WorldWideScience

Sample records for pancreatic insulin secretion

  1. Sodium arsenite impairs insulin secretion and transcription in pancreatic β-cells

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia

    2006-01-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic β-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic β-cells. Cells were treated with 0.5, 1, 2, 5 and 10 μM sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 μM) decreased β-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 μM sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 μM treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 μM sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 μM sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic β-cell functions, particularly insulin synthesis and secretion

  2. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    Science.gov (United States)

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  3. Altered pancreatic growth and insulin secretion in WSB/EiJ mice.

    Directory of Open Access Journals (Sweden)

    Maggie M Ho

    Full Text Available These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies also highlight the role of post-natal growth in determining adult β-cell mass. Mice are important animal models for the study of metabolic physiology and the genetics of complex traits. Wild-derived inbred mouse strains, such as WSB/EiJ (WSB, are unrelated to the commonly studied mouse strains and are valuable tools to identify novel genes that modify disease risk. We have previously shown that in contrast to C57BL/6J (B6 mice, WSB mice fed a high fat diet do not develop hyperinsulinemia or insulin resistance, and had nearly undetectable insulin secretion in response to an intraperitoneal glucose challenge. As hyperinsulinemia may drive obesity and insulin resistance, we examined whether defects in β-cell mass or function could contribute to the low insulin levels in WSB mice. In young WSB mice, β-cell mass was similar to B6 mice. However, we found that adult WSB mice had reduced β-cell mass due to reduced pancreatic weights. Pancreatic sizes were similar between the strains when normalized to body weight, suggesting their pancreatic size is appropriate to their body size in adults, but overall post-natal pancreatic growth was reduced in WSB mice compared to B6 mice. Islet architecture was normal in WSB mice. WSB mice had markedly increased insulin secretion from isolated islets in vitro. These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies suggest that WSB mice may provide novel insight into mechanisms regulating insulin secretion and also highlight the role of post-natal growth in determining adult β-cell mass.

  4. Effect of alcohol on insulin secretion and viability of human pancreatic islets

    Directory of Open Access Journals (Sweden)

    Nikolić Dragan

    2017-01-01

    Full Text Available Introduction/Objective. There are controversial data in the literature on the topic of effects of alcohol on insulin secretion, apoptosis, and necrosis of the endocrine and exocrine pancreas. The goal of this research was to determine how alcohol affects the insulin secretion and viability of human adult pancreatic islets in vitro during a seven-day incubation. Methods. Human pancreatic tissue was digested with Collagenase XI, using a non-automated method. Cultures were incubated in Roswell Park Memorial Institute (RPMI medium containing alcohol (10 μl of alcohol in 100 ml of medium. Insulin stimulation index (SI and viability of the islets were determined on the first, third, and seventh day of cultivation. Results. Analysis of the viability of the islets showed that there wasn’t significant difference between the control and the test group. In the test group, viability of the cultures declined with the time of incubation. SI of the test group was higher compared to the control group, by 50% and 25% on the first and third day of cultivation, respectively. On the seventh day, insulin secretion was reduced by 25%. The difference was not statistically significant (p > 0.05. In the test group, significant decline in insulin secretion was found on the third and seventh day of incubation (p ≤ 0.05. Conclusion. Alcohol can increase or decrease insulin secretion of islets cultures, which may result in an inadequate response of pancreatic β-cells to blood glucose, leading to insulin resistance, and increased risk of developing type 2 diabetes. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 41002

  5. A Unifying Organ Model of Pancreatic Insulin Secretion.

    Directory of Open Access Journals (Sweden)

    Andrea De Gaetano

    Full Text Available The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes and low-frequency oscillations (period approx. 1.5 hours. Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model's success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different

  6. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    International Nuclear Information System (INIS)

    Douillet, Christelle; Currier, Jenna; Saunders, Jesse; Bodnar, Wanda M.; Matoušek, Tomáš; Stýblo, Miroslav

    2013-01-01

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs III ) or its methylated trivalent metabolites, methylarsonite (MAs III ) and dimethylarsinite (DMAs III ), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs III , MAs III or DMAs III inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs III and DMAs III were more potent than iAs III as GSIS inhibitors with estimated IC 50 ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs III , MAs III or DMAs III could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs III and DMAs III are more potent inhibitors than arsenite with IC 50 ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of insulin secretion by arsenite, MAs III or DMAs III is reversible. ► Thus

  7. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Directory of Open Access Journals (Sweden)

    Nils Paulmann

    2009-10-01

    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  8. Delta-like Ligand-4-Notch Signaling Inhibition Regulates Pancreatic Islet Function and Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Fabienne Billiard

    2018-01-01

    Full Text Available Although Notch signaling has been proposed as a therapeutic target for type-2 diabetes, liver steatosis, and atherosclerosis, its direct effect on pancreatic islets remains unknown. Here, we demonstrated a function of Dll4-Notch signaling inhibition on the biology of insulin-producing cells. We confirmed enhanced expression of key Notch signaling genes in purified pancreatic islets from diabetic NOD mice and showed that treatment with anti-Dll4 antibody specifically abolished Notch signaling pathway activation. Furthermore, we showed that Notch inhibition could drive proliferation of β-islet cells and confer protection from the development of STZ-induced diabetes. Importantly, inhibition of the Dll4 pathway in WT mice increased insulin secretion by inducing the differentiation of pancreatic β-islet cell progenitors, as well as the proliferation of insulin-secreting cells. These findings reveal a direct effect of Dll4-blockade on pancreatic islets that, in conjunction with its immunomodulatory effects, could be used for unmet medical needs hallmarked by inefficient insulin action.

  9. Decrease of glucose-induced insulin secretion of rat pancreatic islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic); Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic). Radiologische Klinik)

    1983-01-01

    In vitro irradiation of rat pancreatic islets up to a dose of 2.5 Gy did neither alter glucose- nor isobutylmethyl xanthine (IBMX)-induced insulin secretion. Insulin as well as glucagon content of irradiated islets corresponded to that of the control tissue. So it was in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. There was no indication of an enhanced hormone output in the radiation medium and it is to be suggested that higher radiation doses affect the insulin release of pancreatic islets in vitro. This must be taken into consideration for radioimmunosuppression experiments.

  10. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Douillet, Christelle [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Currier, Jenna [Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Saunders, Jesse [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Bodnar, Wanda M. [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States); Matoušek, Tomáš [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); Stýblo, Miroslav, E-mail: styblo@med.unc.edu [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States)

    2013-02-15

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  11. Decrease of glucose-induced insulin secretion of pancreatic rat islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J

    1983-01-01

    Irradiation of pancreatic rat islets up to a dose of 2.5 Gy did neither alter glucose-nor IBMX-induced insulin secretion studied in vitro. The insulin as well as glucagon content of irradiated islets were similar as in the control tissue. This was also true in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. Since we did not find indications of an enhanced hormone output in the radiation medium, we want to suggest that higher irradiation doses affect insulin release of pancreatic islets in vitro. This observation has to be taken into account for application of radioimmunosuppression for transplantation.

  12. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  13. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells.

    Science.gov (United States)

    Hachiya, Hiroyuki; Miura, Yoshikazu; Inoue, Ken-Ichi; Park, Kyung Hwa; Takeuchi, Masayoshi; Kubota, Keiichi

    2014-02-01

    Advanced glycation end products (AGEs) are derivative compounds generated from non-enzymatic glycosylation and oxidation. In comparison with glucose-derived AGEs (Glu-AGEs), glyceraldehyde-derived AGEs (Glycer-AGEs) have stronger toxicity to living systems. In this study, we compared the effects of Glu-AGE and Glycer-AGE on insulin secretion. Rat pancreatic islets were isolated by collagenase digestion and primary-cultured in the presence of 0.1 mg/ml bovine serum albumin (BSA) or 0.1 mg/ml Glu-AGE or Glycer-AGE-albumin. After 48 h of culture, we performed an insulin secretion test and identified the defects by a battery of rescue experiments [corrected]. Also, mRNA expression of genes associated with insulin secretion was measured. Insulin secretion induced by a high glucose concentration was 164.1 ± 6.0, 124.4 ± 4.4 (P < 0.05) and 119.8 ± 7.1 (P < 0.05) μU/3 islets/h in the presence of BSA, Glu-AGE, and Glycer-AGE, respectively. Inhibition of insulin secretion by Glu-AGE or Glycer-AGE was rescued by a high extracellular potassium concentration, tolbutamide and α-ketoisocaproic acid, but not by glyceraldehyde, dihydroxacetone, methylpyruvate, glucagon-like peptide-1 and acetylcholine. Glu-AGE or Glycer-AGE reduced the expression of the malate dehydrogenase (Mdh1/2) gene, which plays a critical role in the nicotinamide adenine dinucleotide (NADH) shuttle. Despite its reported cytotoxicity, the effects of Glycer-AGE on insulin secretion are similar to those of Glu-AGE. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  14. Pancreatic β-Cell Electrical Activity and Insulin Secretion: of Mice and Men

    Science.gov (United States)

    Rorsman, Patrik; Ashcroft, Frances M

    2018-01-01

    The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycaemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM. PMID:29212789

  15. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lepob/ob mice

    International Nuclear Information System (INIS)

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro

    2009-01-01

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep ob/ob /HSL -/- ) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lep ob/ob /HSL -/- developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep ob/ob /HSL +/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep +/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep ob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep ob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  16. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells

    OpenAIRE

    Yang, Jichun; Chi, Yujing; Burkhardt, Brant R.; Guan, Youfei; Wolf, Bryan A

    2010-01-01

    Leucine, a the branched-chain amino acids that must be supplied in daily diet, plays an important role in controlling protein synthesis and regulating cell metabolism in various cell types. In pancreatic β cells, leucine acutely stimulates insulin secretion by serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase to enhance glutaminolysis. Leucine has also been shown to regulate gene transcription and protein synthesis in pancreatic islet β cells via both mTOR-dep...

  17. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.

    Science.gov (United States)

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-11-19

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.

  18. Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Muto Takashi

    2011-04-01

    Full Text Available Abstract Background Glycated albumin (GA is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic β cells. Methods Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA and GA was measured under three different glucose concentrations, 3 mM (G3, 7 mM (G7, and 15 mM (G15, with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS, and the expression of iNOS-mRNA was investigated by real-time PCR. Results Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 μU/3 islets/h for G3 (P = 0.920, and 154 ± 9.3 and 126.1 ± 7.3 μU/3 islets/h (P = 0.046, for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion. Conclusion GA suppresses glucose-induced insulin secretion from rat pancreatic β-cells through impairment of intracellular glucose metabolism.

  19. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Laura Bordone

    2006-02-01

    Full Text Available Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic beta cells. Sirt1 represses the uncoupling protein (UCP gene UCP2 by binding directly to the UCP2 promoter. In beta cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in beta cells to affect insulin secretion.

  20. Downregulation of lncRNA TUG1 Affects Apoptosis and Insulin Secretion in Mouse Pancreatic β Cells

    Directory of Open Access Journals (Sweden)

    Dan-dan Yin

    2015-03-01

    Full Text Available Background: Increasing evidence indicates that long noncoding RNAs (IncRNAs perform specific biological functions in diverse processes. Recent studies have reported that IncRNAs may be involved in β cell function. The aim of this study was to characterize the role of IncRNA TUG1 in mouse pancreatic β cell functioning both in vitro and in vivo. Methods: qRT-PCR analyses were performed to detect the expression of lncRNA TUG1 in different tissues. RNAi, MTT, TUNEL and Annexin V-FITC assays and western blot, GSIS, ELISA and immunochemistry analyses were performed to detect the effect of lncRNA TUG1 on cell apoptosis and insulin secretion in vitro and in vivo. Results: lncRNA TUG1 was highly expressed in pancreatic tissue compared with other organ tissues, and expression was dynamically regulated by glucose in Nit-1 cells. Knockdown of lncRNA TUG1 expression resulted in an increased apoptosis ratio and decreased insulin secretion in β cells both in vitro and in vivo . Immunochemistry analyses suggested decreased relative islet area after treatment with lncRNA TUG1 siRNA. Conclusion: Downregulation of lncRNA TUG1 expression affected apoptosis and insulin secretion in pancreatic β cells in vitro and in vivo. lncRNA TUG1 may represent a factor that regulates the function of pancreatic β cells.

  1. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells.

    Science.gov (United States)

    Yin, Dan-dan; Zhang, Er-bao; You, Liang-hui; Wang, Ning; Wang, Lin-tao; Jin, Fei-yan; Zhu, Ya-nan; Cao, Li-hua; Yuan, Qing-xin; De, Wei; Tang, Wei

    2015-01-01

    Increasing evidence indicates that long noncoding RNAs (IncRNAs) perform specific biological functions in diverse processes. Recent studies have reported that IncRNAs may be involved in β cell function. The aim of this study was to characterize the role of IncRNA TUG1 in mouse pancreatic β cell functioning both in vitro and in vivo. qRT-PCR analyses were performed to detect the expression of lncRNA TUG1 in different tissues. RNAi, MTT, TUNEL and Annexin V-FITC assays and western blot, GSIS, ELISA and immunochemistry analyses were performed to detect the effect of lncRNA TUG1 on cell apoptosis and insulin secretion in vitro and in vivo. lncRNA TUG1 was highly expressed in pancreatic tissue compared with other organ tissues, and expression was dynamically regulated by glucose in Nit-1 cells. Knockdown of lncRNA TUG1 expression resulted in an increased apoptosis ratio and decreased insulin secretion in β cells both in vitro and in vivo . Immunochemistry analyses suggested decreased relative islet area after treatment with lncRNA TUG1 siRNA. Downregulation of lncRNA TUG1 expression affected apoptosis and insulin secretion in pancreatic β cells in vitro and in vivo. lncRNA TUG1 may represent a factor that regulates the function of pancreatic β cells. © 2015 S. Karger AG, Basel.

  2. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue

    International Nuclear Information System (INIS)

    Lechner, Andreas; Nolan, Anna L.; Blacken, Robyn A.; Habener, Joel F.

    2005-01-01

    Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients

  3. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    Science.gov (United States)

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone, E-mail: simone.baltrusch@med.uni-rostock.de

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of

  5. A New Method for Generating Insulin-Secreting Cells from Human Pancreatic Epithelial Cells After Islet Isolation Transformed by NeuroD1

    Science.gov (United States)

    Shimoda, Masayuki; Chen, Shuyuan; Noguchi, Hirofumi; Takita, Morihito; Sugimoto, Koji; Itoh, Takeshi; Chujo, Daisuke; Iwahashi, Shuichi; Naziruddin, Bashoo; Levy, Marlon F.

    2014-01-01

    Abstract The generation of insulin-secreting cells from nonendocrine pancreatic epithelial cells (NEPEC) has been demonstrated for potential clinical use in the treatment of diabetes. However, previous methods either had limited efficacy or required viral vectors, which hinder clinical application. In this study, we aimed to establish an efficient method of insulin-secreting cell generation from NEPEC without viral vectors. We used nonislet fractions from both research-grade human pancreata from brain-dead donors and clinical pancreata after total pancreatectomy with autologous islet transplantation to treat chronic pancreatitis. It is of note that a few islets could be mingled in the nonislet fractions, but their influence could be limited. The NeuroD1 gene was induced into NEPEC using an effective triple lipofection method without viral vectors to generate insulin-secreting cells. The differentiation was promoted by adding a growth factor cocktail into the culture medium. Using the research-grade human pancreata, the effective method showed high efficacy in the differentiation of NEPEC into insulin-positive cells that secreted insulin in response to a glucose challenge and improved diabetes after being transplanted into diabetic athymic mice. Using the clinical pancreata, similar efficacy was obtained, even though those pancreata suffered chronic pancreatitis. In conclusion, our effective differentiation protocol with triple lipofection method enabled us to achieve very efficient insulin-secreting cell generation from human NEPEC without viral vectors. This method offers the potential for supplemental insulin-secreting cell transplantation for both allogeneic and autologous islet transplantation. PMID:24845703

  6. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Che, Yongzhe [School of Medicine, Nankai University, Tianjin 300071 (China); Li, Qiang; Zhang, Shangrong [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Gao, Ying-Tang [Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin 300170 (China); Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  7. Restoring Mitochondrial Function: A Small Molecule-mediated Approach to Enhance Glucose Stimulated Insulin Secretion in Cholesterol Accumulated Pancreatic beta cells

    Science.gov (United States)

    Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit

    2016-06-01

    Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.

  8. Pancreatic Endoderm-Derived From Diabetic Patient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells.

    Science.gov (United States)

    Rajaei, Bahareh; Shamsara, Mehdi; Amirabad, Leila Mohammadi; Massumi, Mohammad; Sanati, Mohammad Hossein

    2017-10-01

    Human-induced pluripotent stem cells (hiPSCs) can potentially serve as an invaluable source for cell replacement therapy and allow the creation of patient- and disease-specific stem cells without the controversial use of embryos and avoids any immunological incompatibility. The generation of insulin-producing pancreatic β-cells from pluripotent stem cells in vitro provides an unprecedented cell source for personal drug discovery and cell transplantation therapy in diabetes. A new five-step protocol was introduced in this study, effectively induced hiPSCs to differentiate into glucose-responsive insulin-producing cells. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, primitive gut-tube endoderm, posterior foregut, pancreatic endoderm, and endocrine precursor. Each stage of differentiation were characterized by stage-specific markers. The produced cells exhibited many properties of functional β-cells, including expression of critical β-cells transcription factors, the potency to secrete C-peptide in response to high levels of glucose and the presence of mature endocrine secretory granules. This high efficient differentiation protocol, established in this study, yielded 79.18% insulin-secreting cells which were responsive to glucose five times higher than the basal level. These hiPSCs-derived glucose-responsive insulin-secreting cells might provide a promising approach for the treatment of type I diabetes mellitus. J. Cell. Physiol. 232: 2616-2625, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    Science.gov (United States)

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  10. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton

    2008-01-01

    and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium...... secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance...... responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor...

  11. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    Science.gov (United States)

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Nuclear SREBP-1a causes loss of pancreatic β-cells and impaired insulin secretion

    International Nuclear Information System (INIS)

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru; Ishikawa, Mayumi; Kato, Toyonori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yahagi, Naoya; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2009-01-01

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function.

  13. Effect of taurine on the insuline secretion isolated by the pancreatic tissue of intact and irradiated rats

    International Nuclear Information System (INIS)

    Dokshina, G.A.; Silaeva, T.Yu.

    1976-01-01

    The whole-body irradiation of rats (700 rads) inhibits the secretory activity of insular pancreatic tissue. Administration of taurine (200 mg/kg), on the fifth day after irradiation, five times every second day normalizes the secretory function of pancreatic islands. In the experiments in vitro, taurine (1.5 and 3.0 mg/ml) stimulated hormone secretion. The stimulating action of the amino acid manifests itself when β-receptors are blocked by obsidane (0.5 μg/ml). It is suggested that insuline secretion by β-cells of pancreas is restored and enhanced by taurine not merely through the adenylatecyclase system; other ways are also possible

  14. Effect of taurine on the insuline secretion isolated by the pancreatic tissue of intact and irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Dokshina, G A; Silaeva, T Yu [Tomskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Biologii i Biofiziki

    1976-05-01

    The whole-body irradiation of rats (700 rads) inhibits the secretory activity of insular pancreatic tissue. Administration of taurine (200 mg/kg), on the fifth day after irradiation, five times every second day normalizes the secretory function of pancreatic islands. In the experiments in vitro, taurine (1.5 and 3.0 mg/ml) stimulated hormone secretion. The stimulating action of the amino acid manifests itself when ..beta..-receptors are blocked by obsidane (0.5 ..mu..g/ml). It is suggested that insuline secretion by ..beta..-cells of pancreas is restored and enhanced by taurine not merely through the adenylatecyclase system; other ways are also possible.

  15. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  17. The RhoGAP Stard13 controls insulin secretion through F-actin remodeling

    Directory of Open Access Journals (Sweden)

    Heike Naumann

    2018-02-01

    Full Text Available Objective: Actin cytoskeleton remodeling is necessary for glucose-stimulated insulin secretion in pancreatic β-cells. A mechanistic understanding of actin dynamics in the islet is paramount to a better comprehension of β-cell dysfunction in diabetes. Here, we investigate the Rho GTPase regulator Stard13 and its role in F-actin cytoskeleton organization and islet function in adult mice. Methods: We used Lifeact-EGFP transgenic animals to visualize actin cytoskeleton organization and dynamics in vivo in the mouse islets. Furthermore, we applied this model to study actin cytoskeleton and insulin secretion in mutant mice deleted for Stard13 selectively in pancreatic cells. We isolated transgenic islets for 3D-imaging and perifusion studies to measure insulin secretion dynamics. In parallel, we performed histological and morphometric analyses of the pancreas and used in vivo approaches to study glucose metabolism in the mouse. Results: In this study, we provide the first genetic evidence that Stard13 regulates insulin secretion in response to glucose. Postnatally, Stard13 expression became restricted to the mouse pancreatic islets. We showed that Stard13 deletion results in a marked increase in actin polymerization in islet cells, which is accompanied by severe reduction of insulin secretion in perifusion experiments. Consistently, Stard13-deleted mice displayed impaired glucose tolerance and reduced glucose-stimulated insulin secretion. Conclusions: Taken together, our results suggest a previously unappreciated role for the RhoGAP protein Stard13 in the interplay between actin cytoskeletal remodeling and insulin secretion. Keywords: F-actin, Insulin secretion, Islet, Pancreas, Lifeact, Stard13

  18. Developmental programming of polycystic ovary syndrome (PCOS): prenatal androgens establish pancreatic islet α/β cell ratio and subsequent insulin secretion.

    Science.gov (United States)

    Ramaswamy, S; Grace, C; Mattei, A A; Siemienowicz, K; Brownlee, W; MacCallum, J; McNeilly, A S; Duncan, W C; Rae, M T

    2016-06-06

    Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells.

  19. Biotin enhances ATP synthesis in pancreatic islets of the rat, resulting in reinforcement of glucose-induced insulin secretion.

    Science.gov (United States)

    Sone, Hideyuki; Sasaki, Yuka; Komai, Michio; Toyomizu, Masaaki; Kagawa, Yasuo; Furukawa, Yuji

    2004-02-13

    Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.

  20. Insulin secretion and glucose uptake by isolated islets of the hamster. Effect of insulin, proinsulin and C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J C; McLaughlin, W J; Walsh, M F.J.; Foa, P P [Sinai Hospital of Detroit, Mich. (USA). Dept. of Research

    1976-01-01

    Isolated pancreatic islets of normal hamsters were perfused either in a closed or in a open system. When the buffer was recirculated and the endogenous insulin was allowed to accumulate, the islets secreted significantly less insulin than when the system was open and the endogenous insulin was washed away. The addition of monocomponent insulin or of proinsulin to the perfusion buffer significantly decreased insulin secretion. The inhibitory action of proinsulin was significantly greater than that of monocomponent insulin. C peptide had no effect. When pancreatic islets were incubated in a fixed volume of stationary buffer containing unlabeled glucose (1.0 mg or 3.0 mg/ml) and glucose-U-/sup 14/C (1.0 ..mu..C/ml), the amount of insulin secreted and the /sup 14/CO/sub 2/ produced by each islet decreased progressively as the number of islets in the sample increased. Under these conditions, the concentration of insulin required to inhibit insulin secretion increased with the concentration of glucose in the medium. Proinsulin did not alter the incorporation of leucine-4.5-/sup 3/H into total extractable insulin (insulin + proinsulin). Thus, insulin and proinsulin appear to inhibit insulin release, but not insulin synthesis.

  1. Insulin-like growth factor-1 is a negative modulator of glucagon secretion

    OpenAIRE

    Mancuso, Elettra; Mannino, Gaia C.; Fatta, Concetta Di; Fuoco, Anastasia; Spiga, Rosangela; Andreozzi, Francesco; Sesti, Giorgio

    2017-01-01

    Glucagon secretion involves a combination of paracrine, autocrine, hormonal, and autonomic neural mechanisms. Type 2 diabetes often presents impaired glucagon suppression by insulin and glucose. Insulin-like growth factor-I (IGF-1) has elevated homology with insulin, and regulates pancreatic ?-cells insulin secretion. Insulin and IGF-1 receptors share considerable structure homology and function. We hypothesized the existence of a mechanism linking the inhibition of ?-cells glucagon secretion...

  2. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  3. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    International Nuclear Information System (INIS)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-01-01

    Highlights: ► G protein coupled receptor TGR5 is expressed in mouse and human islets. ► TGR5 is coupled to activation of Gs and Ca 2+ release via cAMP/Epac/PLC-ε pathway. ► Activation of TGR5 by bile salts and selective ligands causes insulin secretion. ► TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gα s and caused an increase in intracellular cAMP and Ca 2+ . OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gα s inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G s /cAMP/Ca 2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  4. Impaired insulin secretion in the spontaneous diabetes rats.

    Science.gov (United States)

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  5. Arsenite reduces insulin secretion in rat pancreatic β-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Salazar, Ana Maria; Sordo, Monserrat; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2008-01-01

    An increase in the prevalence of type 2 diabetes has been consistently observed among residents of high arsenic exposure areas. We have previously shown that in rat pancreatic β-cells, low arsenite doses impair the secretion of insulin without altering its synthesis. To further study the mechanism by which arsenite reduces insulin secretion, we evaluated the effects of arsenite on the calcium-calpain pathway that triggers insulin exocytosis in RINm5F cells. Cell cycle and proliferation analysis were also performed to complement the characterization. Free [Ca 2+ ]i oscillations needed for glucose-stimulated insulin secretion were abated in the presence of subchronic low arsenite doses (0.5-2 μM). The global activity of calpains increased with 2 μM arsenite. However, during the secretion of insulin stimulated with glucose (15.6 mM), 1 μM arsenite decreased the activity of calpain-10, measured as SNAP-25 proteolysis. Both proteins are needed to fuse insulin granules with the membrane to produce insulin exocytosis. Arsenite also induced a slowdown in the β cell line proliferation in a dose-dependent manner, reflected by a reduction of dividing cells and in their arrest in G2/M. Data obtained showed that one of the mechanisms by which arsenite impairs insulin secretion is by decreasing the oscillations of free [Ca 2+ ]i, thus reducing calcium-dependent calpain-10 partial proteolysis of SNAP-25. The effects in cell division and proliferation observed with arsenite exposure can be an indirect consequence of the decrease in insulin secretion

  6. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells.

    Science.gov (United States)

    Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu

    2018-05-22

    In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.

  7. Evaluation of insulin secretion and action in New World camelids.

    Science.gov (United States)

    Firshman, Anna M; Cebra, Christopher K; Schanbacher, Barbara J; Seaquist, Elizabeth R

    2013-01-01

    To measure and compare insulin secretion and sensitivity in healthy alpacas and llamas via glucose clamping techniques. 8 llamas and 8 alpacas. Hyperinsulinemic euglycemic clamping (HEC) and hyperglycemic clamping (HGC) were performed on each camelid in a crossover design with a minimum 48-hour washout period between clamping procedures. The HEC technique was performed to measure insulin sensitivity. Insulin was infused IV at 6 mU/min/kg for 4 hours, and an IV infusion of glucose was adjusted to maintain blood glucose concentration at 150 mg/dL. Concentrations of blood glucose and plasma insulin were determined throughout. The HGC technique was performed to assess insulin secretion in response to exogenous glucose infusion. An IV infusion of glucose was administered to maintain blood glucose concentration at 320 mg/dL for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout. Alpacas and llamas were not significantly different with respect to whole-body insulin sensitivity during HEC or in pancreatic β-cell response during HGC. Alpacas and llamas had markedly lower insulin sensitivity during HEC and markedly lower pancreatic β-cell response during HGC, in comparison with many other species. New World camelids had lower glucose-induced insulin secretion and marked insulin resistance in comparison with other species. This likely contributes to the disorders of fat and glucose metabolism that are common to camelids.

  8. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    Science.gov (United States)

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  9. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath.

    Science.gov (United States)

    Morita, Asuka; Ouchi, Motoshi; Terada, Misao; Kon, Hiroe; Kishimoto, Satoko; Satoh, Keitaro; Otani, Naoyuki; Hayashi, Keitaro; Fujita, Tomoe; Inoue, Ken-Ichi; Anzai, Naohiko

    2018-02-09

    Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.

  10. Factors influencing insulin secretion from encapsulated islets

    NARCIS (Netherlands)

    de Haan, BJ; Faas, MM; de Vos, P

    2003-01-01

    Adequate regulation of glucose levels by a microencapsulated pancreatic islet graft requires a minute-to-minute regulation of blood glucose. To design such a transplant, it is mandatory to have sufficient insight in factors influencing the kinetics of insulin secretion by encapsulated islets. The

  11. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    Science.gov (United States)

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  12. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    Science.gov (United States)

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  13. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    Science.gov (United States)

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  14. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    Science.gov (United States)

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  15. Insulin secretion and sensitivity in space flight: diabetogenic effects

    Science.gov (United States)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  16. MED25 is a mediator component of HNF4α-driven transcription leading to insulin secretion in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Eun Hee Han

    Full Text Available Unique nuclear receptor Hepatocyte Nuclear Factor 4α (HNF4α is an essential transcriptional regulator for early development and proper function of pancreatic ß-cells, and its mutations are monogenic causes of a dominant inherited form of diabetes referred to as Maturity Onset Diabetes of the Young 1 (MODY1. As a gene-specific transcription factor, HNF4α exerts its function through various molecular interactions, but its protein recruiting network has not been fully characterized. Here we report the identification of MED25 as one of the HNF4α binding partners in pancreatic ß-cells leading to insulin secretion which is impaired in MODY patients. MED25 is one of the subunits of the Mediator complex that is required for induction of RNA polymerase II transcription by various transcription factors including nuclear receptors. This HNF4α-MED25 interaction was initially identified by a yeast-two-hybrid method, confirmed by in vivo and in vitro analyses, and proven to be mediated through the MED25-LXXLL motif in a ligand-independent manner. Reporter-gene based transcription assays and siRNA/shRNA-based gene silencing approaches revealed that this interaction is crucial for full activation of HNF4α-mediated transcription, especially expression of target genes implicated in glucose-stimulated insulin secretion. Selected MODY mutations at the LXXLL motif binding pocket disrupt these interactions and cause impaired insulin secretion through a 'loss-of-function' mechanism.

  17. Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the K+ATP channel-dependent pathway

    DEFF Research Database (Denmark)

    Thams, Peter; Anwar, Mohammad R; Capito, Kirsten

    2005-01-01

    pancreatic islets was determined by radioimmunoassay. RESULTS: In islets cultured at 5.5 mmol/l glucose, and then perifused in physiological Krebs-Ringer medium, the PKA inhibitors, H89 (10 micromol/l) and PKI 6-22 amide (30 micromol/l) did not inhibit glucose (16.7 mmol/l)-induced insulin secretion...

  18. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  19. Decreased insulin secretion in pregnant rats fed a low protein diet.

    Science.gov (United States)

    Gao, Haijun; Ho, Eric; Balakrishnan, Meena; Yechoor, Vijay; Yallampalli, Chandra

    2017-10-01

    Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Development of the insulin secretion mechanism in fetal and neonatal rat pancreatic B-cells: response to glucose, K+, theophylline, and carbamylcholine

    Directory of Open Access Journals (Sweden)

    A.C. Mendonça

    1998-06-01

    Full Text Available We studied the development of the insulin secretion mechanism in the pancreas of fetal (19- and 21-day-old, neonatal (3-day-old, and adult (90-day-old rats in response to stimulation with 8.3 or 16.7 mM glucose, 30 mM K+, 5 mM theophylline (Theo and 200 µM carbamylcholine (Cch. No effect of glucose or high K+ was observed on the pancreas from 19-day-old fetuses, whereas Theo and Cch significantly increased insulin secretion at this age (82 and 127% above basal levels, respectively. High K+ also failed to alter the insulin secretion in the pancreas from 21-day-old fetuses, whereas 8.3 mM and 16.7 mM glucose significantly stimulated insulin release by 41 and 54% above basal levels, respectively. Similar results were obtained with Theo and Cch. A more marked effect of glucose on insulin secretion was observed in the pancreas of 3-day-old rats, reaching 84 and 179% above basal levels with 8.3 mM and 16.7 mM glucose, respectively. At this age, both Theo and Cch increased insulin secretion to close to two-times basal levels. In islets from adult rats, 8.3 mM and 16.7 mM glucose, Theo, and Cch increased the insulin release by 104, 193, 318 and 396% above basal levels, respectively. These data indicate that pancreatic B-cells from 19-day-old fetuses were already sensitive to stimuli that use either cAMP or IP3 and DAG as second messengers, but insensitive to stimuli such as glucose and high K+ that induce membrane depolarization. The greater effect of glucose on insulin secretion during the neonatal period indicates that this period is crucial for the maturation of the glucose-sensing mechanism in B-cells.

  1. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  2. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  3. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Hong-Qi Fan

    Full Text Available FTO (Fat mass and obesity-associated is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn't affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.

  4. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action.

    Science.gov (United States)

    Baynes, Habtamu Wondifraw; Mideksa, Seifu; Ambachew, Sintayehu

    2018-03-14

    Polyunsaturated Fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. The n-3 Polyunsaturated Fatty acids prevent and reverse high-fat-diet induced adipose tissue inflammation and insulin resistance. Insulin secretion is stimulated by glucose, amino acids, and glucagon- like peptide-1 in tissue containing high levels of n-3 Polyunsaturated Fatty acids than lower level of n-3 Polyunsaturated Fatty acids. Also, n-3 Polyunsaturated Fatty acids led to decreased production of prostaglandin, which in turn contributed to the elevation of insulin secretion. N-3 polyunsaturated fatty acids prevent cytokine-induced cell death in pancreatic islets. Supplementation of n-3 Polyunsaturated Fatty acids for human subjects prevent beta cell destruction and insulin resistance. It also enhances insulin secretion, reduction in lipid profiles and glucose concentration particularly in type II diabetes patients. Therefore there should be a focus on the treatment mechanism of insulin related obesity and diabetes by n-3 polyunsaturated fatty acids.

  5. Cdk5 inhibitory peptide (CIP inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    Directory of Open Access Journals (Sweden)

    Ya-Li Zheng

    Full Text Available Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs, however was detectable in the long exposure in HG cells (24 hrs and 48 hrs. Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5 with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes.

  6. M19 modulates skeletal muscle differentiation and insulin secretion in pancreatic β-cells through modulation of respiratory chain activity.

    Directory of Open Access Journals (Sweden)

    Linda Cambier

    Full Text Available Mitochondrial dysfunction due to nuclear or mitochondrial DNA alterations contributes to multiple diseases such as metabolic myopathies, neurodegenerative disorders, diabetes and cancer. Nevertheless, to date, only half of the estimated 1,500 mitochondrial proteins has been identified, and the function of most of these proteins remains to be determined. Here, we characterize the function of M19, a novel mitochondrial nucleoid protein, in muscle and pancreatic β-cells. We have identified a 13-long amino acid sequence located at the N-terminus of M19 that targets the protein to mitochondria. Furthermore, using RNA interference and over-expression strategies, we demonstrate that M19 modulates mitochondrial oxygen consumption and ATP production, and could therefore regulate the respiratory chain activity. In an effort to determine whether M19 could play a role in the regulation of various cell activities, we show that this nucleoid protein, probably through its modulation of mitochondrial ATP production, acts on late muscle differentiation in myogenic C2C12 cells, and plays a permissive role on insulin secretion under basal glucose conditions in INS-1 pancreatic β-cells. Our results are therefore establishing a functional link between a mitochondrial nucleoid protein and the modulation of respiratory chain activities leading to the regulation of major cellular processes such as myogenesis and insulin secretion.

  7. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Brock, Birgitte; Perrild, Hans

    2008-01-01

    To assess the effect of liraglutide, a once-daily human glucagon-like peptide-1 analogue on pancreatic B-cell function. methods: Patients with Type 2 diabetes (n = 39) were randomized to treatment with 0.65, 1.25 or 1.9 mg/day liraglutide or placebo for 14 weeks. First- and second-phase insulin...... release were measured by means of the insulin-modified frequently sampled intravenous glucose tolerance test. Arginine-stimulated insulin secretion was measured during a hyperglycaemic clamp (20 mmol/l). Glucose effectiveness and insulin sensitivity were estimated by means of the insulin...

  8. Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors

    Science.gov (United States)

    Ahmed, Muhammad S.; Rainer, Carolyn; Nielsen, Sebastian R.; Quaranta, Valeria; Weyer-Czernilofsky, Ulrike; Engle, Danielle D.; Perez-Mancera, Pedro A.; Coupland, Sarah E.; Taktak, Azzam; Bogenrieder, Thomas; Tuveson, David A.; Campbell, Fiona; Schmid, Michael C.; Mielgo, Ainhoa

    2017-01-01

    Tumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells. Immunohistochemical analysis of biopsies from patients with pancreatic cancer revealed that 72% of the patients expressed activated insulin/IGF receptors on tumor cells, and this positively correlates with increased CD163+ TAM infiltration. In vivo, we found that TAM and myofibroblasts were the main sources of IGF production, and pharmacologic blockade of IGF sensitized pancreatic tumors to gemcitabine. These findings suggest that inhibition of IGF in combination with chemotherapy could benefit patients with PDAC, and that insulin/IGF1R activation may be used as a biomarker to identify patients for such therapeutic intervention. PMID:27742686

  9. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion.

    Science.gov (United States)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J S; Gray, Joshua P

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion. Published by Elsevier Inc.

  10. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.

    Science.gov (United States)

    Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno

    2017-01-01

    -dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.

  11. Mitochondrial GTP Regulates Glucose-Induced Insulin Secretion

    OpenAIRE

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Substrate-level mitochondrial GTP (mtGTP) and ATP (mtATP) synthesis occurs by nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl CoA synthetase (SCS). Unlike mtATP, each molecule of glucose metabolized produces approximately one mtGTP in pancreatic β-cells independent of coupling with oxidative phosphorylation making mtGTP a potentially important fuel signal. siRNA suppression of the GTP-producing pathway (ΔSCS-GTP) reduced glucose-stimulated insulin secretion ...

  12. Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas

    DEFF Research Database (Denmark)

    Qader, S.S.; Hakanson, R.; Lundquist, I.

    2008-01-01

    ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets...... times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant...

  13. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact

    DEFF Research Database (Denmark)

    Mulder, Hindrik; Sörhede-Winzell, Maria; Contreras, Juan Antonio

    2003-01-01

    of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin......-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance....... Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia....

  14. Factors influencing insulin and glucagon secretion in lean and genetically obese mice

    International Nuclear Information System (INIS)

    Beloff-Chain, A.; Newman, M.E.; Mansford, K.R.L.

    1977-01-01

    The control of 125 I-labelled insulin and glucagon secretion from isolated pancreatic islets of lean and genetically obese mice has been compared. The enlarged islets of obese mouse pancreas and islets of obese mice maintained on a restricted diet manifested a greater response to glucose stimulation of insulin secretion than the lean mice islets. The glucagon content of the islets, the secretion of glucagon in a medium containing 150 mg% glucose and the stimulation of glucagon secretion by arginine did not differ significantly in the two groups. Adrenaline stimulated glucagon secretion in vitro from obese mice but not from lean mice. Antiinsulin serum injections into obese mice increased the plasma glucagon levels about twofold and had no effect on glucagon levels in lean mice, although the level of hyperglycaemia was the same in both groups. It is suggested that the suppression of glucagon release by glucose requires a higher concentration of insulin in the obese mouse pancreas than in lean mice. (orig./AJ) [de

  15. Factors influencing insulin and glucagon secretion in lean and genetically obese mice

    Energy Technology Data Exchange (ETDEWEB)

    Beloff-Chain, A; Newman, M E; Mansford, K R.L. [Imperial Coll. of Science and Technology, London (UK). Dept. of Biochemistry

    1977-01-01

    The control of /sup 125/I-labelled insulin and glucagon secretion from isolated pancreatic islets of lean and genetically obese mice has been compared. The enlarged islets of obese mouse pancreas and islets of obese mice maintained on a restricted diet manifested a greater response to glucose stimulation of insulin secretion than the lean mice islets. The glucagon content of the islets, the secretion of glucagon in a medium containing 150 mg% glucose and the stimulation of glucagon secretion by arginine did not differ significantly in the two groups. Adrenaline stimulated glucagon secretion in vitro from obese mice but not from lean mice. Antiinsulin serum injections into obese mice increased the plasma glucagon levels about twofold and had no effect on glucagon levels in lean mice, although the level of hyperglycaemia was the same in both groups. It is suggested that the suppression of glucagon release by glucose requires a higher concentration of insulin in the obese mouse pancreas than in lean mice.

  16. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  17. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Heart, Emma [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Palo, Meridith; Womack, Trayce [Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States); Smith, Peter J.S. [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Institute for Life Sciences, University of Southampton (United Kingdom); Gray, Joshua P., E-mail: Joshua.p.gray@uscga.edu [Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, 02543 (United States); Department of Science, United States Coast Guard Academy, New London, CT, 06320 (United States)

    2012-01-15

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H{sub 2}O{sub 2}), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H{sub 2}O{sub 2} inhibit insulin secretion. Menadione, which produces H{sub 2}O{sub 2} via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H{sub 2}O{sub 2} production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H{sub 2}O{sub 2} formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H{sub 2}O{sub 2} and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H{sub 2}O{sub 2} production is proportional to applied glucose levels. ► Quinone-mediated redox cycling

  18. The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: Role of NADH and consequences for insulin secretion

    International Nuclear Information System (INIS)

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2012-01-01

    Pancreatic β-cells release insulin in response to elevation of glucose from basal (4–7 mM) to stimulatory (8–16 mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H 2 O 2 ), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H 2 O 2 inhibit insulin secretion. Menadione, which produces H 2 O 2 via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H 2 O 2 production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1–10 μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H 2 O 2 formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H 2 O 2 and menadione on insulin secretion. -- Highlights: ► Menadione stimulation or inhibition of insulin secretion is dependent upon applied glucose levels. ► Menadione-dependent H 2 O 2 production is proportional to applied glucose levels. ► Quinone-mediated redox cycling is dependent on glycolysis

  19. Role of pancreatic polypeptide in the regulation of pancreatic exocrine secretion in dogs

    International Nuclear Information System (INIS)

    Shiratori, Keiko; Lee, K.Y.; Chang, Tamin; Jo, Y.H.; Coy, D.H.; Chey, W.Y.

    1988-01-01

    The effect of intravenous infusion of synthetic human pancreatic polypeptide (HPP) or a rabbit anti-PP serum on pancreatic exocrine secretion was studied in 10 dogs with gastric and Thomas duodenal cannulas. The infusion of HPP, achieved a plasma PP concentration that mimicked the peak plasma concentration of PP in both interdigestive and postprandial states. This dose of HPP significantly inhibited pancreatic secretion in the interdigestive state. By contrast, immunoneutralization of circulating PP by a rabbit anti-PP serum resulted in significant increases in both interdigestive and postprandial pancreatic secretion, including water, bicarbonate, and protein. The increase in the pancreatic secretion paralleled a decrease in circulating PP level, which lasted for as long as 5 days. Furthermore, the anti-PP serum blocked the inhibitory action of exogenous HPP on pancreatic exocrine secretion. The present study indicates that endogenous PP plays a significant role in the regulation of the pancreatic exocrine secretion in both interdigestive and digestive states. Thus the authors conclude that PP is another hormone regulating pancreatic exocrine secretion in dogs

  20. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    Science.gov (United States)

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  1. Methylglyoxal Impairs Insulin Secretion of Pancreatic β-Cells through Increased Production of ROS and Mitochondrial Dysfunction Mediated by Upregulation of UCP2 and MAPKs

    Directory of Open Access Journals (Sweden)

    Jinshuang Bo

    2016-01-01

    Full Text Available Methylglyoxal (MG is a highly reactive glucose metabolic intermediate and a major precursor of advanced glycation end products. MG level is elevated in hyperglycemic disorders such as diabetes mellitus. Substantial evidence has shown that MG is involved in the pathogenesis of diabetes and diabetic complications. We investigated the impact of MG on insulin secretion by MIN6 and INS-1 cells and the potential mechanisms of this effect. Our study demonstrates that MG impaired insulin secretion by MIN6 or ISN-1 cells in a dose-dependent manner. It increased reactive oxygen species (ROS production and apoptosis rate in MIN6 or ISN-1 cells and inhibited mitochondrial membrane potential (MMP and ATP production. Furthermore, the expression of UCP2, JNK, and P38 as well as the phosphorylation JNK and P38 was increased by MG. These effects of MG were attenuated by MG scavenger N-acetyl cysteine. Collectively, these data indicate that MG impairs insulin secretion of pancreatic β-cells through increasing ROS production. High levels of ROS can damage β-cells directly via JNK/P38 upregulation and through activation of UCP2 resulting in reduced MMP and ATP production, leading to β-cell dysfunction and impairment of insulin production.

  2. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  3. Insulin sensitivity and insulin secretion at birth in intrauterine growth retarded infants.

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Bhat, Vishnu; Chaturvedula, Lata; Vinayagamoorti, R; John, Mathew

    2006-06-01

    To study insulin sensitivity, secretion and relation of insulin levels with birth weight and ponderal index in intrauterine growth retarded (IUGR) infants at birth. We studied 30 IUGR and 30 healthy newborns born at term by vaginal delivery in Jipmer, Pondicherry, India. Cord blood was collected at the time of delivery for measurement of plasma glucose and insulin. When compared with healthy newborns, IUGR newborns had lower plasma glucose levels (mean 2.3+/-0.98 versus 4.1+/-0.51 mmol/L, p<0.001); lower plasma insulin levels (mean 4.5+/-2.64 versus 11.03+/-1.68 microU/L, p<0.001); higher insulin sensitivity calculated using G/I ratio (mean 11.6+/-5.1 versus 6.7+/-0.31, p<0.001), HOMA IS (mean 5.5+/-6.0 versus 0.53+/-0.15, p<0.001), and QUICKI (mean 0.47+/-0.12 versus 0.34+/-0.02, p<0.001); and decreased pancreatic beta-cell function test measured as I/G (mean 0.10+/-0.037 versus 0.15+/-0.006, p<0.001). A positive correlation was identified between insulin levels and birth weight in both the healthy control group (r2 = 0.17, p = 0.024) and IUGR group (r2 = 0.13, p = 0.048). However correlation of insulin levels with ponderal index was much more confident in both healthy control (r2 = 0.90, p<0.001) and IUGR groups (r2 = 0.28, p = 0.003). Insulin status correlated both with birth weight and ponderal index more confidently in control group than in IUGR group. At birth, IUGR infants are hypoglycaemic, hypoinsulinaemic and display increased insulin sensitivity and decreased pancreatic beta-cell function. Insulin levels correlate with ponderal index much more confidently than with birth weight.

  4. Fetal adaptations in insulin secretion result from high catecholamines during placental insufficiency.

    Science.gov (United States)

    Limesand, Sean W; Rozance, Paul J

    2017-08-01

    Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  5. Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Han-Hung Huang

    2011-01-01

    Full Text Available Exercise appears to improve glycemic control for people with type 1 diabetes (T1D. However, the mechanism responsible for this improvement is unknown. We hypothesized that exercise has a direct effect on the insulin-producing islets. Eight-week-old mice were divided into four groups: sedentary diabetic, exercised diabetic, sedentary control, and exercised control. The exercised groups participated in voluntary wheel running for 6 weeks. When compared to the control groups, the islet density, islet diameter, and β-cell proportion per islet were significantly lower in both sedentary and exercised diabetic groups and these alterations were not improved with exercise. The total insulin content and insulin secretion were significantly lower in sedentary diabetics compared to controls. Exercise significantly improved insulin content and insulin secretion in islets in basal conditions. Thus, some improvements in exercise-induced glycemic control in T1D mice may be due to enhancement of insulin content and secretion in islets.

  6. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Directory of Open Access Journals (Sweden)

    Natalia Gustavsson

    Full Text Available BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS: Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  7. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Science.gov (United States)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  8. Role of pancreatic polypeptide as a market of transplanted insulin-producing fetal pig cells.

    Science.gov (United States)

    Tuch, B E; Tabiin, M T; Casamento, F M; Yao, M; Georges, P; Amaratunga, A; Pinto, A N

    2001-01-01

    Transplantation of insulin-producing fetal pancreatic tissue into diabetic recipients has been shown to normalize blood glucose levels after several months. This time period is required for the growth and maturation of the fetal tissue so insulin levels cannot be used as a marker of graft function while the beta-cell is immature. Therefore, we have examined the use of another pancreatic endocrine hormone, pancreatic polypeptide (PP), to monitor graft function. The cell that produces this hormone has been shown to be the first mature endocrine cell in the fetal pancreas. Fetal pig pancreatic tissue, both in the form of 1 mm3 explants and islet-like cell clusters (ICCs), was transplanted into immunodeficient SCID mice and the levels of PP and insulin were measured in plasma and in the graft for up to 12 weeks. PP was detected in the untransplanted explants (0.58 pmol/mg) and ICCs (0.06 pmol/ICC) and the PP to insulin ratio was 2.7% and 5.8%, respectively. PP (but not porcine C-peptide, a marker of insulin secretion) was detectable in the plasma of SCID mice from 4 days to 3 weeks after transplantation, but not thereafter. The highest values were obtained at 4 days to 1 week. In the grafted tissue PP and insulin were present at all time points and the ratio of PP to insulin was 59%, 87%, 75%, 56%, 7%, 8%, and 7% at 4 days, 1, 2, 3, 6, 9, and 12 weeks, respectively. The decline in PP levels 3 weeks after transplantation was associated with beta-cell development in the graft. PP was also secreted by fetal pig pancreatic explants transplanted into diabetic NOD/SCID mice, with plasma levels measurable in the first week after the tissue was grafted. In immunocompetent BALB/c mice transplanted with the tissue, PP was detectable in plasma for 2 days after transplantation but not at 4 days, when cellular rejection commenced, or thereafter. We conclude that plasma PP levels can be used as a marker of the viability of fetal porcine pancreatic tissue in the first 3 weeks after

  9. A role for SPARC in the moderation of human insulin secretion.

    Directory of Open Access Journals (Sweden)

    Lorna W Harries

    Full Text Available AIMS/HYPOTHESIS: We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes. METHODS: We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines. RESULTS: SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05. SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01. Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01. CONCLUSIONS: Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC's modulation of obesity-induced insulin resistance in adipose tissue.

  10. Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats

    DEFF Research Database (Denmark)

    Lundh, Morten; Galbo, Thomas; Poulsen, Steen Seier

    2015-01-01

    Failure of pancreatic β cells to compensate for insulin resistance is a prerequisite for the development of type 2 diabetes. Sustained elevated circulating levels of free fatty acids and glucose contribute to β-cell failure. Selective inhibition of Histone deacetylase (HDAC)-3 protects pancreatic β...... cells against inflammatory and metabolic insults in vitro. Here we tested the ability of a selective HDAC3 inhibitor, BRD3308, to reduce hyperglycemia and increase insulin secretion in an animal model of type 2 diabetes. At diabetes onset, an ambulatory hyperglycemic clamp was performed. HDAC3......3 as a key therapeutic target for β-cell protection in type 2 diabetes....

  11. Effect Of Aqueous And Hydroalcoholic Extract Of Beberis Vulgaris On Insulin Secretion From Islets Of Langerhans Isolated From Male Mice

    Directory of Open Access Journals (Sweden)

    A Ahangarpour

    2012-10-01

    Full Text Available Background & Aim: considering the use of Beberis vulgaris in traditional medicine as a blood sugar depressant, in this study, the effect of Beberis vulgaris extracts were investigated on the level of insulin secretion from islets isolated of langerhans in male mice. Methods: This experimental study was carried out on 90 adult male mice, NMARI strains weighing 20-25 g. Pancreatic islets from normal mice were isolated by collagenase digestion method. Then the aqueous and hydro-alcoholic extract of Beberis vulgaris at 0.05, 0.1, and 1 mg/ml concentrations and glyburide at 1 and 10 μM concentrations were applied on islets isolated in three different concentration of glucose solution (2.8, 5.6 and 16.7 mM. Insulin secretion from hand-picked islets were evaluated in the static incubation system. The level of Insulin secretion was measured by the ELISA insulin kit. Data were analyzed with variance analysis. Results: Insulin secretion was significantly increased at 16.7 mM glucose concentration in comparison with 2.8 and 5.6 mM glucose concentration (p<0.05. Incubation of pancreatic islets isolated at 2.8 and 5.6 mM glucose concentration and low concentrations of extract (0.05 and 0.1mg/ml significantly increased the insulin secretion (p<0.05. Glyburide at 10 μM concentration was more effective than aqueous and hydro alcoholic extract of Beberis vulgaris at 16.7 mM glucose. Conclusion: The present study supported the anti-diabetic effect of Beberis vulgaris extracts in vitro with low glucose concentration and it suggests that one of the anti diabetic mechanisms of this plant is via pancreatic islets.

  12. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo.

    Science.gov (United States)

    Rezania, Alireza; Bruin, Jennifer E; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-11-01

    Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs, composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive), endocrine precursors (NKX2.2/synaptophysin-positive, hormone/NKX6.1-negative), and polyhormonal cells (insulin/glucagon-positive, NKX6.1-negative). However, the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question, we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant, both populations contained a high proportion of PDX1-expressing cells (~85%-90%) but were distinguished by their relatively high (~80%) or low (~25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study, but only NKX6.1-high grafts displayed robust meal-, glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue, but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells, whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high, but not NKX6.1-low grafts expressed nuclear MAFA. Collectively, this study demonstrates that a pancreatic endoderm

  13. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus.

    Science.gov (United States)

    Lee, Soo Min; Baik, Jasmine; Nguyen, Dara; Nguyen, Victoria; Liu, Shiwei; Hu, Zhaoyang; Abbott, Geoffrey W

    2017-06-01

    Type 2 diabetes mellitus (T2DM) represents a rapidly increasing threat to global public health. T2DM arises largely from obesity, poor diet, and lack of exercise, but it also involves genetic predisposition. Here we report that the KCNE2 potassium channel transmembrane regulatory subunit is expressed in human and mouse pancreatic β cells. Kcne2 deletion in mice impaired glucose tolerance as early as 5 wk of age in pups fed a Western diet, ultimately causing diabetes. In adult mice fed normal chow, skeletal muscle expression of insulin receptor β and insulin receptor substrate 1 were down-regulated 2-fold by Kcne2 deletion, characteristic of T2DM. Kcne2 deletion also caused extensive pancreatic transcriptome changes consistent with facets of T2DM, including endoplasmic reticulum stress, inflammation, and hyperproliferation. Kcne2 deletion impaired β-cell insulin secretion in vitro up to 8-fold and diminished β-cell peak outward K + current at positive membrane potentials, but also left-shifted its voltage dependence and slowed inactivation. Interestingly, we also observed an aging-dependent reduction in β-cell outward currents in both Kcne2 +/+ and Kcne2 - / - mice. Our results demonstrate that KCNE2 is required for normal β-cell electrical activity and insulin secretion, and that Kcne2 deletion causes T2DM. KCNE2 may regulate multiple K + channels in β cells, including the T2DM-linked KCNQ1 potassium channel α subunit.-Lee, S. M., Baik, J., Nguyen, D., Nguyen, V., Liu, S., Hu, Z., Abbott, G. W. Kcne2 deletion impairs insulin secretion and causes type 2 diabetes mellitus. © FASEB.

  14. Mitochondrial GTP Regulates Glucose-Induced Insulin Secretion

    Science.gov (United States)

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Summary Substrate-level mitochondrial GTP (mtGTP) and ATP (mtATP) synthesis occurs by nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl CoA synthetase (SCS). Unlike mtATP, each molecule of glucose metabolized produces approximately one mtGTP in pancreatic β-cells independent of coupling with oxidative phosphorylation making mtGTP a potentially important fuel signal. siRNA suppression of the GTP-producing pathway (ΔSCS-GTP) reduced glucose-stimulated insulin secretion (GSIS) by 50%, whereas suppression of the parallel ATP-producing isoform (ΔSCS-ATP) increased GSIS by two-fold in INS-1 832/13 cells and cultured rat islets. Insulin secretion correlated with increases in cytosolic calcium but not with changes in NAD(P)H or the ATP/ADP ratio. These data suggest an important role for mtGTP in mediating GSIS in β-cells by modulation of mitochondrial metabolism possibly via influencing mitochondrial calcium. Furthermore, by virtue of its tight coupling to TCA oxidation rates, mtGTP production may serve as an important molecular signal of TCA cycle activity. PMID:17403370

  15. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction.

    Science.gov (United States)

    Javeed, Naureen; Sagar, Gunisha; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Bhattacharya, Santanu; Truty, Mark; Petersen, Gloria M; Kaufman, Randal J; Chari, Suresh T; Mukhopadhyay, Debabrata

    2015-04-01

    Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into

  16. Mathematical model of the glucose–insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyungreem [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Hyuk [National Institute for Mathematical Sciences, Daejeon 305-340 (Korea, Republic of); Choi, M.Y., E-mail: mychoi@snu.ac.kr [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Jinwoong, E-mail: jwkim@snu.ac.kr [College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Myung-Shik [Department of Medicine, Samsung Medical Center, and School of Medicine, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2012-10-01

    A theoretical approach to the glucose–insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca{sup 2+} concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose–insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination. -- Highlights: ► We present a mathematical model for the glucose–insulin regulatory system. ► This model combines the microscopic insulin secretion mechanism in a pancreatic β-cell and macroscopic glucose dynamics at the whole-body level. ► This work is expected to provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  17. Mathematical model of the glucose–insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    International Nuclear Information System (INIS)

    Han, Kyungreem; Kang, Hyuk; Choi, M.Y.; Kim, Jinwoong; Lee, Myung-Shik

    2012-01-01

    A theoretical approach to the glucose–insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca 2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose–insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination. -- Highlights: ► We present a mathematical model for the glucose–insulin regulatory system. ► This model combines the microscopic insulin secretion mechanism in a pancreatic β-cell and macroscopic glucose dynamics at the whole-body level. ► This work is expected to provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  18. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    OpenAIRE

    McCommis, Kyle S.; Hodges, Wesley T.; Bricker, Daniel K.; Wisidagama, Dona R.; Compan, Vincent; Remedi, Maria S.; Thummel, Carl S.; Finck, Brian N.

    2016-01-01

    Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC) is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-prod...

  19. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Nicolai J. Wewer Albrechtsen

    2017-11-01

    Full Text Available Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among which proglucagon 1-61 (PG 1-61 appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in vivo. We conclude that glucagon variants, such as PG 1-61, may contribute to glucose regulation by stimulating hepatic glucose production and insulin secretion.

  20. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  1. Pancreatic bicarbonate secretion involves two proton pumps.

    Science.gov (United States)

    Novak, Ivana; Wang, Jing; Henriksen, Katrine L; Haanes, Kristian A; Krabbe, Simon; Nitschke, Roland; Hede, Susanne E

    2011-01-07

    Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium express H(+)/HCO(3)(-) transporters, which depend on gradients created by the Na(+)/K(+)-ATPase. However, the model cannot fully account for high-bicarbonate concentrations, and other active transporters, i.e. pumps, have not been explored. Here we show that pancreatic ducts express functional gastric and non-gastric H(+)-K(+)-ATPases. We measured intracellular pH and secretion in small ducts isolated from rat pancreas and showed their sensitivity to H(+)-K(+) pump inhibitors and ion substitutions. Gastric and non-gastric H(+)-K(+) pumps were demonstrated on RNA and protein levels, and pumps were localized to the plasma membranes of pancreatic ducts. Quantitative analysis of H(+)/HCO(3)(-) and fluid transport shows that the H(+)-K(+) pumps can contribute to pancreatic secretion in several species. Our results call for revision of the bicarbonate transport physiology in pancreas, and most likely other epithelia. Furthermore, because pancreatic ducts play a central role in several pancreatic diseases, it is of high relevance to understand the role of H(+)-K(+) pumps in pathophysiology.

  2. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2.

    Science.gov (United States)

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-03-10

    Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in L-cysteine-treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D.

  3. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    Science.gov (United States)

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  4. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-01-01

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  5. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    Science.gov (United States)

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  6. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    Science.gov (United States)

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  7. Activation of PPARd and RXRa stimulates fatty acid oxidatin and insulin secretion inpancreatic beta-cells

    DEFF Research Database (Denmark)

    Børgesen, Michael; Ravnskjær, Kim; Frigerio, Francesca

    as a central effector of unsaturated fatty acids in pancreatic ß-cells. Interestingly, activation of PPARd increases basal as well as glucose-stimulated insulin secretion of INS-1E cells. This increase is further potentiated by RXR agonists. This observation suggests that PPARd may mediate some of the positive......ACTIVATION OF PPARd AND RXRa STIMULATES FATTY ACID OXIDATION AND INSULIN SECRETION IN PANCREATIC b-CELLS Michael Boergesen1, Kim Ravnskjaer2, Francesca Frigerio3, Allan E. Karlsen4, Pierre Maechler3 and Susanne Mandrup1 1 Department of Biochemistry and Molecular Biology, University of Southern...... of genes as PPARd specific agonists and stimulates ß-oxidation. Importantly, oleate-induction of gene expression and ß-oxidation in INS-1E cells is abolished by knock-down of PPARd using adenoviral transfer of shRNA. Thus, PPARd appears to be a central regulator of fatty acid metabolism as well...

  8. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs

    Directory of Open Access Journals (Sweden)

    Jonathan L. S. Esguerra

    2014-11-01

    Full Text Available Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D. The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.

  9. Proton pump inhibitors inhibit pancreatic secretion

    DEFF Research Database (Denmark)

    Wang, Jing; Barbuskaite, Dagne; Tozzi, Marco

    2015-01-01

    +/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar...... of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition...

  10. Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes

    DEFF Research Database (Denmark)

    Rosengren, Anders H; Braun, Matthias; Mahdi, Taman

    2012-01-01

    The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features ...

  11. 3H-cyclosporine internalization and secretion by human fetal pancreatic islets

    International Nuclear Information System (INIS)

    Formby, B.; Walker, L.; Peterson, C.M.

    1988-01-01

    Human fetal pancreatic islets were isolated from 16- to 20-week-old fetuses by a collagenase technique and cultured 48 hr in RPMI 1640 containing 10% human adult serum and unlabeled 0 to 5 micrograms cyclosporine A (CsA)/ml. Insulin secretory capacity of human fetal islets was expressed as a fractional stimulatory ratio FSR = F2/F1 of the fractional secretion rates during two successive 1 hr static incubations first with 2 mM glucose (F1) to stabilize secretion followed by maximal stimulus, i.e., 25 mM glucose plus 10 mM L-leucine and 10 mM L-arginine (F2). Unlabeled CsA at the above concentrations had no significant effects on the insulin secretory capacity expressed by FSR-values. Studies of net uptake of 3H-CsA by islets cultured for varying periods up to 40 hr and expressed as picomole 3H-CsA per picomole islet insulin content demonstrated that uptake rate was slow and did not reach isotopic equilibrium over the 40 hr of culture. When isolated fetal islets were cultured for 48 hr in the presence of 3H-CsA and varying concentrations of unlabeled CsA it was found during two successive 1 hr static incubations that fetal islets secrete insulin concomitantly with 3H-CsA following maximal stimulus for secretion. An optimal secretory molar ratio of 3H-CsA to insulin of 4.0 +/- 1.3 (n = 7) was found after islets were cultured 48 hr in the presence of a saturating 2.128 micrograms 3H-CsA per milliliter culture medium. In three successive 30-min static incubations of 3H-CsA loaded islets, first with low glucose, followed by high glucose plus L-arginine and L-leucine, and finally with high glucose plus L-arginine and L-leucine and 10 mM theophylline, the proportional fractional secretion rates of insulin and 3H-CsA were of the same magnitude

  12. The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression

    DEFF Research Database (Denmark)

    Smidt, Kamille; Larsen, Agnete; Brønden, Andreas

    2016-01-01

    Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granu......Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage...

  13. Insulin Resistance and Impaired Pancreatic β-Cell Function in Adult Offspring of Women With Diabetes in Pregnancy

    DEFF Research Database (Denmark)

    Kelstrup, Louise; Damm, Peter; Mathiesen, Elisabeth R

    2013-01-01

    Context:Offspring of women with diabetes during pregnancy have increased risk of glucose intolerance in adulthood, but the underlying mechanisms are unknown.Objective:We aimed to investigate effects of intrauterine hyperglycemia on insulin secretion and - action in adult offspring of mothers...... a standard oral glucose tolerance test (120 minutes, 75 gram glucose). Pancreatic beta-cell function taking the prevailing insulin sensitivity into account was estimated by disposition indices.Results:Both groups of offspring exposed during pregnancy to either maternal gestational diabetes or type 1 diabetes.......005).Conclusion:Reduced insulin sensitivity as well as impaired pancreatic beta cell function may contribute to the increased risk of glucose intolerance among adult offspring born to women with diabetes during pregnancy....

  14. Corydalis edulis Maxim. Promotes Insulin Secretion via the Activation of Protein Kinase Cs (PKCs) in Mice and Pancreatic β Cells.

    Science.gov (United States)

    Zheng, Jiao; Zhao, Yunfang; Lun, Qixing; Song, Yuelin; Shi, Shepo; Gu, Xiaopan; Pan, Bo; Qu, Changhai; Li, Jun; Tu, Pengfei

    2017-01-16

    Corydalis edulis Maxim., a widely grown plant in China, had been proposed for the treatment for type 2 diabetes mellitus. In this study, we found that C. edulis extract (CE) is protective against diabetes in mice. The treatment of hyperglycemic and hyperlipidemic apolipoprotein E (ApoE)-/- mice with a high dose of CE reduced serum glucose by 28.84% and serum total cholesterol by 17.34% and increased insulin release. We also found that CE significantly enhanced insulin secretion in a glucose-independent manner in hamster pancreatic β cell (HIT-T15). Further investigation revealed that CE stimulated insulin exocytosis by a protein kinase C (PKC)-dependent signaling pathway and that CE selectively activated novel protein kinase Cs (nPKCs) and atypical PKCs (aPKCs) but not conventional PKCs (cPKCs) in HIT-T15 cells. To the best of our knowledge, our study is the first to identify the PKC pathway as a direct target and one of the major mechanisms underlying the antidiabetic effect of CE. Given the good insulinotropic effect of this herbal medicine, CE is a promising agent for the development of new drugs for treating diabetes.

  15. Circulating Glucagon 1-61 Regulates Blood Glucose by Increasing Insulin Secretion and Hepatic Glucose Production

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J.; Kuhre, Rune E.; Hornburg, Daniel

    2017-01-01

    that PG 1-61 dose-dependently increases levels of cAMP, through the glucagon receptor, and increases insulin secretion and protein levels of enzymes regulating glycogenolysis and gluconeogenesis. In rats, PG 1-61 increases blood glucose and plasma insulin and decreases plasma levels of amino acids in......Glucagon is secreted from pancreatic α cells, and hypersecretion (hyperglucagonemia) contributes to diabetic hyperglycemia. Molecular heterogeneity in hyperglucagonemia is poorly investigated. By screening human plasma using high-resolution-proteomics, we identified several glucagon variants, among...... which proglucagon 1-61 (PG 1-61) appears to be the most abundant form. PG 1-61 is secreted in subjects with obesity, both before and after gastric bypass surgery, with protein and fat as the main drivers for secretion before surgery, but glucose after. Studies in hepatocytes and in β cells demonstrated...

  16. The effect of pancreatic polypeptide and peptide YY on pancreatic blood flow and pancreatic exocrine secretion in the anesthetized dog

    International Nuclear Information System (INIS)

    DeMar, A.R.; Lake, R.; Fink, A.S.

    1991-01-01

    Pancreatic polypeptide (PP) and peptide YY (PYY) are inhibitors of pancreatic exocrine secretion in vivo but not in vitro, which suggests intermediate mechanisms of action. To examine the role of pancreatic blood flow in these inhibitory effects, xenon-133 gas clearance was used to measure pancreatic blood flow while simultaneously measuring pancreatic exocrine secretion. PP or PYY (400 pmol/kg/h) was administered during the intermediate hour of a 3-h secretin (125 ng/kg/h)/cholecystokinin octapeptide (CCK-8) (50 ng/kg/h) infusion. Exocrine secretion and pancreatic blood flow during the PP or PYY hours were compared with that observed in the first and third hours of the secretin/CCK-8 infusion. PP and PYY significantly inhibited secretin/CCK-8-induced pancreatic exocrine secretion. In addition, PYY (but not PP) significantly reduced pancreatic blood flow during secretin/CCK-8 stimulation. Nevertheless, there was no correlation between pancreatic blood flow and bicarbonate or protein outputs. It is concluded that changes in pancreatic blood flow do not mediate the inhibitory effects of PP or PYY on the exocrine pancreas

  17. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    Directory of Open Access Journals (Sweden)

    Kira G. Slepchenko

    2012-01-01

    Full Text Available Zinc (Zn2+ appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  18. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Influence of High Aspect Ratio Vessel Cell Culture on TNF-Alpha, Insulin Secretion and Glucose Homeostasis in Pancreatic Islets of Langerhans from Wistar Furth Rats

    Science.gov (United States)

    Tobin, Brian W.a; Leeper-Woodford, Sandra K.

    1999-01-01

    The present studies were carried out to determine the influence of a ground based microgravity paradigm, utilizing the High Aspect Ratio Vessel (HARV) cell culture upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) production of pancreatic islets of Langerhans. An additional aim was to elucidate alterations in insulin secretion and glucose utilization using the HARV low shear, gravity averaged vector, cell culture technique. Islets were isolated (1726 +/- 117, 150 micron islet equivalent units) from Wistar Furth rats and assigned to four treatment groups: 1) HARV, 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. Following 48 hours of culture, insulin concentration was increased in both HARV and static cultures (palpha (L929 cytotoxicity assay) and was measured at selected time points for 48 hours. TNF-alpha was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (palpha is associated with a decreased insulin secretion is intriguing, both as it relates to in-flight investigations, and as it may provide insight into the pathophysiology of Type I and Type 11 diabetes. Glucose concentration in islet medium was lesser throughout the experiment in static cultures, suggesting a decreased reliance upon glucose as a metabolic substrate in the islets cultured in HARVS. In conclusion, the present studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF production in the microgravity HARV paradigm. Additionally, alterations in fuel homeostasis may be promulgated by HARV culture. The clinical and physiological significance of these observations remains to be determined.

  20. A case of insulin and ACTH co-secretion by a neuroendocrine tumour.

    Science.gov (United States)

    Solomou, S; Khan, R; Propper, D; Berney, D; Druce, M

    2014-01-01

    A 33-year-old male was diagnosed with a metastatic neuroendocrine carcinoma of uncertain primary. He defaulted from follow-up without therapy and some months later developed episodic severe hypoglycaemia, which was found to be associated with inappropriately elevated insulin and C-peptide levels. It was considered likely that the neuroendocrine tumour was the source of the insulin secretion. Diazoxide and somatostatin analogue were used to control hypoglycaemia. Much later in the course of the disease, he developed metabolic derangement, increased skin pigmentation and psychological disturbance, without frankly Cushingoid physical findings. Investigations revealed highly elevated cortisol levels (the levels having previously been normal) with markedly raised ACTH levels, consistent with the co-secretion of ACTH and insulin by the tumour. Treatment with metyrapone improved his psychological state and electrolyte imbalance. Unfortunately, despite several cycles of first-, second- and third-line chemotherapy from the start of the first hormonal presentation onwards, imaging revealed widespread progressive metastatic disease and the patient eventually passed away. This case highlights the importance of keeping in mind the biochemical heterogeneity of endocrine tumours during their treatment. The clinical presentation of insulin-secreting tumours includes symptoms of neuroglycopaenia and sympathetic overstimulation.Tumour-associated hypoglycaemia can be due to pancreatic insulinomas, and although ectopic hormone production occurs in a number of tumours, ectopic secretion of insulin is rare.A possible switch in the type of hormone produced can occur during the growth and progression of neuroendocrine tumours and, when treating neuroendocrine tumours, it is important to keep in mind their biochemical heterogeneity.

  1. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  2. Effects of the beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans.

    Science.gov (United States)

    Cooper, E Jane; Hudson, Alan L; Parker, Christine A; Morgan, Noel G

    2003-12-15

    It is well known that certain imidazoline compounds can stimulate insulin secretion and this has been attributed to the activation of imidazoline I(3) binding sites in the pancreatic beta-cell. Recently, it has been proposed that beta-carbolines may be endogenous ligands having activity at imidazoline sites and we have, therefore, studied the effects of beta-carbolines on insulin secretion. The beta-carbolines harmane, norharmane and pinoline increased insulin secretion two- to threefold from isolated human islets of Langerhans. The effects of harmane and pinoline were dose-dependent (EC(50): 5 and 25 microM, respectively) and these agents also blocked the inhibitory effects of the potassium channel agonist, diazoxide, on glucose-induced insulin release. Stimulation of insulin secretion by harmane was glucose-dependent but, unlike the imidazoline I(3) receptor agonist efaroxan, it increased the rate of insulin release beyond that elicited by 20 mM glucose (20 mM glucose alone: 253+/-34% vs. basal; 20 mM glucose plus 100 microM harmane: 327+/-15%; P<0.01). Stimulation of insulin secretion by harmane was attenuated by the imidazoline I(3) receptor antagonist KU14R (2 (2-ethyl 2,3-dihydro-2-benzofuranyl)-2-imidazole) and was reduced when islets were treated with efaroxan for 18 h, prior to the addition of harmane. The results reveal that beta-carbolines can potentiate the rate of insulin secretion from human islets and suggest that these agents may be useful prototypes for the development of novel insulin secretagogues.

  3. Experimental evaluation and computational modeling of the effects of encapsulation on the time-profile of glucose-stimulated insulin release of pancreatic islets.

    Science.gov (United States)

    Buchwald, Peter; Cechin, Sirlene R; Weaver, Jessica D; Stabler, Cherie L

    2015-03-28

    In type 1 diabetic patients, who have lost their ability to produce insulin, transplantation of pancreatic islet cells can normalize metabolic control in a manner that is not achievable with exogenous insulin. To be successful, this procedure has to address the problems caused by the immune and autoimmune responses to the graft. Islet encapsulation using various techniques and materials has been and is being extensively explored as a possible approach. Within this framework, it is of considerable interest to characterize the effect encapsulation has on the insulin response of pancreatic islets. To improve our ability to quantitatively describe the glucose-stimulated insulin release (GSIR) of pancreatic islets in general and of micro-encapsulated islets in particular, we performed dynamic perifusion experiments with frequent sampling. We used unencapsulated and microencapsulated murine islets in parallel and fitted the results with a complex local concentration-based finite element method (FEM) computational model. The high-resolution dynamic perifusion experiments allowed good characterization of the first-phase and second-phase insulin secretion, and we observed a slightly delayed and blunted first-phase insulin response for microencapsulated islets when compared to free islets. Insulin secretion profiles of both free and encapsulated islets could be fitted well by a COMSOL Multiphysics model that couples hormone secretion and nutrient consumption kinetics with diffusive and convective transport. This model, which was further validated and calibrated here, can be used for arbitrary geometries and glucose stimulation sequences and is well suited for the quantitative characterization of the insulin response of cultured, perifused, transplanted, or encapsulated islets. The present high-resolution GSIR experiments allowed for direct characterization of the effect microencapsulation has on the time-profile of insulin secretion. The multiphysics model, further validated

  4. Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in beta-cells.

    Science.gov (United States)

    Manning Fox, Jocelyn E; Karaman, Gunce; Wheeler, Michael B

    2006-11-17

    Glucose stimulation of pancreatic beta-cells is reported to lead to sustained alkalization, while extracellular application of weak bases is reported to inhibit electrical activity and decrease insulin secretion. We hypothesize that beta-cell K(ATP) channel activity is modulated by alkaline pH. Using the excised patch-clamp technique, we demonstrate a direct stimulatory action of alkali pH on recombinant SUR1/Kir6.2 channels due to increased open probability. Bath application of alkali pH similarly activates native islet beta-cell K(ATP) channels, leading to an inhibition of action potentials, and hyperpolarization of membrane potential. In situ pancreatic perfusion confirms that these cellular effects of alkali pH are observable at a functional level, resulting in decreases in both phase 1 and phase 2 glucose-stimulated insulin secretion. Our data are the first to report a stimulatory effect of a range of alkali pH on K(ATP) channel activity and link this to downstream effects on islet beta-cell function.

  5. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and β-cell apoptosis

    DEFF Research Database (Denmark)

    Berchtold, Lukas Adrian; Størling, Zenia Marian; Ortis, Fernanda

    2011-01-01

    Type 1 diabetes (T1D) is a complex disease characterized by the loss of insulin-secreting β-cells. Although the disease has a strong genetic component, and several loci are known to increase T1D susceptibility risk, only few causal genes have currently been identified. To identify disease...... genes in T1D, including the INS gene. An unexpected top-scoring candidate gene was huntingtin-interacting protein (HIP)-14/ZDHHC17. Immunohistochemical analysis of pancreatic sections demonstrated that HIP14 is almost exclusively expressed in insulin-positive cells in islets of Langerhans. RNAi...... knockdown experiments established that HIP14 is an antiapoptotic protein required for β-cell survival and glucose-stimulated insulin secretion. Proinflammatory cytokines (IL-1β and IFN-γ) that mediate β-cell dysfunction in T1D down-regulated HIP14 expression in insulin-secreting INS-1 cells and in isolated...

  6. RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human β Cells

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    2014-12-01

    Full Text Available Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored. We demonstrate the presence of RFX6 in adult human pancreatic endocrine cells. Using the recently developed human β cell line EndoC-βH2, we show that RFX6 regulates insulin gene transcription, insulin content, and secretion. Knockdown of RFX6 causes downregulation of Ca2+-channel genes resulting in the reduction in L-type Ca2+-channel activity that leads to suppression of depolarization-evoked insulin exocytosis. We also describe a previously unreported homozygous missense RFX6 mutation (p.V506G that is associated with neonatal diabetes, which lacks the capacity to activate the insulin promoter and to increase Ca2+-channel expression. Our data therefore provide insights for understanding certain forms of neonatal diabetes.

  7. Mathematical model of the glucose-insulin regulatory system: From the bursting electrical activity in pancreatic β-cells to the glucose dynamics in the whole body

    Science.gov (United States)

    Han, Kyungreem; Kang, Hyuk; Choi, M. Y.; Kim, Jinwoong; Lee, Myung-Shik

    2012-10-01

    A theoretical approach to the glucose-insulin regulatory system is presented. By means of integrated mathematical modeling and extensive numerical simulations, we probe the cell-level dynamics of the membrane potential, intracellular Ca2+ concentration, and insulin secretion in pancreatic β-cells, together with the whole-body level glucose-insulin dynamics in the liver, brain, muscle, and adipose tissues. In particular, the three oscillatory modes of insulin secretion are reproduced successfully. Such comprehensive mathematical modeling may provide a theoretical basis for the simultaneous assessment of the β-cell function and insulin resistance in clinical examination.

  8. DHEA supplementation in ovariectomized rats reduces impaired glucose-stimulated insulin secretion induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Katherine Veras

    2014-01-01

    Full Text Available Dehydroepiandrosterone (DHEA and the dehydroepiandrosterone sulfate (DHEA-S are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

  9. Biliary and pancreatic secretions in abdominal irradiation

    International Nuclear Information System (INIS)

    Becciolini, A.; Cionini, L.; Cappellini, M.; Atzeni, G.

    1979-01-01

    The biliary and pancreatic secretions have been determined in patients given pelvic or para-aortic irradiation, with a dose of 50 Gy in the former group and between 36 and 40 Gy in the latter. A test meal containing polyethylene glycol (PEG) as reference substance was used. Each sample of the duodenal content was assayed for volume, PEG content, amylase and trypsin activity, pH and biliary secretion. No significant modifications of biliary and pancreatic secretions were demonstrated after irradiation, suggesting that these functions are not involved in the pathogenesis of the malabsorption radiation syndrome. (Auth.)

  10. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    Science.gov (United States)

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (pPCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production.

    Science.gov (United States)

    Dalmas, Elise; Lehmann, Frank M; Dror, Erez; Wueest, Stephan; Thienel, Constanze; Borsigova, Marcela; Stawiski, Marc; Traunecker, Emmanuel; Lucchini, Fabrizio C; Dapito, Dianne H; Kallert, Sandra M; Guigas, Bruno; Pattou, Francois; Kerr-Conte, Julie; Maechler, Pierre; Girard, Jean-Philippe; Konrad, Daniel; Wolfrum, Christian; Böni-Schnetzler, Marianne; Finke, Daniela; Donath, Marc Y

    2017-11-21

    Pancreatic-islet inflammation contributes to the failure of β cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1β, and palmitate). IL-33 promoted β cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the β cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute β cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Pancreatic bicarbonate secretion involves two proton pumps

    DEFF Research Database (Denmark)

    Novak, Ivana; Wang, Jing; Henriksen, Katrine L.

    2011-01-01

    Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium expres...

  13. Pancreatic effects of GLP-1

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Albrechtsen, Nicolai Jacob Wewer; Holst, Jens Juul

    2014-01-01

    -dependent manner. But perhaps equally importantly, GLP-1’s glucose lowering effects are attributable to a strong inhibition of glucagon secretion, and, thereby, a reduction of hepatic glucose output. The effects of GLP-1 on insulin secretion are mediated by binding of the hormone to the receptor (GLP-1r......) on the pancreatic β-cell, which increases intracellular cAMP levels and sets in motion a plethora of events that lead to secretion. In contrast, the inhibitory effect of GLP-1 on the α-cell may be indirect, involving paracrine intra-islet regulation by somatostatin and possibly also insulin, although GLP-1 also...... inhibits glucagon secretion in patients with type 1 diabetes mellitus. Besides these acute effects on the endocrine pancreas, GLP-1 also appears to have a positive effect on β-cell mass. In the following we will review GLP-1’s pancreatic effects with particular focus on its effects on pancreatic islets...

  14. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  15. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes

    Directory of Open Access Journals (Sweden)

    Giulia Donadel

    2017-10-01

    Full Text Available Background: Diabetes mellitus (DM is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1 and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05 increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1, Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2, compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9 were decreased (p < 0.05. These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.

  16. Design and clinical pilot testing of the model-based dynamic insulin sensitivity and secretion test (DISST).

    Science.gov (United States)

    Lotz, Thomas F; Chase, J Geoffrey; McAuley, Kirsten A; Shaw, Geoffrey M; Docherty, Paul D; Berkeley, Juliet E; Williams, Sheila M; Hann, Christopher E; Mann, Jim I

    2010-11-01

    Insulin resistance is a significant risk factor in the pathogenesis of type 2 diabetes. This article presents pilot study results of the dynamic insulin sensitivity and secretion test (DISST), a high-resolution, low-intensity test to diagnose insulin sensitivity (IS) and characterize pancreatic insulin secretion in response to a (small) glucose challenge. This pilot study examines the effect of glucose and insulin dose on the DISST, and tests its repeatability. DISST tests were performed on 16 subjects randomly allocated to low (5 g glucose, 0.5 U insulin), medium (10 g glucose, 1 U insulin) and high dose (20 g glucose, 2 U insulin) protocols. Two or three tests were performed on each subject a few days apart. Average variability in IS between low and medium dose was 10.3% (p=.50) and between medium and high dose 6.0% (p=.87). Geometric mean variability between tests was 6.0% (multiplicative standard deviation (MSD) 4.9%). Geometric mean variability in first phase endogenous insulin response was 6.8% (MSD 2.2%). Results were most consistent in subjects with low IS. These findings suggest that DISST may be an easily performed dynamic test to quantify IS with high resolution, especially among those with reduced IS. © 2010 Diabetes Technology Society.

  17. Gastrin is not a physiological regulator of pancreatic exocrine secretion in the dog

    International Nuclear Information System (INIS)

    Koehler, E.; Beglinger, C.; Eysselein, V.; Groetzinger, U.; Gyr, K.

    1987-01-01

    The role of gastrin as a regulator of exocrine pancreatic secretion has not been proven adequately. In the present study the authors therefore compared the relative molar potencies of sulfated and unsulfated gastrin 17 with structurally related CCK peptides (synthetic CCK-8 and natural porcine CCK-33) in stimulating exocrine pancreatic secretion in conscious dogs. Dose response curves were constructed for pancreatic and gastric acid secretion. Plasma gastrin levels after exogenous gastrin 17-I and -II were compared with postprandial gastrin concentrations. The molar potency estimates calculated with synthetic CCK8 as standard for pancreatic protein secretion were natural porcine 50% pure CCK-33 1.60, gastrin 17-I 0.12, and gastrin 17-II 0.16. All four peptides induced a dose-dependent increase in pancreatic bicarbonate output. However, the blood concentrations needed to stimulate pancreatic secretion were above the postprandial gastrin levels. The data indicate that both gastrin 17 peptides are not physiological regulators of pancreatic enzyme secretion in dogs

  18. Depressive symptoms, insulin sensitivity and insulin secretion in the RISC cohort study

    DEFF Research Database (Denmark)

    Bot, M; Pouwer, F; De Jonge, P

    2013-01-01

    Sensitivity and Cardiovascular Disease Risk (RISC) study. Presence of significant depressive symptoms was defined as a Center for Epidemiologic Studies Depression Scale (CES-D) score ≥ 16. Standard oral glucose tolerance tests were performed. Insulin sensitivity was assessed with the oral glucose insulin......AIM: This study explored the association of depressive symptoms with indices of insulin sensitivity and insulin secretion in a cohort of non-diabetic men and women aged 30 to 64 years. METHODS: The study population was derived from the 3-year follow-up of the Relationship between Insulin...... sensitivity (OGIS) index. Insulin secretion was estimated using three model-based parameters of insulin secretion (beta-cell glucose sensitivity, the potentiation factor ratio, and beta-cell rate sensitivity). RESULTS: A total of 162 out of 1027 participants (16%) had significant depressive symptoms. Having...

  19. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: Viable therapy for type III.C. a diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Umang G Thakkar

    2014-12-01

    Full Text Available Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC along with his bone marrow derived hematopoietic stem cells (BM-HSC. Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus.

  20. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes?

    Science.gov (United States)

    Dayeh, Tasnim; Ling, Charlotte

    2015-10-01

    β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.

  1. Acute effects of irradiation on exocrine pancreatic secretion in the pig

    International Nuclear Information System (INIS)

    Monti, P.; Scanff, P.; Joubert, C.; Vergnet, M.; Grison, S.

    1997-01-01

    Several reports on irradiation damages to the pancreas deal essentially with long-term morphologic changes but give few informations on pancreatic exocrine function. Therefore, the aim of the present work was to study the effects of a whole body gamma irradiation on the volume and enzyme activities of the pancreatic juice. The volume of pancreatic juice daily secreted decreased one day after irradiation (-40%, p < 0.01) and remained lower that the control value all over the experimental period (-65%, p < 0.01). Same response was observed for the total proteins secreted in the pancreatic juice but significant decrease was observed only the fourth and the fifth days after irradiation. Therefore, concentration of total protein secreted in the pancreatic juice was not altered all over the experimental period. Total activities of proteolytic enzymes, lipase and amylase led to decrease on day after irradiation and except for trypsin, the attenuated activity became significant from the third day after exposure. On the other hand, specific activities of the proteolytic enzymes and amylase did not show marked modifications after irradiation, whereas lipase specific activity was decreased. In conclusion, a whole body gamma irradiation resulted in a rapid and marked decrease of exocrine pancreatic secretion, in terms of volume as well as secreted enzymes. These modifications may, in part, contribute to the malabsorption of nutrients and these acute effects may be due to some modifications in the regulation of the exocrine pancreatic secretion

  2. Acute effects of irradiation on exocrine pancreatic secretion in the pig

    Energy Technology Data Exchange (ETDEWEB)

    Monti, P; Scanff, P; Joubert, C; Vergnet, M; Grison, S [CEA Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1997-03-01

    Several reports on irradiation damages to the pancreas deal essentially with long-term morphologic changes but give few informations on pancreatic exocrine function. Therefore, the aim of the present work was to study the effects of a whole body gamma irradiation on the volume and enzyme activities of the pancreatic juice. The volume of pancreatic juice daily secreted decreased one day after irradiation (-40%, p < 0.01) and remained lower that the control value all over the experimental period (-65%, p < 0.01). Same response was observed for the total proteins secreted in the pancreatic juice but significant decrease was observed only the fourth and the fifth days after irradiation. Therefore, concentration of total protein secreted in the pancreatic juice was not altered all over the experimental period. Total activities of proteolytic enzymes, lipase and amylase led to decrease on day after irradiation and except for trypsin, the attenuated activity became significant from the third day after exposure. On the other hand, specific activities of the proteolytic enzymes and amylase did not show marked modifications after irradiation, whereas lipase specific activity was decreased. In conclusion, a whole body gamma irradiation resulted in a rapid and marked decrease of exocrine pancreatic secretion, in terms of volume as well as secreted enzymes. These modifications may, in part, contribute to the malabsorption of nutrients and these acute effects may be due to some modifications in the regulation of the exocrine pancreatic secretion

  3. Sex-specific effects of naturally occurring variants in the dopamine receptor D2 locus on insulin secretion and Type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    Guigas, B; de Leeuw van Weenen, J E; van Leeuwen, N

    2014-01-01

    AIMS: Modulation of dopamine receptor D2 (DRD2) activity affects insulin secretion in both rodents and isolated pancreatic β-cells. We hypothesized that single nucleotide polymorphisms in the DRD2/ANKK1 locus may affect susceptibility to Type 2 diabetes in humans. METHODS: Four potentially....... In addition, 340 Dutch subjects underwent a 2-h hyperglycaemic clamp to investigate insulin secretion. Since sexual dimorphic associations related to DRD2 polymorphisms have been previously reported, we also performed a gender-stratified analysis. RESULTS: rs1800497 at the DRD2/ANKK1 locus was associated...

  4. The Insulin Regulatory Network in Adult Hippocampus and Pancreatic Endocrine System

    Directory of Open Access Journals (Sweden)

    Masanao Machida

    2012-01-01

    Full Text Available There is a very strong correlation between the insulin-mediated regulatory system of the central nervous system and the pancreatic endocrine system. There are many examples of the same transcriptional factors being expressed in both regions in their embryonic development stages. Hormonal signals from the pancreatic islets influence the regulation of energy homeostasis by the brain, and the brain in turn influences the secretions of the islets. Diabetes induces neuronal death in different regions of the brain especially hippocampus, causes alterations on the neuronal circuits and therefore impairs learning and memory, for which the hippocampus is responsible. The hippocampus is a region of the brain where steady neurogenesis continues throughout life. Adult neurogenesis from undifferentiated neural stem cells is greatly decreased in diabetic patients, and as a result their learning and memory functions decline. Might it be possible to reactivate stem cells whose functions have deteriorated and that are present in the tissues in which the lesions occur in diabetes, a lifestyle disease, which plagues modern humans and develops as a result of the behavior of insulin-related factor? In this paper we summarize research in regard to these matters based on examples in recent years.

  5. Control of the intracellular redox state by glucose participates in the insulin secretion mechanism.

    Directory of Open Access Journals (Sweden)

    Eduardo Rebelato

    Full Text Available BACKGROUND: Production of reactive oxygen species (ROS due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS. In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. METHODOLOGY/PRINCIPAL FINDINGS: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP. Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. CONCLUSIONS: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.

  6. The loss of Sirt1 in mouse pancreatic beta cells impairs insulin secretion by disrupting glucose sensing

    DEFF Research Database (Denmark)

    Luu, L; Dai, F F; Prentice, K J

    2013-01-01

    Sirtuin 1 (SIRT1) has emerged as a key metabolic regulator of glucose homeostasis and insulin secretion. Enhanced SIRT1 activity has been shown to be protective against diabetes, although the mechanisms remain largely unknown. The aim of this study was to determine how SIRT1 regulates insulin sec...

  7. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    Science.gov (United States)

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  8. Decreased 11β-Hydroxysteroid Dehydrogenase 1 Level and Activity in Murine Pancreatic Islets Caused by Insulin-Like Growth Factor I Overexpression.

    Directory of Open Access Journals (Sweden)

    Subrata Chowdhury

    Full Text Available We have reported a high expression of IGF-I in pancreatic islet β-cells of transgenic mice under the metallothionein promoter. cDNA microarray analysis of the islets revealed that the expression of 82 genes was significantly altered compared to wild-type mice. Of these, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1, which is responsible for the conversion of inert cortisone (11-dehydrocorticosterone, DHC in rodents to active cortisol (corticosterone in the liver and adipose tissues, has not been identified previously as an IGF-I target in pancreatic islets. We characterized the changes in its protein level, enzyme activity and glucose-stimulated insulin secretion. In freshly isolated islets, the level of 11β-HSD1 protein was significantly lower in MT-IGF mice. Using dual-labeled immunofluorescence, 11β-HSD1 was observed exclusively in glucagon-producing, islet α-cells but at a lower level in transgenic vs. wild-type animals. MT-IGF islets also exhibited reduced enzymatic activities. Dexamethasone (DEX and DHC inhibited glucose-stimulated insulin secretion from freshly isolated islets of wild-type mice. In the islets of MT-IGF mice, 48-h pre-incubation of DEX caused a significant decrease in insulin release, while the effect of DHC was largely blunted consistent with diminished 11β-HSD1 activity. In order to establish the function of intracrine glucocorticoids, we overexpressed 11β-HSD1 cDNA in MIN6 insulinoma cells, which together with DHC caused apoptosis and a significant decrease in proliferation. Both effects were abolished with the treatment of an 11β-HSD1 inhibitor. Our results demonstrate an inhibitory effect of IGF-I on 11β-HSD1 expression and activity within the pancreatic islets, which may mediate part of the IGF-I effects on cell proliferation, survival and insulin secretion.

  9. Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture

    International Nuclear Information System (INIS)

    Formby, B.; Schmid-Formby, F.; Grodsky, G.M.

    1984-01-01

    In short-term batch-incubation or perfusion experiments, we studied insulin release and associated 65 Zn efflux from rat pancreatic islets loaded with 65 Zn by 24-h tissue culture in low-glucose medium. The fractional basal insulin release and 65 Zn efflux were 0.4% and 3% of total content/h/islet, respectively. Thus, basal 65 Zn efflux was much greater than that to be accounted for if zinc was released proportionally with insulin release only; extragranular zinc flux was suggested. Two millimolar glucose, with or without 1 mM 3-isobutyl-1-methylxanthine (IBMX), affected neither insulin release nor associated 65 Zn efflux. Twenty-five millimolar glucose produced a significant threefold increase in insulin release above baseline, but somewhat decreased 65 Zn efflux at marginal significance. Glucose (25 mM) plus 1 mM IBMX provoked a high increase in insulin release and an associated 30% increase in fractional 65 Zn efflux over basal. Calculations based on previous estimations of 65 Zn distribution and equilibrium with islet zinc indicated that molar zinc efflux was more than sufficient to account for a 2-zinc-insulin hexamer. L-Leucine (2 or 20 mM) plus 1 mM IBMX caused far greater 65 Zn efflux for the amount of insulin released, indicating additional 65 Zn mobilization not directly related to insulin secretion. To evaluate 65 Zn efflux during inhibited insulin secretion, batch incubations were performed in 100% D 2 O or at 27 degrees C, conditions that inhibited insulin release stimulated by high glucose plus IBMX. These agents decreased the 65 Zn efflux far below the basal value (35% and 50%, respectively) and greater than could be accounted for by the attendent inhibition of insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Impaired Sympathoadrenal Axis Function Contributes to Enhanced Insulin Secretion in Prediabetic Obese Rats

    Directory of Open Access Journals (Sweden)

    Ana Eliza Andreazzi

    2011-01-01

    Full Text Available The involvement of sympathoadrenal axis activity in obesity onset was investigated using the experimental model of treating neonatal rats with monosodium L-glutamate. To access general sympathetic nervous system activity, we recorded the firing rates of sympathetic superior cervical ganglion nerves in animals. Catecholamine content and secretion from isolated adrenal medulla were measured. Intravenous glucose tolerance test was performed, and isolated pancreatic islets were stimulated with glucose and adrenergic agonists. The nerve firing rate of obese rats was decreased compared to the rate for lean rats. Basal catecholamine secretion decreased whereas catecholamine secretion induced by carbachol, elevated extracellular potassium, and caffeine in the isolated adrenal medulla were all increased in obese rats compared to control. Both glucose intolerance and hyperinsulinaemia were observed in obese rats. Adrenaline strongly inhibited glucose-induced insulin secretion in obese animals. These findings suggest that low sympathoadrenal activity contributes to impaired glycaemic control in prediabetic obese rats.

  12. Closing in on the Mechanisms of Pulsatile Insulin Secretion.

    Science.gov (United States)

    Bertram, Richard; Satin, Leslie S; Sherman, Arthur S

    2018-03-01

    Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca 2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca 2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca 2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets. © 2018 by the American Diabetes Association.

  13. Fuel-Stimulated Insulin Secretion Depends upon Mitochondria Activation and the Integration of Mitochondrial and Cytosolic Substrate Cycles

    Directory of Open Access Journals (Sweden)

    Gary W. Cline

    2011-10-01

    Full Text Available The pancreatic islet β-cell is uniquely specialized to couple its metabolism and rates of insulin secretion with the levels of circulating nutrient fuels, with the mitochondrial playing a central regulatory role in this process. In the β-cell, mitochondrial activation generates an integrated signal reflecting rates of oxidativephosphorylation, Kreb's cycle flux, and anaplerosis that ultimately determines the rate of insulin exocytosis. Mitochondrial activation can be regulated by proton leak and mediated by UCP2, and by alkalinization to utilize the pH gradient to drive substrate and ion transport. Converging lines of evidence support the hypothesis that substrate cycles driven by rates of Kreb's cycle flux and by anaplerosis play an integral role in coupling responsive changes in mitochondrial metabolism with insulin secretion. The components and mechanisms that account for the integrated signal of ATP production, substrate cycling, the regulation of cellular redox state, and the production of other secondary signaling intermediates are operative in both rodent and human islet β-cells.

  14. Insulin secretion and action in North Indian women during pregnancy.

    Science.gov (United States)

    Arora, G P; Almgren, P; Thaman, R G; Pal, A; Groop, L; Vaag, A; Prasad, R B; Brøns, C

    2017-10-01

    The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999) and adapted WHO 2013 (GDM2013) criteria, excluding the 1-h glucose value, in a high-risk Indian population from Punjab. Insulin secretion (HOMA2-B) and insulin action (HOMA2-IR) were assessed in 4665 Indian women with or without gestational diabetes defined by the GDM1999 or adapted GDM2013 criteria. Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women with normal glucose tolerance, and furthermore displayed lower insulin secretion than GDM1999 women. Urban habitat, illiteracy, high age and low BMI were independently associated with reduced insulin secretion, whereas Sikh religion, increasing age and BMI, as well as a family history of diabetes were independently associated with increased insulin resistance. Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more severe impairments of insulin secretion and action. © 2017 Diabetes UK.

  15. Effects of the pesticide amitraz and its metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas: involvement of alpha2D-adrenergic receptors.

    Science.gov (United States)

    Abu-Basha, E A; Yibchok-Anun, S; Hopper, D L; Hsu, W H

    1999-11-01

    The study purpose was to investigate the direct effect of amitraz, a formamidine insecticide/acaricide, and its active metabolite BTS 27271 on insulin and glucagon secretion from the perfused rat pancreas. Amitraz and BTS 27271 (0.01, 0.1, 1, and 10 micromol/L) inhibited insulin secretion in a concentration-dependent manner. Amitraz increased glucagon secretion at 10 micromol/L, whereas BTS 27271 increased glucagon secretion at 1 and 10 micromol/L. Amitraz- and BTS 27271-induced decreases in insulin secretion and increases in glucagon secretion were not abolished during the 10-minute washout period. During the arginine treatment, both amitraz and BTS 27271 groups (0.1, 1, and 10 micromol/L) had lower insulin secretion and higher glucagon secretion than the control group. Idazoxan, an alpha2A/2D-adrenergic receptor (AR) antagonist, prevented the inhibitory effect of amitraz on insulin secretion in a concentration-dependent manner, but prazosin, an alpha1- and alpha2B/2C-AR antagonist, failed to antagonize the effect of amitraz. These results demonstrate that (1) amitraz and BTS 27271 inhibit insulin and stimulate glucagon secretion from the perfused rat pancreas, (2) amitraz inhibits insulin secretion by activation of alpha2D-ARs, since rats have alpha2D- but not alpha2A-ARs, and (3) amitraz and BTS 27271 may have a high binding affinity to the alpha2D-ARs of pancreatic islets.

  16. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L

    2005-01-01

    The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are la...

  17. Sex-specific effects of naturally occurring variants in the dopamine receptor D2 locus on insulin secretion and Type 2 diabetes susceptibility

    NARCIS (Netherlands)

    Guigas, B.; Leeuw van Weenen, J.E. de; van Leeuwen, N.; Simonis-Bik, A.M.; Haeften, T.W. van; Nijpels, G.; Houwing-Duistermaat, J.J.; Beekman, M.; Deelen, J.; Havekes, L.M.; Penninx, B.W.J.H.; Vogelzangs, N.; Riet, E. van 't; Dehghan, A.; Hofman, A.; Witteman, J.C.; Uitterlinden, A.G.; Grarup, N.; Jørgensen, T.; Witte, D.R.; Lauritzen, T.; Hansen, T.; Pedersen, O.; Hottenga, J.; Romijn, J.A.; Diamant, M.; Kramer, M.H.H.; Heine, R.J.; Willemsen, G.; Dekker, J.M.; Eekhoff, E.M.; Pijl, H.; Geus, E.J. de; Slagboom, P.E.; Hart, L.M. 't

    2014-01-01

    Aims: Modulation of dopamine receptor D2 (DRD2) activity affects insulin secretion in both rodents and isolated pancreatic β-cells. We hypothesized that single nucleotide polymorphisms in the DRD2/ANKK1 locus may affect susceptibility to Type 2 diabetes in humans. Methods: Four potentially

  18. Effect of Avocado Soybean Unsaponifiables on Insulin Secretion and Insulin Sensitivity in Patients with Obesity

    Directory of Open Access Journals (Sweden)

    Esperanza Martínez-Abundis

    2013-10-01

    Full Text Available Aim: To evaluate the effect of avocado soybean unsaponifiables (ASU on insulin secretion and insulin sensitivity in patients with obesity. Methods: A randomized, double-blind, placebo-controlled, clinical trial was carried out in 14 obese adult volunteers. After random allocation of the intervention, 7 patients received 300 mg of ASU or placebo during a fasting state for 3 months. A metabolic profile including IL-6 and high-sensitivity C-reactive protein (hs-CRP levels was carried out prior to the intervention. A hyperglycemic-hyperinsulinemic clamp technique was used to assess insulin secretion and insulin sensitivity phases. Mann-Whitney U test and Wilcoxon test were performed for statistical analyses. The study was approved by the local ethics committee of our institution. Results: At baseline, both groups were similar according to clinical and laboratory characteristics. There was no significant difference in insulin secretion and insulin sensitivity with ASU. Conclusions: ASU administration for 3 months did not modify insulin secretion and insulin sensitivity in patients with obesity.

  19. Pancreatic exocrine secretion in atomic bomb survivors

    International Nuclear Information System (INIS)

    Hiraoka, Masataka; Kawanishi, Masahiro; Ohtaki, Megu

    1989-01-01

    This study was designed to examine the effect of A-bombing on pancreatic exocrine secretion in 6 A-bomb survivors (an average age of 57 years) and the age- and sex-matched non-exposed 6 persons (an average age of 58 years). Six A-bomb survivors consisted of: three who had been directly exposed to A-bombing, one who had entered the city within 3 days after bombing, one who had worked in caring for A-bomb survivors, and one who had later entered the city. Caerulein-Secretin test revealed no significant difference in the total secretion of lipase, maximum bicarbonate, amylase output, or lipase output between the exposed and non-exposed groups. The concentration of lipase ten min after stimulation was significantly decreased in the exposed group than the control group. This suggests that radiation may be responsible for abnormality in the ability of pancreatic exocrine secretion. (N.K.)

  20. [Effect of different nutritional support on pancreatic secretion in acute pancreatitis].

    Science.gov (United States)

    Achkasov, E E; Pugaev, A V; Nabiyeva, Zh G; Kalachev, S V

    To develop and justify optimal nutritional support in early phase of acute pancreatitis (AP). 140 AP patients were enrolled. They were divided into groups depending on nutritional support: group I (n=70) - early enteral tube feeding (ETF) with balanced mixtures, group II (n=30) - early ETF with oligopeptide mixture, group III (n=40) - total parenteral nutrition (TPN). The subgroups were also isolated depending on medication: A - Octreotide, B - Quamatel, C - Octreotide + Quamatel. Pancreatic secretion was evaluated by using of course of disease, instrumental methods, APUD-system hormone levels (secretin, cholecystokinin, somatostatin, vasointestinal peptide). ETF was followed by pancreas enlargement despite ongoing therapy, while TPN led to gradual reduction of pancreatic size up to normal values. α-amylase level progressively decreased in all groups, however in patients who underwent ETF (I and II) mean values of the enzyme were significantly higher compared with TPN (group III). Secretin, cholecystokinin and vasointestinal peptide were increasing in most cases, while the level of somatostatin was below normal in all groups. Enteral tube feeding (balanced and oligopeptide mixtures) contributes to pancreatic secretion compared with TPN, but this negative impact is eliminated by antisecretory therapy. Dual medication (Octreotide + Quamatel) is more preferable than monotherapy (Octreotide or Quamatel).

  1. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

    DEFF Research Database (Denmark)

    Christensen, Gitte L.; Jacobsen, Maria L. B.; Wendt, Anna

    2015-01-01

    AIMS/HYPOTHESIS: Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression...

  2. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice.

    Science.gov (United States)

    Samad, Mehdi Bin; Mohsin, Md Nurul Absar Bin; Razu, Bodiul Alam; Hossain, Mohammad Tashnim; Mahzabeen, Sinayat; Unnoor, Naziat; Muna, Ishrat Aklima; Akhter, Farjana; Kabir, Ashraf Ul; Hannan, J M A

    2017-08-09

    [6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current study on Lepr db/db diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia. Lepr db/db type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days. We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by qRT-PCR and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure glycogen synthase 1 level and Glut4 expression and protein levels. 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4 transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the increased expression of Rab8 and Rab

  3. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Cortez-Navarrete, Marisol; Martínez-Abundis, Esperanza; Pérez-Rubio, Karina G; González-Ortiz, Manuel; Villar, Miriam Méndez-Del

    2018-02-12

    An improvement in parameters of glycemic control has been observed with Momordica charantia in patients with type 2 diabetes mellitus (T2DM). It is unknown whether this improvement is through a modification of insulin secretion, insulin sensitivity, or both. We hypothesized that M. charantia administration can improve insulin secretion and/or insulin sensitivity in patients with T2DM, without pharmacological treatment. The objective of the study was to evaluate the effect of M. charantia administration on insulin secretion and sensitivity. A randomized, double-blinded, placebo-controlled, clinical trial was carried out in 24 patients who received M. charantia (2000 mg/day) or placebo for 3 months. A 2-h oral glucose tolerance test (OGTT) was done before and after the intervention to calculate areas under the curve (AUC) of glucose and insulin, total insulin secretion (insulinogenic index), first phase of insulin secretion (Stumvoll index), and insulin sensitivity (Matsuda index). In the M. charantia group, there were significant decreases in weight, body mass index (BMI), fat percentage, waist circumference (WC), glycated hemoglobin A1c (A1C), 2-h glucose in OGTT, and AUC of glucose. A significant increase in insulin AUC (56,562 ± 36,078 vs. 65,256 ± 42,720 pmol/L/min, P = .043), in total insulin secretion (0.29 ± 0.18 vs. 0.41 ± 0.29, P = .028), and during the first phase of insulin secretion (557.8 ± 645.6 vs. 1135.7 ± 725.0, P = .043) was observed after M. charantia administration. Insulin sensitivity was not modified with any intervention. In conclusion, M. charantia administration reduced A1C, 2-h glucose, glucose AUC, weight, BMI, fat percentage, and WC, with an increment of insulin AUC, first phase and total insulin secretion.

  4. Acute effects of whole body gamma irradiation on exocrine pancreatic secretion in the pig

    International Nuclear Information System (INIS)

    Monti, P.; Scanff, P.; Joubert, C.; Vergnet, M.; Grison, S.; Griffiths, N.

    2004-01-01

    Reports on radiation damage to the pancreas deal essentially with long-term morphological changes with few data on pancreatic exocrine function. The aim of this work was to study the acute effects of whole body irradiation on volume and enzyme activities in the pancreatic juice. A whole body gamma irradiation (6 Gy) was investigated in pigs with continuous sampling of pancreatic juice before and after exposure via an indwelling catheter in the pancreatic duct. For each sample collected, total protein concentration and enzyme activities of trypsin, chymotrypsin, elastase, lipase and amylase were determined. Pancreatic juice volume was monitored during all periods of collection. The volume of pancreatic juice secreted daily decreased one day after irradiation and remained lower than the control values over the experimental period. Total proteins secreted in the pancreatic juice and total activities of pancreatic enzymes were reduced similarly. On the other hand, only specific activities of elastase and lipase were affected by irradiation. Whole body gamma irradiation resulted in a rapid and marked decrease of exocrine pancreatic secretion, in terms of volume as well as secreted enzymes. This may contribute in part to the intestinal manifestations of the acute and/or late radiation syndrome. (author)

  5. Heterogeneity and compartmental properties of insulin storage and secretion in rat islets

    International Nuclear Information System (INIS)

    Gold, G.; Landahl, H.D.; Gishizky, M.L.; Grodsky, G.M.

    1982-01-01

    To investigate compartmental properties of insulin storage and secretion, isolated rat islets were used for pulse-labeling experiments, after which proinsulin and insulin were purified rigorously. Processing of proinsulin to insulin neared completion by 3 h without additional loss of either radioactive peptide by cellular or extracellular proteolysis. The amount of labeled hormone rapidly diminished in islets; it was secreted at a higher fractional rate than immunoreactive insulin, resulting in secreted insulin's having a higher specific activity than the average cellular insulin. Newly synthesized insulin, therefore, was secreted preferentially. Changes in the specific activity of secreted and cellular insulin with time were consistent with changes predicted for islets containing 33% of their total insulin in a glucose-labile compartment. Predictions were based on steady-state analysis of a simple storage-limited representation of B cell function. Islets from either the dorsal or ventral part of the pancreas also contained 33% of their total insulin in a glucose-labile compartment. The same compartment was mobilized by 20 mM glucose, 50 mM potassium + 2 mM glucose, or 20 MM glucose + 1 mM 3-isobutylmethylxanthine as indicated by the specific activity ratio of secreted vs. cellular insulin, even though average secretion rates with these stimuli differed by more than threefold. In the absence of calcium, the effectiveness of 20 mM glucose as a secretagogue declined markedly, and the older stored insulin was preferentially mobilized because secreted insulin had a lower rather than a higher specific activity than cellular insulin. Results provide insight into the mechanisms of nonrandom mobilization and secretion of insulin form the B cell

  6. The relationship between bone turnover and insulin sensitivity and secretion

    DEFF Research Database (Denmark)

    Frost, Morten; Balkau, Beverley; Hatunic, Mensud

    2018-01-01

    Bone metabolism appears to influence insulin secretion and sensitivity, and insulin promotes bone formation in animals, but similar evidence in humans is limited. The objectives of this study are to explore if bone turnover markers were associated with insulin secretion and sensitivity and to det...

  7. Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets

    DEFF Research Database (Denmark)

    Luciani, Dan Seriano; Misler, S.; Polonsky, K.S.

    2006-01-01

    Exposure of pancreatic islets of Langerhans to physiological concentrations of glucose leads to secretion of insulin in an oscillatory pattern. The oscillations in insulin secretion are associated with oscillations in cytosolic Ca2+ concentration ([Ca2+](c)). Evidence suggests that the oscillatio...

  8. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    Science.gov (United States)

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  9. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets.

    Science.gov (United States)

    Vilches-Flores, Alonso; Tovar, Armando R; Marin-Hernandez, Alvaro; Rojas-Ochoa, Alberto; Fernandez-Mejia, Cristina

    2010-07-01

    Besides its role as a carboxylase prosthetic group, biotin has important effects on gene expression. However, the molecular mechanisms through which biotin exerts these effects are largely unknown. We previously found that biotin increases pancreatic glucokinase expression. We have now explored the mechanisms underlying this effect. Pancreatic islets from Wistar rats were treated with biotin, in the presence or absence of different types of inhibitors. Glucokinase mRNA and 18s rRNA abundance were determined by real-time PCR. Adenosine triphosphate (ATP) content was analyzed by fluorometry. Biotin treatment increased glucokinase mRNA abundance approximately one fold after 2 h; the effect was sustained up to 24 h. Inhibition of soluble guanylate cyclase or protein kinase G (PKG) signalling suppressed biotin-induced glucokinase expression. The cascade of events downstream of PKG in biotin-mediated gene transcription is not known. We found that inhibition of insulin secretion with diazoxide or nifedipine prevented biotin-stimulated glucokinase mRNA increase. Biotin treatment increased islet ATP content (control: 4.68+/-0.28; biotin treated: 6.62+/-0.26 pmol/islet) at 30 min. Inhibition of PKG activity suppressed the effects of biotin on ATP content. Insulin antibodies or inhibitors of phosphoinositol-3-kinase/Akt insulin signalling pathway prevented biotin-induced glucokinase expression. The nucleotide 8-Br-cGMP mimicked the biotin effects. We propose that the induction of pancreatic glucokinase mRNA by biotin involves guanylate cyclase and PKG activation, which leads to an increase in ATP content. This induces insulin secretion via ATP-sensitive potassium channels. Autocrine insulin, in turn, activates phosphoinositol-3-kinase/Akt signalling. Our results offer new insights into the pathways that participate in biotin-mediated gene expression. (c) 2010 Elsevier Inc. All rights reserved.

  10. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  11. Kill two birds with one stone: making multi-transgenic pre-diabetes mouse models through insulin resistance and pancreatic apoptosis pathogenesis

    Directory of Open Access Journals (Sweden)

    Siyuan Kong

    2018-04-01

    Full Text Available Background Type 2 diabetes is characterized by insulin resistance accompanied by defective insulin secretion. Transgenic mouse models play an important role in medical research. However, single transgenic mouse models may not mimic the complex phenotypes of most cases of type 2 diabetes. Methods Focusing on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors, we generated single-transgenic (C/EBP homology protein, CHOP mice (CHOP mice, dual-transgenic (human islet amyloid polypeptide, hIAPP; CHOP mice (hIAPP-CHOP mice and triple-transgenic (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1; hIAPP; CHOP mice (11β-HSD1-hIAPP- CHOP mice. The latter two types of transgenic (Tg animals were induced with high-fat high-sucrose diets (HFHSD. We analyzed the diabetes-related symptoms and histology features of the transgenic animals. Results Comparing symptoms on the spot-checked points, we determined that the triple-transgene mice were more suitable for systematic study. The results of intraperitoneal glucose tolerance tests (IPGTT of triple-transgene animals began to change 60 days after induction (p < 0.001. After 190 days of induction, the body weights (p < 0.01 and plasma glucose of the animals in Tg were higher than those of the animals in Negative Control (Nc. After sacrificed, large amounts of lipid were found deposited in adipose (p < 0.01 and ectopically deposited in the non-adipose tissues (p < 0.05 or 0.01 of the animals in the Tg HFHSD group. The weights of kidneys and hearts of Tg animals were significantly increased (p < 0.01. Serum C peptide (C-P was decreased due to Tg effects, and insulin levels were increased due to the effects of the HFHSD in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone of Tg was slightly higher than those of Nc due to the

  12. Radioimmunologic study of insulin secretion during acute radiation sickness

    International Nuclear Information System (INIS)

    Barkalaya, A.I.

    1977-01-01

    Insulin secretion in irradiated (750 R) albino rats has been studied radioimmunologically. The data obtained were correlated with the corticosterone and glucose contents of blood. It has been shown that there is a risk of relative incompetence of insulin secretion during the hypercorticoidism and hyperglycemia

  13. Radioimmunologic study of insulin secretion during acute radiation sickness

    Energy Technology Data Exchange (ETDEWEB)

    Barkalaya, A I

    1977-01-01

    Insulin secretion in irradiated (750 R) albino rats has been studied radioimmunologically. The data obtained were correlated with the corticosterone and glucose contents of blood. It has been shown that there is a risk of relative incompetence of insulin secretion during the hypercorticoidism and hyperglycemia.

  14. Heparin and insulin in the management of hypertriglyceridemia-associated pancreatitis: case series and literature review.

    Science.gov (United States)

    Kuchay, Mohammad Shafi; Farooqui, Khalid J; Bano, Tarannum; Khandelwal, Manoj; Gill, Harmandeep; Mithal, Ambrish

    2017-01-01

    Severe hypertriglyceridemia accounts for up to 7% of all cases of acute pancreatitis. Heparin and insulin activate lipoprotein lipase (LPL), thereby reducing plasma triglyceride levels. However, the safety and efficacy of heparin and insulin in the treatment of hypertriglyceridemia-associated acute pancreatitis have not been well established yet. We successfully used heparin and insulin as first-line therapy in four consecutive patients with acute pancreatitis secondary to hypertriglyceridemia. In a literature search, we revised almost all reports published to date of patients managed successfully with this combination. Heparin and insulin appear to be a safe, effective, and inexpensive first-line therapy for hypertriglyceridemia-associated acute pancreatitis.

  15. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    Science.gov (United States)

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  16. Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance.

    Directory of Open Access Journals (Sweden)

    Songyan Wang

    Full Text Available We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP on insulin secretion rates (ISRs and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.

  17. Depressive symptoms, insulin sensitivity and insulin secretion in the RISC cohort study

    NARCIS (Netherlands)

    Bot, M.; Pouwer, F.; de Jonge, P.; Nolan, J.J.; Mari, A.; Højlund, K.; Golay, A.; Balkau, B.; Dekker, J.M.

    2013-01-01

    Aim This study explored the association of depressive symptoms with indices of insulin sensitivity and insulin secretion in a cohort of non-diabetic men and women aged 30 to 64 years. Methods The study population was derived from the 3-year follow-up of the Relationship between Insulin Sensitivity

  18. Depressive symptoms, insulin sensitivity and insulin secretion in the RISC cohort study

    NARCIS (Netherlands)

    Bot, M.; Pouwer, F.; De Jonge, P.; Nolan, J. J.; Mari, A.; Hojlund, K.; Golay, A.; Balkau, B.; Dekker, J. M.

    Aim. This study explored the association of depressive symptoms with indices of insulin sensitivity and insulin secretion in a cohort of non-diabetic men and women aged 30 to 64 years. Methods. The study population was derived from the 3-year follow-up of the Relationship between Insulin Sensitivity

  19. Insulin secretion and action in North Indian women during pregnancy

    DEFF Research Database (Denmark)

    Arora, G P; Almgren, P; Thaman, R G

    2017-01-01

    . RESULTS: Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women......AIM: The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999...... independently associated with increased insulin resistance. CONCLUSIONS: Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more...

  20. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.

    2016-01-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534

  2. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  3. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  4. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line

    Directory of Open Access Journals (Sweden)

    Binhai Ren

    2016-04-01

    Full Text Available Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone, H4IIE/ND (NeuroD1 gene alone, and H4IIEins/ND (insulin and NeuroD1 genes. The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes.

  5. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?

    Science.gov (United States)

    Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia

    2018-01-01

    Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role

  6. Pancreatic aquaporin-7: a novel target for anti-diabetic drugs?

    Science.gov (United States)

    Méndez-Giménez, Leire; Ezquerro, Silvia; da Silva, Inês V.; Soveral, Graça; Frühbeck, Gema; Rodríguez, Amaia

    2018-04-01

    Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5 and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in ,, ,  and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic -cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced -cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion by increasing intracellular glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function variants of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of

  7. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?

    Directory of Open Access Journals (Sweden)

    Leire Méndez-Giménez

    2018-04-01

    Full Text Available Aquaporins comprise a family of 13 members of water channels (AQP0-12 that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is

  8. Endocrine determinants of changes in insulin sensitivity and insulin secretion during a weight cycle in healthy men.

    Directory of Open Access Journals (Sweden)

    Judith Karschin

    Full Text Available Changes in insulin sensitivity (IS and insulin secretion occur with perturbations in energy balance and glycemic load (GL of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear.In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2 followed 1wk of overfeeding (OF, 3wks of caloric restriction (CR containing either 50% or 65% carbohydrate (CHO and 2wks of refeeding (RF with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI, insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion were assessed.IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05. Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05 whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05 and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only. After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant.Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and ghrelin seem to be the major

  9. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  10. GLP1 and glucagon co-secreting pancreatic neuroendocrine tumor presenting as hypoglycemia after gastric bypass

    DEFF Research Database (Denmark)

    Guimarães, Marta; Rodrigues, Pedro; Pereira, Sofia S

    2015-01-01

    for the treatment of severe obesity, a 54-year-old female with previous type 2 diabetes, developed post-prandial sweating, fainting and hypoglycemic episodes, which eventually led to the finding by ultrasound of a 1.8-cm solid mass in the pancreatic head. The 72-h fast test and the plasma chromogranin A levels were...... (471 pmol/g), insulin (139 pmol/g) and somatostatin (23 pmol/g). This is the first report of a GLP1 and glucagon co-secreting pNET presenting as hypoglycemia after gastric bypass surgery. Although pNET are rare, they should be considered in the differential diagnosis of the clinical approach...

  11. Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes.

    Science.gov (United States)

    Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang

    2017-06-01

    This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.

  12. The interplay between noncoding RNAs and insulin in diabetes.

    Science.gov (United States)

    Tian, Yan; Xu, Jia; Du, Xiao; Fu, Xianghui

    2018-04-10

    Noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, regulate various biological processes and are involved in the initiation and progression of human diseases. Insulin, a predominant hormone secreted from pancreatic β cells, is an essential factor in regulation of systemic metabolism through multifunctional insulin signaling. Insulin production and action are tightly controlled. Dysregulations of insulin production and action can impair metabolic homeostasis, and eventually lead to the development of multiple metabolic diseases, especially diabetes. Accumulating data indicates that ncRNAs modulate β cell mass, insulin synthesis, secretion and signaling, and their role in diabetes is dramatically emerging. This review summarizes our current knowledge of ncRNAs as regulators of insulin, with particular emphasis on the implications of this interplay in the development of diabetes. We outline the role of ncRNAs in pancreatic β cell mass and function, which is critical for insulin production and secretion. We also highlight the involvement of ncRNAs in insulin signaling in peripheral tissues including liver, muscle and adipose, and discuss ncRNA-mediated inter-organ crosstalk under diabetic conditions. A more in-depth understanding of the interplay between ncRNAs and insulin may afford valuable insights and novel therapeutic strategies for treatment of diabetes, as well as other human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. H2O2-Activated Mitochondrial Phospholipase iPLA2 gamma Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic beta-Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin; Ježek, Petr

    2015-01-01

    Roč. 23, č. 12 (2015), s. 958-972 ISSN 1523-0864 R&D Projects: GA ČR(CZ) GPP303/11/P320; GA ČR(CZ) GA13-02033S; GA ČR(CZ) GA13-06666S; GA ČR GA15-02051S Institutional support: RVO:67985823 Keywords : mitochondrial phospholipase iPLA2 gamma * uncoupling protein UCP2 * G-protein coupled receptor - 40 * glucose-stimulated insulin secretion * pancreatic beta cells Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 7.093, year: 2015

  14. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yunli, E-mail: chrisyu1255@yahoo.com.cn [Department of Pharmaceutics, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Wang, Xinting, E-mail: wxinting1986@yahoo.com.cn [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Liu, Can, E-mail: ltsan@163.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Yao, Dan, E-mail: erinyao@126.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Shanghai Institute of Materia Medica, Shanghai 201203 (China); Hu, Mengyue, E-mail: juliahmy@126.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Li, Jia, E-mail: ljbzd@163.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Hu, Nan, E-mail: hn_324@163.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Liu, Li, E-mail: liulee@cpu.edu.cn [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Liu, Xiaodong, E-mail: xdliu@cpu.edu.cn [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China)

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  15. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    International Nuclear Information System (INIS)

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-01-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K ATP channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be involved in

  16. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia

    Directory of Open Access Journals (Sweden)

    Ellen B. Fung

    2015-06-01

    Full Text Available Up to 20% of adult patients with Thalassemia major (Thal live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05 and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048. Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19.0 ± 9.6 μg/dL, showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL and insulin to glucose ratios at 120 min post glucose dose (p = 0.05. Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient.

  17. Possible modulatory effect of endogenous islet catecholamines on insulin secretion

    Directory of Open Access Journals (Sweden)

    Gagliardino Juan J

    2001-10-01

    Full Text Available Abstract Background The possible participation of endogenous islet catecholamines (CAs in the control of insulin secretion was tested. Methods Glucose-induced insulin secretion was measured in the presence of 3-Iodo-L-Tyrosine (MIT, a specific inhibitor of tyrosine-hydroxylase activity, in fresh and precultured islets isolated from normal rats. Incubated islets were also used to measure CAs release in the presence of low and high glucose, and the effect of α2-(yohimbine [Y] and idazoxan [I] and α1-adrenergic antagonists (prazosin [P] and terazosin [T] upon insulin secretion elicited by high glucose. Results Fresh islets incubated with 16.7 mM glucose released significantly more insulin in the presence of 1 μM MIT (6.66 ± 0.39 vs 5.01 ± 0.43 ng/islet/h, p Conclusion Our results suggest that islet-originated CAs directly modulate insulin release in a paracrine manner.

  18. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  19. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  20. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  1. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  2. [Pancreatic infringement exocrine and endocrine in cystic fibrosis].

    Science.gov (United States)

    Kessler, L; Abély, M

    2016-12-01

    The exocrine pancreatic insufficiency affects more than 80% of cystic fibrosis (CF) infants. Pancreatic insufficiency is diagnosed by low levels of fecal elastase. An optimal caloric intake, a pancreatic enzyme treatment are the keys to maintain a good nutritional status. The fat soluble vitamins supplementation will be associated with pancreatic enzymes treatment and will be adapted to plasma levels. Iron and oligo-element deficiency such as zinc is common. The pancreatic enzymes function is not optimal in the proximal bowel: the intraluminal intestinal pH is low because of the absence of bicarbonate release by the pancreas. The use of proton pump inhibitors may improve the functionality of pancreatic enzymes treatment. New therapies such as ivacaftor in patients with a G551D mutation allows a weight gain in particular by restoring intestinal pH similar to controls. Lengthening of the life expectancy of patients with CF is accompanied by the emergence new aspects of the disease, especially diabetes, favored by pancreatic cystic fibrosis resulting in an anatomical destruction of pancreatic islets. Currently, diabetes affects a third of the patients after 20 years, and half after 30 years. Cystic fibrosis-related diabetes is a major factor of morbidity-mortality in all stages of the disease and is characterized by a preclinical phase of glucose intolerance particularly long reaching up to 10 years. Its pathophysiology combines a lack of insulin secretion, an insulin resistance secondary to chronic infection, and a decrease in the production of the GIP and GLP-1. The insulin secretion depending on the channel chlorine (Cystic Fibrosis Transmembrane conductance Regulator [CFTR]) activity at the membrane surface of insulin cell is reduced prior to the occurrence of pancreatic histological lesions. At the stage of diabetes, obtaining a normoglycemia by insulin treatment began very early allows to slow the decline of lung function and nutritional status. Given the silent

  3. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence.

    Directory of Open Access Journals (Sweden)

    Zachary J Farino

    Full Text Available Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment.

  4. Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Patrick A. Vigueira

    2014-06-01

    Full Text Available Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2 is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2Δ16 was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2Δ16 mice. Additionally, compared with wild-type controls, Mpc2Δ16 mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic β cell glucose sensing.

  5. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Maria L. Mizgier

    2017-01-01

    Full Text Available Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines. We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS. In conditioned media from human myotubes incubated with/without insulin (100 nmol/L for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p<0.05. Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.

  6. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance.

    Science.gov (United States)

    Méndez-Del Villar, Miriam; Puebla-Pérez, Ana M; Sánchez-Peña, María J; González-Ortiz, Luis J; Martínez-Abundis, Esperanza; González-Ortiz, Manuel

    2016-05-01

    To evaluate the effect of Artemisia dracunculus on glycemic control, insulin sensitivity, and insulin secretion in patients with impaired glucose tolerance (IGT). A randomized, double blind, placebo-controlled clinical trial was performed in 24 patients with diagnosis of IGT. Before and after the intervention, glucose and insulin levels were measured every 30 min for 2 h after a 75-g dextrose load, along with glycated hemoglobin A1c (A1C) and lipid profile. Twelve patients received A. dracunculus (1000 mg) before breakfast and dinner for 90 days; the remaining 12 patients received placebo. Area under the curve (AUC) of glucose and insulin, total insulin secretion, first phase of insulin secretion, and insulin sensitivity were calculated. Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests were used for statistical analyses. The institutional ethics committee approved the protocol. After A. dracunculus administration, there were significant decreases in systolic blood pressure (SBP; 120.0 ± 11.3 vs. 113.0 ± 11.2 mmHg, P AUC of insulin (56,136.0 ± 27,426.0 vs. 44,472.0 ± 23,370.0 pmol/L, P AUC of insulin, and total insulin secretion with a significant increase in HDL-C levels.

  7. Exercise-Induced Secretion of FGF21 and Follistatin Are Blocked by Pancreatic Clamp and Impaired in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Pedersen, Bente Klarlund; Xu, Guowang

    2016-01-01

    blocking the increase in the glucagon to insulin ratio. In addition, we evaluated exercise-induced plasma FGF21 and follistatin in patients with T2D compared with healthy controls in response to 1 hour of bicycle exercise followed by a 3-hour recovery period. RESULTS: In healthy individuals, we observed......CONTEXT: Hepatokines have emerged as liver-derived hormone-like factors. Plasma fibroblast growth factor (FGF)-21 and follistatin increase with a high glucagon to insulin ratio and exercise, and resting levels are elevated in patients with type 2 diabetes (T2D). OBJECTIVE: The objective...... of the study was to investigate the regulatory roles of glucagon to insulin ratio and T2D on exercise-induced FGF21 and follistatin secretion. Design /Interventions: Young healthy males performed a 2-hour bicycle exercise bout followed by 5 hours of rest in supine position with and without a pancreatic clamp...

  8. Pancreatic beta-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity

    DEFF Research Database (Denmark)

    Solomon, Thomas; Malin, Steven K; Karstoft, Kristian

    2013-01-01

    glucose-stimulated insulin secretion (GSIS), and disposition index (DI) were measured following 12-16-weeks of aerobic exercise training. Regression analyses were used to identify relationships between variables.ResultsFollowing training, 86% of subjects increased VO2max and lost weight. HbA1c, fasting......ContextUnderstanding inter-subject variability in glycemic control following exercise training will help individualize treatment.ObjectiveTo determine whether this variability is related to training-induced changes in insulin sensitivity or pancreatic beta-cell function.Design, Setting....... Training increased first- and second-phase DI in 83% and 74% of subjects. Training-induced changes in glycemic control were related to changes in GSIS (P...

  9. Dieta hiperlipídica e capacidade secretória de insulina em ratos High-fat diet and secretory capacity of insulin in rats

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Garcia de Oliveira Duarte

    2006-06-01

    the effects of continuous feeding of rats with a palatable high-fat diet on: body weight gain, adiposity, liver and muscle glycogen content, blood glucose and insulin levels, and pancreatic morphology and insulin secretion by in vitro isolated pancreatic beta cells. METHODS: Male Wistar rats (21 days old were fed with a palatable high-fat diet or a chow diet during 15wk. Body weight and food intake were recorded daily whereas blood glucose and insulin were analyzed weekly. After they were killed, pancreas, liver, gastrocnemius muscle and adipose tissues were removed and weighted. Morphology analysis of pancreatic tissue sections was performed using light microscopy. Serum insulin and the insulin secreted by isolated pancreatic islets, incubated for 90min under different concentrations of glucose, were analyzed by radioimmunoassay. RESULTS: The palatable high-fat diet increased adiposity, body weight gain and liver glycogen content when compared with the animals fed with a chow diet. Blood glucose and insulin levels did not differ between groups. The insulin secretion from isolated islets increased in the high-fat diet group only at physiological concentrations of glucose (G= 8.3mM. The size of the pancreas of rats receiving the high-fat diet decreased, although the number of beta cells increased. In addition, the lumen of pancreatic vessels was narrower compared with control islets. CONCLUSION: The obesity resulting from a high-fat diet did not alter the blood glucose and insulin levels of fasted rats. Despite the morphological alterations of the pancreas, normal blood glucose concentration in rats receiving a high-fat diet remained at physiological range due to a preserved secretory capacity of the pancreatic islets.

  10. Secretin-stimulated ultrasound estimation of pancreatic secretion in cystic fibrosis validated by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Engjom, Trond; Dimcevski, Georg; Tjora, Erling; Wathle, Gaute; Erchinger, Friedemann; Laerum, Birger N.; Gilja, Odd H.; Haldorsen, Ingfrid Salvesen

    2018-01-01

    Secretin-stimulated magnetic resonance imaging (s-MRI) is the best validated radiological modality assessing pancreatic secretion. The purpose of this study was to compare volume output measures from secretin-stimulated transabdominal ultrasonography (s-US) to s-MRI for the diagnosis of exocrine pancreatic failure in cystic fibrosis (CF). We performed transabdominal ultrasonography and MRI before and at timed intervals during 15 minutes after secretin stimulation in 21 CF patients and 13 healthy controls. To clearly identify the subjects with reduced exocrine pancreatic function, we classified CF patients as pancreas-sufficient or -insufficient by secretin-stimulated endoscopic short test and faecal elastase. Pancreas-insufficient CF patients had reduced pancreatic secretions compared to pancreas-sufficient subjects based on both imaging modalities (p < 0.001). Volume output estimates assessed by s-US correlated to that of s-MRI (r = 0.56-0.62; p < 0.001). Both s-US (AUC: 0.88) and s-MRI (AUC: 0.99) demonstrated good diagnostic accuracy for exocrine pancreatic failure. Pancreatic volume-output estimated by s-US corresponds well to exocrine pancreatic function in CF patients and yields comparable results to that of s-MRI. s-US provides a simple and feasible tool in the assessment of pancreatic secretion. (orig.)

  11. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats.

    Science.gov (United States)

    Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C

    2010-11-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

  12. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    Science.gov (United States)

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  13. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  14. Role of increased insulin demand in the adaptation of the endocrine pancreas to pregnancy

    NARCIS (Netherlands)

    Nieuwenhuizen, AG; Schuiling, GA; Moes, H; Koiter, TR

    During gestation the demand for insulin increases due to a decrease in insulin sensitivity of the maternal tissues. Simultaneously, pancreatic islet-cell proliferation, as well as insulin production and secretion increase. Both phenomena appear to be caused by the actions of pregnancy hormones. We

  15. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    Science.gov (United States)

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  16. Ductal Mucus Obstruction and Reduced Fluid Secretion Are Early Defects in Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Anita Balázs

    2018-05-01

    Full Text Available Objective: Defective mucus production in the pancreas may be an important factor in the initiation and progression of chronic pancreatitis (CP, therefore we aimed to (i investigate the qualitative and quantitative changes of mucus both in human CP and in an experimental pancreatitis model and (ii to correlate the mucus phenotype with epithelial ion transport function.Design: Utilizing human tissue samples and a murine model of cerulein induced CP we measured pancreatic ductal mucus content by morphometric analysis and the relative expression of different mucins in health and disease. Pancreatic fluid secretion in CP model was measured in vivo by magnetic resonance cholangiopancreatography (MRCP and in vitro on cultured pancreatic ducts. Time-changes of ductal secretory function were correlated to those of the mucin production.Results: We demonstrate increased mucus content in the small pancreatic ducts in CP. Secretory mucins MUC6 and MUC5B were upregulated in human, Muc6 in mouse CP. In vivo and in vitro fluid secretion was decreased in cerulein-induced CP. Analysis of time-course changes showed that impaired ductal ion transport is paralleled by increased Muc6 expression.Conclusion: Mucus accumulation in the small ducts is a combined effect of mucus hypersecretion and epithelial fluid secretion defect, which may lead to ductal obstruction. These results suggest that imbalance of mucus homeostasis may have an important role in the early-phase development of CP, which may have novel diagnostic and therapeutic implications.

  17. Insulin Radioimmunoassay for Clinical Research in Psychiatric, Pancreatic, Cirrhotic and Irradiated Patients

    Energy Technology Data Exchange (ETDEWEB)

    Czerniak, P.; Chlebowski, J.; Kulcar, S.; Boruchowski, Sabina [Department Of Radiotherapy and Isotopes and Department of Psychiatry, Tel-Aviv University Medical School (Israel); Faculty for Continuing Medical Education, Tel-Hashomer Hospital, Tel-Hashomer (Israel)

    1970-02-15

    A modified Hales-Randle method for insulin radioimmunoassay is described. An insulin response curve was established in normal cases after glucose loading. Pathological changes were then investigated in patients and animals before and after therapeutic, operative and radiological procedures. Four representative groups of this material will be illustrated. (1) Psychotic patients (acute and chronic schizophrenics, neurotics and depressives) were examined with the aim of learning about the variable effects produced by insulin shock-therapy, as well as for biochemical diagnosis purposes in psychotics. Highest insulin response curves were found in chronic schizophrenics with improvement after insulin therapy. Schizophrenics without improvement presented different curves. Lowest insulin values were found in acute schizophrenia. Depressives and anxiety neurotics showed insulin tolerance curves similar to those of non-psychotic patients. (2) Pancreatic patients. Special attention was paid to pancreatic carcinoma (insulinoma excepted). In most cases of pancreatic carcinoma a very low and flat insulin tolerance curve was found. The above findings may be of a diagnostic importance in this condition, which is clinically hardly recognized. (3) Liver cirrhotic patients. A special group of shunt operated patients was investigated. The study was performed on eight liver cirrhotics before and after porto-caval or reno-splenal shunt operation. The plasma insulin level was examined in the vena cava, renal and cubital blood. The influence of tolbutamide was analysed. The normally occurring retention of insulin by normal hepatic tissue was found to be considerably disturbed. Other interesting changes were observed. (4) The plasma insulin level in the radiologically exposed. Experimental and clinical studies were performed, with insulin doses before and after radiation. Whole body X-ray exposure (300 rads) to rats resulted in a rapid lowering of insulin or its disappearance. Recovery was

  18. Stevia Nonsweetener Fraction Displays an Insulinotropic Effect Involving Neurotransmission in Pancreatic Islets

    Science.gov (United States)

    Pavanello, Audrei; Peixoto, Giuliana Maria Ledesma; Matiusso, Camila Cristina Ianoni; de Moraes, Ana Maria Praxedes; Martins, Isabela Peixoto; Palma-Rigo, Kesia; da Silva Franco, Claudinéia Conationi; Milani, Paula Gimenez; Dacome, Antonio Sérgio; da Costa, Silvio Claudio; de Freitas Mathias, Paulo Cezar; Mareze-Costa, Cecília Edna

    2018-01-01

    Stevia rebaudiana (Bert.) Bertoni besides being a source of noncaloric sweeteners is also an important source of bioactive molecules. Many plant extracts, mostly obtained with ethyl acetate solvent, are rich in polyphenol compounds that present insulinotropic effects. To investigate whether the nonsweetener fraction, which is rich in phenolic compounds isolated from Stevia rebaudiana with the solvent ethyl acetate (EAF), has an insulinotropic effect, including interference at the terminals of the autonomic nervous system of the pancreatic islets of rats. Pancreatic islets were isolated from Wistar rats and incubated with EAF and inhibitory or stimulatory substances of insulin secretion, including cholinergic and adrenergic agonists and antagonists. EAF potentiates glucose-stimulated insulin secretion (GSIS) only in the presence of high glucose and calcium-dependent concentrations. EAF increased muscarinic insulinotropic effects in pancreatic islets, interfering with the muscarinic receptor subfamily M3. Adrenergic inhibitory effects on GSIS were attenuated in the presence of EAF, which interfered with the adrenergic α 2 receptor. Results suggest that EAF isolated from stevia leaves is a potential therapy for treating type 2 diabetes mellitus by stimulating insulin secretion only in high glucose concentrations, enhancing parasympathetic signal transduction and inhibiting sympathetic signal transduction in beta cells. PMID:29853880

  19. Stevia Nonsweetener Fraction Displays an Insulinotropic Effect Involving Neurotransmission in Pancreatic Islets

    Directory of Open Access Journals (Sweden)

    Silvano Piovan

    2018-01-01

    Full Text Available Stevia rebaudiana (Bert. Bertoni besides being a source of noncaloric sweeteners is also an important source of bioactive molecules. Many plant extracts, mostly obtained with ethyl acetate solvent, are rich in polyphenol compounds that present insulinotropic effects. To investigate whether the nonsweetener fraction, which is rich in phenolic compounds isolated from Stevia rebaudiana with the solvent ethyl acetate (EAF, has an insulinotropic effect, including interference at the terminals of the autonomic nervous system of the pancreatic islets of rats. Pancreatic islets were isolated from Wistar rats and incubated with EAF and inhibitory or stimulatory substances of insulin secretion, including cholinergic and adrenergic agonists and antagonists. EAF potentiates glucose-stimulated insulin secretion (GSIS only in the presence of high glucose and calcium-dependent concentrations. EAF increased muscarinic insulinotropic effects in pancreatic islets, interfering with the muscarinic receptor subfamily M3. Adrenergic inhibitory effects on GSIS were attenuated in the presence of EAF, which interfered with the adrenergic α2 receptor. Results suggest that EAF isolated from stevia leaves is a potential therapy for treating type 2 diabetes mellitus by stimulating insulin secretion only in high glucose concentrations, enhancing parasympathetic signal transduction and inhibiting sympathetic signal transduction in beta cells.

  20. Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals.

    Directory of Open Access Journals (Sweden)

    Francesco Andreozzi

    Full Text Available To evaluate if plasma kisspeptin concentrations are associated with insulin secretion, as suggested by recent in vitro studies, independently of confounders. 261 nondiabetic subjects were stratified into tertiles according to kisspeptin values. Insulin secretion was assessed using indexes derived from oral glucose tolerance test (OGTT. After adjusting for age, gender, and BMI, subjects in the highest (tertile 3 kisspeptin group exhibited significantly lower values of insulinogenic index, corrected insulin response (CIR30, and Stumvoll indexes for first-phase and second-phase insulin release as compared with low (tertile 1 or intermediate (tertile 2 kisspeptin groups. Univariate correlations between kisspeptin concentration and metabolic variables showed that kisspeptin concentration was significantly and positively correlated with age, blood pressure, and 2-h post-load glucose, and inversely correlated with BMI, and waist circumference. There was an inverse relationship between kisspeptin levels and OGTT-derived indexes of glucose-stimulated insulin secretion. A multivariable regression analysis in a model including all the variables significantly correlated with kisspeptin concentration showed thar age (β = -0.338, P<0.0001, BMI (β = 0.272, P<0.0001, 2-h post-load glucose (β = -0.229, P<0.0001, and kisspeptin (β = -0.105, P = 0.03 remained associated with insulinogenic index. These factors explained 34.6% of the variance of the insulinogenic index. In conclusion, kisspeptin concentrations are associated with insulin secretion independently of important determinants of glucose homeostasis such as gender, age, adiposity, 2-h post-load glucose, and insulin sensitivity.

  1. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain.

    Science.gov (United States)

    Scherer, Thomas; Lindtner, Claudia; O'Hare, James; Hackl, Martina; Zielinski, Elizabeth; Freudenthaler, Angelika; Baumgartner-Parzer, Sabina; Tödter, Klaus; Heeren, Joerg; Krššák, Martin; Scheja, Ludger; Fürnsinn, Clemens; Buettner, Christoph

    2016-06-01

    Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from β-cells

    DEFF Research Database (Denmark)

    Wu, Bingbing; Wei, Shunhui; Petersen, Natalia

    2015-01-01

    Glucose stimulates insulin secretion from β-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment...... is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation...... of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1...

  3. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    Science.gov (United States)

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  4. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Yabe, Shigeharu G; Fukuda, Satsuki; Takeda, Fujie; Nashiro, Kiyoko; Shimoda, Masayuki; Okochi, Hitoshi

    2017-02-01

    Insulin-secreting cells have been generated from human embryonic or induced pluripotent stem cells (iPSCs) by mimicking developmental processes. However, these cells do not always secrete glucose-responsive insulin, one of the most important characteristics of pancreatic β-cells. We focused on the importance of endodermal differentiation from human iPSCs in order to obtain functional pancreatic β-cells. A six-stage protocol was established for the differentiation of human iPSCs to pancreatic β-cells using defined culture media without feeders or serum. The effects of CHIR99021, a selective glycogen synthase kinase-3β inhibitor, were examined in the presence of fibroblast growth factor 2, activin, and bone morphogenetic protein 4 (FAB) during definitive endodermal induction by immunostaining for SRY (sex determining region Y)-box 17 (SOX17) and Forkhead box protein A2 (FOXA2). Insulin secretion was compared between the last stage of monolayer culture and spheroid culture conditions. Cultured cells were transplanted under kidney capsules of streptozotocin-diabetic non-obese diabetic-severe combined immunodeficiency mice, and blood glucose levels were measured once a week. Immunohistochemical analyses were performed 4 and 12 weeks after transplantation. Addition of CHIR99021 (3 μmol/L) in the presence of FAB for 2 days improved endodermal cell viability, maintaining the high SOX17-positive rate. Spheroid formation after the endocrine progenitor stage showed more efficient insulin secretion than did monolayer culture. After cell transplantation, diabetic mice had lower blood glucose levels, and islet-like structures were detected in vivo. Functional pancreatic β-cells were generated from human iPSCs. Induction of definitive endoderm and spheroid formation may be key steps for producing these cells. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  5. Suppression of the Nuclear Factor Eny2 Increases Insulin Secretion in Poorly Functioning INS-1E Insulinoma Cells

    Directory of Open Access Journals (Sweden)

    P. Dames

    2012-01-01

    Full Text Available Eny2, the mammalian ortholog of yeast Sus1 and drosophila E(y2, is a nuclear factor that participates in several steps of gene transcription and in mRNA export. We had previously found that Eny2 expression changes in mouse pancreatic islets during the metabolic adaptation to pregnancy. We therefore hypothesized that the protein contributes to the regulation of islet endocrine cell function and tested this hypothesis in rat INS-1E insulinoma cells. Overexpression of Eny2 had no effect but siRNA-mediated knockdown of Eny2 resulted in markedly increased glucose and exendin-4-induced insulin secretion from otherwise poorly glucose-responsive INS-1E cells. Insulin content, cellular viability, and the expression levels of several key components of glucose sensing remained unchanged; however glucose-dependent cellular metabolism was higher after Eny2 knockdown. Suppression of Eny2 enhanced the intracellular incretin signal downstream of cAMP. The use of specific cAMP analogues and pathway inhibitors primarily implicated the PKA and to a lesser extent the EPAC pathway. In summary, we identified a potential link between the nuclear protein Eny2 and insulin secretion. Suppression of Eny2 resulted in increased glucose and incretin-induced insulin release from a poorly glucose-responsive INS-1E subline. Whether these findings extend to other experimental conditions or to in vivo physiology needs to be determined in further studies.

  6. Novel insulin from the bullfrog: its structure and function in protein secretion by hepatocytes

    International Nuclear Information System (INIS)

    Hulsebus, J.J.

    1987-01-01

    Bullfrog insulin was extracted and purified from the pancreas of Rana catesbeiana adults using gel filtration and reverse phase high performance liquid chromatography. Amino acid analysis of bullfrog insulin revealed 52 amino acids instead of the most common number of 51. The most unique features of bullfrog insulin is a two amino acid extension on the amino terminus (A1) of the A chain. This is the only insulin to date that has an extension at this position. Bullfrog and porcine insulin increase protein secretion from bullfrog adult and three developmental stages of tadpole hepatocytes in a totally defined, serum-free culture system. The hormone slightly stimulates protein secretion by premetamorphic and early prometamorphic tadpoles. Late prometamorphic tadpoles respond to bullfrog and porcine insulin with higher concentrations of secreted protein than either of the two previous developmental stages. Insulin treated adult hepatocytes secrete significantly higher concentrations of protein than any of the tadpole stages. 35 S-methionine and 35 S-cysteine were added to the culture medium for twelve hours. Proteins secreted into the medium were separated using SDS polyacrylamide linear gradient gels. Densitometer scans of autoradiograms did not show an increases in any specific proteins, but did show a generalized increase in all secreted proteins for both adults, and tadpoles

  7. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    Science.gov (United States)

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-12-01

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  8. Similar weight-adjusted insulin secretion and insulin sensitivity in short-duration late autoimmune diabetes of adulthood (LADA) and Type 2 diabetes

    DEFF Research Database (Denmark)

    Juhl, C B; Bradley, U; Holst, Jens Juul

    2014-01-01

    AIMS: To explore insulin sensitivity and insulin secretion in people with latent autoimmune diabetes in adulthood (LADA) compared with that in people with Type 2 diabetes. METHODS: A total of 12 people with LADA, defined as glutamic acid decarboxylase (GAD) antibody positivity and > 1 year...... of insulin independency (group A) were age-matched pairwise to people with Type 2 diabetes (group B) and to six people with Type 2 diabetes of similar age and BMI (group C). β-cell function (first-phase insulin secretion and assessment of insulin pulsatility), insulin sensitivity (hyperinsulinemic......-euglycemic clamp) and metabolic response during a mixed meal were studied. RESULTS: Both first-phase insulin secretion and insulin release during the meal were greater (P = 0.05 and P = 0.009, respectively) in Type 2 diabetes as compared with LADA; these differences were lost on adjustment for BMI (group C...

  9. Acute Exposure to a Precursor of Advanced Glycation End Products Induces a Dual Effect on the Rat Pancreatic Islet Function

    Directory of Open Access Journals (Sweden)

    Ghada Elmhiri

    2014-01-01

    Full Text Available Aim. Chronic diseases are the leading cause of death worldwide. Advanced glycation end products, known as AGEs, are a major risk factor for diabetes onset and maintenance. Methylglyoxal (MG, a highly reactive metabolite of glucose, is a precursor for the generation of endogenous AGEs. Methods. In this current study we incubated in vitro pancreatic islets from adult rats in absence or presence of MG (10 μmol/l with different concentrations of glucose and different metabolic components (acetylcholine, epinephrine, potassium, forskolin, and leucine. Results. Different effects of MG on insulin secretion were evidenced. In basal glucose stimulation (5.6 mM, MG induced a significant (P<0.05 increase of insulin secretion. By contrast, in higher glucose concentrations (8.3 mM and 16.7 mM, MG significantly inhibited insulin secretion (P<0.05. In the presence of potassium, forskolin, and epinephrine, MG enhanced insulin secretion (P<0.05, while when it was incubated with acetylcholine and leucine, MG resulted in a decrease of insulin secretion (P<0.05. Conclusion. We suggest that MG modulates the secretion activity of beta-cell depending on its level of stimulation by other metabolic factors. These results provide insights on a dual acute effect of MG on the pancreatic cells.

  10. Regulation of Nampt expression by transcriptional coactivator NCOA6 in pancreatic β-cells

    International Nuclear Information System (INIS)

    Yoon, Jin; Lee, Kyung Jin; Oh, Gyun-Sik; Kim, Geun Hyang; Kim, Seung-Whan

    2017-01-01

    Nuclear receptor coactivator 6 (NCOA6) is a transcriptional coactivator and crucial for insulin secretion and glucose metabolism in pancreatic β-cells. However, the regulatory mechanism of β-cell function by NCOA6 is largely unknown. In this study, we found that the transcript levels of nicotinamide phosphoribosyltransferase (Nampt) were decreased in islets of NCOA6 +/− mice compared with NCOA6 +/+ mice. Moreover, NCOA6 overexpression increased the levels of Nampt transcripts in the mouse pancreatic β-cell line NIT-1. Promoter analyses showed that transcriptional activity of the Nampt promoter was stimulated by cooperation of sterol regulatory element binding protein-1c (SREBP-1c) and NCOA6. Additional studies using mutant promoters demonstrated that SREBP-1c activates Nampt promoter through the sterol regulatory element (SRE), but not through the E-box. Using chromatin immunoprecipitation assay, NCOA6 was also shown to be directly recruited to the SRE region of the Nampt promoter. Furthermore, treatment with nicotinamide mononucleotide (NMN), a product of the Nampt reaction and a key NAD + intermediate, ameliorates glucose-stimulated insulin secretion from NCOA6 +/− islets. These results suggest that NCOA6 stimulates insulin secretion, at least partially, by modulating Nampt expression in pancreatic β-cells. - Highlights: • Nampt transcription in β-cells is activated by SREBP-1c through the SRE element. • NCOA6 enhances the transcriptional activity of SREBP-1c in the Nampt promoter. • Defective insulin secretion of NCOA6 +/− islets is recovered by NMN treatment. • NCOA6 is reportedly the first coactivator involved in Nampt expression.

  11. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats.

    Science.gov (United States)

    Ibrahim, Mohammed Auwal; Habila, James Dama; Koorbanally, Neil Anthony; Islam, Md Shahidul

    2016-05-13

    Ethnopharmacological surveys have reported that Parkia biglobosa (Jacq.) G. Don (Leguminosae) is among the plants commonly used in the traditional management of diabetes mellitus in Nigeria and Togo. This study investigated the anti-diabetic activity of the butanol fraction of P. biglobosa leaves (PBBF) in a type 2 diabetes (T2D) model of rats and a possible bioactive compound in the fraction. T2D was induced by feeding rats with a 10% fructose solution ad libitum for two weeks followed by an intraperitoneal injection of 40mg/kg body weight streptozotocin and the animals were orally treated with 150 and 300mg/kg BW of the PBBF for five days in a week. Another group of rats was non-diabetic but similarly administered with 300mg/kg BW of the PBBF. Food and fluid intakes, body weight changes and blood glucose levels were monitored during the experiment while other relevant diabetes-associated parameters were measured at the end of the experiment. The PBBF treatments significantly (P<0.05) decreased the blood glucose levels and improved the glucose tolerance ability compared to untreated diabetic rats. Furthermore, the treatments were found to improve pancreatic β cell function (HOMA-β), stimulate insulin secretions, decrease insulin resistance (HOMA-IR), restore liver glycogen, ameliorate serum dyslipidaemia and prevent hepatic and renal damages compared to untreated diabetic rats. Phytochemical analysis of the fraction led to the isolation of lupeol which inhibited α-glucosidase and α-amylase in non-competitive and uncompetitive inhibition patterns respectively. It was concluded that PBBF possessed remarkable anti-T2D activity which is mediated through modulation of β-cell function and stimulation of insulin secretion and the lower dose (150mg/kg BW) was found optimum for anti-T2D activity compared to the high dose (300mg/kg BW) in this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Insulin-like Growth Factor 1 Regulates the Expression of ATP-Binding Cassette Transporter A1 in Pancreatic Beta Cells.

    Science.gov (United States)

    Lyu, J; Imachi, H; Iwama, H; Zhang, H; Murao, K

    2016-05-01

    ATP-binding cassette transporter A1 (ABCA1) in pancreatic beta cells influences insulin secretion and cholesterol homeostasis. The present study investigates whether insulin-like growth factor 1 (IGF-1), which mediates stimulation of ABCA1 gene expression, could also interfere with the phosphatidylinositol 3-kinase (PI3-K) cascade.ABCA1 expression was examined by real-time polymerase chain reaction (PCR), Western blot analysis, and a reporter gene assay in rat insulin-secreting INS-1 cells incubated with IGF-1. The binding of forkhead box O1 (FoxO1) protein to the ABCA1 promoter was assessed by a chromatin immunoprecipitation (ChIP) assay. ABCA1 protein levels increased in response to rising concentrations of IGF-1. Real-time PCR analysis showed a significant increase in ABCA1 mRNA expression. However, both effects were suppressed after silencing the IGF-1 receptor. In parallel with its effect on endogenous ABCA1 mRNA levels, IGF-1 induced the activity of a reporter construct containing the ABCA1 promoter, while it was abrogated by LY294002, a specific inhibitor of PI3-K. Constitutively active Akt stimulated activity of the ABCA1 promoter, and a dominant-negative mutant of Akt or mutagenesis of the FoxO1 response element in the ABCA1 promoter abolished the ability of IGF-1 to stimulate promoter activity. A ChIP assay showed that FoxO1 mediated its transcriptional activity by directly binding to the ABCA1 promoter region. The knockdown of FoxO1 disrupted the effect of IGF-1 on ABCA1 expression. Furthermore, IGF-1 promoted cholesterol efflux and reduced the pancreatic lipotoxicity. These results demonstrate that the PI3-K/Akt/FoxO1 pathway contributes to the regulation of ABCA1 expression in response to IGF-1 stimulation. © Georg Thieme Verlag KG Stuttgart · New York.

  13. [Culture of pancreatic progenitor cells in hanging drop and on floating filter].

    Science.gov (United States)

    Ma, Feng-xia; Chen, Fang; Chi, Ying; Yang, Shao-guang; Lu, Shi-hong; Han, Zhong-chao

    2013-06-01

    To construct a method to culture pancreatic progenitor cells in hanging drop and on floating filter,and to examine if pancreatic progenitor cells can differentiate into mature endocrine cells with this method. Murine embryos at day 12.5 were isolated and digested into single cells,which were then cultured in hanging drop for 24h and formed spheres.Spheres were cultured on the filter for 6 days,which floated in the dish containing medium.During culture,the expressions of pancreas duodenum homeobox-1(PDX-1)and neurogenin3(Ngn3)were determined.The expressions of endocrine and exocrine markers,insulin,glucagon,and carboxypeptidase(CPA)were determined on day 7 by immunohistochemistry.Insulin secretion of spheres stimulated by glucose was detected by ELISA.The changes of pancreatic marker expressions during culture were monitored by real-time polymerase chain reaction(PCR). One day after the culture,there were still a large amount of PDX-1 positive cells in pancreatic spheres,and these cells proliferated.On day 3,high expression of Ngn3 was detected,and the Ngn3-positive cells did not proliferate.On day 7,The expressions of endocrine and exocrine markers in the differentiated pancreatic progenitor cells were detected,which were consistent with that in vivo.Insulin was secreted by spheres upon the stimulation of glucose. In hanging drop and on floating filter,pancreatic progenitor cells can differentiate into mature endocrine cells.

  14. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E

    1995-01-01

    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  15. Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Yukina Kawada

    Full Text Available Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2 expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.

  16. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.

  17. Decrement of postprandial insulin secretion determines the progressive nature of type-2 diabetes.

    Science.gov (United States)

    Shim, Wan Sub; Kim, Soo Kyung; Kim, Hae Jin; Kang, Eun Seok; Ahn, Chul Woo; Lim, Sung Kil; Lee, Hyun Chul; Cha, Bong Soo

    2006-10-01

    Type-2 diabetes is a progressive disease. However, little is known about whether decreased fasting or postprandial pancreatic beta-cell responsiveness is more prominent with increased duration of diabetes. The aim of this study was to evaluate the relationship between insulin secretion both during fasting and 2 h postprandial, and the duration of diabetes in type-2 diabetic patients. Cross-sectional clinical investigation. We conducted a meal tolerance test in 1466 type-2 diabetic patients and calculated fasting (M0) and postprandial (M1) beta-cell responsiveness. The fasting C-peptide, postprandial C-peptide, M0, and M1 values were lower, but HbA1c values were higher, in patients with diabetes duration > 10 years than those in other groups. There was no difference in the HbA1c levels according to the tertiles of their fasting C-peptide level. However, in a group of patients with highest postprandial C-peptide tertile, the HbA1c values were significantly lower than those in other groups. After adjustment of age, sex, and body mass index (BMI), the duration of diabetes was found to be negatively correlated with fasting C-peptide (gamma = -0.102), postprandial C-peptide (gamma = -0.356), M0 (gamma = -0.263), and M1 (gamma = -0.315; P multiple regression analysis, M0, M1, and homeostasis model assessment for insulin resistance (HOMA-IR) emerged as predictors of HbAlc after adjustment for age, sex, and BMI (R2 = 0.272, 0.080, and 0.056 respectively). With increasing duration of diabetes, the decrease of postprandial insulin secretion is becoming more prominent, and postprandial beta-cell responsiveness may be a more important determinant for glycemic control than fasting beta-cell responsiveness.

  18. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K+ currents in insulin-secreting cells.

    Science.gov (United States)

    Kuo, Ping-Chung; Yang, Chia-Jung; Lee, Yu-Chi; Chen, Pei-Chun; Liu, Yen-Chin; Wu, Sheng-Nan

    2018-01-15

    Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K + current (I K(DR) ) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of I K(DR) in INS-1 cells was 1.26μM. Despite the inability of CUR to alter the activation rate of I K(DR) , it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of I K(DR) to hyperpolarized potential and slowed the recovery of I K(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on I K(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na + current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of I K(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pancreatic ductal bicarbonate secretion: challenge of the acinar acid load

    Directory of Open Access Journals (Sweden)

    Peter eHegyi

    2011-07-01

    Full Text Available Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel, however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

  20. ENDOCRINE PANCREATIC FUNCTION IN ACUTE PANCREATITIS

    Directory of Open Access Journals (Sweden)

    P. V. Novokhatny

    2014-02-01

    Full Text Available Introduction Among the organs of internal secretion pancreas has a special place thanks to active exocrine function and a wide range of physiological actions of produced hormones. Violations of endocrine pancreas arises in 6.5-38 % of patients with acute pancreatitis. However, there is still no clear understanding of the pathogenetic mechanisms of hormonal dysfunction of the pancreas in acute pancreatitis, there is no uniform algorithms for its correction. Aim of the research was to study the endocrine function of pancreas in acute pancreatitis. To define the role of endocrine pancreatic function in the etiology and pathogenesis of the acute pancreatitis. To assess the prospects of the use of pancreatic hormones in the treatment and predicting the outcomes of acute pancreatitis. Materials and methods of the research Survey of publications in specialized periodical medical journals, PubMed sources developed by the National Center for Biotechnology Information. Search in PubMed was carried out in the following databases: MEDLINE, Pre MEDLINE. Results of the research. In a significant proportion of patients who recovered from acute pancreatitis, exocrine and endocrine functional impairments were found. This finding was not detected only in patients after severe acute pancreatitis. Routine evaluation of pancreatic function after acute pancreatitis should be considered. The comparative analysis of the synthetic analogues (somatostatin, calcitonin, leu-enkefalin-dalargin influence on the glucose metabolism of rats in acute pancreatitis of was made. Physiological reaction of beta-cells is preserved in infusion of somatostatin. However, infusion of calcitonin results in the distortion of counterregulatory action of insulin and glucagon. It was detected that pancreatic renin-angiotensin system is markedly activated in the experimental rat models of chronic hypoxia and acute pancreatitis. The activation of the pancreatic renin-angiotensin system by

  1. Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion.

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    Full Text Available Incretins (GLP-1 and GIP potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS that requires two critical processes: 1 generation of cytosolic glutamate through the malate-aspartate (MA shuttle in glucose metabolism and 2 glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1, a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively, which participate in glutamate transport into secretory vesicles. Got1 knockout (KO β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.

  2. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.

    Science.gov (United States)

    Branco, Renato Chaves Souto; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Borck, Patrícia Cristine; Dos Santos-Silva, Junia Carolina Rebelo; Boschero, Antonio Carlos; Zoppi, Cláudio Cesar; Carneiro, Everardo Magalhães

    2017-09-01

    Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. © FASEB.

  3. Triphenyltin impairs a protein kinase A (PKA)-dependent increase of cytosolic Na+ and Ca2+ and PKA-independent increase of cytosolic Ca2+ associated with insulin secretion in hamster pancreatic β-cells

    International Nuclear Information System (INIS)

    Miura, Yoshikazu; Matsui, Hisao

    2006-01-01

    Oral administration of triphenyltin chloride (TPT) (60 mg/kg body weight) inhibits the insulin secretion by decreasing the cytoplasmic Ca 2+ concentration ([Ca 2+ ] i ) induced by glucose-dependent insulinotropic polypeptide (GIP) in pancreatic β-cells of the hamster. To test the possibility that the abnormal level of [Ca 2+ ] i induced by TPT administration could be due to a defect in the cAMP-dependent cytoplasmic Na + concentration ([Na + ] i ) in the β-cells, we investigated the effects of TPT administration on the changes of [Na + ] i induced by GIP, glucagon-like peptide-1 (GLP-1), or forskolin, an activator of adenylyl cyclase, and on the changes of [Na + ] i or [Ca 2+ ] i induced by 6-Bnz-cAMP, an activator of protein kinase A (PKA), and 8-pCPT-2'-O-Me-cAMP, an activator of Epac. The [Na + ] i and [Ca 2+ ] i were measured in islet cells loaded with sodium-binding benzofuran isophthalate (SBFI) and fura-2, respectively. In the presence of 135 mM Na + , TPT administration significantly reduced the rise in [Na + ] i by 10 nM GLP-1, 10 μM forskolin, and 50 μM 6-Bnz-cAMP, but had not effect in a Na + -free medium. In the presence of 135 mM Na + , TPT administration also reduced the rise in [Ca 2+ ] i by 8-pCPT-2'-O-Me-cAMP plus10 μM H-89, a inhibitor of PKA, and 6-Bnz-cAMP. Moreover, TPT administration significantly reduced the insulin secretion by 2 mM db-cAMP, GLP-1, GIP, and 8-pCPT-2'-O-Me-cAMP with and without H-89, and that by 6-Bnz-cAMP and forskolin. Our study suggested that TPT has inhibitory effects on the cellular Ca 2+ response due to a reduced Na + permeability through PKA-dependent mechanisms in hamster islet cells. Also TPT has the reduction of [Ca 2+ ] i related to Na + -dependent insulin secretion after an activation of Epac

  4. Autocrine growth induced by the insulin-related factor in the insulin-independent teratoma cell line 1246-3A

    International Nuclear Information System (INIS)

    Yamada, Yukio; Serrero, G.

    1988-01-01

    An insulin-independent teratoma-derived cell line, called 1246-3A, has been isolated from the adipogenic cell line 1246, which stringently requires insulin for proliferation. The 1246-3A cell line, which can proliferate in the absence of exogenous insulin, produces in its conditioned medium a growth factor similar to pancreatic insulin by its biological and immunological properties. This factor, called insulin-related factor (IRF), was purified and iodinated to study its binding to cell surface receptors. 125 I-labeled IRF binding to intact 1246-3A cells is lower than to 1246 cells. Cell surface binding can be restored by culturing the 1246-3A cells in the presence of an anti-porcine insulin monoclonal antibody of by acid prewash of the cells prior to performing the binding. Scatchard analysis of binding indicates that IRF secreted by the 1246-3A cells partially occupies high-affinity binding sites on the producer cells. Moreover, insulin monoclonal antibody inhibits the proliferation of the IRF-producing 1246-3A cells, suggesting that these cells are dependent on the secreted IRF for growth in culture. The authors conclude that the insulin-related factor secreted by the insulin-independent 1246-3A cells stimulates their proliferation in an autocrine fashion

  5. Periodontitis aggravated pancreatic β-cell dysfunction in diabetic mice through interleukin-12 regulation on Klotho.

    Science.gov (United States)

    Liu, Yihua; Zhang, Qiuli

    2016-05-01

    Recent studies have shown that periodontitis can contribute to adipose tissue inflammation and subsequent systemic insulin resistance in the obese rat model. However, the related inflammatory mechanism is not yet clear. The present study aims to investigate the effects of periodontitis on the function of pancreatic β-cells with pro-inflammatory cytokines-related immune mechanism in a mouse model. C57BL/6-db/db and inbred C57BL/6 mice were chosen here to establish a mouse model with periodontitis, which was induced by ligatures for 8 weeks. Glucose-stimulated insulin secretion was introduced to evaluate the function of pancreatic islets and β-cells. Serum levels of pro-inflammatory cytokines and Klotho were also measured, and the correlation between immunostimulation and Klotho level was deeply investigated in vitro. Pancreatic β-cell failure, with insulin resistance, was observed in db/db mice, while periodontitis could aggravate β-cell dysfunction-related features. Serum levels of interleukin (IL)-12 and Klotho showed a negatively synergistic change, whereas the expression of Klotho was also inhibited under IL-12 treatment in MIN6 β-cells or isolated islets. Furthermore, IL-12-induced immune stimulation and also decreased insulin secretion were proven to be reversed by Klotho overexpression. Periodontitis aggravated pancreatic β-cell failure in diabetic mice. Further in vitro studies showed IL-12 regulation on Klotho, while Klotho also acted as an inhibitor on IL-12, indicating the potential of Klotho for preserving pancreatic β-cell function in diabetes.

  6. SAD-A potentiates glucose-stimulated insulin secretion as a mediator of glucagon-like peptide 1 response in pancreatic β cells.

    Science.gov (United States)

    Nie, Jia; Lilley, Brendan N; Pan, Y Albert; Faruque, Omar; Liu, Xiaolei; Zhang, Weiping; Sanes, Joshua R; Han, Xiao; Shi, Yuguang

    2013-07-01

    Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca(2+)-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells.

  7. Positive association of free triiodothyronine with pancreatic β-cell function in people with prediabetes.

    Science.gov (United States)

    Oda, T; Taneichi, H; Takahashi, K; Togashi, H; Hangai, M; Nakagawa, R; Ono, M; Matsui, M; Sasai, T; Nagasawa, K; Honma, H; Kajiwara, T; Takahashi, Y; Takebe, N; Ishigaki, Y; Satoh, J

    2015-02-01

    To analyse the effects of thyroid hormones on β-cell function and glucose metabolism in people with prediabetes who are euthyroid. A total of 111 people who were euthyroid underwent 75-g oral glucose tolerance tests, of whom 52 were assigned to the normal glucose tolerance and 59 to the prediabetes groups. Homeostatic model assessment of β-cell function, insulinogenic index and areas under the curve for insulin and glucose were evaluated as indices of pancreatic β-cell function. In both groups, BMI, fasting insulin, homeostasis model assessment ratio and HDL cholesterol correlated significantly with all indices of pancreatic β-cell function. Free triiodothyronine correlated positively with all insulin secretion indices in the prediabetes group. Multiple linear regression analysis showed that free triiodothyronine was an independent variable that had a positive correlation with all indices of β-cell function in the prediabetes group. By contrast, no such correlation was found in the normal glucose tolerance group. Free triiodothyronine is associated with both basal and glucose-stimulated insulin secretion in people with prediabetes who are euthyroid; therefore, the regulation of insulin secretion by thyroid hormones is a potentially novel therapeutic target for the treatment of diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  8. Cell death and impairment of glucose-stimulated insulin secretion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the β-cell line INS-1E

    International Nuclear Information System (INIS)

    Piaggi, Simona; Novelli, Michela; Martino, Luisa; Masini, Matilde; Raggi, Chiara; Orciuolo, Enrico; Masiello, Pellegrino; Casini, Alessandro; De Tata, Vincenzo

    2007-01-01

    The aim of this research was to characterize 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity on the insulin-secreting β-cell line INS-1E. A sharp decline of cell survival (below 20%) was observed after 1 h exposure to TCDD concentrations between 12.5 and 25 nM. Ultrastructurally, β-cell death was characterized by extensive degranulation, appearance of autophagic vacuoles, and peripheral nuclear condensation. Cytotoxic concentrations of TCDD rapidly induced a dose-dependent increase in intracellular calcium concentration. Blocking calcium entry by EGTA significantly decreased TCDD cytotoxicity. TCDD was also able to rapidly induce mitochondrial depolarization. Interestingly, 1 h exposition of INS-1E cells to very low TCDD concentrations (0.05-1 nM) dramatically impaired glucose-stimulated but not KCl-stimulated insulin secretion. In conclusion, our results clearly show that TCDD exerts a direct β-cell cytotoxic effect at concentrations of 15-25 nM, but also markedly impairs glucose-stimulated insulin secretion at concentrations 20 times lower than these. On the basis of this latter observation we suggest that pancreatic β-cells could be considered a specific and sensitive target for dioxin toxicity

  9. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S

    2004-01-01

    of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean......Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects...... over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P

  10. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  11. Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon

    Science.gov (United States)

    Peschke, Elmar; Bähr, Ina; Mühlbauer, Eckhard

    2013-01-01

    The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes. PMID:23535335

  12. Low levels of sex hormone-binding globulin and hyperproinsulinemia as markers of increased pancreatic ß-cell demand in men

    Directory of Open Access Journals (Sweden)

    A.F. Reis

    1998-12-01

    Full Text Available Low levels of sex hormone-binding globulin (SHBG are considered to be an indirect index of hyperinsulinemia, predicting the later onset of diabetes mellitus type 2. In the insulin resistance state and in the presence of an increased pancreatic ß-cell demand (e.g. obesity both absolute and relative increases in proinsulin secretion occur. In the present study we investigated the correlation between SHBG and pancreatic ß-cell secretion in men with different body compositions. Eighteen young men (30.0 ± 2.4 years with normal glucose tolerance and body mass indexes (BMI ranging from 22.6 to 43.2 kg/m2 were submitted to an oral glucose tolerance test (75 g and baseline and 120-min blood samples were used to determine insulin, proinsulin and C-peptide by specific immunoassays. Baseline SHBG values were significantly correlated with baseline insulin (r = -0.58, P28 kg/m2, N = 8 and nonobese (BMI £25 kg/m2, N = 10 groups, significantly lower levels of SHBG were found in the obese subjects. The obese group had significantly higher baseline proinsulin, C-peptide and 120-min proinsulin and insulin levels. For the first time using a specific assay for insulin determination, a strong inverse correlation between insulinemia and SHBG levels was confirmed. The finding of a strong negative correlation between SHBG levels and pancreatic ß-cell secretion, mainly for the 120-min post-glucose load proinsulin levels, reinforces the concept that low SHBG levels are a suitable marker of increased pancreatic ß-cell demand.

  13. Transformation of Nonfunctioning Pancreatic Neuroendocrine Carcinoma Cells into Insulin Producing Cells after Treatment with Sunitinib

    Directory of Open Access Journals (Sweden)

    Jung Hun Ohn

    2013-06-01

    Full Text Available We report a rare case of severe hypoglycemia after sunitinib treatment for pancreatic neuroendocrine carcinoma. We describe the initial clinical presentation, laboratory results, pathologic findings, and managment in a patient with a nonfunctioning pancreatic neuroendocrine carcinoma with liver metastases who developed life threatening hypoglycemia after 2 months of sunitinib therapy. A 46-year-old woman presented to the emergency department with loss of consciousness from hypoglycemia. Serum C-peptide and insulin levels at fasting state revealed that the hypoglycemia resulted from endogenous hyperinsulinemia. She had been diagnosed with nonfunctioning pancreatic neuroendocrine carcinoma based on a biopsy of metastatic cervical lymph node and was being treated with sunitinib, a small molecule tyrosine kinase inhibitor. Immunohistochemical stain of the metastatic liver mass demonstrated that the initially nonfunctioning neuroendocrine carcinoma cells had changed into insulin-producing cells after sunitinib therapy. Transarterial chemoembolization of the liver masses and systemic chemotherapy with streptozotocin/adriamycin relieved the hypoglycemia. A nonfunctioning pancreatic neuroendocrine carcinoma was transformed into an insulin-producing tumor after treatment with sunitinib, causing endogenous hyperinsulinemia and severe hypoglycemia.

  14. Dynamic Changes in the Protein Localization in the Nuclear Environment in Pancreatic β-Cell after Brief Glucose Stimulation

    DEFF Research Database (Denmark)

    Kang, Taewook; Jensen, Pia; Solovyeva, Vita

    2018-01-01

    , we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import......Characterization of molecular mechanisms underlying pancreatic β-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of β...... the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic β-cells....

  15. Insulin resistance is associated with the aggressiveness of pancreatic ductal carcinoma.

    Science.gov (United States)

    Dugnani, Erica; Balzano, Gianpaolo; Pasquale, Valentina; Scavini, Marina; Aleotti, Francesca; Liberati, Daniela; Di Terlizzi, Gaetano; Gandolfi, Alessandra; Petrella, Giovanna; Reni, Michele; Doglioni, Claudio; Bosi, Emanuele; Falconi, Massimo; Piemonti, Lorenzo

    2016-12-01

    To study whether insulin resistance accelerates the development and/or the progression of pancreatic adenocarcinoma (PDAC), we hypothesized that patients with insulin resistance, compared with those without insulin resistance, show: (1) a younger age and more advanced PDAC stage at diagnosis and (2) a shorter disease-free and overall survival after PDAC diagnosis. Prospective observational study of patients admitted to a referral center for pancreatic disease. Insulin resistance was defined as a HOMA-IR value greater than the 66th percentile value of the patients included in this study. Survival was estimated according to Kaplan-Meier and by Cox regression. Of 296 patients with PDAC, 99 (33 %) met criteria for being classified as insulin resistant at diagnosis. Median follow-up time after diagnosis was 5.27 ± 0.23 years. Patients with insulin resistance received a diagnosis of PDAC at a similar age compared to patients without insulin resistance (67.1 ± 9 vs. 66.8 ± 10 years, p = 0.68), but were more likely to have a cancer stage ≥3 (23.2 vs. 14.2 %, p = 0.053) and a residual disease after surgery (R1 56.4 vs. 38 %; p = 0.007). The median overall survival was 1.3 ± 0.14 and 1.79 ± 0.11 years for the patients with and without insulin resistance, respectively (p = 0.016). Results did not change when patients with diabetes at PDAC diagnosis were excluded from the analysis. Multivariate analysis showed that insulin resistance was independently associated with overall survival. Insulin resistance is associated with the aggressiveness of PDAC.

  16. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens J

    2003-01-01

    We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...... Intralipid infusion. At LI, glucose oxidation decreased by 10%, whereas glucose disposal, glycolytic flux, glucose storage, and glucose production were not significantly altered. At HI, glucose disposal, and glucose oxidation decreased by 12% and 24%, respectively, during Intralipid infusion. Glycolytic flux......, glucose storage, and glucose production were unchanged. Insulin secretion rates increased in response to Intralipid infusion, but disposition indices (DI = insulin action.insulin secretion) were unchanged. In conclusion, a 24-h low-grade Intralipid infusion caused insulin resistance in the oxidative (but...

  17. Influence of nutrient restriction and melatonin supplementation of pregnant ewes on maternal and fetal pancreatic digestive enzymes and insulin-containing clusters.

    Science.gov (United States)

    Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C

    2016-03-01

    Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses

  18. Effect of Magnesium Supplements on Insulin Secretion After Kidney Transplantation: A Randomized Controlled Trial.

    Science.gov (United States)

    Van Laecke, Steven; Caluwe, Rogier; Huybrechts, Inge; Nagler, Evi V; Vanholder, Raymond; Peeters, Patrick; Van Vlem, Bruno; Van Biesen, Wim

    2017-08-29

    BACKGROUND Hypomagnesemia is associated with a disturbed glucose metabolism. Insulin hypo-secretion predicts diabetes in the general population and in transplant recipients. We aimed to assess whether magnesium improves insulin secretion and glycemic control after transplantation in prevalent hypomagnesemic kidney transplant recipients. MATERIAL AND METHODS We conducted an open-label, randomized, parallel-group study. Eligible participants were adults more than 4 months after kidney transplantation on tacrolimus with persisting serum magnesium concentrations food-frequency questionnaire. All analyses were done on an intention-to-treat basis. RESULTS Magnesium with a mean daily dose of 688±237mg in the treatment group failed to lead to significant differences between the 2 groups in FPIR, fasting glucose, HbA1c, or HOMA-IR. Persisting hypomagnesemia was very common and associated with more insulin hypo-secretion, glucose intolerance, and lower dietary magnesium intake (142±56 versus 202±90 mg; p=0.015) as compared to patients with a rise in serum magnesium over 6 months. CONCLUSIONS Magnesium supplementation does not improve insulin secretion in stable hypomagnesemic kidney transplant recipients on tacrolimus. Persisting hypomagnesemia is associated with impaired glucose tolerance, insulin hypo-secretion, and dietary factors.

  19. Complete loss of insulin secretion capacity in type 1A diabetes patients during long-term follow up.

    Science.gov (United States)

    Uno, Sae; Imagawa, Akihisa; Kozawa, Junji; Fukui, Kenji; Iwahashi, Hiromi; Shimomura, Iichiro

    2017-10-16

    Patients with type 1 diabetes are classified into three subtypes in Japan: acute onset, fulminant and slowly progressive. Acute-onset type 1 diabetes would be equivalent to type 1A diabetes, the typical type 1 diabetes in Western countries. The insulin secretion capacity in Japanese patients with long-standing type 1A diabetes is unclear. The aim of the present study was to clarify the course of endogenous insulin secretion during long-term follow up and the factors associated with residual insulin secretion in patients with acute-onset type 1 diabetes (autoimmune). We retrospectively investigated endogenous insulin secretion capacity in 71 patients who fulfilled the diagnostic criteria for acute-onset type 1 diabetes (autoimmune) in Japan. To assess the residual insulin secretion capacity, we evaluated randomly measured C-peptide levels and the results of glucagon stimulation test in 71 patients. In the first year of disease, the child- and adolescent-onset patients had significantly more in residual insulin secretion than the adult-onset patients (34 patients in total). C-peptide levels declined more rapidly in patients whose age of onset was ≤18 years than in patients whose age of onset was ≥19 years. Endogenous insulin secretion capacity stimulated by glucagon was completely lost in almost all patients at >15 years after onset (61 patients in total). Most patients with acute-onset type 1 diabetes (autoimmune) completely lose their endogenous insulin secretion capacity during the disease duration in Japan. Age of onset might affect the course of insulin secretion. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  20. Cucurbita ficifolia Bouché increases insulin secretion in RINm5F cells through an influx of Ca(2+) from the endoplasmic reticulum.

    Science.gov (United States)

    Miranda-Perez, Maria Elizabeth; Ortega-Camarillo, Clara; Del Carmen Escobar-Villanueva, Maria; Blancas-Flores, Gerardo; Alarcon-Aguilar, Francisco Javier

    2016-07-21

    Cucurbita ficifolia Bouché(C. ficifolia) is a plant used in Mexican traditional medicine to control type 2 diabetes (T2D). The hypoglycemic effect of the fruit of C. ficifolia has been demonstrated in different experimental models and in T2D patients. It has been proposed that D-chiro-inositol (DCI) is the active compound of the fruit. Additionally, it has been reported that C. ficifolia increases the mRNA expression of insulin and Kir 6.2 (a component of the ATP-sensitive potassium (K(+)ATP) channel, which is activated by sulphonylurea) in RINm5F cells. However, it remains unclear whether C. ficifolia and DCI causes the secretion of insulin by increasing the concentration of intracellular calcium ([Ca(2+)]i) through K(+)ATP channel blockage or from the reservoir in the endoplasmic reticulum (ER). The aqueous extract of C. ficifolia was obtained and standardized with regard to its DCI content. RINm5F pancreatic β-cells were incubated with different concentrations (50, 100, 200 and 400μM) of DCI alone or C. ficifolia (9, 18, 36 and 72µg of extract/mL), and the [Ca(2+)]i of the cells was quantified. The cells were preloaded with the Ca(2+) fluorescent dye fluo4-acetoxymethyl ester (AM) and visualized by confocal microscopy. Insulin secretion was measured by an ELISA method. Subsequently, the effect of C. ficifolia on the K(+)ATP channel was evaluated. In this case, the blocker activator diazoxide was used to inhibit the C. ficifolia-induced calcium influx. In addition, the inositol 1,4,5-trisphosphate (IP3)-receptor-selective inhibitor 2-amino-thoxydiphenylborate (2-APB) was used to inhibit the influx of calcium from the ER that was induced by C. ficifolia. It was found that DCI alone did not increase [Ca(2+)]i or insulin secretion. In contrast, treatment with C. ficifolia increased [Ca(2+)]i 10-fold compared with the control group. Insulin secretion increased by 46.9%. In the presence of diazoxide, C. ficifolia decreased [Ca(2+)]i by 50%, while insulin secretion

  1. Endocrine pancreatic function changes after acute pancreatitis.

    Science.gov (United States)

    Wu, Deqing; Xu, Yaping; Zeng, Yue; Wang, Xingpeng

    2011-10-01

    This study aimed to investigate the impairment of pancreatic endocrine function and the associated risk factors after acute pancreatitis (AP). Fifty-nine patients were subjected to tests of pancreatic function after an attack of pancreatitis. The mean time after the event was 3.5 years. Pancreatic endocrine function was evaluated by fasting blood glucose (FBG), glycosylated hemoglobin, fasting blood insulin, and C-peptide. Homeostasis model assessment was used to evaluate insulin resistance and islet β-cell function. Pancreatic exocrine function was evaluated by fecal elastase 1. Factors that could influence endocrine function were also investigated. Nineteen patients (32%) were found to have elevated FBG, whereas 5 (8%) had abnormal glycosylated hemoglobin levels. The levels of FBG, fasting blood insulin, and C-peptide were higher in patients than in controls (P endocrine insufficiency. Pancreatic exocrine functional impairment was found at the same time. Endocrine functional impairment with insulin resistance was found in patients after AP. Obesity, hyperlipidemia, and diabetes-related symptoms increased the likelihood of developing functional impairment after AP.

  2. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion

    DEFF Research Database (Denmark)

    Anderson, Kristin A; Huynh, Frank K; Fisher-Wellman, Kelsey

    2017-01-01

    in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance....... These findings identify a robust enzymatic activity for SIRT4, uncover a mechanism controlling branched-chain amino acid flux, and position SIRT4 as a crucial player maintaining insulin secretion and glucose homeostasis during aging....

  3. Hypothesis: Musculin is a hormone secreted by skeletal muscle, the body's largest endocrine organ. Evidence for actions on the endocrine pancreas to restrain the beta-cell mass and to inhibit insulin secretion and on the hypothalamus to co-ordinate the neuroendocrine and appetite responses to exercise.

    Science.gov (United States)

    Engler, Dennis

    2007-01-01

    Recent studies indicate that skeletal muscle may act as an endocrine organ by secreting interleukin-6 (IL-6) into the systemic circulation. From an analysis of the actions of IL-6 and of additional literature, we postulate that skeletal muscle also secretes an unidentified hormone, which we have named Musculin (Latin: musculus = muscle), which acts on the pancreatic beta-cell to restrain the size of the (beta-cell mass and to tonically inhibit insulin secretion and biosynthesis. It is suggested that the amount of Musculin secreted is determined by, and is positively correlated with, the prevailing insulin sensitivity of skeletal muscle, thereby accounting for the hyperinsulinemia that occurs in insulin resistant disorders such as type 2 diabetes mellitus, obesity, and the polycystic ovary syndrome. In addition, it is postulated that Musculin acts on the hypothalamus (arcuate nucleus, dorsomedial hypothalamic nucleus) to co-ordinate the neuroendocrine and appetite responses to exercise. However, the possibilities that Musculin may act on additional central nervous system sites and that an additional hormone(s) may be responsible for these actions are not excluded. It is suggested that a search be made for Musculin, since analogues of such a substance may be of therapeutic benefit in the treatment of the current global diabetes and obesity epidemic.

  4. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro

    Science.gov (United States)

    Keller, Amy C.; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B.; Kennelly, Edward J.

    2012-01-01

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p= 0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. PMID:22133295

  5. Influence of secretagogues on asynchronous secretion of newly synthesized pancreatic proteins in the conscious rat

    International Nuclear Information System (INIS)

    Keim, V.; Rohr, G.

    1987-01-01

    The secretion of newly synthesized pancreatic enzymes was studied in pancreatic duct cannulated rats after intravenous injection of 100 microCi of [ 35 S]methionine. Secretion rate was stimulated by intravenous infusion of either cerulein (0.2 microgram/kg h) or carbachol (10 nmol/kg h) starting simultaneously with or 180 min before the injection of the labeled methionine. Secretory proteins were analyzed by sodium dodecyl sulfate (SDS) gel electrophoresis or by nondenaturing gel electrophoresis followed by determination of the radioactivity associated with the individual proteins. Similar to unstimulated controls in all experiments, an early secretion of newly synthesized trypsinogen and chymotrypsinogen was found, whereas amylase and lipase were secreted only after a certain lag period. The results suggest that the intracellular transit of endoproteases is faster than that of other enzymes, irrespective of whether or not secretagogues were applied

  6. Adaptive changes of pancreatic protease secretion to a short-term vegan diet: influence of reduced intake and modification of protein.

    Science.gov (United States)

    Walkowiak, Jaroslaw; Mądry, Edyta; Lisowska, Aleksandra; Szaflarska-Popławska, Anna; Grzymisławski, Marian; Stankowiak-Kulpa, Hanna; Przysławski, Juliusz

    2012-01-01

    In our previous study, we demonstrated that abstaining from meat, for 1 month, by healthy omnivores (lacto-ovovegetarian model) resulted in a statistical decrease in pancreatic secretion as measured by faecal elastase-1 output. However, no correlation between relative and non-relative changes of energy and nutrient consumption and pancreatic secretion was documented. Therefore, in the present study, we aimed to assess the changes of exocrine pancreatic secretion with a more restrictive dietetic modification, by applying a vegan diet. A total of twenty-one healthy omnivores (sixteen females and five males) participated in the prospective study lasting for 6 weeks. The nutrient intake and faecal output of pancreatic enzymes (elastase-1, chymotrypsin and lipase) were assessed twice during the study. Each assessment period lasted for 7 d: the first before the transition to the vegan diet (omnivore diet) and the second during the last week of the study (vegan diet). The dietary modification resulted in a significant decrease in faecal elastase-1 (P vegan diet resulted in an adaptation of pancreatic protease secretion in healthy volunteers.

  7. Impaired crosstalk between pulsatile insulin and glucagon secretion in prediabetic individuals

    DEFF Research Database (Denmark)

    Rohrer, Stefan; Menge, Björn A; Grüber, Lena

    2012-01-01

    Postprandial hyperglucagonemia is frequently found in patients with diabetes. Recently, a loss of the inverse relationship between pulsatile insulin and glucagon secretion has been reported in patients with type 2 diabetes. The crosstalk between pulsatile islet hormone secretion in prediabetic...

  8. [Changes in the secretion of somatotropin and insulin in hyperthyroidism].

    Science.gov (United States)

    Cavagnini, F; Peracchi, M; Panerai, A E; Pinto, M

    1975-06-01

    Twenty hyperthyroid patients were investigated for growth hormone (GH) and immunoreactive insulin (IRI) secretion in response to insulin hypoglycaemia, arginine infusion and glucose-induced hyperglycaemia. GH response to either insulin hypoglycaemia or arginine infusion was significantly reduced in these patients compared with 20 normal subjects. Thyrotoxic patients also displayed an abnormal GH pattern after a 100 g oral glucose load: in fact, serum GH underwent a paradoxical increase in spite of abnormally high levels attained by blood glucose. IRI secretion was also clearly reduced in response to arginine infusion and moderately blunted after oral glucose. In a group of patients re-evaluated under euthyroid conditions, a fair increase of GH response to the provocative stimuli jointly with the restoration of a normal suppressibility of serum GH by glucose were noted; by contrast, no significant change of IRI response to arginine or glucose took place. Likewise, the impairment of glucose tolerance was not improved. These findings indicate that an impairment of GH and IRI secretion is present in hyperthyroidism. The possibility that a potentiation of the catecholamine effects caused by the thyroid hormones is involved in this alteration deserves consideration.

  9. Trajectories of glycaemia, insulin sensitivity and insulin secretion in South Asian and white individuals before diagnosis of type 2 diabetes

    DEFF Research Database (Denmark)

    Hulman, Adam; Simmons, Rebecca K; Brunner, Eric J

    2017-01-01

    AIMS/HYPOTHESIS: South Asian individuals have reduced insulin sensitivity and increased risk of type 2 diabetes compared with white individuals. Temporal changes in glycaemic traits during middle age suggest that impaired insulin secretion is a particular feature of diabetes development among South...... Asians. We therefore aimed to examine ethnic differences in early changes in glucose metabolism prior to incident type 2 diabetes. METHODS: In a prospective British occupational cohort, subject to 5 yearly clinical examinations, we examined ethnic differences in trajectories of fasting plasma glucose...... (FPG), 2 h post-load plasma glucose (2hPG), fasting serum insulin (FSI), 2 h post-load serum insulin (2hSI), HOMA of insulin sensitivity (HOMA2-S) and secretion (HOMA2-B), and the Gutt insulin sensitivity index (ISI0,120) among 120 South Asian and 867 white participants who developed diabetes during...

  10. Regulation of pancreatic beta-cell mass and proliferation by SOCS-3

    DEFF Research Database (Denmark)

    Lindberg, K; Rønn, S G; Tornehave, D

    2005-01-01

    Growth hormone and prolactin are important growth factors for pancreatic beta-cells. The effects exerted by these hormones on proliferation and on insulin synthesis and secretion in beta-cells are largely mediated through the Janus kinase (JAK)/signal transducer and activator of transcription (ST...

  11. Dissociation between insulin secretion and DNA synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1985-01-01

    -Tdr incorporation. However, long-term exposure to IBMX did not result in increased DNA content of the islets. Inhibition of the DNA synthesis by 5 mM hydroxyurea resulted in a marked reduction in DNA content of the islets but no decrease in either insulin release or insulin content when expressed per ng DNA...

  12. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass

    DEFF Research Database (Denmark)

    Gelling, Richard W; Vuguin, Patricia M; Du, Xiu Quan

    2009-01-01

    in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.7- to 3.9-fold in RIP-Gcgr mice compared with controls. Consistent with the observed increase in insulin release...

  13. Bisphenol A Is More Potent than Phthalate Metabolites in Reducing Pancreatic β-Cell Function

    Directory of Open Access Journals (Sweden)

    Nina Mickelson Weldingh

    2017-01-01

    Full Text Available Bisphenol A (BPA and phthalates are common environmental contaminants that have been proposed to influence incidence and development of types 1 and 2 diabetes. Thus, effects of BPA and three phthalate metabolites (monoisobutyl phthalate (MiBP, mono-n-butyl phthalate (MnBP, and mono-(2-ethylhexyl phthalate (MEHP were studied in the pancreatic β-cell line INS-1E, after 2–72 h of exposure to 5–500 μM. Three endpoints relevant to accelerated development of types 1 or 2 diabetes were investigated: β-cell viability, glucose-induced insulin secretion, and β-cell susceptibility to cytokine-induced cell death. BPA and the phthalate metabolites reduced cellular viability after 72 h of exposure, with BPA as the most potent chemical. Moreover, BPA, MEHP, and MnBP increased insulin secretion after 2 h of simultaneous exposure to chemicals and glucose, with potency BPA > MEHP > MnBP. Longer chemical exposures (24–72 h showed no consistent effects on glucose-induced insulin secretion, and none of the environmental chemicals affected susceptibility to cytokine-induced cell death. Overall, BPA was more potent than the investigated phthalate metabolites in affecting insulin secretion and viability in the INS-1E pancreatic β-cells. In contrast to recent literature, concentrations with relevance to human exposures (1–500 nM did not affect the investigated endpoints, suggesting that this experimental model displayed relatively low sensitivity to environmental chemical exposure.

  14. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  15. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    Science.gov (United States)

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Growth of rhombohedral insulin crystals and in vitro modeling of their dissolution in the blood stream

    Energy Technology Data Exchange (ETDEWEB)

    Nanev, C.N.; Dimitrov, I.L.; Hodzhaoglu, F.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2011-02-15

    Insulin is the only protein that is secreted in a crystalline form in a human healthy body. To mimic the secretion process we used NaCl salting-out to growing tiny rhombohedral Zn-insulin crystals. The dissolution of the insulin crystals is of special interest for the therapeutical praxis, because the human body is supplied with the physiologically active monomers of the insulin through dissolution of the crystalline granules secreted in the pancreatic {beta}-cells. Sets of tiny rhombohedral Zn-insulin crystals, which resembled the granules secreted in the {beta}-cells, were subjected to dissolution in blood plasma and model solutions. The impacts of the solution composition, flow rate, pH and ionic strength on the insulin crystal dissolution were investigated. The effect of the blood plasma was determinant because it dissolved the rhombohedral Zn-insulin crystals almost instantly, while the effects of solution's physicochemical characteristics were of minor importance. In addition, we found that the presence of abundant zinc ions suppressed the dissolution of the insulin crystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Inhibition of cholinergic potentiation of insulin secretion from pancreatic islets by chronic elevation of glucose and fatty acids: Protection by casein kinase 2 inhibitor

    Directory of Open Access Journals (Sweden)

    Nicolai M. Doliba

    2017-10-01

    Conclusions: These results show that chronic FA treatment decreases acetylcholine potentiation of insulin secretion and that this effect is strictly glucose dependent and might involve CK2 phosphorylation of β-cell M3 muscarinic receptors.

  18. Encapsulation of pancreatic islets for transplantation in diabetes : the untouchable islets

    NARCIS (Netherlands)

    de Vos, P; Marchetti, P

    The aim of encapsulation of pancreatic islets is to transplant in the absence of immunosuppression. It is based on the principle that transplanted tissue is protected from the host immune system by an artificial membrane. Encapsulation allows for application of insulin-secreting cells of animal or

  19. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Menge, Björn A; Grüber, Lena; Jørgensen, Signe M

    2011-01-01

    In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known.......In patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known....

  20. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  1. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  2. Validation of methods for measurement of insulin secretion in humans in vivo

    DEFF Research Database (Denmark)

    Kjems, L L; Christiansen, E; Vølund, A

    2000-01-01

    To detect and understand the changes in beta-cell function in the pathogenesis of type 2 diabetes, an accurate and precise estimation of prehepatic insulin secretion rate (ISR) is essential. There are two common methods to assess ISR, the deconvolution method (by Eaton and Polonsky)-considered th......To detect and understand the changes in beta-cell function in the pathogenesis of type 2 diabetes, an accurate and precise estimation of prehepatic insulin secretion rate (ISR) is essential. There are two common methods to assess ISR, the deconvolution method (by Eaton and Polonsky...... of these mathematical techniques for quantification of insulin secretion have been tested in dogs, but not in humans. In the present studies, we examined the validity of both methods to recover the known infusion rates of insulin and C-peptide mimicking ISR during an oral glucose tolerance test. ISR from both......, and a close agreement was found for the results of an oral glucose tolerance test. We also studied whether C-peptide kinetics are influenced by somatostatin infusion. The decay curves after bolus injection of exogenous biosynthetic human C-peptide, the kinetic parameters, and the metabolic clearance rate were...

  3. Specific insulin and proinsulin secretion in glucokinase-deficient individuals

    Directory of Open Access Journals (Sweden)

    V.C. Pardini

    1999-04-01

    Full Text Available Glucokinase (GCK is an enzyme that regulates insulin secretion, keeping glucose levels within a narrow range. Mutations in the glucokinase gene cause a rare form of diabetes called maturity-onset diabetes of the young (MODY. An early onset (less than 25 years, autosomal dominant inheritance and low insulin secretion stimulated by glucose characterize MODY patients. Specific insulin and proinsulin were measured in serum by immunofluorimetric assays (IFMA during a 75-g oral glucose tolerance test (OGTT. Two kindreds (SA and LZ were studied and compared to non-diabetic unrelated individuals (control group 1 matched for age and body mass index (BMI. In one kindred, some of these subjects were also obese (BMI >26 kg/m2, and other family members also presented with obesity and/or late-onset NIDDM. The MODY patients were also compared to a group of five of their first-degree relatives with obesity and/or late-onset NIDDM. The proinsulin profile was different in members of the two MODY kindreds. Fasting proinsulin and the proinsulin/insulin ratio were similar in MODY members of kindred LZ and subjects from control group 1, but were significantly lower than in MODY members of kindred SA (P<0.02 and P<0.01, for proinsulin and proinsulin/insulin ratio, respectively. Moreover, MODY members of family SA had higher levels of proinsulin and proinsulin/insulin ratio, although not significantly different, when compared to their first-degree relatives and to subjects from control group 2. In conclusion, we observed variable degrees of proinsulin levels and proinsulin/insulin ratio in MODY members of two different kindreds. The higher values of these parameters found in MODY and non-MODY members of kindred SA is probably related to the obesity and late-onset NIDDM background present in this family.

  4. Tributyltin exposure at noncytotoxic doses dysregulates pancreatic β-cell function in vitro and in vivo.

    Science.gov (United States)

    Chen, Ya-Wen; Lan, Kuo-Cheng; Tsai, Jing-Ren; Weng, Te-I; Yang, Ching-Yao; Liu, Shing-Hwa

    2017-09-01

    Tributyltin (TBT) is an endocrine disruptor. TBT can be found in food and in human tissues and blood. Several animal studies revealed that organotins induced diabetes with decreased insulin secretion. The detailed effect and mechanism of TBT on pancreatic β-cell function still remain unclear. We investigated the effect and mechanism of TBT exposure at noncytotoxic doses relevant to human exposure on β-cell function in vitro and in vivo. The β-cell-derived RIN-m5F cells and pancreatic islets from mouse and human were treated with TBT (0.05-0.2 μM) for 0.5-4 h. Adult male mice were orally exposed to TBT (25 μg/kg/day) with or without antioxidant N-acetylcysteine (NAC) for 1-3 weeks. Assays for insulin secretion and glucose metabolism were carried out. Unlike previous studies, TBT at noncytotoxic concentrations significantly increased glucose-stimulated insulin secretion and intracellular Ca 2+ ([Ca 2+ ] i ) in β-cells. The reactive oxygen species (ROS) production and phosphorylation of protein kinase C (PKC-pan) and extracellular signal-regulated kinase (ERK)1/2 were also increased. These TBT-triggered effects could be reversed by antiestrogen ICI182780 and inhibitors of ROS, [Ca 2+ ] i , and PKC, but not ERK. Similarly, islets treated with TBT significantly increased glucose-stimulated insulin secretion, which could be reversed by ICI182780, NAC, and PKC inhibitor. Mice exposed to TBT for 3 weeks significantly increased blood glucose and plasma insulin and induced glucose intolerance and insulin resistance, which could be reversed by NAC. These findings suggest that low/noncytotoxic doses of TBT induce insulin dysregulation and disturb glucose homeostasis, which may be mediated through the estrogen receptor-regulated and/or oxidative stress-related signaling pathways.

  5. Insulin Biosynthetic Interaction Network Component, TMEM24, Facilitates Insulin Reserve Pool Release

    Directory of Open Access Journals (Sweden)

    Anita Pottekat

    2013-09-01

    Full Text Available Insulin homeostasis in pancreatic β cells is now recognized as a critical element in the progression of obesity and type II diabetes (T2D. Proteins that interact with insulin to direct its sequential synthesis, folding, trafficking, and packaging into reserve granules in order to manage release in response to elevated glucose remain largely unknown. Using a conformation-based approach combined with mass spectrometry, we have generated the insulin biosynthetic interaction network (insulin BIN, a proteomic roadmap in the β cell that describes the sequential interacting partners of insulin along the secretory axis. The insulin BIN revealed an abundant C2 domain-containing transmembrane protein 24 (TMEM24 that manages glucose-stimulated insulin secretion from a reserve pool of granules, a critical event impaired in patients with T2D. The identification of TMEM24 in the context of a comprehensive set of sequential insulin-binding partners provides a molecular description of the insulin secretory pathway in β cells.

  6. Kinetics of amino acid and glucose absorption following pancreatic diversion in the pig

    Science.gov (United States)

    Rerat, A.; Calmes, R.; Corring, T.; Vaissade, P.

    1996-01-01

    An experiment was conducted in the pig to determine the consequences of deprivation of exocrine pancreatic secretion on the composition and quantity of nutrients absorbed after intake of a balanced diet. Five growing pigs (53.8 kg body weight) were fitted with permanent catheters in the portal vein and the carotid artery and with an electromagnetic flow probe around the portal vein to measure the exchanges between the blood and the intestinal lumen. They were also fitted with a permanent catheter in the duct of Wirsung to educe the exocrine pancreatic secretion and another one in the duodenum in order to reintroduce it. In each animal, glucose, amino-N and amino acid absorption as well as insulin and glucagon production were measured over a period of 10 h after the meal (semi-purified diet based on purified starch and containing 180 g fish meal/kg, DM content of the meal 731 g), either in the presence of pancreatic juice (group C: immediate reintroduction), or in the absence of pancreatic juice (group D: deprivation). The deprivation of pancreatic juice provoked a marked depression in the absorption of glucose (D 67.9 (SEM 27.9) g/10 h, C 437.7 (SEM 39.5) g/10 h, P juice. Insulin production was much lower (by 64%, P juice whereas that of glucagon was not affected.

  7. Pancreatic islet transplantation

    Directory of Open Access Journals (Sweden)

    Corrêa-Giannella Maria

    2009-09-01

    Full Text Available Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of

  8. BAG3 regulates formation of the SNARE complex and insulin secretion

    Science.gov (United States)

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  9. effect of low glycaemic index meals on insulin secretion

    African Journals Online (AJOL)

    DR. AMINU

    2012-12-02

    Dec 2, 2012 ... Chicago, IL, USA). Data was presented as mean plus .... carbohydrate along a longer portion of the small intestine ... insulin secretion despite producing relatively small .... Laaksonen, D E, Lindström, J, Lakka, T.A, Eriksson,.

  10. Calcineurin inhibitors acutely improve insulin sensitivity without affecting insulin secretion in healthy human volunteers

    DEFF Research Database (Denmark)

    Øzbay, Aygen; Møller, Niels; Juhl, Claus

    2012-01-01

    and tacrolimus has been attributed to both beta cell dysfunction and impaired insulin sensitivity. WHAT THIS STUDY ADDS: This is the first trial to investigate beta cell function and insulin sensitivity using gold standard methodology in healthy human volunteers treated with clinically relevant doses...... of ciclosporin and tacrolimus. We document that both drugs acutely increase insulin sensitivity, while first phase and pulsatile insulin secretion remain unaffected. This study demonstrates that ciclosporin and tacrolimus have similar acute effects on glucose metabolism in healthy humans. AIM The introduction...... of calcineurin inhibitors (CNIs) ciclosporin (CsA) and tacrolimus (Tac) has improved the outcome of organ transplants, but complications such as new onset diabetes mellitus after transplantation (NODAT) cause impairment of survival rates. The relative contribution of each CNI to the pathogenesis and development...

  11. Evaluation of insulin expression and secretion in genetically engineered gut K and L-cells

    Directory of Open Access Journals (Sweden)

    Ahmad Zalinah

    2012-09-01

    Full Text Available Abstract Background Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features. Results In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant. Conclusion The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

  12. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Maria Sara Remedi

    2008-10-01

    Full Text Available Pancreatic beta-cell ATP-sensitive potassium (K ATP channels are critical links between nutrient metabolism and insulin secretion. In humans, reduced or absent beta-cell K ATP channel activity resulting from loss-of-function K ATP mutations induces insulin hypersecretion. Mice with reduced K ATP channel activity also demonstrate hyperinsulinism, but mice with complete loss of K ATP channels (K ATP knockout mice show an unexpected insulin undersecretory phenotype. Therefore we have proposed an "inverse U" hypothesis to explain the response to enhanced excitability, in which excessive hyperexcitability drives beta-cells to insulin secretory failure without cell death. Many patients with type 2 diabetes treated with antidiabetic sulfonylureas (which inhibit K ATP activity and thereby enhance insulin secretion show long-term insulin secretory failure, which we further suggest might reflect a similar progression.To test the above hypotheses, and to mechanistically investigate the consequences of prolonged hyperexcitability in vivo, we used a novel approach of implanting mice with slow-release sulfonylurea (glibenclamide pellets, to chronically inhibit beta-cell K ATP channels. Glibenclamide-implanted wild-type mice became progressively and consistently diabetic, with significantly (p < 0.05 reduced insulin secretion in response to glucose. After 1 wk of treatment, these mice were as glucose intolerant as adult K ATP knockout mice, and reduction of secretory capacity in freshly isolated islets from implanted animals was as significant (p < 0.05 as those from K ATP knockout animals. However, secretory capacity was fully restored in islets from sulfonylurea-treated mice within hours of drug washout and in vivo within 1 mo after glibenclamide treatment was terminated. Pancreatic immunostaining showed normal islet size and alpha-/beta-cell distribution within the islet, and TUNEL staining showed no evidence of apoptosis.These results demonstrate that

  13. Glucose Homeostasis, Pancreatic Endocrine Function, and Outcomes in Advanced Heart Failure.

    Science.gov (United States)

    Melenovsky, Vojtech; Benes, Jan; Franekova, Janka; Kovar, Jan; Borlaug, Barry A; Segetova, Marketa; Tura, Andrea; Pelikanova, Tereza

    2017-08-07

    The mechanisms and relevance of impaired glucose homeostasis in advanced heart failure (HF) are poorly understood. The study goals were to examine glucose regulation, pancreatic endocrine function, and metabolic factors related to prognosis in patients with nondiabetic advanced HF. In total, 140 advanced HF patients without known diabetes mellitus and 21 sex-, age-, and body mass index-matched controls underwent body composition assessment, oral glucose tolerance testing, and measurement of glucose-regulating hormones to model pancreatic β-cell secretory response. Compared with controls, HF patients had similar fasting glucose and insulin levels but higher levels after oral glucose tolerance testing. Insulin secretion was not impaired, but with increasing HF severity, there was a reduction in glucose, insulin, and insulin/glucagon ratio-a signature of starvation. The insulin/C-peptide ratio was decreased in HF, indicating enhanced insulin clearance, and this was correlated with lower cardiac output, hepatic insufficiency, right ventricular dysfunction, and body wasting. After a median of 449 days, 41% of patients experienced an adverse event (death, urgent transplant, or assist device). Increased glucagon and, paradoxically, low fasting plasma glucose displayed the strongest relations to outcome ( P =0.01). Patients in the lowest quartile of fasting plasma glucose (3.8-5.1 mmol·L -1 , 68-101 mg·dL -1 ) had 3-times higher event risk than in the top quartile (6.0-7.9 mmol·L -1 , 108-142 mg·dL -1 ; relative risk: 3.05 [95% confidence interval, 1.46-6.77]; P =0.002). Low fasting plasma glucose and increased glucagon are robust metabolic predictors of adverse events in advanced HF. Pancreatic insulin secretion is preserved in advanced HF, but levels decrease with increasing HF severity due to enhanced insulin clearance that is coupled with right heart failure and cardiac cachexia. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  14. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H 2 O 2 , act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  15. An SCFFBXO28 E3 Ligase Protects Pancreatic β-Cells from Apoptosis

    Directory of Open Access Journals (Sweden)

    Kanaka Durga Devi Gorrepati

    2018-03-01

    Full Text Available Loss of pancreatic β-cell function and/or mass is a central hallmark of all forms of diabetes but its molecular basis is incompletely understood. β-cell apoptosis contributes to the reduced β-cell mass in diabetes. Therefore, the identification of important signaling molecules that promote β-cell survival in diabetes could lead to a promising therapeutic intervention to block β-cell decline during development and progression of diabetes. In the present study, we identified F-box protein 28 (FBXO28, a substrate-recruiting component of the Skp1-Cul1-F-box (SCF ligase complex, as a regulator of pancreatic β-cell survival. FBXO28 was down-regulated in β-cells and in isolated human islets under diabetic conditions. Consistently, genetic silencing of FBXO28 impaired β-cell survival, and restoration of FBXO28 protected β-cells from the harmful effects of the diabetic milieu. Although FBXO28 expression positively correlated with β-cell transcription factor NEUROD1 and FBXO28 depletion also reduced insulin mRNA expression, neither FBXO28 overexpression nor depletion had any significant impact on insulin content, glucose-stimulated insulin secretion (GSIS or on other genes involved in glucose sensing and metabolism or on important β-cell transcription factors in isolated human islets. Consistently, FBXO28 overexpression did not further alter insulin content and GSIS in freshly isolated islets from patients with type 2 diabetes (T2D. Our data show that FBXO28 improves pancreatic β-cell survival under diabetogenic conditions without affecting insulin secretion, and its restoration may be a novel therapeutic tool to promote β-cell survival in diabetes.

  16. Plasma Asprosin Concentrations Are Increased in Individuals with Glucose Dysregulation and Correlated with Insulin Resistance and First-Phase Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Yuren Wang

    2018-01-01

    Full Text Available Background. Adipokines are reported to participate in many common pathologic processes of glucose dysregulation, such as insulin resistance, β-cell dysfunction, and chronic inflammation. Objective. To detect the concentrations of plasma asprosin in subjects with impaired glucose regulation (IGR and newly diagnosed type 2 diabetes (nT2DM and its relationship to parameters of glucose and lipid metabolism, insulin resistance, and pancreatic β-cell function. Methods. 143 eligible participants were included and were divided into three groups including normal glucose regulation (NGR, n=52, IGR (n=40, and nT2DM group (n=51. The intravenous glucose tolerance test (IVGTT and clinical and biochemical parameters were measured in all participants. Results. Plasma asprosin levels were higher in IGR (82.40 ± 91.06 ng/mL, P<0.001 and nT2DM (73.25 ± 91.69 ng/mL, P<0.001 groups compared with those in the NGR (16.22 ± 9.27 ng/mL group, especially in IGR subjects. Correlation analysis showed that plasma asprosin levels were positively correlated with waist circumference (Wc, fasting plasma glucose (FPG, postchallenge plasma glucose (2hPG, HbA1c, triglyceride (TG, and homeostasis model assessment for insulin resistance (HOMA-IR and negatively correlated with homeostasis model assessment for β-cell function (HOMA-β, area under the curve of the first-phase (0–10 min insulin secretion (AUC, acute insulin response (AIR, and glucose disposition index (GDI (all P<0.05. Multiple logistical regression analyses revealed that plasma asprosin concentrations were significantly correlated with IGR and nT2DM after controlling for age, sex, BMI, and WHR. Conclusions. Circulating asprosin might be a predictor of early diagnosis in DM and might be a potential therapeutic target for prediabetes and T2DM.

  17. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  18. Cardiovascular side-effects and insulin secretion after intravenous administration of radiolabeled Exendin-4 in pigs

    International Nuclear Information System (INIS)

    Rydén, Anneli; Nyman, Görel; Nalin, Lovisa; Andreasson, Susanne; Korsgren, Olle; Eriksson, Olof; Jensen-Waern, Marianne

    2016-01-01

    Introduction: Radiolabeled Exendin-4, a synthetic glucagon-like peptide-1 (GLP-1) analog, is used as a tracer for diagnostic purposes of β-cells and in experimental animal research. Exendin-4 can be radiolabeled with 68 Ga, 111 In or 99m Tc and used for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging to diagnose insulinomas, visualization of pancreatic β-cell mass and transplanted Islets of Langerhans. In humans, Exendin-4 is widely used as a therapeutic agent for treatment of type 2 diabetes (T2D). The compound, which is administered subcutaneously (SC) may cause nausea, vomiting and a minor increase in the heart rate (HR). However, possible side-effects on cardiovascular functions after intravenous (IV) administration have not been reported. This study describes the Exendin-4 dose at which cardiovascular side-effects occur in pigs and cynomolgus monkeys. The IV effect of the tracer on insulin secretion is also investigated in pigs. Methods: Seven clinically healthy littermate pigs (40 days old) were used; three of them were made diabetic by streptozotocin (STZ). All pigs underwent PET imaging under general anesthesia to examine the glucagon-like peptide-1 receptor (GLP-1R) in β-cells with radiolabeled Exendin-4. A baseline tracer dose IV [ 68 Ga]Exendin-4 (0.025 ± 0.010 μg/kg) followed by a competition dose IV [ 68 Ga]Exendin-4 (3.98 ± 1.33 μg/kg) 60 min later were administered. Blood samples were taken and analyzed for insulin secretion by using ELISA. Cardiovascular and respiratory variables were monitored throughout the experiment. Results: Immediately after administration of the high dose [ 68 Ga]Exendin-4 the HR rose from 122 ± 14 to 227 ± 40 bpm (p < 0.01) and from 100 ± 5 to 181 ± 13 bpm (p < 0.01) in healthy non-diabetic and diabetes-induced pigs, respectively. The tachycardia was observed for > 2 h and one healthy non-diabetic pig suffered cardiac arrest 3 h after the IV [ 68 Ga]Exendin-4

  19. Oral insulin delivery: existing barriers and current counter-strategies.

    Science.gov (United States)

    Gedawy, Ahmed; Martinez, Jorge; Al-Salami, Hani; Dass, Crispin R

    2018-02-01

    The chronic and progressive nature of diabetes is usually associated with micro- and macrovascular complications where failure of pancreatic β-cell function and a general condition of hyperglycaemia is created. One possible factor is failure of the patient to comply with and adhere to the prescribed insulin due to the inconvenient administration route. This review summarizes the rationale for oral insulin administration, existing barriers and some counter-strategies trialled. Oral insulin mimics the physiology of endogenous insulin secreted by pancreas. Following the intestinal absorption of oral insulin, it reaches the liver at high concentration via the portal vein. Oral insulin on the other hand has the potential to protect pancreatic β-cells from autoimmune destruction. Structural modification, targeting a particular tissue/receptor, and the use of innovative pharmaceutical formulations such as nanoparticles represent strategies introduced to improve oral insulin bioavailability. They showed promising results in overcoming the hurdles facing oral insulin delivery, although delivery is far from ideal. The use of advanced pharmaceutical technologies and further research in particulate carrier system delivery predominantly nanoparticle utilization would offer useful tools in delivering insulin via the oral route which in turn would potentially improve diabetic patient compliance to insulin and the overall management of diabetes. © 2017 Royal Pharmaceutical Society.

  20. L-leucine methyl ester stimulates insulin secretion and islet glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Knudsen, P; Kofod, Hans; Lernmark, A

    1983-01-01

    Column perifusion of collagenase-isolated mouse pancreatic islets was used to study the dynamics of insulin release in experiments lasting for several hours. The methyl esters of L-leucine and L-arginine were synthesized. Whereas L-arginine methyl ester (L-arginine OMe) had no effect, L-leucine OMe...... stimulated the release of insulin. The effect of L-leucine OMe was maximal at 5 mmol/liter. Whereas the Km for glucose-stimulated insulin release was unaffected by 1 mmol/liter L-leucine OMe, the maximal release of D-glucose was increased by the amino acid derivative that appeared more effective than L......-leucine. L-Leucine OMe was also a potent stimulus of insulin release from the perfused mouse pancreas. In the presence of 10 mmol/liter L-glutamine, 1 mmol/liter L-leucine OMe induced a 50- to 75-fold increase in insulin release. A similar stimulatory effect was also observed in column-perifused RIN 5F cells...

  1. Effect of iron on pancreatic beta cell function and insulin resistance ...

    African Journals Online (AJOL)

    Background: Increase in total body iron store has been reported in the aetiology and development of diabetes mellitus. The effect of iron supplementation in female with respect to the incidence of diabetes mellitus was investigated on the pancreatic beta cell function and insulin resistance in normal female rats. Methods: ...

  2. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    Science.gov (United States)

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  3. Interaction of Glycolysis and Mitochondrial Respiration in Metabolic Oscillations of Pancreatic Islets

    DEFF Research Database (Denmark)

    Bertram, Richard; Satin, Leslie S.; Pedersen, Morten Gram

    2007-01-01

    Insulin secretion from pancreatic ß-cells is oscillatory, with a typical period of 2–7 min, reflecting oscillations in membrane potential and the cytosolic Ca2+ concentration. Our central hypothesis is that the slow 2–7 min oscillations are due to glycolytic oscillations, whereas faster oscillati...

  4. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    Science.gov (United States)

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  5. Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Feng-Cheng Chou

    2012-01-01

    Full Text Available Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1 detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2 inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells.

  6. Importance of radioimmunoassay of insulin secretion disorder as atherogenic factor

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Yu A; Bespalova, V A; Vakhrusheva, L L; Kirbasova, N P; Severtseva, V V

    1984-11-01

    Using a radioimmunoassay a C-peptide levei was revealed in children, pregnant and lying-in women as well as in patients with insulin-dependent diabetes mellitus. After breakfast and insulin administration wich curative purposes the IRI concentration in children increased whereas the C-peptide level changed insignificantly. Changes of the insulin secretion were more noticeable in severe diabetes mejlitus with vascular complications and in disease decompensation. The atherogenic nature of the lipid metaboiism (an increase in the cholesterol, triglyceride and ..beta..-lipoprotein levels), changes in the liver and tendency to vascular involvement are results of insulin effect inadequacy. Such metabolic derangements in pregnant women create unfavorable conditions for the development of fetus and may lead to early atherogenic processes.

  7. Moderate alcohol consumption is associated with improved insulin sensitivity, reduced basal insulin secretion rate and lower fasting glucagon concentration in healthy women

    DEFF Research Database (Denmark)

    Bonnet, F; Disse, E; Laville, M

    2012-01-01

    Moderate alcohol consumption is associated with a reduced risk of type 2 diabetes with a stronger effect in women. As the underlying mechanisms remain poorly characterised, we investigated its relationship with insulin resistance, insulin secretion, clearance of insulin and glucagon concentration....

  8. The GTPase Rab37 Participates in the Control of Insulin Exocytosis.

    Directory of Open Access Journals (Sweden)

    Sanda Ljubicic

    Full Text Available Rab37 belongs to a subclass of Rab GTPases regulating exocytosis, including also Rab3a and Rab27a. Proteomic studies indicate that Rab37 is associated with insulin-containing large dense core granules of pancreatic β-cells. In agreement with these observations, we detected Rab37 in extracts of β-cell lines and human pancreatic islets and confirmed by confocal microscopy the localization of the GTPase on insulin-containing secretory granules. We found that, as is the case for Rab3a and Rab27a, reduction of Rab37 levels by RNA interference leads to impairment in glucose-induced insulin secretion and to a decrease in the number of granules in close apposition to the plasma membrane. Pull-down experiments revealed that, despite similar functional effects, Rab37 does not interact with known Rab3a or Rab27a effectors and is likely to operate through a different mechanism. Exposure of insulin-secreting cells to proinflammatory cytokines, fatty acids or oxidized low-density lipoproteins, mimicking physiopathological conditions that favor the development of diabetes, resulted in a decrease in Rab37 expression. Our data identify Rab37 as an additional component of the machinery governing exocytosis of β-cells and suggest that impaired expression of this GTPase may contribute to defective insulin release in pre-diabetic and diabetic conditions.

  9. Using Glucose Tolerance Tests to Model Insulin Secretion and Clearance

    Directory of Open Access Journals (Sweden)

    Anthony Shannon

    2005-04-01

    Full Text Available The purpose of the studies described in this paper is to develop theoretically and to validate experimentally mathematical compartment models which can be used to predict plasma insulin levels in patients with diabetes mellitus (DM. In the case of Type 2 Diabetes Mellitus (T2DM, the C-peptide levels in the plasma were measured as part of routine glucose tolerance tests in order to estimate the prehepatic insulin secretion rates. In the case of Type 1 Diabetes Mellitus (T1DM, a radioactive labelled insulin was used to measure the absorption rate of insulin after a subcutaneous injection of insulin. Both models gave close fits between theoretical estimates and experimental data, and, unlike other models, it is not necessary to seed these models with initial estimates.

  10. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  11. Correlation of the secretion of insulin and C-peptide in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Modnikov, O P; Lomtev, N G [Kirgizskij Nauchno-Issledovatel' skij Inst. Onkologii i Radiologii, Frunze (USSR)

    1983-08-01

    Insulin and C-peptide levels were studied with a radioimmunoassay in the peripheral blood serum of 44 patients with gastric and cervical cancer and 22 healthy persons. Hyperfunction of the pancreatic insular apparatus was shown in cancer patients which was expressed in a statistically significant increase in the C-peptide level. In gastric cancer patients hyperfunction of the insular apparatus was accompanied by hypoinsulinemia, and in cervical cancer patients by hormoinsulinemia. An analysis has shown that the ratio insulin/C-peptide in gastric and cervical cancer patients was about the same and significantly lower than the control. A conclusion has been made that in spite of difference in the initial insulin concentration, the same phenomenon - acceleration of the metabolic clearance of insulin - occurs in patients with cancer of the above sites. The C-peptide level decreased, the ratio insulin/C-peptide increased, i.e. hyperfunction of the insular apparatus disappeared and the metabolic clearance of insulin slowed down.

  12. Role of Melatonin, Galanin, and RFamide Neuropeptides QRFP26 and QRFP43 in the Neuroendocrine Control of Pancreatic β-Cell Function

    Directory of Open Access Journals (Sweden)

    Iacopo Gesmundo

    2017-07-01

    Full Text Available Glucose homeostasis is finely regulated by a number of hormones and peptides released mainly from the brain, gastrointestinal tract, and muscle, regulating pancreatic secretion through cellular receptors and their signal transduction cascades. The endocrine function of the pancreas is controlled by islets within the exocrine pancreatic tissue that release hormones like insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin. Moreover, both exocrine and endocrine pancreatic functions are regulated by a variety of hormonal and neural mechanisms, such as ghrelin, glucagon-like peptide, glucose-dependent insulinotropic polypeptide, or the inhibitory peptide somatostatin. In this review, we describe the role of neurohormones that have been less characterized compared to others, on the regulation of insulin secretion. In particular, we will focus on melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43, which display either insulinotropic or insulinostatic effects. In fact, in addition to other hormones, amino acids, cytokines, and a variety of proteins, brain-derived hormones are now considered as key regulators of glucose homeostasis, representing potential therapeutic targets for the treatment of diabetes and obesity.

  13. Store-operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat β-Cells*

    Science.gov (United States)

    Sabourin, Jessica; Le Gal, Loïc; Saurwein, Lisa; Haefliger, Jacques-Antoine; Raddatz, Eric; Allagnat, Florent

    2015-01-01

    Store-operated Ca2+ channels (SOCs) are voltage-independent Ca2+ channels activated upon depletion of the endoplasmic reticulum Ca2+ stores. Early studies suggest the contribution of such channels to Ca2+ homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca2+ depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca2+ imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca2+ entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes. PMID:26494622

  14. Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose metabolism and insulin secretion.

    Directory of Open Access Journals (Sweden)

    Cheng Hu

    Full Text Available BACKGROUND: Single nucleotide polymorphisms (SNPs from GCK, GCKR, G6PC2 and MTNR1B were found to modulate the fasting glucose levels. The current study aimed to replicate this association in the Chinese population and further analyze their effects on biphasic insulin secretion. METHODS/PRINCIPAL FINDINGS: SNPs from GCK, GCKR, G6PC2 and MTNR1B were genotyped in the Shanghai Chinese, including 3,410 type 2 diabetes patients and 3,412 controls. The controls were extensively phenotyped for the traits related to glucose metabolism and insulin secretion. We replicated the association between GCK rs1799884, G6PC2 rs16856187 and MTNR1B rs10830963 and fasting glucose in our samples (p = 0.0003-2.0x10(-8. GCK rs1799884 and G6PC2 rs16856187 showed association to HOMA-beta, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0030-0.0396. MTNR1B rs10830963 was associated to HOMA-beta, insulinogenic index and first-phase insulin secretion (p = 0.0102-0.0426, but not second-phase insulin secretion (p = 0.9933. Combined effect analyses showed individuals carrying more risk allele for high fasting glucose tended to have a higher glucose levels at both fasting and 2 h during OGTTs (p = 1.7x10(-13 and 0.0009, respectively, as well as lower HOMA-beta, insulinogenic index and both first- and second-phases insulin secretion (p = 0.0321-1.1x10(-7. CONCLUSIONS/SIGNIFICANCE: We showed that SNPs from GCK, G6PC2 and MTNR1B modulated the fasting glucose levels in the normoglycaemic population while SNPs from G6PC2 and GCKR was associated with type 2 diabetes. Moreover, we found GCK and G6PC2 genetic variants were associated to both first- and second-phases insulin secretion while MTNR1B genetic variant was associated with first-phase insulin secretion, but not second-phase insulin secretion.

  15. Indian culinary plants enhance glucose-induced insulin secretion and glucose consumption in INS-1 β-cells and 3T3-L1 adipocytes.

    Science.gov (United States)

    Kaur, Lovedeep; Han, Kyoung-Sik; Bains, Kiran; Singh, Harjinder

    2011-12-01

    Six Indian plants, commonly used as culinary plants, herbs or spices (kikar; jamun; neem; harad; fenugreek; bitter gourd), were screened and compared for their antidiabetic potential in vitro. Aqueous plant extracts were prepared and assessed for their effect on the insulin secretion activity of rat pancreatic INS-1 β-cells and glucose consumption in mouse 3T3-L1 adipocytes in order to study their specific mechanisms of action. The effect of the plant extract concentration (25-1000μg/ml) on insulin release and glucose consumption was also studied. All the extracts had a significant stimulatory effect on the insulin secretion of INS-1 cells. In the presence of kikar extract (100μg/ml), an increase of 228% in insulin release was recorded compared to the control (5.6mM glucose) whereas that was 270% and 367% in the presence of kikar and jamun extracts (500μg/ml), respectively. 3T3-L1 cells treated with jamun extract (100μg/ml) exhibited the highest increase in glucose consumption by the cells (94%, compared with the control) followed by harad (53%) and fenugreek (50%) extracts. A significant inhibitory effect of the fenugreek, kikar and jamun extracts on glucose diffusion across a dialysis membrane suggested that these extracts could partly act by decreasing glucose absorption in the small intestine. The results showed that a combination of these plants in diet could help in the management of both type 1 and type 2 diabetes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by MiR-375 and Anti-MiR-9.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikani, Mohammad; Abroun, Saeid; Allahverdi, Amir; Lamei, Maryam; Lakpour, Niknam; Soleimani, Masoud

    2015-01-01

    MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs that regulate gene expression at the post-transcriptional level. A number of studies have led to the notion that some miRNAs have key roles in control of pancreatic islet development and insulin secretion. Based on some studies on miRNAs pattern, the researchers in this paper investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose so extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. Although derived IPCs by miR-375 alone were capable to express insulin and other endocrine specific transcription factors, the cells lacked the machinery to respond to glucose. It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. Although the roles of miR-375 and miR-9 are well known in pancreatic development and insulin secretion, the use of these miRNAs in transdifferentiation was never demonstrated. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.

  17. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Glondu, Murielle; Filloux, Chantal

    2004-01-01

    insulin signaling is required for the optimal beta-cell function, we assessed the effect of IL-1beta on the insulin pathway in a rat pancreatic beta-cell line. We show that IL-1beta decreases insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS...

  18. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  19. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  20. The VGF-Derived Neuropeptide TLQP-21 Shows No Impact on Hormone Secretion in the Isolated Perfused Rat Pancreas

    DEFF Research Database (Denmark)

    Christiansen, Charlotte Bayer; Svendsen, B; Holst, Jens Juul

    2015-01-01

    investigated the impact of TLQP-21 on insulin, glucagon, and somatostatin secretion in the perfused rat pancreas. We found that administration of 5 and 50 nM TLQP-21 had no impact on pancreatic hormone secretion at 3.5 or 8 mM glucose levels. Increasing TLQP-21 (200 nM) and glucose concentration (3.5 and 16 m...

  1. Bridging the Gap Between Protein Carboxyl Methylation and Phospholipid Methylation to Understand Glucose-Stimulated Insulin Secretion From the Pancreatic β Cell

    OpenAIRE

    Kowluru, Anjaneyulu

    2007-01-01

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also be...

  2. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study.

    Directory of Open Access Journals (Sweden)

    Valborg Gudmundsdottir

    Full Text Available Glucagon-like peptide 1 (GLP-1 stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126. This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100. Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05 with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated

  3. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    Science.gov (United States)

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  4. [IMPACT OF DIETARY FATTY ACIDS ON LIPID PROFILE, INSULIN SENSITIVITY AND FUNCTIONALITY OF PANCREATIC β CELLS IN TYPE 2 DIABETIC SUBJECTS].

    Science.gov (United States)

    Sambra Vásquez, Verónica; Rojas Moncada, Pamela; Basfi-Fer, Karen; Valencia, Alejandra; Codoceo, Juana; Inostroza, Jorge; Carrasco, Fernando; Ruz Ortiz, Manuel

    2015-09-01

    the quality of fats could influence the metabolic control of patients with Type 2 Diabetes Mellitus (DM2). to determine the relationship between intake and quality of dietary fatty acids to lipid profile, metabolic control, functionality of pancreatic cells and insulin sensivity in subjects with DM2. we studied 54 subjects with DM2, anthropometric measurements were performed, body composition and dietary lipid intake, saturated fatty acids (SFA), trans, monounsaturated, polyunsaturated, omega 3, omega 6 and dietary cholesterol. Laboratory parameters related to their metabolic control were determined (fasting blood glucose, glycated hemoglobin, and lipid profile). The insulin secretion and insulin sensitivity was determined with the insulin-modified intravenous glucose tolerance test according to the Bergman's minimal model. 28 men and 26 women were studied (BMI of 29.5 ± 3.7 kg/m2; age 55.6 ± 6.8 y.), 48% had LDL-C 40 mg/dL and 7.4% of women c-HDL > 50 mg/dL. 32% consumed > 10% of AGS and > 300 mg/day of dietary cholesterol. The SFA intake and percentage of calories from fat (G%) were significantly associated with insulin resistance and fasting plasma glucose concentration. The G% predicted 84% variability on c-VLDL. in patients with DM2 a greater intake of fat and saturated fatty acids it associated with greater fasting glycemia and insulin resistance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters.

    Directory of Open Access Journals (Sweden)

    Diana Ribeiro

    Full Text Available It has been suggested that extracellular vesicles (EVs can mediate crosstalk between hormones and metabolites within pancreatic tissue. However, the possible effect of pancreatic EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human islet-derived EVs (h-Islet-EVs were isolated, characterized and subsequently added to human induced pluripotent stem cell (iPSC clusters during pancreatic differentiation. The h-islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81 EV markers as measured by ELISA. The presence of key pancreatic transcription factor mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-peptide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in suspension and at the end stages of the differentiation protocol, the mRNA expression of the main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs were supplemented to the iPSC clusters in the later stages of differentiation. It was observed that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-collagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content. Our results provide new information on the role of h-Islet-EVs in the regulation of insulin expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engineering applications.

  6. Characterization of stimulus-secretion coupling in the human pancreatic EndoC-βH1 beta cell line.

    Directory of Open Access Journals (Sweden)

    Lotta E Andersson

    Full Text Available Studies on beta cell metabolism are often conducted in rodent beta cell lines due to the lack of stable human beta cell lines. Recently, a human cell line, EndoC-βH1, was generated. Here we investigate stimulus-secretion coupling in this cell line, and compare it with that in the rat beta cell line, INS-1 832/13, and human islets.Cells were exposed to glucose and pyruvate. Insulin secretion and content (radioimmunoassay, gene expression (Gene Chip array, metabolite levels (GC/MS, respiration (Seahorse XF24 Extracellular Flux Analyzer, glucose utilization (radiometric, lactate release (enzymatic colorimetric, ATP levels (enzymatic bioluminescence and plasma membrane potential and cytoplasmic Ca2+ responses (microfluorometry were measured. Metabolite levels, respiration and insulin secretion were examined in human islets.Glucose increased insulin release, glucose utilization, raised ATP production and respiratory rates in both lines, and pyruvate increased insulin secretion and respiration. EndoC-βH1 cells exhibited higher insulin secretion, while plasma membrane depolarization was attenuated, and neither glucose nor pyruvate induced oscillations in intracellular calcium concentration or plasma membrane potential. Metabolite profiling revealed that glycolytic and TCA-cycle intermediate levels increased in response to glucose in both cell lines, but responses were weaker in EndoC-βH1 cells, similar to those observed in human islets. Respiration in EndoC-βH1 cells was more similar to that in human islets than in INS-1 832/13 cells.Functions associated with early stimulus-secretion coupling, with the exception of plasma membrane potential and Ca2+ oscillations, were similar in the two cell lines; insulin secretion, respiration and metabolite responses were similar in EndoC-βH1 cells and human islets. While both cell lines are suitable in vitro models, with the caveat of replicating key findings in isolated islets, EndoC-βH1 cells have the

  7. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism f...... down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients....

  8. Black Seed Thymoquinone Improved Insulin Secretion, Hepatic Glycogen Storage, and Oxidative Stress in Streptozotocin-Induced Diabetic Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Heba M. A. Abdelrazek

    2018-01-01

    Full Text Available Diabetes mellitus is one of the metabolic diseases having several complications. Nigella sativa oil (NSO might have beneficial effects in the treatment of diabetic complications. Thirty-two mature male Wistar rats were equally divided into four experimental groups: control, control NSO 2 mL/kg, streptozotocin- (STZ- induced diabetic, and diabetic (STZ-induced treated with oral NSO 2 mg/kg for 30 days. Fasting blood glucose (FBG, insulin, and lipid profile levels were determined. Pancreatic and hepatic tissues were used for catalase and GSH. Histopathology, hepatic glycogen contents, insulin immunohistochemistry, and pancreatic islet morphometry were performed. NSO 2 mL/kg was noticed to decrease (P<0.05 FBG and increase (P<0.05 insulin levels in diabetic rats than in diabetic nontreated animals. Lipid profile showed significant (P<0.5 improvement in diabetic rats that received NSO 2 mL/kg than in the diabetic group. Both pancreatic and hepatic catalase and GSH activities revealed a significant (P<0.05 increment in the diabetic group treated with NSO than in the diabetic animals. NSO improved the histopathological picture and hepatic glycogen contents of the diabetic group as well as increased (P<0.05 insulin immunoreactive parts % and mean pancreatic islet diameter. NSO exerts ameliorative and therapeutic effects on the STZ-induced diabetic male Wistar rats.

  9. p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion.

    Directory of Open Access Journals (Sweden)

    Kiran Hasygar

    2014-11-01

    Full Text Available Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs regulate larval growth by secreting insulin-like peptides (dILPs in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15, which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions.

  10. Circadian control of insulin secretion is independent of the temporal distribution of feeding

    NARCIS (Netherlands)

    Kalsbeek, Andries; Strubbe, JH

    1998-01-01

    To investigate whether there is a circadian regulation of insulin secretion, rats were adapted to a feeding regimen of six meals equally distributed over 24 h. Under these conditions basal glucose and insulin levels increased during the light phase and decreased during the dark phase. Maximal blood

  11. A study of the pancreatic islet β-cell function and insulin resistance of type2 diabetic gastroparesis

    International Nuclear Information System (INIS)

    Zou Gang; Shao Hao; Lu Zeyuan; Ding Yuzhen; Chen Guanrong; Fu Juan

    2005-01-01

    Objective: To study the pancreatic islet β-cell function and insulin resistance of diabetic gastroparesis (DGP). Methods: 31 subjects with normal glucose tolerance (NGT), 32 subjects with impaired glucose tolerance (IGT), 38 subjects with type 2 diabetes mellitus (T2DM) and 31 subjects with DGP were en-rolled in the study, assessed by steamed bread meal tests, the plasma glucose and insulin at 0, 30, 60, 120 and 180 min were respectively measured by using glucose oxidase and radioimmunoassay, investigate the changes of area under insulin cure (INSAUC), Homa-insulin resistance (Homa-IR) index and modified β-cell function index (MBCI). Results: The INSAUC of IGT, T2DM, NGT and DGP fell in turn, there were signif-icantly differences among the groups. The Homa-IR index of NGT, IGT, DGP and T2DM rose in turn, there were significantly differences among the groupsexcept between T2DM and DGP. Conclusions: The pancreatic islet β-cell function of DGP was worse that NGT, IGT and T2DM, and the insulin resistance was stronger than NGT and IGT. (authors)

  12. Insulin resistance, β-cell dysfunction and differences in curves of plasma glucose and insulin in the intermediate points of the standard glucose tolerance test in adults with cystic fibrosis.

    Science.gov (United States)

    Cano Megías, Marta; González Albarrán, Olga; Guisado Vasco, Pablo; Lamas Ferreiro, Adelaida; Máiz Carro, Luis

    2015-02-01

    diabetes has become a co-morbidity with a negative impact on nutritional status, lung function and survival in cystic fibrosis. To identify any changes in intermediate points after a 2-hour oral glucose tolerance test (OGTT), pancreatic β-cell dysfunction, and insulin resistance in cystic fibrosis-related diabetes. It was carried out a retrospective analysis in a cohort of 64 patients affected of cystic fibrosis, older than 14 years, using the first pathological OGTT. Peripheral insulin resistance was measured using the homeostasis model assessment for insulin resistance (HOMA- IR), and pancreatic β-cell function was calculated according to Wareham. Time to maximum plasma insulin and glucose levels and area under the curve (AUC0-120) were also measured. Twenty-eight women and 36 men with a mean age of 26.8 years were enrolled, of whom 26.7% had normal glucose tolerance (NGT), 18.3% cystic fibrosis-related diabetes without fasting hyperglycemia (CFRD w/o FPG), 10% indeterminate (INDET), and 45% impaired glucose tolerance (IGT). HOMA-IR values were not significantly different between the diagnostic categories. Patients with any pathological change had worse β cell function, with a significant delay in insulin secretion, although there were no differences in total insulin production (AUC0-120). Time to maximum glucose levels was significantly shorter in NGT patients as compared to other categories, with glucose AUC0-120 being higher in the different diagnostic categories as compared to NGT. In over half the cases, peak blood glucose levels during a standard OGTT are reached in the intermediate time points, rather than at the usual time of 120minutes. Patients with cystic fibrosis and impaired glucose metabolism have a delayed insulin secretion during the standard OGTT due to loss of first-phase insulin secretion, with no differences in total insulin production. Absence of significant changes in HOMA-IR suggests that β-cell dysfunction is the main pathogenetic

  13. Distribution of Pancreatic Polypeptide-secreting Endocrine Cells in Nondiabetic and Diabetic Cases.

    Science.gov (United States)

    Śliwińska-Mossoń, Mariola; Milnerowicz, Halina

    2017-07-01

    The aim of the study was to demonstrate the effects of cigarette smoking and ongoing inflammation in chronic pancreatitis on the functioning of pancreatic polypeptide (PP)-secreting cells and to determine the relationship between the occurrence of an increased number of PP cells in the pancreas, the change in their location, and the intensity of their inflammatory changes in the course of pancreatitis and diabetes. Samples of tissues from healthy persons and from patients were verified histopathologically, and then PP was localized by immunohistochemical staining using the monoclonal anti-human PP antibody. The histopathologic evaluation of the hormone expression intensity in tissue sections was carried out using the semiquantitative method and was calculated with digital image analysis. The present study showed a very strong PP expression in the pancreatic tissue (especially in the head of the pancreas) derived from smoking patients with diabetes. The increase in the percentage of cells in the PP islets, between the acinar cells in smoking patients with diabetes and a statistically significant increase in the expression of PP, indicates a pancreatic endocrine dysfunction and suggests that cigarette smoking has a negative impact on the organ's efficiency. Because of its properties, the PP appears to be a useful marker of the endocrine insufficiency of the pancreas and a specific prognostic parameter of developing diabetes due to chronic pancreatitis.

  14. The effect of oral and intravenous dextrose on C-peptide secretion in ponies.

    Science.gov (United States)

    de Laat, M A; van Haeften, J J; Sillence, M N

    2016-02-01

    Managing equine hyperinsulinemia is crucial for preventing laminitis, but our understanding of the mechanisms involved in insulin dysregulation in this species is incomplete. C-peptide is co-secreted with insulin but is resistant to hepatic metabolism and can be used to study insulin dysregulation. This study examined C-peptide secretion in serial blood samples collected after oral and i.v. dextrose (0.75 g/kg) administration to 9 ponies (BCS, 7.1 ± 0.5). The ponies were designated as hyperinsulinemic (HI) or normoinsulinemic (NI) responders before the study, using oral glucose tests and fasted glucose-to-insulin ratios, and responses were compared between the 2 groups. C-peptide concentrations increased ( dextrose, with similar area under the concentration-time curve (AUC) for both tests and a significant correlation with AUC. The AUC was similar in HI and NI ponies after i.v. dextrose, indicating similar pancreatic capacity for both groups. However, for oral dextrose, the AUC and the AUC were markedly higher ( < 0.05) in the HI ponies, indicating a greater secretion rate of these peptides. Slower insulin clearance might have also contributed to the larger AUC in HI ponies, but this hypothesis requires further investigation with specific measures of hepatic insulin clearance.

  15. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis.

    Science.gov (United States)

    Jaworek, Jolanta; Leja-Szpak, Anna; Nawrot-Porąbka, Katarzyna; Szklarczyk, Joanna; Kot, Michalina; Pierzchalski, Piotr; Góralska, Marta; Ceranowicz, Piotr; Warzecha, Zygmunt; Dembinski, Artur; Bonior, Joanna

    2017-05-08

    Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N ¹-acetyl- N ¹-formyl-5-methoxykynuramine (AFMK). Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1) Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK) release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2) Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3) In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.

  16. Effects of Melatonin and Its Analogues on Pancreatic Inflammation, Enzyme Secretion, and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jolanta Jaworek

    2017-05-01

    Full Text Available Melatonin is an indoleamine produced from the amino acid l-tryptophan, whereas metabolites of melatonin are known as kynuramines. One of the best-known kynuramines is N1-acetyl-N1-formyl-5-methoxykynuramine (AFMK. Melatonin has attracted scientific attention as a potent antioxidant and protector of tissue against oxidative stress. l-Tryptophan and kynuramines share common beneficial features with melatonin. Melatonin was originally discovered as a pineal product, has been detected in the gastrointestinal tract, and its receptors have been identified in the pancreas. The role of melatonin in the pancreatic gland is not explained, however several arguments support the opinion that melatonin is probably implicated in the physiology and pathophysiology of the pancreas. (1 Melatonin stimulates pancreatic enzyme secretion through the activation of entero-pancreatic reflex and cholecystokinin (CCK release. l-Tryptophan and AFMK are less effective than melatonin in the stimulation of pancreatic exocrine function; (2 Melatonin is a successful pancreatic protector, which prevents the pancreas from developing of acute pancreatitis and reduces pancreatic damage. This effect is related to its direct and indirect antioxidant action, to the strengthening of immune defense, and to the modulation of apoptosis. Like melatonin, its precursor and AFMK are able to mimic its protective effect, and it is commonly accepted that all these substances create an antioxidant cascade to intensify the pancreatic protection and acinar cells viability; (3 In pancreatic cancer cells, melatonin and AFMK activated a signal transduction pathway for apoptosis and stimulated heat shock proteins. The role of melatonin and AFMK in pancreatic tumorigenesis remains to be elucidated.

  17. Insulin secretion in lipodystrophic HIV-infected patients is associated with high levels of nonglucose secretagogues and insulin resistance of beta-cells

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Storgaard, Heidi

    2004-01-01

    lipodystrophy (controls). Thirty minutes before start of the clamp, a bolus of glucose was injected intravenously to stimulate endogenous insulin secretion. Insulin sensitivity index (SiRd) was estimated from glucose tracer analysis. LIPO displayed increased basal ISR (69%), clamp ISR (114%), basal insulin (130......, and glucose (all r > 0.41, P triglyceride, and glucagon (all r > 0.51, P triglyceride (r = 0.45, P ...%), and clamp insulin (32%), all P 0.65, P glucose. In control subjects, ISR(basal) correlated significantly with insulin, glucagon...

  18. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  19. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  20. The effect of insulin on amino acid incorporation into exocrine pancreatic cells of the rat

    International Nuclear Information System (INIS)

    Kramer, M.F.; Poort, C.

    1975-01-01

    The rate of incorporation of radioactive leucine per cell in the acinar pancreatic cells of the rat increases by 50 per cent within one hour after subcutaneous administration of insulin, an effect that lasts for at least one more hour. The rate of incorporation has been measured by quantitative radioautography and by determination of the radioactivity per μg DNA in TCA-precipitable material from tissue homogenates. The capacity for amino acid (leucine and lysine) incorporation as measured by incubating pancreatic fragments in vitro is not enhanced by insulin treatment of the rat in vivo during one or more hours. Insulin was found to lower the serum concentration of most amino acids significantly, leucine by 50 per cent. The apparent effect of insulin on the incorporation of radioactive leucine in vivo can be explained by the difference in the specific radioactivity of the circulating amino acid in the treated rats as compared to the untreated ones. A change in amino acid concentration in the serum may likewise be the explanation of the decrease in amino acid incorporation rate in alloxan diabetic rats. (orig./GSE) [de

  1. Balanites aegyptiaca ameliorates insulin secretion and decreases pancreatic apoptosis in diabetic rats: Role of SAPK/JNK pathway.

    Science.gov (United States)

    Hassanin, Kamel M A; Mahmoud, Mohamed O; Hassan, Hossam M; Abdel-Razik, Abdel-Razik H; Aziz, Lourin N; Rateb, Mostafa E

    2018-06-01

    SAPK-JNK pathway performs a significant role in the pathogenesis of type 2 diabetes. Balanites aegyptiaca (BA) is used as an anti-diabetic agent in folk medicine however its hypoglycemic mechanism is not fully elucidated. The current study aimed to evaluate the effect of crude extract, butanol, and dichloromethane fractions from BA on the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK-JNK) pathway in experimental diabetic rats. Six groups of male Wistar rats were included: normal control, diabetic, diabetic rats treated with crude, butanol or dichloromethane fraction from BA (50 mg/kg BW) and diabetic rats treated with gliclazide as a reference drug for one month. Our results suggested a protective role of treatment of diabetic rats with BA against oxidative stress-induced SAPK-JNK pathway. Moreover, BA treatment produced a reduction in plasma glucose, HbA 1c , lactic acid, lipid profile, malondialdehyde levels and produced an increase in insulin, reduced glutathione levels, catalase and superoxide dismutase activities compared with untreated diabetic rats. Moreover, it decreased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase 1, protein 53 and increased insulin receptor substrate 1 in rat pancreas while it increased glucose transporter 4 in rat muscle. Analysis of BA extracts by LC-HRMS revealed the presence of different saponins with reported hypoglycemic effect. In conclusion, BA exerted hypoglycemic, hypolipidemic, insulinotropic and antioxidant effects. Additionally, it reduced apoptosis in pancreatic β-cells and increased glucose uptake in muscle. These results suggest that the hypoglycemic effect of BA is due to the inhibition of the SAPK-JNK pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells.

    Science.gov (United States)

    Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D

    1993-03-10

    Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.

  3. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell.

    Science.gov (United States)

    Kowluru, Anjaneyulu

    2008-01-15

    Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.

  4. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Research highlights: → GLP-1 prevents AGEs-induced cell death. → GLP-1 prevents AGEs-induced oxidative stress. → GLP-1 ameliorated AGEs-induced cell dysfunction. → GLP-1 attenuates AGEs-induced RAGE increment. → GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  5. Incretins, insulin secretion and Type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Holst, Jens Møller

    2004-01-01

    the genes encoding their receptors have been deleted. In patients with Type 2 diabetes, the incretin effect is either greatly impaired or absent, and it is assumed that this could contribute to the inability of these patients to adjust their insulin secretion to their needs. In studies of the mechanism...... of the impaired incretin effect in Type 2 diabetic patients, it has been found that the secretion of GIP is generally normal, whereas the secretion of GLP-1 is reduced, presumably as a consequence of the diabetic state. It might be of even greater importance that the effect of GLP-1 is preserved whereas...... the effect of GIP is severely impaired. The impaired GIP effect seems to have a genetic background, but could be aggravated by the diabetic state. The preserved effect of GLP-1 has inspired attempts to treat Type 2 diabetes with GLP-1 or analogues thereof, and intravenous GLP-1 administration has been shown...

  6. Incretins, insulin secretion and Type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Vilsbøll, T; Holst, Jens Juul

    2004-01-01

    the effect of GIP is severely impaired. The impaired GIP effect seems to have a genetic background, but could be aggravated by the diabetic state. The preserved effect of GLP-1 has inspired attempts to treat Type 2 diabetes with GLP-1 or analogues thereof, and intravenous GLP-1 administration has been shown...... the genes encoding their receptors have been deleted. In patients with Type 2 diabetes, the incretin effect is either greatly impaired or absent, and it is assumed that this could contribute to the inability of these patients to adjust their insulin secretion to their needs. In studies of the mechanism...... of the impaired incretin effect in Type 2 diabetic patients, it has been found that the secretion of GIP is generally normal, whereas the secretion of GLP-1 is reduced, presumably as a consequence of the diabetic state. It might be of even greater importance that the effect of GLP-1 is preserved whereas...

  7. Dual role of proapoptotic BAD in insulin secretion and beta cell survival.

    Science.gov (United States)

    Danial, Nika N; Walensky, Loren D; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K; Molina, Anthony J A; Datta, Sandeep Robert; Pitter, Kenneth L; Bird, Gregory H; Wikstrom, Jakob D; Deeney, Jude T; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne; Kim, Sheene; Greenberg, Michael E; Corkey, Barbara E; Shirihai, Orian S; Shulman, Gerald I; Lowell, Bradford B; Korsmeyer, Stanley J

    2008-02-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

  8. Quantification of beta-cell function during IVGTT in Type II and non-diabetic subjects: assessment of insulin secretion by mathematical methods

    DEFF Research Database (Denmark)

    Kjems, L L; Vølund, A; Madsbad, Sten

    2001-01-01

    AIMS/HYPOTHESIS: We compared four methods to assess their accuracy in measuring insulin secretion during an intravenous glucose tolerance test in patients with Type II (non-insulin-dependent) diabetes mellitus and with varying beta-cell function and matched control subjects. METHODS: Eight control...... subjects and eight Type II diabetic patients underwent an intravenous glucose tolerance test with tolbutamide and an intravenous bolus injection of C-peptide to assess C-peptide kinetics. Insulin secretion rates were determined by the Eaton deconvolution (reference method), the Insulin SECretion method...... (ISEC) based on population kinetic parameters as well as one-compartment and two-compartment versions of the combined model of insulin and C-peptide kinetics. To allow a comparison of the accuracy of the four methods, fasting rates and amounts of insulin secreted during the first phase (0-10 min...

  9. Mathematical modeling and statistical analysis of calcium-regulated insulin granule exocytosis in ß-cells from mice and humans

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Cortese, Giuliana; Eliasson, Lena

    2011-01-01

    Insulin is released from pancreatic ß-cells as a result of Ca2+-evoked exocytosis of dense-core granules. Secretion is biphasic, which has been suggested to correspond to the release of different granule pools. Here we review and carefully reanalyze previously published patch-clamp data on depola......Insulin is released from pancreatic ß-cells as a result of Ca2+-evoked exocytosis of dense-core granules. Secretion is biphasic, which has been suggested to correspond to the release of different granule pools. Here we review and carefully reanalyze previously published patch-clamp data...... on depolarization-evoked Ca2+-currents and corresponding capacitance measurements. Using a statistical mixed-effects model, we show that the data indicate that pool depletion is negligible in response to short depolarizations in mouse ß-cells. We then review mathematical models of granule dynamics and exocytosis...

  10. The influence of GLP-1 on glucose-stimulated insulin secretion

    DEFF Research Database (Denmark)

    Kjems, Lise L; Holst, Jens Juul; Vølund, Aage

    2003-01-01

    . However, the dose-response relationship between GLP-1 and basal and glucose-stimulated prehepatic insulin secretion rate (ISR) is currently not known. Seven patients with type 2 diabetes and seven matched nondiabetic control subjects were studied. ISR was determined during a graded glucose infusion of 2...

  11. Determining pancreatic β-cell compensation for changing insulin sensitivity using an oral glucose tolerance test

    DEFF Research Database (Denmark)

    Solomon, Thomas; Malin, Steven K; Karstoft, Kristian

    2014-01-01

    Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index...

  12. Intra- and Inter-islet Synchronization of Metabolically Driven Insulin Secretion

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bertram, Richard; Sherman, Arthur

    2005-01-01

    mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model "liver......,'' which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter...

  13. The glucagon-like peptide-1 metabolite GLP-1-(9-36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Gethmann, Arnica; Nauck, Michael A

    2006-01-01

    Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen...... healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements....... Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P

  14. Intake of Lactobacillus reuteri Improves Incretin and Insulin Secretion in Glucose-Tolerant Humans

    DEFF Research Database (Denmark)

    Simon, Marie-Christine; Strassburger, Klaus; Nowotny, Bettina

    2015-01-01

    production. Muscle and hepatic lipid contents were assessed by (1)H-magnetic resonance spectroscopy, and immune status, cytokines, and endotoxin were measured with specific assays. RESULTS: In glucose-tolerant volunteers, daily administration of L. reuteri SD5865 increased glucose-stimulated GLP-1 and GLP-2....... reuteri SD5865 or placebo over 4 weeks. Oral glucose tolerance and isoglycemic glucose infusion tests were used to assess incretin effect and GLP-1 and GLP-2 secretion, and euglycemic-hyperinsulinemic clamps with [6,6-(2)H2]glucose were used to measure peripheral insulin sensitivity and endogenous glucose...... cytokines. CONCLUSIONS: Enrichment of gut microbiota with L. reuteri increases insulin secretion, possibly due to augmented incretin release, but does not directly affect insulin sensitivity or body fat distribution. This suggests that oral ingestion of one specific strain may serve as a novel therapeutic...

  15. [Primary study on characteristics of insulin secretion rate, metabolic clearance rate and sensitivity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees].

    Science.gov (United States)

    Ran, J; Cheng, H; Li, F

    2000-01-01

    To investigate the characteristics of insulin secretion rate (ISR), metabolic clearance rate (MCR-I) and sensitivity and to explore their relationship with obesity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees (MDP). Fifteen subjects with normal glucose tolerance and 11 non-insulin-dependent diabetic patients from MDP were included in the study. Frequently sampled intravenous glucose tolerance test (FSIVGTT) was performed. Glucose, insulin (INS) and connecting-peptide (C-P) concentrations were measured. A computer procedure devised by our laboratory was used to calculate the value of ISR at each time point, then MCR-I was acquired. Insulin sensitivity index (SI) was calculated according to minimal model technique about glucose in FSIVGTT. The ISR curve in control group was biphasic, while in non-insulin. In non-insulin-dependent diabetic group, areas under the curves of C-P (AUCC) and ISR level (AUCS) measured during 0 approximately 16 min were 7.9 nmol.min(-1).L(-1) +/- 2.8 nmol.min(-1).L(-1), and 6.1 nmol +/- 2.2 nmol, respectively, which were significantly lower than those in control group 17.7 nmol.min(-1).L(-1) +/- 4.92 nmol.min(-1).L(-1) and 12.3 nmol +/- 3.9 nmol (P < 0.01). The two parameters were slightly higher than those in control group 155 nmol.min(-1).L(-1) +/- 44 nmol.min(-1).L(-1) vs 101 nmol.min(-1).L(-1) +/- 30 nmol.min(-1).L(-1) and 76 nmol +/- 26 nmol vs 54 nmol +/- 20.0 nmol (P < 0.05)measured during 16 approximately 180 min. There was no significant difference, between the two groups about the amount of insulin secretion during 3 hours (82 nmol +/- 28nmol vs 68 nmol +/- 21 nmol, P = 0.2). In control group, there were significant positive correlation, between AUCS, waist-hip ratio (WHR), and body surface area, (BSA) and significant negative correlation between MCR-I, SI and WHR, BSA (P < 0.01), and also between MCR-I and SI. In non-insulin-dependent diabetic group, AUCS were significantly correlated with body mass

  16. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes

    DEFF Research Database (Denmark)

    Bacos, Karl; Gillberg, Linn; Volkov, Petr

    2016-01-01

    identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we...

  17. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    Science.gov (United States)

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

  18. Glucose-stimulated prehepatic insulin secretion is associated with circulating alanine, triglyceride, glucagons, lactate and TNF-alfa in patients with HIV-lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Pedersen, SB

    2006-01-01

    with the remaining HIV-infected patients (all Ptriglyceride, alanine, glucagon, lactate and TNF-alpha may be associated with alterations in the first-phase prehepatic insulin secretion response to intravenous glucose in normoglycaemic lipodystrophic HIV-infected patients.......OBJECTIVES: We examined whether insulin-resistant lipodystrophic HIV-infected patients with known high fasting prehepatic insulin secretion rates (FISRs) displayed alterations in first-phase prehepatic insulin response to intravenous glucose (ISREG0-10 min). METHODS: Eighteen normoglycaemic...... lipodystrophic HIV-infected (LIPO) patients and 25 normoglycaemic nonlipodystrophic HIV-infected patients (controls) were included in the study. The prehepatic insulin secretion rate was estimated by deconvolution of C-peptide concentrations, and insulin sensitivity (SIRd) was estimated by the glucose clamp...

  19. Glucose-stimulated prehepatic insulin secretion is associated with circulating alanine, triglyceride, glucagon, lactate and TNF-alpha in patients with HIV-lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, S B; Andersen, O; Pedersen, S B

    2006-01-01

    with the remaining HIV-infected patients (all Ptriglyceride, alanine, glucagon, lactate and TNF-alpha may be associated with alterations in the first-phase prehepatic insulin secretion response to intravenous glucose in normoglycaemic lipodystrophic HIV-infected patients.......OBJECTIVES: We examined whether insulin-resistant lipodystrophic HIV-infected patients with known high fasting prehepatic insulin secretion rates (FISRs) displayed alterations in first-phase prehepatic insulin response to intravenous glucose (ISREG0-10 min). METHODS: Eighteen normoglycaemic...... lipodystrophic HIV-infected (LIPO) patients and 25 normoglycaemic nonlipodystrophic HIV-infected patients (controls) were included in the study. The prehepatic insulin secretion rate was estimated by deconvolution of C-peptide concentrations, and insulin sensitivity (SIRd) was estimated by the glucose clamp...

  20. Quantitative measurement of zinc secretion from pancreatic islets with high temporal resolution using droplet-based microfluidics.

    Science.gov (United States)

    Easley, Christopher J; Rocheleau, Jonathan V; Head, W Steven; Piston, David W

    2009-11-01

    We assayed glucose-stimulated insulin secretion (GSIS) from live, murine islets of Langerhans in microfluidic devices by the downstream formation of aqueous droplets. Zinc ions, which are cosecreted with insulin from beta-cells, were quantitatively measured from single islets with high temporal resolution using a fluorescent indicator, FluoZin-3. Real-time storage of secretions into droplets (volume of 0.470 +/- 0.009 nL) effectively preserves the temporal chemical information, allowing reconstruction of the secretory time record. The use of passive flow control within the device removes the need for syringe pumps, requiring only a single hand-held syringe. Under stimulatory glucose levels (11 mM), bursts of zinc as high as approximately 800 fg islet(-1) min(-1) were measured. Treatment with diazoxide effectively blocked zinc secretion, as expected. High temporal resolution reveals two major classes of oscillations in secreted zinc, with predominate periods at approximately 20-40 s and approximately 5-10 min. The more rapid oscillation periods match closely with those of intraislet calcium oscillations, while the slower oscillations are consistent with insulin pulses typically measured in bulk islet experiments or in the bloodstream. This droplet sampling technique should be widely applicable to time-resolved cellular secretion measurements, either in real-time or for postprocessing.

  1. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  2. [External pancreatic fistulas management].

    Science.gov (United States)

    Stepan, E V; Ermolov, A S; Rogal', M L; Teterin, Yu S

    The main principles of treatment of external postoperative pancreatic fistulas are viewed in the article. Pancreatic trauma was the reason of pancreatic fistula in 38.7% of the cases, operations because of acute pancreatitis - in 25.8%, and pancreatic pseudocyst drainage - in 35.5%. 93 patients recovered after the treatment. Complex conservative treatment of EPF allowed to close fistulas in 74.2% of the patients with normal patency of the main pancreatic duct (MPD). The usage of octreotide 600-900 mcg daily for at least 5 days to decrease pancreatic secretion was an important part of the conservative treatment. Endoscopic papillotomy was performed in patients with major duodenal papilla obstruction and interruption of transporting of pancreatic secretion to duodenum. Stent of the main pancreatic duct was indicated in patients with extended pancreatic duct stenosis to normalize transport of pancreatic secretion to duodenum. Surgical formation of anastomosis between distal part of the main pancreatic duct and gastro-intestinal tract was carried out when it was impossible to fulfill endoscopic stenting of pancreatic duct either because of its interruption and diastasis between its ends, or in the cases of unsuccessful conservative treatment of external pancreatic fistula caused by drainage of pseudocyst.

  3. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation.

    Directory of Open Access Journals (Sweden)

    Kim Cheng

    Full Text Available Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS. HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.

  4. Parasympathetic blockade attenuates augmented pancreatic polypeptide but not insulin secretion in Pima Indians

    DEFF Research Database (Denmark)

    de Courten, Barbora; Weyer, Christian; Stefan, Norbert

    2004-01-01

    was administered for 120 min at the following doses: 0, 2.5, 5, and 10 micro g. kg fat-free mass (FFM)(-1). h(-1). Areas under the curve for early (AUC(0-30 min)) and total (AUC(0-120 min)) postprandial insulin and PP secretory responses were calculated. Early postprandial insulin and PP secretory responses were...

  5. Pancreatic endocrine and exocrine function and salivary gland function in autoimmune pancreatitis before and after steroid therapy.

    Science.gov (United States)

    Kamisawa, Terumi; Egawa, Naoto; Inokuma, Shigeko; Tsuruta, Kouji; Okamoto, Atsutake; Kamata, Noriko; Nakamura, Teruo; Matsukawa, Masakatsu

    2003-10-01

    Autoimmune pancreatitis (AIP) is a distinct clinical entity in which an autoimmune mechanism may be involved in pathogenesis. To investigate salivary gland function in addition to pancreatic endocrine and exocrine function in patients with AIP, and to determine changes occurring after steroid therapy. Fasting serum glucose levels, oral glucose tolerance tests or glycosylated hemoglobin values were examined in 19 patients with AIP. N-benzoyl-L-tyrosyl-p-aminobenzoic acid excretion test, sialochemistry and parotid gland scintigraphy were performed in 8 patients. Eight patients had evidence of DM. Steroid therapy subsequently improved insulin secretion and glycemic control in 3 of 5 patients treated. Pancreatic exocrine function was reduced in 88% of patients. Impaired pancreatic exocrine function improved after steroid therapy in 3 of 6 patients treated. The 3 patients also showed treatment-related improvement in endocrine function. Concentration of beta2-microglobulin in saliva was significantly raised in patients with AIP compared with controls (P gland dysfunction improved after steroid therapy in all 5 patients treated. Pancreatic endocrine and exocrine and salivary gland function were frequently impaired in patients with AIP, and steroid therapy was occasionally effective for these dysfunctions.

  6. Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin.

    Science.gov (United States)

    Ghorbani, Zeinab; Hekmatdoost, Azita; Mirmiran, Parvin

    2014-10-01

    Turmeric is obtained from the plant Curcuma longa L; its major constituent, curcumin, is a polyphenol with multiple effects which can modulate some signaling pathways. Insulin resistance is a major risk factor for chronic diseases such as type 2 diabetes, atherosclerotic, metabolic syndrome and cardiovascular disease. In addition, Insulin resistance in peripheral tissue is one of the most important reasons of hyperglycemia which can cause global or systemic effects. The present study reviewed studies published in PubMed from 1998 to 2013, indicating the role of curcumin in attenuation of many pathophysiological processes involved in development and progression of hyperglycemia and insulin resistance. Curcumin can reduce blood glucose level by reducing the hepatic glucose production, suppression of hyperglycemia-induced inflammatory state, stimulation of glucose uptake by up-regulation of GLUT4, GLUT2 and GLUT3 genes expressions, activation of AMP kinase, promoting the PPAR ligand-binding activity, stimulation of insulin secretion from pancreatic tissues, improvement in pancreatic cell function, and reduction of insulin resistance. Curcumin has antihyperglycemic and insulin sensitizer effects. Thereby, more studies evaluating the effects of curcumin on hyperglycemic state and insulin resistance in related disorders such as diabetes are recommended.

  7. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pei; Li, Li; Qi, Hui [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Zhou, Han-xin [Department of General Surgery, First Hospital (Shenzhen Second People' s Hospital) of Shenzhen University, 518020 Shenzhen (China); Deng, Chun-yan [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Li, Fu-rong, E-mail: frli62@yahoo.com [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Shenzhen Institution of Gerontology, 518020 Shenzhen (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas that expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.

  8. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  9. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Nityanandam, Ramya; New, James S; Daniell, Henry

    2013-01-01

    Glucagon-like peptide (GLP-1) increases insulin secretion but is rapidly degraded (half-life: 2 min in circulation). GLP-1 analogue, exenatide (Byetta) has a longer half-life (3.3-4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life. Because patients with diabetes take >60 000 injections in their life time, alternative delivery methods are highly desired. Exenatide is ideal for oral delivery because insulinotropism is glucose dependent, with reduced risk of hypoglycaemia even at higher doses. Therefore, exendin-4 (EX4) was expressed as a cholera toxin B subunit (CTB)-fusion protein in tobacco chloroplasts to facilitate bioencapsulation within plant cells and transmucosal delivery in the gut via GM1 receptors present in the intestinal epithelium. The transgene integration was confirmed by PCR and Southern blot analysis. Expression level of CTB-EX4 reached up to 14.3% of total leaf protein (TLP). Lyophilization of leaf material increased therapeutic protein concentration by 12- to 24-fold, extended their shelf life up to 15 months when stored at room temperature and eliminated microbes present in fresh leaves. The pentameric structure, disulphide bonds and functionality of CTB-EX4 were well preserved in lyophilized materials. Chloroplast-derived CTB-EX4 showed increased insulin secretion similar to the commercial EX4 in beta-TC6, a mouse pancreatic cell line. Even when 5000-fold excess dose of CTB-EX4 was orally delivered, it stimulated insulin secretion similar to the intraperitoneal injection of commercial EX4 but did not cause hypoglycaemia in mice. Oral delivery of the bioencapsulated EX4 should eliminate injections, increase patient compliance/convenience and significantly lower their cost. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients

    DEFF Research Database (Denmark)

    Yabe, Daisuke; Kuroe, Akira; Watanabe, Koin

    2015-01-01

    AIMS: Hypersecretion of glucagon and reduced insulin secretion both contribute to hyperglycemia in type 2 diabetes (T2DM). However, the relative contributions of impaired glucagon and insulin secretions in glucose excursions at the various stages of T2DM development remain to be determined. METHODS...... secretions but not incretin secretion are involved in hyperglycemia after ingestion of nutrients in T2DM of even a short duration....

  11. Impaired pancreatic polypeptide response to a meal in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Rasmussen, M H; Carstensen, H; List, S

    1993-01-01

    The pancreatic polypeptide (PP) response to a mixed meal was investigated in seven insulin-dependent diabetics without measurable signs of diabetic autonomic neuropathy, and in seven healthy subjects. Since acute changes in metabolic regulation might influence the meal-induced PP response...... is independent of short-term changes in metabolic control. Since the response was attenuated in the insulin-dependent diabetic patients, who had no otherwise measurable signs of neuropathy, the PP response to a meal could be a sensitive indicator of dysfunction of the reflex arc controlling PP secretion...

  12. Pancreatitis

    Science.gov (United States)

    ... the hormones insulin and glucagon into the bloodstream. Pancreatitis is inflammation of the pancreas. It happens when digestive enzymes start digesting the pancreas itself. Pancreatitis can be acute or chronic. Either form is ...

  13. Pivotal role of leptin in insulin effects

    Directory of Open Access Journals (Sweden)

    R.B. Ceddia

    1998-06-01

    Full Text Available The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.

  14. Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population.

    Science.gov (United States)

    Kubo, Atsushi; Stull, Robert; Takeuchi, Mitsuaki; Bonham, Kristina; Gouon-Evans, Valerie; Sho, Masayuki; Iwano, Masayuki; Saito, Yoshihiko; Keller, Gordon; Snodgrass, Ralph

    2011-01-01

    In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES) cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2), and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit(+) endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells.

  15. Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Kirsten Roomp

    Full Text Available Studies on the pathophysiology of type 2 diabetes mellitus (T2DM have linked the accumulation of lipid metabolites to the development of beta-cell dysfunction and impaired insulin secretion. In most in vitro models of T2DM, rodent islets or beta-cell lines are used and typically focus is on specific cellular pathways or organs. Our aim was to, firstly, develop a combined lipidomics and proteomics approach for lipotoxicity in isolated human islets and, secondly, investigate if the approach could delineate novel and/ or confirm reported mechanisms of lipotoxicity. To this end isolated human pancreatic islets, exposed to chronically elevated palmitate concentrations for 0, 2 and 7 days, were functionally characterized and their levels of multiple targeted lipid and untargeted protein species determined. Glucose-stimulated insulin secretion from the islets increased on day 2 and decreased on day 7. At day 7 islet insulin content decreased and the proinsulin to insulin content ratio doubled. Amounts of cholesterol, stearic acid, C16 dihydroceramide and C24:1 sphingomyelin, obtained from the lipidomic screen, increased time-dependently in the palmitate-exposed islets. The proteomic screen identified matching changes in proteins involved in lipid biosynthesis indicating up-regulated cholesterol and lipid biosynthesis in the islets. Furthermore, proteins associated with immature secretory granules were decreased when palmitate exposure time was increased despite their high affinity for cholesterol. Proteins associated with mature secretory granules remained unchanged. Pathway analysis based on the protein and lipid expression profiles implicated autocrine effects of insulin in lipotoxicity. Taken together the study demonstrates that combining different omics approaches has potential in mapping of multiple simultaneous cellular events. However, it also shows that challenges exist for effectively combining lipidomics and proteomics in primary cells. Our

  16. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40

    DEFF Research Database (Denmark)

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole

    2011-01-01

    of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2...... found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1......(-/-) knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components...

  17. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Dudele, Anete; Poulsen, Morten M

    2016-01-01

    we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered...... through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b......, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during...

  18. 1-Hour OGTT Plasma Glucose as a Marker of Progressive Deterioration of Insulin Secretion and Action in Pregnant Women

    Directory of Open Access Journals (Sweden)

    Alessandra Ghio

    2012-01-01

    Full Text Available Considering old GDM diagnostic criteria, alterations in insulin secretion and action are present in women with GDM as well as in women with one abnormal value (OAV during OGTT. Our aim is to assess if changes in insulin action and secretion during pregnancy are related to 1-hour plasma glucose concentration during OGTT. We evaluated 3 h/100 g OGTT in 4,053 pregnant women, dividing our population on the basis of 20 mg/dL increment of plasma glucose concentration at 1 h OGTT generating 5 groups (<120 mg/dL, =661; 120–139 mg/dL, =710; 140–159 mg/dL, =912; 160–179 mg/dL, =885; and ≥180 mg/dL, =996. We calculated incremental area under glucose (AUCgluc and insulin curves (AUCins, indexes of insulin secretion (HOMA-B, and insulin sensitivity (HOMA-R, AUCins/AUCgluc. AUCgluc and AUCins progressively increased according to 1-hour plasma glucose concentrations (both <0.0001 for trend. HOMA-B progressively declined (<0.001, and HOMA-R progressively increased across the five groups. AUCins/AUCgluc decreased in a linear manner across the 5 groups (<0.001. Analysing the groups with 1-hour value <180 mg/dL, defects in insulin secretion (HOMA-B: −29.7% and sensitivity (HOMA-R: +15% indexes were still apparent (all <0.001. Progressive increase in 1-hour OGTT is associated with deterioration of glucose tolerance and alterations in indexes of insulin action and secretion.

  19. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb’s cycle flux independent of ATP synthesis

    International Nuclear Information System (INIS)

    Cline, Gary W.; Pongratz, Rebecca L.; Zhao, Xiaojian; Papas, Klearchos K.

    2011-01-01

    Highlights: ► We studied media effects on mechanisms of insulin secretion of INS-1 cells. ► Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. ► Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. ► Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with 31 P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by 13 C NMR isotopomer analysis of the fate of [U- 13 C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM

  20. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  1. Obestatin enhances in vitro generation of pancreatic islets through regulation of developmental pathways.

    Directory of Open Access Journals (Sweden)

    Alessandra Baragli

    Full Text Available Availability of large amounts of in vitro generated β-cells may support replacement therapy in diabetes. However, methods to obtain β-cells from stem/progenitor cells are limited by inefficient endocrine differentiation. We have recently shown that the ghrelin gene product obestatin displays beneficial effects on pancreatic β-cell survival and function. Obestatin prevents β-cell apoptosis, preserves β-cell mass and stimulates insulin secretion in vitro and in vivo, in both normal and diabetic conditions. In the present study, we investigated whether obestatin may promote in vitro β-cell generation from mouse pancreatic islet-derived precursor cells. Treatment of cultured islets of Langerhans with obestatin (i enriched cells expressing the mesenchymal/neuronal marker nestin, which is associated with pancreatic precursors; (ii increased cell survival and reduced apoptosis during precursor selection; (iii promoted the generation of islet-like cell clusters (ICCs with increased insulin gene expression and C-peptide secretion. Furthermore, obestatin modulated the expression of fibroblast growth factor receptors (FGFRs, Notch receptors and neurogenin 3 (Ngn3 during islet-derived precursor cell selection and endocrine differentiation. These results indicate that obestatin improves the generation of functional β-cells/ICCs in vitro, suggesting implications for cell-based replacement therapy in diabetes. Moreover, obestatin may play a role in regulating pathways involved in pancreas development and regeneration.

  2. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study

    DEFF Research Database (Denmark)

    Faerch, Kristine; Vaag, Allan; Holst, Jens J

    2008-01-01

    of insulin sensitivity (HOMA-IS), early-phase insulin release (EPIR), and insulin secretion relative to insulin action (disposition index) were estimated. RESULTS: Five years before the pre-diabetes diagnoses (i-IFG, i-IGT, and IFG/IGT), ISI, HOMA-IS, EPIR, and disposition index were lower than...

  3. Exocrine pancreatic insufficiency in diabetes mellitus: a complication of diabetic neuropathy or a different type of diabetes?

    Science.gov (United States)

    Hardt, Philip D; Ewald, Nils

    2011-01-01

    Pancreatic exocrine insufficiency is a frequently observed phenomenon in type 1 and type 2 diabetes mellitus. Alterations of exocrine pancreatic morphology can also be found frequently in diabetic patients. Several hypotheses try to explain these findings, including lack of insulin as a trophic factor for exocrine tissue, changes in secretion and/or action of other islet hormones, and autoimmunity against common endocrine and exocrine antigens. Another explanation might be that diabetes mellitus could also be a consequence of underlying pancreatic diseases (e.g., chronic pancreatitis). Another pathophysiological concept proposes the functional and morphological alterations as a consequence of diabetic neuropathy. This paper discusses the currently available studies on this subject and tries to provide an overview of the current concepts of exocrine pancreatic insufficiency in diabetes mellitus.

  4. Chronic pancreatitis with secondary diabetes mellitus treated by use of insulin in an adult California sea lion.

    Science.gov (United States)

    Meegan, Jenny M; Sidor, Inga F; Steiner, Jörg M; Sarran, Delphine; Dunn, J Lawrence

    2008-06-01

    A 21-year-old neutered male captive California sea lion developed chronic polyuria; polydipsia; polyphagia; accelerated development of existing cataracts; and frequent episodes of gastrointestinal upset including anorexia, signs of abdominal discomfort, diarrhea, and vomiting. Chronic hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and glucosuria were identified. During episodes of gastrointestinal abnormalities, transient hyperbilirubinemia and increased serum J-glutamyltransferase activities developed. Clinical findings strongly suggested chronic pancreatitis with secondary diabetes mellitus and intermittent cholestasis. Multiple diagnostic tests, including abdominal ultrasonography, serial hematologic and serum biochemical analyses, fecal examinations, urinalyses and bacteriologic culture of urine, measurement of serum fructosamine and insulin concentrations, and evaluation of thyroid and adrenal function, did not reveal any specific parasitic, endocrine, hepatic, or neoplastic etiologies. For 1.5 years, the sea lion received once-daily administration of glargine insulin, gastrointestinal protectants, and a strict high-protein, low-fat diet. Daily monitoring of glucose regulation was achieved by training the sea lion to submit to blood and urine sampling. Glucose regulation ranged from fair to good, and clinical signs of diabetes mellitus lessened. Episodes of gastrointestinal upset still occurred, although the frequency and severity decreased. Ultimately, a severe episode developed, associated with diabetic ketoacidosis and sepsis, and the sea lion died. Severe fibrosing pancreatitis with exocrine and endocrine atrophy and abscesses arising from ectatic pancreatic ducts were found. Peripancreatic fibrosis caused stricture of the common bile duct, resulting in gallbladder distension without cholecystitis. Diabetes mellitus can occur secondary to chronic pancreatitis in California sea lions and insulin therapy should be considered.

  5. Transcription factor 7-like 2 gene links increased in vivo insulin synthesis to type 2 diabetes

    NARCIS (Netherlands)

    S. Jainandunsing (Sjaam); Koole, H.R. (H. Rita); van Miert, J.N.I. (Joram N.I.); T. Rietveld (Trinet); J.L.D. Wattimena (Josias); E.J.G. Sijbrands (Eric); F.W.M. de Rooij (Felix)

    2018-01-01

    textabstractTranscription factor 7-like 2 (TCF7L2) is the main susceptibility gene for type 2 diabetes, primarily through impairing the insulin secretion by pancreatic β cells. However, the exact in vivo mechanisms remain poorly understood. We performed a family study and determined if the T risk

  6. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju; Hwang, Dae Youn

    2011-06-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may

  7. The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST

    Directory of Open Access Journals (Sweden)

    Lisa Te Morenga

    2017-11-01

    Full Text Available Evidence shows that weight loss improves insulin sensitivity but few studies have examined the effect of macronutrient composition independently of weight loss on direct measures of insulin sensitivity. We randomised 89 overweight or obese women to either a standard diet (StdD, that was intended to be low in fat and relatively high in carbohydrate (n = 42 or to a relatively high protein (up to 30% of energy, relatively high fibre (>30 g/day diet (HPHFib (n = 47 for 10 weeks. Advice regarding strict adherence to energy intake goals was not given. Insulin sensitivity and secretion was assessed by a novel method—the Dynamic Insulin Sensitivity and Secretion Test (DISST. Although there were significant improvements in body composition and most cardiometabolic risk factors on HPHFib, insulin sensitivity was reduced by 19.3% (95% CI: 31.8%, 4.5%; p = 0.013 in comparison with StdD. We conclude that the reduction in insulin sensitivity after a diet relatively high in both protein and fibre, despite cardiometabolic improvements, suggests insulin sensitivity may reflect metabolic adaptations to dietary composition for maintenance of glucose homeostasis, rather than impaired metabolism.

  8. Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis

    DEFF Research Database (Denmark)

    Carobbio, Stefania; Frigerio, Francesca; Rubi, Blanca

    2009-01-01

    Insulin exocytosis is regulated in pancreatic ss-cells by a cascade of intracellular signals translating glucose levels into corresponding secretory responses. The mitochondrial enzyme glutamate dehydrogenase (GDH) is regarded as a major player in this process, although its abrogation has not been...... tested yet in animal models. Here, we generated transgenic mice, named betaGlud1(-/-), with ss-cell-specific GDH deletion. Our results show that GDH plays an essential role in the full development of the insulin secretory response. In situ pancreatic perfusion revealed that glucose-stimulated insulin...... secretion was reduced by 37% in betaGlud1(-/-). Furthermore, isolated islets with either constitutive or acute adenovirus-mediated knock-out of GDH showed a 49 and 38% reduction in glucose-induced insulin release, respectively. Adenovirus-mediated re-expression of GDH in betaGlud1(-/-) islets fully restored...

  9. Enhanced Glucose Tolerance and Pancreatic Beta Cell Function by Low Dose Aspirin in Hyperglycemic Insulin-Resistant Type 2 Diabetic Goto-Kakizaki (GK Rats

    Directory of Open Access Journals (Sweden)

    Layla Amiri

    2015-07-01

    Full Text Available Background/Aim: Type 2 diabetes is the most common metabolic disorder, characterized by insulin resistance and pancreatic islet beta-cell failure. The most common complications associated with type 2 diabetes are hyperinsulinemia, hyperglycemia, hyperlipidemia, increased inflammatory and reduced insulin response. Aspirin (ASA and other non-steroidal anti-inflammatory drugs (NSAIDs have been associated with the prevention of diabetes, obesity and related cardiovascular disorders. Aspirin has been used in many clinical and experimental trials for the prevention of diabetes and associated complications. Methods: In this study, five month old Goto-Kakizaki (GK rats, which showed signs of mild hyperglycemia (fasting blood glucose 80-95 mg/dl vs 55-60 mg/dl Wistar control rats were used. Two subgroups of GK and Wistar control rats were injected intraperitoneally with 100 mg aspirin/kg body weight/ day for 5 weeks. Animals were sacrificed and blood and tissues were collected after performing glucose tolerance (2 h post 2g IP glucose ingestion tests in experimental and control groups. Results: Aspirin caused a moderate decrease in hyperglycemia. However, we observed a significant improvement in glucose tolerance after ASA treatment in GK rats compared to the nondiabetic Wistar rats. Also, the ASA treated GK rats exhibited a significant decrease in insulinemia. ASA treatment also caused a marked reduction in the pro-inflammatory prostaglandin, PGE2, which was significantly higher in GK rats. On the other hand, no significant organ toxicity was observed after ASA treatment at this dose and time period. However, the total cholesterol and lipoprotein levels were significantly increased in GK rats, which decreased after ASA treatment. Immunofluorescence staining for insulin/glucagon secreting pancreatic cells showed improved beta-cell structural and functional integrity in ASA-treated rats which was also confirmed by SDS-PAGE and Western blot analysis

  10. Interleukin-6 is associated with chronic hyperglycemia and insulin resistance in patients after acute pancreatitis.

    Science.gov (United States)

    Gillies, Nicola; Pendharkar, Sayali A; Asrani, Varsha M; Mathew, Juby; Windsor, John A; Petrov, Maxim S

    2016-01-01

    Diabetes is a pervasive disease, with a mounting prevalence and burden on health care systems. Under this collective term of diabetes falls diabetes after diseases of the exocrine pancreas, a condition which was previously under-recognised and often mislabeled as type 2 diabetes mellitus and is now increasingly acknowledged as a stand-alone entity. However, there is a paucity of clinical studies investigating the underlying pathophysiology of diabetes after acute pancreatitis, the most frequent disease of the pancreas. This study aimed to investigate the role of adipocytokines in glucose metabolism after acute pancreatitis. This was a cross-sectional follow-up study of a patient cohort diagnosed with acute pancreatitis. Fasting venous blood samples were collected to analyse markers of glucose metabolism (fasting blood glucose, haemoglobin A1c, homeostasis model assessment (HOMA-IR) as a measure of insulin resistance) and adypocytokines (adiponectin, interleukin-6, leptin, monocyte chemoattractant protein-1, retinol binding protein-4, resistin, and tumor necrosis factor-α). Participants were categorized into two groups: normoglycemia after acute pancreatitis and chronic hyperglycemia after acute pancreatitis (CHAP). Binary logistic regression and linear regression analyses were used to investigate the association between each of the adipocytokines and markers of glucose metabolism. Potential confounders were adjusted for in multivariate analyses. A total of 83 patients with acute pancreatitis were included, of whom 19 developed CHAP. Interleukin-6 was significantly associated with CHAP in both unadjusted and adjusted models (p = 0.030 and p = 0.018, respectively). Further, it was also significantly associated with HOMA-IR in both unadjusted and adjusted models (p = 0.029 and p = 0.037, respectively). Other adipocytokines were not significantly associated with markers of glucose metabolism. Interleukin-6 appears to be implicated in the development of chronic

  11. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes.......We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...

  12. Common variants related to serum uric acid concentrations are associated with glucose metabolism and insulin secretion in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Xue Sun

    Full Text Available Elevated serum uric acid concentration is an independent risk factor and predictor of type 2 diabetes (T2D. Whether the uric acid-associated genes have an impact on T2D remains unclear. We aimed to investigate the effects of the uric acid-associated genes on the risk of T2D as well as glucose metabolism and insulin secretion.We recruited 2,199 normal glucose tolerance subjects from the Shanghai Diabetes Study I and II and 2,999 T2D patients from the inpatient database of Shanghai Diabetes Institute. Fifteen single nucleotide polymorphisms (SNPs mapped in or near 11 loci (PDZK1, GCKR, LRP2, SLC2A9, ABCG2, LRRC16A, SLC17A1, SLC17A3, SLC22A11, SLC22A12 and SF1 were genotyped and serum biochemical parameters related to uric acid and T2D were determined.SF1 rs606458 showed strong association to T2D in both males and females (p = 0.034 and 0.0008. In the males, LRRC16A was associated with 2-h insulin and insulin secretion (p = 0.009 and 0.009. SLC22A11 was correlated with HOMA-B and insulin secretion (p = 0.048 and 0.029. SLC2A9 rs3775948 was associated with 2-h glucose (p = 0.043. In the females, LRP2 rs2544390 and rs1333049 showed correlations with fasting insulin, HOMA-IR and insulin secretion (p = 0.028, 0.033 and 0.052 and p = 0.034, 0.047 and 0.038, respectively. SLC2A9 rs11722228 was correlated with 2-h glucose, 2-h insulin and insulin secretion (p = 0.024, 0.049 and 0.049, respectively.Our results indicated that the uric acid-associated genes have an impact on the risk of T2D, glucose metabolism and insulin secretion in a Chinese population.

  13. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  14. The Role of Taste in Cephalic Phase of Insulin Secretion

    Directory of Open Access Journals (Sweden)

    M. Dušková

    2013-01-01

    Full Text Available The effect of a short gustatory signal of a sweet solution was tested on 15 young male volunteers. The experiment consisted of mouth rinsing with either a sucrose or aspartate solution or pure water as a placebo. Blood was then taken in short intervals of 0, 5, 10, 15 and 20 min. Blood glucose, C-peptide, insulin and cortisol were determined. While C-peptide and glucose were unaffected, a short-term increase in insulin was observed after the sucrose, but not after the aspartate or placebo. The increase in insulin was significant, though it amounted to only 0.5 mIU/l and lasted approx. 15 min reaching then the starting value. The decline of cortisol level within 20 min of the experiment was approx. 40 nmol/l, although it was also observed after aspartate or placebo mouth rinsing and was probably caused by stress factors or anticipation. In conclusion, the contribution of taste to the cephalic phase of insulin secretion is small yet significant, and mouth rinsing with 5% sucrose causes an insulin increase of just under 1 IU/l, which returns to starting level within 15 min.

  15. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue

    2010-01-01

    the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast......BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define...... neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium...

  16. Glucose-induced glucagon-like Peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Christine Bernsmeier

    Full Text Available The incretins glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic polypeptide (GIP are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD. However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients.N=52 patients (n=16 NAFLD and n=36 Non-alcoholic steatohepatitis (NASH patients and n=50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration.Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001. In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH.Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.

  17. Insulin-secretagogue activity and cytoprotective role of the traditional antidiabetic plant Scoparia dulcis (Sweet Broomweed).

    Science.gov (United States)

    Latha, Muniappan; Pari, Leelavinothan; Sitasawad, Sandhya; Bhonde, Ramesh

    2004-09-03

    Scoparia dulcis (Sweet Broomweed) has been documented as a traditional treatment of diabetes. The administration of an aqueous extract of Scoparia dulcis at a dose of 200 mg/kg body weight significantly decreased the blood glucose with significant increase in plasma insulin level in streptozotocin diabetic rats at the end of 15 days treatment. The insulin secretagogue action of Scoparia dulcis plant extract (SPEt) was further investigated using isolated pancreatic islets from mice. SPEt at a dose of 10 microg/ml evoked 6.0 fold stimulation of insulin secretion from isolated islets indicating its insulin secretagogue activity. In addition the effect of SPEt on streptozotocin induced cell death and nitric oxide (NO) in terms of nitrite production were also examined. SPEt protected against streptozotocin- mediated cytotoxicity (88%) and NO production in rat insulinoma cell line (RINm5F). Above results suggest the glucose lowering effect of SPEt to be associated with potentiation of insulin release from pancreatic islets. Our results revealed the possible therapeutic value of Scoparia dulcis for the better control, management and prevention of diabetes mellitus progression.

  18. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Cline, Gary W., E-mail: gary.cline@yale.edu [The Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520 (United States); Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Pongratz, Rebecca L.; Zhao, Xiaojian [The Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520 (United States); Papas, Klearchos K. [Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We studied media effects on mechanisms of insulin secretion of INS-1 cells. Black-Right-Pointing-Pointer Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. Black-Right-Pointing-Pointer Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. Black-Right-Pointing-Pointer Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with {sup 31}P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by {sup 13}C NMR isotopomer analysis of the fate of [U-{sup 13}C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found

  19. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Hwi; Kim, Eung-Hwi [College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Jung, Hye Seung [Department of Internal Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yang, Dongki [Department of Physiology, Gachon University College of Medicine, Incheon (Korea, Republic of); Park, Eun-Young, E-mail: parkey@mokpo.ac.kr [College of Pharmacy, Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam (Korea, Republic of); Jun, Hee-Sook, E-mail: hsjun@gachon.ac.kr [College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Yeonsu-ku, Incheon (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, Incheon (Korea, Republic of)

    2017-01-15

    Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H{sub 2}O{sub 2}. Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factor erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress. - Highlights: • EX4 protects against oxidative stress-induced pancreatic beta cell dysfunction. • EX4 increases antioxidant gene expression. • Antioxidative effect of EX4 is

  20. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage

    International Nuclear Information System (INIS)

    Kim, Mi-Hwi; Kim, Eung-Hwi; Jung, Hye Seung; Yang, Dongki; Park, Eun-Young; Jun, Hee-Sook

    2017-01-01

    Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H 2 O 2 . Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factor erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress. - Highlights: • EX4 protects against oxidative stress-induced pancreatic beta cell dysfunction. • EX4 increases antioxidant gene expression. • Antioxidative effect of EX4 is mediated by

  1. Effects of experimentally induced mild hyperthyroidism on growth hormone and insulin secretion and sex steroid levels in healthy young men.

    Science.gov (United States)

    Lovejoy, J C; Smith, S R; Bray, G A; Veldhuis, J D; Rood, J C; Tulley, R

    1997-12-01

    Although triiodothyronine (T3) exerts major regulatory actions in both animals and humans, most clinical studies of T3 administration have been relatively short-term. The present study examined the effects of more than 2 months (63 days) of low-dose T3 treatment on overnight pulsatile growth hormone (GH) secretion, short-term insulin secretion, and of sex steroid levels in seven healthy, lean men studied at an inpatient metabolic unit. At baseline, there were strong correlations between sex hormone-binding globulin (SHBG) and several measures of GH production, including total GH production (r = .99), GH interburst interval (r = -.75), and GH mass (r = .82). SHBG was also inversely correlated with basal insulin secretion (r = -.74). There was a 42% increase in serum levels of total testosterone (18.5 +/- 1.3 to 26.3 +/- 1.8 nmol/L, P = .005) and a 150% increase in SHBG (18.0 +/- 2.2 to 44.9 +/- 7.0 nmol/L, P = .008) following T3 treatment. Estradiol and free testosterone levels were unchanged by treatment, although free testosterone decreased from 142.8 +/- 18.4 to 137.3 +/- 19.5 pmol/L. T3 treatment significantly reduced the GH interburst interval (P secretion. There were no statistically significant effects of T3 treatment on insulin secretion, although insulin peak amplitude, mass secreted per burst, and total production all decreased. We conclude that experimentally induced T3 excess in healthy men produces significant and sustained changes in sex hormone levels and GH secretion. Furthermore, there are strong associations between SHBG and both GH and insulin secretion independent of thyroid hormone excess that require additional study.

  2. Polyphenol-Rich Extract of Syzygium cumini Leaf Dually Improves Peripheral Insulin Sensitivity and Pancreatic Islet Function in Monosodium L-Glutamate-Induced Obese Rats

    Science.gov (United States)

    Sanches, Jonas R.; França, Lucas M.; Chagas, Vinicyus T.; Gaspar, Renato S.; dos Santos, Kayque A.; Gonçalves, Luciana M.; Sloboda, Deborah M.; Holloway, Alison C.; Dutra, Richard P.; Carneiro, Everardo M.; Cappelli, Ana Paula G.; Paes, Antonio Marcus de A.

    2016-01-01

    Syzygium cumini (L.) Skeels (Myrtaceae) has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed, and pulp-fruit, however. there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc) on lean and monosodium L-glutamate (MSG)-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg) or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a twofold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10–1000 μg/mL) increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E β-cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating β-cell insulin release, which was associated

  3. Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium L-glutamate-induced obese rats

    Directory of Open Access Journals (Sweden)

    Jonas Rodrigues Sanches

    2016-03-01

    Full Text Available Syzygium cumini (L. Skeels (Myrtaceae has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed and pulp-fruit, however there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc on lean and monosodium L-glutamate (MSG-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a 2-fold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10 – 1000 ug/mL increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E beta cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating beta cell insulin release

  4. Effects of tetracaine on insulin release and calcium handling by rat pancreatic islets

    International Nuclear Information System (INIS)

    Abdel El Motal, S.M.A.; Pian-Smith, M.C.M.; Sharp, G.W.G.

    1987-01-01

    The effects of tetracaine on insulin release and 45 Ca 2+ handling by rat pancreatic islets have been studied under basal, glucose-stimulated, and 3-isobutyl-1-methylxanthine (IBMX)-stimulated conditions. Islets were isolated by the use of collagenase and used either directly (freshly isolated islets) or after a period under tissue culture conditions. Tetracaine was found to stimulate insulin release under basal conditions, to inhibit glucose-stimulated insulin release, and to potentiate insulin release stimulated by IBMX. In studies on the mechanisms underlying these effects, tetracaine was found to decrease glucose-stimulated net retention of 45 Ca 2+ (by an action to block the voltage-dependent Ca channels) and to mobilize Ca 2+ from intracellular stores. These two actions form the basis for the inhibition of glucose-stimulated insulin release, which depends heavily on Ca 2+ entry via the voltage-dependent channels and the synergism with IBMX to potentiate release. No inhibition of IBMX-stimulated release occurs because IBMX does not use the voltage-dependent channels to raise intracellular Ca 2+

  5. Gastrin-Releasing Peptide and Glucose Metabolism Following Pancreatitis.

    Science.gov (United States)

    Pendharkar, Sayali A; Drury, Marie; Walia, Monika; Korc, Murray; Petrov, Maxim S

    2017-08-01

    Gastrin-releasing peptide (GRP) is a pluripotent peptide that has been implicated in both gastrointestinal inflammatory states and classical chronic metabolic diseases such as diabetes. Abnormal glucose metabolism (AGM) after pancreatitis, an exemplar inflammatory disease involving the gastrointestinal tract, is associated with persistent low-grade inflammation and altered secretion of pancreatic and gut hormones as well as cytokines. While GRP is involved in secretion of many of them, it is not known whether GRP has a role in AGM. Therefore, we aimed to investigate the association between GRP and AGM following pancreatitis. Fasting blood samples were collected to measure GRP, blood glucose, insulin, amylin, glucagon, pancreatic polypeptide (PP), somatostatin, cholecystokinin, gastric-inhibitory peptide (GIP), gastrin, ghrelin, glicentin, glucagon-like peptide-1 and 2, oxyntomodulin, peptide YY (PYY), secretin, vasoactive intestinal peptide, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP)-1, and interleukin-6. Modified Poisson regression analysis and linear regression analyses were conducted. Four statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. A total of 83 individuals after an episode of pancreatitis were recruited. GRP was significantly associated with AGM, consistently in all four models (P -trend < 0.05), and fasting blood glucose contributed 17% to the variance of GRP. Further, GRP was significantly associated with glucagon (P < 0.003), MCP-1 (P < 0.025), and TNF-α (P < 0.025) - consistently in all four models. GRP was also significantly associated with PP and PYY in three models (P < 0.030 for both), and with GIP and glicentin in one model (P = 0.001 and 0.024, respectively). Associations between GRP and other pancreatic and gut hormones were not significant. GRP is significantly increased in patients with AGM after pancreatitis and is associated with increased levels of pro

  6. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro

    International Nuclear Information System (INIS)

    Green, I.C.; Tadayyon, M.

    1988-01-01

    The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE 2 levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE 2 in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/μg islet protein. Indomethacin sodium salicylate and chlorpropamide all lowered islet PGE 2 levels and stimulated insulin release in vitro. Dynorphin stimulated insulin release at a concentration of 6 x 10 -9 M, while lowering islet PGE 2 . Conversely, at a higher concentration, dynorphin had no stimulatory effect on insulin secretion and did not lower PGE 2 levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE 2 . PGE 2 at a lower concentration did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE 2 stimulated insulin release in the presence of 6mM glucose

  7. Pdx1 and Ngn3 overexpression enhances pancreatic differentiation of mouse ES cell-derived endoderm population.

    Directory of Open Access Journals (Sweden)

    Atsushi Kubo

    Full Text Available In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2, and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit(+ endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells.

  8. Visualization of glucagon secretion from pancreatic α cells by bioluminescence video microscopy: Identification of secretion sites in the intercellular contact regions

    International Nuclear Information System (INIS)

    Yokawa, Satoru; Suzuki, Takahiro; Inouye, Satoshi; Inoh, Yoshikazu; Suzuki, Ryo; Kanamori, Takao; Furuno, Tadahide; Hirashima, Naohide

    2017-01-01

    We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase from the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion. - Highlights: • The fused protein of proglucagon to Gaussia luciferase was used as a reporter. • The fusion protein was highly expressed using a preferred human-codon optimized gene. • Glucagon secretion stimulated by depolarization was determined by luminescence. • Glucagon secretion in α cells was visualized by bioluminescence imaging. • Glucagon secretion sites were localized in the intercellular contact regions.

  9. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, Sichuan 610041 (China); Tong, Nanwei, E-mail: buddyjun@hotmail.com [Department of Endocrinology, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041 (China)

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  10. Exocrine Pancreatic Insufficiency in Diabetes Mellitus: A Complication of Diabetic Neuropathy or a Different Type of Diabetes?

    Directory of Open Access Journals (Sweden)

    Philip D. Hardt

    2011-01-01

    Full Text Available Pancreatic exocrine insufficiency is a frequently observed phenomenon in type 1 and type 2 diabetes mellitus. Alterations of exocrine pancreatic morphology can also be found frequently in diabetic patients. Several hypotheses try to explain these findings, including lack of insulin as a trophic factor for exocrine tissue, changes in secretion and/or action of other islet hormones, and autoimmunity against common endocrine and exocrine antigens. Another explanation might be that diabetes mellitus could also be a consequence of underlying pancreatic diseases (e.g., chronic pancreatitis. Another pathophysiological concept proposes the functional and morphological alterations as a consequence of diabetic neuropathy. This paper discusses the currently available studies on this subject and tries to provide an overview of the current concepts of exocrine pancreatic insufficiency in diabetes mellitus.

  11. Insulin Secretion and Incretin Hormone Concentration in Women with Previous Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Sung Hoon Yu

    2011-02-01

    Full Text Available BackgroundWe examined the change in the levels of incretin hormone and effects of glucose-dependent insulinotropic polypeptide (GIP and glucagon-like peptide 1 (GLP-1 on insulin secretion in women with previous gestational diabetes (pGDM.MethodsA 75-g oral glucose tolerance test (OGTT was conducted on 34 women with pGDM. In addition, 11 women with normal glucose tolerance, matched for age, height and weight, were also tested. The insulin, GIP, GLP-1, and glucagon concentrations were measured, and their anthropometric and biochemical markers were also measured.ResultsAmong 34 women with pGDM, 18 had normal glucose tolerance, 13 had impaired glucose tolerance (IGT and 1 had diabetes. No significant differences were found in GLP-1 concentration between the pGDM and control group. However, a significantly high level of glucagon was present in the pGDM group at 30 minutes into the OGTT. The GIP concentration was elevated at 30 minutes and 60 minutes in the pGDM group. With the exception of the 30-minute timepoint, women with IGT had significantly high blood glucose from 0 to 120 minutes. However, there was no significant difference in insulin or GLP-1 concentration. The GIP level was significantly high from 0 to 90 minutes in patients diagnosed with IGT.ConclusionGLP-1 secretion does not differ between pGDM patients and normal women. GIP was elevated, but that does not seem to induce in increase in insulin secretion. Therefore, we conclude that other factors such as heredity and environment play important roles in the development of type 2 diabetes.

  12. Pancreatic islet regeneration: Therapeutic potential, unknowns and controversy

    Directory of Open Access Journals (Sweden)

    Ingrid L. Cockburn

    2015-07-01

    Full Text Available Glucose homeostasis in mammals is primarily maintained by the insulin-secreting β-cells contained within pancreas-resident islets of Langerhans. Gross disruption of this glucose regulation as a result of pancreatic dysfunction frequently results in diabetes, which is currently a major health concern in South Africa, as well as globally. For many years, researchers have realised that the pancreas, and specifically the islets of Langerhans, have a regenerative capacity, as islet mass has frequently been shown to increase following induced pancreatic injury. Given that gross β-cell loss contributes significantly to the pathogenesis of both type 1 and type 2 diabetes, endogenous pancreatic islet regeneration has been investigated extensively as a potential β-cell replacement therapy for diabetes. From the extensive research conducted on pancreatic regeneration, opposing findings and opinions have arisen as to how, and more recently even if, pancreatic regeneration occurs following induced injury. In this review, we outline and discuss the three primary mechanisms by which pancreatic regeneration is proposed to occur: neogenesis, β-cell replication and transdifferentiation. We further explain some of the advanced techniques used in pancreatic regeneration research, and conclude that despite the technologically advanced research tools available to researchers today, the mechanisms governing pancreatic regeneration may remain elusive until more powerful techniques are developed to allow for real-time, live-cell assessment of morphology and gene expression within the pancreas.

  13. Incidence and prognostic value of serotonin secretion in pancreatic neuroendocrine tumours.

    Science.gov (United States)

    Zandee, Wouter T; van Adrichem, Roxanne C; Kamp, Kimberly; Feelders, Richard A; van Velthuysen, Marie-Louise F; de Herder, Wouter W

    2017-08-01

    Serotonin secretion occurs in approximately 1%-4% of patients with a pancreatic neuroendocrine tumour (PNET), but the incidence is not well defined. The aim of this study was to determine the incidence of serotonin secretion with and without carcinoid syndrome and the prognostic value for overall survival (OS). Data were collected from 255 patients with a PNET if 24-hours urinary 5-hydroxyindoleacetic acid excretion (5-HIAA) was assessed. Patients were diagnosed with serotonin secretion if 24-hours urinary 5-HIAA excretion was more than 3× the upper limit of normal (ULN) of 50 μmol/24 hours during follow-up. The effect of serotonin secretion on OS was estimated with uni- and multivariate analyses using a Cox regression. Two (0.8%) patients were diagnosed with carcinoid syndrome, and another 20 (7.8%) had a serotonin-secreting PNET without symptoms. These patients mostly had ENETS stage IV disease with high chromogranin A (CgA). Serotonin secretion was a negative prognostic factor in univariate analysis (HR 2.2, 95% CI: 1.27-3.81), but in multivariate analysis, only CgA>10× ULN (HR: 1.81, 95% CI: 1.10-2.98) and neuron-specific enolase (NSE) >ULN (HR: 3.51, 95% CI: 2.26-5.46) were predictors for OS. Immunohistochemical staining for serotonin was positive in 28.6% of serotonin-secreting PNETs (one with carcinoid syndrome) and negative in all controls. Carcinoid syndrome is rare in patients with a PNET, but serotonin secretion occurs often. This is a negative prognostic factor for OS, but after correction for CgA and NSE, it is no longer a predictor and probably only a "not-so innocent bystander" in patients with high tumour burden. © 2017 John Wiley & Sons Ltd.

  14. Radioimmunoassay of seric C-peptide. Practical value in the study of insulin secretion. Results of 140 stimulation tests

    International Nuclear Information System (INIS)

    Wafflart, Jean.

    1977-10-01

    C-peptide, which appears as a by-product of insulin synthesis, is secreted with this latter in equimolar quantities but is not degraded in the liver. It thus reflects indirectly the insulin secreted. After the structure of C-peptide was determined in 1971 by OYER it was synthesized by YANAIHARA and a radioimmunoassay was developed by KANEKO in 1974. This work was made possible by the recent commercialisation of a Japanese analysis kit, the 'DAIICHI' kit, and its availability through GUERBET TESTS. Part one describes the structural, physiological and immuno properties of C-peptide and its method of determination. Part two is devoted to a review of foreign publications on the practical interest of the C-peptide measurement. Part three gives the results of 140 oral or venous stimulation tests where blood sugar, blood insulin and C-peptide are measured in parallel. The different diabetic pathologies are explored and compared against normal subjects. The purpose of this work is to establish the value of C-peptide as a reflection of insulin secretion on the one hand, and that of a parallel insulin and C-peptide determination on the other [fr

  15. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice.

    Science.gov (United States)

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) in the pancreas of mice at embryonic day 15.5 (E15.5), E18.5, postnatal day 1 (P1) and P7. Our data showed that at E15.5 the pancreatic and duodenum homeobox-1 (Pdx1) was expressed in the majority of cells in the developing pancreata. Notably, insulin immunoreactivity was identified in a subpopulation of pancreatic cells with a high level of Pdx1 expression. About 80% of the high-level Pdx-1 expressing cells in the pancreas expressed GAD and GABAARα1 at all pancreatic developmental stages. In contrast, only about 30% of the high-level Pdx-1 expressing cells in the E15.5 pancreas expressed insulin; i.e., a large number of GAD/GABAARα1-expressing cells did not express insulin at this early developmental stage. The expression level of GAD and GABAARα1 increased steadily, and progressively more GAD/GABAARα1-expressing cells expressed insulin in the course of pancreatic development. These results suggest that 1) GABA signaling proteins appear in β-cell progenitors prior to insulin expression; and 2) the increased expression of GABA signaling proteins may be involved in β-cell progenitor maturation.

  16. Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model.

    Science.gov (United States)

    Park, Sunmin; Ahn, Il Sung; Kim, Da Sol

    2010-06-05

    We investigated whether hypothalamic leptin alters beta-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states. The 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300ng/kgbw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3h as a short-term study. After finishing the infusion study, ICV leptin (3mug/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed. Acute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic beta-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual beta-cell size and concomitantly increased beta-cell apoptosis in Sham rats. Leptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic beta-cell mass.

  17. Diabetes, pancreatic cancer, and metformin therapy

    Directory of Open Access Journals (Sweden)

    Jun eGong

    2014-11-01

    Full Text Available Pancreatic cancer carries a poor prognosis as most patients present with advanced disease and preferred chemotherapy regimens offer only modest effects on survival. Risk factors include smoking, obesity, heavy alcohol, and chronic pancreatitis. Pancreatic cancer has a complex relationship with diabetes, as diabetes can be both a risk factor for pancreatic cancer and a result of pancreatic cancer. Insulin, insulin-like growth factor-1 (IGF-1, and certain hormones play an important role in promoting neoplasia in diabetics. Metformin appears to reduce risk for pancreatic cancer and improve survival in diabetics with pancreatic cancer primarily by decreasing insulin/IGF signaling, disrupting mitochondrial respiration, and inhibiting the mammalian target of rapamycin (mTOR pathway. Other potential anti-tumorigenic effects of metformin include the ability to downregulate specificity protein transcription factors and associated genes, alter microRNAs, decrease cancer stem cell proliferation, and reduce DNA damage and inflammation. Here, we review the most recent knowledge on risk factors and treatment of pancreatic cancer and the relationship between diabetes, pancreatic cancer, and metformin as a potential therapy.

  18. The H+/K+ ATPase Inhibitor SCH-28080 Inhibits Insulin Secretion and Induces Cell Death in INS-1E Rat Insulinoma Cells

    Directory of Open Access Journals (Sweden)

    Martin Jakab

    2017-10-01

    Full Text Available Background/Aims: Glucose-stimulated insulin secretion (GSIS of pancreatic β-cells involves glucose uptake and metabolism, closure of KATP channels and depolarization of the cell membrane potential (Vmem, activation of voltage-activated Ca2+ currents (ICav and influx of Ca2+, which eventually triggers hormone exocytosis. Beside this classical pathway, KATP-independent mechanisms such as changes in intracellular pH (pHi or cell volume, which also affect β-cell viability, can elicit or modify insulin release. In β-cells the regulation of pHi is mainly accomplished by Na+/H+ exchangers (NHEs. To investigate if other proton extrusion mechanisms than NHEs are involved in pH regulation, we tested for the presence of the non-gastric H+/K+ ATPase in rat insulinoma cells and assessed effects of the H+/K+ ATPase inhibitor SCH-28080 on insulin secretion, cell viability and apoptosis. Methods: In INS-1E cell cultures, H+/K+ ATPase gene and protein expression was analyzed by reverse transcription PCR and Western blotting. Intracellular pH (pHi recovery after acute acidic load was measured by NH4Cl prepulsing using BCECF. Insulin secretion was determined by ELISA from the cell culture supernatant. Vmem, K+ and Ca2+ currents were recorded using patch clamp. Overall cell responses were determined using resazurin (viability and cytotoxicity assays. The mean cell volume (MCV, cell granularity (side-scatter; SSC, phosphatidylserine (PS exposure, cell membrane integrity, caspase activity and the mitochondrial membrane potential (ΔΨm were measured by flow cytometry. Results: We found that the α-subunit of the non-gastric H+/K+ ATPase (HKα2 is expressed on mRNA and protein level. However, compared to rat colon tissue, in INS-1E cells mRNA abundance was very low. In NH4Cl prepulsing experiments no K+-dependent pHi recovery was observed under Na+-free extracellular conditions. Nonetheless within 1 h, 20 µM SCH-28080 inhibited GSIS by ∼50%, while basal release

  19. Effects of acute exercise on pancreatic endocrine function in subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Knudsen, Sine H; Karstoft, Kristian; Winding, Kamilla

    2015-01-01

    We determined the effects of exercise on pancreatic endocrine responses to metabolic stimuli in type 2 diabetic (T2D) subjects and examined the influence of the diabetic status. Fourteen subjects underwent a hyperglycaemic clamp with GLP-1 infusion and arginine injection, the morning after a one.......05-P arginine (P = 0.08). The same trends were seen for low HbA1c subjects. Furthermore, exercise increased GLP-1- and arginine-stimulated insulin secretion (P diabetic......-hour walk or no exercise. Subjects were stratified by high and low quantiles of fasting plasma glucose (FPG) and HbA1c as well as current use/non-use of anti-diabetic medication. In the entire cohort, exercise did not alter insulin secretion, while glucagon levels were increased in all clamp phases (P 

  20. PANCREATIC AND EXTRA-PANCREATIC EFFECTS OF INCRETINS AND PERSPECTIVES FOR STUDYING ENTEROINSULIN HORMONAL SYSTEM DURING GESTATIONAL DISORDER OF CARBOHYDRATE METABOLISM

    Directory of Open Access Journals (Sweden)

    T. V. Saprina

    2013-01-01

    Full Text Available The absence of an ideal medicine for the treatment of patients with type 2 diabetes, that would be able to provide not only high quality and constant monitoring of glycemia without increasing body weight, with no risk of hypoglycemia, with no negative impact on the heart, kidneys, liver, but could also ensure the preservation of the secretory function of β-cells, makes scientists continue to search for new opportunities to influence the occurrence and progression of T2D.Gastric inhibitory polypeptide (GIP and glucagon-like peptide-1 (GLP-1 are the two primary incretin hormones secreted from the intestine on ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β-cells. Within the pancreas, GIP and GLP-1 together promote β-cell proliferation and inhibit apoptosis, thereby expanding pancreatic β-cell mass, while GIP enhances postprandial glucagon response and GLP-1 suppresses it. In adipose tissues, GIP but not GLP-1 facilitates fat deposition. In bone, GIP promotes bone formation while GLP-1 inhibits bone absorption. In the brain, both GIP and GLP-1 are thought to be involved in memory formation as well as the control of appetite. In addition to these differences, secretion of GIP and GLP-1 and their insulinotropic effects on β-cells have been shown to differ in patients with type 2 diabetes compared to healthy subjects.Enteroinsulin hormones' role in the development of gestational disorder of carbohydrate metabolism is poorly understood.In a review article we analyze the publications that summarize what is known about the pancreatic and extra-pancreatic GIP and GLP-1-effects compared with healthy subjects and type 2 diabetes patients. The aspects of gestational diabetes pathophysiology and the perspectives for studying enteroinsulin hormonal system during pregnancy are also discussed in the article.

  1. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.

    Science.gov (United States)

    Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M

    2018-03-01

    Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Interactions between the Central Nervous System and Pancreatic Islet Secretions: A Historical Perspective

    Science.gov (United States)

    Begg, Denovan P.; Woods, Stephen C.

    2013-01-01

    The endocrine pancreas is richly innervated with sympathetic and parasympathetic projections from the brain. In the mid-20th century, it was established that alpha-adrenergic activation inhibits, whereas cholinergic stimulation promotes, insulin secretion; this demonstrated the importance of the sympathetic and parasympathetic systems in…

  3. Possible contribution of taurine to distorted glucagon secretion in intra-islet insulin deficiency: a metabolome analysis using a novel α-cell model of insulin-deficient diabetes.

    Directory of Open Access Journals (Sweden)

    Megumi Bessho

    Full Text Available Glycemic instability is a serious problem in patients with insulin-deficient diabetes, and it may be due in part to abnormal endogenous glucagon secretion. However, the intracellular metabolic mechanism(s involved in the aberrant glucagon response under the condition of insulin deficiency has not yet been elucidated. To investigate the metabolic traits that underlie the distortion of glucagon secretion under insulin deficient conditions, we generated an αTC1-6 cell line with stable knockdown of the insulin receptor (IRKD, i.e., an in vitro α-cell model for insulin-deficient diabetes, which exhibits an abnormal glucagon response to glucose. A comprehensive metabolomic analysis of the IRKD αTC1-6 cells (IRKD cells revealed some candidate metabolites whose levels differed markedly compared to those in control αTC1-6 cells, but also which could affect the glucagon release in IRKD cells. Of these candidates, taurine was remarkably increased in the IRKD cells and was identified as a stimulator of glucagon in αTC1-6 cells. Taurine also paradoxically exaggerated the glucagon secretion at a high glucose concentration in IRKD cells and islets with IRKD. These results indicate that the metabolic alterations induced by IRKD in α-cells, especially the increase of taurine, may lead to the distorted glucagon response in IRKD cells, suggesting the importance of taurine in the paradoxical glucagon response and the resultant glucose instability in insulin-deficient diabetes.

  4. The effect of a very low calorie diet on insulin sensitivity, beta cell function, insulin clearance, incretin hormone secretion, androgen levels and body composition in obese young women

    DEFF Research Database (Denmark)

    Svendsen, Pernille F; Jensen, Frank K; Holst, Jens Juul

    2012-01-01

    Evaluation of the effect of an 8-week very low calorie diet (VLCD, 500-600 kcal daily) on weight, body fat distribution, glucose, insulin and lipid metabolism, androgen levels and incretin secretion in obese women.......Evaluation of the effect of an 8-week very low calorie diet (VLCD, 500-600 kcal daily) on weight, body fat distribution, glucose, insulin and lipid metabolism, androgen levels and incretin secretion in obese women....

  5. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Fehse, Frauke; Trautmann, Michael; Holst, Jens Juul

    2005-01-01

    CONTEXT: First-phase insulin secretion (within 10 min after a sudden rise in plasma glucose) is reduced in type 2 diabetes mellitus (DM2). The incretin mimetic exenatide has glucoregulatory activities in DM2, including glucose-dependent enhancement of insulin secretion. OBJECTIVE: The objective...... of the study was to determine whether exenatide can restore a more normal pattern of insulin secretion in subjects with DM2. DESIGN: Fasted subjects received iv insulin infusion to reach plasma glucose 4.4-5.6 mmol/liter. Subjects received iv exenatide (DM2) or saline (DM2 and healthy volunteers), followed...... by iv glucose challenge. PATIENTS: Thirteen evaluable DM2 subjects were included in the study: 11 males, two females; age, 56 +/- 7 yr; body mass index, 31.7 +/- 2.4 kg/m2; hemoglobin A1c, 6.6 +/- 0.7% (mean +/- sd) treated with diet/exercise (n = 1), metformin (n = 10), or acarbose (n = 2). Controls...

  6. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thomas C Schulz

    Full Text Available Development of a human embryonic stem cell (hESC-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50-100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry.

  7. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion.

    Science.gov (United States)

    Geffner, M E; Kaplan, S A; Bersch, N; Golde, D W; Landaw, E M; Chang, R J

    1986-03-01

    Six nonobese women with polycystic ovarian disease (PCOD) showed significant hyperinsulinemia, compared with controls after oral glucose (P less than 0.05). As an indicator of insulin sensitivity, in vitro proliferation of erythrocyte progenitor cells of PCOD subjects exposed to physiologic concentrations of insulin was significantly blunted (P less than 0.001). Monocyte insulin receptor binding was not impaired in the PCOD subjects. Three of the PCOD patients were treated with a long-acting gonadotropin-releasing hormone agonist for 6 months, which resulted in marked suppression of ovarian androgen secretion but no demonstrable changes in in vivo or in vitro indicators of insulin resistance. Thus insulin resistance in PCOD subjects appears to be unrelated to ovarian hyperandrogenism (or acanthosis or obesity). Although certain tissues are insulin-resistant in PCOD patients, the ovary may remain sensitive and overproduce androgens in response to high circulating insulin levels.

  8. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Laila R.B. Santos

    2017-06-01

    Full Text Available Objective: The glucose stimulation of insulin secretion (GSIS by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. Methods: Islets were isolated from female C57BL/6J mice (J-islets, which lack functional NNT, and genetically close C57BL/6N mice (N-islets. Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. Results: NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in β-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. Conclusion: These

  9. Improvement of insulin secretion in rat models of diabetes after ACEI/ARB therapy

    International Nuclear Information System (INIS)

    Tian Jingyan; Li Fengying; Liu Yun; Long Hongmei; Li Weiyi; Wang Xiao; Zhang Hongli; Li Guo; Luo Min

    2009-01-01

    Objective To study the effect of ACEI/ARB therapy on the secretion of insulin and glucagon as well as serum lipid peroxidation marker 8-iso PGF-2α levels in streptozoticin (STZ) induced diabetic rat models.Methods Twenty-four rat models of STZ induced diabetes were prepared (random blood sugar>16.7 mmol/L). Of which, 8 models were fed enalaprial 5mg/kg/d, 8 models were fed losartan 10μg/kg/d and 8 models left unterated. Fasting serum insulin,glucagon (with RIA) and 8-iso PGF-2α (with ELISA) levels were measured in these models and 8 control rats three weeks later. Intravenous glucose tolerance test (IVGTT) were performed in 12 rats (3 animals in each group) six weeks later. Results: Serum levels of insulin in the treated models were higher than those in the non-treated models but without significance (P>0.05). Serum levels of glucagon and 8-iso PGF-2α levels in the treated models were significantly lower than those in the non-treated models (P 6 x ) in the treated models. Conclusion: ACEI/ARB treatment could improve the secretion of insulin in rat models of diabetes, which might be beneficial for controlling the progression of the disease. This phenomenon is consistent with the result of clinical study. (authors)

  10. Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release

    DEFF Research Database (Denmark)

    Hamid, Y H; Vissing, H; Holst, B

    2005-01-01

    AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40 for varia......AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40...... compared with the wild type (P = 0.01). The Arg211His polymorphism had a similar allele frequency among 1384 Type 2 diabetic patients [MAF%; 23.4 (95% CI: 21.8-25.0)] and 4424 middle-aged glucose-tolerant subjects [24.1% (23.2-25.0)]. A genotype-quantitative trait study of 5597 non-diabetic, middle...

  11. Insulin Secretion and Risk for Future Diabetes in Subjects with a Nonpositive Insulinogenic Index

    Directory of Open Access Journals (Sweden)

    Daisuke Aono

    2018-01-01

    Full Text Available Aim. To characterize subjects with a nonpositive insulinogenic index and longitudinally observe changes in their glucose tolerance. Subjects and Methods. A historical cohort study was conducted using data from the medical checkups of public school workers. Indices of insulin secretion and insulin sensitivity derived from oral glucose tolerance test (OGTT and the incidences of diabetes and impaired glucose tolerance (IGT were compared among subgroups of subjects with different insulinogenic index (change in insulin/change in glucose over the first 30 min on the OGTT. Results. Of the 1464 nondiabetic subjects at baseline, 72 (4.9% subjects had a nonpositive insulinogenic index: 42 of those subjects had a nonpositive glucose response (ΔGlu0–30 ≤ 0 and 30 had a nonpositive insulin response (ΔIns0–30 ≤ 0. Compared with subjects who had normal glucose tolerance (NGT with insulinogenic index ≥ 0.4, subjects with a nonpositive glucose response had a higher first-phase Stumvoll and lower incidences of diabetes and IGT based on a log-rank test (p<0.05, whereas subjects with a nonpositive insulin response had lower indices of insulin secretion and a higher incidence of diabetes (p<0.05. Conclusions. These results demonstrate that in the first 30 min on the OGTT, subjects with a nonpositive insulinogenic index due to a nonpositive glucose response (ΔGlu0–30 ≤ 0 had a lower risk for future diabetes and that subjects with nonpositive insulin response (ΔIns0–30 ≤ 0 had a higher risk for future one.

  12. Insulin and C-peptide secretion in non-obese patients with polycystic ovarian disease.

    Science.gov (United States)

    Mahabeer, S; Jialal, I; Norman, R J; Naidoo, C; Reddi, K; Joubert, S M

    1989-09-01

    Plasma glucose, immunoreactive insulin (IRI) and C-peptide responses during an oral glucose tolerance test (oGTT) were assessed in 11 non-obese patients with polycystic ovarian disease (PCOD) and 11 reference subjects matched for age, height and weight. Also, 6 patients with PCOD and 6 normal women were subjected to intravenous glucose tolerance testing (ivGTT) On oGTT, all subjects exhibited normal glucose tolerance; however, PCOD patients had significantly higher mean plasma glucose levels at 30, 60, 90 and 120 min and higher mean incremental glucose areas. In addition the patients with polycystic ovaries showed higher mean basal IRI and C-peptide levels, higher mean glucose stimulated IRI and C-peptide levels and higher mean incremental IRI and C-peptide values. The molar ratios of C-peptide/IRI were significantly lower in the PCOD group at all time intervals after glucose stimulation when compared to the normal women. During ivGTT, there were significantly higher mean glucose levels at 5, 40, 50 and 60 min in the PCOD group when compared to the reference group. The IRI response to intravenous glucose in the PCOD women was similar to the reference group. The findings on oGTT suggest that non-obese patients with PCOD have increased pancreatic IRI secretion as well as impaired hepatic extraction of the hormone.

  13. Pancreatic Islet Cell Transplantation

    Science.gov (United States)

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence. Imagesp1656-a PMID:21221366

  14. Geniposide regulates glucose-stimulated insulin secretion possibly through controlling glucose metabolism in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Jianhui Liu

    Full Text Available Glucose-stimulated insulin secretion (GSIS is essential to the control of metabolic fuel homeostasis. The impairment of GSIS is a key element of β-cell failure and one of causes of type 2 diabetes mellitus (T2DM. Although the KATP channel-dependent mechanism of GSIS has been broadly accepted for several decades, it does not fully describe the effects of glucose on insulin secretion. Emerging evidence has suggested that other mechanisms are involved. The present study demonstrated that geniposide enhanced GSIS in response to the stimulation of low or moderate