WorldWideScience

Sample records for pancreatic cancer cells

  1. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-01-01

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  2. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-01-01

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  3. Cancer Stem Cells in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J., E-mail: christiane.bruns@med.uni-muenchen.de [Department of Surgery, Ludwig Maximilian University of Munich, Klinikum Grosshadern, Marchioninistr. 15, D-81377, Munich (Germany)

    2010-08-19

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  4. Cancer Stem Cells in Pancreatic Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer. PMID:24281178

  5. Cancer Stem Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Karl-Walter Jauch

    2010-08-01

    Full Text Available Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs. Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  6. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction.

    Science.gov (United States)

    Javeed, Naureen; Sagar, Gunisha; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Bhattacharya, Santanu; Truty, Mark; Petersen, Gloria M; Kaufman, Randal J; Chari, Suresh T; Mukhopadhyay, Debabrata

    2015-04-01

    Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into

  7. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.

    Science.gov (United States)

    Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru

    2017-01-01

    Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.

  8. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  9. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  10. Engineered T cells for pancreatic cancer treatment

    Science.gov (United States)

    Katari, Usha L; Keirnan, Jacqueline M; Worth, Anna C; Hodges, Sally E; Leen, Ann M; Fisher, William E; Vera, Juan F

    2011-01-01

    Objective Conventional chemotherapy and radiotherapy produce marginal survival benefits in pancreatic cancer, underscoring the need for novel therapies. The aim of this study is to develop an adoptive T cell transfer approach to target tumours expressing prostate stem cell antigen (PSCA), a tumour-associated antigen that is frequently expressed by pancreatic cancer cells. Methods Expression of PSCA on cell lines and primary tumour samples was confirmed by immunohistochemistry. Healthy donor- and patient-derived T cells were isolated, activated in vitro using CD3/CD28, and transduced with a retroviral vector encoding a chimeric antigen receptor (CAR) targeting PSCA. The ability of these cells to kill tumour cells was analysed by chromium-51 (Cr51) release. Results Prostate stem cell antigen was expressed on >70% of the primary tumour samples screened. Activated, CAR-modified T cells could be readily generated in clinically relevant numbers and were specifically able to kill PSCA-expressing pancreatic cancer cell lines with no non-specific killing of PSCA-negative target cells, thus indicating the potential efficacy and safety of this approach. Conclusions Prostate stem cell antigen is frequently expressed on pancreatic cancer cells and can be targeted for immune-mediated destruction using CAR-modified, adoptively transferred T cells. The safety and efficacy of this approach indicate that it deserves further study and may represent a promising novel treatment for patients with pancreatic cancer. PMID:21843265

  11. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  12. miR-146a Suppresses Invasion of Pancreatic Cancer Cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2010-01-01

    The aggressive course of pancreatic cancer is believed to reflect its unusually invasive and metastatic nature, which is associated with epidermal growth factor receptor (EGFR) overexpression and NF-κB activation. MicroRNAs (miRNA) have been implicated in the regulation of various pathobiological processes in cancer, including metastasis in pancreatic cancer and in other human malignancies. In this study, we report lower expression of miR-146a in pancreatic cancer cells compared with normal human pancreatic duct epithelial cells. Reexpression of miR-146a inhibited the invasive capacity of pancreatic cancer cells with concomitant downregulation of EGFR and the NF-κB regulatory kinase interleukin 1 receptor–associated kinase 1 (IRAK-1). Cellular mechanism studies revealed crosstalk between EGFR, IRAK-1, IκBα, NF-κB, and MTA-2, a transcription factor that regulates metastasis. Treatment of pancreatic cancer cells with the natural products 3,3′-diinodolylmethane (DIM) or isoflavone, which increased miR-146a expression, caused a downregulation of EGFR, MTA-2, IRAK-1, and NF-κB, resulting in an inhibition of pancreatic cancer cell invasion. Our findings reveal DIM and isoflavone as nontoxic activators of a miRNA that can block pancreatic cancer cell invasion and metastasis, offering starting points to design novel anticancer agents. PMID:20124483

  13. Stem cell-based approach in diabetes and pancreatic cancer management

    Directory of Open Access Journals (Sweden)

    Yi-Zhou Jiang

    2017-01-01

    Full Text Available Stem cell-mediated therapy is a promising strategy for treating pancreatic diseases such as Type-1 diabetes (T1D and pancreatic cancers. Although islet transplantation has been reported to be an effective diabetes therapy, its worldwide application is extremely limited due to the shortage of donor islets and immune rejection problems. Stem cell-based approach for islet neogenesis in vivo could provide a promising alternative source of islets for treating diabetes. On the other hand, targeting the cancer stem cells could be very effective for the treatment of pancreatic cancers. In this review, we focused on the present progress in the field of adult pancreatic stem cells, stem cell-mediated strategies for treating T1D, and pancreatic cancer stem cells, while discussing of the possible challenges involved in them.

  14. Pancreatic Cancer

    Science.gov (United States)

    ... hormones that help control blood sugar levels. Pancreatic cancer usually begins in the cells that produce the juices. Some risk factors for developing pancreatic cancer include Smoking Long-term diabetes Chronic pancreatitis Certain ...

  15. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    Science.gov (United States)

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Targeting Cancer Stem Cells and Their Niche: Current Therapeutic Implications and Challenges in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Jiangang Zhao

    2017-01-01

    Full Text Available Cancer stem cells (CSCs have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide. CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer.

  17. File list: Unc.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Pancreatic_cancer_cells mm9 Unclassified Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  18. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Zhang, Yuqing; Chen, Aaron Y.; Li, Min; Chen, Changyi; Yao, Qizhi

    2010-01-01

    Background Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have anti-tumor activities. The objective in this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. Materials and Methods Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with Kampferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation and MTS assay. Lactate dehydrogenase (LDH) release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by TUNEL assay. Results Upon the treatment with 70 μM kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (Pkaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil (5-FU) showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had a significantly less cytotoxicity than 5-FU in normal human pancreatic ductal epithelial cells (P=0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. Conclusions Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer. PMID:18570926

  19. File list: His.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  20. File list: His.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  1. File list: Pol.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Pancreatic_cancer_cells mm9 RNA polymerase Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  2. File list: His.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  3. File list: DNS.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Pancreatic_cancer_cells mm9 DNase-seq Pancreas Pancreatic cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  4. [Effects of ezrin silencing on pancreatic cancer cell line Panc-1].

    Science.gov (United States)

    Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie

    2012-12-01

    To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.

  5. Chinese herb derived-Rocaglamide A is a potent inhibitor of pancreatic cancer cells.

    Science.gov (United States)

    Wang, Baochun; Li, Yixiong; Tan, Fengbo; Xiao, Zhanxiang

    2016-01-01

    Pancreatic cancer ranks No.1 in mortality rate worldwide. This study aims to identify the novel anti-pancreatic cancer drugs. Human pancreatic carcinoma cell lines were purchased from ATCC. CPE-based screening assay was used to examine the cell viability. Patient derived tumor xenografts in SCID mice was established. The Caspase-3 and 7 activities were measured using the Caspase Glo 3/7 Assay kit. Soft agar colony formation assay was used to evaluate the colony formation. Wound healing assay was employed to determine the cell migration. We screened a Chinese herbal product library and found three "hits" that kill cancer cells at nanomolar to micromolar concentrations. One of these compounds, rocaglamide, was found to be potent inhibitors of a wide spectrum of pancreatic cancer cell lines. Furthermore, Rocaglamide reduced the tumor size in a patient-derived pancreatic cancer xenograft mouse model without noticeable toxicity in vivo. Rocaglamide also inhibits pancreatic cancer cell migration and invasion. In conclusion, these data support that Rocaglamide may be a promising anti-pancreatic cancer drug.

  6. File list: ALL.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreatic_cancer_cells mm9 All antigens Pancreas Pancreatic cancer... cells SRX174586,SRX174585,SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  7. File list: Oth.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Pancreatic_cancer_cells mm9 TFs and others Pancreas Pancreatic cancer... cells SRX174585,SRX174586 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  8. File list: Oth.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreatic_cancer_cells mm9 TFs and others Pancreas Pancreatic cancer... cells SRX174586,SRX174585 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  9. File list: ALL.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreatic_cancer_cells mm9 All antigens Pancreas Pancreatic cancer... cells SRX174585,SRX174586,SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  10. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    International Nuclear Information System (INIS)

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-01-01

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.

  11. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells.

    Science.gov (United States)

    Zhang, Yu; Xue, Ying-Bo; Li, Hang; Qiu, Dong; Wang, Zhi-Wei; Tan, Shi-Sheng

    2017-02-04

    Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.

  12. File list: NoD.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.10.AllAg.Pancreatic_cancer_cells mm9 No description Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  13. Targeting senescence cells in pancreatic cancer | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Targeting senescence cells in pancreatic cancer. Cellular senescence is a programmed response to oncogenic (tumour-causing) stress that aims to halt the expansion of cells with malignant potential. It does this by stopping the proliferation of pre-cancerous lesions and recruitment of the immune system for their elimination.

  14. File list: InP.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.05.AllAg.Pancreatic_cancer_cells mm9 Input control Pancreas Pancreatic cancer... cells SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  15. Radiosensitization effect of CMNa on hypoxic pancreatic cancer cell in vitro

    International Nuclear Information System (INIS)

    Yin Lijie; Zhang Li; Ding Tiangui; Peng Zhaoxiang; Yu Huan; Gao Yuwei

    2006-01-01

    Objective: To investigate the effects of glycodidazolum natrium (CMNa) on pancreatic cancer cells under hypoxic condition. Methods: The human pancreatic cancer Panc-1 cells were exposed to a single fraction of high-dose γ-ray radiation either with CMNa or under hypoxic condition. The percentage of dead cells was detected with a multiwell plated reader, and fluorescence intensities of propidium iodide were measured before and after digitonin treatment. The sensitizing effect of CMNa on cell killing induced by high-dose irradiation was evaluated by time and concentration dependence. The selective radiosensitive effect of CMNa on hypoxia was evaluated by flow cytometry. Results: The death rate of pancreatic cancer Panc-1 cells paralleled with the increasing concentration of CMNa under hypoxic condition after 30 gray irradiation. The selective radiosensitive effect of CMNa on hypoxia was time-dependent. Conclusions: CMNa can enhance the radiosensitivity of pancreatic cancer Pane-1 cells under hypoxic condition with high-dose irradiation. (authors)

  16. Radiosensitization of pancreatic cancer cells by 2',2'-difluoro-2'-deoxycytidine

    International Nuclear Information System (INIS)

    Lawrence, Theodore S.; Chang, Emily Y.; Hahn, Tina M.; Hertel, Larry W.; Shewach, Donna S.

    1996-01-01

    Purpose: We have reported that the deoxycytidine analog 2',2'-difluoro-2'-deoxycytidine (dFdCyd) is a potent radiosensitizer of HT29 human colon cancer cells probably through its effects on intracellular deoxyribonucleotide (dNTP) pools. Because dFdCyd has activity against pancreatic cancer in clinical trials, we wished to determine if dFdCyd would radiosensitize human pancreatic cancer cells. Methods and Materials: We assessed the effect of dFdCyd on radiation sensitivity of two human pancreatic cancer cell lines, Panc-1 and BxPC-3. To begin to investigate the mechanism of sensitization, we determined the effect of dFdCyd on dNTP pools and cell cycle distribution. Results: We found that dFdCyd produced radiation enhancement ratios of 1.7-1.8 under noncytotoxic conditions in both cell lines. Sensitization was not associated with intracellular levels of 2',2'-difluoro-2'-deoxycytidine triphosphate, the cytotoxic metabolite of dFdCyd, but occurred when dATP pools were depleted below the level of approximately 1 μM. Although both cell lines showed substantial cell cycle redistribution after drug treatment, the flow cytogram of the BxPC-3 cells would not, by itself, be anticipated to result in increased radiation sensitivity. Conclusions: These findings demonstrate that dFdCyd is a potent radiation sensitizer of human pancreatic cancer cells and support the development of a clinical protocol using combined dFdCyd and radiation therapy in the treatment of pancreatic cancer

  17. Effect of cyclophilin A on gene expression in human pancreatic cancer cells.

    Science.gov (United States)

    Li, Min; Wang, Hao; Li, Fei; Fisher, William E; Chen, Changyi; Yao, Qizhi

    2005-11-01

    We previously found that cyclophilin A (CypA) is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. In this study, we further investigated the effect of CypA on gene expression of several key molecules that are involved in pancreatic cancer cell proliferation. Human pancreatic cancer cell lines (Panc-1, MIA PaCa-2, and BxPC-3) and human pancreatic ductal epithelial (HPDE) cells were used. The messenger RNA (mRNA) levels of CypA, CypB, CD147, neuropilins (NRPs), vascular endothelial growth factor (VEGF), and VEGF receptors upon the treatment of exogenous recombinant human CypA were determined by real-time reverse-transcription polymerase chain reaction. Exogenous human recombinant CypA reduced the mRNA levels of NRP-1 and VEGF, but not endogenous CypA, CypB, and CD147, in Panc-1, MIA PaCa-2, and BxPC-3 cells. In contrast, HPDE cells showed a decrease of endogenous CypA and CD147 mRNA, but not detectable changes of CypB, NRPs, and VEGF mRNA levels upon exogenous CypA treatment. These data show that exogenous CypA downregulates NRP-1 and VEGF expression in pancreatic cancer cells. This effect is different in normal HPDE cells. Thus, soluble CypA may affect cell growth of pancreatic cancer.

  18. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  19. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  20. Knockdown of ZFR suppresses cell proliferation and invasion of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Xiaolan Zhao

    Full Text Available BACKGROUND: Zinc finger RNA binding protein (ZFR is involved in the regulation of growth and cancer development. However, little is known about ZFR function in pancreatic cancer. METHODS: Herein, to investigate whether ZFR is involved in tumor growth, Oncomine microarray data was firstly used to evaluate ZFR gene expression in human pancreatic tumors. Then short hairpin RNA (shRNA targeting ZFR was designed and delivered into PANC-1 pancreatic cancer cells to knock down ZFR expression. Cell viability, cell proliferation and cell cycle analysis after ZFR knockdown were determined by MTT, colony forming and FACS, respectively. In addition, cell migration and invasion were assessed using the Transwell system. RESULTS: The expression of ZFR was significantly higher in pancreatic tumors than normal pancreas tissues by Oncomine database analysis. Knockdown of ZFR by shRNA-expressing lentivirus significantly decreased the viability and invasion ability of pancreatic cancer cells. Moreover, FACS analysis showed that knockdown of ZFR in PANC-1 cells caused a significant cell cycle arrest at G0/G1 phase. Furthermore, knockdown of ZFR decreased the levels of CDK2, CDK4, CyclinA and CyclinD1 and enhanced the expression of p27, which has evidenced by qRT-PCR and Western blot analysis. CONCLUSIONS: Knockdown of ZFR might provide a novel alternative to targeted therapy of pancreatic cancer and deserves further investigation.

  1. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Scott, Andrew J.; Wilkinson, Amanda S.; Wilkinson, John C.

    2016-01-01

    Apoptosis-inducing factor (AIF), named for its involvement in cell death pathways, is a mitochondrial protein that regulates metabolic homeostasis. In addition to supporting the survival of healthy cells, AIF also plays a contributory role to the development of cancer through its enzymatic activity, and we have previously shown that AIF preferentially supports advanced-stage prostate cancer cells. Here we further evaluated the role of AIF in tumorigenesis by exploring its function in pancreatic cancer, a disease setting that most often presents at an advanced stage by the time of diagnosis. A bioinformatics approach was first employed to investigate AIF mRNA transcript levels in pancreatic tumor specimens vs. normal tissues. AIF-deficient pancreatic cancer cell lines were then established via lentiviral infection. Immunoblot analysis was used to determine relative protein quantities within cells. Cell viability was measured by flow cytometry; in vitro and Matrigel™ growth/survival using Coulter™ counting and phase contrast microscopy; and glucose consumption in the absence and presence of Matrigel™ using spectrophotometric methods. Archival gene expression data revealed a modest elevation of AIF transcript levels in subsets of pancreatic tumor specimens, suggesting a possible role in disease progression. AIF expression was then suppressed in a panel of five pancreatic cancer cell lines that display diverse metabolic phenotypes. AIF ablation selectively crippled the growth of cells in vitro in a manner that directly correlated with the loss of mitochondrial respiratory chain subunits and altered glucose metabolism, and these effects were exacerbated in the presence of Matrigel™ substrate. This suggests a critical metabolic role for AIF to pancreatic tumorigenesis, while the spectrum of sensitivities to AIF ablation depends on basal cellular metabolic phenotypes. Altogether these data indicate that AIF supports the growth and survival of metabolically defined

  2. Cancer Stem Cells, EMT, and Developmental Pathway Activation in Pancreatic Tumors

    International Nuclear Information System (INIS)

    Hindriksen, Sanne; Bijlsma, Maarten F.

    2012-01-01

    Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer

  3. Pancreatic cancer stromal biology and therapy

    Science.gov (United States)

    Xie, Dacheng; Xie, Keping

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis. PMID:26114155

  4. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Directory of Open Access Journals (Sweden)

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  5. Effect of Protein Hydrolysates on Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Ossum, Carlo G.; Andersen, Lisa Lystbæk; Nielsen, Henrik Hauch

    Effect of Fish Protein Hydrolysates on Pancreatic Cancer Cells Carlo G. Ossum1, Lisa Lystbæk Andersen2, Henrik Hauch Nielsen2, Else K. Hoffmann1, and Flemming Jessen2 1University of Copenhagen, Department of Biology, Denmark, 2Technical University of Denmark (DTU), National Food Institute, Denmark...... hydrolysates obtained by enzymatic hydrolysis on cancer cell proliferation. Skin and belly flap muscle from trout were hydrolysed with the unspecific proteases Alcalase, Neutrase, or UE1 (all from Novozymes, Bagsværd, Denmark) to a hydrolysis degree of 1-15%. The hydrolysates were tested for biological...... activities affecting cell proliferation and ability to modulate caspase activity in pancreatic cancer cells COLO357 and BxPC-3 in vitro. A number of the hydrolysates showed caspase promoting activity; in particular products containing muscle tissue, i.e. belly flap, were able to stimulate caspase activity...

  6. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Ujiki, Michael B.; Milam, Ben; Ding Xianzhong; Roginsky, Alexandra B.; Salabat, M. Reza; Talamonti, Mark S.; Bell, Richard H.; Gu Wenxin; Silverman, Richard B.; Adrian, Thomas E.

    2006-01-01

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  7. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance.

    Science.gov (United States)

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-30

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future.

  8. Short-chain C6 ceramide sensitizes AT406-induced anti-pancreatic cancer cell activity

    International Nuclear Information System (INIS)

    Zhao, Xiaoguang; Sun, Baoyou; Zhang, Jingjing; Zhang, Ruishen; Zhang, Qing

    2016-01-01

    Our previous study has shown that AT406, a first-in-class small molecular antagonist of IAPs (inhibitor of apoptosis proteins), inhibits pancreatic cancer cell proliferation in vitro and in vivo. The aim of this research is to increase AT406's sensitivity by adding short-chain C6 ceramide. We show that co-treatment of C6 ceramide dramatically potentiated AT406-induced caspase/apoptosis activation and cytotoxicity in established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells. Reversely, caspase inhibitors largely attenuated C6 ceramide plus AT406-induced above cancer cell death. Molecularly, C6 ceramide downregulated Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. Intriguingly, C6 ceramide-mediated AT406 sensitization was nullified with Bcl-2 shRNA knockdown or pretreatment of the Bcl-2 inhibitor ABT-737. In vivo, liposomal C6 ceramide plus AT406 co-administration dramatically inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) mice. The combined anti-tumor activity was significantly more potent than either single treatment. Expressions of IAPs (cIAP1/XIAP) and Bcl-2 were downregulated in Panc-1 xenografts with the co-administration. Together, we demonstrate that C6 ceramide sensitizes AT406-mediated anti-pancreatic cancer cell activity possibly via downregulating Bcl-2. - Highlights: • C6 ceramide dramatically potentiates AT406-induced pancreatic cancer cell death. • C6 ceramide facilitates AT406-induced pancreatic cancer cell apoptosis. • C6 ceramide downregulates Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. • Liposomal C6 ceramide enhances AT406-induced anti-pancreatic cancer activity in vivo.

  9. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  10. Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression.

    Directory of Open Access Journals (Sweden)

    Zhaoming Li

    Full Text Available Six1 is one of the transcription factors that act as master regulators of development and are frequently dysregulated in cancers. However, the role of Six1 in pancreatic cancer is not clear. Here we show that the relative expression of Six1 mRNA is increased in pancreatic cancer and correlated with advanced tumor stage. In vitro functional assays demonstrate that forced overexpression of Six1 significantly enhances the growth rate and proliferation ability of pancreatic cancer cells. Knockdown of endogenous Six1 decreases the proliferation of these cells dramatically. Furthermore, Six1 promotes the growth of pancreatic cancer cells in a xenograft assay. We also show that the gene encoding cyclin D1 is a direct transcriptional target of Six1 in pancreatic cancer cells. Overexpression of Six1 upregulates cyclin D1 mRNA and protein, and significantly enhances the activity of the cyclin D1 promoter in PANC-1 cells. We demonstrate that Six1 promotes cell cycle progression and proliferation by upregulation of cyclin D1. These data suggest that Six1 is overexpressed in pancreatic cancer and may contribute to the increased cell proliferation through upregulation of cyclin D1.

  11. Extra-pancreatic invasion induces lipolytic and fibrotic changes in the adipose microenvironment, with released fatty acids enhancing the invasiveness of pancreatic cancer cells

    Science.gov (United States)

    Okumura, Takashi; Ohuchida, Kenoki; Sada, Masafumi; Abe, Toshiya; Endo, Sho; Koikawa, Kazuhiro; Iwamoto, Chika; Miura, Daisuke; Mizuuchi, Yusuke; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Oda, Yoshinao; Hashizume, Makoto; Nakamura, Masafumi

    2017-01-01

    Pancreatic cancer progression involves components of the tumor microenvironment, including stellate cells, immune cells, endothelial cells, and the extracellular matrix. Although peripancreatic fat is the main stromal component involved in extra-pancreatic invasion, its roles in local invasion and metastasis of pancreatic cancer remain unclear. This study investigated the role of adipose tissue in pancreatic cancer progression using genetically engineered mice (Pdx1-Cre; LSL-KrasG12D; Trp53R172H/+) and an in vitro model of organotypic fat invasion. Mice fed a high fat diet had significantly larger primary pancreatic tumors and a significantly higher rate of distant organ metastasis than mice fed a standard diet. In the organotypic fat invasion model, pancreatic cancer cell clusters were smaller and more elongated in shape and showed increased fibrosis. Adipose tissue-derived conditioned medium enhanced pancreatic cancer cell invasiveness and gemcitabine resistance, as well as inducing morphologic changes in cancer cells and increasing the numbers of lipid droplets in their cytoplasm. The concentrations of oleic, palmitoleic, and linoleic acids were higher in adipose tissue-derived conditioned medium than in normal medium, with these fatty acids significantly enhancing the migration of cancer cells. Mature adipocytes were smaller and the concentration of fatty acids in the medium higher when these cells were co-cultured with cancer cells. These findings indicate that lipolytic and fibrotic changes in peripancreatic adipose tissue enhance local invasiveness and metastasis via adipocyte-released fatty acids. Inhibition of fatty acid uptake by cancer cells may be a novel therapy targeting interactions between cancer and stromal cells. PMID:28407685

  12. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  13. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-01-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  14. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vegard Tjomsland

    2016-07-01

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs. PSCs interact with cancer cells through various factors, including transforming growth factor (TGFβ and interleukin (IL-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer–based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.

  15. CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Kenji Fujiwara

    Full Text Available CD166, also known as activated leukocyte cell adhesion molecule (ALCAM, is expressed by various cells in several tissues including cancer. However, the role of CD166 in malignant tumors is controversial, especially in pancreatic cancer. This study aimed to clarify the role and significance of CD166 expression in pancreatic cancer.We performed immunohistochemistry and flow cytometry to analyze the expression of CD166 in surgical pancreatic tissues and pancreatic cancer cell lines. The differences between isolated CD166+ and CD166- pancreatic cancer cells were analyzed by invasion and migration assays, and in mouse xenograft models. We also performed quantitative RT-PCR and microarray analyses to evaluate the expression levels of CD166 and related genes in cultured cells.Immunohistochemistry revealed high expression of CD166 in pancreatic cancer tissues (12.2%; 12/98 compared with that in normal pancreas controls (0%; 0/17 (p = 0.0435. Flow cytometry indicated that CD166 was expressed in 33.8-70.2% of cells in surgical pancreatic tissues and 0-99.5% of pancreatic cancer cell lines. Invasion and migration assays demonstrated that CD166- pancreatic cancer cells showed stronger invasive and migratory activities than those of CD166+ cancer cells (p<0.05. On the other hand, CD166+ Panc-1 cells showed a significantly stronger colony formation activity than that of CD166- Panc-1 cells (p<0.05. In vivo analysis revealed that CD166+ cells elicited significantly greater tumor growth than that of CD166- cells (p<0.05 in both subcutaneous and orthotopic mouse tumor models. mRNA expression of the epithelial-mesenchymal transition activator Zeb1 was over-expressed in CD166- cells (p<0.001. Microarray analysis showed that TSPAN8 and BST2 were over-expressed in CD166+ cells, while BMP7 and Col6A1 were over-expressed in CD166- cells.CD166+ pancreatic cancer cells are strongly tumorigenic, while CD166- pancreatic cancer cells exhibit comparatively stronger

  16. Hedgehog signaling and therapeutics in pancreatic cancer.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    OBJECTIVE: To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. METHOD: PubMed search (2000-2010) and literature based references. RESULTS: Firstly, in 2009 a genetic analysis of pancreatic cancers found that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Secondly, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) has shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Thirdly, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compresses the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourthly, it has been found that ligand dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. CONCLUSIONS: Aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

  17. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway.

    Directory of Open Access Journals (Sweden)

    Igor Paron

    Full Text Available BACKGROUND: Pancreatic cancer (PDAC is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC, a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs. In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. METHODS: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. RESULTS: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. CONCLUSION: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.

  18. Expression and significance of Axin2 in pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    ZHANG Tao

    2016-05-01

    Full Text Available ObjectiveTo investigate the expression of Axin2 in pancreatic cancer cells, and to observe the influence of Axin2 on the proliferation, invasion, and migration of human pancreatic cancer cells (PANC-1. MethodsQuantitative real-time PCR was used to measure the expression of Axin2 in pancreatic cancer cell lines with different invasive abilities (PANC-1, Mia PaCa-2, and BxPC-3 and immortalized normal pancreatic cells (H6C7. PANC-1 cells with low expression were transfected with over-expressed Axin2 plasmid by transient transfection. MTT assay, Transwell assay, and scratch assay were used to determine the proliferation, invasion, and migration of cells transfected with over-expressed Axin2. One-way analysis of variance was used for comparison between multiple groups, and SNK-q test was used for comparison between any two groups. ResultsThe relative expression levels of Axin2 in PANC-1, BxPC-3, Mia PaCa-2, and H6C7 cells were 0.13±0.01, 0.42±0.05, 0.24±0.011, and 1.00±0.00, respectively, and PANC-1 cells had the lowest expression level of Axin2, with significant differences compared with the other cells (all P<0.05. When PANC-1 cells were transfected with over-expressed Axin2 plasmid, the cells in the over-expression group had a significant increase in the expression level of Axin2 compared with those in the blank group and the negative control group (both P<0.05. Compared with those in the non-transfection group and the blank group, PANC-1 cells in the over-expression group showed significant reductions in the proliferation, invasion, and migration abilities. ConclusionThe expression of Axin2 is down-regulated in pancreatic cancer cell lines and decreases with the increasing invasion ability, suggesting the role of tumor suppressor gene. High expression of Axin2 can reduce the proliferation, invasion, and migration abilities of PANC-1 cells.

  19. Galectin-4 Reduces Migration and Metastasis Formation of Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ana I Belo

    Full Text Available Galectin-4 (Gal-4 is a member of the galectin family of glycan binding proteins that shows a significantly higher expression in cystic tumors of the human pancreas and in pancreatic adenocarcinomas compared to normal pancreas. However, the putative function of Gal-4 in tumor progression of pancreatic cancer is still incompletely understood. In this study the role of Gal-4 in cancer progression was investigated, using a set of defined pancreatic cancer cell lines, Pa-Tu-8988S (PaTu-S and Pa-Tu-8988T (PaTu-T, as a model. These two cell lines are derived from the same liver metastasis of a human primary pancreatic adenocarcinoma, but differ in their growth characteristics and metastatic capacity. We demonstrated that Gal-4 expression is high in PaTu-S, which shows poor migratory properties, whereas much lower Gal-4 levels are observed in the highly metastatic cell line PaTu-T. In PaTu-S, Gal-4 is found in the cytoplasm, but it is also secreted and accumulates at the membrane at sites of contact with neighboring cells. Moreover, we show that Gal-4 inhibits metastasis formation by delaying migration of pancreatic cancer cells in vitro using a scratch assay, and in vivo using zebrafish (Danio rerio as an experimental model. Our data suggest that Gal-4 may act at the cell-surface of PaTu-S as an adhesion molecule to prevent release of the tumor cells, but has in addition a cytosolic function by inhibiting migration via a yet unknown mechanism.

  20. KIF20A-Mediated RNA Granule Transport System Promotes the Invasiveness of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2014-12-01

    Full Text Available Pancreatic cancers are aggressive because they are highly invasive and highly metastatic; moreover, effective treatments for aggressive pancreatic cancers are lacking. Here, we report that the motor kinesin protein KIF20A promoted the motility and invasiveness of pancreatic cancer cells through transporting the RNA-binding protein IGF2BP3 and IGF2BP3-bound transcripts toward cell protrusions along microtubules. We previously reported that IGF2BP3 and its target transcripts are assembled into cytoplasmic stress granules of pancreatic cancer cells, and that IGF2BP3 promotes the motility and invasiveness of pancreatic cancer cells through regulation of localized translation of IGF2BP3-bound transcripts in cell protrusions. We show that knockdown of KIF20A inhibited accumulation of IGF2BP3-containing stress granules in cell protrusions and suppressed local protein expression from specific IGF2BP3-bound transcripts, ARF6 and ARHGEF4, in the protrusions. Our results provide insight into the link between regulation of KIF20A-mediated trafficking of IGF2BP3-containing stress granules and modulation of the motility and invasiveness in pancreatic cancers.

  1. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    Science.gov (United States)

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  2. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker.

    Science.gov (United States)

    Ray, Partha; Rialon-Guevara, Kristy L; Veras, Emanuela; Sullenger, Bruce A; White, Rebekah R

    2012-05-01

    Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.

  3. [Role of connective tissue growth factor (CTGF) in proliferation and migration of pancreatic cancer cells].

    Science.gov (United States)

    Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong

    2011-10-01

    To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.

  4. In vitro cytotoxicity of alpha conjugates for human pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Qu, C.; Li, Y.; Rizvi, M.A.; Allen, B.; Samra, J.; Smith, R.

    2003-01-01

    Targeted Alpha therapy (TAT) can inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The aim of this study is to demonstrate the cytotoxicity of different alpha conjugates in vitro to human metastatic pancreatic cancer cell lines (CAPAN-1, CFPAN-1 and PANC-1). We are labeling the C595 and J591 (non-specific controls) monoclonal antibodies (Mabs) with 213 Bi were performed according to the standard methods in our laboratory. 213 Bi-C595 is specifically cytotoxic to CAPAN-1, CFPAN-1 and PANC-1cell lines in a concentration-dependent fashion. While non-specific alpha conjugates only killed very small fractions of pancreatic cancer cells. These alpha conjugates might be useful agents for the treatment of micro-metastases in pancreatic cancer patients with over-expression of the targeted receptors

  5. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    International Nuclear Information System (INIS)

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-01-01

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy

  6. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  7. Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells.

    Science.gov (United States)

    Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Takikawa, Tetsuya; Nabeshima, Tatsuhide; Shimosegawa, Tooru

    2018-01-01

    Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    Science.gov (United States)

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  9. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  10. The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sandra Valle

    2018-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC, the most common type of pancreatic cancer, is the 4th most frequent cause of cancer-related death worldwide, primarily due to the inherent chemoresistant nature and metastatic capacity of this tumor. The latter is believed to be mainly due to the existence of a subpopulation of highly plastic “stem”-like cells within the tumor, known as cancer stem cells (CSCs, which have been shown to have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. As such, current treatments for the majority of PDAC patients are not effective and do not significantly impact overall patient survival (<7 months as they do not affect the pancreatic CSC (PaCSC population. In this context, it is important to highlight the need to better understand the characteristics of the PaCSC population in order to develop new therapies to target these cells. In this review, we will provide the latest updates and knowledge on the inherent characteristics of PaCSCs, particularly their unique biological properties including chemoresistance, epithelial to mesenchymal transition, plasticity, metabolism and autophagy.

  11. Pancreatic cancer risk in hereditary pancreatitis

    Directory of Open Access Journals (Sweden)

    Frank Ulrich Weiss

    2014-02-01

    Full Text Available Inflammation is part of the body’s immune response in order to remove harmful stimuli – like pathogens, irritants or damaged cells - and start the healing process. Recurrent or chronic inflammation on the other side seems a predisposing factor for carcinogenesis and has been found associated with cancer development. In chronic pancreatitis mutations of the cationic trypsinogen (PRSS1 gene have been identified as risk factors of the disease. Hereditary pancreatitis is a rare cause of chronic pancreatic inflammation with an early onset, mostly during childhood. Hereditary pancreatitis often starts with recurrent episodes of acute pancreatitis and the clinical phenotype is not very much different from other etiologies of the disease. The long-lasting inflammation however generates a tumor promoting environment and represents a major risk factor for tumor development This review will reflect our knowledge concerning the specific risk of hereditary pancreatitis patients to develop pancreatic cancer.

  12. PTK6 promotes cancer migration and invasion in pancreatic cancer cells dependent on ERK signaling.

    Directory of Open Access Journals (Sweden)

    Hiroaki Ono

    Full Text Available Protein Tyrosine Kinase 6 (PTK6 is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each. In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05. Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer.

  13. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  14. Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells

    International Nuclear Information System (INIS)

    Papa, Anne-Laure; Basu, Sudipta; Sengupta, Poulomi; Banerjee, Deboshri; Sengupta, Shiladitya; Harfouche, Rania

    2012-01-01

    Pancreatic cancer remains the deadliest of all cancers, with a mortality rate of 91%. Gemcitabine is considered the gold chemotherapeutic standard, but only marginally improves life-span due to its chemical instability and low cell penetrance. A new paradigm to improve Gemcitabine’s therapeutic index is to administer it in nanoparticles, which favour its delivery to cells when under 500 nm in diameter. Although promising, this approach still suffers from major limitations, as the choice of nanovector used as well as its effects on Gemcitabine intracellular trafficking inside pancreatic cancer cells remain unknown. A proper elucidation of these mechanisms would allow for the elaboration of better strategies to engineer more potent Gemcitabine nanotherapeutics against pancreatic cancer. Gemcitabine was encapsulated in two types of commonly used nanovectors, namely poly(lactic-co-glycolic acid) (PLGA) and cholesterol-based liposomes, and their physico-chemical parameters assessed in vitro. Their mechanisms of action in human pancreatic cells were compared with those of the free drug, and with each others, using cytotoxity, apoptosis and ultrastructural analyses. Physico-chemical analyses of both drugs showed high loading efficiencies and sizes of less than 200 nm, as assessed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), with a drug release profile of at least one week. These profiles translated to significant cytotoxicity and apoptosis, as well as distinct intracellular trafficking mechanisms, which were most pronounced in the case of PLGem showing significant mitochondrial, cytosolic and endoplasmic reticulum stresses. Our study demonstrates how the choice of nanovector affects the mechanisms of drug action and is a crucial determinant of Gemcitabine intracellular trafficking and potency in pancreatic cancer settings

  15. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    Science.gov (United States)

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  16. Downregulation of tight junction-associated MARVEL protein marvelD3 during epithelial-mesenchymal transition in human pancreatic cancer cells.

    Science.gov (United States)

    Kojima, Takashi; Takasawa, Akira; Kyuno, Daisuke; Ito, Tatsuya; Yamaguchi, Hiroshi; Hirata, Koichi; Tsujiwaki, Mitsuhiro; Murata, Masaki; Tanaka, Satoshi; Sawada, Norimasa

    2011-10-01

    The novel tight junction protein marvelD3 contains a conserved MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain like occludin and tricellulin. However, little is yet known about the detailed role and regulation of marvelD3 in normal epithelial cells and cancer cells, including pancreatic cancer. In the present study, we investigated marvelD3 expression in well and poorly differentiated human pancreatic cancer cell lines and normal pancreatic duct epithelial cells in which the hTERT gene was introduced into human pancreatic duct epithelial cells in primary culture, and the changes of marvelD3 during Snail-induced epithelial-mesenchymal transition (EMT) under hypoxia, TGF-β treatment and knockdown of FOXA2 in well differentiated pancreatic cancer HPAC cells. MarvelD3 was transcriptionally downregulated in poorly differentiated pancreatic cancer cells and during Snail-induced EMT of pancreatic cancer cells in which Snail was highly expressed and the fence function downregulated, whereas it was maintained in well differentiated human pancreatic cancer cells and normal pancreatic duct epithelial cells. Depletion of marvelD3 by siRNAs in HPAC cells resulted in downregulation of barrier functions indicated as a decrease in transepithelial electric resistance and an increase of permeability to fluorescent dextran tracers, whereas it did not affect fence function of tight junctions. In conclusion, marvelD3 is transcriptionally downregulated in Snail-induced EMT during the progression for the pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. New insights into pancreatic cancer biology.

    Science.gov (United States)

    Hidalgo, M

    2012-09-01

    Pancreatic cancer remains a devastating disease. Over the last few years, there have been important advances in the molecular and biological understanding of pancreatic cancer. This included understanding of the genomic complexity of the disease, the role of pancreatic cancer stem cells, the relevance of the tumor microenvironment, and the unique metabolic adaptation of pancreas cancer cells to obtain nutrients under hypoxic environment. In this paper, we review the most salient developments in these few areas.

  18. NIK is involved in constitutive activation of the alternative NF-κB pathway and proliferation of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Nishina, Takashi; Yamaguchi, Noritaka; Gohda, Jin; Semba, Kentaro; Inoue, Jun-ichiro

    2009-01-01

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-κB is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-κB activation. Here, we show that the alternative pathway is constitutively activated and NF-κB-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  19. NIK is involved in constitutive activation of the alternative NF-{kappa}B pathway and proliferation of pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Takashi [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Yamaguchi, Noritaka [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Gohda, Jin [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Semba, Kentaro [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2009-10-09

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-{kappa}B is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-{kappa}B activation. Here, we show that the alternative pathway is constitutively activated and NF-{kappa}B-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  20. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.

    Science.gov (United States)

    Zhan, Han-Xiang; Zhou, Bin; Cheng, Yu-Gang; Xu, Jian-Wei; Wang, Lei; Zhang, Guang-Yong; Hu, San-Yuan

    2017-04-28

    Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chinese herb derived-Rocaglamide A is a potent inhibitor of pancreatic cancer cells

    OpenAIRE

    Wang, Baochun; Li, Yixiong; Tan, Fengbo; Xiao, Zhanxiang

    2016-01-01

    Pancreatic cancer ranks No.1 in mortality rate worldwide. This study aims to identify the novel anti-pancreatic cancer drugs. Human pancreatic carcinoma cell lines were purchased from ATCC. CPE-based screening assay was used to examine the cell viability. Patient derived tumor xenografts in SCID mice was established. The Caspase-3 and 7 activities were measured using the Caspase Glo 3/7 Assay kit. Soft agar colony formation assay was used to evaluate the colony formation. Wound healing assay ...

  2. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine

    Directory of Open Access Journals (Sweden)

    Zhengdong Jiang

    2016-09-01

    Full Text Available Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP expression and that of YAP in pancreatic cancer cells’ response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK (Thr172 and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy.

  3. Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways.

    Directory of Open Access Journals (Sweden)

    Yi-Jin Chen

    Full Text Available Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer.Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model.AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33, which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo.AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by

  4. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lou, Hai-zhou; Weng, Xiao-chuan; Pan, Hong-ming; Pan, Qin; Sun, Peng; Liu, Li-li; Chen, Bin

    2014-01-01

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment

  5. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Hai-zhou [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Weng, Xiao-chuan [Department of Anesthesiology, Hangzhou Xia-sha Hospital, Hangzhou 310018 (China); Pan, Hong-ming; Pan, Qin [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Sun, Peng [Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060 (China); Liu, Li-li [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Chen, Bin, E-mail: chenbinhangzhou126@126.com [Department of Hepatopancreatobiliary Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006 (China)

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  6. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  7. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  8. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  9. MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis

    Science.gov (United States)

    Qiu, Jing-Xin; Kim, Edward J.; Yu, Ai-Ming

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Better understanding of pancreatic cancer biology may help identify new oncotargets towards more effective therapies. This study investigated the mechanistic actions of microRNA-1291 (miR-1291) in the suppression of pancreatic tumorigenesis. Our data showed that miR-1291 was downregulated in a set of clinical pancreatic carcinoma specimens and human pancreatic cancer cell lines. Restoration of miR-1291 expression inhibited pancreatic cancer cell proliferation, which was associated with cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 sharply suppressed the tumorigenicity of PANC-1 cells in mouse models. A proteomic profiling study revealed 32 proteins altered over 2-fold in miR-1291-expressing PANC-1 cells that could be assembled into multiple critical pathways for cancer. Among them anterior gradient 2 (AGR2) was reduced to the greatest degree. Through computational and experimental studies we further identified that forkhead box protein A2 (FOXA2), a transcription factor governing AGR2 expression, was a direct target of miR-1291. These results connect miR-1291 to the FOXA2-AGR2 regulatory pathway in the suppression of pancreatic cancer cell proliferation and tumorigenesis, providing new insight into the development of miRNA-based therapy to combat pancreatic cancer. PMID:27322206

  10. Heme oxygenase is not involved in the anti-proliferative effects of statins on pancreatic cancer cells

    International Nuclear Information System (INIS)

    Vanova, K.; Boukalova, S.; Gbelcova, H.; Muchova, L.; Neuzil, J.; Gurlich, R.; Ruml, T.; Vitek, L.

    2016-01-01

    Pancreatic cancer is recognized as one of the most fatal tumors due to its aggressiveness and resistance to therapy. Statins were previously shown to inhibit the proliferation of cancer cells via various signaling pathways. In healthy tissues, statins activate the heme oxygenase pathway, nevertheless the role of heme oxygenase in pancreatic cancer is still controversial. The aim of this study was to evaluate, whether anti-proliferative effects of statins in pancreatic cancer cells are mediated via the heme oxygenase pathway. In vitro effects of various statins and hemin, a heme oxygenase inducer, on cell proliferation were evaluated in PA-TU-8902, MiaPaCa-2 and BxPC-3 human pancreatic cancer cell lines. The effect of statins on heme oxygenase activity was assessed and heme oxygenase-silenced cells were used for pancreatic cancer cell proliferation studies. Cell death rate and reactive oxygen species production were measured in PA-TU-8902 cells, followed by evaluation of the effect of cerivastatin on GFP-K-Ras trafficking and expression of markers of invasiveness, osteopontin (SPP1) and SOX2. While simvastatin and cerivastatin displayed major anti-proliferative properties in all cell lines tested, pravastatin did not affect the cell growth at all. Strong anti-proliferative effect was observed also for hemin. Co-treatment of cerivastatin and hemin increased anti-proliferative potential of these agents, via increased production of reactive oxygen species and cell death compared to individual treatment. Heme oxygenase silencing did not prevent pancreatic cancer cells from the tumor-suppressive effect of cerivastatin or hemin. Cerivastatin, but not pravastatin, protected Ras protein from trafficking to the cell membrane and significantly reduced expressions of SPP1 (p < 0.05) and SOX2 (p < 0.01). Anti-proliferative effects of statins and hemin on human pancreatic cancer cell lines do not seem to be related to the heme oxygenase pathway. While hemin triggers reactive

  11. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells

    Science.gov (United States)

    Van Audenaerde, Jonas R.M.; De Waele, Jorrit; Marcq, Elly; Van Loenhout, Jinthe; Lion, Eva; Van den Bergh, Johan M.J.; Jesenofsky, Ralf; Masamune, Atsushi; Roeyen, Geert; Pauwels, Patrick; Lardon, Filip; Peeters, Marc; Smits, Evelien L.J.

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death in Western countries with a 5-year survival rate below 5%. One of the hallmarks of this cancer is the strong desmoplastic reaction within the tumor microenvironment (TME), orchestrated by activated pancreatic stellate cells (PSC). This results in a functional and mechanical shield which causes resistance to conventional therapies. Aiming to overcome this resistance by tackling the stromal shield, we assessed for the first time the capacity of IL-15 stimulated natural killer (NK) cells to kill PSC and pancreatic cancer cells (PCC). The potency of IL-15 to promote NK cell-mediated killing was evaluated phenotypically and functionally. In addition, NK cell and immune checkpoint ligands on PSC were charted. We demonstrate that IL-15 activated NK cells kill both PCC and PSC lines (range 9-35% and 20-50%, respectively) in a contact-dependent manner and significantly higher as compared to resting NK cells. Improved killing of these pancreatic cell lines is, at least partly, dependent on IL-15 induced upregulation of TIM-3 and NKG2D. Furthermore, we confirm significant killing of primary PSC by IL-15 activated NK cells in an ex vivo autologous system. Screening for potential targets for immunotherapeutic strategies, we demonstrate surface expression of both inhibitory (PD-L1, PD-L2) and activating (MICA/B, ULBPs and Galectin-9) ligands on primary PSC. These data underscore the therapeutic potential of IL-15 to promote NK cell-mediated cytotoxicity as a treatment of pancreatic cancer and provide promising future targets to tackle remaining PSC. PMID:28915646

  12. Evaluation of Radiation Response and Gold Nanoparticle Enhancement in Drug-Resistant Pancreatic Cancer Cells

    Science.gov (United States)

    Abourabia, Assya

    Pancreatic cancer is a major cause of cancer-related death worldwide after lung cancer and colorectal cancer Pancreatic treatment modalities consist of surgery, chemotherapy, and radiation therapy or combination of these therapies. These modalities are good to some extents but they do have some limitations. For example, during the chemotherapy, tumor cells can develop some escape mechanisms and become chemoresistant to protect themselves against the chemo drugs and pass on theses escape mechanisms to their offspring, despite the treatment given. Cancer Cells can become chemoresistant by many mechanisms, for example, decreased drug influx mechanisms, decreased of drug transport molecules, decreased drug activation, altered drug metabolism that diminishes the capacity of cytotoxic drugs, and enhanced repair of DNA damage. Given that some of these chemoresistance mechanisms may impact sensitivity to radiation. Therefore, there is a strong need for a new alternative treatment option to amplify the therapeutic efficacy of radiotherapy and eventually increase the overall efficacy of cancer treatment. Nano-radiation therapy is an emerging and promising modality aims to enhance the therapeutic efficacy of radiotherapy through the use of radiosensitizing nanoparticles. The primary goal of using GNP-enhanced radiation is that GNPs are potent radiosensitizer agents that sensitize the tumor cells to radiation, and these agents promote generation of the free radicals produced by Photo- and Auger- electrons emission at the molecular level which can enhance the effectiveness of radiation-induced cancer cell death. The main aim of this research is to analyze and compare the response to radiation of pancreatic cancer cells, PANC-1, and PANC-1 cells that are resistant to oxaliplatin, PANC-1/OR, and investigate the radiation dose enhancement effect attributable to GNP when irradiating the cells with low-energy (220 kVp) beam at various doses. Based on evidence from the existing

  13. Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells.

    Science.gov (United States)

    Fujimura, Yoshinori; Ikenaga, Naoki; Ohuchida, Kenoki; Setoyama, Daiki; Irie, Miho; Miura, Daisuke; Wariishi, Hiroyuki; Murata, Masaharu; Mizumoto, Kazuhiro; Hashizume, Makoto; Tanaka, Masao

    2014-03-01

    Gemcitabine resistance (GR) is one of the critical issues for therapy for pancreatic cancer, but the mechanism still remains unclear. Our aim was to increase the understanding of GR by metabolic profiling approach. To establish GR cells, 2 human pancreatic cancer cell lines, SUIT-2 and CAPAN-1, were exposed to increasing concentration of gemcitabine. Both parental and chemoresistant cells obtained by this treatment were subjected to metabolic profiling based on liquid chromatography-mass spectrometry. Multivariate statistical analyses, both principal component analysis and orthogonal partial least squares discriminant analysis, distinguished metabolic signature of responsiveness and resistance to gemcitabine in both SUIT-2 and CAPAN-1 cells. Among significantly different (P metabolic pathways such as amino acid, nucleotide, energy, cofactor, and vitamin pathways. Decreases in glutamine and proline levels as well as increases in aspartate, hydroxyproline, creatine, and creatinine levels were observed in chemoresistant cells from both cell lines. These results suggest that metabolic profiling can isolate distinct features of pancreatic cancer in the metabolome of gemcitabine-sensitive and GR cells. These findings may contribute to the biomarker discovery and an enhanced understanding of GR in pancreatic cancer.

  14. Etoposide induces apoptosis via the mitochondrial- and caspase-dependent pathways and in non-cancer stem cells in Panc-1 pancreatic cancer cells.

    Science.gov (United States)

    Zhang, She-Hong; Huang, Qian

    2013-12-01

    Pancreatic cancer is a highly aggressive malignant tumor. In the present study, we performed several methods, including CCK-8 assay, immunofluorescence technique, western blotting and flow cytometry, to determine the effects of VP16 (etoposide) on Panc-1 pancreatic cancer cells. The results demonstrated that VP16 inhibited the growth of and induced apoptosis in Panc-1 cells. Western blot analysis showed that VP16 inhibited the expression of Bcl-2 and enhanced the expression of Bax, caspases-3 and -9, cytochrome c and PARP. Notably, a strong inhibitory effect of VP16 on Panc-1 cells mainly occurred in non-CSCs. These data provide a new strategy for the therapy of pancreatic cancer.

  15. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-02-01

    Full Text Available In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1, an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.

  16. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway.

    Science.gov (United States)

    Dong, Guang-Zhi; Jeong, Ji Hye; Lee, Yu-Ih; Lee, So Yoon; Zhao, Hui-Yuan; Jeon, Raok; Lee, Hwa Jin; Ryu, Jae-Ha

    2017-04-01

    Pancreatic cancer is one of the leading causes of cancer, and it has the lowest 5-year survival rates. It is necessary to develop more potent anti-pancreatic cancer drugs to overcome the fast metastasis and resistance to surgery, radiotherapy, chemotherapy, and combinations of these. We have identified several diarylheptanoids as anti-pancreatic cancer agents from Alpinia officinarum (lesser galangal) and Alnus japonica. These diarylheptanoids suppressed cell proliferation and induced the cell cycle arrest of pancreatic cancer cells (PANC-1). Among them, the most potent compounds 1 and 7 inhibited the shh-Gli-FoxM1 pathway and their target gene expression in PANC-1 cells. Furthermore, they suppressed the expression of the cell cycle associated genes that were rescued by the overexpression of exogenous FoxM1. Taken together, (E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (1) from Alpinia officinarum (lesser galangal) and platyphyllenone (7) from Alnus japonica inhibit PANC-1 cell proliferation by suppressing the shh-Gli-FoxM1 pathway, and they can be potential candidates for anti-pancreatic cancer drug development.

  17. Diabetes, pancreatic cancer, and metformin therapy

    Directory of Open Access Journals (Sweden)

    Jun eGong

    2014-11-01

    Full Text Available Pancreatic cancer carries a poor prognosis as most patients present with advanced disease and preferred chemotherapy regimens offer only modest effects on survival. Risk factors include smoking, obesity, heavy alcohol, and chronic pancreatitis. Pancreatic cancer has a complex relationship with diabetes, as diabetes can be both a risk factor for pancreatic cancer and a result of pancreatic cancer. Insulin, insulin-like growth factor-1 (IGF-1, and certain hormones play an important role in promoting neoplasia in diabetics. Metformin appears to reduce risk for pancreatic cancer and improve survival in diabetics with pancreatic cancer primarily by decreasing insulin/IGF signaling, disrupting mitochondrial respiration, and inhibiting the mammalian target of rapamycin (mTOR pathway. Other potential anti-tumorigenic effects of metformin include the ability to downregulate specificity protein transcription factors and associated genes, alter microRNAs, decrease cancer stem cell proliferation, and reduce DNA damage and inflammation. Here, we review the most recent knowledge on risk factors and treatment of pancreatic cancer and the relationship between diabetes, pancreatic cancer, and metformin as a potential therapy.

  18. Suppression of AKT phosphorylation restores rapamycin-based synthetic lethality in SMAD4-defective pancreatic cancer cells.

    Science.gov (United States)

    Le Gendre, Onica; Sookdeo, Ayisha; Duliepre, Stephie-Anne; Utter, Matthew; Frias, Maria; Foster, David A

    2013-05-01

    mTOR has been implicated in survival signals for many human cancers. Rapamycin and TGF-β synergistically induce G1 cell-cycle arrest in several cell lines with intact TGF-β signaling pathway, which protects cells from the apoptotic effects of rapamycin during S-phase of the cell cycle. Thus, rapamycin is cytostatic in the presence of serum/TGF-β and cytotoxic in the absence of serum. However, if TGF-β signaling is defective, rapamycin induced apoptosis in both the presence and absence of serum/TGF-β in colon and breast cancer cell lines. Because genetic dysregulation of TGF-β signaling is commonly observed in pancreatic cancers-with defects in the Smad4 gene being most prevalent, we hypothesized that pancreatic cancers would display a synthetic lethality to rapamycin in the presence of serum/TGF-β. We report here that Smad4-deficient pancreatic cancer cells are killed by rapamycin in the absence of serum; however, in the presence of serum, we did not observe the predicted synthetic lethality with rapamycin. Rapamycin also induced elevated phosphorylation of the survival kinase Akt at Ser473. Suppression of rapamycin-induced Akt phosphorylation restored rapamycin sensitivity in Smad4-null, but not Smad4 wild-type pancreatic cancer cells. This study shows that the synthetic lethality to rapamycin in pancreatic cancers with defective TGF-β signaling is masked by rapamycin-induced increases in Akt phosphorylation. The implication is that a combination of approaches that suppress both Akt phosphorylation and mTOR could be effective in targeting pancreatic cancers with defective TGF-β signaling. ©2013 AACR.

  19. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway.

    Science.gov (United States)

    Shi, Meiyan; He, Xiaodan; Wei, Wei; Wang, Juan; Zhang, Ti; Shen, Xiaohong

    2015-06-01

    As a glycol-protein located in extracellular matrix (ECM), tenascin-C (TNC) is absent in most normal adult tissues but is highly expressed in the majority of malignant solid tumors. Pancreatic cancer is characterized by an abundant fibrous tissue rich in TNC. Although it was reported that TNC's expression increased in the progression from low-grade precursor lesions to invasive cancer and was associated with tumor differentiation in human pancreatic cancer, studies on the relations between TNC and tumor progression in pancreatic cancer were rare. In this study, we performed an analysis to determine the effects of TNC on modulating cell apoptosis and chemo-resistance and explored its mechanisms involving activation in pancreatic cancer cell. The expressions of TNC, ERK1/2/p-ERK1/2, Bcl-xL and Bcl-2 were detected by immunohistochemistry and western blotting. Then the effects of exogenous and endogenous TNC on the regulation of tumor proliferation, apoptosis and gemcitabine cytotoxicity were investigated. The associations among the TNC knockdown, TNC stimulation and expressions of ERK1/2/NF-κB/p65 and apoptotic regulatory proteins were also analyzed in cell lines. The mechanism of TNC on modulating cancer cell apoptosis and drug resistant through activation of ERK1/2/NF-κB/p65 signals was evaluated. The effect of TNC on regulating cell cycle distribution was also tested. TNC, ERK1/2/p-ERK1/2, and apoptotic regulatory proteins Bcl-xL and Bcl-2 were highly expressed in human pancreatic cancer tissues. In vitro, exogenous TNC promoted pancreatic cancer cell growth also mediates basal as well as starved and drug-induced apoptosis in pancreatic cancer cells. The effects of TNC on anti-apoptosis were induced by the activation state of ERK1/2/NF-κB/p65 signals in pancreatic cell. TNC phosphorylate ERK1/2 to induce NF-κB/p65 nucleus translocation. The latter contributes to promote Bcl-xL, Bcl-2 protein expressions and reduce caspase activity, which inhibit cell apoptotic

  20. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    Science.gov (United States)

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  1. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yongsheng; Meng, Qinghua [Department of General Surgery, Jinan Central Hospital of Shandong University, Jinan (China); Chen, Bo [Department of Biliary and Pancreatic Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai (China); Shen, Haiyu; Yan, Bing [Department of General Surgery, Jinan Central Hospital of Shandong University, Jinan (China); Sun, Baoyou, E-mail: sunbaoyou_sdu@yeah.net [Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No.9677 Jing-Shi Road, Jinan 250014 (China)

    2016-09-09

    In the present study, we tested the anti-pancreatic cancer activity by AT406, a small-molecule antagonist of IAP (inhibitor of apoptosis proteins). In established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells, treatment of AT406 significantly inhibited cell survival and proliferation. Yet, same AT406 treatment was non-cytotoxic to pancreatic epithelial HPDE6c7 cells. AT406 increased caspase-3/-9 activity and provoked apoptosis in the pancreatic cancer cells. Reversely, AT406′ cytotoxicity in these cells was largely attenuated with pre-treatment of caspase inhibitors. AT406 treatment caused degradation of IAP family proteins (cIAP1 and XIAP) and release of cytochrome C, leaving Bcl-2 unaffected in pancreatic cancer cells. Bcl-2 inhibition (by ABT-737) or shRNA knockdown dramatically sensitized Panc-1 cells to AT406. In vivo, oral administration of AT406 at well-tolerated doses downregulated IAPs (cIAP1/XIAP) and inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) nude mice. Together, our preclinical results suggest that AT406 could be further evaluated as a promising anti-pancreatic cancer agent. - Highlights: • AT406 is cytotoxic to established/primary human pancreatic cancer cells. • AT406 provokes caspase-dependent apoptosis in pancreatic cancer cells. • AT406 causes degradation of key IAPs and promotes cytochrome C release. • Bcl-2 inhibition or knockdown dramatically sensitizes Panc-1 cells to AT406. • Oral administration of AT406 inhibits Panc-1 tumor growth in SCID nude mice.

  2. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Jiang, Yongsheng; Meng, Qinghua; Chen, Bo; Shen, Haiyu; Yan, Bing; Sun, Baoyou

    2016-01-01

    In the present study, we tested the anti-pancreatic cancer activity by AT406, a small-molecule antagonist of IAP (inhibitor of apoptosis proteins). In established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells, treatment of AT406 significantly inhibited cell survival and proliferation. Yet, same AT406 treatment was non-cytotoxic to pancreatic epithelial HPDE6c7 cells. AT406 increased caspase-3/-9 activity and provoked apoptosis in the pancreatic cancer cells. Reversely, AT406′ cytotoxicity in these cells was largely attenuated with pre-treatment of caspase inhibitors. AT406 treatment caused degradation of IAP family proteins (cIAP1 and XIAP) and release of cytochrome C, leaving Bcl-2 unaffected in pancreatic cancer cells. Bcl-2 inhibition (by ABT-737) or shRNA knockdown dramatically sensitized Panc-1 cells to AT406. In vivo, oral administration of AT406 at well-tolerated doses downregulated IAPs (cIAP1/XIAP) and inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) nude mice. Together, our preclinical results suggest that AT406 could be further evaluated as a promising anti-pancreatic cancer agent. - Highlights: • AT406 is cytotoxic to established/primary human pancreatic cancer cells. • AT406 provokes caspase-dependent apoptosis in pancreatic cancer cells. • AT406 causes degradation of key IAPs and promotes cytochrome C release. • Bcl-2 inhibition or knockdown dramatically sensitizes Panc-1 cells to AT406. • Oral administration of AT406 inhibits Panc-1 tumor growth in SCID nude mice.

  3. Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus.

    Science.gov (United States)

    Liu, Ling; Gong, Liansheng; Zhang, Yangde; Li, Nianfeng

    2013-01-01

    The aim of this study was to evaluate the effects and molecular mechanisms of everolimus on Panc-1 human pancreatic cancer cells. Panc-1 human pancreatic cancer cells were treated with everolimus (10 μg/ml) at selected time points (6, 12 and 24 h). Cell proliferation and apoptosis were evaluated by MTT and flow cytometric analyses. The glycolytic activity was determined by measuring the activity of the key enzyme lactate dehydrogenase (LDH) and lactate production. The activity of mammalian target of rapamycin (mTOR) signaling was measured by western blotting. The expression of genes, including hexokinase 2 (HK2) and microRNA-143 (miR-143), was evaluated by real-time polymerase chain reaction (PCR). The administration of everolimus time-dependently inhibited proliferation and glycolysis and induced apoptosis in the Panc-1 human pancreatic cancer cells. As the time of treatment with everolimus increased, the mTOR signaling activity decreased, indicated by lower phosphorylation levels of S6 kinase; however, the phosphorylation levels of mTOR barely changed. Moreover, our data showed an everolimus-induced increase in miR-143 and decrease in HK2 in Panc-1 cells in a time-dependent manner. In conclusion, the current study indicates a novel role of everolimus in its antitumor effect as an inhibitor of glycolysis in Panc-1 human pancreatic cancer cells. Furthermore, our data highlights the significance of exploring the mechanisms of everolimus and miR-143 in malignant tumors.

  4. Dendritic Cells Loaded with Pancreatic Cancer Stem Cells (CSCs) Lysates Induce Antitumor Immune Killing Effect In Vitro

    Science.gov (United States)

    Yin, Tao; Shi, Pengfei; Gou, Shanmiao; Shen, Qiang; Wang, Chunyou

    2014-01-01

    According to the cancer stem cells (CSCs) theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs) were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH) assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer. PMID:25521461

  5. Dendritic cells loaded with pancreatic Cancer Stem Cells (CSCs lysates induce antitumor immune killing effect in vitro.

    Directory of Open Access Journals (Sweden)

    Tao Yin

    Full Text Available According to the cancer stem cells (CSCs theory, malignant tumors may be heterogeneous in which a small population of CSCs drive the progression of cancer. Because of their intrinsic abilities, CSCs may survive a variety of treatments and then lead to therapeutic resistance and cancer recurrence. Pancreatic CSCs have been reported to be responsible for the malignant behaviors of pancreatic cancer, including suppression of immune protection. Thus, development of immune strategies to eradicate pancreatic CSCs may be of great value for the treatment of pancreatic cancer. In this study, we enriched pancreatic CSCs by culturing Panc-1 cells under sphere-forming conditions. Panc-1 CSCs expressed low levels of HLA-ABC and CD86, as measured by flow cytometry analysis. We further found that the Panc-1 CSCs modulate immunity by inhibiting lymphocyte proliferation which is promoted by phytohemagglutinin (PHA and anti-CD3 monoclonal antibodies. The monocyte derived dendritic cells (DCs were charged with total lysates generated from Panc-1 CSCs obtained from tumor sphere culturing. After co-culturing with lymphocytes at different ratios, the Panc-1 CSCs lysates modified DC effectively promoted lymphocyte proliferation. The activating efficiency reached 72.4% and 74.7% at the ratios of 1∶10 and 1∶20 with lymphocytes. The activated lymphocytes secreted high levels of INF-γ and IL-2, which are strong antitumor cytokines. Moreover, Panc-1 CSCs lysates modified DC induced significant cytotoxic effects of lymphocytes on Panc-1 CSCs and parental Panc-1 cells, respectively, as shown by lactate dehydrogenase (LDH assay. Our study demonstrates that the development of CSCs-based vaccine is a promising strategy for treating pancreatic cancer.

  6. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Rückert, Felix; Samm, Nicole; Lehner, Anne-Kathrin; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  7. Escin Chemosensitizes Human Pancreatic Cancer Cells and Inhibits the Nuclear Factor-kappaB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    A. Rimmon

    2013-01-01

    Full Text Available Background. There is an urgent need to develop new treatment strategies and drugs for pancreatic cancer that is highly resistant to radio-chemotherapy. Aesculus hippocastanum (the horse chestnut known in Chinese medicine as a plant with anti-inflammatory, antiedema, antianalgesic, and antipyretic activities. The main active compound of this plant is Escin (C54H84O23. Objective. To evaluate the effect of Escin alone and combined with chemotherapy on pancreatic cancer cell survival and to unravel mechanism(s of Escin anticancer activity. Methods. Cell survival was measured by XTT colorimetric assay. Synergistic effect of combined therapy was determined by CalcuSyn software. Cell cycle and induction of apoptosis were evaluated by FACS analysis. Expression of NF-κB-related proteins (p65, IκBα, and p-IκBα and cyclin D was evaluated by western blot analysis. Results. Escin decreased the survival of pancreatic cancer cells with IC50 = 10–20 M. Escin combined with gemcitabine showed only additive effect, while its combination with cisplatin resulted in a significant synergistic cytotoxic effect in Panc-1 cells. High concentrations of Escin induced apoptosis and decreased NF-κB-related proteins and cyclin D expression. Conclusions. Escin decreased pancreatic cancer cell survival, induced apoptosis, and downregulated NF-κB signaling pathway. Moreover, Escin sensitized pancreatic cancer cells to chemotherapy. Further translational research is required.

  8. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  9. Establishment and Characterization of a Highly Tumourigenic and Cancer Stem Cell Enriched Pancreatic Cancer Cell Line as a Well Defined Model System

    Science.gov (United States)

    Fredebohm, Johannes; Boettcher, Michael; Eisen, Christian; Gaida, Matthias M.; Heller, Anette; Keleg, Shereen; Tost, Jörg; Greulich-Bode, Karin M.; Hotz-Wagenblatt, Agnes; Lathrop, Mark; Giese, Nathalia A.; Hoheisel, Jörg D.

    2012-01-01

    Standard cancer cell lines do not model the intratumoural heterogeneity situation sufficiently. Clonal selection leads to a homogeneous population of cells by genetic drift. Heterogeneity of tumour cells, however, is particularly critical for therapeutically relevant studies, since it is a prerequisite for acquiring drug resistance and reoccurrence of tumours. Here, we report the isolation of a highly tumourigenic primary pancreatic cancer cell line, called JoPaca-1 and its detailed characterization at multiple levels. Implantation of as few as 100 JoPaca-1 cells into immunodeficient mice gave rise to tumours that were histologically very similar to the primary tumour. The high heterogeneity of JoPaca-1 was reflected by diverse cell morphology and a substantial number of chromosomal aberrations. Comparative whole-genome sequencing of JoPaca-1 and BxPC-3 revealed mutations in genes frequently altered in pancreatic cancer. Exceptionally high expression of cancer stem cell markers and a high clonogenic potential in vitro and in vivo was observed. All of these attributes make this cell line an extremely valuable model to study the biology of and pharmaceutical effects on pancreatic cancer. PMID:23152778

  10. LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways

    International Nuclear Information System (INIS)

    Tong, W.-G.; Ding, X.-Z.; Talamonti, Mark S.; Bell, Richard H.; Adrian, Thomas E.

    2005-01-01

    We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved

  11. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    Science.gov (United States)

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  12. Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Yong-Xian, Gui; Xiao-Huan, Li; Fan, Zhang; Guo-Fang, Tian

    2016-10-01

    The aim of the study is to investigate the underlying molecular mechanisms by which gemcitabine (gem) inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells in vitro. After PANC-1 cells had been treated by indicated concentration (0, 5, and 25 mg/L) of gem for 48 h, cell proliferation was evaluated by 3'-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay; cell morphology was observed by transmission electron microscopy; Expression of c-IAP2 and Bcl-2 proteins was analyzed by Western blot; the activity of caspase-3 and -9 was detected by spectrophotometry. Gem significantly inhibited cell proliferation and could induce apoptosis of human pancreatic cancer PANC-1 cells, with a dose-dependent manner. Western blot analysis showed that gem significantly reduced c-IAP2 and Bcl-2 proteins expression level (P PANC-1 cells. Gem could induce apoptosis of human pancreatic cancer PANC-1 cells, probably through downregulating c-IAP2 and Bcl-2 expression levels, and at the same time activating caspase-3 and -9.

  13. Low Concentrations of Metformin Selectively Inhibit CD133+ Cell Proliferation in Pancreatic Cancer and Have Anticancer Action

    Science.gov (United States)

    Li, Xiangsheng; Shi, Pengfei; Liu, Tao; Wang, Chunyou

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133+ but not CD24+CD44+ESA+ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133+ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease. PMID:23667692

  14. Orlistat Reduces Proliferation and Enhances Apoptosis in Human Pancreatic Cancer Cells (PANC-1).

    Science.gov (United States)

    Sokolowska, Ewa; Presler, Malgorzata; Goyke, Elzbieta; Milczarek, Ryszard; Swierczynski, Julian; Sledzinski, Tomasz

    2017-11-01

    Pancreatic cancer is a disease with very poor prognosis, and none of currently available pharmacotherapies have proven to be efficient in this indication. The aim of this study was to analyze the expression of fatty acid synthase (FASN) gene as a potential therapeutic target in proliferating human pancreatic cancer cells (PANC-1), and verify if orlistat, originally developed as an anti-obesity drug, inhibits PANC-1 proliferation. The effects of orlistat on gene expression, lipogenesis, proliferation and apoptosis was studied in PANC-1 cell culture. Expression of FASN increased during proliferation of PANC-1. Inhibition of FASN by orlistat resulted in a significant reduction of PANC-1 proliferation and enhanced apoptosis of these cells. This study showed, to our knowledge for the first time, that orlistat exhibits significant antitumor activity against PANC-1 cells. This implies that orlistat analogs with good oral bioavailability may find application in pharmacotherapy of pancreatic cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Targeting Apoptosis Signaling in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery

  16. Targeting Apoptosis Signaling in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fulda, Simone [Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt (Germany)

    2011-01-11

    The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery.

  17. Pancreatic cancer cell detection by targeted lipid microbubbles and multiphoton imaging

    Science.gov (United States)

    Cromey, Benjamin; McDaniel, Ashley; Matsunaga, Terry; Vagner, Josef; Kieu, Khanh Quoc; Banerjee, Bhaskar

    2018-04-01

    Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery.

  18. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Abbasi Atiya

    2010-09-01

    Full Text Available Abstract Background There has been a long standing interest in the identification of medicinal plants and derived natural products for developing cancer therapeutics. Our study focuses upon pancreatic cancer, due to its high mortality rate, that is attributed in part to the lack of an effective chemotherapeutic agent. Previous reports on the use of medicinal plant extracts either alone or alongside conventional anticancer agents in the treatment of this cancer have shown promising results. This work aims to investigate the therapeutic properties of a library of medicinal plants from Bangladesh. Methods 56 extracts of 44 unique medicinal plants were studied. The extracts were screened for cytotoxicity against the pancreatic adenocarcinoma cell line Panc-1, using a label-free biosensor assay. The top cytotoxic extracts identified in this screen were tested on two additional pancreatic cancer cell lines (Mia-Paca2 and Capan-1 and a fibroblast cell line (Hs68 using an MTT proliferation assay. Finally, one of the most promising extracts was studied using a caspase-3 colorimetric assay to identify induction of apoptosis. Results Crude extracts of Petunia punctata, Alternanthera sessilis, and Amoora chittagonga showed cytotoxicity to three cancer cell lines with IC50 values ranging between 20.3 - 31.4 μg/mL, 13.08 - 34.9 μg/mL, and 42.8 - 49.8 μg/mL, respectively. Furthermore, treatment of Panc-1 cells with Petunia punctata was shown to increase caspase-3 activity, indicating that the observed cytotoxicity was mediated via apoptosis. Only Amoora chittagonga showed low cytotoxicity to fibroblast cells with an IC50 value > 100 μg/mL. Conclusion Based upon the initial screening work reported here, further studies aimed at the identification of active components of these three extracts and the elucidation of their mechanisms as cancer therapeutics are warranted.

  19. Circulating Microvesicles from Pancreatic Cancer Accelerate the Migration and Proliferation of PANC-1 Cells.

    Science.gov (United States)

    An, Mingrui; Zhu, Jianhui; Wu, Jing; Cuneo, Kyle C; Lubman, David M

    2018-04-06

    Circulating microvesicles are able to mediate long-distance cell-cell communications. It is essential to understand how microvesicles from pancreatic cancer act on other cells in the body. In this work, serum-derived microvesicles were isolated from 10 patients with locally advanced pancreatic cancer and healthy controls. Using Cell Transwell and WST-1 reagents, we found that microvesicles from pancreatic cancer accelerated migration and proliferation of PANC-1 cells. Meanwhile, the proliferation of these cancer-microvesicle-treated cells (CMTCs) was affected less by 10 μM of gemcitabine relative to healthy microvesicle-treated cells (HMTCs). Next, we optimized the filter-aided sample preparation method to increase the recovery of protein samples and then applied it to the quantification of the proteome of CMTCs and HMTCs. The peptides were labeled and analyzed by liquid chromatography-tandem mass spectrometry. In total, 4102 proteins were identified, where 35 proteins were up-regulated with 27 down-regulated in CMTCs. We verified the quantitative results of three key proteins CD44, PPP2R1A, and TP53 by Western blot. The Ingenuity Pathway Analysis revealed pathways that cancer microvesicles might participate in to promote cell migration and proliferation. These findings may provide novel clues of treatment for tumorigenesis and metastasis.

  20. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.

    Science.gov (United States)

    He, Hang; Hao, Si-Jie; Yao, Lie; Yang, Feng; Di, Yang; Li, Ji; Jiang, Yong-Jian; Jin, Chen; Fu, De-Liang

    2014-10-01

    miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

  1. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis.

    Directory of Open Access Journals (Sweden)

    Hiromitsu Ito

    Full Text Available Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs, but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1 was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.

  2. Reduced STMN1 expression induced by RNA interference inhibits the bioactivity of pancreatic cancer cell line Panc-1.

    Science.gov (United States)

    Li, J; Hu, G H; Kong, F J; Wu, K M; He, B; Song, K; Sun, W J

    2014-01-01

    Increased expression of STMN1 has been observed in many tumor forms, but its expression and potential biological role in pancreatic cancer is still unknown. In this study, we demonstrated that STMN1 was expressed to a large extent in pancreatic cancer tissues and cell lines as compared to normal pancreatic tissues. Suppression of STMN1 expression via transfection with STMN1-specific siRNA could not only significantly inhibit the proliferation, migration and invasion ability of Panc-1 cells, but also enhance the apoptosis of Panc-1 cells. In addition, downregulation of STMN1 obviously enhanced the acetylation level of α-tubulin. All these results indicated that STMN1 plays an important role in pancreatic cancer development, and might serve as a potential therapeutic target for pancreatic cancer.

  3. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition.

    Science.gov (United States)

    Roy, L D; Sahraei, M; Subramani, D B; Besmer, D; Nath, S; Tinder, T L; Bajaj, E; Shanmugam, K; Lee, Y Y; Hwang, S I L; Gendler, S J; Mukherjee, P

    2011-03-24

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic ductal adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT, which translates to increased invasiveness and metastasis. EMT was significantly reduced when MUC1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR and western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared with cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus, thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer.

  4. MEK inhibition potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells.

    Science.gov (United States)

    Zhang, Tao; Li, Yanyan; Zhu, Zhenkun; Gu, Mancang; Newman, Bryan; Sun, Duxin

    2010-10-04

    The Ras/Raf/MEK/ERK signaling has been implicated in uncontrolled cell proliferation and tumor progression in pancreatic cancer. The purpose of this study is to evaluate the antitumor activity of MEK inhibitor U0126 in combination with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in pancreatic cancer cells. Western blotting showed that 17-AAG caused a 2- to 3-fold transient activation of MEK/ERK signaling in pancreatic cancer cells. The activation sustained for 6 h before phospho-ERK (p-ERK) destabilization. The selective MEK inhibitor U0126 completely abolished 17-AAG induced ERK1/2 activation and resulted in more than 80% of phospho-ERK degradation after only 15 min treatment. Moreover, U0126 had complementary effect on 17-AAG regulated oncogenic and cell cycle related proteins. Although 17-AAG downregulated cyclin D1, cyclin E, CDK4 and CDK6, it led to cyclin A and CDK2 accumulation, which was reversed by the addition of U0126. Antiproliferation assay showed that combination of U0126 and 17-AAG resulted in synergistic cytotoxic effect. More importantly, 17-AAG alone only exhibited moderate inhibition of cell migration in vitro, while addition of U0126 dramatically enhanced the inhibitory effect by 2- to 5-fold. Taken together, these data demonstrate that MEK inhibitor U0126 potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells. The combination of Hsp90 and MEK inhibition could provide a promising avenue for the treatment of pancreatic cancer.

  5. Role of chymotrypsin C in development and progression of pancreatitis and pancreatic cancer

    Directory of Open Access Journals (Sweden)

    LIU Zejie

    2016-11-01

    Full Text Available Chymotrypsin C (CTRC is a trypsinogen synthesized by pancreatic acinar cells and secreted by pancreatic duct cells and belongs to the family of serine chymotrypsin. The main function of CTRC is to regulate the balance between activation and degradation of trypsin and maintain the structural and functional integrity of the pancreas. CTRC gene mutations can cause abnormal activation of trypsinogen and abnormal degradation of trypsin and then lead to the development of pancreatitis. The downregulation or absence of CTRC expression may be associated with the development and metastasis of pancreatic cancer. This article introduces the structure and biological function of CTRC and its mechanism of action in the development and progression of pancreatitis and pancreatic cancer.

  6. A Yin-Yang 1/miR-30a regulatory circuit modulates autophagy in pancreatic cancer cells.

    Science.gov (United States)

    Yang, Chuang; Zhang, Jing-Jing; Peng, Yun-Peng; Zhu, Yi; Yin, Ling-Di; Wei, Ji-Shu; Gao, Wen-Tao; Jiang, Kui-Rong; Miao, Yi

    2017-10-19

    Autophagy is a highly regulated biological process that mediates the degradation of intracellular components. It is required for tumor cell metabolism and homeostasis. Yin-Yang 1 (YY1) has been reported to be involved in autophagy in several carcinomas. However, its role in autophagy in pancreatic cancer, one of the deadliest human malignancies, is unknown. Here, we investigated the function of YY1 in pancreatic cancer cells autophagy and its mechanisms of action. The activity of cells undergoing autophagy was assessed using transmission electron microscopy, immunofluorescence, and Western blotting. A luciferase activity assay, real-time quantitative polymerase chain reaction (RT-qPCR), and chromatin immunoprecipitation (ChIP) were also used to identify putative downstream targets of YY1. YY1 was confirmed to regulate autophagy in pancreatic cancer cells. It was found to directly regulate the expression of miR-30a, a known modulator of autophagy-associated genes. Furthermore, overexpression of miR-30a attenuated the pro-autophagic effects of YY1. Cumulatively, our data suggest that miR-30a acts in a feedback loop to modulate the pro-autophagic activities of YY1. Thus, autophagy in pancreatic cancer cells may be regulated, in part, by a tightly coordinated YY1/miR-30a regulatory circuit. These findings provide a potential druggable target for the development of treatments for pancreatic cancer.

  7. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1).

    Science.gov (United States)

    Zhu, Xiang-Yu; Liu, Ning; Liu, Wei; Song, Shao-Wei; Guo, Ke-Jian

    2012-04-01

    Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  8. Sulforaphane enhances irradiation effects in terms of perturbed cell cycle progression and increased DNA damage in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Patrick Naumann

    Full Text Available Sulforaphane (SFN, an herbal isothiocyanate enriched in cruciferous vegetables like broccoli and cauliflower, has gained popularity for its antitumor effects in cell lines such as pancreatic cancer. Antiproliferative as well as radiosensitizing properties were reported for head and neck cancer but little is known about its effects in pancreatic cancer cells in combination with irradiation (RT.In four established pancreatic cancer cell lines we investigated clonogenic survival, analyzed cell cycle distribution and compared DNA damage via flow cytometry and western blot after treatment with SFN and RT.Both SFN and RT show a strong and dose dependent survival reduction in clonogenic assays, an induction of a G2/M cell cycle arrest and an increase in γH2AX protein level indicating DNA damage. Effects were more pronounced in combined treatment and both cell cycle perturbation and DNA damage persisted for a longer period than after SFN or RT alone. Moreover, SFN induced a loss of DNA repair proteins Ku 70, Ku 80 and XRCC4.Our results suggest that combination of SFN and RT exerts a more distinct DNA damage and growth inhibition than each treatment alone. SFN seems to be a viable option to improve treatment efficacy of chemoradiation with hopefully higher rates of secondary resectability after neoadjuvant treatment for pancreatic cancer.

  9. Survivin as a radioresistance factor in pancreatic cancer

    International Nuclear Information System (INIS)

    Asanuma, Koichi; Moriai, Ryosuke; Yajima, Tomomi; Yagihashi, Atsuhito; Yamada, Mikako; Kobayashi, Daisuke; Watanabe, Naoki

    2000-01-01

    We examined whether survivin acts as a constitutive and inducible radioresistance factor in pancreatic cancer cells. Using a quantitative TaqMan reverse transcription-polymerase chain reaction for survivin mRNA in five pancreatic cancer cell lines, we found an inverse relationship between survivin mRNA expression and radiosensitivity. PANC-1 cells, which had the highest survivin mRNA levels, were most resistant to X-irradiation; MIAPaCa-2 cells, which showed the least survivin mRNA expression, were the most sensitive to X-irradiation. Our results suggested that survivin could act as a constitutive radioresistance factor in pancreatic cancer cells. To determine whether radioresistance is enhanced by induction of survivin expression by irradiation, PANC-1 and MIAPaCa-2 cells were subjected to sublethal doses of X-irradiation followed by a lethal dose. Survivin mRNA expression was increased significantly in both PANC-1 and MIAPaCa-2 cell lines by pretreatment with a sublethal dose of X-irradiation, as was cell survival after exposure to the lethal dose. In this system, enzymatic caspase-3 activity was significantly suppressed in cells with acquired resistance. These results suggest that survivin also acts as an inducible radioresistance factor in pancreatic cancer cells. Survivin, then, appears to enhance radioresistance in pancreatic cancer cells; inhibition of survivin mRNA expression may improve the effectiveness of radiotherapy. (author)

  10. Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu® disables cancer cell survival in human pancreatic cancer with acquired chemoresistance

    Directory of Open Access Journals (Sweden)

    O’Shea LK

    2014-01-01

    Full Text Available Leah K O'Shea,1 Samar Abdulkhalek,1 Stephanie Allison,2 Ronald J Neufeld,2 Myron R Szewczuk11Department of Biomedical and Molecular Sciences, 2Department of Chemical Engineering, Queen's University, Kingston, ON, CanadaBackground: Resistance to drug therapy, along with high rates of metastasis, contributes to the low survival rate in patients diagnosed with pancreatic cancer. An alternate treatment for human pancreatic cancer involving targeting of Neu1 sialidase with oseltamivir phosphate (Tamiflu® was investigated in human pancreatic cancer (PANC1 cells with acquired resistance to cisplatin and gemcitabine. Its efficacy in overcoming the intrinsic resistance of the cell to chemotherapeutics and metastasis was evaluated.Methods: Microscopic imaging, immunocytochemistry, immunohistochemistry, and WST-1 cell viability assays were used to evaluate cell survival, morphologic changes, and expression levels of E-cadherin, N-cadherin, and VE-cadherin before and after treatment with oseltamivir phosphate in PANC1 cells with established resistance to cisplatin, gemcitabine, or a combination of the two agents, and in archived paraffin-embedded PANC1 tumors grown in RAGxCγ double mutant mice.Results: Oseltamivir phosphate overcame the chemoresistance of PANC1 to cisplatin and gemcitabine alone or in combination in a dose-dependent manner, and disabled the cancer cell survival mechanism(s. Oseltamivir phosphate also reversed the epithelial-mesenchymal transition characteristic of the phenotypic E-cadherin to N-cadherin changes associated with resistance to drug therapy. Low-dose oseltamivir phosphate alone or in combination with gemcitabine in heterotopic xenografts of PANC1 tumors growing in RAGxCγ double mutant mice did not prevent metastatic spread to the liver and lung.Conclusion: Therapeutic targeting of Neu1 sialidase with oseltamivir phosphate at the growth factor receptor level disables the intrinsic signaling platform for cancer cell survival

  11. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    International Nuclear Information System (INIS)

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-01-01

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  12. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Duanmin [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Su, Cunjin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Jiang, Min [Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Yating [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shi, Aiming; Zhao, Fenglun [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Zhu [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Tang, Wen, E-mail: sztangwen@163.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China)

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  13. DNA-PKcs is important for Akt activation and gemcitabine resistance in PANC-1 pancreatic cancer cells.

    Science.gov (United States)

    Hu, Hao; Gu, Yuanlong; Qian, Yi; Hu, Benshun; Zhu, Congyuan; Wang, Gaohe; Li, Jianping

    2014-09-12

    Pancreatic cancer is one of the most aggressive human malignancies with extremely poor prognosis. The moderate activity of the current standard gemcitabine and gemcitabine-based regimens was due to pre-existing or acquired chemo-resistance of pancreatic cancer cells. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in gemcitabine resistance, and studied the underlying mechanisms. We found that NU-7026 and NU-7441, two DNA-PKcs inhibitors, enhanced gemcitabine-induced cytotoxicity and apoptosis in PANC-1 pancreatic cancer cells. Meanwhile, PANC-1 cells with siRNA-knockdown of DNA-PKcs were more sensitive to gemcitabine than control PANC-1 cells. Through the co-immunoprecipitation (Co-IP) assay, we found that DNA-PKcs formed a complex with SIN1, the latter is an indispensable component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2). DNA-PKcs-SIN1 complexation was required for Akt activation in PANC-1 cells, while inhibition of this complex by siRNA knockdown of DNA-PKcs/SIN1, or by DNA-PKcs inhibitors, prevented Akt phosphorylation in PANC-1 cells. Further, SIN1 siRNA-knockdown also facilitated gemcitabine-induced apoptosis in PANC-1 cells. Finally, DNA-PKcs and p-Akt expression was significantly higher in human pancreatic cancer tissues than surrounding normal tissues. Together, these results show that DNA-PKcs is important for Akt activation and gemcitabine resistance in PANC-1 pancreatic cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression

    Science.gov (United States)

    Harashima, Nanae; Takenaga, Keizo; Akimoto, Miho; Harada, Mamoru

    2017-01-01

    Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy. PMID:28476028

  15. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Zhu

    2012-01-01

    Full Text Available Integrin-linked kinase (ILK is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1 cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  16. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jae-Ha [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo-Yoen; Kim, Jeong-Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cho, Eun-Wie [Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  17. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-01-01

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation

  18. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-03-01

    Full Text Available Our previous studies in zebrafish development have led to identification of the novel roles of the transient receptor potential melastatin-subfamily member 7 (TRPM7 ion channels in human pancreatic cancer. However, the biological significance of TRPM7 channels in pancreatic neoplasms was mostly unexplored. In this study, we determined the expression levels of TRPM7 in pancreatic tissue microarrays and correlated these measurements in pancreatic adenocarcinoma with the clinicopathological features. We also investigated the role of TRPM7 channels in pancreatic cancer cell invasion using the MatrigelTM-coated transwell assay. In normal pancreas, TRPM7 is expressed at a discernable level in the ductal cells and centroacinar cells and at a relatively high level in the islet endocrine cells. In chronic pancreatitis, pre-malignant tissues, and malignant neoplasms, there is variable expression of TRPM7. In the majority of pancreatic adenocarcinoma specimens examined, TRPM7 is expressed at either moderate-level or high-level. Anti-TRPM7 immunoreactivity in pancreatic adenocarcinoma significantly correlates with the size and stages of tumors. In human pancreatic adenocarcinoma cells in which TRPM7 is highly expressed, short hairpin RNA-mediated suppression of TRPM7 impairs cell invasion. The results demonstrate that TRPM7 channels are over-expressed in a proportion of the pre-malignant lesions and malignant tumors of the pancreas, and they are necessary for invasion by pancreatic cancer cells. We propose that TRPM7 channels play important roles in development and progression of pancreatic neoplasm, and they may be explored as clinical biomarkers and targets for its prevention and treatment.

  19. Chimeric antigen receptor T cell therapy in pancreatic cancer: from research to practice.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Masab, Muhammad; Gupta, Sorab

    2018-05-04

    Chimeric antigen receptor (CAR) T cell therapy is genetically engineered tumor antigen-specific anticancer immunotherapy, which after showing great success in hematological malignancies is currently being tried in advanced solid tumors like pancreatic cancer. Immunosuppressive tumor microenvironment and dense fibrous stroma are some of the limitation in the success of this novel therapy. However, genetic modifications and combination therapy is the topic of the research to improve its efficacy. In this article, we summarize the current state of knowledge, limitations, and future prospects for CAR T cell therapy in pancreatic cancer.

  20. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of β-catenin

    International Nuclear Information System (INIS)

    Cho, Il-Rae; Koh, Sang Seok; Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong; Choi, Young-Whan; Horio, Yoshiyuki; Oh, Sangtaek; Chung, Young-Hwa

    2012-01-01

    Highlights: ► SIRT1 inhibits protein levels of β-catenin and its transcriptional activity. ► Nuclear localization of SIRT1 is not required for the decrease of β-catenin expression. ► SIRT1-mediated degradation of β-catenin is not required for GSK-3β and Siah-1 but for proteosome. ► SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of β-catenin, we postulated that β-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target β-catenin in a colon cancer model, suppresses β-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of β-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced β-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of β-catenin. Treatment with MG132, a proteasomal inhibitor, restored β-catenin protein levels, suggesting that SIRT1-mediated degradation of β-catenin requires proteasomal activity. It was reported that inhibition of GSK-3β or Siah-1 stabilizes β-catenin in colon cancer cells, but suppression of GSK-3β or Siah-1 using siRNA in the presence of resveratrol instead diminished β-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3β and Siah-1 are not involved in SIRT1-mediated degradation of β-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target

  1. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  2. (+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death.

    Science.gov (United States)

    Ueda, Jun-ya; Athikomkulchai, Sirivan; Miyatake, Ryuta; Saiki, Ikuo; Esumi, Hiroyasu; Awale, Suresh

    2014-01-01

    Human pancreatic tumors are known to be highly resistant to nutrient starvation, and this prolongs their survival in the hypovascular (austere) tumor microenvironment. Agents that retard this tolerance to nutrient starvation represent a novel antiausterity strategy in anticancer drug discovery. (+)-Grandifloracin (GF), isolated from Uvaria dac, has shown preferential toxicity to PANC-1 human pancreatic cancer cells under nutrient starvation, with a PC50 value of 14.5 μM. However, the underlying mechanism is not clear. In this study, GF was found to preferentially induce PANC-1 cell death in a nutrient-deprived medium via hyperactivation of autophagy, as evidenced by a dramatic upregulation of microtubule-associated protein 1 light chain 3. No change was observed in expression of the caspase-3 and Bcl-2 apoptosis marker proteins. GF was also found to strongly inhibit the activation of Akt, a key regulator of cancer cell survival and proliferation. Because pancreatic tumors are highly resistant to current therapies that induce apoptosis, the alternative cell death mechanism exhibited by GF provides a novel therapeutic insight into antiausterity drug candidates.

  3. Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan; Xin, Beibei; Wang, Hui; He, Xiaodan [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China); Wei, Wei; Zhang, Ti [Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Tianjin 300060 (China); Shen, Xiaohong, E-mail: zebal2014@163.com [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China)

    2016-08-01

    Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues. Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.

  4. Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells.

    Science.gov (United States)

    Gilardini Montani, Maria Saveria; Granato, Marisa; Santoni, Claudio; Del Porto, Paola; Merendino, Nicolò; D'Orazi, Gabriella; Faggioni, Alberto; Cirone, Mara

    2017-04-01

    Histone deacetylase inhibitors (HDACi) are anti-neoplastic agents that are known to affect the growth of different cancer types, but their underlying mechanisms are still incompletely understood. Here, we compared the effects of two HDACi, i.e., Trichostatin A (TSA) and Valproic Acid (VPA), on the induction of cell death and autophagy in pancreatic cancer-derived cells that exhibit a high metastatic capacity and carry KRAS/p53 double mutations. Cell viability and proliferation tests were carried out using Trypan blue dye exclusion, MTT and BrdU assays. FACS analyses were carried out to assess cell cycle progression, apoptosis, reactive oxygen species (ROS) production and mitochondrial depolarization, while Western blot and immunoprecipitation analyses were employed to detect proteins involved in apoptosis and autophagy. We found that both VPA and TSA can induce apoptosis in Panc1 and PaCa44 pancreatic cancer-derived cells by triggering mitochondrial membrane depolarization, Cytochrome c release and Caspase 3 activation, although VPA was more effective than TSA, especially in Panc1 cells. As underlying molecular events, we found that ERK1/2 was de-phosphorylated and that the c-Myc and mutant p53 protein levels were reduced after VPA and, to a lesser extent, after TSA treatment. Up-regulation of p21 and Puma was also observed, concomitantly with mutant p53 degradation. In addition, we found that in both cell lines VPA increased the pro-apoptotic Bim level, reduced the anti-apoptotic Mcl-1 level and increased ROS production and autophagy, while TSA was able to induce these effects only in PaCA44 cells. From our results we conclude that both VPA and TSA can induce pancreatic cancer cell apoptosis and autophagy. VPA appears have a stronger and broader cytotoxic effect than TSA and, thus, may represent a better choice for anti-pancreatic cancer therapy.

  5. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.

  6. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  7. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer. Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Panje, Cedric; Andratschke, Nikolaus; Guckenberger, Matthias; Brunner, Thomas B.; Niyazi, Maximilian

    2016-01-01

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer. A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation. Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities. SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT. (orig.) [de

  8. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival.

    Directory of Open Access Journals (Sweden)

    De He

    Full Text Available microRNAs (miRNAs play a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. To date, scientists have obtained a substantial amount of knowledge with regard to miRNAs in pancreatic cancer. However, the expression and function of miR-371-5p in pancreatic cancer has not been clearly elucidated. The aim of this study was to investigate the roles of miR-371-5p in pancreatic cancer and its association with the survival of patients with pancreatic cancer.The expression of miR-371-5p was examined in pancreatic duct adenocarcinoma (PDAC and their adjacent normal pancreatic tissues (ANPT or in pancreatic cancer cell lines by qRT-PCR. The association of miR-371-5p expression with overall survival was determined. The proliferation and apoptosis of SW-1990 and Panc-1 cells, transfected with miR-371-5p mimics or inhibitor, were assessed using MTT assay and flow cytometry, respectively. The tumorigenicity was evaluated via mice xenograft experiments. miR-371-5p promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP. Protein expression was analyzed by Western blot.The expression level of miR-371-5p was dramatically upregulated in clinical PDAC tissues compared with ANPT. Patients with high miR-371-5p expression had a significantly shorter survival than those with low miR-371-5p expression. The in vitro and in vivo assays showed that overexpression of miR-371-5p resulted in cell proliferation and increased tumor growth, which was associated with inhibitor of growth 1 (ING1 downregulation. Interestingly, we also found that ING1, in turn, inhibited expression of miR-371-5p in the promoter region.our study demonstrates a novel ING1-miR-371-5p regulatory feedback loop, which may have a critical role in PDAC. Thus miR-371-5p can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.

  9. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  10. Pancreatic cancer risk in hereditary pancreatitis

    OpenAIRE

    Weiss, Frank U.

    2014-01-01

    Inflammation is part of the body’s immune response in order to remove harmful stimuli – like pathogens, irritants or damaged cells - and start the healing process. Recurrent or chronic inflammation on the other side seems a predisposing factor for carcinogenesis and has been found associated with cancer development. In chronic pancreatitis mutations of the cationic trypsinogen (PRSS1) gene have been identified as risk factors of the disease. Hereditary pancreatitis is a rare cause of chronic...

  11. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Xiyan Wang

    Full Text Available A major challenge in the treatment of pancreatic ductal adenocarcinoma is the failure of chemotherapy, which is likely due to the presence of the cancer stem cells (CSCs.To identify side population (SP cells and characterize s-like properties in human pancreatic cancer cell lines (h-PCCLs and to exploit the efficacy of concomitant targeting of multiple key transcription factors governing the stemness of pancreatic CSCs in suppressing CSC-like phenotypes.Flow cytometry and Hoechst 33342 DNA-binding dye efflux assay were used to sort SP and non-SP (NSP cells from three h-PCCLs: PANC-1, SW1990, and BxPc-3. The self-renewal ability, invasiveness, migration and drug resistance of SP cells were evaluated. Expression of CSC marker genes was analyzed. Tumorigenicity was assessed using a xenograft model in nude mice. Effects of a complex decoy oligonucleotide (cdODN-SCO designed to simultaneously targeting Sox2, Oct4 and c-Myc were assessed.CSCs were enriched in the side proportion (SP cells contained in the h-PCCLs and they possessed aggressive growth, invasion, migration and drug-resistance properties, compared with NSP cells. SP cells overexpressed stem cell markers CD133 and ALDH1, pluripotency maintaining factors Nanog, Sox2 and Oct4, oncogenic transcription factor c-Myc, signaling molecule Notch1, and drug resistant gene ABCG2. Moreover, SP cells consistently demonstrated significantly greater tumorigenicity than NSP cells in xenograft model of nude mice. CdODN-SOC efficiently suppressed all CSC properties and phenotypes, and minimized the tumorigenic capability of the SP cells and the resistance to chemotherapy. By comparison, the negative control failed to do so.The findings indicate that targeting the key genes conferring the stemness of CSCs can efficiently eliminate CSC-like phenotypes, and thus may be considered a new approach for cancer therapy. Specifically, the present study establishes the combination of Sox2/Oct4/c-Myc targeting as a

  12. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Directory of Open Access Journals (Sweden)

    Shanmiao Gou

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease.

  13. Adrenaline promotes epithelial-to-mesenchymal transition via HuR-TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis.

    Science.gov (United States)

    Pu, Jun; Zhang, Xiaorui; Luo, Huiwen; Xu, Lijuan; Lu, Xiaozhao; Lu, Jianguo

    2017-11-25

    Psychological stress has recently been described as a risk factor in the development of pancreatic cancer. Here, we reported that increased neurotransmitter adrenaline was associated with the poor survival in pancreatic cancer patients. Moreover, in the cell model study, we found adrenaline promoted pancreatic cell PANC-1 migration in a dose dependent manner. Block of the β2-adrenoreceptor with ICI118,551, significantly reduced cell migration. Further study found that adrenaline induced a cytoplasmic translocation of RNA binding protein HuR, which in turn activated TGFβ, as shown by the SBE luciferase assay and phosphorylation of Smad2/3. Either HuR knockdown or TGFβ inhibition reduced cell migration induced by adrenaline. Taken together, our study here revealed that adrenaline-HuR-TGFβ regulatory axis at least partially contributes to the psychological stress induced metastasis in PANC-1 cells, shedding light on therapeutic targeting psychological stress in improving the prognosis of pancreatic cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Karnevi, Emelie; Said, Katarzyna; Andersson, Roland; Rosendahl, Ann H

    2013-01-01

    Epidemiological studies have shown direct associations between type 2 diabetes and obesity, both conditions associated with hyperglycaemia and hyperinsulinemia, and the risk of pancreatic cancer. Up to 80% of pancreatic cancer patients present with either new-onset type 2 diabetes or impaired glucose tolerance at the time of diagnosis. Recent population studies indicate that the incidence of pancreatic cancer is reduced among diabetics taking metformin. In this study, the effects of exposure of pancreatic cancer cells to high glucose levels on their growth and response to metformin were investigated. The human pancreatic cancer cell lines AsPC-1, BxPC-3, PANC-1 and MIAPaCa-2 were grown in normal (5 mM) or high (25 mM) glucose conditions, with or without metformin. The influence by metformin on proliferation, apoptosis and the AMPK and IGF-IR signalling pathways were evaluated in vitro. Metformin significantly reduced the proliferation of pancreatic cancer cells under normal glucose conditions. Hyperglycaemia however, protected against the metformin-induced growth inhibition. The anti-proliferative actions of metformin were associated with an activation of AMP-activated protein kinase AMPK Thr172 together with an inhibition of the insulin/insulin-like growth factor-I (IGF-I) receptor activation and downstream signalling mediators IRS-1 and phosphorylated Akt. Furthermore, exposure to metformin during normal glucose conditions led to increased apoptosis as measured by poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, exposure to high glucose levels promoted a more robust IGF-I response and Akt activation which correlated to stimulated AMPK Ser485 phosphorylation and impaired AMPK Thr172 phosphorylation, resulting in reduced anti-proliferative and apoptotic effects by metformin. Our results indicate that metformin has direct anti-tumour activities in pancreatic cancer cells involving AMPK Thr172 activation and suppression of the insulin/IGF signalling pathways

  15. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells

    International Nuclear Information System (INIS)

    Xu, Xing-dong; Yang, Lan; Zheng, Li-yun; Pan, Yan-yan; Cao, Zhi-fei; Zhang, Zhi-qing; Zhou, Quan-sheng; Yang, Bo; Cao, Cong

    2014-01-01

    Pancreatic cancer is one of the most aggressive human malignancies with a extremely low 5-year survival rate. Hence, the search for more effective anti-pancreatic cancer agents is urgent. PaTu8988 pancreatic cancer cells were treated with different concentrations of suberoylanilide hydroxamic acid (SAHA), cell survival, proliferation, migration and vasculogenic mimicry (VM) were analyzed. Associated signaling changes were also analyzed by RT-PCR and Western blots. Here, we reported that SAHA, a histone deacetylase inhibitor (HDACi), exerted significant inhibitory efficiency against pancreatic cancer cell survival, proliferation, migration and VM. SAHA dose-dependently inhibited PaTu8988 pancreatic cancer cell growth with the IC-50 of 3.4 ± 0. 7 μM. Meanwhile, SAHA suppressed PaTu8988 cell cycle progression through inducing G2/M arrest, which was associated with cyclin-dependent kinase 1 (CDK-1)/cyclin-B1 degradation and p21/p27 upregulation. Further, SAHA induced both apoptotic and non-apoptotic death of PaTu8988 cells. Significantly, SAHA suppressed PaTu8988 cell in vitro migration and cell-dominant tube formation or VM, which was accompanied by semaphorin-4D (Sema-4D) and integrin-β5 down-regulation. Our evidences showed that Akt activation might be important for Sema-4D expression in PaTu8988 cells, and SAHA-induced Sema-4D down-regulation might be associated with Akt inhibition. This study is among the first to report the VM formation in cultured human pancreatic cancer cells. And we provided strong evidence to suggest that SAHA executes significant anti-VM efficiency in the progressive pancreatic cancer cells. Thus, SAHA could be further investigated as a promising anti-pancreatic cancer agent

  16. Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy.

    Directory of Open Access Journals (Sweden)

    Ayako Kitano

    Full Text Available BACKGROUND AND PURPOSE: The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer. METHODS: Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined. RESULTS: Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2 and decreased phosphorylation of focal adhesion kinase (FAK. The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts. CONCLUSION: The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.

  17. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    OpenAIRE

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resis...

  18. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells.

    Science.gov (United States)

    Goldsmith, Chloe D; Vuong, Quan V; Sadeqzadeh, Elham; Stathopoulos, Costas E; Roach, Paul D; Scarlett, Christopher J

    2015-07-17

    Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds; especially oleuropein. Oleuropein has been shown to exhibit anti-proliferative activity against a number of cancer types. However, they have not been tested against pancreatic cancer, the fifth leading cause of cancer related death in Western countries. Therefore, water, 50% ethanol and 50% methanol extracts of Corregiola and Frantoio variety Olea europaea L. leaves were investigated for their total phenolic compounds, total flavonoids and oleuropein content, antioxidant capacity and anti-proliferative activity against MiaPaCa-2 pancreatic cancer cells. The extracts only had slight differences in their phytochemical properties, and at 100 and 200 μg/mL, all decreased the viability of the pancreatic cancer cells relative to controls. At 50 μg/mL, the water extract from the Corregiola leaves exhibited the highest anti-proliferative activity with the effect possibly due to early eluting HPLC peaks. For this reason, olive leaf extracts warrant further investigation into their potential anti-pancreatic cancer benefits.

  19. The pathobiological impact of cigarette smoke on pancreatic cancer development (review).

    Science.gov (United States)

    Wittel, Uwe A; Momi, Navneet; Seifert, Gabriel; Wiech, Thorsten; Hopt, Ulrich T; Batra, Surinder K

    2012-07-01

    Despite extensive efforts, pancreatic cancer remains incurable. Most risk factors, such as genetic disposition, metabolic diseases or chronic pancreatitis cannot be influenced. By contrast, cigarette smoking, an important risk factor for pancreatic cancer, can be controlled. Despite the epidemiological evidence of the detrimental effects of cigarette smoking with regard to pancreatic cancer development and its unique property of being influenceable, our understanding of cigarette smoke-induced pancreatic carcinogenesis is limited. Current data on cigarette smoke-induced pancreatic carcinogenesis indicate multifactorial events that are triggered by nicotine, which is the major pharmacologically active constituent of tobacco smoke. In addition to nicotine, a vast number of carcinogens have the potential to reach the pancreatic gland, where they are metabolized, in some instances to even more toxic compounds. These metabolic events are not restricted to pancreatic ductal cells. Several studies show that acinar cells are also greatly affected. Furthermore, pancreatic cancer progenitor cells do not only derive from the ductal epithelial lineage, but also from acinar cells. This sheds new light on cigarette smoke-induced acinar cell damage. On this background, our objective is to outline a multifactorial model of tobacco smoke-induced pancreatic carcinogenesis.

  20. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    International Nuclear Information System (INIS)

    Wang, Bing; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-01-01

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells

  1. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  2. Complex role for the immune system in initiation and progression of pancreatic cancer.

    Science.gov (United States)

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  3. The Epidemiology of Pancreatitis and Pancreatic Cancer

    Science.gov (United States)

    Yadav, Dhiraj; Lowenfels, Albert B.

    2013-01-01

    Acute pancreatitis is one of the most frequent gastrointestinal causes for hospital admission in the US. Chronic pancreatitis, although lower in incidence, significantly reduces patients’ quality of life. Pancreatic cancer has high mortality and is 1 of the top 5 causes of death from cancer. The burden of pancreatic disorders is expected to increase over time. The risk and etiology of pancreatitis differ with age and sex, and all pancreatic disorders affect Blacks more than any other race. Gallstones are the most common cause of acute pancreatitis, and early cholecystectomy eliminates the risk of future attacks. Alcohol continues to be the single most important risk factor for chronic pancreatitis. Smoking is an independent risk factor for acute and chronic pancreatitis, and its effects could synergize with those of alcohol. Significant risk factors for pancreatic cancer include smoking and non-O blood groups. Alcohol abstinence and smoking cessation can alter progression of pancreatitis and reduce recurrence; smoking cessation is the most effective strategy to reduce the risk of pancreatic cancer. PMID:23622135

  4. Therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Takeda, Yutaka; Kitagawa, Toru; Nakamori, Shoji

    2009-01-01

    Pancreatic cancer remains one of the most difficult diseases to cure. Japan pancreas society guidelines for management of pancreatic cancer indicate therapeutic algorithm according to the clinical stage. For locally limited pancreatic cancer (cStage I, II, III in Japanese classification system), surgical resection is recommended, however prognosis is still poor. Major randomized controlled trials of resected pancreatic cancer indicates that adjuvant chemotherapy is superior to observation and gemcitabine is superior to 5-fluorouracil (FU). For locally advanced resectable pancreatic cancer (cStage IVa in Japanese classification system (JCS)), we perform neoadjuvant chemoradiotherapy. Phase I study established a recommended dose of 800 mg gemcitabine and radiation dose of 36 Gy. For locally advanced nonresectable pancreatic cancer (cStage IVa in JCS), chemoradiotherapy followed by chemotherapy is recommended. Although pancreatic cancer is chemotherapy resistant tumor, systemic chemotherapy is recommended for metastatic pancreatic cancer (cStage IVb in JCS). Single-agent gemcitabine is the standard first line agent for the treatment of advanced pancreatic cancer. Meta-analysis of chemotherapy showed possibility of survival benefit of gemcitabine combination chemotherapy over gemcitabine alone. We hope gemcitabine combination chemotherapy or molecular targeted therapy will improve prognosis of pancreatic cancer in the future. (author)

  5. Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Enza Lonardo

    Full Text Available Pancreatic ductal adenocarcinomas contain a subset of exclusively tumorigenic cancer stem cells (CSCs, which are capable of repopulating the entire heterogeneous cancer cell populations and are highly resistant to standard chemotherapy. Here we demonstrate that metformin selectively ablated pancreatic CSCs as evidenced by diminished expression of pluripotency-associated genes and CSC-associated surface markers. Subsequently, the ability of metformin-treated CSCs to clonally expand in vitro was irreversibly abrogated by inducing apoptosis. In contrast, non-CSCs preferentially responded by cell cycle arrest, but were not eliminated by metformin treatment. Mechanistically, metformin increased reactive oxygen species production in CSC and reduced their mitochondrial transmembrane potential. The subsequent induction of lethal energy crisis in CSCs was independent of AMPK/mTOR. Finally, in primary cancer tissue xenograft models metformin effectively reduced tumor burden and prevented disease progression; if combined with a stroma-targeting smoothened inhibitor for enhanced tissue penetration, while gemcitabine actually appeared dispensable.

  6. Effect of Wasabi Component 6-(Methylsulfinylhexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2014-01-01

    Full Text Available The naturally occurring compound 6-(methylsulfinylhexyl isothiocyanate (6-MITC was isolated from Wasabia japonica (Wasabi, a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenylhexyl isothiocyanate (I7447 and 6-(methylsulfonylhexyl isothiocyanate (I7557 are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu’s stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH activity was used as a marker for cancer stem cells (CSC. Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells.

  7. TRAIL-receptor preferences in pancreatic cancer cells revisited: Both TRAIL-R1 and TRAIL-R2 have a licence to kill

    International Nuclear Information System (INIS)

    Mohr, Andrea; Yu, Rui; Zwacka, Ralf M.

    2015-01-01

    TRAIL is a potent and specific inducer of apoptosis in tumour cells and therefore is a possible new cancer treatment. It triggers apoptosis by binding to its cognate, death-inducing receptors, TRAIL-R1 and TRAIL-R2. In order to increase its activity, receptor-specific ligands and agonistic antibodies have been developed and some cancer types, including pancreatic cancer, have been reported to respond preferentially to TRAIL-R1 triggering. The aim of the present study was to examine an array of TRAIL-receptor specific variants on a number of pancreatic cancer cells and test the generality of the concept of TRAIL-R1 preference in these cells. TRAIL-R1 and TRAIL-R2 specific sTRAIL variants were designed and tested on a number of pancreatic cancer cells for their TRAIL-receptor preference. These sTRAIL variants were produced in HEK293 cells and were secreted into the medium. After having measured and normalised the different sTRAIL variant concentrations, they were applied to pancreatic and control cancer cells. Twenty-four hours later apoptosis was measured by DNA hypodiploidy assays. Furthermore, the specificities of the sTRAIL variants were validated in HCT116 cells that were silenced either for TRAIL-R1 or TRAIL-R2. Our results show that some pancreatic cancer cells use TRAIL-R1 to induce cell death, whereas other pancreatic carcinoma cells such as AsPC-1 and BxPC-3 cells trigger apoptosis via TRAIL-R2. This observation extended to cells that were naturally TRAIL-resistant and had to be sensitised by silencing of XIAP (Panc1 cells). The measurement of TRAIL-receptor expression by FACS revealed no correlation between receptor preferences and the relative levels of TRAIL-R1 and TRAIL-R2 on the cellular surface. These results demonstrate that TRAIL-receptor preferences in pancreatic cancer cells are variable and that predictions according to cancer type are difficult and that determining factors to inform the optimal TRAIL-based treatments still have to be identified

  8. Separate and concurrent use of 2-deoxy-D-glucose and 3-bromopyruvate in pancreatic cancer cells.

    Science.gov (United States)

    Xiao, Huijie; Li, Shasha; Zhang, Dapeng; Liu, Tongjun; Yu, Ming; Wang, Feng

    2013-01-01

    Unrestrained glycolysis characterizes energy meta-bolism in cancer cells. Thus, antiglycolytic reagents such as 2-deoxy-D-glucose (2-DG) and 3-bromopyruvate (3-BrPA) may be used as anticancer drugs. In the present study, we examined the anticancer effects of 2-DG and 3-BrPA in pancreatic cancer cells and investigated whether these effects were regulated by hypoxia-inducible factor-1α (HIF-1α). To this end, 2-DG and 3-BrPA were administered to wild-type (wt) MiaPaCa2 and Panc-1 pancreatic cancer cells that were incubated under hypoxic (HIF-1α-positive) or normoxic (HIF-1α-negative) conditions. In addition, 2-DG and 3-BrPA were also administered to si-MiaPaCa2 and si-Panc-1 cells that lacked HIF-1α as a result of RNA interference. Following drug exposure, cell population was measured using a viability assay. Both HIF-1α-positive and HIF-1α-negative MiaPaCa2 cells were further studied for their expression of Cu/Zn-superoxide dismutase (SOD1) and poly(ADP-ribose) polymerase (PARP) and for their contents of ATP and fumarate. In the viability assay, either 2-DG or 3-BrPA decreased the tested cells. Concurrent use of 2-DG and 3-BrPA resulted in a greater decrease of cells and also facilitated ATP depletion. In addition, 3-BrPA was seen to both decrease SOD1 and increase fumarate, which suggests that the reagent impaired the mitochondria. 3-BrPA also decreased both full-length PARP and cleaved PARP, which suggests that 3-BrPA-induced decrease in cell population was a result of cell necrosis rather than apoptosis. When HIF-1α was induced in wt-MiaPaCa2 cells by hypoxia, some effects of 2-DG and 3-BrPA were attenuated. We conclude that: i) concurrent use of 2-DG and 3-BrPA has better anticancer effects in pancreatic cancer cells, ii) 3-BrPA impairs the mitochondria of pancreatic cancer cells and induces cell necrosis, and iii) HIF-1α regulates the anticancer effects of 2-DG and 3-BrPA in pancreatic cancer cells.

  9. The epidemiology of pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Yadav, Dhiraj; Lowenfels, Albert B

    2013-06-01

    Acute pancreatitis is one of the most frequent gastrointestinal causes of hospital admission in the United States. Chronic pancreatitis, although lower in incidence, significantly reduces patients' quality of life. Pancreatic cancer is associated with a high mortality rate and is one of the top 5 causes of death from cancer. The burden of pancreatic disorders is expected to increase over time. The risk and etiology of pancreatitis differ with age and sex, and all pancreatic disorders affect the black population more than any other race. Gallstones are the most common cause of acute pancreatitis, and early cholecystectomy eliminates the risk of future attacks. Alcohol continues to be the single most important risk factor for chronic pancreatitis. Smoking is an independent risk factor for acute and chronic pancreatitis, and its effects could synergize with those of alcohol. Significant risk factors for pancreatic cancer include smoking and non-O blood groups. Alcohol abstinence and smoking cessation can alter the progression of pancreatitis and reduce recurrence; smoking cessation is the most effective strategy to reduce the risk of pancreatic cancer. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Pancreatic Stellate Cells : A Starring Role in Normal and Diseased Pancreas

    Directory of Open Access Journals (Sweden)

    Minoti eApte

    2012-08-01

    Full Text Available While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC, had remained undiscovered until as recently as twenty years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas - chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM proteins. Recent studies have also implied other additional functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans.During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumour growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.

  12. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death

    Science.gov (United States)

    Akimoto, Miho; Iizuka, Mari; Kanematsu, Rie; Yoshida, Masato; Takenaga, Keizo

    2015-01-01

    The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug. PMID:25961833

  13. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death.

    Directory of Open Access Journals (Sweden)

    Miho Akimoto

    Full Text Available The extract of ginger (Zingiber officinale Roscoe and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069 in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01 without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug.

  14. CD133(+)/CD44(+)/Oct4(+)/Nestin(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer.

    Science.gov (United States)

    Wang, Dongqing; Zhu, Haitao; Zhu, Ying; Liu, Yanfang; Shen, Huiling; Yin, Ruigen; Zhang, Zhijian; Su, Zhaoliang

    2013-05-01

    Pancreatic cancer is an aggressive malignant disease. Owing to the lack of early symptoms, accompanied by extensive metastasis and high resistance to chemotherapy, pancreatic adenocarcinoma becomes the fourth leading cause of cancer-related deaths. In this study, we identified a subpopulation of cells isolated from the Panc-1 cell line and named pancreatic cancer stem-like cells. These Panc-1 stem-like cells expressed high levels of CD133/CD44/Oct4/Nestin. Compared to Panc-1 cells, Panc-1 stem-like cells were resistant to gemcitabine and expressed high levels of MDR1; furthermore, Panc-1 stem-like cells have high anti-apoptotic, but weak proliferative potential. These results indicated that Panc-1 stem-like cells, as a novel group, may be a potential major cause of pancreatic cancer multidrug resistance and extensive metastasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  15. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia.

    Directory of Open Access Journals (Sweden)

    Toshiki Hirakawa

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs, the expression of insulin-like growth factor-1 (IGF1 and IGF1 receptor (IGF1R was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9 was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2 and hypoxia (1% O2. IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.

  16. Pancreatic Exocrine Insufficiency in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Miroslav Vujasinovic

    2017-02-01

    Full Text Available Abstract: Cancer patients experience weight loss for a variety of reasons, commencing with the tumor’s metabolism (Warburg effect and proceeding via cachexia to loss of appetite. In pancreatic cancer, several other factors are involved, including a loss of appetite with a particular aversion to meat and the incapacity of the pancreatic gland to function normally when a tumor is present in the pancreatic head. Pancreatic exocrine insufficiency is characterized by a deficiency of the enzymes secreted from the pancreas due to the obstructive tumor, resulting in maldigestion. This, in turn, contributes to malnutrition, specifically a lack of fat-soluble vitamins, antioxidants, and other micronutrients. Patients with pancreatic cancer and pancreatic exocrine insufficiency have, overall, an extremely poor prognosis with regard to surgical outcome and overall survival. Therefore, it is crucial to be aware of the mechanisms involved in the disease, to be able to diagnose pancreatic exocrine insufficiency early on, and to treat malnutrition appropriately, for example, with pancreatic enzymes.

  17. Pancreatic Exocrine Insufficiency in Pancreatic Cancer.

    Science.gov (United States)

    Vujasinovic, Miroslav; Valente, Roberto; Del Chiaro, Marco; Permert, Johan; Löhr, J-Matthias

    2017-02-23

    Abstract : Cancer patients experience weight loss for a variety of reasons, commencing with the tumor's metabolism (Warburg effect) and proceeding via cachexia to loss of appetite. In pancreatic cancer, several other factors are involved, including a loss of appetite with a particular aversion to meat and the incapacity of the pancreatic gland to function normally when a tumor is present in the pancreatic head. Pancreatic exocrine insufficiency is characterized by a deficiency of the enzymes secreted from the pancreas due to the obstructive tumor, resulting in maldigestion. This, in turn, contributes to malnutrition, specifically a lack of fat-soluble vitamins, antioxidants, and other micronutrients. Patients with pancreatic cancer and pancreatic exocrine insufficiency have, overall, an extremely poor prognosis with regard to surgical outcome and overall survival. Therefore, it is crucial to be aware of the mechanisms involved in the disease, to be able to diagnose pancreatic exocrine insufficiency early on, and to treat malnutrition appropriately, for example, with pancreatic enzymes.

  18. Pancreatic cancer stimulates pancreatic stellate cell proliferation and TIMP-1 production through the MAP kinase pathway

    International Nuclear Information System (INIS)

    Yoshida, Seiya; Yokota, Tokuyasu; Ujiki, Michael; Ding Xianzhong; Pelham, Carolyn; Adrian, Thomas E.; Talamonti, Mark S.; Bell, Richard H.; Denham, Woody

    2004-01-01

    Pancreatic adenocarcinoma is characterized by an intense desmoplastic reaction that surrounds the tumor. Pancreatic stellate cells (PSCs) are thought to be responsible for production of this extracellular matrix. When activated, PSCs have a myofibroblast phenotype and produce not only components of the extracellular matrix including collagen, fibronectin, and laminin, but also matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). Since PSCs are found in the stroma surrounding human pancreatic adenocarcinoma, we postulate that pancreatic cancer could impact PSC proliferation and TIMP-1 production. Rat PSCs were isolated and cultured. Isolated PSCs were exposed to PANC-1 conditioned medium (CM) and proliferation, activation of the mitogen-activated protein (MAP) kinase pathway, and TIMP-1 gene induction were determined. Exposure to PANC-1 CM increased PSC DNA synthesis, cell number, and TIMP-1 mRNA (real-time PCR) as well as activating the extracellular-regulated kinase (ERK) 1/2. Inhibition of ERK 1/2 phosphorylation (U0126) prevented the increases in growth and TIMP-1 expression. PANC-1 CM stimulates PSC proliferation and TIMP-1 through the MAP kinase (ERK 1/2) pathway

  19. Significance of the neurotensin receptor Na+/H+-exchanger 1 axis in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Olszewski, U.

    2009-01-01

    Pancreatic cancer is characterized by early dissemination and rapid acquisition of drug resistance, resulting in dismal prognosis in patients. New targeted therapies failed to improve the low five-year survival rates. Characterization of neuropeptides as growth factors for pancreatic cancer cells stimulated interest in the development of suitable inhibitors. In particular, neurotensin (NT) stimulated proliferation of cancer cell lines, and the NT receptor 1 (NTR1) antagonist SR48692 was found to inhibit growth of tumor xenografts. However, clinical application of SR48692 in small cell lung cancer failed to yield significant responses. Nevertheless, expression of NTRs in more than 90% of pancreatic tumors points to an important role of the NT - NTR system in this tumor entity. Therefore, the present study aimed at investigation of the significance of NT - NTR signaling by use of BxPC-3, PANC-1 and MIA PaCa-2 pancreatic cancer cells and the NTR-positive HT-29 colon carcinoma cell line for comparison. Functional NTR1 that triggers release of intracellular Ca 2+ upon binding of the stable NT analog Lys 8 -Ψ-Lys 9 NT(8-13) was confirmed in all pancreatic cancer cell lines. The fraction of cells in S phase was increased in response to the NT analog and proliferation of the pancreatic cancer cells stimulated to a limited extent. In contrast to epidermal growth factor receptor (EGFR), NTR1 expression was found to reach a maximum in confluent cultures of resting (G1/0 phase) BxPC-3 and PANC-1 cells. In addition, again unlike EGFR, expression of NTR1 proved to be dependent on extracellular pH with highest levels under acidic conditions. Accordingly, Lys 8 -Ψ-Lys 9 NT(8-13) induced marked intracellular alkalinization in BxPC-3, PANC-1 and a panel of colon cancer cell lines and slight acidification in MIA PaCa-2 cells under conditions that confine regulation of intracellular pH to the ubiquitously expressed Na + /H + exchanger 1 (NHE1). Similar results were obtained in

  20. Biomarkers and Targeted Therapy in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Fataneh Karandish

    2016-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  1. Biomarkers and Targeted Therapy in Pancreatic Cancer.

    Science.gov (United States)

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%-3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  2. Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer.

    Science.gov (United States)

    Koliopanos, Alexander; Kleeff, Jörg; Xiao, Yi; Safe, Stephen; Zimmermann, Arthur; Büchler, Markus W; Friess, Helmut

    2002-09-05

    The arylhydrocarbon receptor (AhR) was initially identified as a member of the adaptive metabolic and toxic response pathway to polycyclic aromatic hydrocarbons and to halogenated dibenzo-p-dioxins and dibenzofurans. In the present study, we sought to determine the functional significance of the AhR pathway in pancreatic carcinogenesis. AhR expression was analysed by Northern blotting. The exact site of AhR expression was analysed by in situ hybridization and immunohistochemistry. The effects of TCDD and four selective AhR agonists on pancreatic cancer cell lines were investigated by growth assays, apoptosis assays, and induction of the cyclin-dependent kinase inhibitor p21. There was strong AhR mRNA expression in 14 out of 15 pancreatic cancer samples, weak expression in chronic pancreatitis tissues, and faint expression in all normal pancreata. In pancreatic cancer tissues, AhR mRNA and protein expression were localized in the cytoplasm of pancreatic cancer cells. TCDD and the four AhR agonists inhibited pancreatic cancer cell growth in a dose-dependent manner, and decreased anchorage-independent cell growth. DAPI staining did not reveal nuclear fragmentation and CYP1A1 and was not induced by TCDD and AhR agonists. In contrast, TCDD and AhR agonists induced the expression of the cyclin-dependent kinase inhibitor p21. In conclusion, the relatively non-toxic AhR agonists caused growth inhibition in pancreatic cancer cells with high AhR expression levels via cell cycle arrest. In addition, almost all human pancreatic cancer tissues expressed this receptor at high levels, suggesting that these or related compounds may play a role in the therapy of pancreatic cancer in the future.

  3. Immunoglobulin G4 (IgG4)-positive plasma cell infiltration is associated with the clinicopathologic traits and prognosis of pancreatic cancer after curative resection.

    Science.gov (United States)

    Liu, Qiaofei; Niu, Zheyu; Li, Yuan; Wang, Mengyi; Pan, Boju; Lu, Zhaohui; Liao, Quan; Zhao, Yupei

    2016-08-01

    Interactions between pancreatic cancer cells and inflammatory cells play crucial roles in the biological behavior of pancreatic cancer. Abundant infiltration of immunoglobulin G4 (IgG4)-positive plasma cells in the pancreas is the most significant feature of autoimmune pancreatitis; however, the clinical significance of IgG4-positive plasma cell infiltration in pancreatic cancer has not previously been reported. Herein, we analyzed intratumoral and peritumoral infiltrations of IgG4-positive plasma cells in 95 pancreatic cancer cases after curative resection. The correlations between IgG4-positive plasma cell infiltration and the clinicopathologic traits and overall survival of pancreatic cancer were investigated. IgG4-positive plasma cells were found in 86 % of tumor tissue samples compared with 69 % of peritumoral tissue samples (P = 0.0063). The high-level infiltration of intratumoral IgG4-positive plasma cells was positively correlated with poor histological grade (P = 0.017). The high-level infiltration of intratumoral IgG4-positive plasma cells was significantly correlated with worse prognosis (P = 0.01) in multivariate analysis. We further found that intratumoral M2-polarized tumor-associated macrophages (TAMs) were positively, linearly correlated with IgG4-positive plasma cells. In conclusion, IgG4-positive plasma cell infiltration is correlated with the clinicopathologic traits and overall survival of pancreatic cancer. High-level intratumoral infiltration of IgG4-positive plasma cells is an independent predictor for poor overall survival in pancreatic cancer patients after curative resection. Intratumoral M2-polarized TAMs probably induce IgG4-positive plasma cells.

  4. Hypoxia enhances the interaction between pancreatic stellate cells and cancer cells via increased secretion of connective tissue growth factor.

    Science.gov (United States)

    Eguchi, Daiki; Ikenaga, Naoki; Ohuchida, Kenoki; Kozono, Shingo; Cui, Lin; Fujiwara, Kenji; Fujino, Minoru; Ohtsuka, Takao; Mizumoto, Kazuhiro; Tanaka, Masao

    2013-05-01

    Pancreatic cancer (PC), a hypovascular tumor, thrives under hypoxic conditions. Pancreatic stellate cells (PSCs) promote PC progression by secreting soluble factors, but their functions in hypoxia are poorly understood. This study aimed to clarify the effects of hypoxic conditions on the interaction between PC cells and PSCs. We isolated human PSCs from fresh pancreatic ductal adenocarcinomas and analyzed functional differences in PSCs between normoxia (21% O2) and hypoxia (1% O2), including expression of various factors related to tumor-stromal interactions. We particularly analyzed effects on PC invasiveness of an overexpressed molecule-connective tissue growth factor (CTGF)-in PSCs under hypoxic conditions, using RNA interference techniques. Conditioned media from hypoxic PSCs enhanced PC cell invasiveness more intensely than that from normoxic PSCs (P cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Molecular biology of pancreatic cancer.

    Science.gov (United States)

    Zavoral, Miroslav; Minarikova, Petra; Zavada, Filip; Salek, Cyril; Minarik, Marek

    2011-06-28

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz-Jeghers and Lynch syndromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  6. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC?1

    OpenAIRE

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-01-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC?1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC?1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC?1 cells, metabolome analysis of the invaded PANC?1 compared with the whole cultured PANC?1 was performed using CE?TOFMS, and concentrations of 110 met...

  7. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  8. Interaction of Stellate Cells with Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Marco Siech

    2010-09-01

    Full Text Available Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong “desmoplastic reaction”. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells, various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance. Finally we present some novel ideas for tumor therapy by interfering with the cancer cell-host interaction.

  9. Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery

    International Nuclear Information System (INIS)

    Sergeant, Gregory; Eijsden, Rudy van; Roskams, Tania; Van Duppen, Victor; Topal, Baki

    2012-01-01

    Most cancer deaths are caused by metastases, resulting from circulating tumor cells (CTC) that detach from the primary cancer and survive in distant organs. The aim of the present study was to develop a CTC gene signature and to assess its prognostic relevance after surgery for pancreatic ductal adenocarcinoma (PDAC). Negative depletion fluorescence activated cell sorting (FACS) was developed and validated with spiking experiments using cancer cell lines in whole human blood samples. This FACS-based method was used to enrich for CTC from the blood of 10 patients who underwent surgery for PDAC. Total RNA was isolated from 4 subgroup samples, i.e. CTC, haematological cells (G), original tumour (T), and non-tumoural pancreatic control tissue (P). After RNA quality control, samples of 6 patients were eligible for further analysis. Whole genome microarray analysis was performed after double linear amplification of RNA. ‘Ingenuity Pathway Analysis’ software and AmiGO were used for functional data analyses. A CTC gene signature was developed and validated with the nCounter system on expression data of 78 primary PDAC using Cox regression analysis for disease-free (DFS) and overall survival (OS). Using stringent statistical analysis, we retained 8,152 genes to compare expression profiles of CTC vs. other subgroups, and found 1,059 genes to be differentially expressed. The pathway with the highest expression ratio in CTC was p38 mitogen-activated protein kinase (p38 MAPK) signaling, known to be involved in cancer cell migration. In the p38 MAPK pathway, TGF-β1, cPLA2, and MAX were significantly upregulated. In addition, 9 other genes associated with both p38 MAPK signaling and cell motility were overexpressed in CTC. High co-expression of TGF-β1 and our cell motility panel (≥ 4 out of 9 genes for DFS and ≥ 6 out of 9 genes for OS) in primary PDAC was identified as an independent predictor of DFS (p=0.041, HR (95% CI) = 1.885 (1.025 – 3.559)) and OS (p=0.047, HR

  10. The WSB1 gene is involved in pancreatic cancer progression.

    Directory of Open Access Journals (Sweden)

    Cendrine Archange

    Full Text Available BACKGROUND: Pancreatic cancer cells generate metastases because they can survive the stress imposed by the new environment of the host tissue. To mimic this process, pancreatic cancer cells which are not stressed in standard culture conditions are injected into nude mice. Because they develop xenografts, they should have developed adequate stress response. Characterizing that response might provide new strategies to interfere with pancreatic cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: In the human pancreatic cancer cell lines Panc-1, Mia-PaCa2, Capan-1, Capan-2 and BxPC3, we used Affymetrix DNA microarrays to compare the expressions of 22.000 genes in vitro and in the corresponding xenografts. We identified 228 genes overexpressed in xenografts and characterized the implication of one of them, WSB1, in the control of apoptosis and cell proliferation. WSB1 generates 3 alternatively spliced transcripts encoding distinct protein isoforms. In xenografts and in human pancreatic tumors, global expression of WSB1 mRNA is modestly increased whereas isoform 3 is strongly overexpressed and isoforms 1 and 2 are down-regulated. Treating Mia-PaCa2 cells with stress-inducing agents induced similar changes. Whereas retrovirus-forced expression of WSB1 isoforms 1 and 2 promoted cell growth and sensitized the cells to gemcitabine- and doxorubicin-induced apoptosis, WSB1 isoform 3 expression reduced cell proliferation and enhanced resistance to apoptosis, showing that stress-induced modulation of WSB1 alternative splicing increases resistance to apoptosis of pancreatic cancer cells. CONCLUSIONS/SIGNIFICANCE: Data on WSB1 regulation support the hypothesis that activation of stress-response mechanisms helps cancer cells establishing metastases and suggest relevance to cancer development of other genes overexpressed in xenografts.

  11. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells.

    Science.gov (United States)

    Feng, Wan; Cai, Dawei; Zhang, Bin; Lou, Guochun; Zou, Xiaoping

    2015-08-01

    Histone deacetylases (HDAC) are involved in diverse biological processes and therefore emerge as potential targets for pancreatic cancer. Silibinin, an active component of silymarin, is known to inhibit growth of pancreatic cancer in vivo and in vitro. Herein, we examined the cytotoxic effects of TSA in combination with silibinin and investigated the possible mechanism in two pancreatic cancer cell lines (Panc1 and Capan2). Our study found that combination treatment of HDAC inhibitor and silibinin exerted additive growth inhibitory effect on pancreatic cancer cell. Annexin V-FITC/PI staining and flow cytometry analysis demonstrated that combination therapy induced G2/M cell cycle arrest and apoptosis in Panc1and Capan2 cells. The induction of apoptosis was further confirmed by evaluating the activation of caspases. Moreover, treatment with TSA and silibinin resulted in a profound reduction in the expression of cyclinA2, cyclinB1/Cdk1 and survivin. Taken together, our study might indicate that the novel combination of HDAC inhibitor and silibinin could offer therapeutic potential against pancreatic cancer. Copyright © 2015. Published by Elsevier Masson SAS.

  12. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1.

    Science.gov (United States)

    Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia

    2011-06-01

    Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.

  13. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells.

    Science.gov (United States)

    Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar

    2013-08-19

    Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.

  14. α-Mangostin Suppresses the Viability and Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells by Downregulating the PI3K/Akt Pathway

    Directory of Open Access Journals (Sweden)

    Qinhong Xu

    2014-01-01

    Full Text Available α-Mangostin, a natural product isolated from the pericarp of the mangosteen fruit, has been shown to inhibit the growth of tumor cells in various types of cancers. However, the underlying molecular mechanisms are largely unclear. Here, we report that α-mangostin suppressed the viability and epithelial-mesenchymal transition (EMT of pancreatic cancer cells through inhibition of the PI3K/Akt pathway. Treatment of pancreatic cancer BxPc-3 and Panc-1 cells with α-mangostin resulted in loss of cell viability, accompanied by enhanced cell apoptosis, cell cycle arrest at G1 phase, and decrease of cyclin-D1. Moreover, Transwell and Matrigel invasion assays showed that α-mangostin significantly reduced the migration and invasion of pancreatic cancer cells. Consistent with these results, α-mangostin decreased the expression of MMP-2, MMP-9, N-cadherin, and vimentin and increased the expression of E-cadherin. Furthermore, we found that α-mangostin suppressed the activity of the PI3K/Akt pathway in pancreatic cancer cells as demonstrated by the reduction of the Akt phosphorylation by α-mangostin. Finally, α-mangostin significantly inhibited the growth of BxPc-3 tumor mouse xenografts. Our results suggest that α-mangostin may be potentially used as a novel adjuvant therapy or complementary alternative medicine for the management of pancreatic cancers.

  15. Inhibition of pancreatic tumoral cells by snake venom disintegrins.

    Science.gov (United States)

    Lucena, Sara; Castro, Roberto; Lundin, Courtney; Hofstetter, Amanda; Alaniz, Amber; Suntravat, Montamas; Sánchez, Elda Eliza

    2015-01-01

    Pancreatic cancer often has a poor prognosis, even when diagnosed early. Pancreatic cancer typically spreads rapidly and is rarely detected in its early stages, which is a major reason it is a leading cause of cancer death. Signs and symptoms may not appear until pancreatic cancer is quite advanced, and complete surgical removal is not possible. Furthermore, pancreatic cancer responds poorly to most chemotherapeutic agents. The importance of integrins in several cell types that affect tumor progression has made them an appealing target for cancer therapy. Some of the proteins found in the snake venom present a great potential as anti-tumor agents. In this study, we summarize the activity of two integrins antagonist, recombinant disintegrins mojastin 1 and viridistatin 2, on human pancreatic carcinoma cell line (BXPC-3). Both recombinant disintegrins inhibited some essential aspects of the metastasis process such as proliferation, adhesion, migration, and survival through apoptosis, making these proteins prominent candidates for the development of drugs for the treatment of pancreatic cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    Science.gov (United States)

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  17. BART Inhibits Pancreatic Cancer Cell Invasion by Rac1 Inactivation through Direct Binding to Active Rac1

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2012-05-01

    Full Text Available We report that Binder of Arl Two (BART plays a role in inhibiting cell invasion by regulating the activity of the Rho small guanosine triphosphatase protein Rac1 in pancreatic cancer cells. BART was originally identified as a binding partner of ADP-ribosylation factor-like 2, a small G protein implicated as a regulator of microtubule dynamics and folding. BART interacts with active forms of Rac1, and the BART-Rac1 complex localizes at the leading edges of migrating cancer cells. Suppression of BART increases active Rac1, thereby increasing cell invasion. Treatment of pancreatic cancer cells in which BART is stably knocked down with a Rac1 inhibitor decreases invasiveness. Thus, BART-dependent inhibition of cell invasion is likely associated with decreased active Rac1. Suppression of BART induces membrane ruffling and lamellipodial protrusion and increases peripheral actin structures in membrane ruffles at the edges of lamellipodia. The Rac1 inhibitor inhibits the lamellipodia formation that is stimulated by suppression of BART. Our results imply that BART regulates actin-cytoskeleton rearrangements at membrane ruffles through modulation of the activity of Rac1, which, in turn, inhibits pancreatic cancer cell invasion.

  18. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  19. Rare case of pancreatic cancer with leptomeningeal carcinomatosis

    Science.gov (United States)

    Yoo, In Kyung; Lee, Hong Sik; Kim, Chang Duk; Chun, Hoon Jai; Jeen, Yoon Tae; Keum, Bora; Kim, Eun Sun; Choi, Hyuk Soon; Lee, Jae Min; Kim, Seung Han; Nam, Seung Joo; Hyun, Jong Jin

    2015-01-01

    Leptomeningeal carcinomatosis occurs very rarely in patients with pancreatic cancer. Leptomeningeal carcinomatosis is characterized by multifocal seeding of the leptomeninges by malignant cells that originate from a solid tumor. To the best of our knowledge, brain metastasis from pancreatic cancer is extremely rare. Leptomeningeal carcinomatosis is estimated to occur in 3% to 8% of cases of solid tumors. The clinical manifestation usually involves neurological symptoms, including dizziness, headache, vomiting, nausea, and hemiparesis, symptoms similar to those of meningitis or brain tumors. Diagnostic methods for leptomeningeal carcinomatosis include brain magnetic resonance imaging and cerebrospinal fluid examination. Here, we describe a case of leptomeningeal carcinomatosis in which the primary tumor was later determined to be pancreatic cancer. Brain magnetic resonance imaging findings showed mild enhancement of the leptomeninges, and cerebrospinal fluid cytology was negative at first. However, after repeated spinal taps, atypical cells were observed on cerebrospinal fluid analysis and levels of tumor markers such as carbohydrate antigen 19-9 in cerebrospinal fluid were elevated. Abdominal computed tomography, performed to determine the presence of extracerebral tumors, revealed pancreatic cancer. Pancreatic cancer was confirmed histopathologically on examination of an endoscopic ultrasound-guided fine needle aspiration specimen. PMID:25624740

  20. Design of a nanoplatform for treating pancreatic cancer

    Science.gov (United States)

    Manawadu, Harshi Chathurangi

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the USA. Asymptomatic early cancer stages and late diagnosis leads to very low survival rates of pancreatic cancers, compared to other cancers. Treatment options for advanced pancreatic cancer are limited to chemotherapy and/or radiation therapy, as surgical removal of the cancerous tissue becomes impossible at later stages. Therefore, there's a critical need for innovative and improved chemotherapeutic treatment of (late) pancreatic cancers. It is mandatory for successful treatment strategies to overcome the drug resistance associated with pancreatic cancers. Nanotechnology based drug formulations have been providing promising alternatives in cancer treatment due to their selective targeting and accumulation in tumor vasculature, which can be used for efficient delivery of chemotherapeutic agents to tumors and metastases. The research of my thesis is following the principle approach to high therapeutic efficacy that has been first described by Dr. Helmut Ringsdorf in 1975. However, I have extended the use of the Ringsdorf model from polymeric to nanoparticle-based drug carriers by exploring an iron / iron oxide nanoparticle based drug delivery system. A series of drug delivery systems have been synthesized by varying the total numbers and the ratio of the tumor homing peptide sequence CGKRK and the chemotherapeutic drug doxorubicin at the surfaces of Fe/Fe3O 4-nanoparticles. The cytotoxicity of these nanoformulations was tested against murine pancreatic cancer cell lines (Pan02) to assess their therapeutic capabilities for effective treatments of pancreatic cancers. Healthy mouse fibroblast cells (STO) were also tested for comparison, because an effective chemotherapeutic drug has to be selective towards cancer cells. Optimal Experimental Design methodology was applied to identify the nanoformulation with the highest therapeutic activity. A statistical analysis method known as response

  1. Decoy receptor 3 suppresses FasL-induced apoptosis via ERK1/2 activation in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Li, Dechun; Zhao, Xin; Song, Shiduo; Zhang, Lifeng; Zhu, Dongming [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Wang, Zhenxin [Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Chen, Xiaochen [Department of Pathology, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200090 (China); Zhou, Jian, E-mail: zhoujian20150602@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2015-08-07

    Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level of DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ{sup 2} = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26  ±  2.67%) was significantly higher than that of DcR3 negative specimens (43.58  ±  7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. - Highlights: • We investigated the role of DcR3 in FasL resistance in pancreatic cancer. • Knockdown of DcR3 in SW1990 cells reduced resistance to FasL-induced apoptosis. • DcR3 knockdown also elevated caspase expression, and reduced ERK1/2 phosphorylation. • Tumor and non-tumor tissues were collected from 66 pancreatic carcinoma patients

  2. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells

    Science.gov (United States)

    XIE, LIQUN; DUAN, ZEXING; LIU, CAIJU; ZHENG, YANMIN; ZHOU, JING

    2015-01-01

    The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression. PMID:25452809

  3. Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2018-01-01

    Full Text Available NAF-1 (nutrient-deprivation autophagy factor-1, which is an outer mitochondrial membrane protein, is known to play important roles in calcium metabolism, antiapoptosis, and antiautophagy. Resveratrol, a natural polyphenolic compound, is considered as a potent anticancer agent. Nevertheless, the molecular mechanisms underlying the effects of resveratrol and NAF-1 and their mediation of drug resistance in pancreatic cancer remain unclear. Here, we demonstrate that resveratrol suppresses the expression of NAF-1 in pancreatic cancer cells by inducing cellular reactive oxygen species (ROS accumulation and activating Nrf2 signaling. In addition, the knockdown of NAF-1 activates apoptosis and impedes the proliferation of pancreatic cancer cells. More importantly, the targeting of NAF-1 by resveratrol can improve the sensitivity of pancreatic cancer cells to gemcitabine. These results highlight the significance of strategies that target NAF-1, which may enhance the efficacy of gemcitabine in pancreatic cancer therapy.

  4. Centrosomal protein 55 activates NF-?B signalling and promotes pancreatic cancer cells aggressiveness

    OpenAIRE

    Peng, Tao; Zhou, Wei; Guo, Feng; Wu, He-shui; Wang, Chun-you; Wang, Li; Yang, Zhi-yong

    2017-01-01

    Centrosomal protein 55 (CEP55) is a microtubule-bundling protein that participants in cell mitosis. It is overexpressed in several solid tumours and promotes the growth and invasion of cancer cells. However, the role of CEP55 in pancreatic cancer (PANC) remains unclear. Herein, upregulated expression of CEP55 (associated with poor prognosis) was detected in PANC using quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry. Cell migration, colony formation...

  5. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jameel Ahmad Khan

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography. The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor, all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1 targeting agent to nanoparticle ratio 2 availability of reactive surface area on the nanoparticle 3 ability of the nanoconjugate to bind the target and 4 hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle

  6. Screening Technologies for Target Identification in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michl, Patrick, E-mail: michlp@med.uni-marburg.de; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte [Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Baldinger Strasse, D-35043 Marburg (Germany)

    2010-12-29

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments.

  7. Screening Technologies for Target Identification in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Michl, Patrick; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte

    2010-01-01

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments

  8. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  9. Differences of statin activity in 2D and 3D pancreatic cancer cell cultures

    Directory of Open Access Journals (Sweden)

    Paškevičiūtė M

    2017-11-01

    Full Text Available Miglė Paškevičiūtė,1 Vilma Petrikaitė1,21Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania; 2Department of Biothermodynamics and Drug Design, Vilnius University Institute of Biotechnology, Vilnius, LithuaniaPurpose: To evaluate the anticancer activity of lovastatin (LOVA, mevastatin (MEVA, pitavastatin (PITA, and simvastatin (SIMVA in 2D and 3D models of three human pancreatic cancer cell lines (BxPC-3, MIA PaCa-2, and PANC-1.Methods: The effect of statins on cell viability was estimated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide test. The activity of statins in 3D pancreatic cancer cell cultures was examined by measuring the size change of spheroids. The type of cell death was identified by cell staining with Hoechst 33342 and propidium iodide. The activity of statins on the clonogenicity of cancer cells was tested by evaluating the effect on the colony-forming ability of cells.Results: The rank order of the activity of tested statins on cell viability was as follows: PITA > SIMVA > LOVA > MEVA. Among the tested statins, PITA had the greatest effect on cell viability (half maximal effective concentration values after 72 h on BxPC-3, MIA PaCa-2, and PANC-1 cells were 1.4±0.4 µM, 1.0±0.2 µM, and 1.0±0.5 µM, respectively. PITA also showed the strongest effect on tumor spheroid growth. Statins suppressed the colony formation of cancer cells. PITA demonstrated the greatest reduction in colony size and number. Apoptosis and necrosis assay results showed that at lower concentrations statins mostly induced cell death through apoptosis, whereas higher concentrations of compounds activated also necrotic processes.Conclusion: Statins, especially PITA, demonstrate an anticancer activity against pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and PANC-1 in both 2D and 3D models.Keywords: HMG-CoA reductase, cell viability, spheroid, apoptosis

  10. Using CRISPR/Cas9 to Knock out Amylase in Acinar Cells Decreases Pancreatitis-Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Kohei Yasunaga

    2018-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm that originates from acinar cells. Acinar cells get reprogrammed to become duct cells, resulting in pancreatic cancer. Pancreatitis is an acinar cell inflammation, leading to “impaired autophagy flux”. Pancreatitis promotes acinar-to-ductal transdifferentiation. Expression of amylase gets eliminated during the progression of pancreatic cancer. Amylase is considered as an acinar cell marker; however, its function in cells is not known. Thus, we investigated whether amylase affects the acinar cell autophagy and whether it plays any role in development of pancreatitis. Here, we knocked out ATG12 in a pancreatic cancer cells and acinar cells using CRISPR/Cas9. Autophagy inhibition led to an increase in the expression of duct cell markers and a simultaneous decrease in that of acinar cell markers. It also caused an increase in cell viability and changes in mitochondrial morphology. Next, we knocked out amylase in acinar cells. Amylase deficiency decreased autophagy induced by pancreatitis. Our results suggest that amylase controls pancreatitis-induced autophagy. We found that eliminating amylase expression contributes to pancreatic cancer etiology by decreasing autophagy. Furthermore, our results indicate that amylase plays a role in selective pancreatitis-induced autophagy of pancreatic enzyme vesicles.

  11. Vitamin D and pancreatic cancer

    OpenAIRE

    Stolzenberg-Solomon, Rachael Z.

    2008-01-01

    Sun exposure has been associated with lower death rates for pancreatic cancer in ecological studies. Skin exposure to solar ultra-violet B radiation induces cutaneous production of precursors to 25-hydroxy (OH) vitamin D (D) and is considered the primary contributor to vitamin D status in most populations. Pancreatic islet and duct cells express 25-(OH) D3-1α-hydroxylase that generates the biologically active 1,25-dihydroxy(OH)2 D form. Thus, 25(OH)D concentrations could affect pancreatic fun...

  12. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells

    International Nuclear Information System (INIS)

    Gutierrez-Barrera, Angelica M.; Menter, David G.; Abbruzzese, James L.; Reddy, Shrikanth A.G.

    2007-01-01

    Three-dimensional (3D) cultures of epithelial cells offer singular advantages for studies of morphogenesis or the role of cancer genes in oncogenesis. In this study, as part of establishing a 3D culture system of pancreatic duct epithelial cells, we compared human pancreatic duct epithelial cells (HPDE-E6E7) with pancreatic cancer cell lines. Our results show, that in contrast to cancer cells, HPDE-E6E7 organized into spheroids with what appeared to be apical and basal membranes and a luminal space. Immunostaining experiments indicated that protein kinase Akt was phosphorylated (Ser473) and CTMP, a negative Akt regulator, was expressed in both HPDE-E6E7 and cancer cells. However, a nuclear pool of CTMP was detectable in HPDE-E6E7 cells that showed a dynamic concentrated expression pattern, a feature that further distinguished HPDE-E637 cells from cancer cells. Collectively, these data suggest that 3D cultures of HPDE-E6E7 cells are useful for investigating signaling and morphological abnormalities in pancreatic cancer cells

  13. RISK FACTORS FOR PANCREATIC CANCER: UNDERLYING MECHANISMS AND POTENTIAL TARGETS

    Directory of Open Access Journals (Sweden)

    Thomas eKolodecik

    2014-01-01

    Full Text Available Purpose of the review:Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer.Recent Findings:Intracellular activation of both pancreatic enzymes and the transcription factor NF-kB are important mechanisms that induce acute pancreatitis. Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogneic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16 can ultimately lead to development of pancreatic cancer. Summary:Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions.

  14. Immunotherapy in pancreatic cancer: Unleash its potential through novel combinations.

    Science.gov (United States)

    Guo, Songchuan; Contratto, Merly; Miller, George; Leichman, Lawrence; Wu, Jennifer

    2017-06-10

    Pancreatic cancer is the third leading cause of cancer mortality in both men and women in the United States, with poor response to current standard of care, short progression-free and overall survival. Immunotherapies that target cytotoxic T lymphocyte antigen-4, programmed cell death protein-1, and programmed death-ligand 1 checkpoints have shown remarkable activities in several cancers such as melanoma, renal cell carcinoma, and non-small cell lung cancer due to high numbers of somatic mutations, combined with cytotoxic T-cell responses. However, single checkpoint blockade was ineffective in pancreatic cancer, highlighting the challenges including the poor antigenicity, a dense desmoplastic stroma, and a largely immunosuppressive microenvironment. In this review, we will summarize available clinical results and ongoing efforts of combining immune checkpoint therapies with other treatment modalities such as chemotherapy, radiotherapy, and targeted therapy. These combination therapies hold promise in unleashing the potential of immunotherapy in pancreatic cancer to achieve better and more durable clinical responses by enhancing cytotoxic T-cell responses.

  15. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    Science.gov (United States)

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  16. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Shafie, Rami A. El; Habermehl, Daniel; Rieken, Stefan

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer deaths, being responsible for 6% of all cancer-related deaths. Conventional radiotherapy with or without additional chemotherapy has been applied in the past in the context of neoadjuvant or adjuvant therapy concepts with only modest results, however new radiation modalities, such as particle therapy with promising physical and biological characteristics, present an alternative treatment option for patients with pancreatic cancer. Up until now the raster scanning technique employed at our institution for the application of carbon ions has been unique, and no radiobiological data using pancreatic cancer cells has been available yet. The aim of this study was to evaluate cytotoxic effects that can be achieved by treating pancreatic cancer cell lines with combinations of X-rays and gemcitabine, or alternatively with carbon ion irradiation and gemcitabine, respectively. Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and carbon ions at various doses and treated with gemcitabine. Photon irradiation was applied with a biological cabin X-ray irradiator, and carbon ion irradiation was applied with an extended Bragg peak (linear energy transfer (LET) 103 keV/μm) using the raster scanning technique at the Heidelberg Ion Therapy Center (HIT). Responsiveness of pancreatic cancer cells to the treatment was measured by clonogenic survival. Clonogenic survival curves were then compared to predicted curves that were calculated employing the local effect model (LEM). Cell survival curves were calculated from the surviving fractions of each combination experiment and compared to a drug control that was only irradiated with X-rays or carbon ions, without application of gemcitabine. In terms of cytotoxicity, additive effects were achieved for the cell lines Panc-1 and BxPC-3, and a slight radiosensitizing effect was observed for AsPC-1. Relative biological effectiveness (RBE) of carbon

  17. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    Science.gov (United States)

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  19. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    International Nuclear Information System (INIS)

    Deng, Lin; Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Guo, Xuegang

    2013-01-01

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3

  20. Prevention of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Stefan Kuroczycki-Saniutycz

    2017-02-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA accounts for 95% of all pancreatic cancers. About 230,000 PDA cases are diagnosed worldwide each year. PDA has the lowest five-year survival rate as compared to others cancers. PDA in Poland is the fifth leading cause of death after lung, stomach, colon and breast cancer. In our paper we have analysed the newest epidemiological research, some of it controversial, to establish the best practical solution for pancreatic cancer prevention in the healthy population as well as treatment for patients already diagnosed with pancreatic cancer. We found that PDA occurs quite frequently but is usually diagnosed too late, at its advanced stage. Screening for PDA is not very well defined except in subgroups of high-risk individuals with genetic disorders or with chronic pancreatitis. We present convincing, probable, and suggestive risk factors associated with pancreatic cancer, many of which are modifiable and should be introduced and implemented in our society.

  1. Targeting the Warburg effect with a novel glucose transporter inhibitor to overcome gemcitabine resistance in pancreatic cancer cells

    Science.gov (United States)

    Lai, I-Lu; Chou, Chih-Chien; Lai, Po-Ting; Fang, Chun-Sheng; Shirley, Lawrence A.; Yan, Ribai; Mo, Xiaokui; Bloomston, Mark; Kulp, Samuel K.; Bekaii-Saab, Tanios; Chen, Ching-Shih

    2014-01-01

    Gemcitabine resistance remains a significant clinical challenge. Here, we used a novel glucose transporter (Glut) inhibitor, CG-5, as a proof-of-concept compound to investigate the therapeutic utility of targeting the Warburg effect to overcome gemcitabine resistance in pancreatic cancer. The effects of gemcitabine and/or CG-5 on viability, survival, glucose uptake and DNA damage were evaluated in gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cell lines. Mechanistic studies were conducted to determine the molecular basis of gemcitabine resistance and the mechanism of CG-5-induced sensitization to gemcitabine. The effects of CG-5 on gemcitabine sensitivity were investigated in a xenograft tumor model of gemcitabine-resistant pancreatic cancer. In contrast to gemcitabine-sensitive pancreatic cancer cells, the resistant Panc-1 and Panc-1GemR cells responded to gemcitabine by increasing the expression of ribonucleotide reductase M2 catalytic subunit (RRM2) through E2F1-mediated transcriptional activation. Acting as a pan-Glut inhibitor, CG-5 abrogated this gemcitabine-induced upregulation of RRM2 through decreased E2F1 expression, thereby enhancing gemcitabine-induced DNA damage and inhibition of cell survival. This CG-5-induced inhibition of E2F1 expression was mediated by the induction of a previously unreported E2F1-targeted microRNA, miR-520f. The addition of oral CG-5 to gemcitabine therapy caused greater suppression of Panc-1GemR xenograft tumor growth in vivo than either drug alone. Glut inhibition may be an effective strategy to enhance gemcitabine activity for the treatment of pancreatic cancer. PMID:24879635

  2. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  3. Familial Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Stephen J. Lanspa

    2010-11-01

    Full Text Available Pancreatic cancer’s high mortality rate equates closely with its incidence, thereby showing the need for development of biomarkers of its increased risk and a better understanding of its genetics, so that high-risk patients can be better targeted for screening and early potential lifesaving diagnosis. Its phenotypic and genotypic heterogeneity is extensive and requires careful scrutiny of its pattern of cancer associations, such as malignant melanoma associated with pancreatic cancer, in the familial atypical multiple mole melanoma syndrome, due to the CDKN2A germline mutation. This review is designed to depict several of the hereditary pancreatic cancer syndromes with particular attention given to the clinical application of this knowledge into improved control of pancreatic cancer.

  4. Ovatodiolide of Anisomeles indica Exerts the Anticancer Potential on Pancreatic Cancer Cell Lines through STAT3 and NF-κB Regulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Hsieh

    2016-01-01

    Full Text Available Pancreatic cancer is the eighth leading cause of cancer death worldwide. Patients with pancreatic cancer are normally diagnosed at an advanced stage and present poor survival rate. Ovatodiolide (OV, a bioactive macrocyclic diterpenoid isolated from Anisomeles indica, showed cytotoxicity effects in pancreatic cancer cells by inhibiting cell proliferation and inducing apoptosis. Moreover, not only were cell adhesion and invasion markedly suppressed in a dose-dependent manner, but the mRNA expression of matrix metalloproteinase-9 (MMP-9 and focal adhesion kinase (FAK was also significantly decreased. Western blot analysis indicated that OV potently suppressed the phosphorylation of STAT-3 and its upstream kinase including ERK1/2, P38, and AKT Ser473. Meanwhile, OV inactivated the nuclear factor kappa B (NF-κB by inhibiting IκB kinase (IKK α/β activation and the subsequent suppression of inhibitor of kappa B (IκB phosphorylation. These results demonstrated that OV could potentially inhibit Mia-PaCa2 cancer cells proliferation and induce apoptosis through modulation of NF-κB and STAT3 pathway. Moreover, OV suppressed cell invasiveness and interfered with cell-matrix adhesion in Mia-PaCa2 cancer cells by reducing MMP-9 and FAK transcription through suppressing NF-κB and STAT3 pathway. Taken together, our findings reveal a new therapeutic and antimetastatic potential of ovatodiolide for pancreatic cancer remedy.

  5. Murine Pancreatic Cancer Alters T Cell Activation and Apoptosis and Worsens Survival After Cecal Ligation and Puncture.

    Science.gov (United States)

    Lyons, John D; Chen, Ching-Wen; Liang, Zhe; Zhang, Wenxiao; Chihade, Deena B; Burd, Eileen M; Farris, Alton B; Ford, Mandy L; Coopersmith, Craig

    2018-06-08

    Patients with cancer who develop sepsis have a markedly higher mortality than patients who were healthy prior to the onset of sepsis. Potential mechanisms underlying this difference have previously been examined in two preclinical models of cancer followed by sepsis. Both pancreatic cancer/pneumonia and lung cancer/cecal ligation and puncture (CLP) increase murine mortality, associated with alterations in lymphocyte apoptosis and intestinal integrity. However, pancreatic cancer/pneumonia decreases lymphocyte apoptosis and increases gut apoptosis while lung cancer/CLP increases lymphocyte apoptosis and decreases intestinal proliferation. These results cannot distinguish the individual roles of cancer versus sepsis since different models of each were used. We therefore created a new cancer/sepsis model to standardize each variable. Mice were injected with a pancreatic cancer cell line and three weeks later cancer mice and healthy mice were subjected to CLP. Cancer septic mice had a significantly higher 10-day mortality than previously healthy septic mice. Cancer septic mice had increased CD4 T cells and CD8 T cells, associated with decreased CD4 T cell apoptosis 24 hours after CLP. Further, splenic CD8+ T cell activation was decreased in cancer septic mice. In contrast, no differences were noted in intestinal apoptosis, proliferation or permeability, nor were changes noted in local bacterial burden, renal, liver or pulmonary injury. Cancer septic mice thus have consistently reduced survival compared to previously healthy septic mice, independent of the cancer or sepsis model utilized. Changes in lymphocyte apoptosis are common to cancer model and independent of sepsis model whereas gut apoptosis is common to sepsis model and independent of cancer model. The host response to the combination of cancer and sepsis is dependent, at least in part, on both chronic co-morbidity and acute illness.

  6. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kim, Nayoung; Kang, Min-Jung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Ji Eun; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2018-06-01

    Pancreatic cancer is a highly lethal malignancy with a poor prognosis. This study was set up to investigate the combined effect of gemcitabine and fisetin, a natural flavonoid from plants, on human pancreatic cancer cells. Meterials and Methods: Cytotoxic effect of fisetin in combination with gemcitabine on MiaPaca-2 cells was evaluated by the MTT assay, caspase 3/7 assay and propidium iodide/Annexin V. Extracellular signal-regulated kinase (ERK)-v-myc avian myelocytomatosis viral oncogene homolog (MYC) pathway was investigated by western blotting and quantitative real-time polymerase chain reaction. Combination treatment with fisetin and gemcitabine inhibited the proliferation of pancreatic cancer cells within 72 h and induced apoptosis, as indicated by activation of caspase 3/7. Fisetin down-regulated ERK at the protein and mRNA levels, and reduced ERK-induced MYC instability at the protein level. Fisetin sensitized human pancreatic cancer cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. These results suggest that the combination of fisetin and gemcitabine could be developed as a novel potent therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    De Oliveira Tiago

    2012-04-01

    Full Text Available Abstract Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC cells. Methods Syndecan-2 (SDC-2 expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.

  8. Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer

    International Nuclear Information System (INIS)

    Ramani, Vishnu C; Hennings, Leah; Haun, Randy S

    2008-01-01

    In a previous report we have demonstrated that the chymotryptic-like serine protease kallikrein 7 (KLK7/hK7) is overexpressed in pancreatic cancer. In normal skin, hK7 is thought to participate in skin desquamation by contributing in the degradation of desmosomal components, such as desmogleins. Thus, the ability of hK7 to degrade desmogleins was assessed and the effect of hK7 expression on desmoglein 2 was examined in cultured pancreatic cancer cells. The expression of Dsg1, Dsg2, and Dsg3 in pancreatic tissues was examined by immunohistochemistry and their expression in two pancreatic cancer cell lines, BxPC-3 and Panc-1, was determined by western blot analysis. The ability of hK7 to degrade Dsg1 and Dsg2 was investigated using in vitro degradation assays. BxPC-3 cells stably transfected to overexpress hK7 were used to examine the effect of hK7 on cell-surface resident Dsg2. The levels of immunoreactive Dsg1 and Dsg2 were reduced in pancreatic adenocarcinomas compared with both normal pancreatic and chronic pancreatitis tissues. Among the desmosomal proteins examined, Dsg2 exhibited robust expression on the surface of BxPC-3 cells. When hK7 was overexpressed in this cell line, there was a significant increase in the amount of soluble Dsg2 released into the culture medium compared with vector-transfected control cells. A reduction in the amount of the cell adhesion components Dsg1 and Dsg2 in pancreatic tumors suggests that loss of these desmosomal proteins may play a role in pancreatic cancer invasion. Using in vitro degradation assays, both Dsg1 and Dsg2 could be readily proteolyzed by hK7, which is overexpressed in pancreatic adenocarcinomas. The enforced expression of hK7 in BxPC-3 cells that express significant amounts of Dsg2 resulted in a marked increase in the shedding of soluble Dsg2, which is consistent with the notion that aberrant expression of hK7 in pancreatic tumors may result in diminished cell-cell adhesion and facilitate tumor cell invasion

  9. Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Zhang, Hao; Chen, Liang; Bu, He-Qi; Yu, Qing-Jiang; Jiang, Dan-Dan; Pan, Feng-Ping; Wang, Yu; Liu, Dian-Lei; Lin, Sheng-Zhang

    2015-06-01

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.

  10. Imaging pancreatic cancer using bioconjugated InP quantum dots.

    Science.gov (United States)

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J; Maitra, Anirban; Prasad, Paras N

    2009-03-24

    In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.

  11. Hypoxia Induced Tumor Metabolic Switch Contributes to Pancreatic Cancer Aggressiveness

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, Sophie; Tomasini, Richard; Tournaire, Roselyne; Iovanna, Juan L. [INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, BP 915,13288 Marseille cedex 9 (France)

    2010-12-16

    Pancreatic ductal adenocarcinoma remains one of the most lethal of all solid tumors with an overall five-year survival rate of only 3–5%. Its aggressive biology and resistance to conventional and targeted therapeutic agents lead to a typical clinical presentation of incurable disease once diagnosed. The disease is characterized by the presence of a dense stroma of fibroblasts and inflammatory cells, termed desmoplasia, which limits the oxygen diffusion in the organ, creating a strong hypoxic environment within the tumor. In this review, we argue that hypoxia is responsible for the highly aggressive and metastatic characteristics of this tumor and drives pancreatic cancer cells to oncogenic and metabolic changes facilitating their proliferation. However, the molecular changes leading to metabolic adaptations of pancreatic cancer cells remain unclear. Cachexia is a hallmark of this disease and illustrates that this cancer is a real metabolic disease. Hence, this tumor must harbor metabolic pathways which are probably tied in a complex inter-organ dialog during the development of this cancer. Such a hypothesis would better explain how under fuel source limitation, pancreatic cancer cells are maintained, show a growth advantage, and develop metastasis.

  12. Hypoxia Induced Tumor Metabolic Switch Contributes to Pancreatic Cancer Aggressiveness

    International Nuclear Information System (INIS)

    Vasseur, Sophie; Tomasini, Richard; Tournaire, Roselyne; Iovanna, Juan L.

    2010-01-01

    Pancreatic ductal adenocarcinoma remains one of the most lethal of all solid tumors with an overall five-year survival rate of only 3–5%. Its aggressive biology and resistance to conventional and targeted therapeutic agents lead to a typical clinical presentation of incurable disease once diagnosed. The disease is characterized by the presence of a dense stroma of fibroblasts and inflammatory cells, termed desmoplasia, which limits the oxygen diffusion in the organ, creating a strong hypoxic environment within the tumor. In this review, we argue that hypoxia is responsible for the highly aggressive and metastatic characteristics of this tumor and drives pancreatic cancer cells to oncogenic and metabolic changes facilitating their proliferation. However, the molecular changes leading to metabolic adaptations of pancreatic cancer cells remain unclear. Cachexia is a hallmark of this disease and illustrates that this cancer is a real metabolic disease. Hence, this tumor must harbor metabolic pathways which are probably tied in a complex inter-organ dialog during the development of this cancer. Such a hypothesis would better explain how under fuel source limitation, pancreatic cancer cells are maintained, show a growth advantage, and develop metastasis

  13. Risk of Pancreatic Cancer After a Primary Episode of Acute Pancreatitis.

    Science.gov (United States)

    Rijkers, Anton P; Bakker, Olaf J; Ahmed Ali, Usama; Hagenaars, Julia C J P; van Santvoort, Hjalmar C; Besselink, Marc G; Bollen, Thomas L; van Eijck, Casper H

    2017-09-01

    Acute pancreatitis may be the first manifestation of pancreatic cancer. The aim of this study was to assess the risk of pancreatic cancer after a first episode of acute pancreatitis. Between March 2004 and March 2007, all consecutive patients with a first episode of acute pancreatitis were prospectively registered. Follow-up was based on hospital records audit, radiological imaging, and patient questionnaires. Outcome was stratified based on the development of chronic pancreatitis. We included 731 patients. The median follow-up time was 55 months. Progression to chronic pancreatitis was diagnosed in 51 patients (7.0%). In this group, the incidence rate per 1000 person-years for developing pancreatic cancer was 9.0 (95% confidence interval, 2.3-35.7). In the group of 680 patients who did not develop chronic pancreatitis, the incidence rate per 1000 person-years for developing pancreatic cancer in this group was 1.1 (95% confidence interval, 0.3-3.3). Hence, the rate ratio of pancreatic cancer was almost 9 times higher in patients who developed chronic pancreatitis compared with those who did not (P = 0.049). Although a first episode of acute pancreatitis may be related to pancreatic cancer, this risk is mainly present in patients who progress to chronic pancreatitis.

  14. Chmp 1A is a mediator of the anti-proliferative effects of All-trans Retinoic Acid in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Nguyen Hanh

    2009-02-01

    Full Text Available Abstract Background We recently have shown that Charged multivesicular protein/Chromatin modifying protein1A (Chmp1A functions as a tumor suppressor in human pancreatic tumor cells. Pancreatic cancer has the worst prognosis of all cancers with a dismal 5-year survival rate. Preclinical studies using ATRA for treating human pancreatic cancer suggest this compound might be useful for treatment of pancreatic cancer patients. However, the molecular mechanism by which ATRA inhibits growth of pancreatic cancer cells is not clear. The objective of our study was to investigate whether Chmp1A is involved in ATRA-mediated growth inhibition of human pancreatic tumor cells. Results We performed microarray studies using HEK 293T cells and discovered that Chmp1A positively regulated Cellular retinol-binding protein 1 (CRBP-1. CRBP-1 is a key regulator of All-trans retinoic acid (ATRA through ATRA metabolism and nuclear localization. Since our microarray data indicates a potential involvement of Chmp1A in ATRA signaling, we tested this hypothesis by treating pancreatic tumor cells with ATRA in vitro. In the ATRA-responsive cell lines, ATRA significantly increased the protein expression of Chmp1A, CRBP-1, P53 and phospho-P53 at serine 15 and 37 position. We found that knockdown of Chmp1A via shRNA abolished the ATRA-mediated growth inhibition of PanC-1 cells. Also, Chmp1A silencing diminished the increase of Chmp1A, P53 and phospho-P53 protein expression induced by ATRA. In the ATRA non-responsive cells, ATRA did not have any effect on the protein level of Chmp1A and P53. Chmp1A over-expression, however, induced growth inhibition of ATRA non-responsive cells, which was accompanied by an increase of Chmp1A, P53 and phospho-P53. Interestingly, in ATRA responsive cells Chmp1A is localized to the nucleus, which became robust upon ATRA treatment. In the ATRA-non-responsive cells, Chmp1A was mainly translocated to the plasma membrane upon ATRA treatment. Conclusion

  15. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine

    OpenAIRE

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C.; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank

    2014-01-01

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patien...

  16. Chronic Pancreatitis and Pancreatic Cancer Risk: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Kirkegård, Jakob; Mortensen, Frank Viborg; Cronin-Fenton, Deirdre

    2017-09-01

    Chronic pancreatitis is a putative risk factor for pancreatic cancer. The aim of this study was to examine the magnitude and temporality of this association. We searched MEDLINE and EMBASE for observational studies investigating the association between chronic pancreatitis and pancreatic cancer. We computed overall effect estimates (EEs) with associated 95% confidence intervals (CIs) using a random-effects meta-analytic model. The EEs were stratified by length of follow-up from chronic pancreatitis diagnosis to pancreatic cancer (lag period). Robustness of the results was examined in sensitivity analyses. We identified 13 eligible studies. Pooled EEs for pancreatic cancer in patients with chronic pancreatitis were 16.16 (95% CI: 12.59-20.73) for patients diagnosed with pancreatic cancer within 2 years from their chronic pancreatitis diagnosis. The risk of pancreatic cancer in patients with chronic pancreatitis decreased when the lag period was increased to 5 years (EE: 7.90; 95% CI: 4.26-14.66) or a minimum of 9 years (EE: 3.53; 95% CI: 1.69-7.38). In conclusion, chronic pancreatitis increases the risk of pancreatic cancer, but the association diminishes with long-term follow-up. Five years after diagnosis, chronic pancreatitis patients have a nearly eight-fold increased risk of pancreatic cancer. We suggest that common practice on inducing a 2-year lag period in these studies may not be sufficient. We also recommend a close follow-up in the first years following a diagnosis of chronic pancreatitis to avoid overlooking a pancreatic cancer.

  17. A role for survivin in radioresistance of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Asanuma, Koichi; Kobayashi, Daisuke; Furuya, Daisuke; Tsuji, Naoki; Yagihashi, Atsuhito; Watanabe, Naoki

    2002-01-01

    Using gene-transduced pancreatic cancer cells, we examined whether survivin expression is directly involved in regulation of radiosensitivity. Ordinarily radiosensitive MIAPaCa-2 cells transduced with wild-type survivin gene (MS cells) proliferated more rapidly than cells transduced with control vector. MS cells were significantly less radiosensitive than control vector-transduced cells. Radiation-induced activity of caspase-3, but not caspase-7, was significantly inhibited in MS cells. On the other hand, transduction of a dominant-negative mutant survivin gene into radioresistant PANC-1 cells augmented radiosensitivity. Further, the radiation-induced increase in caspase-3 activity was enhanced, indicating that survivin function was truly inhibited. These results indicate that survivin expression directly down-regulates radiosensitivity. (author)

  18. Hypermutation In Pancreatic Cancer.

    Science.gov (United States)

    Humphris, Jeremy L; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J; Johns, Amber L; McKay, Skye; Chang, David K; Miller, David K; Pajic, Marina; Kassahn, Karin S; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Stone, Andrew; Wilson, Peter J; Anderson, Matthew; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Mead, Ronald S; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Nagrial, Adnan M; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Rooman, Ilse; Giry-Laterriere, Marc; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; McKay, Colin J; Carter, C Ross; Dickson, Euan J; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Morton, Jennifer P; Sansom, Owen J; Grützmann, Robert; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Rusev, Borislav; Corbo, Vincenzo; Salvia, Roberto; Cataldo, Ivana; Tortora, Giampaolo; Tempero, Margaret A; Hofmann, Oliver; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Gill, Anthony J; Pearson, John V; Grimmond, Sean M; Waddell, Nicola; Biankin, Andrew V

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Koki Maeda

    2016-06-01

    Full Text Available Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT-PCR. The hypoxia responsive element (HRE was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells.

  20. Incidence of and risk factors for developing pancreatic cancer in patients with chronic pancreatitis.

    Science.gov (United States)

    Kudo, Yujin; Kamisawa, Terumi; Anjiki, Hajime; Takuma, Kensuke; Egawa, Naoto

    2011-01-01

    Pancreatic cancer sometimes occurs during the course of chronic pancreatitis. This study aimed to identify risk factors for developing pancreatic cancer associated with chronic pancreatitis. The incidence of pancreatic cancer developing in 218 patients with chronic pancreatitis and clinical features of the chronic pancreatitis patients who developed pancreatic cancer were studied. Nine patients developed pancreatic cancer. Average period from the diagnosis of chronic pancreatitis to the diagnosis of pancreatic cancer was 9.6 years. All pancreatic cancers were diagnosed at an advanced stage. Only 2 patients had been followed-up periodically. There were no significant differences between chronic pancreatitis patients who developed pancreatic cancer and those who did not in male/female ratio (3.5 vs. 8), average age on diagnosis (65.0 vs. 56.5), alcoholic/non-alcoholic chronic pancreatitis (1.6 vs. 2.6), smoking habits (62.5% vs. 70.7%), diabetes mellitus (77.8% vs. 54.4%), and continued alcohol drinking (37.5% vs. 53.1%). Over the period examined, 4% of chronic pancreatitis patients developed pancreatic cancer. Sex ratio, onset age, etiology, smoking habits, diabetes mellitus, and continued alcohol drinking were not significant risk factors for developing pancreatic cancer in chronic pancreatitis patients. Periodic follow-up due to the possibility of pancreatic cancer is necessary in chronic pancreatitis patients.

  1. Systemic therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Andrezalova Vochyanova, I.; Salek, T.

    2012-01-01

    Pancreatic cancer is the fourth comment cause of cancer-related death in men. Most patients with pancreatic cancer are diagnosed at advanced, non-resectable stage. Late detection, early metastases, difficult surgical approached, cancer resistant to systemic chemo and radiotherapy - all contribute to its in faust prognosis. Only about 5 % of patients will live 5 years after diagnosis. Gemcitabine - based combination treatments is the standard for advanced pancreatic cancer. The combination of fluorouracil, folinic acid, irinotecan and oxaliplatin led to median survival of 11 months. No standard second-line treatment exists for pancreatic cancer. (author)

  2. Gene expression patterns in pancreatic tumors, cells and tissues.

    Directory of Open Access Journals (Sweden)

    Anson W Lowe

    2007-03-01

    Full Text Available Cancers of the pancreas originate from both the endocrine and exocrine elements of the organ, and represent a major cause of cancer-related death. This study provides a comprehensive assessment of gene expression for pancreatic tumors, the normal pancreas, and nonneoplastic pancreatic disease.DNA microarrays were used to assess the gene expression for surgically derived pancreatic adenocarcinomas, islet cell tumors, and mesenchymal tumors. The addition of normal pancreata, isolated islets, isolated pancreatic ducts, and pancreatic adenocarcinoma cell lines enhanced subsequent analysis by increasing the diversity in gene expression profiles obtained. Exocrine, endocrine, and mesenchymal tumors displayed unique gene expression profiles. Similarities in gene expression support the pancreatic duct as the origin of adenocarcinomas. In addition, genes highly expressed in other cancers and associated with specific signal transduction pathways were also found in pancreatic tumors.The scope of the present work was enhanced by the inclusion of publicly available datasets that encompass a wide spectrum of human tissues and enabled the identification of candidate genes that may serve diagnostic and therapeutic goals.

  3. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells.

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V; Guha, Sushovan; Pautler, Robia G; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.

  4. Current knowledge on pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Juan eIovanna

    2012-01-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3-5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes and the deregulation of many signalling pathways. Therefore, the strategies targeting these molecules as well as their downstream signalling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical and therapeutic aspects of pancreatic cancer.

  5. Current Knowledge on Pancreatic Cancer

    International Nuclear Information System (INIS)

    Iovanna, Juan; Mallmann, Maria Cecilia; Gonçalves, Anthony; Turrini, Olivier; Dagorn, Jean-Charles

    2012-01-01

    Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3–5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer.

  6. Current Knowledge on Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iovanna, Juan [INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille (France); Mallmann, Maria Cecilia [Centre d’Investigation Clinique de Marseille, Marseille (France); Gonçalves, Anthony [Département d’Oncologie Médicale, Institut Paoli-Calmettes, Marseille (France); Turrini, Olivier [Département de Chirurgie Oncologique, Institut Paoli-Calmettes, Marseille (France); Dagorn, Jean-Charles, E-mail: juan.iovanna@inserm.fr [INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille (France)

    2012-01-31

    Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3–5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer.

  7. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer

    Science.gov (United States)

    Zheng, Jun; Zhang, Ding; Liu, Wei; Zheng, Wei Hong; Li, Xiao Song; Yao, Ru Cheng; Wang, Fangyu; Liu, Sen; Tan, Xiao

    2018-01-01

    Pancreatic cancer is one of the deadliest cancers with very poor prognosis, and the five-year survival rate of the patients is less than 5% after diagnosis. Kallikrein-related peptidases (KLKs) belong to a serine protease family with 15 members that play important roles in cellular physiological behavior and diseases. The high expression level of KLK7 in pancreatic cancer tissues is considered to be a marker for the poor prognosis of this disease. In this work, we set out to investigate whether KLK7 could be a target for the treatment of pancreatic cancer. Short hairpin RNAs (shRNAs) were designed and constructed in lentivirus to knock down KLK7 in pancreatic cancer cell line PANC-1, and the real time cellular analysis (RTCA) was used to evaluate cell proliferation, migration and invasion abilities. Small molecules inhibiting KLK7 were discovered by computer-aided drug screening and used to inhibit PANC-1 cells. Our results confirmed that KLK7 is significantly up-regulated in pancreatic cancer tissue, and knocking down or inhibiting KLK7 efficiently inhibited the proliferation, migration and invasion of pancreatic cancer cells. This study suggested that KLK7 could be a potential chemotherapy target for treatment of pancreatic cancer, which would provide us a novel strategy for the treatment of this disease. PMID:29560118

  8. Family history of cancer and risk of Pancreatic Cancer: A Pooled Analysis from the Pancreatic Cancer Cohort Consortium (PanScan)

    Science.gov (United States)

    Jacobs, Eric J.; Chanock, Stephen J.; Fuchs, Charles S.; LaCroix, Andrea; McWilliams, Robert R.; Steplowski, Emily; Stolzenberg-Solomon, Rachael Z.; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Gross, Myron; Helzlsouer, Kathy; Petersen, Gloria; Zheng, Wei; Agalliu, Ilir; Allen, Naomi E.; Amundadottir, Laufey; Boutron-Ruault, Marie-Christine; Buring, Julie E.; Canzian, Federico; Clipp, Sandra; Dorronsoro, Miren; Gaziano, J. Michael; Giovannucci, Edward L.; Hankinson, Susan E.; Hartge, Patricia; Hoover, Robert N.; Hunter, David J.; Jacobs, Kevin B.; Jenab, Mazda; Kraft, Peter; Kooperberg, Charles; Lynch, Shannon M.; Sund, Malin; Mendelsohn, Julie B.; Mouw, Tracy; Newton, Christina C.; Overvad, Kim; Palli, Domenico; Peeters, Petra H.M.; Rajkovic, Aleksandar; Shu, Xiao-Ou; Thomas, Gilles; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Wactawski-Wende, Jean; Wolpin, Brian M.; Yu, Kai; Zeleniuch-Jacquotte, Anne

    2010-01-01

    A family history of pancreatic cancer has consistently been associated with increased risk of pancreatic cancer. However, uncertainty remains about the strength of this association. Results from previous studies suggest a family history of select cancers (i.e. ovarian, breast, and colorectal) could also be associated, although not as strongly, with increased risk of pancreatic cancer. We examined the association between a family history of five types of cancer (pancreas, prostate, ovarian, breast, and colorectal) and risk of pancreatic cancer using data from a collaborative nested case-control study conducted by the Pancreatic Cancer Cohort Consortium. Cases and controls were from cohort studies from the United States, Europe, and China, and a case-control study from the Mayo Clinic. Analyses of family history of pancreatic cancer included 1,183 cases and 1,205 controls. A family history of pancreatic cancer in a parent, sibling, or child was associated with increased risk of pancreatic cancer (multivariate-adjusted OR = 1.76, 95% CI 1.19–2.61). A family history of prostate cancer was also associated with increased risk (OR = 1.45, 95% CI 1.12–1.89). There were no statistically significant associations with a family history of ovarian cancer (OR = 0.82, 95% CI 0.52–1.31), breast cancer (OR = 1.21, 95% CI 0.97–1.51), or colorectal cancer (OR = 1.17, 95% CI 0.93–1.47). Our results confirm a moderate sized association between a family history of pancreatic cancer and risk of pancreatic cancer and also provide evidence for an association with a family history of prostate cancer worth further study. PMID:20049842

  9. Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity.

    Science.gov (United States)

    Cho, Seok-Cheol; Choi, Bu Young

    2015-09-01

    Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-κB signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-α (TNF-α)-induced NF-κB reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-κB activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer.

  10. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.

    Science.gov (United States)

    Wang, Cailian; Zhang, Haijun; Chen, Yan; Shi, Fangfang; Chen, Baoan

    2012-01-01

    E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.

  11. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  12. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    Science.gov (United States)

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  13. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis

    Science.gov (United States)

    Chen, Ru; Pan, Sheng; Cooke, Kelly; Moyes, Kara White; Bronner, Mary P.; Goodlett, David R.; Aebersold, Ruedi; Brentnall, Teresa A.

    2008-01-01

    Objectives Pancreatitis is an inflammatory condition of the pancreas. However, it often shares many molecular features with pancreatic cancer. Biomarkers present in pancreatic cancer frequently occur in the setting of pancreatitis. The efforts to develop diagnostic biomarkers for pancreatic cancer have thus been complicated by the false-positive involvement of pancreatitis. Methods In an attempt to develop protein biomarkers for pancreatic cancer, we previously use quantitative proteomics to identify and quantify the proteins from pancreatic cancer juice. Pancreatic juice is a rich source of proteins that are shed by the pancreatic ductal cells. In this study, we used a similar approach to identify and quantify proteins from pancreatitis juice. Results In total, 72 proteins were identified and quantified in the comparison of pancreatic juice from pancreatitis patients versus pooled normal control juice. Nineteen of the juice proteins were overexpressed, and 8 were underexpressed in pancreatitis juice by at least 2-fold compared with normal pancreatic juice. Of these 27 differentially expressed proteins in pancreatitis, 9 proteins were also differentially expressed in the pancreatic juice from pancreatic cancer patient. Conclusions Identification of these differentially expressed proteins from pancreatitis juice provides useful information for future study of specific pancreatitis-associated proteins and to eliminate potential false-positive biomarkers for pancreatic cancer. PMID:17198186

  14. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues.

    Directory of Open Access Journals (Sweden)

    Wenyan Hu

    Full Text Available BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF and second harmonic generation (SHG of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an

  15. Incidence of pancreatic cancer in Denmark

    DEFF Research Database (Denmark)

    Weble, Tanja Cruusberg; Bjerregaard, Jon Kroll; Kissmeyer, Peter

    2017-01-01

    BACKGROUND: The aim of this study was to monitor the evolution of the incidence of pancreatic cancer in Denmark over 70 years. We also compared registrations of pancreatic cancer in a nationwide population-based database, the Danish Cancer Registry, and a clinical database, the Danish Pancreatic...... Cancer Database, in 2012-2013. MATERIAL AND METHODS: Registrations of pancreatic cancer from the Danish Cancer Registry over 1943-2012 were used to calculate age-specific incidence rates per 100 000 person years by sex and age in 5-year period, weighted by the Segi World Standard Population for age...... standardization. We used absolute numbers from the Cancer Registry and the Pancreatic Cancer Database, including distribution of topography of cancers registered in 2012-2013, to compare registration in the two data sources. RESULTS: The incidence rates of pancreatic cancer among Danish men increased until 1968...

  16. The preclinical evaluation of TIC10/ONC201 as an anti-pancreatic cancer agent.

    Science.gov (United States)

    Zhang, Qiangbo; Wang, Hong; Ran, Lin; Zhang, Zongli; Jiang, Runde

    2016-08-05

    Here we evaluated the potential anti-pancreatic cancer activity by TIC10/ONC201, a first-in-class small-molecule inducer of tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL). The in vitro results showed that TIC10 induced potent cytotoxic and cytostatic activities in several human pancreatic cancer cell lines (Panc-1, Mia-PaCa2, AsPC-1 or L3.6). TIC10 activated both extrinsic (TRAIL-caspase-8-dependent) and endogenous/mitochondrial (caspase-9-dependent) apoptosis pathways in the pancreatic cancer cells. Molecularly, we showed that TIC10 inhibited Akt-Erk activation, yet induced TRAIL expression in pancreatic cancer cells. Significantly, TIC10, at a relatively low concentration, sensitized gemcitabine-induced growth inhibition and apoptosis against pancreatic cancer cells. Further, TIC10 and gemcitabine synergistically inhibited Panc-1 xenograft growth in SCID mice. The combination treatment also significantly improved mice survival. In addition, Akt-Erk in-activation and TRAIL/cleaved-caspase-8 induction were observed in TIC10-treated Panc-1 xenografts. Together, the preclinical results of the study demonstrate the potent anti-pancreatic cancer activity by TIC10, or with gemcitabine. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Diet and Pancreatic Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Ilaria Casari

    2015-11-01

    Full Text Available Pancreatic cancer is without any doubt the malignancy with the poorest prognosis and the lowest survival rate. This highly aggressive disease is rarely diagnosed at an early stage and difficult to treat due to its resistance to radiotherapy and chemotherapy. Therefore, there is an urgent need to clarify the causes responsible for pancreatic cancer and to identify preventive strategies to reduce its incidence in the population. Some circumstances, such as smoking habits, being overweight and diabetes, have been identified as potentially predisposing factors to pancreatic cancer, suggesting that diet might play a role. A diet low in fat and sugars, together with a healthy lifestyle, regular exercise, weight reduction and not smoking, may contribute to prevent pancreatic cancer and many other cancer types. In addition, increasing evidence suggests that some food may have chemo preventive properties. Indeed, a high dietary intake of fresh fruit and vegetables has been shown to reduce the risk of developing pancreatic cancer, and recent epidemiological studies have associated nut consumption with a protective effect against it. Therefore, diet could have an impact on the development of pancreatic cancer and further investigations are needed to assess the potential chemo preventive role of specific foods against this disease. This review summarizes the key evidence for the role of dietary habits and their effect on pancreatic cancer and focuses on possible mechanisms for the association between diet and risk of pancreatic cancer.

  18. RNA interference suppression of mucin 5AC (MUC5AC reduces the adhesive and invasive capacity of human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Yamada Nobuya

    2010-05-01

    Full Text Available Abstract Background MUC5AC is a secretory mucin normally expressed in the surface muconous cells of stomach and bronchial tract. It has been known that MUC5AC de novo expression occurred in the invasive ductal carcinoma and pancreatic intraepithelial neoplasm with no detectable expression in normal pancreas, however, its function remains uncertain. Here, we report the impact of MUC5AC on the adhesive and invasive ability of pancreatic cancer cells. Methods We used two MUC5AC expressing cell lines derived from human pancreatic cancer, SW1990 and BxPC3. Small-interfering (si RNA directed against MUC5AC were used to assess the effects of MUC5AC on invasion and adhesion of pancreas cancer cells in vitro and in vivo. We compared parental cells (SW1990 and BxPC3 with MUC5AC suppressed cells by si RNA (si-SW1990 and si-BxPC3. Results MUC5AC was found to express in more than 80% of pancreatic ductal carcinoma specimens. Next we observed that both of si-SW1990 and si-BxPC3 showed significantly lower adhesion and invasion to extracellular matrix components compared with parental cell lines. Expression of genes associated with adhesion and invasion including several integerins, matrix metalloproteinase (MMP -3 and vascular endothelial growth factor (VEGF were down-regulated in both MUC5AC suppressed cells. Furthermore, production of VEGF and phosphorylation of VEGFR-1 were significantly reduced by MUC5AC down regulation. Both of si-SW1990 and si-BxPC3 attenuated activation of Erk1/2. In vivo, si-SW1990 did not establish subcutaneous tumor in nude mice. Conclusions Knockdown of MUC5AC reduced the ability of pancreatic cancer cells to adhesion and invasion, suggesting that MUC5AC might contribute to the invasive motility of pancreatic cancer cells by enhancing the expression of integrins, MMP-3, VEGF and activating Erk pathway.

  19. Radiation induces invasiveness of pancreatic cancer via up-regulation of heparanase

    International Nuclear Information System (INIS)

    Lerner, I.; Bensoussan, E.; Meirovitz, A.; Elkin, M.; Vlodavsky, I.

    2013-01-01

    The full text of the publication follows. Pancreatic cancer is one of the most aggressive neoplasms with an extremely low survival rate. Because most pancreatic carcinoma patients miss the opportunity for complete surgical resection at the time of diagnosis, radiotherapy remains a major component of treatment modalities. However, pancreatic cancer often shows resistance to radiation therapy. Ionizing radiation (IR)-induced aggressiveness is emerging as one of the important mechanisms responsible for the limited benefit of radiation therapy in pancreatic cancer, but the identity of downstream effectors responsible for this effect remains poorly investigated. Here we report that IR promotes pancreatic cancer aggressiveness through up-regulation of the heparanase. Heparanase is a predominant mammalian enzyme capable of degrading heparan sulfate (HS), the main polysaccharide component of the basement membrane and other types of extracellular matrix (ECM). Cleavage of HS by heparanase leads to disassembly of ECM, enables cell invasion, releases HS-bound angiogenic and growth factors from the ECM depots, and generates bioactive HS fragments. We found that clinically relevant doses of IR augment invasive ability of pancreatic cells in vitro and in vivo via induction of heparanase. Our results indicate that the effect of IR on heparanase expression is mediated by Egr1 transcription factor. Moreover, specific inhibitor of heparanase enzymatic activity abolished IR-induced invasiveness of pancreatic carcinoma cells in vitro, while combined treatment with IR and the heparanase inhibitor, but not IR alone, attenuated ortho-topic pancreatic tumor progression in vivo. The proposed up-regulation of heparanase by IR represents a new molecular pathway through which IR may promote pancreatic tumor aggressiveness, providing explanation for the limited benefit from radiation therapy in pancreatic cancer. Our research is expected to offer a new approach to improve the efficacy of

  20. Targeted Alpha Therapy Approach to the Management of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Allen, Barry J.; Abbas Rizvi, Syed M.; Qu, Chang F.; Smith, Ross C.

    2011-01-01

    Evidence for the efficacy of targeted alpha therapy for the control of pancreatic cancer in preclinical models is reviewed. Results are given for in vitro pancreatic cancer cells and clusters and micro-metastatic cancer lesions in vivo. Two complementary targeting vectors are examined. These are the C595 monoclonal antibody that targets the MUC1 antigen and the PAI2 ligand that targets the uPA receptor. The expression of the tumor-associated antigen MUC-1 and the uPA receptor on three pancreatic cancer cell lines is reported for cell clusters, human mouse xenografts and lymph node metastases, as well as for human pancreatic cancer tissues, using immuno-histochemistry, confocal microscopy and flow cytometry. The targeting vectors C595 and PAI2 were labeled with the alpha emitting radioisotope 213 Bi using the chelators cDTPA and CHX-A″ to form the alpha-conjugates (AC). Cell clusters were incubated with the AC and examined at 48 hours. Apoptosis was documented using the TUNEL assay. In vivo, the anti-proliferative effect for tumors was tested at two days post-subcutaneous cell inoculation. Mice were injected with different concentrations of AC by local or systemic administration. Changes in tumor progression were assessed by tumor size. MUC-1 and uPA are strongly expressed on CFPAC-1, PANC-1 and moderate expression was found CAPAN-1 cell clusters and tumor xenografts. The ACs can target pancreatic cells and regress cell clusters (∼100 μm diameter), causing apoptosis in some 70–90 % of cells. At two days post-cell inoculation in mice, a single local injection of 74 MBq/kg of AC causes complete inhibition of tumor growth. Systemic injections of 111, 222 and 333 MBq/kg of alpha-conjugate caused significant tumor growth delay in a dose dependent manner after 16 weeks, compared with the non-specific control at 333 MBq/kg. Cytotoxicity was assessed by the MTS and TUNEL assays. The C595 and PAI2-alpha conjugates are indicated for the treatment of micro

  1. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers.

    Science.gov (United States)

    Jin, H; Wu, Y; Tan, X

    2017-08-01

    Pancreatic cancer is one of the most deadly cancers, with dismal prognosis due to its poor early detection rate and high metastatic rate. Thus, elucidation of the molecular mechanisms accounting for its metastasis and discovery of competent biomarkers is required. Exosomes are multivesicular body-derived small extracellular vesicles released by various cell types that serve as important message carriers during intercellular communication. They are also known to play critical roles during cancer-genesis, cancer-related immune reactions, and metastasis. They also possess promising potential as novel biomarkers for cancer early detection. Therefore, extensive studies on pancreatic cancer-derived exosomes are currently being performed because they hold the promising potential of elevating the overall survival rate of patients with pancreatic cancer. In the present review, we focus on the role of exosomes in pancreatic cancer-related immune reactions, metastasis, and complications, and on their potential application as pancreatic cancer biomarkers.

  2. Experimental study of the intra-operative radiation therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Kodera, Taro; Matsuno, Seiki; Kobari, Masao; Akaishi, Satoshi; Sakamoto, Kiyohiko

    1988-01-01

    The radiosensitivity of pancreatic cancer, optimum dose of irradiation and the effect of 1-[4'-Hydroxy-2'-Butenoxy) Methyl]-2-Nitrosoimidaole (RK-28) on irradiation were investigated using an experimental pancreatic cancer of hamster and the following results were obtained: i) The mean lethal dose (Do) and the 50 % tumor control dose (TCD 50 ) against the pancreatic cancer were 3.5 Gy and 73.7 ± 6.9 Gy, respectively. These results indicate that the pancreatic cancer is resistant to irradiation, which could be explained by the existence of hypoxic cells consisting of 35 % of the tumor. ii) The dose of intraoperative irradiation (10 - 40 Gy) seemed to be insufficient to bring long-term anti-tumor effect and long-term survival since that dose resulted in only temporary regression of the tumor. iii) The hypoxic cell sensitizer (RK28), which is known to specifically enhance the sensitivity of hypoxic cells to irradiation, lowered TCD 50 of the pancreatic cancer to 53.8 ± 1.57 Gy. Therefore, RK-28 was effective in the treatment of the experimental pancreatic cancer (the enhancement ratio : 1.37). When combined with 30 or 40 Gy of irradiation, which is applicable to intraoperative irradiation, RK-28 induced a longer period of tumor suppression and a higher tumor regression ratio than irradiation alone. These results indicate that RK-28 significantly increases the effect of intraoperative irradiation and this combination therapy could possibly induce remarkable effect on tumor regression and long-term survival. (author)

  3. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3

    Directory of Open Access Journals (Sweden)

    Zhu Liang

    2012-03-01

    Full Text Available Abstract Background Response gene to complement-32 (RGC-32 is comprehensively expressed in many kinds of tissues and has been reported to be expressed abnormally in different kinds of human tumors. However, the role of RGC-32 in cancer remains controversial and no reports have described the effect of RGC-32 in pancreatic cancer. The present study investigated the expression of RGC-32 in pancreatic cancer tissues and explored the role of RGC-32 in transforming growth factor-beta (TGF-β-induced epithelial-mesenchymal transition (EMT in human pancreatic cancer cell line BxPC-3. Methods Immunohistochemical staining of RGC-32 and E-cadherin was performed on specimens from 42 patients with pancreatic cancer, 12 with chronic pancreatitis and 8 with normal pancreas. To evaluate the role of RGC-32 in TGF-β-induced EMT in pancreatic cancer cells, BxPC-3 cells were treated with TGF-β1, and RGC-32 siRNA silencing and gene overexpression were performed as well. The mRNA expression and protein expression of RGC-32 and EMT markers such E-cadherin and vimentin were determined by quantitative reverse transcription-PCR (qRT-PCR and western blot respectively. Finally, migration ability of BxPC-3 cells treated with TGF-β and RGC-32 siRNA transfection was examined by transwell cell migration assay. Results We found stronger expression of RGC-32 and higher abnormal expression rate of E-cadherin in pancreatic cancer tissues than those in chronic pancreatitis tissues and normal pancreatic tissues. Immunohistochemical analysis revealed that both RGC-32 positive expression and E-cadherin abnormal expression in pancreatic cancer were correlated with lymph node metastasis and TNM staging. In addition, a significant and positive correlation was found between positive expression of RGC-32 and abnormal expression of E-cadherin. Furthermore, in vitro, we found sustained TGF-β stimuli induced EMT and up-regulated RGC-32 expression in BxPC-3 cells. By means of si

  4. Environmental risk factors for chronic pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Nitsche, Claudia; Simon, Peter; Weiss, F Ulrich; Fluhr, Gabriele; Weber, Eckhard; Gärtner, Simone; Behn, Claas O; Kraft, Matthias; Ringel, Jörg; Aghdassi, Ali; Mayerle, Julia; Lerch, Markus M

    2011-01-01

    Chronic pancreatitis has long been thought to be mainly associated with immoderate alcohol consumption. The observation that only ∼10% of heavy drinkers develop chronic pancreatitis not only suggests that other environmental factors, such as tobacco smoke, are potent additional risk factors, but also that the genetic component of pancreatitis is more common than previously presumed. Either disease-causing or protective traits have been indentified for mutations in different trypsinogen genes, the gene for the trypsin inhibitor SPINK1, chymotrypsinogen C, and the cystic fibrosis transmembane conductance regulator (CFTR). Other factors that have been proposed to contribute to pancreatitis are obesity, diets high in animal protein and fat, as well as antioxidant deficiencies. For the development of pancreatic cancer, preexisting chronic pancreatitis, more prominently hereditary pancreatitis, is a risk factor. The data on environmental risk factors for pancreatic cancer are, with the notable exception of tobacco smoke, either sparse, unconfirmed or controversial. Obesity appears to increase the risk of pancreatic cancer in the West but not in Japan. Diets high in processed or red meat, diets low in fruits and vegetables, phytochemicals such as lycopene and flavonols, have been proposed and refuted as risk or protective factors in different trials. The best established and single most important risk factor for cancer as well as pancreatitis and the one to clearly avoid is tobacco smoke. Copyright © 2011 S. Karger AG, Basel.

  5. Efavirenz Has the Highest Anti-Proliferative Effect of Non-Nucleoside Reverse Transcriptase Inhibitors against Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Markus Hecht

    Full Text Available Cancer prevention and therapy in HIV-1-infected patients will play an important role in future. The non-nucleoside reverse transcriptase inhibitors (NNRTI Efavirenz and Nevirapine are cytotoxic against cancer cells in vitro. As other NNRTIs have not been studied so far, all clinically used NNRTIs were tested and the in vitro toxic concentrations were compared to drug levels in patients to predict possible anti-cancer effects in vivo.Cytotoxicity was studied by Annexin-V-APC/7AAD staining and flow cytometry in the pancreatic cancer cell lines BxPC-3 and Panc-1 and confirmed by colony formation assays. The 50% effective cytotoxic concentrations (EC50 were calculated and compared to the blood levels in our patients and published data.The in vitro EC50 of the different drugs in the BxPC-3 pancreatic cancer cells were: Efavirenz 31.5 μmol/l (= 9944 ng/ml, Nevirapine 239 μmol/l (= 63,786 ng/ml, Etravirine 89.0 μmol/l (= 38,740 ng/ml, Lersivirine 543 μmol/l (= 168,523 ng/ml, Delavirdine 171 μmol/l (= 78,072 ng/ml, Rilpivirine 24.4 μmol/l (= 8941 ng/ml. As Efavirenz and Rilpivirine had the highest cytotoxic potential and Nevirapine is frequently used in HIV-1 positive patients, the results of these three drugs were further studied in Panc-1 pancreatic cancer cells and confirmed with colony formation assays. 205 patient blood levels of Efavirenz, 127 of Rilpivirine and 31 of Nevirapine were analyzed. The mean blood level of Efavirenz was 3587 ng/ml (range 162-15,363 ng/ml, of Rilpivirine 144 ng/ml (range 0-572 ng/ml and of Nevirapine 4955 ng/ml (range 1856-8697 ng/ml. Blood levels from our patients and from published data had comparable Efavirenz levels to the in vitro toxic EC50 in about 1 to 5% of all patients.All studied NNRTIs were toxic against cancer cells. A low percentage of patients taking Efavirenz reached in vitro cytotoxic blood levels. It can be speculated that in HIV-1 positive patients having high Efavirenz blood levels pancreatic

  6. Silencing of NRF2 Reduces the Expression of ALDH1A1 and ALDH3A1 and Sensitizes to 5-FU in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hong-Quan Duong

    2017-07-01

    Full Text Available Pancreatic cancer remains an intractable cancer with a poor five-year survival rate, which requires new therapeutic modalities based on the biology of pancreatic oncogenesis. Nuclear factor E2 related factor-2 (NRF2, a key cytoprotective nuclear transcription factor, regulates antioxidant production, reduction, detoxification and drug efflux proteins. It also plays an essential role in cell homeostasis, cell proliferation and resistance to chemotherapy. We aimed to evaluate the possibility that modulation of NRF2 expression could be effective in the treatment of pancreatic cancer cells. We investigated whether the depletion of NRF2 by using small interfering RNAs (siRNAs is effective in the expression of biomarkers of pancreatic cancer stemness such as aldehyde dehydrogenase 1 family, member A1 (ALDH1A1 and aldehyde dehydrogenase 3 family, member A1 (ALDH3A1. NRF2 knockdown markedly reduced the expression of NRF2 and glutamate-cysteine ligase catalytic subunit (GCLC in cell lines established from pancreatic cancers. NRF2 silencing also decreased the ALDH1A1 and ALDH3A1 expression. Furthermore, this NRF2 depletion enhanced the antiproliferative effects of the chemotherapeutic agent, 5-fluorouracil (5-FU in pancreatic cancer cells.

  7. [Treatments for Pancreatic Cancer with Oligometastasis].

    Science.gov (United States)

    Furuse, Junji

    2017-10-01

    Pancreatic cancer, adenocarcinoma, generally rapidly progresses, and if a metastatic lesion is detected, chemotherapy is applied even in solitary metastasis. However, surgical resection for solitary metastasis have been reported to achieve long survival in some pancreatic cancer patients. In a prospective study of surgery for hepatic and lymph node oligometastasis of pancreatic cancer, long survival of 5 years or more was reported around 10%. Furthermore, longer survival and fewer rerecurrence were achieved with surgery in lung metastasis than in liver metastasis and loco-regional recurrence. Although there has been no establishment of concept or no consensus of treatment strategy for oligometastasis in pancreatic cancer, some patients with pancreatic cancer have long disease-free survival by surgery for oligometastasis. A population of pancreatic cancer patients who have benefits of surgery for oligometastasis should be identified, and it is necessary to establish treatments for oligometastasis as standard treatments in pancreatic cancer.

  8. Diagnostic Management of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dabizzi, Emanuele [Division of Gastroenterology and Hepatology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224 (United States); Assef, Mauricio Saab [Faculdade de Ciências Médicas da Santa Casa de São Paulo, Rua Dr. Cesário Motta Jr. #61 Cep: 01221-020, São Paulo (Brazil); Raimondo, Massimo, E-mail: raimondo.massimo@mayo.edu [Division of Gastroenterology and Hepatology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224 (United States)

    2011-01-31

    Pancreatic cancer is one of the most deadly solid tumors, with an overall 5-year survival rate of less than 5%. Due to a non-specific clinical presentation, it is often diagnosed at an advanced stage and is rarely amenable for curative treatment. Therefore early diagnosis and appropriate staging are still essential to define the best care and to improve patient survival. Several imaging modalities are currently available for the evaluation of pancreatic cancer. This review focuses on different techniques and discusses the diagnostic management of patients with pancreatic cancer. This review was conducted utilizing Pubmed and was limited to papers published within the last 5 years. The search key words pancreatic cancer, pancreatic adenocarcinoma, pancreatic tumors, diagnosis, radiology, imaging, nuclear imaging, endoscopy, endoscopic ultrasound and biochemical markers were used.

  9. Diagnostic Management of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Dabizzi, Emanuele; Assef, Mauricio Saab; Raimondo, Massimo

    2011-01-01

    Pancreatic cancer is one of the most deadly solid tumors, with an overall 5-year survival rate of less than 5%. Due to a non-specific clinical presentation, it is often diagnosed at an advanced stage and is rarely amenable for curative treatment. Therefore early diagnosis and appropriate staging are still essential to define the best care and to improve patient survival. Several imaging modalities are currently available for the evaluation of pancreatic cancer. This review focuses on different techniques and discusses the diagnostic management of patients with pancreatic cancer. This review was conducted utilizing Pubmed and was limited to papers published within the last 5 years. The search key words pancreatic cancer, pancreatic adenocarcinoma, pancreatic tumors, diagnosis, radiology, imaging, nuclear imaging, endoscopy, endoscopic ultrasound and biochemical markers were used

  10. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huaize [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China); Wang, Han [The First Clinical Medical College of Nanjing Medical University, Nanjing 210029 (China); Liu, Xiaoxiao [Department of Biotechnology, Nanjing Medical University, Nanjing 210029 (China); Yu, Tingting, E-mail: tingting@njmu.edu.cn [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China)

    2016-04-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  11. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Liu, Huaize; Wang, Han; Liu, Xiaoxiao; Yu, Tingting

    2016-01-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  12. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    Science.gov (United States)

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  13. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  14. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seung Min, E-mail: smjeong@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Hwang, Sunsook; Seong, Rho Hyun [School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-03-11

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  15. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    International Nuclear Information System (INIS)

    Jeong, Seung Min; Hwang, Sunsook; Seong, Rho Hyun

    2016-01-01

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  16. The Key Genes of Chronic Pancreatitis which Bridge Chronic Pancreatitis and Pancreatic Cancer Can be Therapeutic Targets.

    Science.gov (United States)

    Li, Shuang; Li, Rui; Wang, Heping; Li, Lisha; Li, Huiyu; Li, Yulin

    2018-04-01

    An important question in systems biology is what role the underlying molecular mechanisms play in disease progression. The relationship between chronic pancreatitis and pancreatic cancer needs further exploration in a system view. We constructed the disease network based on gene expression data and protein-protein interaction. We proposed an approach to discover the underlying core network and molecular factors in the progression of pancreatic diseases, which contain stages of chronic pancreatitis and pancreatic cancer. The chronic pancreatitis and pancreatic cancer core network and key factors were revealed and then verified by gene set enrichment analysis of pathways and diseases. The key factors provide the microenvironment for tumor initiation and the change of gene expression level of key factors bridge chronic pancreatitis and pancreatic cancer. Some new candidate genes need further verification by experiments. Transcriptome profiling-based network analysis reveals the importance of chronic pancreatitis genes and pathways in pancreatic cancer development on a system level by computational method and they can be therapeutic targets.

  17. Dendritic Cell/Cytokine-Induced Killer Cell Immunotherapy Combined with S-1 in Patients with Advanced Pancreatic Cancer: A Prospective Study.

    Science.gov (United States)

    Jiang, Ni; Qiao, Guoliang; Wang, Xiaoli; Morse, Michael A; Gwin, William R; Zhou, Lei; Song, Yuguang; Zhao, Yanjie; Chen, Feng; Zhou, Xinna; Huang, Lefu; Hobeika, Amy; Yi, Xin; Xia, Xuefeng; Guan, Yanfang; Song, Jin; Ren, Jun; Lyerly, H Kim

    2017-09-01

    Purpose: Advanced pancreatic cancer has remained challenging to treat effectively. This study aimed to investigate the clinical effects and safety of immunotherapy with dendritic cells and cytokine-induced killer cells (DC-CIK) administered with the chemotherapy (CT) S-1 in this malignancy. Experimental Design: Consecutive patients ( n = 47) with advanced pancreatic cancer were treated with either DC-CIK + S-1, DC-CIK alone, S-1 alone, or best supportive care. Results: DC-CIK plus S-1 produced significantly longer median OS and PFS (212 and 136 days) compared with DC-CIK (128 and 85 days), CT (141 and 92 days), or supportive care only (52 and 43 days; P < 0.001). After adjusting for competing risk factors, DC-CIK combined with S-1 and receipt of 2 or more cycles of DC-CIK treatment remained independent predictors of disease-free and overall survival ( P < 0.05). Phenotypic analysis of PBMCs demonstrated that the CD3 + , CD3 + /CD4 + , and CD8 + /CD28 + T-cell subsets were elevated ( P < 0.05), while the CD3 + /CD8 + , CD3 + /CD16 + /CD56 + and CD4 + /CD25 + cell subsets were significantly decreased after DC-CIK cell therapy ( P < 0.05). There were no grade 3 or 4 toxicities. In addition, the mutational frequency in cell-free tumor DNA (cfDNA) declined in 4 of 14 patients who received DC-CIK, and was associated with a more favorable survival. Conclusions: Treatment of advanced pancreatic cancer with combined DC-CIK infusions and S-1 was safe, resulted in favorable PFS and OS, and modulated the peripheral blood immune repertoire. Clin Cancer Res; 23(17); 5066-73. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Diagnosis and treatment of pancreatic cancer. Oncology overview

    International Nuclear Information System (INIS)

    1982-09-01

    Oncology Overviews are a service of the International Cancer Research Data Bank (ICRDB) Program of the National Cancer Institute, intended to facilitate and promote the exchange of information between cancer scientists by keeping them aware of literature related to their research being published by other laboratories throughout the world. Each Oncology Overview represents a survey of the literature associated with a selected area of cancer research. It contains abstracts of articles which have been selected and organized by researchers associated with the field. Contents: Radiological diagnosis of pancreatic cancer; Biopsy and cytology in the diagnosis of pancreatic cancer; Pathology and morphology of pancreatic cancer; Staging and prognosis of pancreatic cancer; Biological and immunological markers in the diagnosis of pancreatic cancer; Surgical treatment of pancreatic cancer; Drug therapy of pancreatic cancer; Radiation therapy of pancreatic cancer; Selected studies on the epidemiology of pancreatic cancer; Clinical correlates and syndromes associated with pancreatic neoplasia

  19. The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies.

    Science.gov (United States)

    Kang, Chang Moo; Babicky, Michele L; Lowy, Andrew M

    2014-03-01

    Pancreatic cancer remains a devastating disease with a mortality rate that has not changed substantially in decades. Novel therapies are therefore desperately needed. The RON receptor tyrosine kinase has been identified as an important mediator of KRAS oncogene addiction and is overexpressed in the majority of pancreatic cancers. Preclinical studies show that inhibition of RON function decreases pancreatic cancer cell migration, invasion, and survival and can sensitize pancreatic cancer cells to chemotherapy. This article reviews the current state of knowledge regarding RON biology and pancreatic cancer and discusses its potential as a therapeutic target.

  20. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    Science.gov (United States)

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  1. Experimental treatment of pancreatic cancer with two novel histone deacetylase inhibitors

    Science.gov (United States)

    Haefner, Martin; Bluethner, Thilo; Niederhagen, Manuel; Moebius, Christian; Wittekind, Christian; Mossner, Joachim; Caca, Karel; Wiedmann, Marcus

    2008-01-01

    AIM: To investigate in vitro and in vivo treatment with histone deacetylase inhibitors NVP-LAQ824 and NVP-LBH589 in pancreatic cancer. METHODS: Cell-growth inhibition by NVP-LAQ824 and NVP-LBH589 was studied in vitro in 8 human pancreatic cancer cell lines using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the anti-tumoral effect of NVP-LBH589 was studied in a chimeric mouse model. Anti-tumoral activity of the drugs was assessed by immunoblotting for p21WAF-1, acH4, cell cycle analysis, TUNEL assay, and immunohistochemistry for MIB-1. RESULTS: In vitro treatment with both compounds significantly suppressed the growth of all cancer cell lines and was associated with hyperacetylation of nucleosomal histone H4, increased expression of p21WAF-1, cell cycle arrest at G2/M-checkpoint, and increased apoptosis. In vivo, NVP-LBH589 alone significantly reduced tumor mass and potentiated the efficacy of gemcitabine. Further analysis of the tumor specimens revealed slightly increased apoptosis and no significant reduction of cell proliferation. CONCLUSION: Our findings suggest that NVP-LBH589 and NVP-LAQ824 are active against human pancreatic cancer, although the precise mechanism of in vivo drug action is not yet completely understood. Therefore, further preclinical and clinical studies for the treatment of pancreatic cancer are recommended. PMID:18595135

  2. Surgery for chronic pancreatitis decreases the risk for pancreatic cancer: a multicenter retrospective analysis.

    Science.gov (United States)

    Ueda, Junji; Tanaka, Masao; Ohtsuka, Takao; Tokunaga, Shoji; Shimosegawa, Tooru

    2013-03-01

    Chronic pancreatitis is suggested to be one of the risk factors for the development of pancreatic cancer. The aim of this study was to confirm the high incidence of pancreatic cancer in patients with chronic pancreatitis in Japan and to determine the factors associated with the risk for pancreatic cancer in patients with chronic pancreatitis. The working group of the Research Committee of Intractable Disease supported by the Ministry of Health, Labour and Welfare of Japan carried out a nationwide survey to investigate the relationship between chronic pancreatitis and pancreatic cancer. This retrospective study included patients diagnosed with chronic pancreatitis who had had at least 2 years of follow-up. They were contacted through 22 Japanese referral centers experienced in the management of chronic pancreatitis. The standardized incidence ratio (95 CI) of pancreatic cancer was 11.8 (7.1-18.4). The incidence of pancreatic cancer was significantly lower in patients who had received surgery for chronic pancreatitis than in those who had not undergone surgery (hazard ratio estimated by Cox regression 0.11; 95% CI, 0.0014-0.80; P = .03). Patients who continued to drink alcohol after diagnosis of chronic pancreatitis showed a significantly higher incidence of pancreatic cancer than those who stopped drinking after diagnosis of chronic pancreatitis (hazard ratio, 5.07; 95% CI, 1.13-22.73; P = .03). This study confirmed that chronic pancreatitis is an important risk factor for the development of pancreatic cancer in Japan. Patients who underwent surgery for the treatment of chronic pancreatitis had significantly lower incidences of pancreatic cancer. Surgery for chronic pancreatitis may inhibit the development of pancreatic cancer in patients with chronic pancreatitis. Copyright © 2013 Mosby, Inc. All rights reserved.

  3. Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors

    Science.gov (United States)

    Ahmed, Muhammad S.; Rainer, Carolyn; Nielsen, Sebastian R.; Quaranta, Valeria; Weyer-Czernilofsky, Ulrike; Engle, Danielle D.; Perez-Mancera, Pedro A.; Coupland, Sarah E.; Taktak, Azzam; Bogenrieder, Thomas; Tuveson, David A.; Campbell, Fiona; Schmid, Michael C.; Mielgo, Ainhoa

    2017-01-01

    Tumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells. Immunohistochemical analysis of biopsies from patients with pancreatic cancer revealed that 72% of the patients expressed activated insulin/IGF receptors on tumor cells, and this positively correlates with increased CD163+ TAM infiltration. In vivo, we found that TAM and myofibroblasts were the main sources of IGF production, and pharmacologic blockade of IGF sensitized pancreatic tumors to gemcitabine. These findings suggest that inhibition of IGF in combination with chemotherapy could benefit patients with PDAC, and that insulin/IGF1R activation may be used as a biomarker to identify patients for such therapeutic intervention. PMID:27742686

  4. Targeting of Pancreatic Cancer with Magneto-Fluorescent Theranostic Gold Nanoshells

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    Aim We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials and Methods Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results AntiNGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2 weighted MR imaging with higher tumor contrast than can be obtained using long-circulating but non-targeted PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusions Theranostic gold nanoshells with embedded NIR and MR contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy. PMID:24063415

  5. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection.

    Science.gov (United States)

    Gilliland, Taylor M; Villafane-Ferriol, Nicole; Shah, Kevin P; Shah, Rohan M; Tran Cao, Hop S; Massarweh, Nader N; Silberfein, Eric J; Choi, Eugene A; Hsu, Cary; McElhany, Amy L; Barakat, Omar; Fisher, William; Van Buren, George

    2017-03-07

    Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL). The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI) manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995-2016) addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC). We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1) patients with albumin 10% should postpone surgery and begin aggressive nutrition supplementation; (2) patients with albumin endocrine and exocrine pancreatic insufficiency alongside implementation of appropriate treatment to improve the patient's quality of life.

  6. Chemical Constituents of Mangifera indica and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line.

    Science.gov (United States)

    Nguyen, Hai Xuan; Do, Truong Nhat Van; Le, Tho Huu; Nguyen, Mai Thanh Thi; Nguyen, Nhan Trung; Esumi, Hiroyasu; Awale, Suresh

    2016-08-26

    Human pancreatic cancer cell lines such as PANC-1 have an altered metabolism, enabiling them to tolerate and survive under extreme conditions of nutrient starvation. The search for candidates that inhibit their viability during nutrition starvation represents a novel antiausterity strategy in anticancer drug discovery. A methanol extract of the bark of Mangifera indica was found to inhibit the survival of PANC-1 human pancreatic cancer cells preferentially under nutrient-deprived conditions with a PC50 value of 15.5 μg/mL, without apparent toxicity, in normal nutrient-rich conditions. Chemical investigation on this bioactive extract led to the isolation of 19 compounds (1-19), including two new cycloartane-type triterpenes, mangiferolate A (1) and mangiferolate B (2). The structures of 1 and 2 were determined by NMR spectroscopic analysis. Among the isolated compounds, mangiferolate B (2) and isoambolic acid (12) exhibited potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under the nutrition-deprived condition with PC50 values of 11.0 and 4.8 μM, respectively.

  7. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4

    International Nuclear Information System (INIS)

    Wei, Xueju; Wang, Weibin; Wang, Lanlan; Zhang, Yuanyuan; Zhang, Xian; Chen, Mingtai; Wang, Fang; Yu, Jia; Ma, Yanni; Sun, Guotao

    2016-01-01

    Pancreatic cancer patients are often resistant to chemotherapy treatment, which results in poor prognosis. The objective of this study was to delineate the mechanism by which miR-21 induces drug resistance to 5-fluorouracil (5-FU) in human pancreatic cancer cells (PATU8988 and PANC-1). We report that PATU8988 cells resistant to 5-FU express high levels of miR-21 in comparison to sensitive primary PATU8988 cells. Suppression of miR-21 expression in 5-Fu-resistant PATU8988 cells can alleviate its 5-FU resistance. Meanwhile, lentiviral vector-mediated overexpression of miR-21 not only conferred resistance to 5-FU but also promoted proliferation, migration, and invasion of PATU8988 and PANC-1 cells. The proresistance effects of miR-21 were attributed to the attenuated expression of tumor suppressor genes, including PTEN and PDCD4. Overexpression of PTEN and PDCD4 antagonized miR-21-induced resistance to 5-FU and migration activity. Our work demonstrates that miR-21 can confer drug resistance to 5-FU in pancreatic cancer cells by regulating the expression of tumor suppressor genes, as the target genes of miR-21, PTEN and PDCD4 can rescue 5-FU sensitivity and the phenotypic characteristics disrupted by miR-21

  8. TM4SF1 Promotes Gemcitabine Resistance of Pancreatic Cancer In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Jia Cao

    Full Text Available TM4SF1 is overexpressed in pancreatic ductal adenocarcinoma (PDAC and affects the development of this cancer. Also, multidrug resistance (MDR is generally associated with tumor chemoresistance in pancreatic cancer. However, the correlation between TM4SF1 and MDR remains unknown. This research aims to investigate the effect of TM4SF1 on gemcitabine resistance in PDAC and explore the possible molecular mechanism between TM4SF1 and MDR.The expression of TM4SF1 was evaluated in pancreatic cancer cell lines and human pancreatic duct epithelial (HPDE cell lines by quantitative RT-PCR. TM4SF1 siRNA transfection was carried out using Hiperfect transfection reagent to knock down TM4SF1. The transcripts were analyzed by quantitative RT-PCR, RT-PCR and western blotting for further study. The cell proliferation and apoptosis were obtained to investigate the sensitivity to gemcitabine of pancreatic cancer cells after silencing TM4SF1 in vitro. We demonstrated that cell signaling of TM4SF1 mediated chemoresistance in cancer cells by assessing the expression of multidrug resistance (MDR genes using quantitative RT-PCR. In vivo, we used orthotopic pancreatic tumor models to investigate the effect of proliferation after silencing TM4SF1 by a lentivirus-mediated shRNA in MIA PaCa-2 cell lines.The mRNA expression of TM4SF1 was higher in seven pancreatic cancer cell lines than in HPDE cell lines. In three gemcitabine-sensitive cell lines (L3.6pl, BxPC-3, SU86.86, the expression of TM4SF1 was lower than that in four gemcitabine-resistant cell lines (MIA PaCa-2, PANC-1, Hs766T, AsPC-1. We evaluated that TM4SF1 was a putative target for gemcitabine resistance in pancreatic cancer cells. Using AsPC-1, MIA PaCa-2 and PANC-1, we investigated that TM4SF1 silencing affected cell proliferation and increased the percentages of cell apoptosis mediated by treatment with gemcitabine compared with cells which were treated with negative control. This resistance was associated

  9. 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin

    OpenAIRE

    Lund, Kaja; Olsen, Cathrine Elisabeth; Wong, Judith Jing Wen; Olsen, Petter Angell; Solberg, Nina Therese; Høgset, Anders; Krauss, Stefan; Selbo, Pål Kristian

    2017-01-01

    Background Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma. Methods 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.27 were previously generated in our lab. We investigated the cytotoxic effect of the ...

  10. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    Science.gov (United States)

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  11. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  12. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Mаhmoud Youns

    Full Text Available Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2, colorectal (Caco-2 and pancreatic (Suit-2 cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  13. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  14. Microencapsulated tumor assay: Evaluation of the nude mouse model of pancreatic cancer

    Science.gov (United States)

    Ma, Ming-Zhe; Cheng, Dong-Feng; Ye, Jin-Hua; Zhou, Yong; Wang, Jia-Xiang; Shi, Min-Min; Han, Bao-San; Peng, Cheng-Hong

    2012-01-01

    AIM: To establish a more stable and accurate nude mouse model of pancreatic cancer using cancer cell microencapsulation. METHODS: The assay is based on microencapsulation technology, wherein human tumor cells are encapsulated in small microcapsules (approximately 420 μm in diameter) constructed of semipermeable membranes. We implemented two kinds of subcutaneous implantation models in nude mice using the injection of single tumor cells and encapsulated pancreatic tumor cells. The size of subcutaneously implanted tumors was observed on a weekly basis using two methods, and growth curves were generated from these data. The growth and metastasis of orthotopically injected single tumor cells and encapsulated pancreatic tumor cells were evaluated at four and eight weeks postimplantation by positron emission tomography-computed tomography scan and necropsy. The pancreatic tumor samples obtained from each method were then sent for pathological examination. We evaluated differences in the rates of tumor incidence and the presence of metastasis and variations in tumor volume and tumor weight in the cancer microcapsules vs single-cell suspensions. RESULTS: Sequential in vitro observations of the microcapsules showed that the cancer cells in microcapsules proliferated well and formed spheroids at days 4 to 6. Further in vitro culture resulted in bursting of the membrane of the microcapsules and cells deviated outward and continued to grow in flasks. The optimum injection time was found to be 5 d after tumor encapsulation. In the subcutaneous implantation model, there were no significant differences in terms of tumor volume between the encapsulated pancreatic tumor cells and cells alone and rate of tumor incidence. There was a significant difference in the rate of successful implantation between the cancer cell microencapsulation group and the single tumor-cell suspension group (100% vs 71.43%, respectively, P = 0.0489) in the orthotropic implantation model. The former method

  15. Human pancreatic cancer xenografts recapitulate key aspects of cancer cachexia.

    Science.gov (United States)

    Delitto, Daniel; Judge, Sarah M; Delitto, Andrea E; Nosacka, Rachel L; Rocha, Fernanda G; DiVita, Bayli B; Gerber, Michael H; George, Thomas J; Behrns, Kevin E; Hughes, Steven J; Wallet, Shannon M; Judge, Andrew R; Trevino, Jose G

    2017-01-03

    Cancer cachexia represents a debilitating syndrome that diminishes quality of life and augments the toxicities of conventional treatments. Cancer cachexia is particularly debilitating in patients with pancreatic cancer (PC). Mechanisms responsible for cancer cachexia are under investigation and are largely derived from observations in syngeneic murine models of cancer which are limited in PC. We evaluate the effect of human PC cells on both muscle wasting and the systemic inflammatory milieu potentially contributing to PC-associated cachexia. Specifically, human PC xenografts were generated by implantation of pancreatic cancer cells, L3.6pl and PANC-1, either in the flank or orthotopically within the pancreas. Mice bearing orthotopic xenografts demonstrated significant muscle wasting and atrophy-associated gene expression changes compared to controls. Further, despite the absence of adaptive immunity, splenic tissue from orthotopically engrafted mice demonstrated elevations in several pro-inflammatory cytokines associated with cancer cachexia, including TNFα, IL1β, IL6 and KC (murine IL8 homologue), when compared to controls. Therefore, data presented here support further investigation into the complexity of cancer cachexia in PC to identify potential targets for this debilitating syndrome.

  16. Epidermal growth factor induces HCCR expression via PI3K/Akt/mTOR signaling in PANC-1 pancreatic cancer cells

    International Nuclear Information System (INIS)

    Xu, Zekuan; Zhang, Guoxin; Zhang, Yi; Jiang, Jiakai; Yang, Yang; Shi, Ruihua; Hao, Bo; Zhang, Zhihong; Huang, Zuhu; Kim, Jin W

    2010-01-01

    Human cervical cancer oncoprotein 1 (HCCR-1), reported as a negative regulator of p53, is over-expressed in a variety of human cancers. However, it is yet unknown whether HCCR-1 plays any role in pancreatic cancer development. The aim of this study was to investigate the effect of epidermal growth factor on the expression of HCCR in pancreatic cancer cells, and to explore if PI3K/Akt/mTOR signaling pathway mediated this expression. A polyclonal antibody against HCCR protein was raised by immunizing Balb/c mice with the purified recombinant protein pMBPc-HCCR. Tissue samples were constructed on a tissue chip, and the expression of HCCR was investigated by immunohistochemistry assay and Western blotting. Pancreatic cell line, PANC-1 cells were stably transfected with plasmids containing sense-HCCR-1 fragment and HCCR siRNA fragment. MTT and transwell assay were used to investigate the proliferation and invasion of stable tansfectants. The specific inhibitor of PI3K and mTOR was used to see if PI3K/mTOR signal transduction was involved in the induction of HCCR gene expression. A Luciferase assay was used to see if Akt can enhance the HCCR promoter activity. HCCR was up-regulated in pancreatic tumor tissues (mean Allred score 4.51 ± 1.549 vs. 2.87 ± 2.193, P < 0.01), especially with high expression in poorly differentiated pancreatic cancer. The growth of cells decreased in HCCR-1 siRNA transfected cells compared with vector transfectants. The number of invasion cells was significantly lower in HCCR-1 siRNA transfected cells (24.4 ± 9.9) than that in vector transfectants (49.1 ± 15.4). Treatment of PANC-1 cells with epidermal growth factor increased HCCR protein level in a dose- and time-dependent manner. However, application of LY294002 and rapamycin caused a dramatic reduction of epidermal growth factor-induced HCCR expression. Over-expression of exogenous constitutively active Akt increased the HCCR promoter activity; in contrast, dominant negative Akt decreased

  17. Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis.

    Science.gov (United States)

    Wu, Jun; Wang, Jing; Su, Qiang; Ding, Wei; Li, Teng; Yu, Junxian; Cao, Bangwei

    2018-01-01

    Traditional chemotherapy and molecular targeted therapy have shown modest effects on the survival of patients with pancreatic cancer. The current study aimed to investigate the antitumor effects of apatinib, Astragalus polysaccharide (APS), and the combination of both the drugs in pancreatic cancer cells and further explore the molecular mechanisms in vitro. Expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in human pancreatic cancer cell lines ASPC-1, PANC-1, and SW1990 was detected by Western blotting. Cell proliferation was measured by MTS, and migration and invasion were detected by wound-healing and Transwell assays, respectively. Cell apoptosis rate was determined by flow cytometry and cellular autophagy level affected by apatinib, and APS was analyzed by Western blotting. Human pancreatic cancer cell lines ASPC-1 and PANC-1 expressed VEGFR-2, but VEGFR-2 was not detected in SW1990. Either apatinib or APS inhibited cell proliferation in a dose-dependent manner in ASPC-1 and PANC-1. APS in combination with apatinib showed enhanced inhibitory effects on cell migration and invasion compared with apatinib monotherapy in ASPC-1 and PANC-1. Meanwhile, APS combined with apatinib strongly increased cell apoptosis percentage. Western blotting showed that the combination of APS and apatinib significantly enhanced the downregulation of phosphorylated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) (p-AKT and p-ERK) as well as matrix metalloproteinases-9 (MMP-9) expression. In addition, both apatinib and APS induced cellular autophagy. However, the expression of autophagy-related proteins was not further elevated in the combination group. The study first demonstrated that apatinib showed potentially inhibitory effects in pancreatic cancer cells and that APS enhanced the antitumor effects of apatinib through further downregulating the expression of phosphorylation of AKT and ERK as well as MMP-9.

  18. Algerian Propolis Potentiates Doxorubicin Mediated Anticancer Effect against Human Pancreatic PANC-1 Cancer Cell Line through Cell Cycle Arrest, Apoptosis Induction and P-Glycoprotein Inhibition.

    Science.gov (United States)

    Rouibah, Hassiba; Mesbah, Lahouel; Kebsa, Wided; Zihlif, Malek; Ahram, Mamoun; Aburmeleih, Bachaer; Mostafa, Ibtihal; El Amir, Hemzeh

    2018-01-10

    Pancreatic cancer is one of the most aggressive and lethal cancer, with poor prognosis and high resistant to current chemotherapeutic agents. Therefore, new therapeutic strategies and targets are underscored. Propolis has been reported to exhibit a broad spectrum of biological activities including anticancer activity. This study was carried out to assess the possible efficacy of Algerian propolis on the antitumor effect of doxorubicin on human pancreatic cancer cell line (PANC-1). Modifications in cell viability, apoptosis and cell cycle progression, Pgp activity and intracellular accumulation of DOX were monitored to study the synergistic effect of Algerian propolis on the antitumor effects of DOX in PANC-1 cell line. Both propolis and its combination with doxorubicin inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In the presence of 100 µg/ml of propolis, the IC50 of DOX against PANC-1 cells decreased by 10.9-fold. Propolis combined with DOX increased after 48h, the number of cells in the G0G1 phase with dramatical increase in sub-G1 phase to reach 47% of total cells, corresponding to an increase of senescence or apoptotic state of the cells. Dead cell assay with annexinV/PI staining demonstrated that propolis and propolis-DOX treatment resulted in a remarkable induction of apoptosis as detected by flow cytometry. It was interesting to note that propolis at its 5IC50 was found as the most potent inducer of apoptosis. Our finding revealed that induced apoptosis in our conditions was caspase-3 and caspase-9 dependent. Flow cytometry showed that propolis increased the accumulation of doxorubicin within PANC-1 cells. Moreover, fluorescent intensity detection revealed that propolis remarkably increased the retention of rhodamine-123, 7-fold compared to 3-fold of verapamil, the most effective P-gp inhibitor. In conclusion, propolis sensitize pancreatic cancer cells to DOX via enhancing the intracellular retention of DOX

  19. Lysosomal membrane permeabilization is an early event in Sigma-2 receptor ligand mediated cell death in pancreatic cancer.

    Science.gov (United States)

    Hornick, John R; Vangveravong, Suwanna; Spitzer, Dirk; Abate, Carmen; Berardi, Francesco; Goedegebuure, Peter; Mach, Robert H; Hawkins, William G

    2012-05-02

    Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD

  20. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    International Nuclear Information System (INIS)

    Rizwani, Wasia; Allen, Amanda E.; Trevino, Jose G.

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer

  1. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Rizwani, Wasia [Department of Biochemistry, Osmania University, Hyderabad, Telangana 500007 (India); Allen, Amanda E.; Trevino, Jose G., E-mail: Jose.Trevino@surgery.ufl.edu [Department of Surgery, University of Florida, 1600 SW Archer Rd, Rm 6175, P.O. Box 100109, Gainesville, FL 32610 (United States)

    2015-09-03

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  2. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Directory of Open Access Journals (Sweden)

    Wasia Rizwani

    2015-09-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF, the sole ligand for c-MET (mesenchymal-epithelial transition, an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  3. A holistic approach to dissecting SPARC family protein complexity reveals FSTL-1 as an inhibitor of pancreatic cancer cell growth.

    Science.gov (United States)

    Viloria, Katrina; Munasinghe, Amanda; Asher, Sharan; Bogyere, Roberto; Jones, Lucy; Hill, Natasha J

    2016-11-25

    SPARC is a matricellular protein that is involved in both pancreatic cancer and diabetes. It belongs to a wider family of proteins that share structural and functional similarities. Relatively little is known about this extended family, but evidence of regulatory interactions suggests the importance of a holistic approach to their study. We show that Hevin, SPOCKs, and SMOCs are strongly expressed within islets, ducts, and blood vessels, suggesting important roles for these proteins in the normal pancreas, while FSTL-1 expression is localised to the stromal compartment reminiscent of SPARC. In direct contrast to SPARC, however, FSTL-1 expression is reduced in pancreatic cancer. Consistent with this, FSTL-1 inhibited pancreatic cancer cell proliferation. The complexity of SPARC family proteins is further revealed by the detection of multiple cell-type specific isoforms that arise due to a combination of post-translational modification and alternative splicing. Identification of splice variants lacking a signal peptide suggests the existence of novel intracellular isoforms. This study underlines the importance of addressing the complexity of the SPARC family and provides a new framework to explain their controversial and contradictory effects. We also demonstrate for the first time that FSTL-1 suppresses pancreatic cancer cell growth.

  4. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  5. MUC1 selectively targets human pancreatic cancer in orthotopic nude mouse models.

    Directory of Open Access Journals (Sweden)

    Jeong Youp Park

    Full Text Available The goal of this study was to determine whether MUC1 antibody conjugated with a fluorophore could be used to visualize pancreatic cancer. Anti-MUC1 (CT2 antibody was conjugated with 550 nm or 650 nm fluorophores. Nude mouse were used to make subcutaneous and orthotopic models of pancreatic cancer. Western blot and flow cytometric analysis confirmed the expression of MUC1 in human pancreatic cancer cell lines including BxPC-3 and Panc-1. Immunocytochemistry with fluorophore conjugated anti-MUC1 antibody demonstrated fluorescent areas on the membrane of Panc-1 cancer cells. After injecting the conjugated anti-MUC1 antibodies via the tail vein, subcutaneously transplanted Panc-1 and BxPC-3 tumors emitted strong fluorescent signals. In the subcutaneous tumor models, the fluorescent signal from the conjugated anti-MUC1 antibody was noted around the margin of the tumor and space between the cells. The conjugated anti-MUC1 antibody bound the tumor in orthotopically-transplanted Panc-1 and BxPC-3 models enabling the tumors to be imaged. This study showed that fluorophore conjugated anti-MUC1 antibodies could visualize pancreatic tumors in vitro and in vivo and may help to improve the diagnosis and treatment of pancreatic cancer.

  6. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  7. Differentiation of autoimmune pancreatitis from suspected pancreatic cancer by fluorine-18 fluorodeoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Ozaki, Yayoi; Hamano, Hideaki; Oguchi, Kazuhiro

    2008-01-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been widely used for the diagnosis of pancreatic cancer. Because autoimmune pancreatitis is easily misdiagnosed as pancreatic cancer and can be tested for by FDG-PET analysis based on the presence of suspected pancreatic cancer, we attempted to clarify the differences in FDG-PET findings between the two conditions. We compared FDG-PET findings between 15 patients with autoimmune pancreatitis and 26 patients with pancreatic cancer. The findings were evaluated visually or semiquantitatively using the maximum standardized uptake value and the accumulation pattern of FDG. FDG uptake was found in all 15 patients with autoimmune pancreatitis, whereas it was found in 19 of 26 patients (73.1%) with pancreatic cancer. An accumulation pattern characterized by nodular shapes was significantly more frequent in pancreatic cancer, whereas a longitudinal shape indicated autoimmune pancreatitis. Heterogeneous accumulation was found in almost all cases of autoimmune pancreatitis, whereas homogeneous accumulation was found in pancreatic cancer. Significantly more cases of pancreatic cancer showed solitary localization, whereas multiple localization in the pancreas favored the presence of autoimmune pancreatitis. FDG uptake by the hilar lymph node was significantly more frequent in autoimmune pancreatitis than in pancreatic cancer, and uptake by the lachrymal gland, salivary gland, biliary duct, retroperitoneal space, and prostate were seen only in autoimmune pancreatitis. FDG-PET is a useful tool for differentiating autoimmune pancreatitis from suspected pancreatic cancer, if the accumulation pattern and extrapancreatic involvement are considered. IgG4 measurement and other current image tests can further confirm the diagnosis. (author)

  8. Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition.An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay.Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl indoline (BSI, Compound #38 significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities.This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be developed as anti-EMT and

  9. Hypothyroidism in Pancreatic Cancer: Role of Exogenous Thyroid Hormone in Tumor Invasion—Preliminary Observations

    Directory of Open Access Journals (Sweden)

    Konrad Sarosiek

    2016-01-01

    Full Text Available According to the epidemiological studies, about 4.4% of American general elderly population has a pronounced hypothyroidism and relies on thyroid hormone supplements daily. The prevalence of hypothyroidism in our patients with pancreatic cancer was much higher, 14.1%. A retrospective analysis was performed on patients who underwent pancreaticoduodenectomy (Whipple procedure or distal pancreatectomy and splenectomy (DPS at Thomas Jefferson University Hospital, Philadelphia, from 2005 to 2012. The diagnosis of hypothyroidism was correlated with clinicopathologic parameters including tumor stage, grade, and survival. To further understand how thyroid hormone affects pancreatic cancer behavior, functional studies including wound-induced cell migration, proliferation, and invasion were performed on pancreatic cancer cell lines, MiaPaCa-2 and AsPC-1. We found that hypothyroid patients taking exogenous thyroid hormone were more than three times likely to have perineural invasion, and about twice as likely to have higher T stage, nodal spread, and overall poorer prognostic stage (P<0.05. Pancreatic cancer cell line studies demonstrated that exogenous thyroid hormone treatment increased cell proliferation, migration, and invasion (P<0.05. We conclude that exogenous thyroid hormone may contribute to the progression of pancreatic cancer.

  10. Ultrasound-enhanced nanotherapy of pancreatic cancer

    Science.gov (United States)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.

    2010-03-01

    The paper reports in vivo results of ultrasonic nanotherapy of orthotopically grown pancreatic cancer. Phase-shift paclitaxel (PTX) loaded perfluoropentane (PFP) nanoemusions combined with tumor-directed ultrasound have been used with a considerable success for tumor-targeted chemotherapy of gemcitabin (GEM)-refractory pancreatic cancer (PC). The GEM-resistant pancreatic cancer proved sensitive to treatment by a micellar PTX formulation Genexol PM (GEN) andor nanodroplet PTX formulation ndGEN. Due to increased permeability of tumor blood vessels, drug-loaded nanodroplets accumulated in the tumor via passive targeting, which was confirmed by ultrasound imaging. Nanodroplets converted into microbubbles in situ under the action of tumor-directed 1-MHz therapeutic ultrasound. The strongest therapeutic effect was observed for the combination therapy by PTX-loaded nanodroplets, GEM and ultrasound (ndGEN+GEM+ultrasound). This combination therapy resulted in a spectacular tumor regression and in some cases complete tumor resolution. Moreover, formation of metastases was dramatically decreased and ascitis generation was completely suppressed. However for all animal groups, local tumor recurrence was observed after the completion of the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more resistant to the repeated therapy than initial tumors.

  11. Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study

    Science.gov (United States)

    Wang, Min-Cong; Jiao, Min; Wu, Tao; Jing, Li; Cui, Jie; Guo, Hui; Tian, Tao; Ruan, Zhi-ping; Wei, Yong-Chang; Jiang, Li-Li; Sun, Hai-Feng; Huang, Lan-Xuan; Nan, Ke-Jun; Li, Chun-Li

    2016-01-01

    Cancer stem cell theory indicates cancer stem cells are the key to promote tumor invasion and metastasis. Studies showed that BMI-1 could promote self-renew, differentiation and tumor formation of CSCs and invasion/metastasis of human cancer. However, whether BMI-1 could regulate invasion and metastasis ability of CSCs is still unclear. In our study, we found that up-regulated expression of BMI-1 was associated with tumor invasion, metastasis and poor survival of pancreatic cancer patients. CD133+ cells were obtained by using magnetic cell sorting and identified of CSCs properties such as self-renew, multi-differentiation and tumor formation ability. Then, we found that BMI-1 expression was up-regulated in pancreatic cancer stem cells. Knockdown of BMI-1 expression attenuated invasion ability of pancreatic cancer stem cells in Transwell system and liver metastasis capacity in nude mice which were injected CSCs through the caudal vein. We are the first to reveal that BMI-1 could promote invasion and metastasis ability of pancreatic cancer stem cells. Finally, we identified that BMI-1 expression activating PI3K/AKT singing pathway by negative regulating PTEN was the main mechanism of promoting invasion and metastasis ability of pancreatic CSCs. In summary, our findings indicate that BMI-1 could be used as the therapeutic target to inhibiting CSCs-mediated pancreatic cancer metastasis. PMID:26840020

  12. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Abrol, Ravinder; Edderkaoui, Mouad; Goddard, William A.; Pandol, Stephen J.

    2012-01-01

    Highlights: ► Direct role of Bcl-2 protein interactions in cell proliferation is not clear. ► Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. ► Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. ► Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. ► Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH 3 domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linked for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein–protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein–protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the inhibition of proliferation and cancer cell resistance to apoptosis.

  13. Acute Pancreatitis and Pancreatic Cancer Risk: A Nationwide Matched-cohort Study in Denmark

    DEFF Research Database (Denmark)

    Kirkegård, Jakob; Cronin Fenton, Deirdre; Heide-Jørgensen, Uffe

    2018-01-01

    . Pancreatic cancer risk was expressed as hazard ratios (HRs) with 95% CIs, calculated using the Cox proportional hazards model. Cox models were stratified by age, sex, and year of pancreatitis diagnosis and adjusted for alcohol- and smoking-related conditions, and Charlson Comorbidity Index score. Results We...... included 41,669 patients diagnosed with incident acute pancreatitis and 208,340 comparison individuals. Patients with acute pancreatitis had an increased risk of pancreatic cancer compared with the age- and sex-matched general population throughout the follow-up period. The risk decreased over time......Background & Aims Acute pancreatitis may be a risk factor for pancreatic cancer. However, findings from studies on this association are conflicting. We investigated the association between acute pancreatitis and increased risk of pancreatic cancer. Methods We conducted a nationwide, population...

  14. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer. Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Panje, Cedric; Andratschke, Nikolaus; Guckenberger, Matthias [Zurich University Hospital, Department of Radiation Oncology, Zurich (Switzerland); Brunner, Thomas B. [Freiburg University Hospital, Department of Radiation Oncology, Freiburg (Germany); Niyazi, Maximilian [University of Munich, Department of Radiation Oncology, Munich (Germany)

    2016-12-15

    This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer. A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation. Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities. SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT. (orig.) [German] Die Arbeitsgruppe ''Stereotaktische Radiotherapie'' der Deutschen Gesellschaft fuer Radioonkologie (DEGRO) legt eine Zusammenfassung der aktuellen Literatur und daraus resultierende Empfehlungen zur Durchfuehrung der stereotaktischen Strahlentherapie (SBRT) beim Nierenzellkarzinom und beim Pankreaskarzinom vor. Es erfolgte eine Literaturrecherche zur Evidenz der SBRT beim Nierenzell- und Pankreaskarzinom, wobei der Schwerpunkt auf prospektive Studien und technische Aspekte fuer die klinische Umsetzung gelegt wurde. Fuer die SBRT beim Pankreaskarzinom und Nierenzellkarzinom sind bisher nur wenige Studien veroeffentlicht worden, die jedoch konsistent eine hohe Rate an lokaler Tumorkontrolle

  15. Potential Applications of Nanotechnology for the Diagnosis and Treatment of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Joshua eMcCarroll

    2014-01-01

    Full Text Available Despite improvements in our understanding of pancreatic cancer and the emerging concept of personalized medicine for the treatment of this disease, it is still the fourth most common cause of cancer death in the western world. It is established that pancreatic cancer is a highly heterogeneous disease with a complex tumor microenvironment. Indeed the extensive stroma surrounding the cancer cells has been shown to be important in promoting tumor growth and metastases, as well as sequestering chemotherapeutic agents consequently decreasing delivery to the tumor cells. Nanotechnology has come to the forefront in the areas of medical diagnostics, imaging, and therapeutic drug delivery. This review will focus on the potential applications of nanotechnology for diagnosis, imaging, and delivery of therapeutic agents for the treatment of pancreatic cancer.

  16. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC-1.

    Science.gov (United States)

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-05-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC-1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC-1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC-1 cells, metabolome analysis of the invaded PANC-1 compared with the whole cultured PANC-1 was performed using CE-TOFMS, and concentrations of 110 metabolites were measured. In contrast to the whole cultured cells, the invaded PANC-1 was characterized as a population with reduced levels of amino acids and TCA cycle intermediates, and decreased and increased intermediates in glycolysis and nucleic acid metabolism. In particular, the ratio of both adenosine and guanosine energy charge was reduced in the invaded cells, revealing that the consumption of ATP and GTP was high in the invaded cells, and thus suggesting that ATP- or GTP-generating pathways are stimulated. In addition, the GSH/GSSG ratio was low in the invaded cells, but these cells had a higher surviving fraction after exposure to hydrogen peroxide. Thus, the invaded cells were the population resistant to oxidative stress. Furthermore, reduction in intracellular GSH content inhibited PANC-1 invasiveness, indicated that GSH has an important role in PANC-1 invasiveness. Overall, we propose the invaded cells have several unique metabolic profiles. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells.

    Science.gov (United States)

    Lee, Syng-Ook; Jin, Un-Ho; Kang, Jeong Han; Kim, Sang Bae; Guthrie, Aaron S; Sreevalsan, Sandeep; Lee, Ju-Seog; Safe, Stephen

    2014-04-01

    NR4A1 (Nur77, TR3) is an orphan nuclear receptor that is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity. RNA interference of NR4A1 expression in Panc-1 cells induced apoptosis and subsequent proteomic analysis revealed the induction of several markers of endoplasmic reticulum stress, including glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), and activating transcription factor-4 (ATF-4). Treatment of pancreatic cancer cells with the NR4A1 antagonist 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) gave similar results. Moreover, both NR4A1 knockdown and DIM-C-pPhOH induced reactive oxygen species (ROS), and induction of ROS and endoplasmic reticulum stress by these agents was attenuated after cotreatment with antioxidants. Manipulation of NR4A1 expression coupled with gene expression profiling identified a number of ROS metabolism transcripts regulated by NR4A1. Knockdown of one of these transcripts, thioredoxin domain containing 5 (TXNDC5), recapitulated the elevated ROS and endoplasmic reticulum stress; thus, demonstrating that NR4A1 regulates levels of endoplasmic reticulum stress and ROS in pancreatic cancer cells to facilitate cell proliferation and survival. Finally, inactivation of NR4A1 by knockdown or DIM-C-pPhOH decreased TXNDC5, resulting in activation of the ROS/endoplasmic reticulum stress and proapoptotic pathways. The NR4A1 receptor is pro-oncogenic, regulates the ROS/endoplasmic reticulum stress pathways, and inactivation of the receptor represents a novel pathway for inducing cell death in pancreatic cancer. Mol Cancer Res; 12(4); 527-38. ©2014 AACR.

  18. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  19. Pancreatic Metastasis from Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Julian Jacob

    2010-01-01

    Full Text Available The pancreas is an unusual location for metastases from other primary cancers. Rarely, pancreatic metastases from kidney or colorectal cancers have been reported. However, a variety of other cancers may also spread to the pancreas. We report an exceptional case of pancreatic metastasis from prostate cancer. Differences in management between primary and secondary pancreatic tumors make recognition of metastases to the pancreas an objective of first importance. Knowledge of unusual locations for metastatic spread will reduce diagnostic delay and lead to a timely delivery of an appropriate treatment.

  20. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.

    Science.gov (United States)

    Kamerkar, Sushrut; LeBleu, Valerie S; Sugimoto, Hikaru; Yang, Sujuan; Ruivo, Carolina F; Melo, Sonia A; Lee, J Jack; Kalluri, Raghu

    2017-06-22

    The mutant form of the GTPase KRAS is a key driver of pancreatic cancer but remains a challenging therapeutic target. Exosomes are extracellular vesicles generated by all cells, and are naturally present in the blood. Here we show that enhanced retention of exosomes, compared to liposomes, in the circulation of mice is likely due to CD47-mediated protection of exosomes from phagocytosis by monocytes and macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were engineered to carry short interfering RNA or short hairpin RNA specific to oncogenic Kras G12D , a common mutation in pancreatic cancer. Compared to liposomes, the engineered exosomes (known as iExosomes) target oncogenic KRAS with an enhanced efficacy that is dependent on CD47, and is facilitated by macropinocytosis. Treatment with iExosomes suppressed cancer in multiple mouse models of pancreatic cancer and significantly increased overall survival. Our results demonstrate an approach for direct and specific targeting of oncogenic KRAS in tumours using iExosomes.

  1. Dynamic Contrast Enhanced MRI in Patients With Advanced Breast or Pancreatic Cancer With Metastases to the Liver or Lung

    Science.gov (United States)

    2014-05-28

    Acinar Cell Adenocarcinoma of the Pancreas; Duct Cell Adenocarcinoma of the Pancreas; Liver Metastases; Lung Metastases; Recurrent Breast Cancer; Recurrent Pancreatic Cancer; Stage IV Breast Cancer; Stage IV Pancreatic Cancer

  2. Vitamin E δ-tocotrienol induces p27(Kip1-dependent cell-cycle arrest in pancreatic cancer cells via an E2F-1-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Pamela J Hodul

    Full Text Available Vitamin E δ-tocotrienol has been shown to have antitumor activity, but the precise molecular mechanism by which it inhibits the proliferation of cancer cells remains unclear. Here, we demonstrated that δ-tocotrienol exerted significant cell growth inhibition pancreatic ductal cancer (PDCA cells without affecting normal human pancreatic ductal epithelial cell growth. We also showed that δ-tocotrienol-induced growth inhibition occurred concomitantly with G(1 cell-cycle arrest and increased p27(Kip1 nuclear accumulation. This finding is significant considering that loss of nuclear p27(Kip1 expression is a well-established adverse prognostic factor in PDCA. Furthermore, δ-tocotrienol inactivated RAF-MEK-ERK signaling, a pathway known to suppress p27(Kip1 expression. To determine whether p27(Kip1 induction is required for δ-tocotrienol inhibition of PDCA cell proliferation, we stably silenced the CDKN1B gene, encoding p27(Kip1, in MIAPaCa-2 PDCA cells and demonstrated that p27(Kip1 silencing suppressed cell-cycle arrest induced by δ-tocotrienol. Furthermore, δ-tocotrienol induced p27(Kip1 mRNA expression but not its protein degradation. p27(Kip1 gene promoter activity was induced by δ-tocotrienol through the promoter's E2F-1 binding site, and this activity was attenuated by E2F-1 depletion using E2F-1 small interfering RNA. Finally, decreased proliferation, mediated by Ki67 and p27(Kip1 expression by δ-tocotrienol, was confirmed in vivo in a nude mouse xenograft pancreatic cancer model. Our findings reveal a new mechanism, dependent on p27(Kip1 induction, by which δ-tocotrienol can inhibit proliferation in PDCA cells, providing a new rationale for p27(Kip1 as a biomarker for δ-tocotrienol efficacy in pancreatic cancer prevention and therapy.

  3. Upregulation of miR-150* and miR-630 induces apoptosis in pancreatic cancer cells by targeting IGF-1R.

    Directory of Open Access Journals (Sweden)

    Lulu Farhana

    Full Text Available MicroRNAs have been implicated in many critical cellular processes including apoptosis. We have previously found that apoptosis in pancreatic cancer cells was induced by adamantyl retinoid-related (ARR molecule 3-Cl-AHPC. Here we report that 3-Cl-AHPC-dependent apoptosis involves regulating a number of microRNAs including miR-150* and miR-630. 3-Cl-AHPC stimulated miR-150* expression and caused decreased expression of c-Myb and IGF-1R in the pancreatic cancer cells. 3-Cl-AHPC-mediated reduction of c-Myb resulted in diminished binding of c-Myb with IGF-1R and Bcl-2 promoters, thereby causing repression of their transcription and protein expression. Over-expression of miR-150* also resulted in diminished levels of c-Myb and Bcl-2 proteins. Furthermore, the addition of the miRNA inhibitor 2'-O-methylated miR-150 blocked 3-Cl-AHPC-mediated increase in miR-150* levels and abrogated loss of c-Myb protein. Knockdown of c-Myb in PANC-1 cells resulted in enhanced apoptosis both in the presence or absence of 3-Cl-AHPC confirming the anti-apoptotic property of c-Myb. Overexpression of miR-630 also induced apoptosis in the pancreatic cancer cells and inhibited target protein IGF-1R mRNA and protein expression. Together these results implicate key roles for miR-150* and miR-630 and their targeting of IGF-1R to promote apoptosis in pancreatic cancer cells.

  4. Ultrasonographic diagnosis of pancreatic and peripancreatic cancer

    International Nuclear Information System (INIS)

    Park, Churl Min; Kim, Ho Kyun; Yoon, Yup; Lee, Sun Wha; Kim, Soon Yong; Ahn, Chi Yul

    1982-01-01

    Seventeen cases of cancers in and adjacent to the pancreas were studied by high resolution and wide field real time ultrasonographic scanner with 3.5 MHz linear array electronically focusing transducer. The result were as follows: 1. In a total of 17 cases, 7 cases were pancreatic cancers and the rests were 3 cases of ampulla of Vaster cancer, 3 cases of distal CBD cancers, and 4 cases of metastatic cancers, respectively. 2. Pancreatic cancers were located mainly in head portion, and metastatic cancers were noted in head, tail, and retropancreatic areas. 3. The sizes of all distal CBD cancer were less than 1.8 cm, usually smaller than other tumors, and the size of metastatic cancers were variable (1-6 cm). 4. The shape, margin, contour and echogenicity of the tumors were variable. 5. Pancreatic duct showed marked dilatation in one of pancreatic cancer, and mild dilatation in one of ampulla of Vater cancer. 6. The caliber of extrahepatic duct were moderately or markedly dilated in nearly all cases except 2 cases of pancreatic body cancer. 7. The pancreatic margin is partially obliterated in pancreatic and ampulla of Vater cancers but not in distal CBD cancer. 8. Gallbladder enlargement is secondary change due to the obstruction of extrahepatic bile duct. 9. Effects on the vessels are due to not only direct mass effect but direct invasion resulting in obliteration. The most commonly involved vessels are spleno-portal junction, splenic vein and portal vein. In case of pancreatic cancer in uncinate process, the superior mesenteric vessels are displaced anteriorly. 10. Surrounding metastatic lesions were suspected in pancreatic and ampulla of Vater cancer, but not seen in distal CBD cancer. 11. Ascites were seen in only two cases of metastasis

  5. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  6. Assessment value of quantitative indexes of pancreatic CT perfusion scanning for malignant degree of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Jiang-Xia Lei

    2016-10-01

    Full Text Available Objective: To analyze the assessment value of the quantitative indexes of pancreatic CT perfusion scanning for malignant degree of pancreatic cancer. Methods: A total of 58 patients with space-occupying pancreatic lesions were divided into 20 patients with pancreatic cancer and 38 patients with benign pancreatic lesions after pancreatic CT perfusion. Patients with pancreatic cancer received palliative surgery, and the cancer tissue and para-carcinoma tissue specimens were collected during operation. The differences in pancreatic CT perfusion scanning parameter values and serum tumor marker levels were compared between patients with pancreatic cancer and patients with benign pancreatic lesions, mRNA expression levels of malignant molecules in pancreatic cancer tissue and para-carcinoma tissue were further determined, and the correlation between pancreatic CT perfusion scanning parameter values and malignant degree of pancreatic cancer was analyzed. Results: CT perfusion scanning BF, BV and Per values of patients with pancreatic cancer were lower than those of patients with benign pancreatic lesions; serum CA19-9, CEA, CA125 and CA242 levels were higher than those of patients with benign pancreatic lesions (P<0.05; mRNA expression levels of Bcl-2, Bcl-xL and survivin in pancreatic cancer tissue samples were higher than those in paracarcinoma tissue samples, and mRNA expression levels of P53 and Bax were lower than those in para-carcinoma tissue samples (P<0.05; CT perfusion scanning parameters BF, BV and Per values of patients with pancreatic cancer were negatively correlated with CA19-9, CEA, CA125 and CA242 levels in serum as well as mRNA expression levels of Bcl-2, Bcl-xL and survivin in pancreatic cancer tissue, and positively correlated with mRNA expression levels of P53 and Bax in pancreatic cancer tissue (P<0.05. Conclusions: Pancreatic CT perfusion scanning is a reliable way to judge the malignant degree of pancreatic cancer and plays a

  7. Autophagy sustains the survival of human pancreatic cancer PANC-1 cells under extreme nutrient deprivation conditions.

    Science.gov (United States)

    Kim, Sang Eun; Park, Hye-Jin; Jeong, Hye Kyoung; Kim, Mi-Jung; Kim, Minyeong; Bae, Ok-Nam; Baek, Seung-Hoon

    2015-07-31

    Pancreatic ductal adenocarcinomas are an extremely aggressive and devastating type of cancer with high mortality. Given the dense stroma and poor vascularization, accessibility to nutrients is limited in the tumor microenvironment. Here, we aimed to elucidate the role of autophagy in promoting the survival of human pancreatic cancer PANC-1 cells exposed to nutrient-deprived media (NDM) lacking glucose, amino acids, and serum. NDM inhibited Akt activity and phosphorylation of p70 S6K, and induced AMPK activation and mitochondrial depolarization. NDM also time-dependently increased LC3-II accumulation, number of GFP-LC3 puncta, and colocalization between GFP-LC3 and lysosomes. These results suggested that autophagy was progressively activated through Akt- and AMPK-mTOR pathway in nutrient-deficient PANC-1 cells. Autophagy inhibitors (chloroquine and wortmannin) or silencing of Atg5 augmented PANC-1 cell death in NDM. In cells exposed to NDM, chloroquine and wortmannin induced apoptosis and Z-VAD-fmk inhibited cytotoxicity of these inhibitors. These data demonstrate that autophagy is anti-apoptotic and sustains the survival of PANC-1 cells following extreme nutrient deprivation. Autophagy modulation may be a viable therapeutic option for cancer cells located in the core of solid tumors with a nutrient-deficient microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  9. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    NARCIS (Netherlands)

    Ricci, C.; Mota, C.M.; Moscato, S.; D' Alessandro, D.; Ugel, S.; Sartoris, S.; Bronte, V.; Boggi, U.; Campani, D.; Funel, N.; Moroni, Lorenzo; Danti, S.

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl

  10. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and

  11. Lysosomal Membrane Permeabilization is an Early Event in Sigma-2 Receptor Ligand Mediated Cell Death in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Hornick John R

    2012-05-01

    Full Text Available Abstract Background Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Results Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282 localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco. Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Conclusions Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a

  12. A formulation of pancreatic pro-enzymes provides potent anti-tumour efficacy: a pilot study focused on pancreatic and ovarian cancer.

    Science.gov (United States)

    Perán, Macarena; López-Ruiz, Elena; García, María Ángel; Nadaraia-Hoke, Shorena; Brandt, Ralf; Marchal, Juan A; Kenyon, Julian

    2017-10-25

    Proteolytic enzymes have shown efficacy in cancer therapy. We present a combination of the two pro-enzymes Trypsinogen and Chymotrypsinogen A with potent in vitro and in vivo anti-tumour efficacy. A synergetic anti-tumour effect for Trypsinogen and Chymotrypsinogen A was determined at a ratio 1:6 (named PRP) using 24 human cancer cell lines. The antiangiogenic effect of PRP was analysed by matrigel-based tube formation and by fibrous capsule formation assays. Furthermore, cell invasion and wound healing assays together with qRT-PCR determination of epithelial-to-mesenchymal transition (EMT) markers were performed on human cancer cells treated with PRP. Additionally, in vivo pharmacokinetic studies were implemented and the PRP's anti-tumour efficacy was explored against orthotopic pancreatic and ovarian cancer tumours. PRP formulation was proven to inhibit in vitro angiogenesis, tumour growth, cancer cell migration and invasiveness; and to be an effective and well tolerated in vivo anti-tumour treatment. Finally, the clinical efficacy of a suppository formulation containing both pancreatic pro-enzymes in the context of a UK Pharmaceuticals Special Scheme was evaluated in advanced cancer patients. Consequently, PRP could have relevant oncological clinical applications for the treatment of advanced or metastatic pancreatic adenocarcinoma and advanced epithelial ovarian cancer.

  13. Apolipoprotein A-II Plus Lipid Emulsion Enhance Cell Growth via SR-B1 and Target Pancreatic Cancer In Vitro and In Vivo

    Science.gov (United States)

    Thanh LE, Thao N.; Gill, Anthony J.; Bulanadi, Jerikho C.; Patel, Mili; Waddington, Lynne J.; Rye, Kerry-Anne; Moghaddam, Minoo J.; Smith, Ross C.

    2016-01-01

    Background Apolipoprotein A-II (ApoA-II) is down regulated in the sera of pancreatic ductal adenocarcinoma (PDAC) patients, which may be due to increase utilization of high density lipoprotein (HDL) lipid by pancreatic cancer tissue. This study examined the influence of exogenous ApoA-II on lipid uptake and cell growth in pancreatic cancer (PC) both in vitro and in vivo. Methods Cryo transmission electron microscopy (TEM) examined ApoA-II’s influence on morphology of SMOFLipid emulsion. The influence of ApoA-II on proliferation of cancer cell lines was determined by incubating them with lipid+/-ApoA-II and anti-SR-B1 antibody. Lipid was labeled with the fluorophore, DiD, to trace lipid uptake by cancer cells in vitro by confocal microscopy and in vivo in PDAC patient derived xenograft tumours (PDXT) by fluorescence imaging. Scavenger receptor class B type-1(SR-B1) expression in PDAC cell lines and in PDAC PDXT was measured by western blotting and immunohistochemistry, respectively. Results ApoA-II spontaneously converted lipid emulsion into very small unilamellar rHDL like vesicles (rHDL/A-II) and enhanced lipid uptake in PANC-1, CFPAC-1 and primary tumour cells as shown by confocal microscopy. SR-B1 expression was 13.2, 10.6, 3.1 and 2.3 fold higher in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cell lines than the normal pancreatic cell line (HPDE6) and 3.7 fold greater in PDAC tissue than in normal pancreas. ApoA-II plus lipid significantly increased the uptake of labeled lipid and promoted cell growth in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cells which was inhibited by anti SR-B1 antibody. Further, ApoA-II increased the uptake of lipid in xenografts by 3.4 fold. Conclusion Our data suggest that ApoA-II enhance targeting potential of lipid in pancreatic cancer which may have imaging and drug delivery potentialities. PMID:27002321

  14. Hypermutation in pancreatic cancer

    OpenAIRE

    Humphris, Jeremy L.; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J.; Johns, Amber L.; McKay, Skye; Chang, David K.; Miller, David K.; Pajic, Marina; Kassahn, Karin S.; Quinn, Michael C.J.; Bruxner, Timothy J.C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechan...

  15. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    International Nuclear Information System (INIS)

    Li, Lin; Yue, Grace G.L.; Lau, Clara B.S.; Sun, Handong; Fung, Kwok Pui; Leung, Ping Chung; Han, Quanbin; Leung, Po Sing

    2012-01-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  16. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine, The Hong Kong Baptist University, Hong Kong (China); Leung, Po Sing, E-mail: psleung@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China)

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  17. Molecular biology of pancreatic cancer: how useful is it in clinical practice?

    Science.gov (United States)

    Sakorafas, George H; Smyrniotis, Vasileios

    2012-07-10

    During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the

  18. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  19. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    Science.gov (United States)

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. © 2015 Zambirinis et al.

  20. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation.

    Science.gov (United States)

    Okuyama, Noriko; Ide, Yoshihito; Nakano, Miyako; Nakagawa, Tsutomu; Yamanaka, Kanako; Moriwaki, Kenta; Murata, Kohei; Ohigashi, Hiroaki; Yokoyama, Shigekazu; Eguchi, Hidetoshi; Ishikawa, Osamu; Ito, Toshifumi; Kato, Michio; Kasahara, Akinori; Kawano, Sunao; Gu, Jianguo; Taniguchi, Naoyuki; Miyoshi, Eiji

    2006-06-01

    Changes in oligosaccharide structures have been reported in certain types of malignant transformations and, thus, could be used for tumor markers in certain types of cancer. In the case of pancreatic cancer cell lines, a variety of fucosylated proteins are secreted into their conditioned media. To identify fucosylated proteins in the serum of patients with pancreatic cancer, we performed western blot analyses using Aleuria Aurantica Lectin (AAL), which is specific for fucosylated structures. An approximately 40 kD protein was found to be highly fucosylated in pancreatic cancer and an N-terminal analysis revealed that it was the beta chain of haptoglobin. While the appearance of fucosylated haptoglobin has been reported in other diseases such as hepatocellular carcinoma, liver cirrhosis, gastric cancer and colon cancer, the incidence was significantly higher in the case of pancreatic cancer. Fucosylated haptoglobin was observed more frequently at the advanced stage of pancreatic cancer and disappeared after an operation. A mass spectrometry analysis of haptoglobin purified from the serum of patients with pancreatic cancer and the medium from a pancreatic cancer cell line, PSN-1, showed that the alpha 1-3/alpha 1-4/alpha 1-6 fucosylation of haptoglobin was increased in pancreatic cancer. When a hepatoma cell line, Hep3B, was cultured with the conditioned media from pancreatic cancer cells, haptoglobin secretion was dramatically increased. These findings suggest that fucosylated haptoglobin could serve as a novel marker for pancreatic cancer. Two possibilities were considered in terms of the fucosylation of haptoglobin. One is that pancreatic cancer cells, themselves, produce fucosylated haptoglobin; the other is that pancreatic cancer produces a factor, which induces the production of fucosylated haptoglobin in the liver.

  1. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection

    Directory of Open Access Journals (Sweden)

    Taylor M. Gilliland

    2017-03-01

    Full Text Available Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL. The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995–2016 addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC. We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1 patients with albumin < 2.5 mg/dL or weight loss > 10% should postpone surgery and begin aggressive nutrition supplementation; (2 patients with albumin < 3 mg/dL or weight loss between 5% and 10% should have nutrition supplementation prior to surgery; (3 enteral nutrition (EN should be preferred as a nutritional intervention over total parenteral nutrition (TPN postoperatively; and, (4 a multidisciplinary approach should be used to allow for early detection of symptoms of endocrine and exocrine pancreatic insufficiency alongside implementation of

  2. Gemcitabine treatment causes resistance and malignancy of pancreatic cancer stem-like cells via induction of lncRNA HOTAIR

    Science.gov (United States)

    Wang, Li; Dong, Ping; Wang, Weiguo; Huang, Mingquan; Tian, Bole

    2017-01-01

    Gemcitabine is the first-line chemotherapeutic agent for advanced adenocarcinoma of the pancreas, despite the high risk of chemoresistance as a major disadvantage. In the past few years, significant advances have been made in the field of pancreatic cancer stem-like cells (CSCs) and their critical roles in drug resistance, invasion and metastasis, which are tightly regulated by long non-coding RNAs (lncRNAs). The present study demonstrated that HOX antisense intergenic RNA (HOTAIR) is not different between the pancreatic cancer cell line PANC-1 and its enriched CSC sub-population. However, after gemcitabine treatment, the expression levels of HOTAIR in CSCs were induced, but not in PANC-1 cells. HOTAIR induced by gemcitabine failed to cause chemoresistance, but promoted the clonogenicity, proliferation and migration of the cells. By introducing HOTAIR using lentivirus, chemoresistance was induced and the self-renewal capacity, proliferation and migration were significantly promoted. By contrast, HOTAIR knockdown in PANC-1 CSCs treated with or without gemcitabine decreased the cell proliferation, altered the cell cycle progression and induced apoptosis, demonstrating its critical roles in regulating the malignant character of PANC-1 CSCs. In conclusion, the present study demonstrated that HOTAIR may be induced by gemcitabine and acts as a tumor promoter by inhibiting the chemosensitivity, and promoting the self-renewal capacity, proliferation and migration of PANC-1 CSCs, which supports its potential application as a novel therapeutic approach for pancreatic cancer. PMID:29201179

  3. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  4. Targeting ROCK activity to disrupt and prime pancreatic cancer for chemotherapy.

    Science.gov (United States)

    Vennin, Claire; Rath, Nicola; Pajic, Marina; Olson, Michael F; Timpson, Paul

    2017-10-03

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease; the identification of novel targets and development of effective treatment strategies are urgently needed to improve patient outcomes. Remodeling of the pancreatic stroma occurs during PDAC development, which drives disease progression and impairs responses to therapy. The actomyosin regulatory ROCK1 and ROCK2 kinases govern cell motility and contractility, and have been suggested to be potential targets for cancer therapy, particularly to reduce the metastatic spread of tumor cells. However, ROCK inhibitors are not currently used for cancer patient treatment, largely due to the overwhelming challenge faced in the development of anti-metastatic drugs, and a lack of clarity as to the cancer types most likely to benefit from ROCK inhibitor therapy. In 2 recent publications, we discovered that ROCK1 and ROCK2 expression were increased in PDAC, and that increased ROCK activity was associated with reduced survival and PDAC progression by enabling extracellular matrix (ECM) remodeling and invasive growth of pancreatic cancer cells. We also used intravital imaging to optimize ROCK inhibition using the pharmacological ROCK inhibitor fasudil (HA-1077), and demonstrated that short-term ROCK targeting, or 'priming', improved chemotherapy efficacy, disrupted cancer cell collective movement, and impaired metastasis. This body of work strongly indicates that the use of ROCK inhibitors in pancreatic cancer therapy as 'priming' agents warrants further consideration, and provides insights as to how transient mechanical manipulation, or fine-tuning the ECM, rather than chronic stromal ablation might be beneficial for improving chemotherapeutic efficacy in the treatment of this deadly disease.

  5. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model

    Science.gov (United States)

    2012-01-01

    Background Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Methods Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV). Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Results Longer duration and higher temperature hydrodistillation produced more abundant high molecular

  6. Rationale for Possible Targeting of Histone Deacetylase Signaling in Cancer Diseases with a Special Reference to Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Mehdi Ouaïssi

    2011-01-01

    Full Text Available There is ongoing interest to identify signaling pathways and genes that play a key role in carcinogenesis and the development of resistance to antitumoral drugs. Given that histone deacetylases (HDACs interact with various partners through complex molecular mechanims leading to the control of gene expression, they have captured the attention of a large number of researchers. As a family of transcriptional corepressors, they have emerged as important regulators of cell differentiation, cell cycle progression, and apoptosis. Several HDAC inhibitors (HDACis have been shown to efficiently protect against the growth of tumor cells in vitro as well as in vivo. The pancreatic cancer which represents one of the most aggressive cancer still suffers from inefficient therapy. Recent data, although using in vitro tumor cell cultures and in vivo chimeric mouse model, have shown that some of the HDACi do express antipancreatic tumor activity. This provides hope that some of the HDACi could be potential efficient anti-pancreatic cancer drugs. The purpose of this review is to analyze some of the current data of HDACi as possible targets of drug development and to provide some insight into the current problems with pancreatic cancer and points of interest for further study of HDACi as potential molecules for pancreatic cancer adjuvant therapy.

  7. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from kashmiri saffron in a human pancreatic cancer cell line.

    Science.gov (United States)

    Bakshi, Hamid; Sam, Smitha; Rozati, Roya; Sultan, Phalisteen; Islam, Tajamul; Rathore, Babita; Lone, Zahoor; Sharma, Manik; Triphati, Jagrati; Saxena, Ramesh Chand

    2010-01-01

    Apoptosis, a widely important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus in different cancer types. The present study was designed to elucidate apoptosis induction by crocin, a main component of Crocus sativus in a human pancreatic cancer cell line (BxPC-3). Cell viability was measured by MTT assay, Hoechest33258 staining was used to detect the chromatin condensation characteristic of apoptosis, and DNA fragmentation was assessed by gel electrophoresis and cell cycle analysis by flow cytometry. Crocin induced apoptosis and G1-phase cell cycle arrest of BxPC-3 cells, while decreasing cell viability in a dose dependent and time dependent manner. Cells treated with 10μg/L crocin exhibited apoptotic morphology (brightly blue-fluorescent condensed nuclei on Hoechst 33258 staining) and reduction of volume. DNA analysis revealed typical ladders as early as 12 hours after treatment indicative of apoptosis. Our preclinical study demonstrated a pancreatic cancer cell line to be highly sensitive to crocin-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of crocin action are not yet clearly understood, it appears to have potential as a therapeutic agent.

  8. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    Science.gov (United States)

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Changjie Lou

    Full Text Available Epithelial to mesenchymal transition (EMT promotes cellular motility, invasiveness and metastasis during embryonic development and tumorigenesis. Transforming growth factor-β (TGF-β signaling pathway is a key regulator of EMT. A lot of evidences suggest that this process is Smad3-dependent. Herein we showed that exposure of aspc-1 and panc-1 pancreatic cancer cells to TGF-β1 resulted in characteristic morphological alterations of EMT, and enhancement of cell motility and gemcitabine (Gem resistance along with an up-regulation of EMT markers genes such as vimentin, N-cadherin, MMP2 and MMP9. Naringenin (Nar down-regulated EMT markers expression in both mRNA and protein levels by inhibiting TGF-β1/Smad3 signal pathway in the pancreatic cancer cells. Consequently, Nar suppressed the cells migration and invasion and reversed their resistance to Gem.

  10. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Huang XC

    2015-10-01

    Full Text Available Xince Huang,1 Shengjie Dai,1 Juji Dai,1 Yuwu Xiao,1 Yongyu Bai,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Luteolin, a flavone, has been shown to exhibit anticancer properties. Here, we investigated whether luteolin affects epithelial–mesenchymal transition (EMT and invasiveness of pancreatic cancer cell lines and their underlying mechanism. Pancreatic cancer cell lines PANC-1 and SW1990 were used in our study, and their EMT characters, matrix metalloproteinase (MMP expression level, invasiveness, and signal transducer and activator of transcription 3 (STAT3 activity were determined after luteolin treatment. We also treated pancreatic cancer cells with interleukin-6 (IL-6 to see whether IL-6-induced activation of STAT3, EMT, and MMP secretion was affected by luteolin. We found that luteolin inhibits EMT and MMP2, MMP7, and MMP9 expression in a dose-dependent manner, similar to STAT3 signaling. Through Transwell assay, we found that invasiveness of pancreatic cancer cells was inhibited by luteolin. EMT characters and MMP secretion increase with STAT3 activity after IL-6 treatment and these effects, caused by IL-6, were inhibited by luteolin. We concluded that luteolin inhibits invasiveness of pancreatic cancer cells, and we speculated that luteolin inhibits EMT and MMP secretion likely through deactivation of STAT3 signaling. Luteolin has potential antitumor effects and merits further investigation. Keywords: epithelial–mesenchymal transition, matrix metalloproteinase, luteolin, STAT3

  11. The Role of Apoptosis in the Pathology of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Samm, Nicole; Werner, Kristin; Rückert, Felix; Saeger, Hans Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic cancer is a disease with high resistance to most common therapies and therefore has a poor prognosis, which is partly due to a lack of reaction to apoptotic stimuli. Signal transduction of such stimuli includes a death receptor-mediated extrinsic pathway as well as an intrinsic pathway linked to the mitochondria. Defects in apoptotic pathways and the deregulation of apoptotic proteins, such as Survivin, Bcl-2, Bcl-x L and Mcl-1, play decisive roles in the development of pancreatic cancer. Investigation of the molecular mechanism allowing tumors to resist apoptotic cell death would lead to an improved understanding of the physiology and the development of new molecular strategies in pancreatic cancer

  12. The Role of Apoptosis in the Pathology of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Hans Detlev Saeger

    2010-12-01

    Full Text Available Pancreatic cancer is a disease with high resistance to most common therapies and therefore has a poor prognosis, which is partly due to a lack of reaction to apoptotic stimuli. Signal transduction of such stimuli includes a death receptor-mediated extrinsic pathway as well as an intrinsic pathway linked to the mitochondria. Defects in apoptotic pathways and the deregulation of apoptotic proteins, such as Survivin, Bcl-2, Bcl-xL and Mcl-1, play decisive roles in the development of pancreatic cancer. Investigation of the molecular mechanism allowing tumors to resist apoptotic cell death would lead to an improved understanding of the physiology and the development of new molecular strategies in pancreatic cancer.

  13. Antitumor efficacy of α-solanine against pancreatic cancer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Chongqing Lv

    Full Text Available α-solanine, a steroidal glycoalkaloid in potato, was found to have proliferation-inhibiting and apoptosis-promoting effect on multiple cancer cells, such as clone, liver, melanoma cancer cells. However, the antitumor efficacy of α-solanine on pancreatic cancer has not been fully evaluated. In this study, we inquired into the anti-carcinogenic effect of α-solanine against human pancreatic cancer cells. In the present study, we investigated the anti-carcinogenic effect of α-solanine against human pancreatic cancer cells. In vitro, α-solanine inhibited proliferation of PANC-1, sw1990, MIA PaCa-2 cells in a dose-dependent manner, as well as cell migration and invasion with atoxic doses. The expression of MMP-2/9, extracellular inducer of matrix metalloproteinase (EMMPRIN, CD44, eNOS and E-cadherin were suppressed by α-solanine in PANC-1 cells. Moreover, significantly decreased vascular endothelial growth factor (VEGF expression and tube formation of endothelial cells were discerned following α-solanine treatment. Suppressed phosphorylation of Akt, mTOR, and Stat3, and strengthen phosphorylation of β-catenin was found, along with markedly decreased tran-nuclear of NF-κB, β-catenin and TCF-1. Following the administration of α-solanine (6 µg/g for 2 weeks in xenograft model, tumor volume and weight were decreased by 61% and 43% (p<0.05 respectively, showing decreased MMP-2/9, PCNA and VEGF expression. In conclusion, α-solanine showed beneficial effects on pancreatic cancer in vitro and in vivo, which may via suppressing the pathway proliferation, angiogenesis and metastasis.

  14. NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment

    Directory of Open Access Journals (Sweden)

    North WG

    2017-07-01

    Full Text Available William G North,1,2 Fuli Liu,1 Liz Z Lin,1 Ruiyang Tian,2 Bonnie Akerman1 1Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 2Woomera Therapeutics Inc, Lebanon, NH, USA Abstract: Pancreatic cancer, particularly adenocarcinoma of the pancreas, is a common disease with a poor prognosis. In this study, the importance of N-methyl-D-aspartate (NMDA receptors for the growth and survival of pancreatic cancer was investigated. Immunohistochemistry performed with antibodies against GluN1 and GluN2B revealed that all invasive adenocarcinoma and neuroendocrine pancreatic tumors likely express these two NMDA receptor proteins. These proteins were found to be membrane components of pancreatic cancer cell lines, and both channel-blocker antagonist and GluN2B antagonist significantly reduced cell viability in vitro. Both types of antagonists caused an internalization of the receptors. Dizocilpine maleate (MK-801 and ifenprodil hemitartrate both significantly inhibited the growth of pancreatic tumor xenografts in nu/nu mice. These findings predict that, as for other solid tumors investigated by us, pancreatic cancer could be successfully treated, alone or in combination, with NMDA receptor antagonists or other receptor-inhibiting blocking agents. Keywords: pancreatic cancer, NMDA receptors, inhibitors, potential therapy

  15. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Abrol, Ravinder, E-mail: abrol@wag.caltech.edu [Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Edderkaoui, Mouad [Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, CA 90073 (United States); Goddard, William A. [Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Pandol, Stephen J., E-mail: stephen.pandol@va.gov [Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, CA 90073 (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Direct role of Bcl-2 protein interactions in cell proliferation is not clear. Black-Right-Pointing-Pointer Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. Black-Right-Pointing-Pointer Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH{sub 3} domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linked for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein-protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein-protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the

  16. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells.

    Science.gov (United States)

    Wang, Ling; An, Yanli; Yuan, Chenyan; Zhang, Hao; Liang, Chen; Ding, Fengan; Gao, Qi; Zhang, Dongsheng

    2015-01-01

    Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225)-conjugated, gemcitabine (GEM)-containing magnetic albumin nanospheres (C225-GEM/MANs) were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI), and double-targeted thermochemotherapy against pancreatic cancer cells. Fe3O4 nanoparticles (NPs) and GEM co-loaded albumin nanospheres (GEM/MANs) were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2) and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry (FCM) assay. When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal intensity was significantly lower when magnetic and C225 targeting were combined, rather than used alone. The inhibitory and apoptotic rates of each thermochemotherapy group were significantly higher than those of the chemotherapy-alone groups. Additionally, both MTT and FCM analysis verified that double-targeted thermochemotherapy had the highest targeted killing efficiency among all groups. The C225-GEM/MANs can distinguish various EGFR-expressing live pancreatic cancer cells, monitor diverse cellular targeting effects using targeted MRI imaging, and efficiently mediate double-targeted thermochemotherapy

  17. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  18. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis.

    Science.gov (United States)

    Qian, Jiaying; Niu, Jiangong; Li, Ming; Chiao, Paul J; Tsao, Ming-Sound

    2005-06-15

    Genetic analysis of pancreatic ductal adenocarcinomas and their putative precursor lesions, pancreatic intraepithelial neoplasias (PanIN), has shown a multistep molecular paradigm for duct cell carcinogenesis. Mutational activation or inactivation of the K-ras, p16(INK4A), Smad4, and p53 genes occur at progressive and high frequencies in these lesions. Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and is found early in the PanIN-carcinoma sequence, but its functional roles remain poorly understood. We show here that the expression of K-ras(G12V) oncogene in a near diploid HPV16-E6E7 gene immortalized human pancreatic duct epithelial cell line originally derived from normal pancreas induced the formation of carcinoma in 50% of severe combined immunodeficient mice implanted with these cells. A tumor cell line established from one of these tumors formed ductal cancer when implanted orthotopically. These cells also showed increased activation of the mitogen-activated protein kinase, AKT, and nuclear factor-kappaB pathways. Microarray expression profiling studies identified 584 genes whose expression seemed specifically up-regulated by the K-ras oncogene expression. Forty-two of these genes have been reported previously as differentially overexpressed in pancreatic cancer cell lines or primary tumors. Real-time PCR confirmed the overexpression of a large number of these genes. Immunohistochemistry done on tissue microarrays constructed from PanIN and pancreatic cancer samples showed laminin beta3 overexpression starting in high-grade PanINs and occurring in >90% of pancreatic ductal carcinoma. The in vitro modeling of human pancreatic duct epithelial cell transformation may provide mechanistic insights on gene expression changes that occur during multistage pancreatic duct cell carcinogenesis.

  19. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer.

    Science.gov (United States)

    Qing, Liu; Qing, Wang

    2018-02-01

    The epidermal growth factor receptor (EGFR) family are a series of important cancer therapeutic targets involved in cancer biology. These genes play an important role in tumor biological characteristics including angiogenesis, cell survival, invasion and glucose metabolism. In recent years, progresses have been achieved upon the cellular and molecular biological characteristics of EGFR and its role in cancer development based on the study of tumor specimens and experimental animal model. EGFR(HER1/ErbB) is overexpressed in over sixty percent of triple-negative breast cancers and occurs in pancreatic, bladder, lung and head-and-neck cancers. Up to now, EGFR inhibitors have been applied in various of cancer, such as lung, breast, bladder and head and neck cancers etc., in which the combination of EGFR inhibitors plus chemotherapeutic agents is now seen as the standard of care for advanced/metastatic pancreatic cancer. For these reasons, EGFR inhibitors and their therapeutic effect for pancreatic cancer is becoming the focus in Laboratory and clinical research. In this paper, research progress of the development of epidermal growth factor receptor targeted therapy in pancreatic cancer is introduced.

  20. Nuclear factor-κB-dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions.

    Directory of Open Access Journals (Sweden)

    Zhuo-Xin Cheng

    Full Text Available Epithelial to mesenchymal transition (EMT induced by hypoxia is one of the critical causes of treatment failure in different types of human cancers. NF-κB is closely involved in the progression of EMT. Compared with HIF-1α, the correlation between NF-κB and EMT during hypoxia has been less studied, and although the phenomenon was observed in the past, the molecular mechanisms involved remained unclear.Here, we report that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α promotes EMT in pancreatic cancer cells. On molecular or pharmacologic inhibition of NF-κB, hypoxic cells regained expression of E-cadherin, lost expression of N-cadherin, and attenuated their highly invasive and drug-resistant phenotype. Introducing a pcDNA3.0/HIF-1α into pancreatic cancer cells under normoxic conditions heightened NF-κB activity, phenocopying EMT effects produced by hypoxia. Conversely, inhibiting the heightened NF-κB activity in this setting attenuated the EMT phenotype.These results suggest that hypoxia or overexpression of HIF-1α induces the EMT that is largely dependent on NF-κB in pancreatic cancer cells.

  1. Aberrant glycogen synthase kinase 3β in the development of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Takeo Shimasaki

    2012-01-01

    Full Text Available Development and progression of pancreatic cancer involves general metabolic disorder, local chronic inflammation, and multistep activation of distinct oncogenic molecular pathways. These pathologic processes result in a highly invasive and metastatic tumor phenotype that is a major obstacle to curative surgical intervention, infusional gemcitabine-based chemotherapy, and radiation therapy. Many clinical trials with chemical compounds and therapeutic antibodies targeting growth factors, angiogenic factors, and matrix metalloproteinases have failed to demonstrate definitive therapeutic benefits to refractory pancreatic cancer patients. Glycogen synthase kinase 3β (GSK3β, a serine/threonine protein kinase, has emerged as a therapeutic target in common chronic and progressive diseases, including cancer. Here we review accumulating evidence for a pathologic role of GSK3β in promoting tumor cell survival, proliferation, invasion, and resistance to chemotherapy and radiation in pancreatic cancer. We also discuss the putative involvement of GSK3β in mediating metabolic disorder, local inflammation, and molecular alteration leading to pancreatic cancer development. Taken together, we highlight potential therapeutic as well as preventive effects of GSK3β inhibition in pancreatic cancer.

  2. Claudin-4-targeted optical imaging detects pancreatic cancer and its precursor lesions.

    Science.gov (United States)

    Neesse, Albrecht; Hahnenkamp, Anke; Griesmann, Heidi; Buchholz, Malte; Hahn, Stefan A; Maghnouj, Abdelouahid; Fendrich, Volker; Ring, Janine; Sipos, Bence; Tuveson, David A; Bremer, Christoph; Gress, Thomas M; Michl, Patrick

    2013-07-01

    Novel imaging methods based on specific molecular targets to detect both established neoplasms and their precursor lesions are highly desirable in cancer medicine. Previously, we identified claudin-4, an integral constituent of tight junctions, as highly expressed in various gastrointestinal tumours including pancreatic cancer. Here, we investigate the potential of targeting claudin-4 with a naturally occurring ligand to visualise pancreatic cancer and its precursor lesions in vitro and in vivo by near-infrared imaging approaches. A non-toxic C-terminal fragment of the claudin-4 ligand Clostridium perfringens enterotoxin (C-CPE) was labelled with a cyanine dye (Cy5.5). Binding of the optical tracer was analysed on claudin-4 positive and negative cells in vitro, and tumour xenografts in vivo. In addition, two genetically engineered mouse models for pancreatic intraepithelial neoplasia (PanIN) and pancreatic cancer were used for in vivo validation. Optical imaging studies were conducted using 2D planar fluorescence reflectance imaging (FRI) technology and 3D fluorescence-mediated tomography (FMT). In vitro, the peptide-dye conjugate showed high binding affinity to claudin-4 positive CAPAN1 cells, while claudin-4 negative HT1080 cells revealed little or no fluorescence. In vivo, claudin-4 positive tumour xenografts, endogenous pancreatic tumours, hepatic metastases, as well as preinvasive PanIN lesions, were visualised by FRI and FMT up to 48 h after injection showing a significantly higher average of fluorochrome concentration as compared with claudin-4 negative xenografts and normal pancreatic tissue. C-CPE-Cy5.5 combined with novel optical imaging methods enables non-invasive visualisation of claudin-4 positive murine pancreatic tumours and their precursor lesions, representing a promising modality for early diagnostic imaging.

  3. Acridine Orange Conjugated Polymersomes for Simultaneous Nuclear Delivery of Gemcitabine and Doxorubicin to Pancreatic Cancer Cells.

    Science.gov (United States)

    Anajafi, Tayebeh; Scott, Michael D; You, Seungyong; Yang, Xiaoyu; Choi, Yongki; Qian, Steven Y; Mallik, Sanku

    2016-03-16

    Considering the systemic toxicity of chemotherapeutic agents, there is an urgent need to develop new targeted drug delivery systems. Herein, we have developed a new nuclear targeted, redox sensitive, drug delivery vehicle to simultaneously deliver the anticancer drugs gemcitabine and doxorubicin to the nuclei of pancreatic cancer cells. We prepared polymeric bilayer vesicles (polymersomes), and actively encapsulated the drug combination by the pH gradient method. A redox-sensitive polymer (PEG-S-S-PLA) was incorporated to sensitize the formulation to reducing agent concentration. Acridine orange (AO) was conjugated to the surface of the polymersomes imparting nuclear localizing property. The polymersomes' toxicity and efficacy were compared with those of a free drug combination using monolayer and three-dimensional spheroid cultures of pancreatic cancer cells. We observed that the redox sensitive, nuclear-targeted polymersomes released more than 60% of their encapsulated contents in response to 50 mM glutathione. The nanoparticles are nontoxic; however, the drug encapsulated vesicles have significant toxicity. The prepared formulation can increase the drug's therapeutic index by delivering the drugs directly to the cells' nuclei, one of the key organelles in the cells. This study is likely to initiate research in targeted nuclear delivery using other drug formulations in other types of cancers.

  4. A missing link between RON expression and oncological outcomes in resected left-sided pancreatic cancer.

    Science.gov (United States)

    Han, Dai Hoon; Kang, Chang Moo; Lee, Sung Whan; Hwang, Ho Kyoung; Lee, Woo Jung

    2017-10-01

    Alteration and activation of recepteur d'origine nantais (RON) expression is known to be associated with cancer progression and decreased survival in various types of human cancer, including pancreatic cancer. Therefore, in the present study, RON expression levels were determined in resected left-sided pancreatic cancer to evaluate the potential oncological role of RON in the clinical setting of distal pancreatic cancer. From January 2005 to December 2011, a total of 57 patients underwent radical distal pancreatectomy for left-sided pancreatic cancer. Ductal adenocarcinoma was confirmed in all patients. Among these patients, 17 patients who received preoperative neoadjuvant treatment and 7 patients without available paraffin-embedded tissue blocks were excluded from the present study. RON expression in a the pancreatic cancer cell lines ASPC-1, BxPC-3, MiaPaCa-3 and Panc-1, as well as in resected left-sided pancreatic cancer specimens was determined by Western blot analysis. RON and vascular endothelial growth factor (VEGF) overexpression in resected left-sided pancreatic cancer was also evaluated by immunohistochemistry using pre-diluted anti-RON and anti-VEGF antibodies. An association was identified between the oncological outcome and RON overexpression. Increased levels of RON expression were observed in two pancreatic cancer cell lines, AsPC-1 and BxPC-3. RON overexpression was detected in specimens from 15/33 patients (45.5%) using immunohistochemistry. No significant association was identified between RON overexpression and VEGF overexpression (25.5 vs. 87.9%; P=0.667). No significant differences in disease-free survival or disease-specific survival associated with RON overexpression were identified. Although the results of previous studies have suggested that RON is a potential target for the treatment of pancreatic cancer, in the present study no association between RON overexpression and any adverse oncological effect was identified.

  5. Bitter melon juice exerts its efficacy against pancreatic cancer via targeting both bulk and cancer stem cells.

    Science.gov (United States)

    Dhar, Deepanshi; Deep, Gagan; Kumar, Sushil; Wempe, Michael F; Raina, Komal; Agarwal, Chapla; Agarwal, Rajesh

    2018-05-04

    Pancreatic cancer (PanC) is one of the deadliest malignancies worldwide and frontline treatment with gemcitabine becomes eventually ineffective due to increasing PanC resistance, suggesting additional approaches are needed to manage PanC. Recently, we have shown the efficacy of bitter melon juice (BMJ) against PanC cells, including those resistant to gemcitabine. Since cancer stem cells (CSCs) are actively involved in PanC initiation, progression, relapse and drug-resistance, here we assessed BMJ ability in targeting pancreatic cancer-associated cancer stem cells (PanC-CSCs). We found BMJ efficacy against CD44 + /CD24 + /EpCAM high enriched PanC-CSCs in spheroid assays; BMJ also increased the sensitivity of gemcitabine-resistant PanC-CSCs. Exogenous addition of BMJ to PanC-CSC generated spheroids (not pre-exposed to BMJ) also significantly reduced spheroid number and size. Mechanistically, BMJ effects were associated with a decrease in the expression of genes and proteins involved in PanC-CSC renewal and proliferation. Specifically, immunofluorescence staining showed that BMJ decreases protein expression/nuclear localization of CSC-associated transcription factors SOX2, OCT4 and NANOG, and CSC marker CD44. Immunohistochemical analysis of MiaPaCa2 xenografts from BMJ treated animals also showed a significant decrease in the levels of CSC-associated transcription factors. Together, these results show BMJ potential in targeting PanC-CSC pool and associated regulatory pathways, suggesting the need for further investigation of its efficacy against PanC growth and progression including gemcitabine-resistant PanC. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis.

    Science.gov (United States)

    Yamato, Ichiro; Sho, Masayuki; Shimada, Keiji; Hotta, Kiyohiko; Ueda, Yuko; Yasuda, Satoshi; Shigi, Naoko; Konishi, Noboru; Tsujikawa, Kazutake; Nakajima, Yoshiyuki

    2012-09-15

    The PCA-1/ALKBH3 gene implicated in DNA repair is expressed in several human malignancies but its precise contributions to cancer remain mainly unknown. In this study, we have determined its functions and clinical importance in pancreatic cancer. PCA-1/ALKBH3 functions in proliferation, apoptosis and angiogenesis were evaluated in human pancreatic cancer cells in vitro and in vivo. Further, PCA-1/ALKBH3 expression in 116 patients with pancreatic cancer was evaluated by immunohistochemistry. siRNA-mediated silencing of PCA-1/ALKBH3 expression induced apoptosis and suppressed cell proliferation. Conversely, overexpression of PCA-1/ALKBH3 increased anchorage-independent growth and invasiveness. In addition, PCA-1/ALKBH3 silencing downregulated VEGF expression and inhibited angiogenesis in vivo. Furthermore, immunohistochemical analysis showed that PCA-1/ALKBH3 expression was abundant in pancreatic cancer tissues, where it correlated with advanced tumor status, pathological stage and VEGF intensity. Importantly, patients with low positivity of PCA-1/ALKBH3 expression had improved postoperative prognosis compared with those with high positivity. Our results establish PCA-1/ALKBH3 as important gene in pancreatic cancer with potential utility as a therapeutic target in this fatal disease.

  7. Overexpression of COL11A1 by cancer-associated fibroblasts: clinical relevance of a stromal marker in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Carmen García-Pravia

    Full Text Available BACKGROUND: The collagen11A1 (COL11A1 gene is overexpressed in pancreatic cancer. The expression of COL11A1 protein could be involved in desmoplastic events in pancreatic cancer, but an antibody that specifically stains the COL11A1 protein is not currently available. METHODS AND FINDINGS: A total of 54 pancreatic ductal adenocarcinomas (PDAC, 23 chronic pancreatitis (CP samples, and cultured peritumoral stromal cells of PDAC (passages 3-6 were studied. Normal human pancreas tissue samples were obtained through a cadaveric organ donation program. 1 Validation of COL11A1 gene overexpression by q-RT-PCR. FINDINGS: the expression of COL11A1 gene is significantly increased in PDAC samples vs. normal and CP samples. 2 Analysis of COL11A1 by immunohistochemistry using highly specific anti-proCOL11A1 antibodies. FINDINGS: anti-proCOL11A1 stains stromal cells/cancer-associated fibroblasts (CAFs of PDAC but it does not stain chronic benign condition (chronic pancreatitis stromal cells, epithelial cells, or normal fibroblasts. 3 Evaluation of the discrimination ability of the antibody. FINDINGS: anti-proCOL11A1 immunostaining accurately discriminates between PDAC and CP (AUC 0.936, 95% CI 0.851, 0.981. 4 Phenotypic characterization of proCOL11A1+ stromal cells co-staining with mesenchymal, epithelial and stellate cell markers on pancreatic tissue samples and cultured peritumoral pancreatic cancer stromal cells. FINDINGS: ProCOL11A1+ cells present co-staining with mesenchymal, stellate and epithelial markers (EMT phenotype in different proportions. CONCLUSIONS/SIGNIFICANCE: Detection of proCOL11A1 through immunostaining with this newly-developed antibody allows for a highly accurate distinction between PDAC and CP. Unlike other available antibodies commonly used to detect CAFs, anti-proCOL11A1 is negative in stromal cells of the normal pancreas and almost absent in benign inflammation. These results strongly suggest that proCOL11A1 is a specific marker for

  8. Investigation of treatment strategy for advanced cancer according to treatment of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    XU Kecheng

    2013-10-01

    Full Text Available The majority of pancreatic cancer diagnoses are made at the advanced stage and when metastasis has already occurred, and the 1- and 5-year survival rates are extremely low. Cemcitabine remains the most frequently applied treatment option, yet the most effective chemotherapeutic agents and combinations with multiple agents and/or radiotherapy only marginally improve patient survival and may even establish an environment conducive to cancer cells with stem cell-like characteristics. An alternative treatment modality, cryoablation, is available and has been applied at our institute to patients with unresectable pancreatic cancer since 2001. In this article, we present our collective experience with patient outcome using cryoablation, alone or combined with other treatment modalities such as brachytherapy (125iodine seed implantation. The overall outcomes have been encouraging, suggesting that comprehensive therapy including cryoablation may prolong the survival of patients with advanced or metastatic pancreatic cancer, and we are achieving particular success with a novel combination of percutaneous cryoablation, cancer microvascular intervention with 125iodine seed implantation, and combined immunotherapy (3C applied using an individualized patient strategy (P. The 1- through 10-year survival rates of 145 patients treated with the so-called “3C+P model” are presented in support of this new strategy as a promising new treatment for advanced and metastatic cancer

  9. Calix[6]arene bypasses human pancreatic cancer aggressiveness: downregulation of receptor tyrosine kinases and induction of cell death by reticulum stress and autophagy.

    Science.gov (United States)

    Pelizzaro-Rocha, Karin Juliane; de Jesus, Marcelo Bispo; Ruela-de-Sousa, Roberta Regina; Nakamura, Celso Vataru; Reis, Fabiano Souza; de Fátima, Angelo; Ferreira-Halder, Carmen Veríssima

    2013-12-01

    Pancreatic cancer ranks fourth among cancer-related causes of death in North America. Minimal progress has been made in the diagnosis and treatment of patients with late-stage tumors. Moreover, pancreatic cancer aggressiveness is closely related to high levels of pro-survival mediators, which can ultimately lead to rapid disease progression, resistance and metastasis. The main goal of this study was to define the mechanisms by which calix[6]arene, but not other calixarenes, efficiently decreases the aggressiveness of a drug resistant human pancreas carcinoma cell line (Panc-1). Calix[6]arene was more potent in reducing Panc-1 cell viability than gemcitabine and 5-fluorouracil. In relation to the underlying mechanisms of cytotoxic effects, it led to cell cycle arrest in the G0/G1 phase through downregulation of PIM1, CDK2, CDK4 and retinoblastoma proteins. Importantly, calix[6]arene abolished signal transduction of Mer and AXL tyrosine kinase receptors, both of which are usually overexpressed in pancreatic cancer. Accordingly, inhibition of PI3K and mTOR was also observed, and these proteins are positively modulated by Mer and AXL. Despite decreasing the phosphorylation of AKT at Thr308, calix[6]arene caused an increase in phosphorylation at Ser473. These findings in conjunction with increased BiP and IRE1-α provide a molecular basis explaining the capacity of calix[6]arene to trigger endoplasmic reticulum stress and autophagic cell death. Our findings highlight calix[6]arene as a potential candidate for overcoming pancreatic cancer aggressiveness. Importantly, we provide evidence that calix[6]arene affects a broad array of key targets that are usually dysfunctional in pancreatic cancer, a highly desirable characteristic for chemotherapeutics. © 2013.

  10. Recent Progress in Pancreatic Cancer

    Science.gov (United States)

    Wolfgang, Christopher L.; Herman, Joseph M.; Laheru, Daniel A.; Klein, Alison P.; Erdek, Michael A.; Fishman, Elliot K.; Hruban, Ralph H.

    2013-01-01

    Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in our understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer. PMID:23856911

  11. Current status and progress of pancreatic cancer in China.

    Science.gov (United States)

    Lin, Quan-Jun; Yang, Feng; Jin, Chen; Fu, De-Liang

    2015-07-14

    Cancer is currently one of the most important public health problems in the world. Pancreatic cancer is a fatal disease with poor prognosis. As in most other countries, the health burden of pancreatic cancer in China is increasing, with annual mortality rates almost equal to incidence rates. The increasing trend of pancreatic cancer incidence is more significant in the rural areas than in the urban areas. Annual diagnoses and deaths of pancreatic cancer in China are now beyond the number of cases in the United States. GLOBOCAN 2012 estimates that cases in China account for 19.45% (65727/337872) of all newly diagnosed pancreatic cancer and 19.27% (63662/330391) of all deaths from pancreatic cancer worldwide. The population's growing socioeconomic status contributes to the rapid increase of China's proportional contribution to global rates. Here, we present an overview of control programs for pancreatic cancer in China focusing on prevention, early diagnosis and treatment. In addition, we describe key epidemiological, demographic, and socioeconomic differences between China and developed countries. Facts including no nationwide screening program for pancreatic cancer, delay in early detection resulting in a late stage at presentation, lack of awareness of pancreatic cancer in the Chinese population, and low investment compared with other cancer types by government have led to backwardness in China's pancreatic cancer diagnosis and treatment. Finally, we suggest measures to improve health outcomes of pancreatic cancer patients in China.

  12. Disseminated carcinomatosis of the bone marrow from pancreatic cancer: a case report

    International Nuclear Information System (INIS)

    Namikawa, Hiroki; Takemoto, Yasuhiko; Makuuchi, Ayako; Kobayashi, Masanori; Kinuhata, Shigeki; Morimura, Mina; Ikebe, Takashi; Tanaka, Hiromu; Shuto, Taichi

    2016-01-01

    Most cases of disseminated carcinomatosis of the bone marrow (DCBM) arise from gastric cancer. DCBM from pancreatic cancer is very rare. We herein present a case of DCBM from pancreatic cancer. A 57-year-old man was referred to our hospital for severe lumbago. Laboratory data indicated that he suffered from disseminated intravascular coagulation (DIC). Non-contrast abdominal computed tomography (CT) revealed multiple bone masses but no other abnormal findings. Left iliac bone marrow biopsy revealed poorly differentiated adenocarcinoma cells. Positron emission tomography (PET)-CT showed diffuse abnormal uptake in the bones and tail of the pancreas. Contrast whole-body CT showed a tumor measuring approximately 28 mm in diameter with poor enhancement in the tail of the pancreas. The patient’s final diagnosis was pancreatic cancer located in the tail of the pancreas with diffuse bone metastases and DIC. His DCBM was thus believed to originate from the pancreatic cancer. He succumbed to the disease approximately 2 months after admission to our hospital. We herein describe a case of pancreatic cancer located in the tail of the pancreas with diffuse bone metastases and DIC, which, in our case, was DCBM. Therefore, in cases of DCBM with an unknown primary tumor, pancreatic cancer should be considered during differential diagnosis

  13. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique.

    Science.gov (United States)

    Ware, Matthew J; Colbert, Kevin; Keshishian, Vazrik; Ho, Jason; Corr, Stuart J; Curley, Steven A; Godin, Biana

    2016-04-01

    In vitro characterization of tumor cell biology or of potential anticancer drugs is usually performed using tumor cell lines cultured as a monolayer. However, it has been previously shown that three-dimensional (3D) organization of the tumor cells is important to provide insights on tumor biology and transport of therapeutics. Several methods to create 3D tumors in vitro have been proposed, with hanging drop technique being the most simple and, thus, most frequently used. However, in many cell lines this method has failed to form the desired 3D tumor structures. The aim of this study was to design and test an easy-to-use and highly reproducible modification of the hanging drop method for tumor sphere formation by adding methylcellulose polymer. Most pancreatic cancer cells do not form cohesive and manageable spheres when the original hanging drop method is used, thus we investigated these cell lines for our modified hanging drop method. The spheroids produced by this improved technique were analyzed by histology, light microscopy, immunohistochemistry, and scanning electron microscopy. Results show that using the proposed simple method; we were able to produce uniform spheroids for all five of the tested human pancreatic cancer cell lines; Panc-1, BxPC-3, Capan-1, MiaPaCa-2, and AsPC-1. We believe that this method can be used as a reliable and reproducible technique to make 3D cancer spheroids for use in tumor biology research and evaluation of therapeutic responses, and for the development of bio-artificial tissues.

  14. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay

    International Nuclear Information System (INIS)

    Wen, Z.; Liao, Q.; Hu, Y.; You, L.; Zhou, L.; Zhao, Y.

    2013-01-01

    Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer

  15. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay

    Directory of Open Access Journals (Sweden)

    Z. Wen

    2013-08-01

    Full Text Available Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.

  16. Enhancing chemosensitivity to gemcitabine via RNA interference targeting the catalytic subunits of protein kinase CK2 in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kreutzer, Jan N; Ruzzene, Maria; Guerra, Barbara

    2010-01-01

    Pancreatic cancer is a complex genetic disorder that is characterized by rapid progression, invasiveness, resistance to treatment and high molecular heterogeneity. Various agents have been used in clinical trials showing only modest improvements with respect to gemcitabine-based chemotherapy, which continues to be the standard first-line treatment for this disease. However, owing to the overwhelming molecular alterations that have been reported in pancreatic cancer, there is increasing focus on targeting molecular pathways and networks, rather than individual genes or gene-products with a combination of novel chemotherapeutic agents. Cells were transfected with small interfering RNAs (siRNAs) targeting the individual CK2 subunits. The CK2 protein expression levels were determined and the effect of its down-regulation on chemosensitization of pancreatic cancer cells was investigated. The present study examined the impact on cell death following depletion of the individual protein kinase CK2 catalytic subunits alone or in combination with gemcitabine and the molecular mechanisms by which this effect is achieved. Depletion of the CK2α or -α' subunits in combination with gemcitabine resulted in marked apoptotic and necrotic cell death in PANC-1 cells. We show that the mechanism of cell death is associated with deregulation of distinct survival signaling pathways. Cellular depletion of CK2α leads to phosphorylation and activation of MKK4/JNK while down-regulation of CK2α' exerts major effects on the PI3K/AKT pathway. Results reported here show that the two catalytic subunits of CK2 contribute differently to enhance gemcitabine-induced cell death, the reduced level of CK2α' being the most effective and that simultaneous reduction in the expression of CK2 and other survival factors might be an effective therapeutic strategy for enhancing the sensitivity of human pancreatic cancer towards chemotherapeutic agents

  17. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer

    International Nuclear Information System (INIS)

    Loos, Martin; Hedderich, Dennis M; Ottenhausen, Malte; Giese, Nathalia A; Laschinger, Melanie; Esposito, Irene; Kleeff, Jörg; Friess, Helmut

    2009-01-01

    Costimulatory signaling has been implicated as a potential regulator of antitumor immunity in various human cancers. In contrast to the negative prognostic value of aberrant B7-H1 expression by pancreatic cancer cells, the role of B7-H3 is still unknown. Therefore, we investigated the expression pattern and clinical significance of B7-H3 expression in human pancreatic cancer. B7-H3 expression was evaluated by immunohistochemistry in 68 patients with pancreatic cancer who underwent surgical tumor resection. Expression data was correlated with clinicopathologic features and with the number of tumor-infiltrating T cells. B7-H3 expression was significantly upregulated in pancreatic cancer compared to normal pancreas (p < 0.05). In 60 of 68 examined tumors B7-H3 protein was detectable in pancreatic cancer cells. Patients with high tumor B7-H3 levels had a significantly better postoperative prognosis than patients with low tumor B7-H3 levels (p = 0.0067). Furthermore, tumor B7-H3 expression significantly correlated with the number of tumor-infiltrating CD8+ T cells (p = 0.018). We demonstrate for the first time that B7-H3 is abundantly expressed in pancreatic cancer and that tumor-associated B7-H3 expression significantly correlates with prolonged postoperative survival. Our findings suggest that B7-H3 might play an important role as a potential stimulator of antitumor immune response in pancreatic cancer

  18. Metformin Causes G1-Phase Arrest via Down-Regulation of MiR-221 and Enhances TRAIL Sensitivity through DR5 Up-Regulation in Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ryoichi Tanaka

    Full Text Available Although many chemotherapeutic strategies against cancer have been developed, pancreatic cancer is one of the most aggressive and intractable types of malignancies. Therefore, new strategies and anti-cancer agents are necessary to treat this disease. Metformin is a widely used drug for type-2 diabetes, and is also known as a promising candidate anti-cancer agent from recent studies in vitro and in vivo. However, the mechanisms of metformin's anti-cancer effects have not been elucidated. We demonstrated that metformin suppressed the expression of miR-221, one of the most well-known oncogenic microRNAs, in human pancreatic cancer PANC-1 cells. Moreover, we showed that the down-regulation of miR-221 by metformin caused G1-phase arrest via the up-regulation of p27, one of the direct targets of miR-221. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is also a promising agent for cancer treatment. While recent studies showed that treatment with only TRAIL was not effective against pancreatic cancer cells, the present data showed that metformin sensitized p53-mutated pancreatic cancer cells to TRAIL. Metformin induced the expressions of death receptor 5 (DR5, a receptor for TRAIL, and Bim with a pro-apoptotic function in the downstream of TRAIL-DR5 pathway. We suggest that the up-regulation of these proteins may contribute to sensitization of TRAIL-induced apoptosis. The combination therapy of metformin and TRAIL could therefore be effective in the treatment of pancreatic cancer.

  19. Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10.

    Science.gov (United States)

    Stern, Louisa; Giese, Nathalia; Hackert, Thilo; Strobel, Oliver; Schirmacher, Peter; Felix, Klaus; Gaida, Matthias M

    2018-01-01

    Bitter taste receptors (T2Rs) are G-protein coupled transmembrane proteins initially identified in the gustatory system as sensors for the taste of bitter. Recent evidence on expression of these receptors outside gustatory tissues suggested alternative functions, and there is growing interest of their potential role in cancer biology. In this study, we report for the first time, expression and functionality of the bitter receptor family member T2R10 in both human pancreatic ductal adenocarcinoma (PDAC) tissue and PDAC derived cell lines. Caffeine, a known ligand for T2R10, rendered the tumor cells more susceptible to two standard chemotherapeutics, Gemcitabine and 5-Fluoruracil. Knocking down T2R10 in the cell line BxPC-3 reduced the caffeine-induced effect. As possible underlying mechanism, we found that caffeine via triggering T2R10 inhibited Akt phosphorylation and subsequently downregulated expression of ABCG2, the so-called multi-drug resistance protein that participates in rendering cells resistant to a variety of chemotherapeutics. In conclusion, T2R10 is expressed in pancreatic cancer and it downmodulates the chemoresistance of the tumor cells.

  20. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1, in vitro.

    Science.gov (United States)

    Fujita, Mayumi; Otsuka, Yoshimi; Imadome, Kaori; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2012-04-01

    Pancreatic cancer is an aggressive disease that responds poorly to conventional photon radiotherapy. Carbon-ion (C-ion) radiation has advantages compared with conventional radiotherapy, because it enables more accurate dose distribution and more efficient tumor cell killing. To elucidate the effects of local radiotherapy on the characteristics of metastatic tumors, it is necessary to understand the nature of motility in irradiated tumor cells; this will, in turn, facilitate the development of effective strategies to counter tumor cell motility, which can be used in combination with radiotherapy. The aim of the present study was to examine the invasiveness of pancreatic cancer cells exposed to C-ion irradiation. We found that C-ion irradiation suppressed the migration of MIAPaCa-2, BxPC-3 and AsPC-1; diminished the invasiveness of MIAPaCa-2; and tended to reduce the invasion of BxPC-3 and AsPC-1. However, C-ion irradiation increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasiminogen activator. Administration of serine protease inhibitor (SerPI) alone failed to reduce C-ion-induced PANC-1 invasiveness, whereas the combination of SerPI and Rho-associated coiled-coil forming protein kinase (ROCK) inhibitor suppressed it. Furthermore, PANC-1 showed mesenchymal-amoeboid transition when we treated with SerPI alone. In conclusion, C-ion irradiation is effective in suppressing the invasive potential of several pancreatic tumor cell lines, but not PANC-1; this is the first study showing that C-ion irradiation induces the invasive potential of a tumor cell line. Further in vivo studies are required to examine the therapeutic effectiveness of radiotherapy combined with inhibitors of both mesenchymal and amoeboid modes of tumor cell motility. © 2011 Japanese Cancer Association.

  1. Differential diagnosis of focal pancreatitis and pancreatic cancer

    NARCIS (Netherlands)

    van Gulik, T. M.; Moojen, T. M.; van Geenen, R.; Rauws, E. A.; Obertop, H.; Gouma, D. J.

    1999-01-01

    The differentiation of focal, chronic pancreatitis (CP) and pancreatic cancer (PAC) poses a diagnostic dilemma. Both conditions may present with the same symptoms and signs. The complexity of differential diagnosis is enhanced because PAC is frequently associated with secondary inflammatory changes

  2. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models

    Science.gov (United States)

    Mazza, Tommaso; Panebianco, Concetta; Saracino, Chiara; Pereira, Stephen P.; Graziano, Paolo; Pazienza, Valerio

    2015-01-01

    Background/aims Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. Short-term fasting cycles have been shown to potentiate the efficacy of chemotherapy against glioma. The aim of this study was to assess the effect of fasting cycles on the efficacy of gemcitabine, a standard treatment for PC patients, in vitro and in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods BxPC-3, MiaPaca-2 and Panc-1 cells were cultured in standard and fasting mimicking culturing condition to evaluate the effects of gemcitabine. Pancreatic cancer xenograft mice were subjected to 24h starvation prior to gemcitabine injection to assess the tumor volume and weight as compared to mice fed ad libitum. Results Fasted pancreatic cancer cells showed increased levels of equilibrative nucleoside transporter (hENT1), the transporter of gemcitabine across the cell membrane, and decreased ribonucleotide reductase M1 (RRM1) levels as compared to those cultured in standard medium. Gemcitabine was more effective in inducing cell death on fasted cells as compared to controls. Consistently, xenograft pancreatic cancer mice subjected to fasting cycles prior to gemcitabine injection displayed a decrease of more than 40% in tumor growth. Conclusion Fasting cycles enhance gemcitabine effect in vitro and in the in vivo PC xenograft mouse model. These results suggest that restrictive dietary interventions could enhance the efficacy of existing cancer treatments in pancreatic cancer patients. PMID:26176887

  3. Pancreatic Cancer—Patient Version

    Science.gov (United States)

    Pancreatic cancer can form in exocrine cells and neuroendocrine cells. The exocrine type is more common and is usually found at an advanced stage. Pancreatic neuroendocrine tumors are less common but have a better prognosis. Start here to find information on pancreatic cancer treatment, research, and statistics.

  4. A bioengineered murine model using CD24+CD44+ pancreatic cancer stem cells for chemotherapy study

    International Nuclear Information System (INIS)

    Qin, Shengqi; Li, Jianshe; Zhang, Zhongtao; Deng, Yiming

    2015-01-01

    In this work we first developed a murine pancreatic tumor model using CD24 + CD44 + pancreatic cancer stem cells (CSC) supported by an electrospun scaffold. Unlike conventional models, the use of CSC and the scaffold, which were biologically and chemically defined, afforded scientists a reliable platform to evaluate novel chemotherapy regimens. CD24 + CD44 + CSC successfully initiated tumorigenesis in vitro on the scaffold without suffering apoptosis, evidencing the lack of cytotoxicity of scaffolding materials. Also, the scaffold contributed to the acceleration of in vivo tumorigenesis and increased the likelihood of tumor formation. Using this model, we set out to explore the effectiveness of irinotecan/gemcitabine (IRIN-GEM), a chemotherapy regimen, for pancreatic cancer. Our study showed that IRIN-GEM induced a tumor regression whereas gemcitabine alone could only arrest the tumor growth. Further study suggested that the superior performance of IRIN-GEM could be attributed to its capacity to demolish the CD24 + CD44 + CSC sub-population by inducing a large-scale apoptosis. The use of highly proliferative yet homogenous CD24 + CD44 + CSC along with a chemically defined scaffold accelerated the tumor formation and significantly reduced the variability associated with conventional murine models. Armed with this new model, we discovered that IRIN-GEM would be a promising chemotherapy candidate for patients with advanced pancreatic cancer. (paper)

  5. Indicative findings of pancreatic cancer in prediagnostic CT

    International Nuclear Information System (INIS)

    Ahn, Sung Soo; Choi, Jin-Young; Hong, Hye-Suk; Chung, Yong Eun; Lim, Joon Seok; Kim, Myeong-Jin

    2009-01-01

    We examined 20 prediagnostic CTs from 16 patients for whom the diagnosis of pancreatic cancer was delayed until full diagnostic CT was performed. Three radiologists independently reviewed the prediagnostic CTs along with 50 CTs of control subjects, including patients without pancreatic disease (n = 38) or with chronic pancreatitis without calcification visible on CT (n=12). The reviewers recorded the presence of biliary or pancreatic ductal dilation, interruption of the pancreatic duct, distal parenchymal atrophy, contour abnormality and focal hypoattenuation. Frequency, sensitivity and specificity of the significant findings were calculated. Logistic regression analysis was performed. Findings indicative of pancreatic cancer were seen on 85% (17/20) of the prediagnostic CTs. Patients with pancreatic cancer were significantly (p<0.05) more likely to show focal hypoattenuation, pancreatic duct dilation, interruption of the pancreatic duct, and distal parenchymal atrophy, with sensitivities and specificities of 75%/84%, 50%/78%, 45%/82% and 45%/96%, respectively. Focal hypoattenuation and distal parenchymal atrophy were the independent predictors of pancreatic cancer with odds ratios of 20.92 and 11.22, respectively. In conclusion, focal hypoattenuation and pancreatic duct dilation with or without interruption, especially when accompanied by distal parenchymal atrophy, were the most useful findings for avoiding delayed diagnosis of pancreatic cancer. (orig.)

  6. Cytotoxicity Effects of Amoora rohituka and chittagonga on Breast and Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Leo L. Chan

    2011-01-01

    Full Text Available Chemotherapeutic agents for cancer are highly toxic to healthy tissues and hence alternative medicine avenues are widely researched. Majority of the recent studies on alternative medicine suggested that Amoora rohituka possesses considerable antitumor and antibacterial properties. In this work, rohituka and chittagonga, fractionated with petroleum ether, dichloromethane, and ethanol, were explored for their anticancer potential against two breast cancer (MCF-7 and HTB-126 and three pancreatic cancer (Panc-1, Mia-Paca2, and Capan1. The human foreskin fibroblast, Hs68, was also included. Cytotoxicity of each extract was analyzed using the MTT assay and label-free photonic crystal biosensor assay. A concentration series of each extract was performed on the six cell lines. For MCF-7 cancer cells, the chittagonga (Pet-Ether and CH2Cl2 and rohituka (Pet-Ether extracts induced cytotoxicity; the chittagonga (EtoAC and rohituka (MeOH extracts did not induce cytotoxicity. For HTB126, Panc-1, Mia-Paca2, and Capan-1 cancer cells, only the chittagonga CH2Cl2 extract showed a significant cytotoxic effect. The extracts were not cytotoxic to normal fibroblast Hs68 cells, which may be correlated to the specificity of Amoora extracts in targeting cancerous cells. Based on these results, further examination of the potential anticancer properties Amoora species and the identification of the active ingredients of these extracts is warranted.

  7. Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Lv Shunli

    2010-03-01

    Full Text Available Abstract Background The secreted protein acidic and rich in cysteine (SPARC plays a pivotal role in regulating cell-matrix interactions and tumor angiogenesis, proliferation, and migration. Detection of SPARC gene methylation may be useful as a tumorigenesis marker for early detection of pancreatic cancer. Methods Methylation of the SPARC gene transcriptional regulation region (TRR was detected using bisulfite-specific (BSP PCR-based sequencing analysis in 40 cases of pancreatic cancer and the adjacent normal tissues, 6 chronic pancreatitis tissues, and 6 normal pancreatic tissues. BSP cloning-based sequencing analysis was also performed in selected cases. Clinicopathological data from the cancer patients were collected and analyzed. Results Analysis of SPARC gene TRR methylation showed two hypermethylation wave peak regions: CpG Region 1 (CpG site 1-7 and CpG Region 2 (CpG site 8-12. Pancreatic tissues have shown methylation in both regions with gradual increases from normal, chronic pancreatitis, and adjacent normal tissues to cancerous tissues. However, Methylation of CpG Region 2 was more sensitive than CpG Region 1 in pancreatic tumorigenesis. Furthermore, the methylation level of CpG Region 2 was associated with increased tumor size and exposure to the risk factors (tobacco smoke and alcohol consumption for developing pancreatic cancer. Conclusion Methylation of the SPARC gene, specifically CpG Region 2, may be an early event during pancreatic tumorigenesis and should be further evaluated as a tumorigenesis marker for early detection of pancreatic cancer.

  8. Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer

    Science.gov (United States)

    Zhang, Yiyao; Liu, Li; Fan, Pei; Bauer, Nathalie; Gladkich, Jury; Ryschich, Eduard; Bazhin, Alexandr V.; Giese, Nathalia A.; Strobel, Oliver; Hackert, Thilo; Hinz, Ulf; Gross, Wolfgang; Fortunato, Franco; Herr, Ingrid

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis. An inflammatory microenvironment triggers the pronounced desmoplasia, the selection of cancer stem-like cells (CSCs) and therapy resistance. The anti-inflammatory drug aspirin is suggested to lower the risk for PDA and to improve the treatment, although available results are conflicting and the effect of aspirin to CSC characteristics and desmoplasia in PDA has not yet been investigated. We characterized the influence of aspirin on CSC features, stromal reactions and gemcitabine resistance. Four established and 3 primary PDA cell lines, non-malignant cells, 3 patient tumor-derived CSC-enriched spheroidal cultures and tissues from patients who did or did not receive aspirin before surgery were analyzed using MTT assays, flow cytometry, colony and spheroid formation assays, Western blot analysis, antibody protein arrays, electrophoretic mobility shift assays (EMSAs), immunohistochemistry and in vivo xenotransplantation. Aspirin significantly induced apoptosis and reduced the viability, self-renewal potential, and expression of proteins involved in inflammation and stem cell signaling. Aspirin also reduced the growth and invasion of tumors in vivo, and it significantly prolonged the survival of mice with orthotopic pancreatic xenografts in combination with gemcitabine. This was associated with a decreased expression of markers for progression, inflammation and desmoplasia. These findings were confirmed in tissue samples obtained from patients who had or had not taken aspirin before surgery. Importantly, aspirin sensitized cells that were resistant to gemcitabine and thereby enhanced the therapeutic efficacy. Aspirin showed no obvious toxic effects on normal cells, chick embryos or mice. These results highlight aspirin as an effective, inexpensive and well-tolerated co-treatment to target inflammation, desmoplasia and CSC features PDA. PMID:25846752

  9. pp32 (ANP32A expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs.

    Directory of Open Access Journals (Sweden)

    Timothy K Williams

    Full Text Available The expression of protein phosphatase 32 (PP32, ANP32A is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1, a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C, but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK, causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR, while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients' tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy.

  10. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  11. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    International Nuclear Information System (INIS)

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer

  12. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles

    International Nuclear Information System (INIS)

    Panwar, Nishtha; Yang, Chengbin; Yin, Feng; Chuan, Tjin Swee; Yong, Ken-Tye; Yoon, Ho Sup

    2015-01-01

    RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications. (paper)

  13. Fast neutron irradiation for locally advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Smith, F.P.; Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-01-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials

  14. Fast neutron irradiation for locally advanced pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.P. (Georgetown Univ. Medical Center, Washington, DC); Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-11-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials.

  15. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells

    Science.gov (United States)

    ZHAO, LU; ZHAO, YUE; SCHWARZ, BETTINA; MYSLIWIETZ, JOSEF; HARTIG, ROLAND; CAMAJ, PETER; BAO, QI; JAUCH, KARL-WALTER; GUBA, MAKUS; ELLWART, JOACHIM WALTER; NELSON, PETER JON; BRUNS, CHRISTIANE JOSEPHINE

    2016-01-01

    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multi-drug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density. PMID:27177126

  16. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lee, Hyung-Ok; Mullins, Stefanie R; Franco-Barraza, Janusz; Valianou, Matthildi; Cukierman, Edna; Cheng, Jonathan D

    2011-01-01

    Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP + matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP + matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP + matrix-induced tumor invasion phenotype is β 1 -integrin/FAK mediated. Cancer cell invasiveness can be affected by alterations in the tumor

  17. PANCREATIC CANCER

    Directory of Open Access Journals (Sweden)

    Alojz Pleskovič

    2003-12-01

    Full Text Available Background. The pancreatic cancer is quite common malignant tumor of gastointestinal tract and its incidence is increasing in well developed part of the world. Despite of all advanced diagnostic methods the disease is in most cases recognised too late when the tumor is not resectable.Conclusions. Only in 20–30% of patients with pancreatic cancer surgical resection is possible, and even in this group 5year survival is very low. In the patients where the tumor is not resectable, sometimes only palliative procedures are indicated and sometimes only simptomatic therapy is possible. The average survival period in this group of patients is 12–20 months. Adjuvant chemo and radiotherapy has not shown much of benefit and the prognosis is still very bad.

  18. Apoptosis: Targets in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Kalthoff Holger

    2003-01-01

    Full Text Available Abstract Pancreatic adenocarcinoma is characterized by poor prognosis, because of late diagnosis and lack of response to chemo- and/or radiation therapies. Resistance to apoptosis mainly causes this insensitivity to conventional therapies. Apoptosis or programmed cell death is a central regulator of tissue homeostasis. Certain genetic disturbances of apoptotic signaling pathways have been found in carcinomas leading to tumor development and progression. In the past few years, the knowledge about the complex pathways of apoptosis has strongly increased and new therapeutic approaches based on this knowledge are being developed. This review will focus on the role of apoptotic proteins contributing to pancreatic cancer development and progression and will demonstrate possible targets to influence this deadly disease.

  19. Out-FOXing Pancreatic Cancer | Center for Cancer Research

    Science.gov (United States)

    Pancreatic cancer is one of the most lethal cancer types worldwide with increasing incidence and mortality rates in the United States. Consequently, it is projected to become the second leading cause of cancer death by 2020. Poor patient outcomes are due to a combination of diagnosis at an advanced stage and a lack of effective treatments. However, a better understanding of the molecular pathways at work in pancreatic cancers may lead to the identification of novel therapeutic targets.

  20. Potential New Pharmacological Agents Derived From Medicinal Plants for the Treatment of Pancreatic Cancer.

    Science.gov (United States)

    Azimi, Haniye; Khakshur, Ali Asghar; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    In the present article, we reviewed plants and phytochemical compounds demonstrating beneficial effects in pancreatic cancer to find new sources of pharmaceutical agents. For this purpose, Scopus, PubMed, Web of Science, and Google scholar were searched for plants or herbal components with beneficial effects in the treatment of pancreatic cancer. Data were collected up to January 2013. The search terms were "plant," "herb," "herbal therapy," or "phytotherapy" and "pancreatic cancer" or "pancreas." All of the human in vivo and in vitro studies were included. According to studies, among diverse plants and phytochemicals, 12 compounds including apigenin, genistein, quercetin, resveratrol, epigallocatechin gallate, benzyl isothiocyanate, sulforaphane, curcumin, thymoquinone, dihydroartemisinin, cucurbitacin B, and perillyl alcohol have beneficial action against pancreatic cancer cells through 4 or more mechanisms. Applying their plausible synergistic effects can be an imperative approach for finding new efficient pharmacological agents in the treatment of pancreatic cancer.

  1. Leukotriene B4 induces EMT and vimentin expression in PANC-1 pancreatic cancer cells: Involvement of BLT2 via ERK2 activation.

    Science.gov (United States)

    Kim, You Ri; Park, Mi Kyung; Kang, Gyeong Jin; Kim, Hyun Ji; Kim, Eun Ji; Byun, Hyun Jung; Lee, Moo-Yeol; Lee, Chang Hoon

    2016-12-01

    Leukotriene B 4 (LTB 4 ) is a leukocyte chemoattractant and plays a major role controlling inflammatory responses including pancreatitis. LTB 4 is known to be correlated with cancer progression. LTB 4 induces keratin phosphorylation and reorganization by activating extracellular regulated kinase (ERK) in PANC-1 pancreatic cancer cell lines. However, the role of LTB 4 in epithelial mesenchymal transition (EMT) and vimentin expression in pancreatic cancer cells is unknown. We examined whether LTB 4 induces EMT and vimentin expression by Western blot, si-RNA, and RT-PCR. LTB 4 induced morphological change, decreased E-cadherin expression and increased N-cadherin and vimentin expression. LTB4 increased migration and invasion of PANC-1 cancer cells. LTB 4 dose-dependently upregulated expression of vimentin in PANC-1 cancer cells. LTB 4 -induced vimentin expression was suppressed by LY255283 (BLT2 antagonist). Comp A, a BLT2 agonist, further increased vimentin expression. Gene silencing of BLT2 suppressed LTB 4 -or Comp A-induced vimentin expression in PANC-1 cells. The MEK inhibitor, PD98059 suppressed Comp A-induced vimentin expression. Comp A or transfection of plasmid containing BLT2 cDNA (pC BLT2 ) activated ERK, and BLT2 gene silencing suppressed Comp A-induced ERK activation. ERK2 siRNA abrogated Comp A-induced vimentin expression and ERK2 overexpression enhanced vimentin expression. One of well-known cause of ras mutation, cigarette smoke extracts increased BLT2 expression in PANC-1 cancer cells. Taken together, these results suggest that BLT2 is involved in LTB 4 -induced vimentin expression through ERK2 in PANC-1 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells

    OpenAIRE

    SOMASAGARA, RANGANATHA R.; DEEP, GAGAN; SHROTRIYA, SANGEETA; PATEL, MANISHA; AGARWAL, CHAPLA; AGARWAL, RAJESH

    2015-01-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcita...

  3. Stages of Pancreatic Cancer

    Science.gov (United States)

    ... overweight. Having a personal history of diabetes or chronic pancreatitis . Having a family history of pancreatic cancer or ... have not started treatment. Five types of standard treatment are used: Surgery ... Whipple procedure : A surgical procedure in which the head of the pancreas , ...

  4. Current radiotherapeutic approaches to pancreatic cancer

    International Nuclear Information System (INIS)

    Dobelbower, R.R. Jr.

    1981-01-01

    Adenocarcinoma of the pancreas is not a radioresistant neoplasm, as was once believed. The data now suggest that in some instances this cancer may be radiocurable. This fact seems to justify the risk of pancreatic biopsy even in the face of unresectable disease, for it is well known that many benign conditions imitate pancreatic cancer. Clinical benefit from radiation for pancreatic cancer treatment is dose related. Careful delineation of tumor margins, precision treatment planning, and precision dose delivery can minimize damage to adjacent normal tissues. Interstitial implantation and intraoperative electron beam therapy are being studied as methods of accurate dose delivery for pancreatic cancer. Fractionation studies and high LET studies are in embryonic stages. Combined modality regimens may have much to offer in terms of improved palliation and survival for patients with localized adenocarcinoma of the pancreas

  5. Identification of RegIV as a novel GLI1 target gene in human pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2011-04-01

    Full Text Available GLI1 is the key transcriptional factor in the Hedgehog signaling pathway in pancreatic cancer. RegIV is associated with regeneration, and cell growth, survival, adhesion and resistance to apoptosis. We aimed to study RegIV expression in pancreatic cancer and its relationship to GLI1.GLI1 and RegIV expression were evaluated in tumor tissue and adjacent normal tissues of pancreatic cancer patients and 5 pancreatic cancer cell lines by qRT-PCR, Western blot, and immunohistochemistry (IHC, and the correlation between them. The GLI1-shRNA lentiviral vector was constructed and transfected into PANC-1, and lentiviral vector containing the GLI1 expression sequence was constructed and transfected into BxPC-3. GLI1 and RegIV expression were evaluated by qRT-PCR and Western blot. Finally we demonstrated RegIV to be the target of GLI1 by chromatin immunoprecipitation (CHIP and electrophoretic mobility shift assays (EMSA.The results of IHC and qRT-PCR showed that RegIV and GLI1 expression was higher in pancreatic cancer tissues versus adjacent normal tissues (p<0.001. RegIV expression correlated with GLI1 expression in these tissues (R = 0.795, p<0.0001. These results were verified for protein (R = 0.939, p = 0.018 and mRNA expression (R = 0.959, p = 0.011 in 5 pancreatic cancer cell lines. RegIV mRNA and protein expression was decreased (94.7±0.3%, 84.1±0.5%; respectively when GLI1 was knocked down (82.1±3.2%, 76.7±2.2%; respectively by the RNAi technique. GLI1 overexpression in mRNA and protein level (924.5±5.3%, 362.1±3.5%; respectively induced RegIV overexpression (729.1±4.3%, 339.0±3.7%; respectively. Moreover, CHIP and EMSA assays showed GLI1 protein bound to RegIV promotor regions (GATCATCCA in pancreatic cancer cells.GLI1 promotes RegIV transcription by binding to the RegIV gene promoter in pancreatic cancer.

  6. Vitamins in Pancreatic Cancer: A Review of Underlying Mechanisms and Future Applications12

    Science.gov (United States)

    Davis-Yadley, Ashley H; Malafa, Mokenge P

    2015-01-01

    Although there is increasing evidence that vitamins influence pancreatic adenocarcinoma biology and carcinogenesis, a comprehensive review is lacking. In this study, we performed a PubMed literature search to review the anticancer mechanisms and the preclinical and clinical studies that support the development of the bioactive vitamins A, C, D, E, and K in pancreatic cancer intervention. Preclinical studies have shown promising results for vitamin A in pancreatic cancer prevention, with clinical trials showing intriguing responses in combination with immunotherapy. For vitamin C, preclinical studies have shown slower tumor growth rates and/or increased survival when used alone or in combination with gemcitabine, with clinical trials with this combination revealing decreased primary tumor sizes and improved performance status. Preclinical studies with vitamin D analogues have shown potent antiproliferative effects and repression of migration and invasion of pancreatic cancer cells, with a clinical trial showing increased time to progression when calciferol was added to docetaxel. For vitamin E, preclinical studies have shown that δ-tocotrienol and γ-tocotrienol inhibited tumor cell growth and survival and augmented gemcitabine activity. Early-phase clinical trials with δ-tocotrienol are ongoing. Vitamin K demonstrates activation of apoptosis and inhibition of cellular growth in pancreatic tumor cells; however, there are no clinical studies available for further evaluation. Although preclinical and clinical studies are encouraging, randomized controlled trials with endpoints based on insights gained from mechanistic and preclinical studies and early-phase clinical trials are required to determine the efficacy of bioactive vitamin interventions in pancreatic cancer. PMID:26567201

  7. Morphometrical differences between resectable and non-resectable pancreatic cancer: a fractal analysis.

    Science.gov (United States)

    Vasilescu, Catalin; Giza, Dana Elena; Petrisor, Petre; Dobrescu, Radu; Popescu, Irinel; Herlea, Vlad

    2012-01-01

    Pancreatic cancer is a highly aggressive cancer with a rising incidence and poor prognosis despite active surgical treatment. Candidates for surgical resection should be carefully selected. In order to avoid unnecessary laparotomy it is useful to identify reliable factors that may predict resectability. Nuclear morphometry and fractal dimension of pancreatic nuclear features could provide important preoperative information in assessing pancreas resectability. Sixty-one patients diagnosed with pancreatic cancer were enrolled in this retrospective study between 2003 and 2005. Patients were divided into two groups: one resectable cancer group and one with non-resectable pancreatic cancer. Morphometric parameters measured were: nuclear area, length of minor axis and length of major axis. Nuclear shape and chromatin distribution of the pancreatic tumor cells were both estimated using fractal dimension. Morphometric measurements have shown significant differences between the nuclear area of the resectable group and the non-resectable group (61.9 ± 19.8µm vs. 42.2 ± 15.6µm). Fractal dimension of the nuclear outlines and chromatin distribution was found to have a higher value in the non-resectable group (p<0.05). Objective measurements should be performed to improve risk assessment and therapeutic decisions in pancreatic cancer. Nuclear morphometry of the pancreatic nuclear features can provide important pre-operative information in resectability assessment. The fractal dimension of the nuclear shape and chromatin distribution may be considered a new promising adjunctive tool for conventional pathological analysis.

  8. Computer-aided diagnosis of pancreatic and lung cancer

    Directory of Open Access Journals (Sweden)

    B. Luis Lancho Tofé

    2008-12-01

    Full Text Available When we talk about cancer diagnosis the most important thing is early diagnosis to prevent cancer cells from spreading. We may also consider the high cost of diagnostic tests. Our approach seeks to address both problems. It uses a software based on Bayesian networks that simulates the causeeffect relationships and gets the chance of suffering a pancreatic cancer or lung cancer. This software would support doctors and save a lot of time and resources.

  9. JWA gene regulates PANC-1 pancreatic cancer cell behaviors through MEK-ERK1/2 of the MAPK signaling pathway.

    Science.gov (United States)

    Wu, Yuan-Yuan; Ma, Tie-Liang; Ge, Zhi-Jun; Lin, Jie; Ding, Wei-Liang; Feng, Jia-Ke; Zhou, Su-Jun; Chen, Guo-Chang; Tan, Yong-Fei; Cui, Guo-Xing

    2014-10-01

    The present study aimed to investigate the role of JWA gene in the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells and the effect on the MAPK signaling pathway. Human PANC-1 pancreatic cancer cells were cultured in vitro , and small interfering RNA (siRNA) was designed for the JWA gene. The siRNA was transfected into PANC-1 cells. Subsequently, the cell proliferation was measured by MTT assay; cell apoptosis was detected by analyzing BAX and Bcl-2 protein expression; cell migration and invasion were measured using Transwell ® chambers; and the protein expression of JWA and ERK1/2, JNK and p38 and their phosphorylated forms were measured by western blotting. By utilizing the MTT assay, the results showed that when JWA protein expression was inhibited, the proliferation of PANC-1 cells was enhanced. In addition, the expression of apoptosis-associated protein (AAP) BAX was substantially decreased, while the expression of the apoptosis inhibitor gene, Bcl-2 , was significantly enhanced. Using Transwell chambers, it was found that the number of penetrating PANC-1 cells was significantly increased after transfection with JWA siRNA, suggesting that the migration and invasion of the cells was substantially increased. By studying the association between JWA and the MAPK pathway in PANC-1 cells, it was found that the expression of p-ERK1/2 of the MAPK pathway was significantly downregulated following JWA siRNA transfection. However, the expression levels of ERK1/2, JNK, p38, p-JNK and p-p38 showed no significant differences. In conclusion, it was shown that JWA affects the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells which could be attributed to effects on the expression of ERK1/2 in the MAPK pathway.

  10. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  11. In vitro and in vivo anticancer efficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells.

    Science.gov (United States)

    Nambiar, Dhanya; Prajapati, Vandana; Agarwal, Rajesh; Singh, Rana P

    2013-06-28

    Silibinin suppresses the growth of many cancers; however, its efficacy against pancreatic cancer has not been evaluated in established preclinical models. Here, we investigated in vitro and in vivo effects of silibinin against lower and advanced stages of human pancreatic carcinoma cells. Silibinin (25-100μM) treatment for 24-72h caused a dose- and time-dependent cell growth inhibition of 27-77% (PPANC-1 cells. Silibinin showed a strong dose-dependent G1 arrest in BxPC-3 cells (upto 72% versus 45% in control; PPANC-1 cells. Cell death observed in cell growth assay, was accompanied by up to 3-fold increase (PPANC-1 cells. Dietary feeding of silibinin (0.5%, w/w in AIN-93M diet for 7weeks) inhibited BxPC-3 and PANC-1 tumor xenografts growth in nude mice without any apparent change in body weight gain and diet consumption. Tumor volume and weight were decreased by 47% and 34% (P⩽0.001) in BxPC-3 xenograft, respectively. PANC-1 xenograft showed slower growth kinetics and silibinin decreased tumor volume by 34% (PPANC-1 xenograft showed 28% and 33% decrease in tumor volume and weight, respectively. Silibinin-fed group of BxPC-3 tumors showed decreased cell proliferation and angiogenesis and an increased apoptosis, however, considerable inhibitory effect was observed only for angiogenesis in PANC-1 tumors. Overall, these findings show both in vitro as well as in vivo anticancer efficacy of silibinin against pancreatic cancer that could involve inhibition of cell proliferation, cell cycle arrest, apoptosis induction and/or decrease in tumor angiogenesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer.

    Science.gov (United States)

    Riva, Francesca; Dronov, Oleksii I; Khomenko, Dmytro I; Huguet, Florence; Louvet, Christophe; Mariani, Pascale; Stern, Marc-Henri; Lantz, Olivier; Proudhon, Charlotte; Pierga, Jean-Yves; Bidard, Francois-Clement

    2016-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type and is characterized by a dismal prognosis due to late diagnosis, local tumor invasion, frequent distant metastases and poor sensitivity to current therapy. In this context, circulating tumor cells and circulating tumor DNA constitute easily accessible blood-borne tumor biomarkers that may prove their clinical interest for screening, early diagnosis and metastatic risk assessment of PDAC. Moreover these markers represent a tool to assess PDAC mutational landscape. In this review, together with key biological findings, we summarize the clinical results obtained using "liquid biopsies" at the different stages of the disease, for early and metastatic diagnosis as well as monitoring during therapy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Peptide-Conjugated Quantum Dots Act as the Target Marker for Human Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Shuang-ling Li

    2016-03-01

    Full Text Available Background/Aims: In the present study, we describe a novel and straightforward approach to produce a cyclic- arginine-glycine-aspartic (RGD-peptide-conjugated quantum dot (QD probe as an ideal target tumor biomarker. Due to its specific structure, the probe can be used for targeted imaging of pancreatic carcinoma cells. Methods: Pancreatic carcinoma cells were routinely cultured and marked with QD-RGD probe. The QD-RGD probe on the fluorescence-labeled cancer cell was observed by fluorescence microscopy and laser confocal microscopy. Cancer cell viability was detected by MTT assay after culturing with QD-RGD probe. Results: Fluorescence microscopy and laser confocal microscopy displayed that 10nmol/L QD-RGD probe was able to effectively mark pancreatic carcinoma cells. In comparison with organic dyes and fluorescent proteins, the quantum dot-RGD probe had unique optical and electronic properties. Conclusion: QD-RGD probe has a low cytotoxicity with an excellent optical property and biocompatibility. These findings support further evaluation of QD-RGD probes for the early detection of pancreatic cancer.

  14. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells.

    Science.gov (United States)

    Chen, Jiangzhi; Xu, Hong; Zou, Xiuqun; Wang, Jiamin; Zhu, Yi; Chen, Hao; Shen, Baiyong; Deng, Xiaxing; Zhou, Aiwu; Chin, Y Eugene; Rauscher, Frank J; Peng, Chenghong; Hou, Zhaoyuan

    2014-08-15

    Transcriptional repressor Snail is a master regulator of epithelial-mesenchymal transition (EMT), yet the epigenetic mechanism governing Snail to induce EMT is not well understood. Here, we report that in pancreatic ductal adenocarcinoma (PDAC), elevated levels of the ubiquitin E3 ligase Ring1B and Snail, along with elevated monoubiquitination of H2A at K119 (H2AK119Ub1), are highly correlated with poor survival. Mechanistic investigations identified Ring1B as a Snail-interacting protein and showed that the carboxyl zinc fingers of Snail recruit Ring1B and its paralog Ring1A to repress its target promoters. Simultaneous depletion of Ring1A and Ring1B in pancreatic cancer cells decreased Snail binding to the target chromatin, abolished H2AK119Ub1 modification, and thereby compromised Snail-mediated transcriptional repression and cell migration. We found that Ring1B and the SNAG-associated chromatin modifier EZH2 formed distinct protein complexes with Snail and that EZH2 was required for Snail-Ring1A/B recruitment to the target promoter. Collectively, our results unravel an epigenetic mechanism underlying transcriptional repression by Snail, suggest Ring1A/B as a candidate therapeutic target, and identify H2AK119Ub1 as a potential biomarker for PDAC diagnosis and prognosis. ©2014 American Association for Cancer Research.

  15. Tumour-derived exosomes as a signature of pancreatic cancer - liquid biopsies as indicators of tumour progression.

    Science.gov (United States)

    Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E; Joshi, Virendra; Salomon, Carlos

    2017-03-07

    Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.

  16. Qingyihuaji Formula Inhibits Pancreatic Cancer and Prolongs Survival by Downregulating Hes-1 and Hey-1

    Directory of Open Access Journals (Sweden)

    Yanli Xu

    2015-01-01

    Full Text Available The dire prognosis of pancreatic cancer has not markedly improved during past decades. The present study was carried out to explore the effect of Qingyihuaji formula (QYHJ on inhibiting pancreatic cancer and prolonging survival in related Notch signaling pathway. Proliferation of pancreatic cancer cells (SW1990 and PANC-1 was detected by MTT assay at 24, 48, and 72 h with exposure to various concentrations (0.08–50 mg/mL of QYHJ water extract. Pancreatic tumor models of nude mice were divided into three groups randomly (control, QYHJ, and gemcitabine. mRNA and protein expression of Notch target genes (Hes-1, Hey-1, Hey-2, and Hey-L in dissected tumor tissue were detected. Results showed that proliferation of SW1990 cells and PANC-1 cells was inhibited by QYHJ water extract in a dose-dependent and time-dependent manner. QYHJ effectively inhibited tumor growth and prolonged survival time in nude mice. Expression of both Hes-1 and Hey-1 was decreased significantly in QYHJ group, suggesting that Hes-1 and Hey-1 in Notch signaling pathway might be potential targets for QYHJ treatment. This research could help explain the clinical effectiveness of QYHJ and may provide advanced pancreatic cancer patients with a new therapeutic option.

  17. The histone methyltransferase G9a as a therapeutic target to override gemcitabine resistance in pancreatic cancer

    Science.gov (United States)

    Pan, Mei-Ren; Hsu, Ming-Chuan; Luo, Chi-Wen; Chen, Li-Tzong; Shan, Yan-Shen; Hung, Wen-Chun

    2016-01-01

    Gemcitabine (GEM) resistance is a critical issue for pancreatic cancer treatment. The involvement of epigenetic modification in GEM resistance is still unclear. We established a GEM-resistant subline PANC-1-R from the parental PANC-1 pancreatic cancer cells and found the elevation of various chromatin-modifying enzymes including G9a in GEM-resistant cells. Ectopic expression of G9a in PANC-1 cells increased GEM resistance while inactivation of G9a in PANC-1-R cells reduced it. Challenge of PANC-1 cells with GEM increased the expression of stemness markers including CD133, nestin and Lgr5 and promoted sphere forming activity suggesting chemotherapy enriched cancer cells with stem-like properties. Inhibition of G9a in PANC-1-R cells reduced stemness and invasiveness and sensitized the cells to GEM. We revealed interleukin-8 (IL-8) is a downstream effector of G9a to increase GEM resistance. G9a-overexpressing PANC-1-R cells exhibited autocrine IL-8/CXCR1/2 stimulation to increase GEM resistance which could be decreased by anti-IL-8 antibody and G9a inhibitor. IL-8 released by cancer cells also activated pancreatic stellate cell (PSC) to increase GEM resistance. In orthotopic animal model, GEM could not suppress tumor growth of PANC-1-R cells and eventually promoted tumor metastasis. Combination with G9a inhibitor and GEM reduced tumor growth, metastasis, IL-8 expression and PSC activation in animals. Finally, we showed that overexpression of G9a correlated with poor survival and early recurrence in pancreatic cancer patients. Collectively, our results suggest G9a is a therapeutic target to override GEM resistance in the treatment of pancreatic cancer. PMID:27531902

  18. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    Science.gov (United States)

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of

  19. Multislice CT for preoperative diagnosis of pancreatic cancer

    International Nuclear Information System (INIS)

    Horiguchi, Akihiko; Ishihara, Shin; Ito, Masahiro

    2007-01-01

    We investigated the ability of multislice (MS) CT to visualize and diagnose the progression of pancreatic cancer. With regard to local progression, good diagnosis was possible for detecting the invasion of the intrapancreatic bile duct, duodenum, portal vein, arteries and other organs, and liver metastasis. Sensitivity was high but specificity was not good for detecting the invasion of the anterior and posterior pancreatic tissue. This is thought to be because of the positive diagnosis with pancreatitis that accompanies cancer. Pancreatic plexus invasion was also thought to be a cause of the lipid elevation of the nerve plexus and decreased sensitivity accompanying pancreatitis. Identification of cancer invasion and tumor periphery changes based on concomitant pancreatitis also depends on the amount of fibrous stroma, but this will require further investigation. Factors other than the size of lymph node metastases also need to be investigated. MS-CT can provide detailed volume data in a short time and making it an essential test in diagnosing the stage of pancreatic cancer. (author)

  20. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  1. GSK3β and β-Catenin Modulate Radiation Cytotoxicity in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Richard L. Watson

    2010-05-01

    Full Text Available BACKGROUND: Knowledge of factors and mechanisms contributing to the inherent radioresistance of pancreatic cancer may improve cancer treatment. Irradiation inhibits glycogen synthase kinase 3β (GSK3β by phosphorylation at serine 9. In turn, release of cytosolic membrane β-catenin with subsequent nuclear translocation promotes survival. Both GSK3β and β-catenin have been implicated in cancer cell proliferation and resistance to death. METHODS: We investigated pancreatic cancer cell survival after radiation in vitro and in vivo, with a particular focus on the role of the function of the GSK3β/β-catenin axis. RESULTS: Lithium chloride, RNAi-medicated silencing of GSK3β, or the expression of a kinase dead mutant GSK3β resulted in radioresistance of Panc1 and BxPC3 pancreatic cancer cells. Conversely, ectopic expression of a constitutively active form of GSK3β resulted in radiosensitization of Panc1 cells. GSK3β silencing increased radiation-induced β-catenin target gene expression asmeasured by studies of AXIN2 and LEF1 transcript levels. Western blot analysis of total and phosphorylated levels of GSK3β and β-catenin showed that GSK3β inhibition resulted in stabilization of β-catenin. Xenografts of both BxPC3 and Panc1 with targeted silencing of GSK3β exhibited radioresistance in vivo. Silencing of β-catenin resulted in radiosensitization, whereas a nondegradable β-catenin construct induced radioresistance. CONCLUSIONS: These data support the hypothesis that GSK3β modulates the cellular response to radiation in a β-catenin-dependent mechanism. Further understanding of this pathway may enhance the development of clinical trials combining drugs inhibiting β-catenin activation with radiation and chemotherapy in locally advanced pancreatic cancer.

  2. Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells

    International Nuclear Information System (INIS)

    Hehlgans, Stephanie; Eke, Iris; Storch, Katja; Haase, Michael; Baretton, Gustavo B.; Cordes, Nils

    2009-01-01

    Background and purpose: Resistance of pancreatic ductal adenocarcinoma (PDAC) to chemo- and radiotherapy is a major obstacle. The integral membrane protein Caveolin-1 (Cav-1) has been suggested as a potent target in human pancreatic carcinoma cells. Materials and methods: Human pancreatic tumor cells were examined in a three-dimensional (3D) cell culture model with regard to clonogenic survival, apoptosis, radiogenic DNA-double strand breaks and protein expression and phosphorylation under siRNA-mediated knockdown of Cav-1 without and in combination with irradiation (X-rays, 0-6 Gy). Immunohistochemistry was used to assess Cav-1 expression in biopsies from patients with PDAC. Results: Tumor cells in PDAC showed significantly higher Cav-1 expression relative to tumor stroma. Cav-1 knockdown significantly reduced β1 integrin expression and Akt phosphorylation, induced Caspase 3- and Caspase 8-dependent apoptosis and enhanced the radiosensitivity of 3D cell cultures. While cell cycling and Cav-1 promoter activity remained stable, Cav-1 knockdown-induced radiosensitization correlated with elevated numbers of residual DNA-double strand breaks. Conclusions: Our data strongly support the concept of Cav-1 as a potent target in pancreatic carcinoma cells due to radiosensitization and Cav-1 overexpression in tumor cells of PDAC. 3D cell cultures are powerful and useful tools for the testing of novel targeting strategies to optimize conventional radio- and chemotherapy regimes for PDAC.

  3. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells.

    Science.gov (United States)

    Kreutzer, Jan N; Salvador, Alessia; Diana, Patrizia; Cirrincione, Girolamo; Vedaldi, Daniela; Litchfield, David W; Issinger, Olaf-Georg; Guerra, Barbara

    2012-04-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases.

  4. 2-Triazenoazaindoles: A novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells

    Science.gov (United States)

    KREUTZER, JAN N.; SALVADOR, ALESSIA; DIANA, PATRIZIA; CIRRINCIONE, GIROLAMO; VEDALDI, DANIELA; LITCHFIELD, DAVID W.; ISSINGER, OLAF-GEORG; GUERRA, BARBARA

    2012-01-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases. PMID:22134789

  5. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

    Directory of Open Access Journals (Sweden)

    Elisabeth Hessmann

    2016-01-01

    Full Text Available Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

  6. Photodynamic effects of a novel pterin derivative on a pancreatic cancer cell line

    International Nuclear Information System (INIS)

    Yamada, Hiroko; Arai, Toshiyuki; Endo, Nobuyuki; Yamashita, Kouhei; Nonogawa, Mitsuru; Makino, Keisuke; Fukuda, Kazuhiko; Sasada, Masataka; Uchiyama, Takashi

    2005-01-01

    6-Formylpterin (6FP) has the potential to produce singlet oxygen ( 1 O 2 ) under UV-A radiation. In order to apply this potential to anti-cancer photodynamic therapy (PDT), we prepared a novel variant of 6FP, 2-(N,N-dimethylaminomethyleneamino)-6-formyl-3-pivaloylpteridine-4-one (6FP-tBu-DMF), and examined its photodynamic effects on a pancreatic cancer cell line, Panc-1 cells. The study using laser scanning confocal microscopy showed that the drug uptake, the 1 O 2 generation, and cell death were observed in the 6FP-tBu-DMF-treated cells, while these phenomena were not observed in the 6FP-treated cells. The MTT assay also showed the decrease in cell viability only in the 6FP-tBu-DMF-treated cells. Since 6FP and 6FP-tBu-DMF generate 1 O 2 to the same extent under UV-A radiation in aqueous solutions, these results indicated that the differences in the photodynamic effects between 6FP and 6FP-tBu-DMF were entirely attributed to the differences in the cell permeability between them. The development of cell permeable pterin derivatives has the potential for application in PDT

  7. Dendritic cells fused with different pancreatic carcinoma cells induce different T-cell responses

    Directory of Open Access Journals (Sweden)

    Andoh Y

    2013-01-01

    Full Text Available Yoshiaki Andoh,1,2 Naohiko Makino,2 Mitsunori Yamakawa11Department of Pathological Diagnostics, 2Department of Gastroenterology, Yamagata University School of Medicine, Yamagata, JapanBackground: It is unclear whether there are any differences in the induction of cytotoxic T lymphocytes (CTL and CD4+CD25high regulatory T-cells (Tregs among dendritic cells (DCs fused with different pancreatic carcinomas. The aim of this study was to compare the ability to induce cytotoxicity by human DCs fused with different human pancreatic carcinoma cell lines and to elucidate the causes of variable cytotoxicity among cell lines.Methods: Monocyte-derived DCs, which were generated from peripheral blood mononuclear cells (PBMCs, were fused with carcinoma cells such as Panc-1, KP-1NL, QGP-1, and KP-3L. The induction of CTL and Tregs, and cytokine profile of PBMCs stimulated by fused DCs were evaluated.Results: The cytotoxicity against tumor targets induced by PBMCs cocultured with DCs fused with QGP-1 (DC/QGP-1 was very low, even though PBMCs cocultured with DCs fused with other cell lines induced significant cytotoxicity against the respective tumor target. The factors causing this low cytotoxicity were subsequently investigated. DC/QGP-1 induced a significant expansion of Tregs in cocultured PBMCs compared with DC/KP-3L. The level of interleukin-10 secreted in the supernatants of PBMCs cocultured with DC/QGP-1 was increased significantly compared with that in DC/KP-3L. Downregulation of major histocompatibility complex class I expression and increased secretion of vascular endothelial growth factor were observed with QGP-1, as well as in the other cell lines.Conclusion: The present study demonstrated that the cytotoxicity induced by DCs fused with pancreatic cancer cell lines was different between each cell line, and that the reduced cytotoxicity of DC/QGP-1 might be related to the increased secretion of interleukin-10 and the extensive induction of Tregs

  8. Effects of disulfiram on apoptosis in PANC-1 human pancreatic cancer cell line.

    Science.gov (United States)

    Dastjerdi, M Nikbakht; Babazadeh, Z; Rabbani, M; Gharagozloo, M; Esmaeili, A; Narimani, M

    2014-01-01

    Pancreatic carcinoma is currently considered as a rapidly progressive and fatal disease, and is typically diagnosed late in its natural course. It is characterized by a poor diagnosis and lack of response to conventional therapy. Recent studies have suggested that disulfiram (DSF), a member of the dithiocarbamate family, may have antitumor activity. This study aimed to evaluate the in vitro effect of DSF on apoptosis in human pancreatic cancerous cell line (PANC-1). PANC-1 cells were cultured and treated with DSF at doses of 5, 10, 13 μM for 24 h and apoptosis was measured. Methylation specific PCR (MS-PCR) and real-time quantitative PCR were carried out to detect the methylation pattern and to estimate the mRNA expression levels of RASSF1A, p21 and Bax. MS-PCR analysis demonstrated that no unmethylated band was apeared in PANC-1 cell line after DSF treatments. The real-time quantitative PCR results showed no significant mRNA expression for RASSF1A (p>0.05); whereas p21 and Bax expression were significantly (pPANC-1 through p21 and Bax pathway but not through RASSF1A.

  9. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation

    International Nuclear Information System (INIS)

    Yadav, Vikas; Varshney, Pallavi; Sultana, Sarwat; Yadav, Jyoti; Saini, Neeru

    2015-01-01

    Pancreatic cancer, one of the most dreadful gastrointestinal tract malignancies, with the current chemotherapeutic drugs has posed a major impediment owing to poor prognosis and chemo-resistance thereby suggesting critical need for additional drugs as therapeutics in combating the situation. Fluoroquinolones have shown promising and significant anti-tumor effects on several carcinoma cell lines. Previously, we reported growth inhibitory effects of fourth generation fluoroquinolone Gatifloxacin, while in the current study we have investigated the anti-proliferative and apoptosis-inducing mechanism of older generation fluoroquinolones Moxifloxacin and Ciprofloxacin on the pancreatic cancer cell-lines MIA PaCa-2 and Panc-1. Cytotoxicity was measured by MTT assay. Apoptosis induction was evaluated using annexin assay, cell cycle assay and activation of caspase-3, 8, 9 were measured by western blotting and enzyme activity assay. Herein, we found that both the fluoroquinolones suppressed the proliferation of pancreatic cancer cells by causing S-phase arrest and apoptosis. Blockade in S-phase of cell cycle was associated with decrease in the levels of p27, p21, CDK2, cyclin-A and cyclin-E. Herein we also observed triggering of extrinsic as well as intrinsic mitochondrial apoptotic pathway as suggested by the activation of caspase-8, 9, 3, and Bid respectively. All this was accompanied by downregulation of antiapoptotic protein Bcl-xL and upregulation of proapoptotic protein Bak. Our results strongly suggest the role of extracellular-signal-regulated kinases (ERK1/2), but not p53, p38 and c-JUN N-terminal kinase (JNK) in fluoroquinolone induced growth inhibitory effects in both the cell lines. Additionally, we also found both the fluoroquinolones to augment the apoptotic effects of broad spectrum anticancer drug Cisplatin via ERK. The fact that these fluoroquinolones synergize the effect of cisplatin opens new insight into therapeutic index in treatment of pancreatic

  10. MicroRNA-gene signaling pathways in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Alexandra Drakaki

    2013-10-01

    Full Text Available Pancreatic cancer is the fourth most frequent cause of cancer-related deaths and is characterized by early metastasis and pronounced resistance to chemotherapy and radiation therapy. Despite extensive esearch efforts, there is not any substantial progress regarding the identification of novel drugs against pancreatic cancer. Although the introduction of the chemotherapeutic agent gemcitabine improved clinical response, the prognosis of these patients remained extremely poor with a 5-year survival rate of 3-5%. Thus, the identification of the novel molecular pathways involved in pancreatic oncogenesis and the development of new and potent therapeutic options are highly desirable. Here, we describe how microRNAs control signaling pathways that are frequently deregulated during pancreatic oncogenesis. In addition, we provide evidence that microRNAs could be potentially used as novel pancreatic cancer therapeutics through reversal of chemotherapy and radiotherapy resistance or regulation of essential molecular pathways. Further studies should integrate the deregulated genes and microRNAs into molecular networks in order to identify the central regulators of pancreatic oncogenesis. Targeting these central regulators could lead to the development of novel targeted therapeutic approaches for pancreatic cancer patients.

  11. CDDO-Me: A Novel Synthetic Triterpenoid for the Treatment of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Dorrah Deeb

    2010-10-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is one of the most lethal human malignancy with dismal prognosis and few effective therapeutic options. Novel agents that are safe and effective are urgently needed. Oleanolic acid-derived synthetic triterpenoids are potent antitumorigenic agents, but their efficacy or the mechanism of action for pancreatic cancer has not been adequately investigated. In this study, we evaluated the antitumor activity and the mechanism of action of methyl-2-cyano-3,12-dioxooleana-1,9(11-dien-28-oate (CDDO-Me, a oleanane-derived synthetic triterpenoid for human pancreatic cancer cell lines. CDDO-Me inhibited the growth of both K-ras mutated (MiaPaca2, Panc1 and Capan2 and wild-type K-ras (BxPC3 pancreatic cancer cells at very low concentrations. The growth inhibitory activity of CDDO-Me was attributed to the induction of apoptosis characterized by increased annexin-V-FITC binding and cleavage of PARP-1 and procaspases-3, -8 and-9. In addition, CDDO-Me induced the loss of mitochondrial membrane potential and release of cytochrome C. The antitumor activity of CDDO-Me was associated with the inhibition of prosurvival p-Akt, NF-κB and mammalian target of rapamycin (mTOR signaling proteins and the downstream targets of Akt and mTOR, such as p-Foxo3a (Akt and p-S6K1, p-eIF-4E and p-4E-BP1 (mTOR. Silencing of Akt or mTOR with gene specific-siRNA sensitized the pancreatic cancer cells to CDDO-Me, demonstrating Akt and mTOR as molecular targets of CDDO-Me for its growth inhibitory and apoptosis-inducing activity.

  12. CDDO-Me: A Novel Synthetic Triterpenoid for the Treatment of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Deeb, Dorrah; Gao, Xiaohua; Arbab, Ali S.; Barton, Kenneth; Dulchavsky, Scott A.; Gautam, Subhash C.

    2010-01-01

    Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancy with dismal prognosis and few effective therapeutic options. Novel agents that are safe and effective are urgently needed. Oleanolic acid-derived synthetic triterpenoids are potent antitumorigenic agents, but their efficacy or the mechanism of action for pancreatic cancer has not been adequately investigated. In this study, we evaluated the antitumor activity and the mechanism of action of methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me), a oleanane-derived synthetic triterpenoid for human pancreatic cancer cell lines. CDDO-Me inhibited the growth of both K-ras mutated (MiaPaca2, Panc1 and Capan2) and wild-type K-ras (BxPC3) pancreatic cancer cells at very low concentrations. The growth inhibitory activity of CDDO-Me was attributed to the induction of apoptosis characterized by increased annexin-V-FITC binding and cleavage of PARP-1 and procaspases-3, -8 and-9. In addition, CDDO-Me induced the loss of mitochondrial membrane potential and release of cytochrome C. The antitumor activity of CDDO-Me was associated with the inhibition of prosurvival p-Akt, NF-κB and mammalian target of rapamycin (mTOR) signaling proteins and the downstream targets of Akt and mTOR, such as p-Foxo3a (Akt) and p-S6K1, p-eIF-4E and p-4E-BP1 (mTOR). Silencing of Akt or mTOR with gene specific-siRNA sensitized the pancreatic cancer cells to CDDO-Me, demonstrating Akt and mTOR as molecular targets of CDDO-Me for its growth inhibitory and apoptosis-inducing activity

  13. Stem cell Transplantation for Eradication of Minimal PAncreatic Cancer persisting after surgical Excision (STEM PACE Trial, ISRCTN47877138): study protocol for a phase II study

    International Nuclear Information System (INIS)

    Schmitz-Winnenthal, Friedrich H; Schmidt, Thomas; Lehmann, Monika; Beckhove, Philipp; Kieser, Meinhard; Ho, Anthony D; Dreger, Peter; Büchler, Markus W

    2014-01-01

    Pancreatic cancer is the third most common cancer related cause of death. Even in the 15% of patients who are eligible for surgical resection the outlook is dismal with less than 10% of patients surviving after 5 years. Allogeneic hematopoietic (allo-HSCT) stem cell transplantation is an established treatment capable of to providing cure in a variety of hematopoietic malignancies. Best results are achieved when the underlying neoplasm has been turned into a stage of minimal disease by chemotherapy. Allo-HSCT in advanced solid tumors including pancreatic cancer have been of limited success, however studies of allo-HSCT in solid tumors in minimal disease situations have never been performed. The aim of this trial is to provide evidence for the clinical value of allo-HSCT in pancreatic cancer put into a minimal disease status by effective surgical resection and standard adjuvant chemotherapy. The STEM PACE trial is a single center, phase II study to evaluate adjuvant allogeneic hematopoietic stem cell transplantation in pancreatic cancer after surgical resection. The study will evaluate as primary endpoint 2 year progression free survival and will generate first time state-of-the-art scientific clinical evidence if allo-HSCT is feasible and if it can provide long term disease control in patients with effectively resected pancreatic cancer. Screened eligible patients after surgical resection and standard adjuvant chemotherapy with HLA matched related stem cell donor can participate. Patients without a matched donor will be used as a historical control. Study patients will undergo standard conditioning for allo-HSCT followed by transplantation of allogeneic unmanipulated peripheral blood stem cells. The follow up of the patients will continue for 2 years. Secondary endpoints will be evaluated on 7 postintervention visits. The principal question addressed in this trial is whether allo-HSCT can change the unfavourable natural course of this disease. The underlying

  14. Histone modification enhances the effectiveness of IL-13 receptor targeted immunotoxin in murine models of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2011-04-01

    Full Text Available Abstract Background Interleukin-13 Receptor α2 (IL-13Rα2 is a tumor-associated antigen and target for cancer therapy. Since IL-13Rα2 is heterogeneously overexpressed in a variety of human cancers, it would be highly desirable to uniformly upregulate IL-13Rα2 expression in tumors for optimal targeting. Methods We examined epigenetic regulation of IL-13Rα2 in a murine model of human pancreatic cancer by Bisulfite-PCR, sequencing for DNA methylation and chromatin immunoprecipitation for histone modification. Reverse transcription-PCR was performed for examining changes in IL-13Rα2 mRNA expression after treatment with histone deacetylase (HDAC and c-jun inhibitors. In vitro cytotoxicity assays and in vivo testing in animal tumor models were performed to determine whether HDAC inhibitors could enhance anti-tumor effects of IL-13-PE in pancreatic cancer. Mice harboring subcutaneous tumors were treated with HDAC inhibitors systemically and IL-13-PE intratumorally. Results We found that CpG sites in IL-13Rα2 promoter region were not methylated in all pancreatic cancer cell lines studied including IL-13Rα2-positive and IL-13Rα2-negative cell lines and normal cells. On the other hand, histones at IL-13Rα2 promoter region were highly-acetylated in IL-13Rα2-positive but much less in receptor-negative pancreatic cancer cell lines. When cells were treated with HDAC inhibitors, not only histone acetylation but also IL-13Rα2 expression was dramatically enhanced in receptor-negative pancreatic cancer cells. In contrast, HDAC inhibition did not increase IL-13Rα2 in normal cell lines. In addition, c-jun in IL-13Rα2-positive cells was expressed at higher level than in negative cells. Two types of c-jun inhibitors prevented increase of IL-13Rα2 by HDAC inhibitors. HDAC inhibitors dramatically sensitized cancer cells to immunotoxin in the cytotoxicity assay in vitro and increased IL-13Rα2 in the tumors subcutaneously implanted in the immunodeficient

  15. Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unsolved problem

    International Nuclear Information System (INIS)

    Kato, Takashi; Fukatsu, Hiroshi; Ito, Kengo; Tadokoro, Masanori; Ota, Toyohiro; Ikeda, Mitsuru; Isomura, Takayuki; Ito, Shigeki; Nishino, Masanari; Ishigaki, Takeo

    1995-01-01

    The aim of this study was to examine the significance and problems of 2-[fluorine-18]-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in diagnosing pancreatic cancer and mass-forming pancreatitis (MFP). PET, X-ray computed tomography (CT) and magnetic resonance (MR) imaging were performed in 15 patients with pancreatic cancer and nine patients with MFP. The areas of the PET scan were determined according to the markers drawn on the patients at CT or MR imaging. Regions of interests (ROIs) were placed by reference to the CT or MR images corresponding to the PET images. Tissue metabolism was evaluated by the differential absorption ratio (DAR) at 50 min after intravenous injection of FDG [DAR = tissue tracer concentration/(injected dose/body weight). The DAR value differed significantly in pancreatic cancer (mean±SD, 4.64±1.94) and MFP (mean±SD, 2.84±2.22) (P<0.05). In one false-negative case (mucinous adenocarcinoma), the tumour contained a small number of malignant cells. In one false-positive case, lymphocytes accumulated densely in the mass in the pancreatic head. Further studies are necessary to investigate the histopathological characteristics (especially the cellularity) and other factors affecting the FDG DAR on PET images. (orig.)

  16. The Low Chamber Pancreatic Cancer Cells Had Stem-Like Characteristics in Modified Transwell System: Is It a Novel Method to Identify and Enrich Cancer Stem-Like Cells?

    Directory of Open Access Journals (Sweden)

    Dongqing Wang

    2014-01-01

    Full Text Available Cancer stem cells (CSCs or cancer-initiating cells (CICs play an important role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. It is important to construct an effective method to identify and isolate CSCs for biotherapy of cancer. During the past years, many researchers had paid more attention to it; however, this method was still on seeking. Therefore, compared to the former methods that were used to isolate the cancer stem cell, in the present study, we tried to use modified transwell system to isolate and enrich CSCs from human pancreatic cancer cell lines (Panc-1. Our results clearly showed that the lower chamber cells in modified transwell system were easily forming spheres; furthermore, these spheres expressed high levels of stem cell markers (CD133/CD44/CD24/Oct-4/ESA and exhibited chemoresistance, underwent epithelial-to-mesenchymal transition (EMT, and possessed the properties of self-renewal in vitro and tumorigenicity in vivo. Therefore, we speculated that modified transwell assay system, as a rapid and effective method, can be used to isolate and enrich CSCs.

  17. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    Full Text Available Feng Wang,1,2 Hai Li,3 Xiao-Gang Yan,4 Zhi-Wei Zhou,2 Zhi-Gang Yi,5 Zhi-Xu He,6 Shu-Ting Pan,7 Yin-Xue Yang,3 Zuo-Zheng Wang,1 Xueji Zhang,8 Tianxing Yang,9 Jia-Xuan Qiu,7 Shu-Feng Zhou21Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colorectal Surgery, General Hospital, Ningxia Medical University, 4Department of Oncological Surgery, The First People’s Hospital of Yinchuan, 5Department of General Surgery, Changqing Yangehu Hospital, Yinchuan, 6Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 7Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 8Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 9Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USAAbstract: Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS, a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and Bx

  18. Resveratrol, a Red Wine Polyphenol, Suppresses Pancreatic Cancer by Inhibiting Leukotriene A4 Hydrolase

    Science.gov (United States)

    Oi, Naomi; Jeong, Chul-Ho; Nadas, Janos; Cho, Yong-Yeon; Pugliese, Angelo; Bode, Ann M.; Dong, Zigang

    2016-01-01

    The anticancer effects of red wine have attracted considerable attention. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a well-known polyphenolic compound of red wine with cancer chemopreventive activity. However, the basis for this activity is unclear. We studied leukotriene A4 hydrolase (LTA4H) as a relevant target in pancreatic cancer. LTA4H knockdown limited the formation of leukotriene B4 (LTB4), the enzymatic product of LTA4H, and suppressed anchorage-independent growth of pancreatic cancer cells. An in silico shape similarity algorithm predicted that LTA4H might be a potential target of resveratrol. In support of this idea, we found that resveratrol directly bound to LTA4H in vitro and in cells and suppressed proliferation and anchorage-independent growth of pancreatic cancer by inhibiting LTB4 production and expression of the LTB4 receptor 1 (BLT1). Notably, resveratrol exerted relatively stronger inhibitory effects than bestatin, an established inhibitor of LTA4H activity, and the inhibitory effects of resveratrol were reduced in cells where LTA4H was suppressed by shRNA-mediated knockdown. Importantly, resveratrol inhibited tumor formation in a xenograft mouse model of human pancreatic cancer by inhibiting LTA4H activity. Our findings identify LTA4H as a functionally important target for mediating the anticancer properties of resveratrol. PMID:20952510

  19. Molecular Endoscopic Ultrasound for Diagnosis of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bournet, Barbara [Department of Gastroenterology, University Hospital Center Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9 (France); INSERM U1037, University Hospital Center Rangueil, Toulouse (France); Pointreau, Adeline; Delpu, Yannick; Selves, Janick; Torrisani, Jerome [INSERM U1037, University Hospital Center Rangueil, Toulouse (France); Buscail, Louis, E-mail: buscail.l@chu-toulouse.fr [Department of Gastroenterology, University Hospital Center Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059 Toulouse Cedex 9 (France); INSERM U1037, University Hospital Center Rangueil, Toulouse (France); Cordelier, Pierre [INSERM U1037, University Hospital Center Rangueil, Toulouse (France)

    2011-02-24

    Endoscopic ultrasound-guided fine needle aspiration-biopsy is a safe and effective technique in diagnosing and staging of pancreatic ductal adenocarcinoma. However its predictive negative value does not exceed 50% to 60%. Unfortunately, the majority of pancreatic cancer patients have a metastatic and/or a locally advanced disease (i.e., not eligible for curative resection) which explains the limited access to pancreatic tissue specimens. Endoscopic ultrasound-guided fine needle aspiration-biopsy is the most widely used approach for cytological and histological material sampling in these situations used in up to two thirds of patients with pancreatic cancer. Based on this unique material, we and others developed strategies to improve the differential diagnosis between carcinoma and inflammatory pancreatic lesions by analysis of KRAS oncogene mutation, microRNA expression and methylation, as well as mRNA expression using both qRT-PCR and Low Density Array Taqman analysis. Indeed, differentiating pancreatic cancer from pseudotumoral chronic pancreatitis remains very difficult in current clinical practice, and endoscopic ultrasound-guided fine needle aspiration-biopsy analysis proved to be very helpful. In this review, we will compile the clinical and molecular advantages of using endoscopic ultrasound-guided fine needle aspiration-biopsy in managing pancreatic cancer.

  20. Molecular Endoscopic Ultrasound for Diagnosis of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Bournet, Barbara; Pointreau, Adeline; Delpu, Yannick; Selves, Janick; Torrisani, Jerome; Buscail, Louis; Cordelier, Pierre

    2011-01-01

    Endoscopic ultrasound-guided fine needle aspiration-biopsy is a safe and effective technique in diagnosing and staging of pancreatic ductal adenocarcinoma. However its predictive negative value does not exceed 50% to 60%. Unfortunately, the majority of pancreatic cancer patients have a metastatic and/or a locally advanced disease (i.e., not eligible for curative resection) which explains the limited access to pancreatic tissue specimens. Endoscopic ultrasound-guided fine needle aspiration-biopsy is the most widely used approach for cytological and histological material sampling in these situations used in up to two thirds of patients with pancreatic cancer. Based on this unique material, we and others developed strategies to improve the differential diagnosis between carcinoma and inflammatory pancreatic lesions by analysis of KRAS oncogene mutation, microRNA expression and methylation, as well as mRNA expression using both qRT-PCR and Low Density Array Taqman analysis. Indeed, differentiating pancreatic cancer from pseudotumoral chronic pancreatitis remains very difficult in current clinical practice, and endoscopic ultrasound-guided fine needle aspiration-biopsy analysis proved to be very helpful. In this review, we will compile the clinical and molecular advantages of using endoscopic ultrasound-guided fine needle aspiration-biopsy in managing pancreatic cancer

  1. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells.

    Science.gov (United States)

    Chen, Ru-Yi; Xu, Bin; Chen, Su-Feng; Chen, Si-Si; Zhang, Ting; Ren, Jun; Xu, Jian

    2014-10-28

    To investigate the effect of oridonin on nuclear transcription factors and to study the relationship between biological behavior and inflammatory factors in human pancreatic cancer (BxPC-3) cells. BxPC-3 cells were treated with various concentrations of oridonin, and viability curves were generated to test for inhibitory effects of the drug on cells. The expression of cytokines such as interleukin-1β (IL-1β), IL-6, or IL-33 was detected in BxPC-3 cell supernatants using an enzyme-linked immunosorbent assay (ELISA), and the protein expression of nuclear transcription factors including nuclear factor κB, activating protein-1, signal transducer and activator of transcription 3, bone morphogenetic protein 2, transforming growth factor β1 and sma and mad homologues in BxPC-3 cells was detected using Western blot. Carcinoma hallmark-related proteins such as survivin, vascular endothelial growth factor, and matrix metallopeptidase 2 were also detected using immunoblotting, and intra-nuclear IL-33 expression was detected using immunofluorescent staining. Treatment with oridonin reduced the viability of BxPC-3 cells in a dose dependent manner. The cells exhibited reduced growth following treatment with 8 μg/mL oridonin (13.05% ± 3.21%, P hallmarks and regulated the expression of various nuclear transcription factors. The results obtained suggest that oridonin alters the hallmarks of pancreatic cancer cells through the regulation of nuclear transcription factors.

  2. Role of 14-3-3σ in poor prognosis and in radiation and drug resistance of human pancreatic cancers

    International Nuclear Information System (INIS)

    Li, Zhaomin; Dong, Zizheng; Myer, David; Yip-Schneider, Michele; Liu, Jianguo; Cui, Ping; Schmidt, C Max; Zhang, Jian-Ting

    2010-01-01

    Pancreatic cancer is the fourth leading cause of death in the US. Unlike other solid tumors such as testicular cancer which are now curable, more than 90% of pancreatic cancer patients die due to lack of response to therapy. Recently, the level of 14-3-3σ mRNA was found to be increased in pancreatic cancers and this increased expression may contribute to the failure in treatment of pancreatic cancers. In the present study, we tested this hypothesis. Western blot analysis was used to determine 14-3-3σ protein level in fresh frozen tissues and was correlated to clinical outcome. A stable cell line expressing 14-3-3σ was established and the effect of 14-3-3σ over-expression on cellular response to radiation and anticancer drugs were tested using SRB assay and clonogenic assays. Cell cycle distribution and apoptosis analyses were performed using propidium iodide staining and PARP cleavage assays. We found that 14-3-3σ protein level was increased significantly in about 71% (17 of 24) of human pancreatic cancer tissues and that the 14-3-3σ protein level in cancers correlated with lymph node metastasis and poor prognosis. Furthermore, we demonstrated that over-expression of 14-3-3σ in a pancreatic cancer cell line caused resistance to γ-irradiation as well as anticancer drugs by causing resistance to treatment-induced apoptosis and G2/M arrest. The increased level of 14-3-3σ protein likely contributes to the poor clinical outcome of human pancreatic cancers by causing resistance to radiation and anticancer drugs. Thus, 14-3-3σ may serve as a prognosis marker predicting survival of pancreatic cancer patients and guide the clinical treatment of these patients

  3. Association between allergies and risk of pancreatic cancer.

    Science.gov (United States)

    Cotterchio, Michelle; Lowcock, Elizabeth; Hudson, Thomas J; Greenwood, Celia; Gallinger, Steven

    2014-03-01

    Less than 10% of pancreatic cancer cases survive 5 years, yet its etiology is not well understood. Studies suggest allergies are associated with reduced pancreatic cancer risk. Our study collected additional information on allergies (including skin prick test results and differentiation of allergic/nonallergic asthma), and is the first to assess possible confounding by allergy medications. A population-based case-control study was designed to comprehensively assess the association between allergy and pancreatic cancer risk. Pancreas cancer cases were diagnosed during 2011 to 2012, and identified through the Ontario Cancer Registry (345 cases). Population-based controls were identified using random digit dialing and age/sex frequency matched to cases (1,285 controls). Questionnaires collected lifetime allergy history (type of allergy, age at onset, skin prick testing results), allergy medications, and established pancreas cancer risk factors. Logistic regression was used to estimate odd ratios and test potential confounders, including allergy medications. Hay fever was associated with a significant reduction in pancreatic cancer risk [AOR = 0.68; 95% confidence intervals (CI), 0.52-0.89], and reduction was greatest for those whose skin prick test was positive for hay fever allergens. No particular patterns were observed as regards age at onset and duration of allergy. Positive dust/mold allergy skin prick test and animal allergies were associated with a statistically significant reduced pancreatic cancer risk; AOR = 0.49; 95% CI, 0.31-0.78 and AOR = 0.68; 95% CI, 0.46-0.99, respectively. Asthma was not associated with pancreatic cancer risk. These findings support the growing body of evidence that suggests certain allergies are associated with reduced pancreatic cancer risk. ©2014 AACR.

  4. The ubiquitin-proteasome pathway mediates gelsolin protein downregulation in pancreatic cancer

    NARCIS (Netherlands)

    Ni, Xiao-Guang; Zhou, Lu; Wang, Gui-Qi; Liu, Shang-Mei; Bai, Xiao-Feng; Liu, Fang; Peppelenbosch, Maikel P.; Zhao, Ping

    2008-01-01

    A well-known observation with respect to cancer biology is that transformed cells display a disturbed cytoskeleton, The underlying mechanisms, however, remain only partly understood. In an effort to identify possible mechanisms, we compared the proteome of pancreatic cancer with matched normal

  5. Retinoid Signaling in Pancreatic Cancer, Injury and Regeneration

    Science.gov (United States)

    Colvin, Emily K.; Susanto, Johana M.; Kench, James G.; Ong, Vivienna N.; Mawson, Amanda; Pinese, Mark; Chang, David K.; Rooman, Ilse; O'Toole, Sandra A.; Segara, Davendra; Musgrove, Elizabeth A.; Sutherland, Robert L.; Apte, Minoti V.; Scarlett, Christopher J.; Biankin, Andrew V.

    2011-01-01

    Background Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC). These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC. Methodology/Principal Findings We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1), a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A). However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies. Conclusions/Significance In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1. PMID:22220202

  6. Retinoid signaling in pancreatic cancer, injury and regeneration.

    Directory of Open Access Journals (Sweden)

    Emily K Colvin

    Full Text Available BACKGROUND: Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC. These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1, a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A. However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies. CONCLUSIONS/SIGNIFICANCE: In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1.

  7. Vitamin D metabolic pathway genes and pancreatic cancer risk.

    Directory of Open Access Journals (Sweden)

    Hannah Arem

    Full Text Available Evidence on the association between vitamin D status and pancreatic cancer risk is inconsistent. This inconsistency may be partially attributable to variation in vitamin D regulating genes. We selected 11 vitamin D-related genes (GC, DHCR7, CYP2R1, VDR, CYP27B1, CYP24A1, CYP27A1, RXRA, CRP2, CASR and CUBN totaling 213 single nucleotide polymorphisms (SNPs, and examined associations with pancreatic adenocarcinoma. Our study included 3,583 pancreatic cancer cases and 7,053 controls from the genome-wide association studies of pancreatic cancer PanScans-I-III. We used the Adaptive Joint Test and the Adaptive Rank Truncated Product statistic for pathway and gene analyses, and unconditional logistic regression for SNP analyses, adjusting for age, sex, study and population stratification. We examined effect modification by circulating vitamin D concentration (≤50, >50 nmol/L for the most significant SNPs using a subset of cohort cases (n = 713 and controls (n = 878. The vitamin D metabolic pathway was not associated with pancreatic cancer risk (p = 0.830. Of the individual genes, none were associated with pancreatic cancer risk at a significance level of p<0.05. SNPs near the VDR (rs2239186, LRP2 (rs4668123, CYP24A1 (rs2762932, GC (rs2282679, and CUBN (rs1810205 genes were the top SNPs associated with pancreatic cancer (p-values 0.008-0.037, but none were statistically significant after adjusting for multiple comparisons. Associations between these SNPs and pancreatic cancer were not modified by circulating concentrations of vitamin D. These findings do not support an association between vitamin D-related genes and pancreatic cancer risk. Future research should explore other pathways through which vitamin D status might be associated with pancreatic cancer risk.

  8. Genomic analyses identify molecular subtypes of pancreatic cancer.

    Science.gov (United States)

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  9. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  10. Pathobiological implications of MUC16 expression in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Dhanya Haridas

    Full Text Available MUC16 (CA125 belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC, the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.

  11. Pancreatic cancer clinical trials and accrual in the United States.

    Science.gov (United States)

    Hoos, William A; James, Porsha M; Rahib, Lola; Talley, Anitra W; Fleshman, Julie M; Matrisian, Lynn M

    2013-09-20

    Pancreatic cancer clinical trials open in the United States and their accrual were examined to identify opportunities to accelerate progress in the treatment of pancreatic cancer. Pancreatic cancer-specific clinical trials open in the United States in the years 2011 and 2012 were obtained from the Pancreatic Cancer Action Network database. Accrual information was obtained from trial sponsors. The portfolio of pancreatic cancer clinical trials identified by type (adenocarcinoma or neuroendocrine), phase, disease stage, and treatment approach is reported. More than half of trials for patients with pancreatic ductal adenocarcinoma applied biologic insights to new therapeutic approaches, and 38% focused on optimization of radiation or chemotherapy delivery or regimens. In 2011, pancreatic cancer trials required total enrollment of 11,786 patients. Actual accrual to 93.2% of trials was 1,804 patients, an estimated 4.57% of the patients with pancreatic cancer alive in that year. The greatest need was for patients with resectable cancer. Trials open in 2011 enrolled an average of 15% of their total target accrual. Physician recommendations greatly influenced patients' decision to enroll or not enroll onto a clinical trial. Matching to a clinical trial within a 50-mile radius and identifying trials for recurrent/refractory disease were documented as challenges for patient accrual. Overall trial enrollment indicates that pancreatic cancer trials open in 2011 would require 6.7 years on average to complete accrual. These results suggest that harmonizing patient supply and demand for clinical trials is required to accelerate progress toward improving survival in pancreatic cancer.

  12. 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin.

    Science.gov (United States)

    Lund, Kaja; Olsen, Cathrine Elisabeth; Wong, Judith Jing Wen; Olsen, Petter Angell; Solberg, Nina Therese; Høgset, Anders; Krauss, Stefan; Selbo, Pål Kristian

    2017-12-19

    Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma. 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.27 were previously generated in our lab. We investigated the cytotoxic effect of the endosomal/lysosomal-localizing photosensitizer TPCS 2a (fimaporfin) combined with light (photochemical treatment, PCT) using MTS viability assay, and used fluorescence microscopy to show localization of TPCS 2a and to investigate the effect of photodamage of lysosomes. Flow cytometric analysis was performed to investigate uptake of photosensitizer and to assess intracellular ROS levels. Expression and localization of LAMP1 was assessed using RT-qPCR, western blotting, and structured illumination microscopy. MTS viability assay was used to assess the effect of combinations of 5-FU, chloroquine (CQ), and photochemical treatment. Expression of CD105 was investigated using RT-qPCR, western blotting, flow cytometry, and fluorescence microscopy, and co-localization of TPCS 2a and anti-CD105-saporin was assessed using microscopy. Lastly, the MTS assay was used to investigate cytotoxic effects of photochemical internalization (PCI) of the anti-CD105-immunotoxin. The 5-FUR cell lines display hypersensitivity to PCT, which was linked to increased uptake of TPCS 2a , altered lysosomal distribution, lysosomal photodamage and increased expression of the lysosomal marker LAMP-1 in the 5-FUR cells. We show that inhibition of autophagy induced by either chloroquine or lysosomal photodamage increases the sensitivity to 5-FU in the resistant cells. The three 5-FUR sub-clones overexpress Endoglin (CD105). Treatment with the immunotoxin anti-CD105-saporin alone significantly reduced the viability of the CD105

  13. Immunotherapy for pancreatic cancer: present and future.

    Science.gov (United States)

    Aroldi, Francesca; Zaniboni, Alberto

    2017-06-01

    Despite the identification of some efficient drugs for the treatment of metastatic pancreatic cancer, this tumor remains one of the most lethal cancers and is characterized by a strong resistance to therapies. Pancreatic cancer has some unique features including the presence of a microenvironment filled with immunosuppressive mediators and a dense stroma, which is both a physical barrier to drug penetration and a dynamic entity involved in immune system control. Therefore, the immune system has been hypothesized to play an important role in pancreatic cancer. Thus, therapies acting on innate or adaptive immunity are being investigated. Here, we review the literature, report the most interesting results and hypothesize future treatment directions.

  14. Therapeutic Potential of Curcumin in Treatment of Pancreatic Cancer: Current Status and Future Perspectives.

    Science.gov (United States)

    Hosseini, Mina; Hassanian, Seyed Mahdi; Mohammadzadeh, Elham; ShahidSales, Soodabeh; Maftouh, Mina; Fayazbakhsh, Hasan; Khazaei, Majid; Avan, Amir

    2017-07-01

    Pancreatic cancer is among the leading cause of deaths due to cancer with extremely poor prognosis. Gemcitabine is being used in the treatment of patient with pancreatic ductal adenocarcinoma (PDAC), although, the response rate is bellow 12%. A recent phase III trial revealed that FOLFIRINOX could be an option for the treatment of metastatic PDAC patients, although it is associated with increased toxicity. Therefore, identification of novel agents that either improves gemcitabine activity, within novel combinatorial approaches, or with a better efficacy than gemcitabine is warranted. The antitumor activity of curcumin in several tumors, including prostate, breast and colorectal cancers have investigated. A recent phase II trial explored the effects of curcumin in advanced pancreatic cancer patient. They found that oral curcumin was well tolerated. Another trial showed the activity of 8,000 mg of curcumin in combination with gemcitabine in patients with advanced pancreatic cancer. This review summarizes the current knowledge about possible molecular mechanisms of curcumin in PDAC with particular emphasis on preclinical/clinical studies in pancreatic cancer treatment. J. Cell. Biochem. 118: 1634-1638, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Pancreatic cancer and depression: myth and truth

    Directory of Open Access Journals (Sweden)

    Schmid Roland M

    2010-10-01

    Full Text Available Abstract Background Various studies reported remarkable high incidence rates of depression in cancer patients compared with the general population. Pancreatic cancer is still one of the malignancies with the worst prognosis and therefore it seems quite logical that it is one of the malignancies with the highest incidence rates of major depression. However, what about the scientific background of this relationship? Is depression in patients suffering from pancreatic cancer just due to the confrontation with a life threatening disease and its somatic symptoms or is depression in this particular group of patients a feature of pancreatic cancer per se? Discussion Several studies provide evidence of depression to precede the diagnosis of pancreatic cancer and some studies even blame it for its detrimental influence on survival. The immense impact of emotional distress on quality of life of cancer patients enhances the need for its early diagnosis and adequate treatment. Knowledge about underlying pathophysiological mechanisms is required to provide the optimal therapy. Summary A review of the literature on this issue should reveal which are the facts and what is myth.

  16. The MLL1-H3K4me3 Axis-Mediated PD-L1 Expression and Pancreatic Cancer Immune Evasion.

    Science.gov (United States)

    Lu, Chunwan; Paschall, Amy V; Shi, Huidong; Savage, Natasha; Waller, Jennifer L; Sabbatini, Maria E; Oberlies, Nicholas H; Pearce, Cedric; Liu, Kebin

    2017-01-01

    Pancreatic cancer is one of the cancers where anti-PD-L1/PD-1 immunotherapy has been unsuccessful. What confers pancreatic cancer resistance to checkpoint immunotherapy is unknown. The aim of this study is to elucidate the underlying mechanism of PD-L1 expression regulation in the context of pancreatic cancer immune evasion. Pancreatic cancer mouse models and human specimens were used to determine PD-L1 and PD-1 expression and cancer immune evasion. Histone methyltransferase inhibitors, RNAi, and overexpression were used to elucidate the underlying molecular mechanism of PD-L1 expression regulation. All statistical tests were two-sided. PD-L1 is expressed in 60% to 90% of tumor cells in human pancreatic carcinomas and in nine of 10 human pancreatic cancer cell lines. PD-1 is expressed in 51.2% to 52.1% of pancreatic tumor-infiltrating cytotoxic T lymphocytes (CTLs). Tumors grow statistically significantly faster in FasL-deficient mice than in wild-type mice (P = .03-.001) and when CTLs are neutralized (P = .03-evasion. Targeting the MLL1-H3K4me3 axis is an effective approach to enhance the efficacy of checkpoint immunotherapy against pancreatic cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Chemical Constituents of Propolis from Vietnamese Trigona minor and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line.

    Science.gov (United States)

    Nguyen, Hai X; Nguyen, Mai T T; Nguyen, Nhan T; Awale, Suresh

    2017-08-25

    The ethanol extract of propolis from the Vietnamese stingless bee Trigona minor possessed potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells in nutrient-deprived medium, with a PC 50 value of 14.0 μg/mL. Chemical investigation of this extract led to the isolation of 15 cycloartane-type triterpenoids, including five new compounds (1-5), and a lanostane-type triterpenoid. The structures of the new compounds were elucidated on the basis of NMR spectroscopic analysis. Among the isolated compounds, 23-hydroxyisomangiferolic acid B (5) and 27-hydroxyisomangiferolic acid (13) exhibited the most potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived conditions, with PC 50 values of 4.3 and 3.7 μM, respectively.

  18. General Information about Pancreatic Cancer

    Science.gov (United States)

    ... overweight. Having a personal history of diabetes or chronic pancreatitis . Having a family history of pancreatic cancer or ... have not started treatment. Five types of standard treatment are used: Surgery ... Whipple procedure : A surgical procedure in which the head of the pancreas , ...

  19. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis.

    Science.gov (United States)

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-05-09

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases.

  20. Pancreatic Cancer: Multicenter Prospective Data Collection and Analysis by the Hungarian Pancreatic Study Group.

    Science.gov (United States)

    Lakatos, Gábor; Balázs, Anita; Kui, Balázs; Gódi, Szilárd; Szücs, Ákos; Szentesi, Andrea; Szentkereszty, Zsolt; Szmola, Richárd; Kelemen, Dezső; Papp, Róbert; Vincze, Áron; Czimmer, József; Pár, Gabriella; Bajor, Judit; Szabó, Imre; Izbéki, Ferenc; Halász, Adrienn; Leindler, László; Farkas, Gyula; Takács, Tamás; Czakó, László; Szepes, Zoltán; Hegyi, Péter; Kahán, Zsuzsanna

    2016-06-01

    Pancreatic cancer is a devastating disease with poor prognosis. There is very limited information available regarding the epidemiology and treatment strategies of pancreatic cancer in Central Europe. The purpose of the study was to prospectively collect and analyze data of pancreatic cancer in the Hungarian population. The Hungarian Pancreatic Study Group (HPSG) organized prospective, uniform data collection. Altogether 354 patients were enrolled from 14 Hungarian centers. Chronic pancreatitis was present in 3.7% of the cases, while 33.7% of the patients had diabetes. Family history for pancreatic cancer was positive in 4.8%. The most frequent presenting symptoms included pain (63.8%), weight loss (63%) and jaundice (52.5%). The reported frequency of smoking and alcohol consumption was lower than expected (28.5% and 27.4%, respectively). The majority of patients (75.6%) were diagnosed with advanced disease. Most patients (83.6%) had a primary tumor located in the pancreatic head. The histological diagnosis was ductal adenocarcinoma in 90.7% of the cases, while neuroendocrine tumor was present in 5.3%. Biliary stent implantation was performed in 166 patients, 59.2% of them received metal stents. Primary tumor resection was performed in 60 (16.9%) patients. Enteral or biliary bypass was done in 35 and 49 patients, respectively. In a multivariate Cox-regression model, smoking status and presence of gemcitabine-based chemotherapy were identified as independent predictors for overall survival. We report the first data from a large cohort of Hungarian pancreatic cancer patients. We identified smoking status and chemotherapy as independent predictors in this cohort.

  1. Selection and Outcome of Portal Vein Resection in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Nakao, Akimasa

    2010-01-01

    Pancreatic cancer has the worst prognosis of all gastrointestinal neoplasms. Five-year survival of pancreatic cancer after pancreatectomy is very low, and surgical resection is the only option to cure this dismal disease. The standard surgical procedure is pancreatoduodenectomy (PD) for pancreatic head cancer. The morbidity and especially the mortality of PD have been greatly reduced. Portal vein resection in pancreatic cancer surgery is one attempt to increase resectability and radicality, and the procedure has become safe to perform. Clinicohistopathological studies have shown that the most important indication for portal vein resection in patients with pancreatic cancer is the ability to obtain cancer-free surgical margins. Otherwise, portal vein resection is contraindicated

  2. Selection and Outcome of Portal Vein Resection in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Akimasa [Department of Surgery II, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2010-11-24

    Pancreatic cancer has the worst prognosis of all gastrointestinal neoplasms. Five-year survival of pancreatic cancer after pancreatectomy is very low, and surgical resection is the only option to cure this dismal disease. The standard surgical procedure is pancreatoduodenectomy (PD) for pancreatic head cancer. The morbidity and especially the mortality of PD have been greatly reduced. Portal vein resection in pancreatic cancer surgery is one attempt to increase resectability and radicality, and the procedure has become safe to perform. Clinicohistopathological studies have shown that the most important indication for portal vein resection in patients with pancreatic cancer is the ability to obtain cancer-free surgical margins. Otherwise, portal vein resection is contraindicated.

  3. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice.

    Science.gov (United States)

    Quirin, Kayla A; Kwon, Jason J; Alioufi, Arafat; Factora, Tricia; Temm, Constance J; Jacobsen, Max; Sandusky, George E; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Mendell, Joshua T; Korc, Murray; Kota, Janaiah

    2018-03-16

    Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 10 12 viral genomes (vg). Intraductal delivery of 1 × 10 11 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 10 11 vg. In a Kras G12D -driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  4. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice

    Directory of Open Access Journals (Sweden)

    Kayla A. Quirin

    2018-03-01

    Full Text Available Recombinant adeno-associated virus (rAAV-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9 expressing GFP in a self-complementary (sc AAV vector under an EF1α promoter (scAAV.GFP following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg. Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  5. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    International Nuclear Information System (INIS)

    Li, Chen-Shuang; Tian, Haijun; Zou, Min; Zhao, Ke-Wei; Li, Yawei; Lao, Lifeng; Brochmann, Elsa J.; Duarte, M. Eugenia L.; Daubs, Michael D.; Zhou, Yan-Heng; Murray, Samuel S.; Wang, Jeffrey C.

    2015-01-01

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  6. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chen-Shuang [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Tian, Haijun, E-mail: haijuntianmd@gmail.com [Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai (China); Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Department of Surgery, Bethune School of Medics, Shijiazhuang (China); Zou, Min [Department of Orthodontics, School and Hospital of Stomatology, Xi' an Jiaotong University, Xi' an (China); Zhao, Ke-Wei [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Li, Yawei; Lao, Lifeng [Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Brochmann, Elsa J. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Duarte, M. Eugenia L. [National Institute of Traumatology and Orthopaedics, Rio de Janeiro (Brazil); Daubs, Michael D. [Division of Orthopaedic Surgery, Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV (United States); Zhou, Yan-Heng, E-mail: yanhengzhou@vip.163.com [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Murray, Samuel S. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Wang, Jeffrey C. [Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA (United States)

    2015-10-16

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  7. Establishment and characterization of new cell lines of anaplastic pancreatic cancer, which is a rare malignancy: OCUP-A1 and OCUP-A2

    International Nuclear Information System (INIS)

    Miura, Kotaro; Kimura, Kenjiro; Amano, Ryosuke; Yamazoe, Sadaaki; Ohira, Go; Murata, Akihiro; Nishio, Kohei; Hasegawa, Tsuyoshi; Yashiro, Masakazu; Nakata, Bunzo; Ohira, Masaichi; Hirakawa, Kosei

    2016-01-01

    Anaplastic pancreatic cancer (APC) cell lines have been scarcely established. The morphology, gene expressions, karyotyping and epithelial-mesenchymal transition markers of newly established APC cell lines OCUP-A1 and OCUP-A2 were analyzed. Their abilities of proliferation under normoxia and hypoxia, migration and invasion were compared to 4 commercially available pancreatic ductal adenocarcinoma (PDA) cell lines. Their induction of angiogenesis, stem-like cell population and subcutaneous tumor growth in nude mice were estimated, comparing 2 PDA cell lines examined here. OCUP-A1 and OCUP-A2 cells continuously grew with spindle and polygonal shapes, respectively. Gene analysis revealed 9 gene mutations including KRAS and TP53. Karyotyping clarified numerical structural abnormalities in both cells. Loss of E-cadherin and expression of vimentin in both cell lines were observed. The doubling time of both cell lines was approximately 20 h. Proliferation, migration and invasion abilities were not notable compared to other PDA cell lines. However stem-like cell population of both cell lines was superior to a part of PDA cell lines. Moreover OCUP-A1 showed stronger hypoxia tolerance and induction of angiogenesis than other PDA cell lines. The tumorigenicity in vivo of OCUP-A2 was stronger than conventional PDA cell lines. The OCUP-A1 and OCUP-A2 cell lines of rare malignancies might be useful for investigating the biology of pancreatic cancer

  8. Adoptive immunotherapy of human pancreatic cancer with lymphokine-activated killer cells and interleukin-2 in a nude mouse model

    International Nuclear Information System (INIS)

    Marincola, F.M.; Da Pozzo, L.F.; Drucker, B.J.; Holder, W.D. Jr.

    1990-01-01

    A pancreatic cancer cell line was grown in orthotopic and heterotopic positions in young Swiss/NIH nude mice, which were tested with adoptive immunotherapy. Mice were injected with 1 x 10(7) human cancer cells in the subcutaneous tissue and duodenal lobe of the pancreas. The mice were randomly divided into four groups: group IA (LAK + IL-2) (N = 25) received 2 X 10(7) human lymphokine-activated killer (LAK) cells from normal donors by tail vein injection followed by 10,000 units of human recombinant interleukin-2 (IL-2) given intraperitoneally every 12 hours for 28 days; group IB (IL-2) (N = 27) was given the same dose of IL-2 alone; group IC (RPMI-1640) (N = 18) received a placebo consisting of 1 ml of RPMI-1640 intraperitoneally every 12 hours; and group ID (LAK) (N = 14) received 2 X 10(7) LAK cells but no IL-2. Toxicity was significantly higher in group IB, with a mortality rate of 45.5% (10/22 animals) versus a 0% mortality (0/25) in group IA. None of the group IA or IB animals died of pancreatic cancer during the experiment. The animals that did not receive IL-2 died before 28 days in 14.2% of group IC and in 16.7% of group ID. The area under the growth curve of subcutaneous tumors during the course of treatment and the pancreatic tumor weight at the end of treatment were compared in each group. Subcutaneous tumors had a reduced rate of growth in group IA animals compared to all the other treatments. Pancreatic tumor growth was slowed in group IA. The animals treated with IL-2 alone (group IB) showed some slowing of tumor growth that was intermediate between group IA, group IC, and group ID. A similar experiment was done with irradiated (375 rad) mice. Nine nude mice with tumors were treated with LAK + IL-2 (group IIA), eight received IL-2 alone (group IIB), and seven received placebo (group IIC)

  9. Childhood body mass index and risk of adult pancreatic cancer

    DEFF Research Database (Denmark)

    Nogueira, Leticia; Stolzenberg-Solomon, Rachael; Gamborg, Michael

    2017-01-01

    incident pancreatic cancer cases from 1968-2012. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox proportional hazard regressions. Results: During 8,207,015 person-years of follow-up, 1,268 pancreatic cancer cases were diagnosed. Childhood BMI z-scores at ages 7-13 years were......Background: Excess weight in adulthood is one of the few modifiable risk factors for pancreatic cancer, and height has associations as well. This leads to question whether body weight and height in childhood are associated with adult pancreatic cancer. Objective: To examine if childhood body mass...... from 7-13 years is positively and linearly associated with adult pancreatic cancer; the higher the BMI, the higher the risk. Excess childhood BMI may be indicative of processes initiated early in life that lead to this cancer. Prevention of childhood adiposity may decrease the burden of pancreatic...

  10. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    International Nuclear Information System (INIS)

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai; Esau, Christine; Gusev, Yuriy; Lerner, Megan R.; Postier, Russell G.; Brackett, Daniel J.; Schmittgen, Thomas D.

    2011-01-01

    Research highlights: → The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. → miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. → miR-132 and miR-212 expression is increased by a β2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G 2 /M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the β2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The β2 adrenergic pathway may play an important role in this novel mechanism.

  11. Effects of CPG ODN on biological behavior of PANC-1 and expression of TLR9 in pancreatic cancer.

    Science.gov (United States)

    Wu, Han-Qing; Wang, Bo; Zhu, Shi-Kai; Tian, Yuan; Zhang, Jing-Hui; Wu, He-Shui

    2011-02-28

    To determine the expression of toll-like receptor 9 (TLR9) in pancreatic tumor and the effects of cytosine phosphate-guanosine oligodeoxynucleotides 2216 (CPG ODN2216) on biological behavior of pancreatic carcinoma cell line PANC-1 and explore their clinical significance. The immunohistochemistry and Western blot were used to determine the expression of TLR9 protein in pancreatic cancer tissues, and immunofluorescence staining was performed to detect the TLR9 protein expression in pancreatic carcinoma cell line PANC-1. To assess the effects of CPG ODN2216 on the invasive property of Panc-1 cells, in vitro cell adhesion, wound-healing scrape, and invasion and cell colony formation were evaluated. TLR9 was highly expressed in pancreatic cancer tissues and PANC-1 cells. The percentage of positive cells expressing TLR9 protein in human pancreatic tissues, paracancerous tissues and normal tissues were 73.3%, 33.3% and 20.0%, respectively, and the protein expression level of TLR9 was gradually descending (P PANC-1 cells in CPG ODN 2216 treatment group were significantly lower than in the control group (P PANC-1 cells in treatment group was significantly decreased and CPG ODN2216 had an inhibitive effect in the growth of Panc-1 cells in a dose and time-dependent manner (P Panc-1 cells.

  12. Pancreatic cancer accompanied by a moderate-sized pseudocyst with extrapancreatic growth

    International Nuclear Information System (INIS)

    Ohkura, Yu; Sasaki, Kazunari; Matsuda, Masamichi; Hashimoto, Masaji; Fujii, Takeshi; Watanabe, Goro

    2015-01-01

    Pancreatic cancer accompanied by a moderate-sized pseudocyst with extrapancreatic growth is extremely rare. Diagnosis of pancreatic cancer on preoperative imaging is difficult when the pancreatic parenchyma is compressed by a pseudocyst and becomes unclear. Despite advances in imaging techniques, accurate preoperative diagnosis of cystic lesions of the pancreas remains difficult. In this case, it was challenging to diagnose pancreatic cancer preoperatively as we could not accurately assess the pancreatic parenchyma, which had been compressed by a moderate-sized cystic lesion with extrapancreatic growth. A 63-year-old woman underwent investigations for epigastric abdominal pain. She had no history of pancreatitis. Although we suspected pancreatic ductal carcinoma with a pancreatic cyst, there was no mass lesion or low-density area suggestive of pancreatic cancer. We did not immediately suspect pancreatic cancer, as development of a moderate-sized cyst with extrapancreatic growth is extremely rare and known tumor markers were not elevated. Therefore, we initially suspected that a massive benign cyst (mucinous cyst neoplasm, serous cyst neoplasm, or intraductal papillary mucinous neoplasm) resulted in stenosis of the main pancreatic duct. We were unable to reach a definitive diagnosis prior to the operation. We had planned a pancreaticoduodenectomy to reach a definitive diagnosis. However, we could not remove the tumor because of significant invasion of the surrounding tissue (portal vein, superior mesenteric vein, etc.). The fluid content of the cyst was serous, and aspiration cytology from the pancreatic cyst was Class III (no malignancy), but the surrounding white connective tissue samples were positive for pancreatic adenocarcinoma on pathological examination during surgery. We repeated imaging (CT, MRI, endoscopic ultrasound, etc.) postoperatively, but there were neither mass lesions nor a low-density area suggestive of pancreatic cancer. In retrospect, we think

  13. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines.

    Science.gov (United States)

    Park, S H; Sung, J H; Kim, E J; Chung, N

    2015-02-01

    Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.

  14. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines

    International Nuclear Information System (INIS)

    Park, S.H.; Sung, J.H.; Kim, E.J.; Chung, N.

    2014-01-01

    Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC 50 ), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy

  15. Pancreatic cancer: any prospects for prevention?

    OpenAIRE

    Hart, A.

    1999-01-01

    Primary prevention of pancreatic cancer and public health measures to reduce its incidence are dependent on data from epidemiological studies. Currently, the only definite risk factor is smoking, although a diet rich in fruit and vegetables may be protective. The K-ras mutation may have a role in diagnosis and screening.


Keywords: pancreatic cancer; epidemiology; risk factors; smoking; diet; alcohol

  16. Concurrent chemoradiotherapy with gemcitabine and cisplatin for pancreatic cancer: from the laboratory to the clinic

    International Nuclear Information System (INIS)

    Symon, Zvi; Davis, Mary; McGinn, Cornelius J.; Zalupski, Mark M.; Lawrence, Theodore S.

    2002-01-01

    Purpose: We have reported that gemcitabine and concurrent radiation is a promising therapy for patients with pancreatic cancer. We investigated whether the addition of cisplatin, which may increase the systemic efficacy of gemcitabine, would be synergistic with gemcitabine and/or radiation in human pancreatic cancer cell lines. Methods and Materials: BxPc3 and Panc-1 human pancreatic cancer cells were treated with three different schedules before radiation: (A) a sequential incubation of gemcitabine for 2 h followed by cisplatin for 2 h, (B) gemcitabine for 2 h, followed by washout of drug, replenishment of media for a 24-h incubation, followed by cisplatin for 2 h, and (C) gemcitabine for 24 h with a concurrent incubation of cisplatin for the last 2 h. Cells were assessed for clonogenic survival using a standard assay. Synergism was evaluated by the median effect analysis. Results: The schedule shown to be maximally synergistic for both cell lines was the consecutive 2-h gemcitabine, 2-h cisplatin exposure, particularly at surviving fractions of <0.5. Cisplatin did not produce radiosensitization nor did it affect gemcitabine-mediated radiosensitization. Conclusion: Cisplatin produces synergistic cytotoxicity with gemcitabine without compromising gemcitabine-mediated radiosensitization. On the basis of these laboratory and previous clinical observations, we have initiated a Phase I trial of cisplatin plus gemcitabine and radiotherapy in patients with unresectable pancreatic cancer

  17. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Deng L

    2012-09-01

    Full Text Available Li Deng,1,# Xingfa Ke,4,# Zhiying He,3,# Daoqiu Yang,5 Hai Gong,6 Yingying Zhang,1 Xiaolong Jing,4 Jianzhong Yao,2 Jianming Chen11Department of Pharmaceutics, 2Department of Medicinal Chemistry, School of Pharmacy, 3Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China; 5Department of Dermatology, 107th Hospital of PLA, Yantai, People's Republic of China; 6Department of Radiation Oncology, General Hospital of Jinan Military Region, Jinan, People’s Republic of China#These authors contributed equally to this workAbstract: Pancreatic cancer is a highly lethal disease with a 5-year survival rate less than 5% due to the lack of an early diagnosis method and effective therapy. To provide a novel early diagnostic method and targeted therapy for pancreatic cancer, a multifunctional nanoimmunoliposome with high loading of ultrasmall superparamagnetic iron oxides (USPIOs and doxorubicin (DOX was prepared by transient binding and reverse-phase evaporation method, and was conjugated with anti-mesothelin monoclonal antibody by post-insertion method to target anti-mesothelin-overexpressed pancreatic cancer cells. The in vitro and in vivo properties of this anti-mesothelin antibody-conjugated PEGlyated liposomal DOX and USPIOs (M-PLDU; and PEGlyated nanoimmunoliposome without antibody conjugation [PLDU] were evaluated both in human pancreatic cancer cell line Panc-1 cell and in a pancreatic cancer xenograft animal model. Results showed that M-PLDUs were spherical and uniform with a diameter about ~180 nm, with a zeta potential of about −28~−30 mV, and had good efficacy encapsulating DOX and USPIOs. The in vitro study demonstrated that M-PLDUs possessed good magnetic resonance imaging (MRI capability with a transverse relaxivity (r2 of about 58.5 mM–1 • s–1. Confocal microscopy showed more

  18. Value of computed tomography as a screening examination of pancreatic cancer

    International Nuclear Information System (INIS)

    Honda, Hiroshi; Watanabe, Katsushi; Nishikawa, Kiyoshi

    1983-01-01

    The abdominal CT films of 50 patients were reviewed by ten radiologists to evaluate the role of CT examination in the screening of pancreatic cancer. The 50 patients consisted of 10 with pancreatic cancer, 8 with other pancreatic abnormalities, and 32 with normal pancreas. Ten radiologists were divided into two groups according to their experience in evaluating CT examinations, an experienced group and an unexperienced group, respectively. In the detectability of pancreatic abnormality, the experienced group showed a sensitivity of 72.2% and a specificity of 86.2%. The unexperienced group showed a sensitivity of 70.9% and a specificity of 72.0%. In the detectability of pancreatic cancer, the experienced group showed a sensitivity of 62.0% and a specificity of 83.4%. The unexperienced group showed a sensitivity of 66.0% and a specificity of 81.8%. In the localization of the pancreatic cancer, there was no difference between the two groups. Pancreatic abnormality can be detected with high accuracy, but diagnosis of the nature of pancreatic cancer is difficult. Experience in evaluating CT examinations elevates the detectability of pancreatic abnormality but does not elevate the detectability of pancreatic cancer. These results suggest the difficulty in diagnosis of pancreatic cancer. (author)

  19. Targeted Delivery of Auristatin-Modified Toxins to Pancreatic Cancer Using Aptamers

    Directory of Open Access Journals (Sweden)

    Christina Kratschmer

    2018-03-01

    Full Text Available Pancreatic cancer is one of the most lethal malignancies. Treatment with the first-line agent, gemcitabine, is often unsuccessful because it, like other traditional chemotherapeutic agents, is non-specific, resulting in off-target effects that necessitate administration of subcurative doses. Alternatively, monomethyl auristatin E (MMAE and monomethyl auristatin F (MMAF are highly toxic small molecules that require ligand-targeted delivery. MMAE has already received FDA approval as a component of an anti-CD30 antibody-drug conjugate, brentuximab vedotin. However, in contrast to antibodies, aptamers have distinct advantages. They are chemicals, which allows them to be produced synthetically and facilitates the rapid development of diagnostics and therapeutics with clinical applicability. In addition, their small size allows for enhanced tissue distribution and rapid systemic clearance. Here, we assayed the toxicity of MMAE and MMAF conjugated to an anti-transferrin receptor aptamer, Waz, and an anti-epidermal growth factor receptor aptamer, E07, on the pancreatic cancer cell lines Panc-1, MIA PaCa-2, and BxPC3. In vitro, our results indicate that these aptamers are a viable option for the targeted delivery of toxic payloads to pancreatic cancer cells.

  20. External beam radiotherapy for unresectable pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kagami, Yoshikazu; Nishio, Masamichi; Narimatsu, Naoto; Ogawa, Hajime; Betsuyaku, Takashi; Hirata, Kouji; Ikeda, Shigeyuki (Sapporo National Hospital (Japan). Hokkaido Cancer Center)

    1992-04-01

    Between 1980 to 1989, 24 patients with unresectable pancreatic cancer (10 with localized tumor alone and 14 with distant metastases) have been treated with external beam radiation at Sapporo National Hospital, Hokkaido Cancer Center. Response rate of pancreatic tumor treated with external beam radiation was 33.3% (7/21) with no complete response. Median survival time of the patients with localized tumor was 10 months and that of the patients with distant metastases was 3 months. Relief of pain occurred in 92.9% (12/13) of patients having pain due to pancreatic tumor and in 75% (3/4) of patients having pain due to bone metastases. Major complication was gastric ulcer which developed in 5 patients of 21 patients given stomach irradiation. We concluded that unresectable pancreatic cancer would be frequently indicated for radiotherapy. (author).

  1. Emphasis on neoadjuvant therapy for “resectable” pancreatic cancer

    Directory of Open Access Journals (Sweden)

    LIU Chang

    2015-05-01

    Full Text Available The treatment concept for pancreatic cancer is being transferred from “surgery first” to MDT model. The postoperative adjuvant treatment of pancreatic cancer can significantly improve the prognosis of patients and has become the standardized diagnostic and treatment practice; the value and significance of neoadjuvant therapy remains unclear. Limited clinical studies of “borderline resectable” pancreatic cancer have shown that neoadjuvant therapy can improve the R0 resection rate and improve the prognosis of patients, and it is recommended for clinical application. But the significance of neoadjuvant therapy in “resectable” pancreatic cancer is still controversial. There is a lack of consensus on indications, cycles, and regimens. It is necessary to carry out a series of prospective control studies to objectively evaluate the value of neoadjuvant therapy in improving the prognosis of “resectable” pancreatic cancer.

  2. A Case of Pancreatic Cancer in the Setting of Autoimmune Pancreatitis with Nondiagnostic Serum Markers

    Directory of Open Access Journals (Sweden)

    Manju D. Chandrasegaram

    2013-01-01

    Full Text Available Background. Autoimmune pancreatitis (AIP often mimics pancreatic cancer. The diagnosis of both conditions is difficult preoperatively let alone when they coexist. Several reports have been published describing pancreatic cancer in the setting of AIP. Case Report. The case of a 53-year-old man who presented with abdominal pain, jaundice, and radiological features of autoimmune pancreatitis, with a “sausage-shaped” pancreas and bulky pancreatic head with portal vein impingement, is presented. He had a normal serum IgG4 and only mildly elevated Ca-19.9. Initial endoscopic ultrasound-(EUS- guided fine-needle aspiration (FNA of the pancreas revealed an inflammatory sclerosing process only. A repeat EUS guided biopsy following biliary decompression demonstrated both malignancy and features of autoimmune pancreatitis. At laparotomy, a uniformly hard, bulky pancreas was found with no sonographically definable mass. A total pancreatectomy with portal vein resection and reconstruction was performed. Histology revealed adenosquamous carcinoma of the pancreatic head and autoimmune pancreatitis and squamous metaplasia in the remaining pancreas. Conclusion. This case highlights the diagnostic and management difficulties in a patient with pancreatic cancer in the setting of serum IgG4-negative, Type 2 AIP.

  3. N,N'-di-(m-methylphenyi)-3,6-dimethyl-1,4-dihydro-1,2,4,5-tetrazine-1,4-dicarboamide (ZGDHu-1) suppresses the proliferation of PANC-1 pancreatic cancer cells via apoptosis and G2/M cell cycle arrest.

    Science.gov (United States)

    Chen, Su-Feng; Xia, Jun; Lv, Ya-Ping; Liu, Jin-Lin; Li, Wan-Xiang; Yu, Xi-Ping; Hu, Wei-Xiao; Zhou, Yong-Lie

    2015-04-01

    Pancreatic cancer is one of the human gastrointestinal malignancies with a high mortality and poor prognosis. Approximately eighty percent of patients are diagnosed with unresectable or metastatic disease. Thus, development of novel chemicals in the treatment of pancreatic cancer is imperative. This study aimed to investigate the anticancer effects of N,N'-di-(m-methylphenyi)-3,6-dimethyl-1,4-dihydro-1,2,4,5-tetrazine-1,4-dicarboamide (ZGDHu-1), a new tetrazine derivative, on the PANC-1 pancreatic cancer cell line and clarify the underlying molecular mechanism. Using an MTT assay, we found that ZGDHu-1 significantly suppressed the proliferation of PANC-1 cells in a time- and dose-dependent manner. Moreover, according to the morphological and flow cytometric analysis, the results indicated that ZGDHu-1 induced PANC-1 cell apoptosis and G2/M cell cycle arrest in a dose-dependent manner. In the western blot analysis, expression of the pro-apoptotic Bax gene was upregulated while the anti-apoptotic Bcl-2 gene was downregulated following treatment with ZGDHu-1. ZGDHu-1 also activated pro-caspase-3 and PARP and increased the expression of NF-κB inhibitor IκB. Furthermore, the expression levels of G2/M regulatory molecules such as cyclin B1 and cdc2 were decreased while that of Chk1 was increased. These results suggested that ZGDHu-1 suppressed the proliferation of pancreatic cancer cells, rendering it a potential therapeutic drug for the treatment of pancreatic cancer.

  4. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in BXPC-3 and PANC-1 human pancreatic cancer cells.

    Science.gov (United States)

    Wang, Lin; Zhu, Zhi-Xia; Zhang, Wen-Ying; Zhang, Wei-Min

    2011-09-01

    Previous studies have shown that both pemetrexed, a cytotoxic drug, and erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), inhibit the cell growth of pancreatic cancer cells. However, whether they exert a synergistic antitumor effect on pancreatic cancer cells remains unknown. The present study aimed to assess the synergistic effect of erlotinib in combination with pemetrexed using different sequential administration schedules on the proliferation of human pancreatic cancer BXPC-3 and PANC-1 cells and to probe its cellular mechanism. The EGFR and K-ras gene mutation status was examined by quantitative PCR high-resolution melting (qPCR-HRM) analysis. BXPC-3 and PANC-1 cells were incubated with pemetrexed and erlotinib using different administration schedules. MTT assay was used to determine cytotoxicity, and cell cycle distribution was determined by flow cytometry. The expression and phosphorylation of EGFR, HER3, AKT and MET were determined using Western blotting. Both pemetrexed and erlotinib inhibited the proliferation of BXPC-3 and PANC-1 cells in a dose- and time-dependent manner in vitro. Synergistic effects on cell proliferation were observed when pemetrexed was used in combination with erlotinib. The degree of the synergistic effects depended on the administration sequence, which was most obvious when erlotinib was sequentially administered at 24-h interval following pemetrexed. Cell cycle studies revealed that pemetrexed induced S arrest and erlotinib induced G(0)/G(1) arrest. The sequential administration of erlotinib following pemetrexed induced S arrest. Western blot analyses showed that pemetrexed increased and erlotinib decreased the phosphorylation of EGFR, HER3 and AKT, respectively. However, both pemetrexed and erlotinib exerted no significant effects on the phosphorylation of c-MET. The phosphorylation of EGFR, HER3 and AKT was significantly suppressed by scheduled incubation with pemetrexed followed by erlotinib

  5. Increased pancreatic cancer risk following radiotherapy for testicular cancer.

    Science.gov (United States)

    Hauptmann, Michael; Børge Johannesen, Tom; Gilbert, Ethel S; Stovall, Marilyn; van Leeuwen, Flora E; Rajaraman, Preetha; Smith, Susan A; Weathers, Rita E; Aleman, Berthe M P; Andersson, Michael; Curtis, Rochelle E; Dores, Graça M; Fraumeni, Joseph F; Hall, Per; Holowaty, Eric J; Joensuu, Heikki; Kaijser, Magnus; Kleinerman, Ruth A; Langmark, Frøydis; Lynch, Charles F; Pukkala, Eero; Storm, Hans H; Vaalavirta, Leila; van den Belt-Dusebout, Alexandra W; Morton, Lindsay M; Fossa, Sophie D; Travis, Lois B

    2016-09-27

    Pancreatic cancer risk is elevated among testicular cancer (TC) survivors. However, the roles of specific treatments are unclear. Among 23 982 5-year TC survivors diagnosed during 1947-1991, doses from radiotherapy to the pancreas were estimated for 80 pancreatic cancer patients and 145 matched controls. Chemotherapy details were recorded. Logistic regression was used to estimate odds ratios (ORs). Cumulative incidence of second primary pancreatic cancer was 1.1% at 30 years after TC diagnosis. Radiotherapy (72 (90%) cases and 115 (80%) controls) was associated with a 2.9-fold (95% confidence interval (CI) 1.0-7.8) increased risk. The OR increased linearly by 0.12 per Gy to the pancreas (P-trendcancer risk, and persists for over 20 years. These excesses, although small, should be considered when radiotherapy with exposure to the pancreas is considered for newly diagnosed patients. Additional data are needed on the role of chemotherapy.

  6. Establishment of H2Mab-119, an Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody, Against Pancreatic Cancer.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Chang, Yao-Wen; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer and is associated with poor clinical outcomes. In addition, HER2 expression has been reported in other cancers, such as gastric, colorectal, lung, and pancreatic cancers. An anti-HER2 humanized antibody, trastuzumab, leads to significant survival benefits in patients with HER2-overexpressing breast cancers and gastric cancers. Herein, we established a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-119 (IgG 1 , kappa), and characterized its efficacy against pancreatic cancers using flow cytometry, Western blot, and immunohistochemical analyses. H 2 Mab-119 reacted with pancreatic cancer cell lines, such as KLM-1, Capan-2, and MIA PaCa-2, but did not react with PANC-1 in flow cytometry analysis. Western blot analysis also revealed a moderate signal for KLM-1 and a weak signal for MIA PaCa-2, although H 2 Mab-119 reacted strongly with LN229/HER2 cells. Finally, immunohistochemical analyses with H 2 Mab-119 revealed sensitive and specific reactions against breast and colon cancers but did not react with pancreatic cancers, indicating that H 2 Mab-119 is useful for detecting HER2 overexpression in pancreatic cancers using flow cytometry and Western blot analyses.

  7. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.

    Science.gov (United States)

    Wauters, Elke; Sanchez-Arévalo Lobo, Victor J; Pinho, Andreia V; Mawson, Amanda; Herranz, Daniel; Wu, Jianmin; Cowley, Mark J; Colvin, Emily K; Njicop, Erna Ngwayi; Sutherland, Rob L; Liu, Tao; Serrano, Manuel; Bouwens, Luc; Real, Francisco X; Biankin, Andrew V; Rooman, Ilse

    2013-04-01

    The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis. ©2012 AACR.

  8. The first report from Sapporo Tsukisamu Hospital. Chemotherapy and Chemoradiotherapy for patients with advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Yamamitsu, Susumu; Kimura, Hiromichi; Yamada, Yoshiyuki; Inui, Noriaki; Hiyama, Shigemi; Hirata, Koichi; Kimura, Yasutoshi; Koito, Kazumitsu; Shirasaka, Tetsuhiko

    2007-01-01

    The remedy, especially chemotherapy, for advanced pancreatic cancer is hardly ever successful in terms of efficacy rate and survival period, because it is virtually unable to contribute to the improvement of median survival time (MST). Thus, we devised a new intermittent dosage regimen utilizing the cell cycle difference of normal gastrointestinal (GI) tract, bone marrow cell and pancreatic cancer cell, making use of 5-FU (→S-1), cisplatin (CDDP) and paclitaxel in March 2002. Ten patients with advanced pancreatic cancer (4 in Stage IVa and 6 in Stage IVb) were treated with this new regimen. As a result, an efficacy ratio of 50.0% and a 1-year survival ratio of 60.0% were achieved. However, 2-year survival ratio of 12.0% was low, and there was no 3-year survivor. The MST was 19 months as of December 31, 2006. All of the non-hematological toxicities were under grade 2. Eight patients had hematological toxicities over grade 3 and most of them were anemia and neutropenia. Only 2 cases had thrombocytopenia. Although adverse effects related to this regimen were clinically manageable, it was difficult to improve MST of patients with advanced pancreatic cancer with chemotherapy alone including this regimen. Hence, we devised another regimen with the joint use of radiotherapy along with the same chemotherapy regimen in January 2003. Twenty patients with advanced pancreatic cancer (Stage IV) were treated with this regimen. It is presently under way, and an efficacy ratio of 35.0%, 1-year survival ratio of 86.3% and 2-year survival ratio of 64.0% were obtained by May 2005, showing that this may contribute to the extension of survival time of Stage IV pancreatic cancer patients. (author)

  9. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang L

    2015-03-01

    Full Text Available Ling Wang,1 Yanli An,2 Chenyan Yuan,3 Hao Zhang,2 Chen Liang,2 Fengan Ding,2 Qi Gao,1 Dongsheng Zhang4 1Department of Ultrasonography, Zhong Da Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China; 2Medical School, Southeast University, Nanjing, People’s Republic of China; 3Department of Clinical Laboratory, Zhong Da Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China; 4Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, People’s Republic of China Background: Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225-conjugated, gemcitabine (GEM-containing magnetic albumin nanospheres (C225-GEM/MANs were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI, and double-targeted thermochemotherapy against pancreatic cancer cells. Methods: Fe3O4 nanoparticles (NPs and GEM co-loaded albumin nanospheres (GEM/MANs were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2 and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT and flow cytometry (FCM assay. Results: When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal

  10. Pancreatic cancer screening employing noncontrast magnetic resonance imaging combined with ultrasonography

    International Nuclear Information System (INIS)

    Kuroki-Suzuki, Seiko; Nagashima, Chieko; Machida, Minoru; Muramatsu, Yukio; Moriyama, Noriyuki; Kuroki, Yoshifumi; Nasu, Katsuhiro

    2011-01-01

    We have conducted an initial evaluation on the potential of combining noncontrast magnetic resonance imaging (MRI) and ultrasonography (US) to screen for pancreatic cancer. An independent ethics committee approved this study. A total of 2511 patients who underwent US were enrolled. Among them, noncontrast MRI was performed in patients in whom the entire pancreas was difficult to depict or in those with US-suspected pancreatic lesions. In total, using 1.5-T MRI, T1- and T2-weighted imaging, magnetic resonance cholangiopancreatography, and diffusion-weighted imaging, we acquired a variety of images. The efficacy of US and MRI in screening for pancreatic lesions, including pancreatic cancer, was evaluated. Of 2511 patients, 184 underwent MRI, and the pancreas was demonstrated in all of them. Among the 2511, five pancreatic cancers were detected by MRI combined with US (detection rate 0.20%). Of the five pancreatic cancers, three were detected by US (detection rate 0.12%) and two by MRI. Four of the five pancreatic cancers were resectable. By combining noncontrast MRI with US, pancreatic cancer can be detected with high accuracy. Other pancreatic lesions that require follow-up, including intraductal papillary mucinous neoplasms, can also be detected. Thus, pancreatic cancer screening with a combination of US and MRI is suggested. (author)

  11. Helicobacter pylori infection, atrophic gastritis, and pancreatic cancer risk

    Science.gov (United States)

    Liu, Hong; Chen, Yue-Tong; Wang, Rui; Chen, Xin-Zu

    2017-01-01

    Abstract Background: To investigate the associations of Helicobacter pylori (Hp) infection and atrophic gastritis (AG) with pancreatic cancer risk. Methods: A literature search in PubMed was performed up to July 2017. Only prospective cohort and nested case–control studies enrolling cancer-free participants were eligible. Incident pancreatic cancer cases were ascertained during the follow-up. The risks of pancreatic cancer were compared between persons infected and noninfected with Hp, or between those with and without AG status at baseline. Odds ratios (ORs) or hazard ratios were combined. Subgroup and sensitivity analyses were performed, and publication bias was estimated. Results: Three cohort studies and 6 nested case–control studies, including 65,155 observations, were analyzed. The meta-analyses did not confirm the association between pancreatic cancer risk and Hp infection (OR = 1.09, 95% confidence interval [CI] = 0.81–1.47) or AG status (OR = 1.18, 95% CI = 0.80–1.72). However, particular subpopulations potentially had increased risks of pancreatic cancer. Cytotoxin-associated gene A (CagA)-negative strains of Hp might be a causative factor of pancreatic cancer (OR = 1.30, 95% CI = 1.05–1.62), but a sensitivity analysis by leave-one-out method did not fully warrant it (OR = 1.20, 95% CI = 0.93–1.56). In 1 nested case–control study, AG at stomach corpus in Hp-negative subpopulation might have increased risk of pancreatic cancer, but with a poor test power = 0.56. Publication biases were nonsignificant in the present meta-analysis. Conclusion: Based on current prospective epidemiologic studies, the linkage of pancreatic cancer to Hp infection or AG status was not warranted on the whole. Nevertheless, prospective studies only focusing on those specific subpopulations are further required to obtain better power. PMID:28816977

  12. S100A11 promotes human pancreatic cancer PANC-1 cell proliferation and is involved in the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Xiao, Mingbing; Li, Tao; Ji, Yifei; Jiang, Feng; Ni, Wenkai; Zhu, Jing; Bao, Baijun; Lu, Cuihua; Ni, Runzhou

    2018-01-01

    S100A11, a member of S100 calcium-binding protein family, is associated with the numerous processes of tumorigenesis and metastasis. In the present study, the role of S100A11, and its possible underlying mechanisms in cell proliferation, apoptosis and cell cycle distribution in human pancreatic cancer were explored. Immunohistochemical analyses of S100A11 and phosphorylated (p)-AKT serine/threonine kinase (AKT) were performed in 30 resected specimens from patients with pancreatic cancer. PANC-1 cells were transfected with pcDNA3.1-S100A11 or treated with 50 µmol/l LY294002 for 48 h. Cell proliferation was determined using a cell counting kit-8 assay, whereas apoptosis and cell cycle distribution were determined by flow cytometry analysis. The mRNA and protein levels of S100A11, and AKT were determined using semi quantitative reverse transcription-polymerase chain reaction and western blot analyses, respectively. Pearson correlation analysis revealed that the expression levels of S100A11 and p-AKT were positively correlated (r, 0.802; PPANC-1 cell proliferation and reduced the percentage of early apoptotic cells. Flow cytometric analysis indicated that the proportion of PANC-1 cells in the S phase was significantly elevated and cell percentage in the G0/G1 phase declined in response to S100A11 overexpression (all PPANC-1 cell proliferation, promoted apoptosis and caused G1/S phase arrest in PANC-1 cells (all PPANC-1 cells through the upregulation of the PI3K/AKT signaling pathway. Thus, S100A11 may be considered as a novel drug target for targeted therapy of pancreatic cancer.

  13. Biological nanoparticles carrying the Hmda-7 gene are effective in inhibiting pancreatic cancer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Qingyun Zhu

    Full Text Available Pancreatic cancer is one of the most common malignancies of the digestive system, and remains a clinical challenge. This study aimed to assess the effects of bovine serum albumin (BSA nanoparticles carrying the hMDA-7 gene (BSA-NP-hMDA-7 in the treatment of pancreatic cancer.BSA-NP-hMDA-7 was generated by nanotechnology and gene recombination technology. A total of 5 BXPC-3 or PANC-1 pancreatic cancer cell groups were examined, including Control, BSA-NPs, Empty vector, hMDA-7 plasmid, and hMDA-7 BSA-NPs groups, respectively. Proliferation and apoptosis of cultured cells were assessed by the MTT method and flow-cytometry, respectively. In addition, pancreatic cancer models were established with both cell lines in nude mice, and the expression profiles of hMDA-7 and VEGF in cancer tissues were measured by Western blot and immunohistochemistry.BSA-NP-hMDA-7 nanoparticles were successfully generated, and significantly inhibited the proliferation of BXPC-3 and PANC-1 cells; in addition, apoptosis rates were higher in both cell lines after treatment with BSA-NP-hMDA-7 (P<0.05. Nude mouse xenograft studies indicated that treatment with BSA-NP-hMDA-7 nanoparticles resulted in decreased tumor size. Moreover, the hMDA-7 protein was found in tumor tissues after hMDA-7 gene transfection, while BSA-NP-hMDA-7 significantly suppressed VEGF expression in tumor tissues. Similar results were obtained for both BXPC-3 and PANC-1 xenograft models.BSA nanoparticles carrying the hMDA-7 gene effectively transfected BXPC-3 and PANC-1 pancreatic cancer cells, causing reduced cell proliferation and enhanced apoptosis in vitro. In mouse xenografts, BSA-NP-hMDA-7 treatment decreased tumor size and reduced VEGF expression. These findings indicated that BSA-NP-hMDA-7 might exert anticancer effects via VEGF suppression.

  14. Multiple kinase pathways involved in the different de novo sensitivity of pancreatic cancer cell lines to 17-AAG.

    Science.gov (United States)

    Liu, Heping; Zhang, Ti; Chen, Rong; McConkey, David J; Ward, John F; Curley, Steven A

    2012-07-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) specifically targets heat shock protein (HSP)90 and inhibits its chaperoning functions for multiple kinases involved in cancer cell growth and survival. To select responsive patients, the molecular mechanisms underlying the sensitivity of cancer cells to 17-AAG must be elucidated. We used cytotoxicity assays and Western blotting to explore the effects of 17-AAG and sorafenib on cell survival and expression of multiple kinases in the pancreatic cancer cell lines AsPC-1 and Panc-1. Gene cloning and transfection, siRNA silencing, and immunohistochemistry were used to evaluate the effects of mutant p53 protein on 17-AAG sensitivity. AsPC-1 and Panc-1 responded differently to 17-AAG, with half maximal inhibitory concentration (IC(50)) values of 0.12 and 3.18 μM, respectively. Comparable expression of HSP90, HSP70, and HSP27 was induced by 17-AAG in AsPC-1 and Panc-1 cells. P-glycoprotein and mutant p53 did not affect 17-AAG sensitivity in these cell lines. Multiple kinases are more sensitive to HSP90 inhibition in AsPC-1 than in Panc-1 cells. After 17-AAG treatment, p-Bad (S112) decreased in AsPC-1 cells and increased in Panc-1 cells. Sorafenib markedly increased p-Akt, p-ERK1/2, p-GSK-3β, and p-S6 in both cell lines. Accordingly, 17-AAG and sorafenib acted antagonistically in AsPC-1 and Panc-1 cells, except at high concentrations in AsPC-1 cells. Differential inhibition of multiple kinases is responsible for the different de novo sensitivity of AsPC-1 and Panc-1 cells to HSP90 inhibition. P-glycoprotein and mutant p53 protein did not play a role in the sensitivity of pancreatic cancer cells to 17-AAG. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Growth inhibition of human pancreatic cancer cells by lipofection mediated IGF-1R antisense oligodeoxynucletides in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Pan Yaozhen; Sun Chengyi; Wang Yuzhi

    2004-01-01

    Objective: To study the growth inhibition of human pancreatic cancer cells (PC-3) by lipofection-mediated and ionizing radiation improving transfection of IGF-1R antisense oligodeoxynucletides (ASON) in vitro. Methods: Colonigenicity of PC-3 cells in vitro after 60 Co γ-radiation was observed for ascertaining their radiosensitivity and optimal radiation dose was selected according to the radiation sensitivity. PC-3 cells were transfected by two ways: 1) by lipofection-mediated IGF-1R ASON combined with ionizing radiation. 2) by lipo-ASON alone without ionizing radiation. Cell growth was assessed by MTT method. The expression of IGF-1R at mRNA level was examined by RT-PCR. Flow cytometry was used to demonstrate apoptotic changes in lipo-ASON-treated cells. Results: The inhibitory efficiency of lipo-ASON combined with ionizing radiation was higher than that without ionizing radiation (P < 0.05). The apoptotic efficiency and the decreased level of IGF-1R at mRNA were significantly improved (P < 0.05). Conclusion: Lipofection-mediated and ionizing radiation-promoted transfection of IGF-1R antisense oligodeoxynucletides (ASON) significantly decreases IGF-1R at mRNA level and induces apoptosis of human pancreatic cancer cells in vitro

  16. Evaluation of the uptake of CDDP-containing polymeric micelles in single pancreatic cancer cells

    International Nuclear Information System (INIS)

    Mizuno, Kazue; Uesaka, Mitsuru; Matsuyama, Shigeo; Ito, Y.; Ishii, Keizo; Yamazaki, Hiromichi

    2010-01-01

    Highly functionalized drugs delivered via a drug delivery system are expected to have less side effects and higher accumulation rates compared to conventional anticancer drugs. An understanding of the kinetics of drugs contained within a delivery system is necessary to obtain the maximum therapeutic effect. We performed micro-elemental analysis of human pancreatic cancer cells treated with cis-diamminedichloroplatinum(II) (CDDP)-containing polymeric micelles. The results showed that the platinum signals were distributed inside the cellular nuclei and the cytoplasm indicating that CDDP was delivered into the cells. The results from this study will be useful for designing an optimum carrier for platinum-containing anticancer drugs. (author)

  17. Early Detection of Sporadic Pancreatic Cancer

    Science.gov (United States)

    Kenner, Barbara J.; Chari, Suresh T.; Cleeter, Deborah F.; Go, Vay Liang W.

    2015-01-01

    Abstract Innovation leading to significant advances in research and subsequent translation to clinical practice is urgently necessary in early detection of sporadic pancreatic cancer. Addressing this need, the Early Detection of Sporadic Pancreatic Cancer Summit Conference was conducted by Kenner Family Research Fund in conjunction with the 2014 American Pancreatic Association and Japan Pancreas Society Meeting. International interdisciplinary scientific representatives engaged in strategic facilitated conversations based on distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. Ideas generated from the summit have led to the development of a Strategic Map for Innovation built upon 3 components: formation of an international collaborative effort, design of an actionable strategic plan, and implementation of operational standards, research priorities, and first-phase initiatives. Through invested and committed efforts of leading researchers and institutions, philanthropic partners, government agencies, and supportive business entities, this endeavor will change the future of the field and consequently the survival rate of those diagnosed with pancreatic cancer. PMID:25938853

  18. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer.

    Science.gov (United States)

    Daman, Zahra; Faghihi, Homa; Montazeri, Hamed

    2018-05-02

    Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice. SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs. These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.

  19. Drugs Approved for Pancreatic Cancer

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for pancreatic cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  20. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.