts suffer each year from a seasonal famine known as Monga. Over 200 informants from 167 households in the villages were interviewed with the help of a semistructured questionnaire and the guided field-walk method. The informants mentioned a total of 34 plant species that they consumed during Monga. Published literature shows that all the species consumed had ethnomedicinal uses. It is concluded that famine food plants also serve as ethnomedicinal plants. PMID:24701245

  2. Are Famine Food Plants Also Ethnomedicinal Plants? An Ethnomedicinal Appraisal of Famine Food Plants of Two Districts of Bangladesh

    Directory of Open Access Journals (Sweden)

    Fardous Mohammad Safiul Azam

    2014-01-01

    Full Text Available Plants have served as sources of food and medicines for human beings since their advent. During famines or conditions of food scarcity, people throughout the world depend on unconventional plant items to satiate their hunger and meet their nutritional needs. Malnourished people often suffer from various diseases, much more than people eating a balanced diet. We are hypothesizing that the unconventional food plants that people eat during times of scarcity of their normal diet are also medicinal plants and thus can play a role in satiating hunger, meeting nutritional needs, and serving therapeutic purposes. Towards testing our hypothesis, surveys were carried out among the low income people of four villages in Lalmonirhat and Nilphamari districts of Bangladesh. People and particularly the low income people of these two districts suffer each year from a seasonal famine known as Monga. Over 200 informants from 167 households in the villages were interviewed with the help of a semistructured questionnaire and the guided field-walk method. The informants mentioned a total of 34 plant species that they consumed during Monga. Published literature shows that all the species consumed had ethnomedicinal uses. It is concluded that famine food plants also serve as ethnomedicinal plants.

  3. ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS: DEVELOPMENT OF A PLANT KINETIC MODEL

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in plant tissues. This research determined the uptake, translocation, and accumulation of perchlorate in tobacco plants. Three hydroponics growth studies were completed u...

  4. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  5. [Plant hydroponics and its application prospect in medicinal plants study].

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  6. Plant lectins: the ties that bind in root symbiosis and plant defense.

    Science.gov (United States)

    De Hoff, Peter L; Brill, Laurence M; Hirsch, Ann M

    2009-07-01

    Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.

  7. Plant analyzer development for high-speed interactive simulation of BWR plant transients

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1986-01-01

    Advanced modeling techniques have been combined with modern, special-purpose peripheral minicomputer technology to develop a plant analyzer which provides realistic and accurate predictions of plant transients and severe off-normal events in nuclear power plants through on-line simulations at speeds of approximately 10 times faster than actual process speeds. The new simulation technology serves not only for carrying out routinely and efficiently safety analyses, optimizations of emergency procedures and design changes, parametric studies for obtaining safety margins and for generic training but also for assisting plant operations. Five modeling principles are presented which serve to achieve high-speed simulation of neutron kinetics, thermal conduction, nonhomogeneous and nonequilibrium two-phase flow coolant dynamics, steam line acoustical effects, and the dynamics of the balance of plant and containment systems, control systems and plant protection systems. 21 refs

  8. GenoCAD Plant Grammar to Design Plant Expression Vectors for Promoter Analysis.

    Science.gov (United States)

    Coll, Anna; Wilson, Mandy L; Gruden, Kristina; Peccoud, Jean

    2016-01-01

    With the rapid advances in prediction tools for discovery of new promoters and their cis-elements, there is a need to improve plant expression methodologies in order to facilitate a high-throughput functional validation of these promoters in planta. The promoter-reporter analysis is an indispensible approach for characterization of plant promoters. It requires the design of complex plant expression vectors, which can be challenging. Here, we describe the use of a plant grammar implemented in GenoCAD that will allow the users to quickly design constructs for promoter analysis experiments but also for other in planta functional studies. The GenoCAD plant grammar includes a library of plant biological parts organized in structural categories to facilitate their use and management and a set of rules that guides the process of assembling these biological parts into large constructs.

  9. The impact of whole-plant instruction of preservice teachers' understanding of plant science principles

    Science.gov (United States)

    Hypolite, Christine Collins

    The purpose of this research was to determine how an inquiry-based, whole-plant instructional strategy would affect preservice elementary teachers' understanding of plant science principles. This study probed: what preservice teachers know about plant biology concepts before and after instruction, their views of the interrelatedness of plant parts and the environment, how growing a plant affects preservice teachers' understanding, and which types of activity-rich plant themes studies, if any, affect preservice elementary teachers' understandings. The participants in the study were enrolled in two elementary science methods class sections at a state university. Each group was administered a preinstructional test at the beginning of the study. The treatment group participated in inquiry-based activities related to the Principles of Plant Biology (American Society of Plant Biologists, 2001), while the comparison group studied those same concepts through traditional instructional methods. A focus group was formed from the treatment group to participate in co-concept mapping sessions. The participants' understandings were assessed through artifacts from activities, a comparison of pre- and postinstructional tests, and the concept maps generated by the focus group. Results of the research indicated that the whole-plant, inquiry-based instructional strategy can be applied to teach preservice elementary teachers plant biology while modeling the human constructivist approach. The results further indicated that this approach enhanced their understanding of plant science content knowledge, as well as pedagogical knowledge. The results also showed that a whole-plant approach to teaching plant science concepts is an instructional strategy that is feasible for the elementary school. The theoretical framework for this study was Human Constructivist learning theory (Mintzes & Wandersee, 1998). The content knowledge and instructional strategy was informed by the Principles of Plant

  10. Safe genetically engineered plants

    International Nuclear Information System (INIS)

    Rosellini, D; Veronesi, F

    2007-01-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work

  11. Safe genetically engineered plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosellini, D; Veronesi, F [Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Universita degli Studi di Perugia, Borgo XX giugno 74, 06121 Perugia (Italy)

    2007-10-03

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  12. Using a plant health system framework to assess plant clinic performance in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank B.

    2016-01-01

    and expand, new analytical frameworks and tools are needed to identify factors influencing performance of services and systems in specific contexts, and to guide interventions. In this paper we apply a plant health system framework to assess plant clinic performance, using Uganda as a case study...... factors, influenced by basic operational and financial concerns, inter-institutional relations and public sector policies. Overall, there was a fairly close match between the plant health system attributes and plant clinic performance, suggesting that the framework can help explain system functioning....... A comparative study of plant clinics was carried out between July 2010 and September 2011 in the 12 districts where plant clinics were operating at that time. The framework enabled us to organise multiple issues and identify key features that affected the plant clinics. Clinic performance was, among other...

  13. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    Science.gov (United States)

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  14. Plant neighbor identity influences plant biochemistry and physiology related to defense

    Directory of Open Access Journals (Sweden)

    Callaway Ragan M

    2010-06-01

    Full Text Available Abstract Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa or heterospecific (Festuca idahoensis plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  15. Registered plant list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods ...the Plant DB link list in simple search page) Genome analysis methods Presence or... absence of Genome analysis methods information in this DB (link to the Genome analysis methods information ...base Site Policy | Contact Us Registered plant list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  16. Suppression of Plant Defenses by Herbivorous Mites Is Not Associated with Adaptation to Host Plants

    Directory of Open Access Journals (Sweden)

    Jéssica T. Paulo

    2018-06-01

    Full Text Available Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae, and bean plants (Fabales. First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.

  17. Radioactive uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Horak, O

    1986-01-01

    The fundamentals of radionuclide uptake by plants, both by leaves and roots are presented. Iodine, cesium, strontium and ruthenium are considered and a table of the measured concentrations in several agricultural plants shortly after the Chernobyl accident is presented. Another table gives the Cs and Sr transfer factors soil plants for some plants. By using them estimates of future burden can be obtained.

  18. Plant critical concept

    International Nuclear Information System (INIS)

    O'Regan, P.J.

    1996-01-01

    The objective of the effort summarized in this paper is to support O and M cost reduction efforts by focusing resources on components and processes critical to plant performance. This effort will identify where resources on nonplant critical components and processes can be reduced or eliminated. This method will use a functional assessment as the basis for component-specific evaluations and ranking. This effort consists of two stages conducted in series. The first stage is to deterministically identify that set of plant components that are relevant from a plant performance perspective (i.e., safety, economics, reliability). The second stage probabilistically ranks that set of plant components from an importance perspective, where importance pertains to the particular application and is probabilistically weighted. The results of a pilot study identified that only a relatively small set of components are truly critical from an integrated plant performance perspective. These results are consistent with work being conducted at other nuclear power plants, as well as other commercial facilities. Initial implementation of this effort is estimated to reduce O and M costs on the order of $1 million per year. Subsequent applications are anticipated to increase that savings to $4--$5 million per year

  19. Plant monitoring device

    International Nuclear Information System (INIS)

    Ito, Toru.

    1994-01-01

    The device of the present invention comprises a data collecting section for periodically collecting processed data sent from plant equipments, a top node induction and processing section for an important plant function model for inducing the plant function to be noted particularly by an operator from important plant function models by using process data and a window screen selection section for selecting a window screen to be displayed based on the result of the evaluation for each of function nodes based on the processing described above and determining the layout and automatically forming the display screen. It is constituted so that the kind and the layout of the window under display are checked if they are the same as those one cycle before or not and, if they are different, the screen is automatically switched to a new screen display. Then, operator's psychological burdens such as selection of information and judgement for the operation upon occurrence of plant abnormality and accident can be mitigated, to provide a safe operation circumstance having reinforced monitoring of the function of the whole plant can be provided. (N.H.)

  20. Plant control device

    International Nuclear Information System (INIS)

    Sato, Masuo; Ono, Makoto.

    1995-01-01

    A plant control device comprises an intellectual instrumentation group for measuring a predetermined process amount, an intellectual equipment group operating in accordance with a self-countermeasure, a system information space for outputting system information, a system level monitoring and diagnosing information generalization section for outputting system information, a system level maintenance information generalization section for outputting information concerning maintenance, a plant level information space and a plant level information generalization section. Each of them determines a state of the plant autonomously, and when abnormality is detected, each of the intellectual instrumentation, equipments and systems exchange information with each other, to conduct required operations including operations of intellectual robots, as required. Appropriate countermeasures for gauges, equipments and systems can be conducted autonomously at a place where operators can not access to improve reliability of complicate operations in the working site, as well as improve plant safety and reliability. (N.H.)

  1. Plants cultivation in controlled containments

    International Nuclear Information System (INIS)

    2000-01-01

    The plants cultivation in controlled containments permits to the - Departement d'Ecophysiologie Vegetale et de Microbiologie (DVEM) - of the CEA to lead several topics of research. The works of DVEM which are based on the molecular labelling, technique adapted to plants, contribute to understand the plant - soil relationships and the plant growth process. In addition, the staff of DVEM study the impact of pollutant heavy metals, existing in the soil, on plants and the plant stress induced by oxygen, light, ionizing radiations,... and defence mechanisms of plants (F. M.)

  2. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS)

  3. Fuel reprocessing plant: No qualitative differences as compared to other sensitive process plants

    International Nuclear Information System (INIS)

    Schweinoch, J.

    1986-01-01

    Nuclear power plants like the fuel reprocessing plant belong to the highly sensitive installations in respect of safety, but involve the same risks qualitatively as liquid-gas plants or chemical plants. Therefore no consequences for basic rights are discernible. The police can take adequate preventive measures. The regulations governing police action provide proper and sufficient warrants. (DG) [de

  4. Plant control system upgrades in the context of industry trends towards plant life-extension

    International Nuclear Information System (INIS)

    De Grosbois, J.; Basso, R.; Hepburn, A.; Kumar, V.

    2002-01-01

    Domestic CANDU nuclear plants were brought online between 1972 and 1986. Over the next decade, most of these stations will be nearing the end of their designed operating life. Effort has traditionally been placed on ensuring that the existing installed plant control system equipment could operate reliably until the end of this design life. Until recently, little attention has been given to plant control system upgrades or replacements to meet the expected requirement for 30+ years of additional plant operation following potential plant refurbishments. Industry developments are changing this thinking. The combination of expected increases in electricity demand (and prices), and the many recent successful turnaround stories of U.S. nuclear power plants has resulted in new interest in plant life improvement and plant life extension programs. Plant control system upgrade decisions are now being driven by the need to replace or upgrade these systems to support plant life extension. This article is the first of several that investigate aspects of plant control system upgrades or replacement, specifically in the context of the CANDU station digital control computers (DCCs). It sets the context for the discussion in the subsequent articles by providing a brief review of industry trends favouring plant refurbishment, by outlining the basic issues of aging and obsolescence of control system equipment, by establishing the need for upgrades and replacements, and by introducing some of the basic challenges to be addressed by the industry as it moves forward. (author)

  5. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  7. Plant Transporter Identification

    DEFF Research Database (Denmark)

    Larsen, Bo

    Membrane transport proteins (transporters) play a critical role for numerous biological processes, by controlling the movements of ions and molecules in and out of cells. In plants, transporters thus function as gatekeepers between the plant and its surrounding environment and between organs......, tissues, cells and intracellular compartments. Since plants are highly compartmentalized organisms with complex transportation infrastructures, they consequently have many transporters. However, the vast majority of predicted transporters have not yet been experimentally verified to have transport...... activity. This project contains a review of the implemented methods, which have led to plant transporter identification, and present our progress on creating a high-throughput functional genomics transporter identification platform....

  8. Less power plants

    International Nuclear Information System (INIS)

    TASR

    2003-01-01

    In the Slovak Republic the number of company power plants decreased as against 2001 by two sources. In present time only 35 companies have their own power plants. The companies Slovnaft, Kappa Sturovo, Slovensky hodvab Senica, Matador Puchov, Maytex Liptovsky MikuIas, Kovohuty Krompachy, Chemko Strazske and some Slovak sugar factories belong to the largest company power plants in force of distributing companies. Installed output of present 35 company sources is 531 MW. The largest of separate power plants as Paroplynovy cyklus Bratislava (218 MW) and VD Zilina (72 MW) belong to independent sources. Total installed output of Slovak sources was 8306 MW in the end of last year

  9. Plant life management (PLIM) in Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Stejskal, Jan; Steudler, Daniel; Thoma, Kurt; Fuchs, Reinhard

    2002-01-01

    Full text: The Swiss Utility Working group for ageing Management (AM) presented their programme for the first time at the PLIM/PLEX 93. In the meantime the key guideline documents have been prepared and the most so called S teckbrief - files for Safety Class 1 (SC1) are issued. The 'Steckbrief' file is a summary of the component history and includes the results of the Reviews performed and measures taken or planned to counteract ageing mechanisms. The scope of these activities does not only serve the important aspect of reliable plant service but also facilitates component and plant life extension feasibility. The older plants have been operated now for up to 30 years, so PLEX will become a more important topic for Swiss NPP. It is very encouraging, that there is an official memorandum of the Swiss authority with the clear statement, that they could not identify any technical reason, why the older plants should not extend their design life of 40 years for at least 10 and the younger for 20 years. The result of this is that a well established Ageing Management Programme (AMP) provide a good basis for Plant Life Extension (PLEX), e.g. the Swiss AMP has to be seen as a PLIM. (author)

  10. Photochemical smog and plants

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, T.

    1974-07-01

    Surveys of plant damage due to photochemical smog are summarized. The components of smog which appear to be responsible for plant damage include ozone and peroxyacyl nitrates. Their phytotoxic effects are much greater than those due to sulfur oxides. Damage surveys since 1970 reveal the following symptoms appearing on herbaceous plants (morning glory, cocks comb, dahlia, knotweed, petunia, chickweed, Welsh onion, spinach, Chinese cabbage, chard, taro): yellowish-white leaf discoloration, white and brown spots on matured leaves, and silvering of the lower surfaces of young leaves. Symptoms which appear on arboraceous plants such as zelkova, poplar, ginkgo, planetree, rose mallow, magnolia, pine tree, and rhododendron include early yellowing and reddening, white or brown spots, and untimely leaf-fall. The above plants are now utilized as indicator plants of photochemical smog. Surveys covering a broad area of Tokyo and three other prefectures indicate that plant damage due to photochemical smog extends to relatively unpolluted areas.

  11. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  12. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    Science.gov (United States)

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  13. Offshore atomic power plants

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Various merits of offshore atomic power plants are illustrated, and their systems are assessed. The planning of the offshore atomic power plants in USA is reviewed, and the construction costs of the offshore plant in Japan were estimated. Air pollution problem may be solved by the offshore atomic power plants remarkably. Deep water at low temperature may be advantageously used as cooling water for condensers. Marine resources may be bred by building artificial habitats and by providing spring-up equipments. In the case of floating plants, the plant design can be standardized so that the construction costs may be reduced. The offshore plants can be classified into three systems, namely artificial island system, floating system and sea bottom-based system. The island system may be realized with the present level of civil engineering, but requires the development of technology for the resistance of base against earthquake and its calculation means. The floating system may be constructed with conventional power plant engineering and shipbuilding engineering, but the aseismatic stability of breakwater may be a problem to be solved. Deep water floating system and deep water submerging system are conceivable, but its realization may be difficult. The sea bottom-based system with large caissons can be realized by the present civil engineering, but the construction of the caissons, stability against earthquake and resistance to waves may be problems to be solved. The technical prediction and assessment of new plant sites for nuclear power plants have been reported by Science and Technology Agency in 1974. The construction costs of an offshore plant has been estimated by the Ministry of International Trade and Industry to be yen71,026/kW as of 1985. (Iwakiri, K.)

  14. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae).

    Science.gov (United States)

    Moreira, Xoaquín; Nell, Colleen S; Katsanis, Angelos; Rasmann, Sergio; Mooney, Kailen A

    2016-09-06

    It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Plant embryogenesis

    NARCIS (Netherlands)

    Vries, de Sacco C.; Weijers, Dolf

    2017-01-01

    Land plants are called ‘embryophytes’ and thus, their collective name is defined by their ability to form embryos. Indeed, embryogenesis is a widespread phenomenon in plants, and much of our diet is composed of embryos (just think of grains, beans or nuts; Figure 1). However, in addition to embryos

  16. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    Science.gov (United States)

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  17. Plant life management study of Japanese nuclear power plants

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    1999-01-01

    Already more than twenty-five years have passed since the first commercial LWR plant went into operation in Japan. In this situation, MITI and 3 electric utilities (Tokyo Electric Power Company, Kansai Electric Power Co., Inc, Japan Atomic Power Company) have started a plant life management (PLM) study from 1994 to evaluate the long-term integrity of major systems, structures and components of aged LWR plants and ensure the safe, steady and highly reliable long-term operation. It consists of two phases: part 1 study and part 2 study. The part 1 study started in 1994 and focused on seven typical safety-related components. The part 1 study reports were made public in 1996. The part 2 study started in 1997. In this study we reviewed not only safety-related components but also plant reliability related components. The part 2 study reports were opened to the public in February 1999. This paper shows a summary of the part 2 study and our future PLM program. (author)

  18. Improvement of the nuclear plant analyzer for Korean Standard Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Sung Soo; Han, Byoung Sub; Suh, Jae Seung; Son, Dae Seong

    2005-04-01

    Accurate analysis of the operating characteristics of Nuclear Power Plants provides valuable information for both norman and abnormal operation. The information can be used for the enhancement of plant performance and safety. Usually, such analysis is performed using computer codes used for plant design or simulators. However, their usages are limited because special expertise is required to use the computer codes and simulators are not portable. Therefore, it deemed necessary to develop an NPA which minimizes those limitations and can be used for the analysis and simulation of Nuclear Power Plants. The purpose of this study is to develop a real-time best-estimate NPA for the Korean Nuclear Power Plants(KSNP). The NPA is an interactive, high fidelity engineering simulator. NPA combines the process model simulating the plant behavior with the latest computer technology such as Graphical User Interface(GUI) and simulation executive for enhanced user interface. The process model includes models for a three-dimensional reactor core, the NSSS, secondary system including turbine and feedtrain, safety auxiliary systems, and various control systems. Through the verification and validation of the NPA, it was demonstrated that the NPA can realistically simulate the plant behaviors during transient and accident conditions

  19. Phytochrome, plant growth and flowering

    Science.gov (United States)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  20. Phytochrome, plant growth and flowering

    Energy Technology Data Exchange (ETDEWEB)

    King, R.W.; Bagnall, D.J. [CSIRO, Canberra (Australia)

    1994-12-31

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. As shown for chrysanthemum, with FR depletion plants grown in sunlight are small, more branched and darker green. We examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  1. The year 2000 power plant

    International Nuclear Information System (INIS)

    Roman, H.T.

    1989-01-01

    Every utility seeks extended service life from its existing power plants before building new ones. It is not easy to justify a new power plant. The licensing and cost of new plants have become uncertain. In response to these conditions, electric utilities are undertaking plant life-extension studies and, in some cases, reconditioning/upgrading old power plants to significantly increase useful service life. Other technologies like robotics and artificial intelligence/expert systems are also being developed to reduce operating and maintenance (O and M) expenses, to remove workers from potentially hazardous environments, and to reduce plant downtime. Together, these steps represent an interim solution, perhaps providing some relief for the next few decades. However, there are serious physical and economic limits to retrofitting new technology into existing power plants. Some old plants will simply be beyond their useful life and require retirement. In nuclear plants, for instance, retrofit may raise important and time-consuming licensing/safety issues. Based on their robotics and artificial intelligence experience, the authors of this article speculate bout the design of the year 2000 power plant - a power plant they feel will naturally incorporate liberal amounts of robotic and artificial intelligence technologies

  2. Engineered Plants as Biosensors

    National Research Council Canada - National Science Library

    Stewart, C

    2003-01-01

    The aim of the research was the creation of a model biosensing plant that could detect plant diseases and to characterize the utility of laser induced fluorescence imaging for detecting the inducible (LIFI) plant signal...

  3. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal) and Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)]. E-mail: cmbranquinho@fc.ul.pt; Serrano, Helena Cristina [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Pinto, Manuel Joao [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Martins-Loucao, Maria Amelia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal)

    2007-03-15

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria.

  4. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    International Nuclear Information System (INIS)

    Branquinho, Cristina; Serrano, Helena Cristina; Pinto, Manuel Joao; Martins-Loucao, Maria Amelia

    2007-01-01

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria

  5. Ornamental Plant Breeding

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Silva Botelho

    2015-04-01

    Full Text Available World’s ornamental plant market, including domestic market of several countries and its exports, is currently evaluated in 107 billion dollars yearly. Such estimate highlights the importance of the sector in the economy of the countries, as well as its important social role, as it represents one of the main activities, which contributes to income and employment. Therefore a well-structured plant breeding program, which is connected with consumers’ demands, is required in order to fulfill these market needs globally. Activities related to pre-breeding, conventional breeding, and breeding by biotechnological techniques constitute the basis for the successful development of new ornamental plant cultivars. Techniques that involve tissue culture, protoplast fusion and genetic engineering greatly aid conventional breeding (germplasm introduction, plant selection and hybridization, aiming the obtention of superior genotypes. Therefore it makes evident, in the literature, the successful employment of genetic breeding, since it aims to develop plants with commercial value that are also competitive with the ones available in the market.

  6. Plant for retention of 14C in reprocessing plants for LWR fuel elements

    International Nuclear Information System (INIS)

    Braun, H.; Gutowski, H.; Bonka, H.; Gruendler, D.

    1983-01-01

    The 14 C produced from nuclear power plants is actually totally emitted from nuclear power plants and reprocessing plants. Using the radiation protection principles proposed in ICRP 26, 14 C should be retained at heavy water moderated reactors and reprocessing plants due to a cost-benefit analysis. In the frame of a research work to cost-benefit analysis, which was sponsored by the Federal Minister of the Interior, an industrial plant for 14 C retention at reprocessing plants for LWR fuel elements has been planned according to the double alkali process. The double alkali process has been chosen because of the sufficient operation experience in the conventional chemical technique. In order to verify some operational parameters and to gain experiences, a cold test plant was constructed. The experiment results showed that the double alkali process is a technically suitable method with high operation security. Solidifying CaCO 3 with cement gives a product fit for final disposal

  7. Plant designer's view of the operator's role in nuclear plant safety

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Church, J.F.; Cross, M.T.; Porter, N.J.

    1981-01-01

    The nuclear plant operator's role supports the design assumptions and equipment with four functional tasks. He must set up th plant for predictable response to disturbances, operate the plant so as to minimize the likelihood and severity of event initiators, assist in accomplishing the safety functions, and feed back operating experiences to reinforce or redefine the safety analyses' assumptions. The latter role enhances the operator effectiveness in the former three roles. The Safety Level Concept offers a different perspective that enables the operator to view his roles in nuclear plant safety. This paper outlines the operator's role in nuclear safety and classifies his tasks using the Safety Level Concept

  8. Late Palaeozoic plants.

    Science.gov (United States)

    Feng, Zhuo

    2017-09-11

    Land plants are one of the major constituents of terrestrial ecosystems on Earth, and play an irreplaceable role in human activities today. If we are to understand the extant plants, it is imperative that we have some understanding of the fossil plants from the deep geological past, particularly those that occurred during their early evolutionary history, in the late Palaeozoic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    Science.gov (United States)

    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant tr...

  10. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  11. Accident prevention in power plants

    International Nuclear Information System (INIS)

    Steyrer, H.

    Large thermal power plants are insured to a great extent at the Industrial Injuries Insurance Institute of Instrument and Electric Engineering. Approximately 4800 employees are registered. The accident frequency according to an evaluation over 12 months lies around 79.8 per year and 1000 employees in fossil-fired power plants, around 34.1 per year and 1000 employees in nuclear power plants, as in nuclear power plants coal handling and ash removal are excluded. Injuries due to radiation were not registered. The crucial points of accidents are mechanical injuries received on solid, sharp-edged and pointed objects (fossil-fired power plants 28.6%, nuclear power plants 41.5%), stumbling, twisting or slipping (fossil-fired power plants 21.8%, nuclear power plants 19.5%) and injuries due to moving machine parts (only nuclear power plants 12.2%). However, accidents due to burns or scalds obtain with 4.2% and less a lower portion than expected. The accident statistics can explain this fact in a way that the typical power plant accident does not exist. (orig./GL) [de

  12. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    International Nuclear Information System (INIS)

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein

  13. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    Directory of Open Access Journals (Sweden)

    Jonathon eMuller

    2014-10-01

    Full Text Available Buildings structures and surfaces are explicitly being used to grow plants, and these ‘urban plantings’ are typically designed for aesthetic value. Urban plantings also have the potential to contribute significant ‘ecological values’ by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban centre of Brisbane, Australia (subtropical climatic region over two, six week sampling periods characterised by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation, plant CO2 assimilation, soil CO2 efflux, and arthropod diversity.Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly - likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  14. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. The plant-window system

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1995-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the U.S. nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

  16. Plant state display device

    International Nuclear Information System (INIS)

    Kadota, Kazuo; Ito, Toshiichiro.

    1994-01-01

    The device of the present invention conducts information processing suitable for a man to solve a problem in a plant such as a nuclear power plant incorporating a great amount of information, where safety is required and provides information to an operator. Namely, theories and rules with respect to the flow and balanced state of materials and energy upon plant start-up, and a vapor cycle of operation fluids are symbolized and displayed on the display screen of the device. Then, the display of the plant information suitable to the information processing for a man to dissolve problems is provided. Accordingly, a mechanism for analyzing a purpose of the plant is made more definite, thereby enabling to prevent an erroneous judgement of an operator and occurrence of plant troubles. In addition, a simular effect can also be expected when the theories and rules with respect to the flow and the balanced state of materials and energy and thermohydrodynamic behavior of the operation fluids in a state of after-heat removing operation during shutdown of the plant are symbolized and displayed. (I.S.)

  17. Conditional sterility in plants

    Science.gov (United States)

    Meagher, Richard B.; McKinney, Elizabeth; Kim, Tehryung

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  18. Plant status monitor system description

    International Nuclear Information System (INIS)

    Prather, W.A.; Sly, G.A.

    1987-01-01

    In today's regulatory and financial environment, improving plant efficiency and safety are necessary elements of plant operations. Public utility commissions are making rate rulings based, in part, on plant availability performance; and the NRC is putting more emphasis on plant operational aspects. This comes at a time when operating, maintaining, and managing a plant are becoming increasingly complex; moreover, the desired number of experienced plant personnel are becoming more difficult to find. This situation can be partially resolved by using computer software tools to assist operations, maintenance, engineering, and management personnel. These software tools provide information and interpretations based on plant and equipment status. They support improved plant availability, technical specification compliance, and administrative functions. A key element or computerization is the ability to operate on integrated information

  19. Building of nuclear power plant

    International Nuclear Information System (INIS)

    Saito, Takashi.

    1997-01-01

    A first nuclear plant and a second nuclear power plant are disposed in adjacent with each other in a building for a nuclear reactor. A reactor container is disposed in each of the plants, and each reactor container is surrounded by a second containing facility. A repairing chamber capable of communicating with the secondary containing facilities for both of the secondary containing facilities is disposed being in contact with the second containing facility of each plant for repairing control rod driving mechanisms or reactor incorporated-type recycling pumps. Namely, the repairing chamber is in adjacent with the reactor containers of both plants, and situated between both of the plants as a repairing chamber to be used in common for both plants. Air tight inlet/exit doors are formed to the inlets/exits of both plants of the repairing chamber. Space for the repairing chamber can be reduced to about one half compared with a case where the repairing chamber is formed independently on each plant. (I.N.)

  20. Plant Breeding Goes Microbial

    NARCIS (Netherlands)

    Wei, Zhong; Jousset, Alexandre

    Plant breeding has traditionally improved traits encoded in the plant genome. Here we propose an alternative framework reaching novel phenotypes by modifying together genomic information and plant-associated microbiota. This concept is made possible by a novel technology that enables the

  1. Native Plants and Seeds, Oh My! Fifth Graders Explore an Unfamiliar Subject While Learning Plant Basics

    Science.gov (United States)

    Pauley, Lauren; Weege, Kendra; Koomen, Michele Hollingsworth

    2016-01-01

    Native plants are not typically the kinds of plants that are used in elementary classroom studies of plant biology. More commonly, students sprout beans or investigate with fast plants. At the time the authors started their plant unit (November), the school-yard garden had an abundance of native plants that had just started seeding, including…

  2. Selenium accumulation by plants.

    Science.gov (United States)

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops

  3. Plants under dual attack

    NARCIS (Netherlands)

    Ponzio, C.A.M.

    2016-01-01

    Though immobile, plants are members of complex environments, and are under constant threat from a wide range of attackers, which includes organisms such as insect herbivores or plant pathogens. Plants have developed sophisticated defenses against these attackers, and include chemical responses

  4. Selenium accumulation by plants

    Science.gov (United States)

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate 100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which

  5. Reprocessing plants safety

    International Nuclear Information System (INIS)

    Davies, A.G.; Leighton, C.; Millington, D.

    1989-01-01

    The reprocessing of irradiated nuclear fuel at British Nuclear Fuels (BNFL) Sellafield site consists of a number of relatively self-contained activities carried out in separate plants across the site. The physical conditions and time scales applied in reprocessing and storage make it relatively benign. The potential for minor releases of radioactivity under fault conditioning is minimised by plant design definition of control procedures, training and supervision. The risks to both the general public and workforce are shown to be low with all the safety criteria being met. Normal operating conditions also have the potential for some occupational radiation exposure and the plant and workers are monitored continuously. Exposure levels have been reduced steadily and will continue to fall with plant improvements. (U.K.)

  6. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    Directory of Open Access Journals (Sweden)

    Bettina eKaiser

    2015-02-01

    Full Text Available By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialogue between Cuscuta spp. and its host plants focuses on the incompatible interaction of Cuscuta reflexa with tomato.

  7. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants.

    Science.gov (United States)

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus

    2015-01-01

    By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.

  8. Development of hot water utilizing power plant in fiscal 1998. Development of a binary cycle power generation plant (development of a 10-MW class plant); 1998 nendo nessui riyo hatsuden plant nado kaihatsu. Binary cycle hatsuden plant no kaihatsu (10MW kyu plant no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper summarizes the achievements in fiscal 1998 on developing a 10-MW geothermal power plant in the Hohi-Sugawara area being a representative area of middle-to-high temperature hot water resources. In designing the plant, domestic and overseas surveys were carried out on media suitable for binary cycle power plants, thermal cycle characteristics, construction cost, environmental effects, safety, operation, maintenance and control. Latest technologies were also surveyed and analyzed. The plant construction performed development construction around the testing devices, new construction of a plant control room building, constructions for installing electrical machines including the hot water system testing devices, river water intake facility construction, and cooling water intake facility installing construction. The environmental effect investigation included investigations on rain falls, river flow rates, hot springs, spring water, monitoring during the construction, and the state of transplantation of precious plants, and observation on groundwater variation. In verifying the geothermal water pumping system, factory tests were carried out on DHP3 demonstration machine which couples the pump section of a down-hole pump with the motor section, whose performance and functions were verified. (NEDO)

  9. Individual plant examination: Submittal guidance

    International Nuclear Information System (INIS)

    1989-08-01

    Based on a Policy Statement on Severe Accidents Regarding Future Designs and Existing Plants, the performance of a plant examination is requested from the licensee of each nuclear power plant. The plant examination looks for vulnerabilities to severe accidents and cost-effective safety improvements that reduce or eliminate the important vulnerabilities. This document delineates guidance for reporting the results of that plant examination. 38 refs., 2 tabs

  10. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  11. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota.

    Science.gov (United States)

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-03-29

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S', H', and D') based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  12. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  13. Beaver herbivory on aquatic plants.

    Science.gov (United States)

    Parker, John D; Caudill, Christopher C; Hay, Mark E

    2007-04-01

    Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard's tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard's tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard's tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard's tail leaves within 2 weeks. In contrast, leaf abundance increased by 73-93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard's tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and

  14. Effect of immobilized rhizobacteria and organic amendment in bulk and rhizospheric soil of Cistus albidus L.

    Science.gov (United States)

    Mengual, Carmen Maria; del Mar Alguacil, Maria; Roldan, Antonio; Schoebitz, Mauricio

    2013-04-01

    A field experiment was carried out to assess the effectiveness of the immobilized microbial inoculant and the addition of organic olive residue. The microbial inoculant contained two rhizobacterial species identified as Azospirillum brasilense and Pantoea dispersa immobilized in a natural inert support. Bacterial population densities were 3.5×109 and 4.1×109 CFU g-1 of A. brasilense M3 and P. dispersa C3, respectively. The amendment used was the organic fraction extracted with KOH from composted "alperujo". The raw material was collected from an olive-mill and mixed with fresh cow bedding as bulking agent for composting. The inoculation of rhizobacteria and the addition of organic residue were employed for plant growth promotion of Cistus albidus L. and enhancement of soil physicochemical, biochemical and biological properties in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than in the non-amended soil. Microbial inoculant and their interaction with organic residue increased the aggregate stability of the rhizosphere soil of C. albidus (by 12% with respect to control soil) while the organic residue alone not increased the aggregate stability of the rhizosphere of C. albidus. Microbial biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA and alkaline phosphatase) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue interaction but not by microbial inoculation alone. The microbial inoculant and organic residue interaction were the most effective treatment for stimulating the roots dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increase the shoot dry weigh of plants (by 106% with respect to control plants). The combined treatment, involving microbial inoculant and addition of the organic residue

  15. Plant critical concept

    International Nuclear Information System (INIS)

    O'Regan, P.J.

    1995-01-01

    The achievement of operation and maintenance (O ampersand M) cost reductions is a prime concern for plant operators. Initiatives by the nuclear industry to address this concern are under way and/or in development. These efforts include plant reliability studies, reliability-centered maintenance, risk ranking and testing philosophies, performance-based testing philosophies, graded quality assurance, and so forth. This paper presents the results of an effort to develop a methodology that integrates and applies the common data and analysis requirements for a number of risk-based and performance-based initiatives. This initial phase of the effort applied the methodology and its results to two initiatives. These were the procurement function and the preventive maintenance function. This effort integrated multiple programs and functions to identify those components that are truly critical from an integrated plant performance perspective. The paper describes the scope of the effort, the development of a methodology to identify plant critical components, and the application of these results to the maintenance rule compliance, preventive maintenance, and procurement functions at the candidate plant

  16. Pinellas Plant facts

    International Nuclear Information System (INIS)

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant

  17. Planting and care of fine hardwood seedlings: Financial and tax aspects of tree planting

    Science.gov (United States)

    William L. Hoover

    2004-01-01

    Trees are planted for many reasons, including soil and water conservation, wildlife habitat, nut and timber production. Altruism motivates many landowners to plant trees. There are, however, those who plant with the expectation of increasing their family's wealth. In this publication I discuss the financial and tax aspects of tree planting projects. The focus is...

  18. Plant Physiology in Greenhouses

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2015-01-01

    Since 2004 Ep Heuvelink and Tijs Kierkels have been writing a continuing series of plant physiology articles for the Dutch horticultural journal Onder Glas and the international edition In Greenhouses. The book Plant Physiology in Greenhouses consists of 50 of their plant physiology articles. The

  19. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  20. Redox signaling in plants.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham

    2013-06-01

    Our aim is to deliver an authoritative and challenging perspective of current concepts in plant redox signaling, focusing particularly on the complex interface between the redox and hormone-signaling pathways that allow precise control of plant growth and defense in response to metabolic triggers and environmental constraints and cues. Plants produce significant amounts of singlet oxygen and other reactive oxygen species (ROS) as a result of photosynthetic electron transport and metabolism. Such pathways contribute to the compartment-specific redox-regulated signaling systems in plant cells that convey information to the nucleus to regulate gene expression. Like the chloroplasts and mitochondria, the apoplast-cell wall compartment makes a significant contribution to the redox signaling network, but unlike these organelles, the apoplast has a low antioxidant-buffering capacity. The respective roles of ROS, low-molecular antioxidants, redox-active proteins, and antioxidant enzymes are considered in relation to the functions of plant hormones such as salicylic acid, jasmonic acid, and auxin, in the composite control of plant growth and defense. Regulation of redox gradients between key compartments in plant cells such as those across the plasma membrane facilitates flexible and multiple faceted opportunities for redox signaling that spans the intracellular and extracellular environments. In conclusion, plants are recognized as masters of the art of redox regulation that use oxidants and antioxidants as flexible integrators of signals from metabolism and the environment.

  1. Plant breeding by using radiation mutation - Development of radiation indicator plants by molecular breeding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jang Ryol; Kwak, Sang Soo; Kwon, Seok Yoon [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    2000-04-01

    - tSOD1, cytosolic CuZnSOD cDNA was cloned from tobacco cDNA library by PCR. To develop the under-producing the transgenic plants, the vectors were constructed using by antisense and co-supressing technology. The transgenic tobacco plants were confirmed that over 60% of kanamycin-resistant plants were introduced the foreign gene by PCR and transformed one copy through Southern blot analysis. - In an attempt to identify marker genes for gamma irradiation of plants, expression patterns of diverse genes upon gamma irradiation of young tobacco plants were investigated. With the knowledge of distinctive expression patterns of diverse genes, irradiation-indicating marker plants could be developed by engineering and monitoring multiple radiation-responsive genes. Additionally, a gamma irradiation-responsive NtTMK1 receptor-like kinase gene was molecular biologically characterized. -Uranium reductase gene (Cytochrome C3) and radiation resistance gene (recA) have been cloned from Desulfovibrio and Deinococcus radiodurans. -Two plant transformation vectors (pCYC3 and pDrecA) have been constructed. - Tobacco transgenic plants of have been obtained. 52 refs., 5 figs. (Author)

  2. Uptake of nuclides by plants

    International Nuclear Information System (INIS)

    Greger, Maria

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate

  3. Uptake of nuclides by plants

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria [Stockholm Univ. (Sweden). Dept. of Botany

    2004-04-01

    This review on plant uptake of elements has been prepared to demonstrate how plants take up different elements. The work discusses the nutrient elements, as well as the general uptake and translocation in plants, both via roots and by foliar absorption. Knowledge of the uptake by the various elements within the periodic system is then reviewed. The work also discusses transfer factors (TF) as well as difficulties using TF to understand the uptake by plants. The review also focuses on species differences. Knowledge necessary to understand and calculate plant influence on radionuclide recirculation in the environment is discussed, in which the plant uptake of a specific nuclide and the fate of that nuclide in the plant must be understood. Plants themselves determine the uptake, the soil/sediment determines the availability of the nuclides and the nuclides themselves can interact with each other, which also influences the uptake. Consequently, it is not possible to predict the nuclide uptake in plants by only analysing the nuclide concentration of the soil/substrate.

  4. Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition.

    Science.gov (United States)

    Maron, John L; Laney Smith, Alyssa; Ortega, Yvette K; Pearson, Dean E; Callaway, Ragan M

    2016-08-01

    Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their effects in isolation. We sampled soil from two intermountain grassland communities where we also measured the relative abundance of plant species. In greenhouse experiments, we quantified the direction and magnitude of plant-soil feedbacks for 10 target species that spanned a range of abundances in the field. In soil from both sites, plant-soil feedbacks were mostly negative, with more abundant species suffering greater negative feedbacks than rare species. In contrast, the average response to competition for each species was unrelated with its abundance in the field. We also determined how competitive response varied among our target species when plants competed in live vs. sterile soil. Interspecific competition reduced plant size, but the strength of this negative effect was unchanged by plant-soil feedbacks. Finally, when plants competed interspecifically, we asked how conspecific-trained, heterospecific-trained, and sterile soil influenced the competitive responses of our target species and how this varied depending on whether target species were abundant or rare in the field. Here, we found that both abundant and rare species were not as harmed by competition when they grew in heterospecific-trained soil compared to when they grew in conspecific-cultured soil. Abundant species were also not as harmed by competition when growing in sterile vs. conspecific-trained soil, but this was not the case for rare species. Our results suggest that abundant plants accrue species-specific soil pathogens to a greater extent than rare species. Thus, negative feedbacks may be critical for preventing abundant species from

  5. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  6. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  7. Uranium speciation in plants

    International Nuclear Information System (INIS)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A.; Nitsche, H.

    2003-01-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  8. African names for American plants

    NARCIS (Netherlands)

    Andel, van T.R.

    2015-01-01

    African slaves brought plant knowledge to the New World, sometimes applying it to related plants they found there and sometimes bringing Old World plants with them. By tracing the linguistic parallels between names for plants in African languages and in communities descended from African slaves,

  9. State of the art of large combustion plants and reference plants in Austria

    International Nuclear Information System (INIS)

    Boehmer, S.; Schindler, I.; Szednyj, I.; Winter, B.

    2003-01-01

    The aim of this study is to describe the state of the art of large combustion plants with respect to the European directive on integrated pollution prevention and control (IPPC-Directive 96/61/EG). For this purpose 10 sites where one or more thermal power or district heating plants with a rated thermal input of > 50 MW are operated were selected and described in detail. Only coal and oil fired power plants were chosen because of the larger environmental impacts compared to gas fired combustion units. Large industrial combustion plants, where in addition to regular fuels also special fuels and wastes are combusted (e.g. power plants from refineries and from the pulp and paper industry), and waste incineration plants are not treated in this study. The depiction of power plants comprises the whole chain of operation, starting from the description of the type and composition of fuels, the pretreatment and introduction into the boiler, the firing technology, measures for emission reduction (both into air and water) and treatment of solid waste and residues from combustion. Furthermore possibilities to increase energy efficiency and economic aspects are examined in this study. Also legal aspects are shortly described at the beginning of the respective chapters. An actual topic is co-combustion of biomass and waste in thermal power plants. Results of trial operation in Austrian power plants are summarized and conclusions were drawn with respect to environmental impacts of co-incineration, such as emissions into air and water, quality of solid wastes and residues from co-incineration. Important aspects such as shifting of pollutants and dilution effects are discussed. The study concludes with the chapter 'State of the art for power plants', which gives a survey of the relevant measures with particular attention to above mentioned crucial points. (author)

  10. Antimalarial Activity of Plant Metabolites.

    Science.gov (United States)

    Pan, Wen-Hui; Xu, Xin-Ya; Shi, Ni; Tsang, Siu Wai; Zhang, Hong-Jie

    2018-05-06

    Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum . As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002) reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  11. Antimalarial Activity of Plant Metabolites

    Directory of Open Access Journals (Sweden)

    Wen-Hui Pan

    2018-05-01

    Full Text Available Malaria, as a major global health problem, continues to affect a large number of people each year, especially those in developing countries. Effective drug discovery is still one of the main efforts to control malaria. As natural products are still considered as a key source for discovery and development of therapeutic agents, we have evaluated more than 2000 plant extracts against Plasmodium falciparum. As a result, we discovered dozens of plant leads that displayed antimalarial activity. Our phytochemical study of some of these plant extracts led to the identification of several potent antimalarial compounds. The prior comprehensive review article entitled “Antimalarial activity of plant metabolites” by Schwikkard and Van Heerden (2002 reported structures of plant-derived compounds with antiplasmodial activity and covered literature up to the year 2000. As a continuation of this effort, the present review covers the antimalarial compounds isolated from plants, including marine plants, reported in the literature from 2001 to the end of 2017. During the span of the last 17 years, 175 antiplasmodial compounds were discovered from plants. These active compounds are organized in our review article according to their plant families. In addition, we also include ethnobotanical information of the antimalarial plants discussed.

  12. Plants having modified response to ethylene

    Science.gov (United States)

    Meyerowitz, E.M.; Chang, C.; Bleecker, A.B.

    1997-11-18

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype. 31 figs.

  13. Plant odour plumes as mediators of plant-insect interactions.

    Science.gov (United States)

    Beyaert, Ivo; Hilker, Monika

    2014-02-01

    Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a 'POP concept' for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory-mediated plant-insect interactions. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  14. 1170-MW(t) HTGR-PS/C plant application-study report: alumina-plant application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report considers the HTGR-PS/C application to producing alumina from bauxite. For the size alumina plant considered, the 1170-MW(t) HTGR-PS/C supplies 100% of the process steam and electrical power requirements and produces surplus electrical power and/or process steam, which can be used for other process users or electrical power production. Presently, the bauxite ore is reduced to alumina in plants geographically separated from the electrolysis plant. The electrolysis plants are located near economical electric power sources. However, with the integration of an 1170-MW(t) HTGR-PS/C unit in a commercial alumina plant, the excess electric power available [approx. 233 MW(e)] could be used for alumina electrolysis

  15. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  16. Field Guide to Plant Model Systems

    OpenAIRE

    Chang, Caren; Bowman, John L.; Meyerowitz, Elliot M.

    2016-01-01

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photo...

  17. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    Directory of Open Access Journals (Sweden)

    Dirk De Vos

    2017-05-01

    Full Text Available Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time.Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems.Availability: Virtual Plant Tissue is available as open source (EUPL license on Bitbucket (https://bitbucket.org/vptissue/vptissue. The project has a website https://vptissue.bitbucket.io.

  18. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  19. Plant intelligence

    Science.gov (United States)

    Lipavská, Helena; Žárský, Viktor

    2009-01-01

    The concept of plant intelligence, as proposed by Anthony Trewavas, has raised considerable discussion. However, plant intelligence remains loosely defined; often it is either perceived as practically synonymous to Darwinian fitness, or reduced to a mere decorative metaphor. A more strict view can be taken, emphasizing necessary prerequisites such as memory and learning, which requires clarifying the definition of memory itself. To qualify as memories, traces of past events have to be not only stored, but also actively accessed. We propose a criterion for eliminating false candidates of possible plant intelligence phenomena in this stricter sense: an “intelligent” behavior must involve a component that can be approximated by a plausible algorithmic model involving recourse to stored information about past states of the individual or its environment. Re-evaluation of previously presented examples of plant intelligence shows that only some of them pass our test. “You were hurt?” Kumiko said, looking at the scar. Sally looked down. “Yeah.” “Why didn't you have it removed?” “Sometimes it's good to remember.” “Being hurt?” “Being stupid.”—(W. Gibson: Mona Lisa Overdrive) PMID:19816094

  20. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    Science.gov (United States)

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  1. 76 FR 44572 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Science.gov (United States)

    2011-07-26

    ...] Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of... of taxa of plants for planting whose importation is not authorized pending pest risk analysis. We... plants for planting whose importation is not authorized pending pest risk analysis (NAPPRA) in order to...

  2. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a

  3. Pinellas Plant Environmental Baseline Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  4. Boron-isotope fractionation in plants

    Energy Technology Data Exchange (ETDEWEB)

    Marentes, E [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada); Vanderpool, R A [USDA/ARS Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota (United States); Shelp, B J [Univ. of Guelph, Dept. of Horticultural Science, Guelph, Ontario (Canada)

    1997-10-15

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, {sup 11}B and {sup 10}B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in {sup 11}B relative to the nutrient solution, and the leaves were enriched in {sup 10}B and the stem in {sup 11}B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  5. Boron-isotope fractionation in plants

    International Nuclear Information System (INIS)

    Marentes, E.; Vanderpool, R.A.; Shelp, B.J.

    1997-01-01

    Naturally-occurring variations in the abundance of stable isotopes of carbon, nitrogen, oxygen, and other elements in plants have been reported and are now used to understand various physiological processes in plants. Boron (B) isotopic variation in several plant species have been documented, but no determination as to whether plants fractionate the stable isotopes of boron, 11 B and 10 B, has been made. Here, we report that plants with differing B requirements (wheat, corn and broccoli) fractionated boron. The whole plant was enriched in 11 B relative to the nutrient solution, and the leaves were enriched in 10 B and the stem in 11 B relative to the xylem sap. Although at present, a mechanistic role for boron in plants is uncertain, potential fractionating mechanisms are discussed. (author)

  6. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts.

    Science.gov (United States)

    Albert, Markus; Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf

    2010-09-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca(2+)) release is the major second messenger during signal transduction. Therefore, we have studied Ca(2+) spiking in tomato and tobacco during infection with C. reflexa. In our recently published study Ca(2+) signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca(2+) release in the host plant was closely linked to the parasite's haustoria.

  7. Soil to plant transfer of radionuclides: predicting the fate of multiple radioisotopes in plants

    International Nuclear Information System (INIS)

    Willey, Neil J.

    2014-01-01

    Predicting soil-to-plant transfer of radionuclides is restricted by the range of species for which concentration ratios (CRs) have been measured. Here the radioecological utility of meta-analyses of phylogenetic effects on alkali earth metals will be explored for applications such as ‘gap-filling’ of CRs, the identification of sentinel biomonitor plants and the selection of taxa for phytoremediation of radionuclide contaminated soils. REML modelling of extensive CR/concentration datasets shows that the concentrations in plants of Ca, Mg and Sr are significantly influenced by phylogeny. Phylogenetic effects of these elements are shown here to be similar. Ratios of Ca/Mg and Ca/Sr are known to be quite stable in plants so, assuming that Sr/Ra ratios are stable, phylogenetic effects and estimated mean CRs are used to predict Ra CRs for groups of plants with few measured data. Overall, there are well quantified plant variables that could contribute significantly to improving predictions of the fate radioisotopes in the soil-plant system

  8. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    Science.gov (United States)

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper

  9. High-temperature gas-cooled reactor steam-cycle/cogeneration lead plant. Plant Protection and Instrumentation System design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Plant Protection and Instrumentation System provides plant safety system sense and command features, actuation of plant safety system execute features, preventive features which maintain safety system integrity, and safety-related instrumentation which monitors the plant and its safety systems. The primary function of the Plant Protection and Instrumentation system is to sense plant process variables to detect abnormal plant conditions and to provide input to actuation devices directly controlling equipment required to mitigate the consequences of design basis events to protect the public health and safety. The secondary functions of the Plant Protection and Instrumentation System are to provide plant preventive features, sybsystems that monitor plant safety systems status, subsystems that monitor the plant under normal operating and accident conditions, safety-related controls which allow control of reactor shutdown and cooling from a remote shutdown area

  10. Small hydroelectric power plants

    International Nuclear Information System (INIS)

    Helgesen, Boerre

    2002-01-01

    Small hydroelectric power plants are power plants of 1 - 10 MW. For a supplier, this is an unnatural limit. A more natural limit involves compact engine design and simplified control system. The article discusses most of the engine and electrotechnical aspects in the development, construction and operation of such a plant

  11. Solar thermal power plants

    International Nuclear Information System (INIS)

    Schnatbaum, L.

    2009-01-01

    The solar thermal power plant technology, the opportunities it presents and the developments in the market are outlined. The focus is on the technology of parabolic trough power plants, a proven technology for solar power generation on a large scale. In a parabolic trough power plant, trough-shaped mirrors concentrate the solar irradiation onto a pipe in the focal line of the collector. The thermal energy thus generated is used for electricity generation in a steam turbine. Parabolic trough plants can be combined with thermal storage and fossil or biomass fired heat exchangers to generate electricity even when the sun is not shining. Solar Millennium AG in Erlangen has developed the first power plant of this kind in Europe. After two years of construction the plant started operation in Southern Spain in 2008. This one and its sister projects are important steps leading the way for the whole market. The paper also covers the technological challenges, the key components used and the research and development activities concerning this technology. Solar thermal power plants are ideal for covering peak and medium loads in power grids. In hybrid operation they can also cover base-load. The Solar Chimney power plant, another striking technology for the conversion of solar into electric energy, is described briefly. The paper concludes with a look at the future - the import of solar energy from the deserts of North Africa to central Europe. (author)

  12. Medicinal plant recipes from Kırklareli

    OpenAIRE

    Kültür, Şükran

    2014-01-01

    Abstract: In this study, have been reported different medicinal plant recipesin the Kırklareli region. 15 medicinal plant recipes belonging to 20 families (20wild plant species, 7 cultivated plant species) which were used for different medicinalpurposes by local people have been recorded totally 27 plant species in thearea. Traditional medicinal plant recipes have been mostly used for the traetmentof cough, cold and influenza.Key words: Ethnobotany, Kırklareli, Turkey, medicinal plant.

  13. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Science.gov (United States)

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia

    2013-01-01

    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  14. Knowledge about plant is basis for successful cultivation : new international standard handbook on plant physiology

    NARCIS (Netherlands)

    Esch, van H.; Heuvelink, E.; Kierkels, T.

    2015-01-01

    Plant physiology in Greenhouses’ is the new international standard handbook on plant knowledge for the commercial greenhouse grower. It relates the functioning of the plant to the rapid developments in greenhouse cultivation. It is based on a continuing series of plant physiology articles published

  15. New Erwinia-Like Organism Causing Cervical Lymphadenitis▿

    Science.gov (United States)

    Shin, Sang Yop; Lee, Mi Young; Song, Jae-Hoon; Ko, Kwan Soo

    2008-01-01

    The first case of cervical lymphadenitis due to infection by a new Erwinia-like organism is reported. The organism was identified initially as Pantoea sp. by a Vitek 2-based assessment but was finally identified as a member of the genus Erwinia by 16S rRNA gene sequence analysis. The isolate displayed 98.9% 16S rRNA gene sequence similarity to that of E. tasmaniensis and showed phenotypic characteristics that were different from other Erwinia species. PMID:18614665

  16. In-plant reliability data base for nuclear power plant components: data collection and methodology report

    International Nuclear Information System (INIS)

    Drago, J.P.; Borkowski, R.J.; Pike, D.H.; Goldberg, F.F.

    1982-07-01

    The development of a component reliability data for use in nuclear power plant probabilistic risk assessments and reliabiilty studies is presented in this report. The sources of the data are the in-plant maintenance work request records from a sample of nuclear power plants. This data base is called the In-Plant Reliability Data (IPRD) system. Features of the IPRD system are compared with other data sources such as the Licensee Event Report system, the Nuclear Plant Reliability Data system, and IEEE Standard 500. Generic descriptions of nuclear power plant systems formulated for IPRD are given

  17. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

    Science.gov (United States)

    Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  18. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  19. Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks

    Science.gov (United States)

    Ubbens, Jordan R.; Stavness, Ian

    2017-01-01

    Plant phenomics has received increasing interest in recent years in an attempt to bridge the genotype-to-phenotype knowledge gap. There is a need for expanded high-throughput phenotyping capabilities to keep up with an increasing amount of data from high-dimensional imaging sensors and the desire to measure more complex phenotypic traits (Knecht et al., 2016). In this paper, we introduce an open-source deep learning tool called Deep Plant Phenomics. This tool provides pre-trained neural networks for several common plant phenotyping tasks, as well as an easy platform that can be used by plant scientists to train models for their own phenotyping applications. We report performance results on three plant phenotyping benchmarks from the literature, including state of the art performance on leaf counting, as well as the first published results for the mutant classification and age regression tasks for Arabidopsis thaliana. PMID:28736569

  20. Radiochemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Schwarz, W.

    2007-01-01

    Radiochemistry is employed in nuclear power plants not as an end in itself but, among other things, as a main prerequisite of optimum radiation protection. Radiochemical monitoring of various loops provides important information about sources of radioactivity, activity distribution in the plant and its changes. In the light of these analytical findings, plant crews are able to take measures having a positive effect on radiation levels in the plant. The example of a BWR plant is used to show, among other things, how radiochemical analyses helped to reduce radiation levels in a plant and, as a consequence, to decrease clearly radiation exposure of the personnel despite higher workloads. (orig.)