WorldWideScience

Sample records for pancreas cell fate

  1. Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth

    Science.gov (United States)

    Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram

    2014-01-01

    SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296

  2. Specifying pancreatic endocrine cell fates.

    Science.gov (United States)

    Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed

    2006-07-01

    Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.

  3. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development.

    Science.gov (United States)

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2012-01-15

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Assessment of pancreas cells

    Science.gov (United States)

    Vanoss, C. J.

    1978-01-01

    Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.

  5. Competence of failed endocrine progenitors to give rise to acinar but not ductal cells is restricted to early pancreas development

    OpenAIRE

    Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard

    2011-01-01

    During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends o...

  6. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    Science.gov (United States)

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  7. Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.

    Science.gov (United States)

    Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry

    2016-01-01

    Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.

  8. Metastatic Renal Cell Carcinoma to the Pancreas: A Review.

    Science.gov (United States)

    Cheng, Shaun Kian Hong; Chuah, Khoon Leong

    2016-06-01

    The pancreas is an unusual site for tumor metastasis, accounting for only 2% to 5% of all malignancies affecting the pancreas. The more common metastases affecting the pancreas include renal cell carcinomas, melanomas, colorectal carcinomas, breast carcinomas, and sarcomas. Although pancreatic involvement by nonrenal malignancies indicates widespread systemic disease, metastatic renal cell carcinoma to the pancreas often represents an isolated event and is thus amenable to surgical resection, which is associated with long-term survival. As such, it is important to accurately diagnose pancreatic involvement by metastatic renal cell carcinoma on histology, especially given that renal cell carcinoma metastasis may manifest more than a decade after its initial presentation and diagnosis. In this review, we discuss the clinicopathologic findings of isolated renal cell carcinoma metastases of the pancreas, with special emphasis on separating metastatic renal cell carcinoma and its various differential diagnoses in the pancreas.

  9. ANF and exocrine pancreas: ultrastructural autoradiographic localization in acinar cells

    International Nuclear Information System (INIS)

    Chabot, J.G.; Morel, G.; Belles-Isles, M.; Jeandel, L.; Heisler, S.

    1988-01-01

    Atrial natriuretic factor (ANF) binding sites have been recently demonstrated to be present in exocrine pancreas by an in vitro autoradiographic approach. An autoradiographic study was carried out to identify the exocrine cells containing ANF binding sites and to monitor the fate of 125 I-labeled ANF in acinar cells after removal of pancreas at specific time intervals (1-30 min) after intravenous administration. At the light microscopic level, silver grains were found over acinar and centroacinar cells. Concomitant injection of an excess of unlabeled ANF inhibited the binding of labeled peptide by approximately 60%. At the electron microscopic level, the time-course study in acinar cells has revealed that of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria, and zymogen granules, the nucleus had distinct labeling patterns. Plasma membrane was maximally labeled 1 and 2 min after injection with 125 I-ANF. Golgi apparatus was significantly labeled from 2 to 30 min after injection, mitochondria from 1 to 30 min after injection, zymogen granules at 1 and 15 min, and the nucleus only at 30 min. The lysosomal compartment was not labeled during the 30-min observation period. These results suggest that after binding to the plasma membrane, ANF is rapidly internalized and distributed to the intracellular organelles as a function of time. Labeling of the zymogen granules suggests that they may bind ANF and that the atrial peptide may be secreted by acinar cells. The significance of association of radioactivity with mitochondria and nuclei remains to be elucidated but may represent intracellular sites of action of ANF complementary to those on plasma membranes

  10. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    Science.gov (United States)

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  11. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell......-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However......, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell...

  12. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    Science.gov (United States)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  13. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    Science.gov (United States)

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Transcriptional regulation of pancreas development and β-cell function [Review].

    Science.gov (United States)

    Fujitani, Yoshio

    2017-05-30

    A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate β cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.

  15. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Preganglionic innervation of the pancreas islet cells in the rat

    NARCIS (Netherlands)

    LUITEN, PGM; TERHORST, GJ; KOOPMANS, SJ; RIETBERG, M; STEFFENS, AB

    1984-01-01

    The position and number of preganglionic somata innervating the insulin-secreting β-cells of the endocrine pancreas were investigated in Wistar rats. This question was approached by comparing the innervation of the pancreas of normal rats with the innervation of the pancreas in alloxan-induced

  17. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  18. Stochastic Cell Fate Progression in Embryonic Stem Cells

    Science.gov (United States)

    Zou, Ling-Nan; Doyle, Adele; Jang, Sumin; Ramanathan, Sharad

    2013-03-01

    Studies on the directed differentiation of embryonic stem (ES) cells suggest that some early developmental decisions may be stochastic in nature. To identify the sources of this stochasticity, we analyzed the heterogeneous expression of key transcription factors in single ES cells as they adopt distinct germ layer fates. We find that under sufficiently stringent signaling conditions, the choice of lineage is unambiguous. ES cells flow into differentiated fates via diverging paths, defined by sequences of transitional states that exhibit characteristic co-expression of multiple transcription factors. These transitional states have distinct responses to morphogenic stimuli; by sequential exposure to multiple signaling conditions, ES cells are steered towards specific fates. However, the rate at which cells travel down a developmental path is stochastic: cells exposed to the same signaling condition for the same amount of time can populate different states along the same path. The heterogeneity of cell states seen in our experiments therefore does not reflect the stochastic selection of germ layer fates, but the stochastic rate of progression along a chosen developmental path. Supported in part by the Jane Coffin Childs Fund

  19. Stem cells and the pancreas: from discovery to clinical approach

    Directory of Open Access Journals (Sweden)

    Angelica Dessì

    2016-02-01

    Full Text Available The existence of stem cells within the adult pancreas is supported by the ability of this organ to regenerate its endocrine component in various conditions such as pregnancy and following partial pancreatectomy. Several studies have shown that progenitor or adult stem cells may reside within the pancreas and particularly in the pancreatic ducts, including acinar cells and islets of Langerhans. The discovery of human pluripotent stem cells in the pancreas, and the possibility of development of strategies for generating these, represented a turning point for the therapeutic interventions of type 1 diabetes.Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  20. Osteoclastic giant cell tumor of the pancreas: an immunohistochemical study

    DEFF Research Database (Denmark)

    Dizon, M A; Multhaupt, H A; Paskin, D L

    1996-01-01

    A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor.......A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor....

  1. The physiology of rodent beta-cells in pancreas slices.

    Science.gov (United States)

    Rupnik, M

    2009-01-01

    Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.

  2. Cell fate determination dynamics in bacteria

    Science.gov (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol

    2010-03-01

    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  3. Apoptosis of acinar cells in pancreas allograft rejection

    NARCIS (Netherlands)

    Boonstra, J. G.; Wever, P. C.; Laterveer, J. C.; Bruijn, J. A.; van der Woude, F. J.; ten Berge, I. J.; Daha, M. R.

    1997-01-01

    BACKGROUND: Recently it has been recognized that apoptosis of target cells may occur during liver and kidney allograft rejection and is probably induced by infiltrating cells. Pancreas rejection is also characterized by a cellular infiltrate, however, the occurrence of apoptosis has not been

  4. Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos

    Directory of Open Access Journals (Sweden)

    Rachel E. Jennings

    2017-11-01

    Full Text Available To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.

  5. Pathway decision-making strategies for generating pancreatic beta-cells: systems biology or hit and miss?

    Science.gov (United States)

    Jensen, Jan

    2007-08-01

    Method selection strategies to achieve beta-cell differentiation from human embryonic stem cells are reviewed. Expectations are high for an embryonic stem cell derived cellular replacement method to cure diabetes, and recent observations indicate that mature beta-cells can be derived from human embryonic stem cells. In terms of the translational setting, however, we are not there yet; conversion of embryonic stem cells to fully mature beta-cells is not effective and does not provide an exclusive beta-cell population as the end-product. Studies emphasize that expecting development of a 'magic media bullet' that promotes endocrine fate is rather optimistic; consecutive administration of signaling inducers, carefully provided to mimic normal development, is more likely to succeed. To accomplish this task we need better understanding of the extracellular signaling pathways that drive progressive endodermal fate choices throughout development. Knowledge of cell-intrinsic control of fate assignments in pancreas is growing rapidly. Nevertheless, insufficient information regarding morphogen codes that operate in endoderm and pancreas is hindering development of better, directed differentiation schema of uncommitted embryonic stem cells toward endodermal, pancreatic, and subsequent endocrine specific fates. A systematic approach to defining morphogen codes in developing endoderm and pancreas appears timely and justified.

  6. An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development

    Science.gov (United States)

    Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.

    2014-01-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008

  7. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  8. Occurance of apoptosis during ischemia in porcine pancreas islet cells.

    Science.gov (United States)

    Stadlbauer, V; Schaffellner, S; Iberer, F; Lackner, C; Liegl, B; Zink, B; Kniepeiss, D; Tscheliessnigg, K H

    2003-03-01

    Pancreas islet transplantation is a potential treatment of diabetes mellitus and porcine organs provide an easily available source of cells. Unfortunately quality and quantity of isolated islets are still not satisfactory. Apoptosis occurs in freshly isolated islets and plays a significant role in early graft loss. We evaluated the influence of four storage solutions on porcine pancreas islets. After warm ischemia of 15-20 minutes 12 organs were stored in 4 cold preservation solutions: Histidine-Tryptophan-Ketoglutarate solution (HTK), Hank's buffered saline solution (HBSS), University of Wisconsin (UW) solution and Ringer-Lactate (R). After cold ischemia for 100 minutes, organs were fixed in 3% formalin. Apoptotic cells were counted on hematocylin-eosin stainings. Most apoptotic cells were found in organs stored in R. Low numbers were found in the other groups. The difference between organs stored in R and organs stored in UW, HTK, or HBSS was highly significant. No significant difference could be found between UW, HTK and HBSS. Cold and warm ischemia of the pancreas seems to induce apoptosis in islet cells. Preservation solutions cause less apoptosis than electrolyte solution. No significant differences could be found among the preservation solutions.

  9. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir

    2016-01-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (Rdh......10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis...... and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early...

  10. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    Science.gov (United States)

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  11. Intrahepatic peribiliary perivascular epithelioid cell tumor (PEComa) associated with heterotopic pancreas: A case report.

    Science.gov (United States)

    Kiriyama, Yuka; Tsukamoto, Tetsuya; Mizoguchi, Yoshikazu; Ishihara, Shin; Horiguchi, Akihiko; Tokoro, Takamasa; Kato, Yutaro; Sugioka, Atsushi; Kuroda, Makoto

    2016-08-20

    Perivascular epithelioid-cell tumor (PEComa) is a group of rare mesenchymal neoplasms that express myomelanocytic-cell markers and exhibit a wide variety of histopathological features. Although heterotopic pancreas has been reported to occur in the gastrointestinal tract, intrahepatic heterotopic pancreas has been reported only rarely. We present a case of intrahepatic PEComa that showed a strong regional correlation with the presence of heterotopic pancreas. An intrahepatic tumor and biliary dilatation was incidentally discovered during a diagnostic evaluation to investigate low-back pain in a 47-year-old Japanese male. Cholangiocarcinoma was suspected and a left hemihepatectomy performed. Histological examination revealed a 3 × 3.8-mm tumor in the neighboring B2 bile duct. Histological and immunohistochemical investigations revealed the presence of a PEComa and pancreatic acini within the tumor mass. PEComa in the hepatobiliary and pancreatic regions are extremely rare. The presence of heterotopic pancreas is also relatively uncommon. The strong regional association of these 2 lesions raises the possibility of a PEComa originating from heterotopic pancreas or from an irritable response caused by heterotopic pancreas.

  12. Renal cell carcinoma metastases to the pancreas - Value of arterial phase imaging at MDCT

    International Nuclear Information System (INIS)

    Corwin, Michael T.; Lamba, Ramit; McGahan, John P.; Wilson, Machelle

    2013-01-01

    Background: The pancreas is an increasingly recognized site of renal cell carcinoma metastases. It is important to determine the optimal MDCT protocol to best detect RCC metastases to the pancreas. Purpose: To compare the rate of detection of renal cell carcinoma metastases to the pancreas between arterial and portal venous phase MDCT. Material and Methods: A retrospective review of CTs of the abdomen yielded six patients with metastatic RCC to the pancreas. Five of six patients had pathologically proven clear cell RCC. Two blinded reviewers independently reported the number of pancreatic lesions seen in arterial and venous phases. Each lesion was graded as definite or possible. The number of lesions was determined by consensus review of both phases. Attenuation values were obtained for metastatic lesions and adjacent normal pancreas in both phases. Results: There were a total of 24 metastatic lesions to the pancreas. Reviewer 1 identified 20/24 (83.3%) lesions on the arterial phase images and 13/24 (54.2%) lesions on the venous phase. Seventeen of 20 (85.0%) arterial lesions were deemed definite and 9/13 (69.2%) venous lesions were definite. Reviewer 2 identified 19/24 (79.2%) lesions on the arterial phase and 14/24 (58.3%) on the venous phase. Seventeen of 19 (89.5%) arterial lesions were definite and 7/14 (50%) venous lesions were definite. Mean attenuation differential between lesion and pancreas was 114 HU and 39 HU for arterial and venous phases, respectively (P<0.0001). Conclusion: Detection of RCC metastases to the pancreas at MDCT is improved using arterial phase imaging compared to portal venous phase imaging

  13. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  14. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas

    DEFF Research Database (Denmark)

    Kim, Yung Hae; Larsen, Hjalte List; Rué, Paul

    2015-01-01

    Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine...

  15. Insulin-like growth factors and pancreas beta cells.

    NARCIS (Netherlands)

    Haeften, T.W. van; Twickler, M.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  16. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, TB

    Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their signalling

  17. Insulin-like growth factors and pancreas beta cells

    NARCIS (Netherlands)

    van Haeften, T. W.; Twickler, Th B.

    2004-01-01

    Abstract Insulin-like growth factors (IGFs) have been implicated in normal growth, and especially foetal pancreas beta-cell development. As low birth weight has been implicated in the development of obesity and type 2 diabetes, much research has evolved into the importance of IGF and their

  18. Functioning islet cell tumor of the pancreas. Localization with dynamic spiral CT

    International Nuclear Information System (INIS)

    Chung, M.J.; Choi, B.I.; Han, J.K.; Chung, J.W.; Han, M.C.; Bae, S.H.

    1997-01-01

    Purpose: The purpose of this study was to evaluate the usefulness of dynamic spiral CT, including multidimensional reformation, in the detection and localization of islet cell tumors of the pancreas. Material and Methods: Seven patients with histopathologically proven functioning islet cell tumors of the pancreas were studied with 2-phase contrast-enhanced spiral CT. Scanning of the arterial phase and late phase was started 30 s and 180 s, respectively, after injection of 100 ml of contrast medium at a rate of 3 ml/s. Results: Axial images in the arterial phase depicted the lesions in 5 patients, but in the late phase in only one patient. Multiplanar reformatted images of the arterial phase depicted the lesions in all 7 patients. Maximal intensity projection images demonstrated all lesions with information of their relationship to the vascular structure. Conclusion: Dynamic spiral CT with scanning during the arterial phase and retrospective multidimensional reformation is useful for preoperative detection and localization of small islet cell tumors of the pancreas. (orig.)

  19. Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells.

    Directory of Open Access Journals (Sweden)

    Kazuko Ino

    Full Text Available Recent studies have shown that monocytes possess pluripotent plasticity. We previously reported that monocytes could differentiate into hepatic stellate cells. Although stellate cells are also present in the pancreas, their origin remains unclear. An accumulation of enhanced green fluorescent protein (EGFP(+CD45(- cells was observed in the pancreases and livers of chimeric mice, which were transplanted with a single hematopoietic stem cell isolated from EGFP-transgenic mice and treated with carbon tetrachloride (CCl4. Because the vast majority of EGFP(+CD45(- cells in the pancreas expressed stellate cell-associated antigens such as vimentin, desmin, glial fibrillary acidic protein, procollagen-I, and α-smooth muscle actin, they were characterized as pancreatic stellate cells (PaSCs. EGFP(+ PaSCs were also observed in CCl4-treated mice adoptively transferred with monocytes but not with other cell lineages isolated from EGFP-transgenic mice. The expression of monocyte chemoattractant protein-1 (MCP-1 and angiotensin II (Ang II increased in the pancreas of CCl4-treated mice and their respective receptors, C-C chemokine receptor 2 (CCR2 and Ang II type 1 receptor (AT1R, were expressed on Ly6C(high monocytes isolated from EGFP-transgenic mice. We examined the effect of an AT1R antagonist, irbesartan, which is also a CCR2 antagonist, on the migration of monocytes into the pancreas. Monocytes migrated toward MCP-1 but not Ang II in vitro. Irbesartan inhibited not only their in vitro chemotaxis but also in vivo migration of adoptively transferred monocytes from peripheral blood into the pancreas. Irbesartan treatment significantly reduced the numbers of EGFP(+F4/80(+CCR2(+ monocytic cells and EGFP(+ PaSCs in the pancreas of CCl4-treated chimeric mice receiving EGFP(+ bone marrow cells. A specific CCR2 antagonist RS504393 inhibited the occurrence of EGFP(+ PaSCs in injured mice. We propose that CCR2(+ monocytes migrate into the pancreas possibly via the

  20. Engineering the human pluripotent stem cell microenvironment to direct cell fate.

    Science.gov (United States)

    Hazeltine, Laurie B; Selekman, Joshua A; Palecek, Sean P

    2013-11-15

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas

    DEFF Research Database (Denmark)

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-01-01

    cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility...... of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin...... are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well....

  2. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    Science.gov (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  3. Acinar Cell Carcinoma of the Pancreas with Colon Involvement

    Directory of Open Access Journals (Sweden)

    Naoki Asayama

    2014-01-01

    Full Text Available We report a case of acinar cell carcinoma of the pancreas with colon involvement that was difficult to distinguish from primary colon cancer. A 60-year-old man was admitted with a 1-month history of diarrhea. Contrast-enhanced computed tomography (CT revealed a large tumor (10.6×11.6 cm at the splenic flexure of the colon. Colonoscopy showed completely round ulcerative lesions, and biopsy revealed poorly differentiated adenocarcinoma. Left hemicolectomy, resection of the jejunum and pancreas body and tail, and splenectomy were performed based on a diagnosis of descending colon cancer (cT4N0M0, stage IIB, and surgery was considered to be curative. Diagnosis was subsequently confirmed as moderately differentiated acinar cell carcinoma of the pancreas by immunohistochemical staining (pT3N0M0, stage IIA. Multiple liver metastases with portal thrombosis were found 8 weeks postoperatively. Despite combination chemotherapy with oral S-1 and gemcitabine, the patient died of hepatic failure with no effect of chemotherapy 14 weeks postoperatively. Correct diagnosis was difficult to determine preoperatively from the clinical, CT, and colonoscopy findings. Moreover, the disease was extremely aggressive even after curative resection. Physicians should consider pancreatic cancer in the differential diagnosis of similar cases.

  4. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  5. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development

    Science.gov (United States)

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram

    2016-01-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396

  6. CT and MRI features of acinar cell carcinoma of the pancreas with pathological correlations

    International Nuclear Information System (INIS)

    Hsu, M.-Y.; Pan, K.-T.; Chu, S.-Y.; Hung, C.-F.; Wu, R.-C.; Tseng, J.-H.

    2010-01-01

    Aim: To document the computed tomography (CT) and magnetic resonance imaging (MRI) features of acinar cell carcinoma of the pancreas and to correlate them with pathological findings to determine the unique imaging manifestations of this rare subtype tumour of the pancreas. Materials and methods: From January 1986 to August 2008, six patients (five men and one woman, mean age 61.3 years) with histologically proven acinar cell carcinoma of the pancreas underwent CT (n = 6) and MRI (n = 4) examinations. The imaging features of each tumour were documented and compared with pathological findings. Results: The tumours were distributed in the head (n = 4), body (n = 1), and tail (n = 1) of the pancreas. Four masses (67%) were uniformly or partially well-defined with thin, enhancing capsules. Central cystic components were found in five tumours (83%). Two tumours (33%) exhibited intratumoural haemorrhage, and one tumour (17%) had amorphous intratumoural calcification. In both CT and MRI, the tumours enhanced less than the adjacent normal pancreatic parenchyma. The signal intensity on MRI was predominantly T1 hypointense and T2 iso- to hyperintense. Conclusion: Acinar cell carcinoma of the pancreas has distinct imaging features, and both CT and MRI are useful and complementary imaging methods.

  7. Distribution and developmental changes of ghrelin-immunopositive cells in the pancreas of African ostrich chicks (Struthio camelus).

    Science.gov (United States)

    Wang, J X; Li, P; Zhang, X T; Ye, L X

    2017-09-01

    Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by multiple cell types and affects feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells that are immunoreactive to ghrelin vary. However, little was known about its distribution and developmental changes in the pancreas of African ostrich chicks (Struthio camelus). In the present study, the distribution, morphological characteristics, and developmental changes of ghrelin-immunopositive (ghrelin-ip) cells in the pancreas of African ostrich chicks were investigated using immunohistochemistry. Ghrelin-ip cells were found in both the pancreatic islets and acinar cell regions. The greatest number of ghrelin-ip cells were found in the pancreatic islets, and were primarily observed at the periphery of the islets; some ghrelin-ip cells were also located in the central portion of the pancreatic islets. Interestingly, from postnatal d 1 to d 90, there was a steady decrease in the number of ghrelin-ip cells in the pancreatic islets and acinar cell regions. These results clearly demonstrated that ghrelin-ip cells exist and decreased with age in the African ostrich pancreas from postnatal d 1 to d90. Thus, these findings indicated that ghrelin may be involved in the development of the pancreas in the African ostrich. © 2017 Poultry Science Association Inc.

  8. Microcystic adenoma of the pancreas associated with non-functioning islet cell tumor: a case report

    International Nuclear Information System (INIS)

    Kong, Keun Young; Lee, Dong Ho; Ko, Young Tae; Kim, Youn Wha

    1997-01-01

    Among cystic tumors arising in the pancreas, microcystic adenoma is relatively uncommon;it is usually benign, and is comprised of cysts that vary in size from microscopic to 2 cm in diameter. It has recently been reported to be associated with other pancreatic tumors with malignant potential; in particular, microcystic adenoma with coexistent islet cell tumor has been reported in von Hippel-Lindau disease. We report a case of microcystic adenoma of the pancreas associated with coexistent surgically-proven islet cell tumor. On spiral CT, the islet cell tumor was seen as a highly enhanced inhomogeneous solid mass in the pancreatic head, and microcystic adenoma as numerous small cysts throughout the pancreas.=20

  9. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  10. Cell fate control in the developing central nervous system

    International Nuclear Information System (INIS)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-01-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals

  11. BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Daniele Conte

    Full Text Available BACKGROUND: In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. CONCLUSIONS/SIGNIFICANCE: While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the

  12. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  13. OVO homologue-like 1 (Ovol1) transcription factor: a novel target of neurogenin-3 in rodent pancreas.

    Science.gov (United States)

    Vetere, A; Li, W-C; Paroni, F; Juhl, K; Guo, L; Nishimura, W; Dai, X; Bonner-Weir, S; Sharma, A

    2010-01-01

    The basic helix-loop-helix transcription factor neurogenin-3 (NGN3) commits the fates of pancreatic progenitors to endocrine cell types, but knowledge of the mechanisms regulating the choice between proliferation and differentiation of these progenitors is limited. Using a chromatin immunoprecipitation cloning approach, we searched for direct targets of NGN3 and identified a zinc-finger transcription factor, OVO homologue-like 1 (OVOL1). Transactivation experiments were carried out to elucidate the functional role of NGN3 in Ovol1 gene expression. Embryonic and adult rodents pancreases were immunostained for OVOL1, Ki67 and NGN3. We showed that NGN3 negatively regulates transcription of Ovol1 in an E-box-dependent fashion. The presence of either NGN3 or NEUROD1, but not MYOD, reduced endogenous Ovol1 mRNA. OVOL1 was detected in pancreatic tissue around embryonic day 15.5, after which OVOL1 levels dramatically increased. In embryonic pancreas, OVOL1 protein levels were low in NGN3(+) or Ki67(+) cells, but high in quiescent differentiated cells. OVOL1 presence was maintained in adult pancreas, where it was detected in islets, pancreatic ducts and some acinar cells. Additionally OVOL1 presence was lacking in proliferating ductules in regenerating pancreas and induced in cells as they began to acquire their differentiated phenotype. The timing of OVOL1 appearance in pancreas and its increased levels in differentiated cells suggest that OVOL1 promotes the transition of cells from a proliferating, less-differentiated state to a quiescent more-differentiated state. We conclude that OVOL1, a downstream target of NGN3, may play an important role in regulating the balance between proliferation and differentiation of pancreatic cells.

  14. A polynomial based model for cell fate prediction in human diseases.

    Science.gov (United States)

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  15. Adenosquamous Carcinoma and Pure Squamous Cell Carcinoma of the Pancreas: Report of two Cases

    Directory of Open Access Journals (Sweden)

    Tadashi Terada

    2010-09-01

    Full Text Available Adenosquamous carcinoma (ASC and pure squamous cell carcinoma (SCC of the pancreas are very rare diseases. The author herein reports two cases of ASC and SCC of the pancreas. The first case is ASC. An 80-year-old woman was admitted to our hospital because of abdominal pain and weakness. Imaging modalities including CT, MRI and ERCP revealed a pancreatic body tumor. Distal partial resection of the pancreas and splenectomy were performed. Grossly, an infiltrative solid tumor measuring 3 × 4 × 4 cm was present in the pancreatic body. Histologically, it was an ASC consisting of poorly differentiated adenocarcinoma element (20% in area and SCC element (80%. There was a gradual transition between the two. Many perineural invasions and lymphovascular permeations were recognized. The patient died of systemic metastasis five months after operation. The second case is an SCC. A 69-year-old woman presented with abdominal pain and jaundice. Imaging modalities including CT, MRI and ERCP revealed a tumor in the head of the pancreas. Pancreaticoduodenectomy was performed. Grossly, an infiltrative solid tumor measuring 5 × 5 × 6 cm was present. Histologically, the tumor was pure SCC. The SCC was moderately differentiated SCC. A large number of perineural invasions and lymphovascular permeations were present. The patient died of systemic metastasis three months after operation. The author speculates that ASC of the pancreas may be derived from squamous tansdifferentiation of adenocarcinoma element or from pluripotent stem cells, and that SCC of the pancreas may arise from malignant transformation of squamous metaplasia of pancreatic ducts or from pluripotent stem cells.

  16. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas.

    Science.gov (United States)

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better.

  17. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas

    Science.gov (United States)

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better. PMID:28012279

  18. Primary clear cell ductal adenocarcinoma of the pancreas: A case report and clinicopathologic literature review

    Directory of Open Access Journals (Sweden)

    Yashpal Modi

    2014-01-01

    Full Text Available We present a very rare, interesting case of a carcinoma of the pancreas with predominantly abundant clear cell morphology. According to the WHO classification, primary clear cell carcinoma of the pancreas is classified as a rare "miscellaneous" carcinoma. The tumor was observed in the distal body and tail of the pancreas of a 74-year-old woman. The histopathology of tumor cells showed well-defined cell membranes, clear cytoplasm, and prominent cell boundaries. Immunohistochemical (IHC staining showed positive reactions to antibodies against vimentin, cytokeratin 7 (CK-7, mucicarmine (MUC-1, periodic acid-Schiff (PAS, periodic acid-Schiff with diastase (PASD, carcinoembryonic antigen (CEA, and Carbohydrate Antigen 19-9 (CA 19-9. On the other hand, IHC staining was negative for alpha-fetoprotein (AFP, cytokeratin 20 (CK-20, HMB45, chromogranin, and synaptophysin. The patient was subsequently diagnosed with a primary solid-type pancreatic clear cell carcinoma with hepatic metastasis. Herein, we report this rare case and include a review of the current literature of this tumor.

  19. FoxO1 gain of function in the pancreas causes glucose intolerance, polycystic pancreas, and islet hypervascularization.

    Directory of Open Access Journals (Sweden)

    Osamu Kikuchi

    Full Text Available Genetic studies revealed that the ablation of insulin/IGF-1 signaling in the pancreas causes diabetes. FoxO1 is a downstream transcription factor of insulin/IGF-1 signaling. We previously reported that FoxO1 haploinsufficiency restored β cell mass and rescued diabetes in IRS2 knockout mice. However, it is still unclear whether FoxO1 dysregulation in the pancreas could be the cause of diabetes. To test this hypothesis, we generated transgenic mice overexpressing constitutively active FoxO1 specifically in the pancreas (TG. TG mice had impaired glucose tolerance and some of them indeed developed diabetes due to the reduction of β cell mass, which is associated with decreased Pdx1 and MafA in β cells. We also observed increased proliferation of pancreatic duct epithelial cells in TG mice and some mice developed a polycystic pancreas as they aged. Furthermore, TG mice exhibited islet hypervascularities due to increased VEGF-A expression in β cells. We found FoxO1 binds to the VEGF-A promoter and regulates VEGF-A transcription in β cells. We propose that dysregulation of FoxO1 activity in the pancreas could account for the development of diabetes and pancreatic cysts.

  20. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells.

    Directory of Open Access Journals (Sweden)

    Jody Ye

    Full Text Available Maternal microchimeric cells (MMc transfer across the placenta during pregnancy. Increased levels of MMc have been observed in several autoimmune diseases including type 1 diabetes but their role is unknown. It has been suggested that MMc are 1 effector cells of the immune response, 2 targets of the autoimmune response or 3 play a role in tissue repair. The aim of this study was to define the cellular phenotype of MMc in control (n = 14 and type 1 diabetes pancreas (n = 8.Using sex chromosome-based fluorescence in-situ hybridization, MMc were identified in male pancreas and their phenotype determined by concomitant immunofluorescence.In normal pancreas, MMc positive for endocrine, exocrine, duct and acinar markers were identified suggesting that these cells are derived from maternal progenitors. Increased frequencies of MMc were observed in type 1 diabetes pancreas (p = 0.03 with particular enrichment in the insulin positive fraction (p = 0.01. MMc did not contribute to infiltrating immune cells or Ki67+ islet cell populations in type 1 diabetes.These studies provide support for the hypothesis that MMc in human pancreas are derived from pancreatic precursors. Increased frequencies of MMc beta cells may contribute to the initiation of autoimmunity or to tissue repair but do not infiltrate islets in type 1 diabetes.

  1. Pancreas

    Science.gov (United States)

    ... Page Transplant Living > Organ facts and surgeries > Pancreas Pancreas Beneath your ribs, you’ll find the pancreas, ... shape. Location of the pancreas How does the pancreas work? The pancreas controls your sugar levels and ...

  2. Chemicals as the Sole Transformers of Cell Fate.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-05-30

    Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.

  3. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter

    International Nuclear Information System (INIS)

    Wan Haiyan; Korzh, Svitlana; Li Zhen; Mudumana, Sudha Puttur; Korzh, Vladimir; Jiang Yunjin; Lin Shuo; Gong Zhiyuan

    2006-01-01

    In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficient in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development

  4. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    NARCIS (Netherlands)

    Guo, Ming; Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its

  5. Pancreatic Stellate Cells : A Starring Role in Normal and Diseased Pancreas

    Directory of Open Access Journals (Sweden)

    Minoti eApte

    2012-08-01

    Full Text Available While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC, had remained undiscovered until as recently as twenty years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas - chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM proteins. Recent studies have also implied other additional functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans.During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumour growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.

  6. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency.

    Directory of Open Access Journals (Sweden)

    Marina E Tourlakis

    2015-06-01

    Full Text Available Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis

  7. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency

    Science.gov (United States)

    Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.

    2015-01-01

    Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to

  8. Selected microRNAs define cell fate determination of murine central memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Gonzalo Almanza

    2010-06-01

    Full Text Available During an immune response T cells enter memory fate determination, a program that divides them into two main populations: effector memory and central memory T cells. Since in many systems protection appears to be preferentially mediated by T cells of the central memory it is important to understand when and how fate determination takes place. To date, cell intrinsic molecular events that determine their differentiation remains unclear. MicroRNAs are a class of small, evolutionarily conserved RNA molecules that negatively regulate gene expression, causing translational repression and/or messenger RNA degradation. Here, using an in vitro system where activated CD8 T cells driven by IL-2 or IL-15 become either effector memory or central memory cells, we assessed the role of microRNAs in memory T cell fate determination. We found that fate determination to central memory T cells is under the balancing effects of a discrete number of microRNAs including miR-150, miR-155 and the let-7 family. Based on miR-150 a new target, KChIP.1 (K (+ channel interacting protein 1, was uncovered, which is specifically upregulated in developing central memory CD8 T cells. Our studies indicate that cell fate determination such as surface phenotype and self-renewal may be decided at the pre-effector stage on the basis of the balancing effects of a discrete number of microRNAs. These results may have implications for the development of T cell vaccines and T cell-based adoptive therapies.

  9. Solid pseudopapillary tumor of pancreas with sickle cell trait: A rare case report

    Directory of Open Access Journals (Sweden)

    Harish S Permi

    2013-01-01

    Full Text Available Solid pseudopapillary tumor of pancreas is a rare pancreatic neoplasm affecting young women, has low malignant potential and amenable for surgical excision with good long-term survival. Sickle cell trait is benign condition, which involves one normal beta-globin chain and one HbS chain. Although it is a benign condition, individuals are prone to have rare complications that may predispose to death under certain circumstances. We report a rare coexistence of solid pseudopapillary tumor of pancreas with sickle cell trait in an 18-year-old female who underwent distal pancreatectomy with splenectomy. Histopathological examination and haemoglobin electrophoresis confirmed the diagnosis.

  10. Characterisation of CART-containing neurons and cells in the porcine pancreas, gastro-intestinal tract, adrenal and thyroid glands

    Directory of Open Access Journals (Sweden)

    Gunnarsdóttir Anna

    2007-07-01

    Full Text Available Abstract Background The peptide CART is widely expressed in central and peripheral neurons, as well as in endocrine cells. Known peripheral sites of expression include the gastrointestinal (GI tract, the pancreas, and the adrenal glands. In rodent pancreas CART is expressed both in islet endocrine cells and in nerve fibers, some of which innervate the islets. Recent data show that CART is a regulator of islet hormone secretion, and that CART null mutant mice have islet dysfunction. CART also effects GI motility, mainly via central routes. In addition, CART participates in the regulation of the hypothalamus-pituitary-adrenal-axis. We investigated CART expression in porcine pancreas, GI-tract, adrenal glands, and thyroid gland using immunocytochemistry. Results CART immunoreactive (IR nerve cell bodies and fibers were numerous in pancreatic and enteric ganglia. The majority of these were also VIP IR. The finding of intrinsic CART containing neurons indicates that pancreatic and GI CART IR nerve fibers have an intrinsic origin. No CART IR endocrine cells were detected in the pancreas or in the GI tract. The adrenal medulla harboured numerous CART IR endocrine cells, most of which were adrenaline producing. In addition CART IR fibers were frequently seen in the adrenal cortex and capsule. The capsule also contained CART IR nerve cell bodies. The majority of the adrenal CART IR neuronal elements were also VIP IR. CART IR was also seen in a substantial proportion of the C-cells in the thyroid gland. The majority of these cells were also somatostatin IR, and/or 5-HT IR, and/or VIP IR. Conclusion CART is a major neuropeptide in intrinsic neurons of the porcine GI-tract and pancreas, a major constituent of adrenaline producing adrenomedullary cells, and a novel peptide of the thyroid C-cells. CART is suggested to be a regulatory peptide in the porcine pancreas, GI-tract, adrenal gland and thyroid.

  11. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  12. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pei; Li, Li; Qi, Hui [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Zhou, Han-xin [Department of General Surgery, First Hospital (Shenzhen Second People' s Hospital) of Shenzhen University, 518020 Shenzhen (China); Deng, Chun-yan [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Li, Fu-rong, E-mail: frli62@yahoo.com [The Clinical Medical Research Center, The Second Clinical Medical College (Shenzhen People' s Hospital), Jinan University, 518020 Shenzhen (China); Shenzhen Institution of Gerontology, 518020 Shenzhen (China)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas that expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.

  13. In vitro pancreas organogenesis from dispersed mouse embryonic progenitors

    DEFF Research Database (Denmark)

    Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Evan Manuel

    2014-01-01

    The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells (1). The whole embryonic organ can be cultured at multiple stages...... expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how...... cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess...

  14. Connecting Mitochondria, Metabolism, and Stem Cell Fate

    Science.gov (United States)

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha

    2015-01-01

    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases. PMID:26134242

  15. NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Gupta

    2018-05-01

    Full Text Available Recent studies have reported significant advances in the differentiation of human pluripotent stem cells to clinically relevant cell types such as the insulin producing beta-like cells and motor neurons. However, many of the current differentiation protocols lead to heterogeneous cell cultures containing cell types other than the targeted cell fate. Genetically modified human pluripotent stem cells reporting the expression of specific genes are of great value for differentiation protocol optimization and for the purification of relevant cell populations from heterogeneous cell cultures. Here we present the generation of human induced pluripotent stem cell (iPSC lines with a GFP reporter inserted in the endogenous NKX6.1 locus. Characterization of the reporter lines demonstrated faithful GFP labelling of NKX6.1 expression during pancreas and motor neuron differentiation. Cell sorting and gene expression profiling by RNA sequencing revealed that NKX6.1-positive cells from pancreatic differentiations closely resemble human beta cells. Furthermore, functional characterization of the isolated cells demonstrated that glucose-stimulated insulin secretion is mainly confined to the NKX6.1-positive cells. We expect that the NKX6.1-GFP iPSC lines and the results presented here will contribute to the further refinement of differentiation protocols and characterization of hPSC-derived beta cells and motor neurons for disease modelling and cell replacement therapies. Keywords: Human induced pluripotent stem cells, NKX6.1, Reporter cell line, Directed differentiation, hiPSC-derived beta cells

  16. Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lou

    2016-06-01

    Full Text Available Nonsense-mediated RNA decay (NMD is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.

  17. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    Science.gov (United States)

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  18. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Lay Teng Ang

    2018-02-01

    Full Text Available How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs. Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah−/−Rag2−/−Il2rg−/− mouse model of liver failure.

  19. Purinergic signalling in the pancreas in health and disease

    DEFF Research Database (Denmark)

    Burnstock, G; Novak, I

    2012-01-01

    Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the histor......Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After...... the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory...... systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming...

  20. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    Science.gov (United States)

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  1. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  2. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  3. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  4. Gatekeepers of pancreas: TEAD and YAP

    OpenAIRE

    Rodríguez Seguí, Santiago Andrés; Bessa, José

    2017-01-01

    The pancreas hosts some of the most debilitating and deadly diseases, including pancreatic cancer and diabetes mellitus. In autoimmune diabetes, for example, there is a massive destruction of the insulin producing cells of the pancreas. Pancreatic developmental defects can also result in a deficit of this cell type. To revert these important pancreatic diseases, researchers are currently trying to artificially generate insulin producing beta-cells for implantation and, in this way, suppress i...

  5. Controlling destiny through chemistry: small-molecule regulators of cell fate.

    Science.gov (United States)

    Firestone, Ari J; Chen, James K

    2010-01-15

    Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics.

  6. Acinar Cell Cystadenocarcinoma of the Pancreas

    Directory of Open Access Journals (Sweden)

    Keita Aoto

    2017-09-01

    Full Text Available Acinar cell cystadenocarcinoma is a rare malignant epithelial neoplasm of the pancreas with a diffusely cystic, gross architecture in which the cysts are lined with neoplastic epithelial cells that demonstrate evidence of pancreatic exocrine enzyme production. This is the 10th case that has been reported in the literature. A 77-year-old male complaining of left hypochondrial pain was referred to our hospital for treatment of a pancreatic tumor. A huge, honeycomb-structured tumor was detected in the pancreatic tail. Distal pancreatectomy with total resection of the residual stomach and partial resection of the transverse colon were performed. Microscopically, there were variably sized cystic lesions in the tumor. Immunohistochemical examinations revealed that tumor cells were positive for alpha 1-antichymotrypsin and alpha 1-trypsin, showing that tumor cells had features of pancreatic acinar cells. Thus, the tumor was diagnosed as acinar cell cystadenocarcinoma. Herein, we report a rare case with acinar cell cystadenocarcinoma, which is the 10th case reported in the literature based on a PubMed search. We managed to resect the tumor completely by distal pancreatectomy with total resection of the residual stomach and partial resection of the transverse colon. The patient is still alive 26 months after surgery without any recurrence after 1 year of adjuvant chemotherapy with S-1.

  7. The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling

    Science.gov (United States)

    Fagerberg, Linn; Hallström, Björn M.; Schwenk, Jochen M.; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia

    2014-01-01

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects. PMID:25546435

  8. Acinar cell carcinoma of the pancreas presenting as diffuse pancreatic enlargement: Two case reports and literature review.

    Science.gov (United States)

    Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang

    2017-09-01

    Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.

  9. Human mammary progenitor cell fate decisions are productsof interactions with combinatorial microenvironments

    DEFF Research Database (Denmark)

    LaBarge, Mark A.; Nelson, Celeste M.; Villadsen, René

    2009-01-01

    factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify...... combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells.Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well...

  10. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Science.gov (United States)

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  11. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    Directory of Open Access Journals (Sweden)

    Anja Marciniak

    Full Text Available Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  12. Choose your destiny: Make a cell fate decision with COUP-TFII.

    Science.gov (United States)

    Wu, San-Pin; Yu, Cheng-Tai; Tsai, Sophia Y; Tsai, Ming-Jer

    2016-03-01

    Cell fate specification is a critical process to generate cells with a wide range of characteristics from stem and progenitor cells. Emerging evidence demonstrates that the orphan nuclear receptor COUP-TFII serves as a key regulator in determining the cell identity during embryonic development. The present review summarizes our current knowledge on molecular mechanisms by which COUP-TFII employs to define the cell fates, with special emphasis on cardiovascular and renal systems. These novel insights pave the road for future studies of regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells

    OpenAIRE

    Lee, Jonghyeob; Snyder, Emily R.; Liu, Yinghua; Gu, Xueying; Wang, Jing; Flowers, Brittany M.; Kim, Yoo Jung; Park, Sangbin; Szot, Gregory L.; Hruban, Ralph H.; Longacre, Teri A.; Kim, Seung K.

    2017-01-01

    Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring...

  14. Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration.

    Science.gov (United States)

    Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi

    2018-04-13

    The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.

  15. Proglucagon processing in porcine and human pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Bersani, M; Johnsen, A H

    1994-01-01

    In the pancreas proglucagon (PG), a peptide precursor of 160 amino acids is cleaved to produce glucagon and a 30-amino acid N-terminal flanking peptide, but the fate of the C-terminal flanking peptide (99 amino acids) is incompletely known. We subjected acid ethanol extracts of human and porcine...... pancreases to gel filtration and analyzed the fractions with specific radioimmunoassays for the following regions of proglucagon: PG 62-69, PG 72-81, PG 78-87, PG 98-107 amide, PG 126-134, and PG 149-158. Based on these assays and successive purifications by high performance liquid chromatography we isolated...... PG 72-158 = 9971) was isolated from human pancreas together with small amounts of a peptide corresponding to PG 72-107 amide. Thus, the pancreatic processing of the C-terminal flanking peptide in proglucagon includes the formation of equimolar (to glucagon) amounts of PG 64-69 and PG 72-158 (major...

  16. Redox Regulation of Endothelial Cell Fate

    Science.gov (United States)

    Song, Ping; Zou, Ming-Hui

    2014-01-01

    Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions. PMID:24633153

  17. Immunohistochemical localization of glucagon and pancreatic polypeptide on rat endocrine pancreas: coexistence in rat islet cells

    Directory of Open Access Journals (Sweden)

    YH Huang

    2009-08-01

    Full Text Available We used immunofluorescence double staining method to investigate the cellular localization of glucagon and pancreatic polypeptide (PP in rat pancreatic islets. The results showed that both A-cells (glucagon-secreting cells and PP-cells (PPsecreting cells were located in the periphery of the islets. However, A-cells and PP-cells had a different regional distribution. Most of A-cells were located in the splenic lobe but a few of them were in the duodenal lobe of the pancreas. In contrast, the majority of PP-cells were found in the duodenal lobe and a few of them were in the splenic lobe of the pancreas. Furthermore, we found that 67.74% A-cells had PP immunoreactivity, 70.92% PP-cells contained glucagon immunoreactivity with immunofluorescence double staining. Our data support the concept of a common precursor stem cell for pancreatic hormone-producing cells.

  18. Combination of chemotherapy and heavy-ion particle therapy for pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Ando, Koichi

    2003-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas cancer. We measured surviving fractions in four culture pancreas cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells. (author)

  19. Combination of chemotherapy and heavy-ion particle therapy for pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Ando, Koichi

    2004-01-01

    The purpose of this study is to investigate the combination of chemotherapy and heavy-ion particle therapy for pancreas cancer. We measured surviving fractions in four culture pancreas cancer cells. The cell killing of heavy-ion irradiation is more effective compared to that of X ray irradiation. Gemcitabine induced radiosensitization for pancreas cancer cells. (author)

  20. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.

    Science.gov (United States)

    Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-09-06

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Getting a New Pancreas: Facts about Pancreas Transplants

    Science.gov (United States)

    ... 2003 December 2006 March 2012 Getting A New Pancreas Facts About Pancreas Transplants American Society of Transplantation 1120 Route 73, ... the views of the Society. _________________________________________________________________ Getting a New Pancreas Facts About Pancreas Transplants When you get a ...

  2. Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.

    Science.gov (United States)

    Li, Zhiqiang; Huang, Lihua; Yu, Xiao; Yu, Can; Zhu, Hongwei; Li, Xia; Han, Duo; Huang, Hui

    2017-01-01

    The study aimed to explore the alteration of autophagy in rat pancreas treated with exenatide. Normal Sprague-Dawley rats and diabetes-model rats induced by 2-month high-sugar and high-fat diet and streptozotocin injection were subcutaneously injected with exenatide, respectively, for 10 weeks, with homologous rats treated with saline as control. Meanwhile, AR42J cells, pancreatic acinar cell line, were cultured with exenatide at doses of 5 pM for 3 days. The pancreas was disposed, and several sections were stained with hematoxylin-eosin. Immunohistochemistry was used to measure the expressions of glucagon-like peptide 1 receptor (GLP-1R) and cysteine-aspartic acid protease-3 in rat pancreas, and Western blot was used to test the expressions of GLP-1R, light chain 3B-I and -II, and p62 in rat pancreas and AR42J cells. The data were expressed as mean (standard deviation) and analyzed by unpaired Student's t-test. Exenatide can induce pathological changes in rat pancreas. The GLP-1R, p62, light chain 3B-II, and cysteine-aspartic acid protease-3 in rat pancreas and AR42J cells treated with exenatide were significantly overexpressed. Exenatide can activate and upregulate its receptor, GLP-1R, then impair autophagy flux and activate apoptosis in the pancreatic acinar cell, thus damaging rat pancreas.

  3. Pancreas developing markers expressed on human mononucleated umbilical cord blood cells

    International Nuclear Information System (INIS)

    Pessina, A.; Eletti, B.; Croera, C.; Savalli, N.; Diodovich, C.; Gribaldo, L.

    2004-01-01

    Haematopoietic system represents the main source of haematopoietic stem cells and probably of multipotential adult progenitor cells and mesenchimal stem cells at first described as colony forming unit-fibroblast. Whereas there are many studies on the gene expression profile of the different precursors along their haematopoietic differentiation, few data (sometimes conflicting) have been reported about the phenotype of the cells (present in bone marrow and possibly in cord blood) able to differentiate into non-haematopoietic cells. As both postnatal bone marrow and umbilical cord blood contain nestin positive cells able to proliferate and differentiate into the main neural phenotype (neuron, astroglia and oligodendroglia) many authors considered nestin a neuroepithelial precursor marker that seems to be essential also in multipotential progenitor cells of pancreas present both in rat and in human pancreatic islets (called nestin positive islet derived progenitors). Although the importance of nestin in these cells appears to be evident, it remains yet to clarify the number and the sequential expression of the genes coding all the transcription factors essential for beta cells differentiation and therefore the conditions able to induce the expression of many important transcription factors genes such as isl-1, pax-4, pdx-1 and ngn-3. Among them pdx-1 is a gene essential for pancreas development which is able to control ngn-3 in activating the expression of other differentiation factors for endocrine cells. Here, we describe for the first time in human umbilical cord blood cells (UCB) the pattern of expression of a panel of markers (nestin, CK-8, CK-18) and transcription factors (Isl-1, Pdx-1, Pax-4, Ngn-3) considered important for beta cells differentiation. Our data demonstrate that UCB contains a cell population having a phenotype very similar to endocrine cell precursors in transition to beta cells

  4. PPARγ regulates exocrine pancreas lipase.

    Science.gov (United States)

    Danino, Hila; Naor, Ronny Peri-; Fogel, Chen; Ben-Harosh, Yael; Kadir, Rotem; Salem, Hagit; Birk, Ruth

    2016-12-01

    Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  6. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ghrelin in the fetal pancreas - a digital quantitation study

    DEFF Research Database (Denmark)

    Hasselby, Jane Preuss; Maroun, Lisa Leth; Federspiel, Birgitte Hartnack

    2012-01-01

    Hasselby JP, Maroun LL, Federspiel BH, Vainer B. Ghrelin in the fetal pancreas - a digital quantitation study. APMIS 2011. Ghrelin is a hormone produced by specialized neuroendocrine cells located in the fetal pancreas. In the adult, ghrelin has multiple effects, but in the fetus the role...... of ghrelin and the distribution of ghrelin-producing cells is not well documented. The aim of this study was to describe and quantitate the number of ghrelin positive cells in the pancreas during gestation. The material consisted of pancreatic tissue from 19 fetuses at different gestational ages...

  8. Pancreas preservation for pancreas and islet transplantation

    Science.gov (United States)

    Iwanaga, Yasuhiro; Sutherland, David E.R.; Harmon, James V.; Papas, Klearchos K.

    2010-01-01

    Purpose of review To summarize advances and limitations in pancreas procurement and preservation for pancreas and islet transplantation, and review advances in islet protection and preservation. Recent findings Pancreases procured after cardiac death, with in-situ regional organ cooling, have been successfully used for islet transplantation. Colloid-free Celsior and histidine-tryptophan-ketoglutarate preservation solutions are comparable to University of Wisconsin solution when used for cold storage before pancreas transplantation. Colloid-free preservation solutions are inferior to University of Wisconsin solution for pancreas preservation prior to islet isolation and transplantation. Clinical reports on pancreas and islet transplants suggest that the two-layer method may not offer significant benefits over cold storage with the University of Wisconsin solution: improved oxygenation may depend on the graft size; benefits in experimental models may not translate to human organs. Improvements in islet yield and quality occurred from pancreases treated with inhibitors of stress-induced apoptosis during procurement, storage, isolation or culture. Pancreas perfusion may be desirable before islet isolation and transplantation and may improve islet yields and quality. Methods for real-time, noninvasive assessment of pancreas quality during preservation have been implemented and objective islet potency assays have been developed and validated. These innovations should contribute to objective evaluation and establishment of improved pancreas preservation and islet isolation strategies. Summary Cold storage may be adequate for preservation before pancreas transplants, but insufficient when pancreases are processed for islets or when expanded donors are used. Supplementation of cold storage solutions with cytoprotective agents and perfusion may improve pancreas and islet transplant outcomes. PMID:18685343

  9. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast

    Science.gov (United States)

    Li, Yongkai; Yi, Ming; Zou, Xiufen

    2014-01-01

    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  10. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Cell fate regulation in the shoot meristem.

    Science.gov (United States)

    Laux, T; Mayer, K F

    1998-04-01

    The shoot meristem is a proliferative centre containing pluripotent stem cells that are the ultimate source of all cells and organs continuously added to the growing shoot. The progeny of the stem cells have two developmental options, either to renew the stem cell population or to leave the meristem and to differentiate, possibly according to signals from more mature tissue. The destiny of each cell depends on its position within the dynamic shoot meristem. Genetic data suggest a simple model in which graded positional information is provided by antagonistic gene functions and is interpreted by genes which regulate cell fate.

  12. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070 (China); Wang, Jian-Tao, E-mail: wangjiantao65@hotmail.com [Eye Center, Tianjin Medical University, 64 Tongan Road, Tianjin 300070 (China); Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033 (United States)

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  13. The role of cell cycle in retinal development: cyclin-dependent kinase inhibitors co-ordinate cell-cycle inhibition, cell-fate determination and differentiation in the developing retina.

    Science.gov (United States)

    Bilitou, Aikaterini; Ohnuma, Shin-ichi

    2010-03-01

    The mature retina is formed through multi-step developmental processes, including eye field specification, optic vesicle evagination, and cell-fate determination. Co-ordination of these developmental events with cell-proliferative activity is essential to achieve formation of proper retinal structure and function. In particular, the molecular and cellular dynamics of the final cell cycle significantly influence the identity that a cell acquires, since cell fate is largely determined at the final cell cycle for the production of postmitotic cells. This review summarizes our current understanding of the cellular mechanisms that underlie the co-ordination of cell-cycle and cell-fate determination, and also describes a molecular role of cyclin-dependent kinase inhibitors (CDKIs) as co-ordinators of cell-cycle arrest, cell-fate determination and differentiation. Copyright (c) 2010 Wiley-Liss, Inc.

  14. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo

    Science.gov (United States)

    Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-01-01

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping1 has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites2, viral barcodes3, and strategies based on transposons4 and CRISPR/Cas9 genome editing5; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system6,7. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs8–10. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure. PMID:28813413

  15. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

    Science.gov (United States)

    Pei, Weike; Feyerabend, Thorsten B; Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-08-24

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.

  16. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  17. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells.

    Science.gov (United States)

    Nemashkalo, Anastasiia; Ruzo, Albert; Heemskerk, Idse; Warmflash, Aryeh

    2017-09-01

    Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation. © 2017. Published by The Company of Biologists Ltd.

  18. Hippo Signaling Regulates Pancreas Development through Inactivation of Yap

    Science.gov (United States)

    Day, Caroline E.; Boerner, Brian P.; Johnson, Randy L.; Sarvetnick, Nora E.

    2012-01-01

    The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ. PMID:23071096

  19. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs).

    Science.gov (United States)

    Yasunaga, Shin'ichiro; Ohno, Yoshinori; Shirasu, Naoto; Zhang, Bo; Suzuki-Takedachi, Kyoko; Ohtsubo, Motoaki; Takihara, Yoshihiro

    2016-09-01

    Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs).

  20. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.

    Science.gov (United States)

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-10-01

    Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI

  1. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2018-01-01

    Full Text Available Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached, and dissolved (i.e., cell-free enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100% of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.

  2. Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate

    Science.gov (United States)

    Baltar, Federico

    2018-01-01

    Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095

  3. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  4. In Vitro-Produced Pancreas Organogenesis Models In Three Dimensions

    DEFF Research Database (Denmark)

    Greggio, Chiara; De Franceschi, Filippo; Grapin-Botton, Anne

    2015-01-01

    of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focusses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human...... pancreas development and function as well as to develop diabetes models and therapeutic cells. Stem Cells 2014....

  5. Stimulus-secretion coupling in the developing exocrine pancreas

    International Nuclear Information System (INIS)

    Chang, A.Y.S.

    1986-01-01

    Acinar cells of the embryonic pancreas are filled with zymogen granules containing, among others, the secretory protein, cholecystokinin (CCK) α-amylase, the rate of amylase secretion from pancreatic lobules incubated in vitro was not increased in response to CCK. In contrast, the rate of CCK-stimulated amylase discharge from the neonatal pancreas was increased 4- to 8-fold above that seen in the embryonic gland. The postnatal amplification of secretory responsiveness was not associated with an increase in the level of 125 I-CCK octapeptide specifically bound/cell equivalent or a change in the affinity of binding. Light microscopic autoradiography revealed a similar 125 I-CCK-33 labeling pattern in pancreatic lobules from both ages with autoradiographic grains specifically localized at the periphery of acinar cells. In order to determine whether CCK binding is coupled to a rise in the cytosolic Ca ++ concentration, [Ca ++ ]c, in the embryonic pancreas, 45 Ca ++ efflux from tracer-loaded lobules was measured. Efflux of 45 Ca ++ from both embryonic and neonatal pancreas was comparably increased in the presence of CCK

  6. Transcriptional control of stem cell fate by E2Fs and pocket proteins

    Science.gov (United States)

    Julian, Lisa M.; Blais, Alexandre

    2015-01-01

    E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs. PMID:25972892

  7. Transcriptional control of stem cell fate by E2Fs and Pocket Proteins

    Directory of Open Access Journals (Sweden)

    Lisa Marie Julian

    2015-04-01

    Full Text Available E2F transcription factors and their regulatory partners, the pocket proteins (PPs, have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.

  8. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells

    Directory of Open Access Journals (Sweden)

    David A. Turner

    2014-06-01

    Full Text Available Embryonic Stem cells derived from the epiblast tissue of the mammalian blastocyst retain the capability to differentiate into any adult cell type and are able to self-renew indefinitely under appropriate culture conditions. Despite the large amount of knowledge that we have accumulated to date about the regulation and control of self-renewal, efficient directed differentiation into specific tissues remains elusive. In this work, we have analysed in a systematic manner the interaction between the dynamics of loss of pluripotency and Activin/Nodal, BMP4 and Wnt signalling in fate assignment during the early stages of differentiation of mouse ES cells in culture. During the initial period of differentiation, cells exit from pluripotency and enter an Epi-like state. Following this transient stage, and under the influence of Activin/Nodal and BMP signalling, cells face a fate choice between differentiating into neuroectoderm and contributing to Primitive Streak fates. We find that Wnt signalling does not suppress neural development as previously thought and that it aids both fates in a context dependent manner. Our results suggest that as cells exit pluripotency they are endowed with a primary neuroectodermal fate and that the potency to become endomesodermal rises with time. We suggest that this situation translates into a “race for fates” in which the neuroectodermal fate has an advantage.

  9. Resection for secondary malignancy of the pancreas.

    Science.gov (United States)

    Hung, Jui-Hsia; Wang, Shin-E; Shyr, Yi-Ming; Su, Cheng-Hsi; Chen, Tien-Hua; Wu, Chew-Wun

    2012-01-01

    This study tried to clarify the role of pancreatic resection in the treatment of secondary malignancy with metastasis or local invasion to the pancreas in terms of surgical risk and survival benefit. Data of secondary malignancy of the pancreas from our 19 patients and cases reported in the English literature were pooled together for analysis. There were 329 cases of resected secondary malignancy of the pancreas, including 241 cases of metastasis and 88 cases of local invasion. The most common primary tumor metastatic to the pancreas and amenable to resection was renal cell carcinoma (RCC) (73.9%). More than half (52.3%) of the primary cancers with local invasion to the pancreas were colon cancer, and nearly half (40.9%) were stomach cancer. The median metastatic interval was 84 months (7 years) for overall primary tumors and 108 months (9 years) for RCC. The 5-year survival for secondary malignancy of the pancreas after resection was 61.1% for metastasis and 58.9% for local invasion, with 72.8% for RCC metastasis, 69.0% for colon cancer, and 43.8% for stomach cancer with local invasion to the pancreas. Pancreatic resection should not be precluded for secondary malignancy of the pancreas because long-term survival could be achieved with acceptable surgical risk in selected patients.

  10. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    Science.gov (United States)

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A.

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926

  11. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas

    OpenAIRE

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the ...

  12. Pancreas Transplantation

    Science.gov (United States)

    The pancreas is a gland behind your stomach and in front of your spine. It produces the juices that ... hormones that help control blood sugar levels. A pancreas transplant is surgery to place a healthy pancreas ...

  13. ¬Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behaviour

    Directory of Open Access Journals (Sweden)

    Hilary Jane Anderson

    2016-05-01

    Full Text Available Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell BehaviourHilary J Anderson1, Jugal Kishore Sahoo2, Rein V Ulijn2,3, Matthew J Dalby1*1 Centre for Cell Engineering, University of Glasgow, Glasgow, UK.2 Technology and Innovation centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK. 3 Advanced Science Research Centre (ASRC and Hunter College, City University of New York, NY 10031, NY, USA. Correspondence:*Hilary Andersonh.anderson.1@research.gla.ac.ukKeywords: mesenchymal stem cells, bioengineering, materials synthesis, nanotopography, stimuli responsive material□AbstractThe materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behaviour. This is important as the ability to ‘engineer’ complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate.

  14. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.

    Science.gov (United States)

    Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd

    2004-07-01

    Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.

  15. What Is the Pancreas?

    Science.gov (United States)

    ... Pancreas Function of the Pancreas What is the pancreas? The pancreas is a long flattened gland located ... controller of blood sugar levels. Where is the pancreas? The pancreas is located deep in the abdomen. ...

  16. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  17. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob

    2011-01-01

    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  18. Tissue-specific deletion of c-Jun in the pancreas has limited effects on pancreas formation

    International Nuclear Information System (INIS)

    Yamamoto, Kaoru; Miyatsuka, Takeshi; Tanaka, Ayako; Toyoda, Shuichi; Kato, Ken; Shiraiwa, Toshihiko; Fujitani, Yoshio; Yamasaki, Yoshimitsu; Hori, Masatsugu; Matsuhisa, Munehide; Matsuoka, Taka-aki; Kaneto, Hideaki

    2007-01-01

    It is well known that activating protein-1 (AP-1) is involved in a variety of cellular functions such as proliferation, differentiation, apoptosis, and oncogenesis. AP-1 is a dimer complex consisting of different subunits, and c-Jun is known to be one of its major components. In addition, it has been shown that mice lacking c-Jun are embryonic lethal and that c-Jun is essential for liver and heart development. However, the role of c-Jun in the pancreas is not well known. The aim of this study was to examine the possible role of c-Jun in the pancreas. First, c-Jun was strongly expressed in pancreatic duct-like structures at an embryonic stage, while a lower level of expression was observed in some part of the adult pancreas, implying that c-Jun might play a role during pancreas development. Second, to address this point, we generated pancreas-specific c-Jun knock-out mice (Ptf1a-Cre; c-Jun flox/flox mice) by crossing Ptf1a-Cre knock-in mice with c-Jun floxed mice. Ptf1a is a pancreatic transcription factor and its expression is confined to pancreatic stem/progenitor cells, which give rise to all three types of pancreatic tissue: endocrine, exocrine, and duct. Contrary to our expectation, however, there was no morphological difference in the pancreas between Ptf1a-Cre; c-Jun flox/flox and control mice. In addition, there was no difference in body weight, pancreas weight, and the expression of various pancreas-related factors (insulin, glucagon, cytokeratin, and amylase) between the two groups. Furthermore, there was no difference in glucose tolerance between Ptf1a-Cre; c-Jun flox/flox and control mice. Taken together, although we cannot exclude the possibility that c-Jun ablation is compensated by some unknown factors, c-Jun appears to be dispensable for pancreas development at least after ptf1a gene promoter is activated

  19. Laparoscopic robot-assisted pancreas transplantation: first world experience.

    Science.gov (United States)

    Boggi, Ugo; Signori, Stefano; Vistoli, Fabio; D'Imporzano, Simone; Amorese, Gabriella; Consani, Giovanni; Guarracino, Fabio; Marchetti, Piero; Focosi, Daniele; Mosca, Franco

    2012-01-27

    Surgical complications are a major disincentive to pancreas transplantation, despite the undisputed benefits of restored insulin independence. The da Vinci surgical system, a computer-assisted electromechanical device, provides the unique opportunity to test whether laparoscopy can reduce the morbidity of pancreas transplantation. Pancreas transplantation was performed by robot-assisted laparoscopy in three patients. The first patient received a pancreas after kidney transplant, the second a simultaneous pancreas kidney transplantation, and the third a pancreas transplant alone. Operations were carried out through an 11-mm optic port, two 8-mm operative ports, and a 7-cm midline incision. The latter was used to introduce the grafts, enable vascular cross-clamping, and create exocrine drainage into the jejunum. The two solitary pancreas transplants required an operating time of 3 and 5 hr, respectively; the simultaneous pancreas kidney transplantation took 8 hr. Mean warm ischemia time of the pancreas graft was 34 min. All pancreatic transplants functioned immediately, and all recipients became insulin independent. The kidney graft, revascularized after 35 min of warm ischemia, also functioned immediately. No patient had complications during or after surgery. At the longer follow-up of 10, 8, and 6 months, respectively, all recipients are alive with normal graft function. We have shown the feasibility of laparoscopic robot-assisted solitary pancreas and simultaneous pancreas and kidney transplantation. If the safety and feasibility of this procedure can be confirmed by larger series, laparoscopic robot-assisted pancreas transplantation could become a new option for diabetic patients needing beta-cell replacement.

  20. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    Science.gov (United States)

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  1. A possible role for the canonical Wnt pathway in endocrine cell development in chicks

    International Nuclear Information System (INIS)

    Pedersen, Anna Hauntoft; Heller, R. Scott

    2005-01-01

    Wnt signalling is involved in many developmental processes such as proliferation, differentiation, cell fate decisions, and morphogenesis. However, little is known about Wnt signalling during pancreas development. Multiple Wnt ligands and Frizzled receptors are expressed in the embryonic mouse pancreas, the surrounding mesenchyme, and have also been detected in the chicken endoderm during development. The aim of this study was to investigate the role of canonical Wnt signalling on endocrine cell development by use of the in ovo electroporation of the chicken endoderm. Overexpression with a constitutive active form of β-catenin in combination with Ngn3 resulted in reduced numbers of glucagon cells. dnLEF-1 or naked-1 did not alter endocrine cell differentiation when co-expressed with Ngn3, but dnLEF-1 appeared to have some potential for inhibiting delamination of Ngn3 cells. In addition, neuronal β-III-tubulin, which had previously been considered a specific marker for neuronal cells, was observed in the pancreas and was upregulated in the electroporated Ngn3 cells and thus may be a new endocrine marker in the chicken

  2. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Science.gov (United States)

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  3. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives

    Science.gov (United States)

    Graham, Thomas G. W.; Tabei, S. M. Ali; Dinner, Aaron R.; Rebay, Ilaria

    2010-01-01

    A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks. PMID:20570936

  4. Cell fate determination in zebrafish embryonic and adult muscle development

    NARCIS (Netherlands)

    Tee, J.M.

    2010-01-01

    We are interested in how the genetic basis of muscle precursor cells determines the outcome of the muscle cell fate, and thus leading to disruption in muscle formation and maintenance. We utilized the zebrafish carrying mutations in both Axin1 and Apc1, resulting in overactivation of the

  5. Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy.

    Science.gov (United States)

    Aguila, Julio C; Hedlund, Eva; Sanchez-Pernaute, Rosario

    2012-01-01

    Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  6. Stochastic Differential Equations in Artificial Pancreas Modelling

    DEFF Research Database (Denmark)

    Duun-Henriksen, Anne Katrine

    Type 1 diabetes accounts for approximately 5% of the total diabetes population. It is caused by the destruction of insulin producing β-cells in the pancreas. Various treatment strategies are available today, some of which include advanced technological devices such as an insulin pump and a contin......Type 1 diabetes accounts for approximately 5% of the total diabetes population. It is caused by the destruction of insulin producing β-cells in the pancreas. Various treatment strategies are available today, some of which include advanced technological devices such as an insulin pump...... of the insulin pump and the CGM has paved the way for a fully automatic treatment regime, the artificial pancreas. The idea is to connect the CGM with the insulin pump via a control algorithm running on e.g. the patients smart phone. The CGM observations are sent to the smart phone and based on this information...... of the system directly. The purpose of this PhD-project was to investigate the potential of SDEs in the artificial pancreas development. Especially, the emerging continuous monitoring of glucose levels makes SDEs highly applicable to this field. The current thesis aims at demonstrating and discussing...

  7. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells.

    Directory of Open Access Journals (Sweden)

    Raymond M Anchan

    Full Text Available Embryonic stem (ES cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.

  8. The Yin and Yang of chromatin dynamics in adult stem cell fate selection

    Science.gov (United States)

    Adam, Rene C.; Fuchs, Elaine

    2015-01-01

    Adult organisms rely on tissue stem cells for maintenance and repair. During homeostasis, the concerted action of local niche signals and epigenetic regulators establish stable gene expression patterns to ensure that stem cells are not lost over time. However, stem cells also provide host tissues with a remarkable plasticity to respond to perturbations. How adult stem cells choose and acquire new fates is unknown, but the genome-wide mapping of epigenetic landscapes suggests a critical role for chromatin remodeling in these processes. Here, we explore the emerging role of chromatin modifiers and pioneer transcription factors in adult stem cell fate decisions and plasticity, which ensure that selective lineage choices are only made when environmentally cued. PMID:26689127

  9. Telocytes in pancreas of the Chinese giant salamander (Andrias davidianus).

    Science.gov (United States)

    Zhang, Hui; Yu, Pengcheng; Zhong, Shengwei; Ge, Tingting; Peng, Shasha; Guo, Xiaoquan; Zhou, Zuohong

    2016-11-01

    Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34 + TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34 + TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. The C. elegans TPR Containing Protein, TRD-1, Regulates Cell Fate Choice in the Developing Germ Line and Epidermis.

    Directory of Open Access Journals (Sweden)

    Samantha Hughes

    Full Text Available Correct cell fate choice is crucial in development. In post-embryonic development of the hermaphroditic Caenorhabitis elegans, distinct cell fates must be adopted in two diverse tissues. In the germline, stem cells adopt one of three possible fates: mitotic cell cycle, or gamete formation via meiosis, producing either sperm or oocytes. In the epidermis, the stem cell-like seam cells divide asymmetrically, with the daughters taking on either a proliferative (seam or differentiated (hypodermal or neuronal fate. We have isolated a novel conserved C. elegans tetratricopeptide repeat containing protein, TRD-1, which is essential for cell fate determination in both the germline and the developing epidermis and has homologs in other species, including humans (TTC27. We show that trd-1(RNAi and mutant animals have fewer seam cells as a result of inappropriate differentiation towards the hypodermal fate. In the germline, trd-1 RNAi results in a strong masculinization phenotype, as well as defects in the mitosis to meiosis switch. Our data suggests that trd-1 acts downstream of tra-2 but upstream of fem-3 in the germline sex determination pathway, and exhibits a constellation of phenotypes in common with other Mog (masculinization of germline mutants. Thus, trd-1 is a new player in both the somatic and germline cell fate determination machinery, suggestive of a novel molecular connection between the development of these two diverse tissues.

  11. Pancreatic Stellate Cells Have Distinct Characteristics From Hepatic Stellate Cells and Are Not the Unique Origin of Collagen-Producing Cells in the Pancreas.

    Science.gov (United States)

    Yamamoto, Gen; Taura, Kojiro; Iwaisako, Keiko; Asagiri, Masataka; Ito, Shinji; Koyama, Yukinori; Tanabe, Kazutaka; Iguchi, Kohta; Satoh, Motohiko; Nishio, Takahiro; Okuda, Yukihiro; Ikeno, Yoshinobu; Yoshino, Kenji; Seo, Satoru; Hatano, Etsuro; Uemoto, Shinji

    2017-10-01

    The origin of collagen-producing myofibroblasts in pancreatic fibrosis is still controversial. Pancreatic stellate cells (PSCs), which have been recognized as the pancreatic counterparts of hepatic stellate cells (HSCs), are thought to play an important role in the development of pancreatic fibrosis. However, sources of myofibroblasts other than PSCs may exist because extensive studies of liver fibrosis have uncovered myofibroblasts that did not originate from HSCs. This study aimed to characterize myofibroblasts in an experimental pancreatic fibrosis model in mice. We used transgenic mice expressing green fluorescent protein via the collagen type I α1 promoter and induced pancreatic fibrosis with repetitive injections of cerulein. Collagen-producing cells that are negative for glial fibrillary acidic protein (ie, not derived from PSCs) exist in the pancreas. Pancreatic stellate cells had different characteristics from those of HSCs in a very small possession of vitamin A using mass spectrometry and a low expression of lecithin retinol acyltransferase. The microstructure of PSCs was entirely different from that of HSCs using flow cytometry and electron microscopy. Our study showed that characteristics of PSCs are different from those of HSCs, and myofibroblasts in the pancreas might be derived not only from PSCs but also from other fibrogenic cells.

  12. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  13. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  14. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering

    Science.gov (United States)

    Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita

    2013-01-01

    Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110

  15. Retrovirally transduced NCAM140 facilitates neuronal fate choice of hippocampal progenitor cells.

    Science.gov (United States)

    Kim, Ju Hee; Lee, Jung-Ha; Park, Jin-Yong; Park, Chang-Hwan; Yun, Chae-Ok; Lee, Sang-Hun; Lee, Yong-Sung; Son, Hyeon

    2005-07-01

    Neural cell adhesion molecule (NCAM) influences proliferation and differentiation of neuronal cells. However, only a little is known about the downstream effects of NCAM signalling, such as alterations in gene transcription, which are associated with cell fate choice. To examine whether NCAM plays a role in cell fate choice during hippocampal neurogenesis, we performed a gain-of-function study, using a retroviral vector which contained full-length NCAM140 cDNA and the marker gene EGFP, and found that NCAM140 promoted neurogenesis by activating proneural transcription activators with concurrent inhibition of gliogenesis. The enhanced transcript levels of proneural transcription factors in NCAM140-transduced cells were down-regulated by treatment of the cells with mitogen-activated protein kinase kinase (MEK) inhibitor PD098059. Overall, these findings suggest that NCAM140 may facilitate hippocampal neurogenesis via regulation of proneurogenic transcription factors in an extracellular signal-regulated kinase (ERK)-dependent manner.

  16. Spatially patterned matrix elasticity directs stem cell fate

    Science.gov (United States)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  17. Pure red cell aplasia in a simultaneous pancreas-kidney transplantation patient: inside the erythroblast

    Directory of Open Access Journals (Sweden)

    Francesca Labbadia

    2012-09-01

    Full Text Available A case of pure red cell aplasia in a simultaneous kidney-pancreas transplant recipient on immunosuppressive therapy is reported here. The patient presented with anemia unresponsive to erythropoietin treatment. Bone marrow cytomorphology was highly suggestive of parvovirus pure red cell aplasia, which was confirmed with serology and polymerase chain reaction positive for parvovirus B19 DNA in peripheral blood. After the administration of intravenous immunoglobulin the anemia improved with a rising number of the reticulocytes.

  18. The diagnostic utility of Merkel cell polyomavirus immunohistochemistry in a fine needle aspirate of metastatic Merkel cell carcinoma of unknown primary to the pancreas.

    Science.gov (United States)

    Li, Long; Molberg, Kyle; Cheedella, Naga; Thibodeaux, Joel; Hinson, Stacy; Lucas, Elena

    2018-01-01

    Merkel cell carcinoma (MCC) is an aggressive skin tumor with a high tendency for metastases. We report a case of MCC initially presenting as axillary and pancreatic metastases. A 33-year-old HIV-positive Hispanic male presented with a history of a rapidly growing axillary mass. A needle core biopsy demonstrated an epithelioid neoplasm composed of small to medium-sized cells with high nuclear-cytoplasmic ratio, nuclear molding, and frequent mitotic figures. A subsequent PET scan revealed a 1.5 cm FDG avid mass in the pancreas. Endoscopic ultrasound-guided FNA of the pancreatic mass showed neoplastic cells with similar morphology to those of the axillary mass. The tumor cells were positive with pancytokeratin AE1/AE3, CK20, CD56, synatophysin, chromogranin, and Merkel cell polyomavirus (MCPyV). This case of MCC most likely originated from a resolved primary skin lesion drained by the involved axillary lymph node with subsequent metastases to the pancreas and distant lymph nodes. © 2017 Wiley Periodicals, Inc.

  19. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  20. Normal Pancreas Anatomy

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Pancreas Anatomy Add to My Pictures View /Download : Small: ... 1586x1534 View Download Large: 3172x3068 View Download Title: Pancreas Anatomy Description: Anatomy of the pancreas; drawing shows ...

  1. Purinergic receptors in the endocrine and exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, I

    2008-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly......, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors...

  2. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    Science.gov (United States)

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  3. Notch signaling and ghost cell fate in the calcifying cystig odontogenic tumor

    Directory of Open Access Journals (Sweden)

    Siar CH

    2011-11-01

    Full Text Available Abstract Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites. Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (GCOT, their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4 and three ligands (Jagged1, Jagged2 and Delta1 was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0, mild (+, moderate (2+ and strong (3+. Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive.

  4. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  5. Disorders of the pediatric pancreas: imaging features

    International Nuclear Information System (INIS)

    Nijs, Els; Callahan, Michael J.; Taylor, George A.

    2005-01-01

    The purpose of this manuscript is to provide an overview of the normal development of the pancreas as well as pancreatic pathology in children. Diagnostic imaging plays a major role in the evaluation of the pancreas in infants and children. Familiarity with the range of normal appearance and the diseases that commonly affect this gland is important for the accurate and timely diagnosis of pancreatic disorders in the pediatric population. Normal embryology is discussed, as are the most common congenital anomalies that occur as a result of aberrant development during embryology. These include pancreas divisum, annular pancreas, agenesis of the dorsal pancreatic anlagen and ectopic pancreatic tissue. Syndromes that can manifest pancreatic pathology include: Beckwith Wiedemann syndrome, von Hippel-Lindau disease and autosomal dominant polycystic kidney disease. Children and adults with cystic fibrosis and Shwachman-Diamond syndrome frequently present with pancreatic insufficiency. Trauma is the most common cause of pancreatitis in children. In younger children, unexplained pancreatic injury must always alert the radiologist to potential child abuse. Pancreatic pseudocysts are a complication of trauma, but can also be seen in the setting of acute or chronic pancreatitis from other causes. Primary pancreatic neoplasms are rare in children and are divided into exocrine tumors such as pancreatoblastoma and adenocarcinoma and into endocrine or islet cell tumors. Islet cell tumors are classified as functioning (insulinoma, gastrinoma, VIPoma and glucagonoma) and nonfunctioning tumors. Solid-cystic papillary tumor is probably the most common pancreatic tumor in Asian children. Although quite rare, secondary tumors of the pancreas can be associated with certain primary malignancies. (orig.)

  6. Disorders of the pediatric pancreas: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Nijs, Els [University Hospital Gasthuisberg, Department of Radiology, Leuven (Belgium); Callahan, Michael J.; Taylor, George A. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States)

    2005-04-01

    The purpose of this manuscript is to provide an overview of the normal development of the pancreas as well as pancreatic pathology in children. Diagnostic imaging plays a major role in the evaluation of the pancreas in infants and children. Familiarity with the range of normal appearance and the diseases that commonly affect this gland is important for the accurate and timely diagnosis of pancreatic disorders in the pediatric population. Normal embryology is discussed, as are the most common congenital anomalies that occur as a result of aberrant development during embryology. These include pancreas divisum, annular pancreas, agenesis of the dorsal pancreatic anlagen and ectopic pancreatic tissue. Syndromes that can manifest pancreatic pathology include: Beckwith Wiedemann syndrome, von Hippel-Lindau disease and autosomal dominant polycystic kidney disease. Children and adults with cystic fibrosis and Shwachman-Diamond syndrome frequently present with pancreatic insufficiency. Trauma is the most common cause of pancreatitis in children. In younger children, unexplained pancreatic injury must always alert the radiologist to potential child abuse. Pancreatic pseudocysts are a complication of trauma, but can also be seen in the setting of acute or chronic pancreatitis from other causes. Primary pancreatic neoplasms are rare in children and are divided into exocrine tumors such as pancreatoblastoma and adenocarcinoma and into endocrine or islet cell tumors. Islet cell tumors are classified as functioning (insulinoma, gastrinoma, VIPoma and glucagonoma) and nonfunctioning tumors. Solid-cystic papillary tumor is probably the most common pancreatic tumor in Asian children. Although quite rare, secondary tumors of the pancreas can be associated with certain primary malignancies. (orig.)

  7. Intracellular Events and Cell Fate in Filovirus Infection

    Directory of Open Access Journals (Sweden)

    Elena Ryabchikova

    2011-08-01

    Full Text Available Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis.

  8. Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers.

    Science.gov (United States)

    Eguchi, Asuka; Lee, Garrett O; Wan, Fang; Erwin, Graham S; Ansari, Aseem Z

    2014-09-15

    Transcription factors control the fate of a cell by regulating the expression of genes and regulatory networks. Recent successes in inducing pluripotency in terminally differentiated cells as well as directing differentiation with natural transcription factors has lent credence to the efforts that aim to direct cell fate with rationally designed transcription factors. Because DNA-binding factors are modular in design, they can be engineered to target specific genomic sequences and perform pre-programmed regulatory functions upon binding. Such precision-tailored factors can serve as molecular tools to reprogramme or differentiate cells in a targeted manner. Using different types of engineered DNA binders, both regulatory transcriptional controls of gene networks, as well as permanent alteration of genomic content, can be implemented to study cell fate decisions. In the present review, we describe the current state of the art in artificial transcription factor design and the exciting prospect of employing artificial DNA-binding factors to manipulate the transcriptional networks as well as epigenetic landscapes that govern cell fate.

  9. New insights into mechanisms of stem cell daughter fate determination in regenerative tissues.

    Science.gov (United States)

    Sada, Aiko; Tumbar, Tudorita

    2013-01-01

    Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice

    Directory of Open Access Journals (Sweden)

    Matthew D. Keefe

    2012-07-01

    The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.

  11. Glioma cell fate decisions mediated by Dll1-Jag1-Fringe in Notch1 signaling pathway.

    Science.gov (United States)

    Shi, Xiaofei; Wang, Ruiqi

    2017-09-21

    The Notch family of proteins plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. It has been shown that Notch1 and its ligands, Dll1 and Jag1, are overexpressed in many glioma cell lines and primary human gliomas. The roles of Notch1 in some cancers have been firmly established, and recent data implicate that it plays important roles in glioma cell fate decisions. This paper focuses on devising a specific theoretical framework that incorporates Dll1, Jag1, and Fringe in Notch1 signaling pathway to explore their functional roles of these proteins in glioma cells in the tumorigenesis and progression of human gliomas, and to study how glioma cell fate decisions are modulated by both trans-activation and cis-inhibition. This paper presents a computational model for Notch1 signaling pathway in glioma cells. Based on the bifurcation analysis of the model, we show that how the glioma cell fate decisions are modulated by both trans-activation and cis-inhibition mediated by the Fringe protein, providing insight into the design and control principles of the Notch signaling system and the gliomas. This paper presents a computational model for Notch1 signaling pathway in glioma cells based on intertwined dynamics with cis-inhibition and trans-activation involving the proteins Notch1, Dll1, Jag1, and Fringe. The results show that how the glioma cell fate transitions are performed by the Notch1 signaling. Transition from grade III ∼ IV with significantly high Notch1 to grade I ∼ II with high Notch1, and then to normal cells by repressing the Fringe levels or decreasing the strength of enhancement induced by Fringe.

  12. Serglycin proteoglycan is not implicated in localizing exocrine pancreas enzymes to zymogen granules

    DEFF Research Database (Denmark)

    Niemann, Carsten U; Cowland, Jack B; Ralfkiaer, Elisabeth

    2009-01-01

    Storage and release of proteins from granules forms the basis of cellular functions as diverse as cell mediated cytotoxicity, neuronal communication, activation of muscle fibres, and release of hormones or digestive enzymes from endocrine and exocrine glands, such as the pancreas. Serglycin...... is the major intracellular proteoglycan of haematopoietic cells. Serglycin is important for localization of proteins in granules of different haematopoietic cell types. Previous reports have indicated a role for serglycin in granule formation and localization of zymogens in granules of the exocrine pancreas...... in rat. We here present data showing that serglycin is not present at the protein level in human or murine pancreas. Furthermore, the amount and localization of three exocrine pancreas zymogens (amylase, trypsinogen, and carboxypeptidase A) is not affected by the absence of serglycin in a serglycin knock...

  13. A standardized method for in vivo mouse pancreas imaging and semiquantitative beta cell mass measurement by dual isotope SPECT

    NARCIS (Netherlands)

    Mathijs, I.; Xavier, C.; Peleman, C.; Caveliers, V.; Brom, M.; Gotthardt, M.; Herrera, P.L.; Lahoutte, T.; Bouwens, L.

    2015-01-01

    PURPOSE: In order to evaluate future beta cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective beta cell tracer within the pancreas. PROCEDURES: 2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and

  14. Annular pancreas

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...

  15. Discrete functions of mTOR signaling in iNKT cell development and NKT17 fate decision

    OpenAIRE

    Wei, Jun; Yang, Kai; Chi, Hongbo

    2014-01-01

    Invariant natural killer T (iNKT) cells have been recently classified into NKT1, NKT2 and NKT17 lineages with distinct transcription factor and cytokine profiles, but mechanisms underlying such fate decisions remain elusive. Here, we report crucial roles of mTOR signaling especially mTORC2 in iNKT cell development and fate determination of NKT17 cells. Loss of Rictor, an obligatory component of mTORC2, decreased thymic and peripheral iNKT cells, associated with defective survival. Strikingly,...

  16. Asymmetric Localization of Cdx2 mRNA during the First Cell-Fate Decision in Early Mouse Development

    Directory of Open Access Journals (Sweden)

    Maria Skamagki

    2013-02-01

    Full Text Available A longstanding question in mammalian development is whether the divisions that segregate pluripotent progenitor cells for the future embryo from cells that differentiate into extraembryonic structures are asymmetric in cell-fate instructions. The transcription factor Cdx2 plays a key role in the first cell-fate decision. Here, using live-embryo imaging, we show that localization of Cdx2 transcripts becomes asymmetric during development, preceding cell lineage segregation. Cdx2 transcripts preferentially localize apically at the late eight-cell stage and become inherited asymmetrically during divisions that set apart pluripotent and differentiating cells. Asymmetric localization depends on a cis element within the coding region of Cdx2 and requires cell polarization as well as intact microtubule and actin cytoskeletons. Failure to enrich Cdx2 transcripts apically results in a significant decrease in the number of pluripotent cells. We discuss how the asymmetric localization and segregation of Cdx2 transcripts could contribute to multiple mechanisms that establish different cell fates in the mouse embryo.

  17. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Science.gov (United States)

    Lönnberg, Tapio; Svensson, Valentine; James, Kylie R; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S F; Fogg, Lily G; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J T; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D; Souza-Fonseca-Guimaraes, Fernando; Bunn, Patrick T; Engwerda, Christian R; Heath, William R; Billker, Oliver; Stegle, Oliver; Haque, Ashraful; Teichmann, Sarah A

    2017-03-03

    Differentiation of naïve CD4 + T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo . By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.

  18. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate

    Directory of Open Access Journals (Sweden)

    Luigi Tortola

    2016-05-01

    Full Text Available Summary: The HECT domain E3 ligase HACE1 has been identified as a tumor suppressor in multiple cancers. Here, we report that HACE1 is a central gatekeeper of TNFR1-induced cell fate. Genetic inactivation of HACE1 inhibits TNF-stimulated NF-κB activation and TNFR1-NF-κB-dependent pathogen clearance in vivo. Moreover, TNF-induced apoptosis was impaired in hace1 mutant cells and knockout mice in vivo. Mechanistically, HACE1 is essential for the ubiquitylation of the adaptor protein TRAF2 and formation of the apoptotic caspase-8 effector complex. Intriguingly, loss of HACE1 does not impair TNFR1-mediated necroptotic cell fate via RIP1 and RIP3 kinases. Loss of HACE1 predisposes animals to colonic inflammation and carcinogenesis in vivo, which is markedly alleviated by genetic inactivation of RIP3 kinase and TNFR1. Thus, HACE1 controls TNF-elicited cell fate decisions and exerts tumor suppressor and anti-inflammatory activities via a TNFR1-RIP3 kinase-necroptosis pathway. : Tortola et al. report that the E3 ubiquitin ligase HACE1 is a gatekeeper of TNFR1-mediated cell fate. Hace1 deficiency impairs TNF-driven NF-κB activation and apoptosis and predisposes cells to necroptosis. Consequently, hace1–/– mice show enhanced colitis and colon cancer, which can be reverted by inactivation of pro-necroptotic kinase RIP3 and TNFR1.

  19. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy

    Directory of Open Access Journals (Sweden)

    A.L. Márquez-Aguirre

    2015-01-01

    Full Text Available Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis, and converting non-β cells within the pancreas to β cells (transdifferentiation are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.

  20. GLUT4 in the endocrine pancreas--indicating an impact in pancreatic islet cell physiology?

    Science.gov (United States)

    Bähr, I; Bazwinsky-Wutschke, I; Wolgast, S; Hofmann, K; Streck, S; Mühlbauer, E; Wedekind, D; Peschke, E

    2012-06-01

    The glucose transporter GLUT4 is well known to facilitate the transport of blood glucose into insulin-sensitive muscle and adipose tissue. In this study, molecular, immunohistochemical, and Western blot investigations revealed evidence that GLUT4 is also located in the mouse, rat, and human endocrine pancreas. In addition, high glucose decreased and insulin elevated the GLUT4 expression in pancreatic α-cells. In contrast, high glucose increased GLUT4 expression, whereas insulin led to a reduced expression level of the glucose transporter in pancreatic β-cells. In vivo experiments showed that in pancreatic tissue of type 2 diabetic rats as well as type 2 diabetic patients, the GLUT4 expression is significantly increased compared to the nondiabetic control group. Furthermore, type 1 diabetic rats exhibited reduced GLUT4 transcript levels in pancreatic tissue, whereas insulin treatment of type 1 diabetic animals enhanced the GLUT4 expression back to control levels. These data provide evidence for the existence of GLUT4 in the endocrine pancreas and indicate a physiological relevance of this glucose transporter as well as characteristic changes in diabetic disease. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Vascular development in the vertebrate pancreas

    Science.gov (United States)

    Azizoglu, D. Berfin; Chong, Diana C.; Villasenor, Alethia; Magenheim, Judith; Barry, David M.; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-01-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. PMID:27789228

  2. Vascular development in the vertebrate pancreas.

    Science.gov (United States)

    Azizoglu, D Berfin; Chong, Diana C; Villasenor, Alethia; Magenheim, Judith; Barry, David M; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-12-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time in-depth cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.

    Science.gov (United States)

    Tosic, Milica; Allen, Anita; Willmann, Dominica; Lepper, Christoph; Kim, Johnny; Duteil, Delphine; Schüle, Roland

    2018-01-25

    Satellite cells are muscle stem cells required for muscle regeneration upon damage. Of note, satellite cells are bipotent and have the capacity to differentiate not only into skeletal myocytes, but also into brown adipocytes. Epigenetic mechanisms regulating fate decision and differentiation of satellite cells during muscle regeneration are not yet fully understood. Here, we show that elevated levels of lysine-specific demethylase 1 (Kdm1a, also known as Lsd1) have a beneficial effect on muscle regeneration and recovery after injury, since Lsd1 directly regulates key myogenic transcription factor genes. Importantly, selective Lsd1 ablation or inhibition in Pax7-positive satellite cells, not only delays muscle regeneration, but changes cell fate towards brown adipocytes. Lsd1 prevents brown adipocyte differentiation of satellite cells by repressing expression of the novel pro-adipogenic transcription factor Glis1. Together, downregulation of Glis1 and upregulation of the muscle-specific transcription program ensure physiological muscle regeneration.

  4. Dynamic analysis of the combinatorial regulation involving transcription factors and microRNAs in cell fate decisions.

    Science.gov (United States)

    Yan, Fang; Liu, Haihong; Liu, Zengrong

    2014-01-01

    P53 and E2F1 are critical transcription factors involved in the choices between different cell fates including cell differentiation, cell cycle arrest or apoptosis. Recent experiments have shown that two families of microRNAs (miRNAs), p53-responsive miR34 (miRNA-34 a, b and c) and E2F1-inducible miR449 (miRNA-449 a, b and c) are potent inducers of these different fates and might have an important role in sensitizing cancer cells to drug treatment and tumor suppression. Identifying the mechanisms responsible for the combinatorial regulatory roles of these two transcription factors and two miRNAs is an important and challenging problem. Here, based in part on the model proposed in Tongli Zhang et al. (2007), we developed a mathematical model of the decision process and explored the combinatorial regulation between these two transcription factors and two miRNAs in response to DNA damage. By analyzing nonlinear dynamic behaviors of the model, we found that p53 exhibits pulsatile behavior. Moreover, a comparison is given to reveal the subtle differences of the cell fate decision process between regulation and deregulation of miR34 on E2F1. It predicts that miR34 plays a critical role in promoting cell cycle arrest. In addition, a computer simulation result also predicts that the miR449 is necessary for apoptosis in response to sustained DNA damage. In agreement with experimental observations, our model can account for the intricate regulatory relationship between these two transcription factors and two miRNAs in the cell fate decision process after DNA damage. These theoretical results indicate that miR34 and miR449 are effective tumor suppressors and play critical roles in cell fate decisions. The work provides a dynamic mechanism that shows how cell fate decisions are coordinated by two transcription factors and two miRNAs. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology and Clinical Implications. Guest Editor: Yudong Cai

  5. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  6. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Redox regulation of plant stem cell fate.

    Science.gov (United States)

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  8. Atypical E2f functions are critical for pancreas polyploidization.

    Science.gov (United States)

    Matondo, Ramadhan B; Moreno, Eva; Toussaint, Mathilda J M; Tooten, Peter C J; van Essen, Saskia C; van Liere, Elsbeth A; Youssef, Sameh A; Bongiovanni, Laura; de Bruin, Alain

    2018-01-01

    The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age.

  9. Atypical E2f functions are critical for pancreas polyploidization.

    Directory of Open Access Journals (Sweden)

    Ramadhan B Matondo

    Full Text Available The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of polyploidization in the pancreas are still unknown. We discovered that atypical E2f activity is essential for polyploidization in the pancreas, using an inducible Cre/LoxP approach in new-born mice to delete ubiquitously the atypical E2f transcription factors, E2f7 and E2f8. In contrast to its critical role in embryonic survival, conditional deletion of both of both atypical E2fs in newborn mice had no impact on postnatal survival and mice lived until old age. However, deficiency of E2f7 or E2f8 alone was sufficient to suppress polyploidization in the pancreas and associated with only a minor decrease in blood serum levels of glucose, insulin, amylase and lipase under 4 hours starvation condition compared to wildtype littermates. In mice with fewer pancreatic polyploid cells that were fed ad libitum, no major impact on hormones or enzymes levels was observed. In summary, we identified atypical E2fs to be essential for polyploidization in the pancreas and discovered that postnatal induced loss of both atypical E2fs in many organs is compatible with life until old age.

  10. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2015-05-01

    Full Text Available Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF and posterior circumvallate (CV taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  11. β-Catenin Signaling Biases Multipotent Lingual Epithelial Progenitors to Differentiate and Acquire Specific Taste Cell Fates.

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Liu, Fei; Millar, Sarah E; Barlow, Linda A

    2015-05-01

    Continuous taste bud cell renewal is essential to maintain taste function in adults; however, the molecular mechanisms that regulate taste cell turnover are unknown. Using inducible Cre-lox technology, we show that activation of β-catenin signaling in multipotent lingual epithelial progenitors outside of taste buds diverts daughter cells from a general epithelial to a taste bud fate. Moreover, while taste buds comprise 3 morphological types, β-catenin activation drives overproduction of primarily glial-like Type I taste cells in both anterior fungiform (FF) and posterior circumvallate (CV) taste buds, with a small increase in Type II receptor cells for sweet, bitter and umami, but does not alter Type III sour detector cells. Beta-catenin activation in post-mitotic taste bud precursors likewise regulates cell differentiation; forced activation of β-catenin in these Shh+ cells promotes Type I cell fate in both FF and CV taste buds, but likely does so non-cell autonomously. Our data are consistent with a model where β-catenin signaling levels within lingual epithelial progenitors dictate cell fate prior to or during entry of new cells into taste buds; high signaling induces Type I cells, intermediate levels drive Type II cell differentiation, while low levels may drive differentiation of Type III cells.

  12. Radiocolloid Uptake in the Pancreas Islet Cell Tumor: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. J.; Chung, S. K.; Yeon, S. K.; Shinn, K. S.; Bahk, Y. W. [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1994-03-15

    Colloid uptake in various hepatic conditions such as focal nodular hyperplasia, regenerating nodular in the cirrhotic liver, hamartoma, hemangioma and rarely hepatoma has been documented. Extrahepatic tumors may show colloid uptake and they include splenic hemangioma, malignant fibrous histiocytoma, breast carcinoma and Kaposi's sarcoma. The mechanism of colloid uptake in those lesions is associated with phagocytic activity in or around the tumors. We report a pancreas islet cell tumor that showed colloid uptake on {sup 99m}Tc-phytate liver scan without histologic evidence of phagocytosis by tumor cells or infiltration of phagocytes in the tumor. Microscopically the tumor was highly vascular and showed diffuse hemorrhage throughout the tumor. We postulated that extravasation of the colloid into the tumor interstitium caused nonspecific colloid uptake in this tumor. It is expected that hemorrhagic tumor may show nonspecific colloid uptake without phagocytosis in or about the lesion.

  13. Radiocolloid Uptake in the Pancreas Islet Cell Tumor: Case Report

    International Nuclear Information System (INIS)

    Yang, W. J.; Chung, S. K.; Yeon, S. K.; Shinn, K. S.; Bahk, Y. W.

    1994-01-01

    Colloid uptake in various hepatic conditions such as focal nodular hyperplasia, regenerating nodular in the cirrhotic liver, hamartoma, hemangioma and rarely hepatoma has been documented. Extrahepatic tumors may show colloid uptake and they include splenic hemangioma, malignant fibrous histiocytoma, breast carcinoma and Kaposi's sarcoma. The mechanism of colloid uptake in those lesions is associated with phagocytic activity in or around the tumors. We report a pancreas islet cell tumor that showed colloid uptake on 99m Tc-phytate liver scan without histologic evidence of phagocytosis by tumor cells or infiltration of phagocytes in the tumor. Microscopically the tumor was highly vascular and showed diffuse hemorrhage throughout the tumor. We postulated that extravasation of the colloid into the tumor interstitium caused nonspecific colloid uptake in this tumor. It is expected that hemorrhagic tumor may show nonspecific colloid uptake without phagocytosis in or about the lesion.

  14. Generation of Functional Beta-Like Cells from Human Exocrine Pancreas.

    Directory of Open Access Journals (Sweden)

    Maria J Lima

    Full Text Available Transcription factor mediated lineage reprogramming of human pancreatic exocrine tissue could conceivably provide an unlimited supply of islets for transplantation in the treatment of diabetes. Exocrine tissue can be efficiently reprogrammed to islet-like cells using a cocktail of transcription factors: Pdx1, Ngn3, MafA and Pax4 in combination with growth factors. We show here that overexpression of exogenous Pax4 in combination with suppression of the endogenous transcription factor ARX considerably enhances the production of functional insulin-secreting β-like cells with concomitant suppression of α-cells. The efficiency was further increased by culture on laminin-coated plates in media containing low glucose concentrations. Immunocytochemistry revealed that reprogrammed cultures were composed of ~45% islet-like clusters comprising >80% monohormonal insulin+ cells. The resultant β-like cells expressed insulin protein levels at ~15-30% of that in adult human islets, efficiently processed proinsulin and packaged insulin into secretory granules, exhibited glucose responsive insulin secretion, and had an immediate and prolonged effect in normalising blood glucose levels upon transplantation into diabetic mice. We estimate that approximately 3 billion of these cells would have an immediate therapeutic effect following engraftment in type 1 diabetes patients and that one pancreas would provide sufficient tissue for numerous transplants.

  15. Metastatic Merkel Cell Carcinoma (MCC) of Pancreas.

    Science.gov (United States)

    Kartal, K; Hamaloğlu, E

    2015-01-01

    Merkel cell carcinoma (MCC) is a rare, agressive, neurocutaneous malignancy with a high potential to metastasize. We present a 59 year-old woman referred to general surgery department with a complaint of epigastric pain. The abdominal computed tomography (CT) performed and revealed amass of 3 cm in the head of the pancreas. The significant debate in the patient's medical history was that she had a MCC in size of 5 cm removed from the left gluteal region 7 months ago. Following preoperative preparation a pancreatic oduodenectomy with Whipple procedure was performed fort hepancreatic head mass. As the tumor showed morphologically similar properties with the patient's primary neoplasm, it was accepted as a metastatic MCC. Following the operation the patient received adjuvant chemotherapy and at a 30 months follow-up it was observed that the patient is disease free and has no complications related to the disease progression or recurrence. Although MCC is an aggresive and poor prognostic tumor, good results can be obtained with correct diagnosis and proper surgical treatment. Celsius.

  16. Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.

    Science.gov (United States)

    Li, Yang; Roberts, Julie; AkhavanAghdam, Zohreh; Hao, Nan

    2017-12-15

    In the yeast Saccharomyces cerevisiae , the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Artifical Pancreas

    Science.gov (United States)

    Fei, Jiangfeng

    2013-03-01

    In 2006, JDRF launched the Artificial Pancreas Project (APP) to accelerate the development of a commercially-viable artificial pancreas system to closely mimic the biological function of the pancreas individuals with insulin-dependent diabetes, particularly type 1 diabetes. By automating detection of blood sugar levels and delivery of insulin in response to those levels, an artificial pancreas has the potential to transform the lives of people with type 1 diabetes. The 6-step APP development pathway serves as JDRF's APP strategic funding plan and defines the priorities of product research and development. Each step in the plan represents incremental advances in automation beginning with devices that shut off insulin delivery to prevent episodes of low blood sugar and progressing ultimately to a fully automated ``closed loop'' system that maintains blood glucose at a target level without the need to bolus for meals or adjust for exercise.

  18. Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.

    Science.gov (United States)

    Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry

    2017-05-19

    Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.

  19. Live cell imaging reveals marked variability in myoblast proliferation and fate

    Science.gov (United States)

    2013-01-01

    Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated. PMID:23638706

  20. Imaging of the pancreas using dynamic positron emission tomography with N-13 ammonia

    International Nuclear Information System (INIS)

    Hayashi, N.; Tamaki, N.; Yonekura, Y.; Adachi, H.; Senda, M.; Saji, H.; Torizuka, K.

    1985-01-01

    This study was undertaken to develop a new imaging technique of the pancreas. Dynamic positron emission tomography (PET) was performed in 3 normal volunteers, 9 patient without the evidence of pancreatic diseases, 2 patients with adenocarcinoma of the pancreatic head and one patient with islet cell carcinoma. Immediately after the intravenous injection of 10-20mCi of N-13 ammonia, data were obtained every 150 seconds for 30 minutes using a multi-slice whole-body PET scanner. In two cases of adenocarcinoma, the pancreas was not imaged, probably because the nontumorous portion of the pancreas was also suffered from severe pancreatitis due to the duct obstruction at the pancreatic head. In the case with islet cell carcinoma, the radionuclide was accumulated in the tumor and pancreas similarly. Thus, both of them were visualized but not separated. The central necrosis of the tumor showed poor radioactivity. The mechanism of the radionuclide accumulation in the pancreas is not well understood. However, the authors also studied the biodistribution of N-13 ammonia in mice and confirmed that there is an early and high accumulation of the radionuclide in the murine pancreas. These preliminary results of this paper suggest that the dynamic PET study may be useful for the imaging of the pancreas as well as for the further study of the blood supply and metabolism of the pancreas

  1. The gene expression profile of CD11c+ CD8α- dendritic cells in the pre-diabetic pancreas of the NOD mouse.

    Directory of Open Access Journals (Sweden)

    Wouter Beumer

    Full Text Available Two major dendritic cell (DC subsets have been described in the pancreas of mice: The CD11c+ CD8α- DCs (strong CD4+ T cell proliferation inducers and the CD8α+ CD103+ DCs (T cell apoptosis inducers. Here we analyzed the larger subset of CD11c+ CD8α- DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR to elucidate abnormalities in underlying gene expression networks. CD11c+ CD8α- DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+ CD8α- DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24 was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+ CD8α- DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+ CD8α- DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS.

  2. Histopathological effects of doxorubicin on pancreas in male albino rats

    Directory of Open Access Journals (Sweden)

    I.A. Ali

    2015-06-01

    Full Text Available The aim of this study was to investigate the histopathological side effects of doxorubicin on pancreas tissue in male albino rats Rattus norvegicus. This study were used 55 adult rats (2.5-3.5 month of age. The rats divided into two groups, the first group include (35 rats. The second group were (20 rats. Microscopial examination of pancreas lesion demonstrated oedema around the acini, swelling of the epithelial cells of acini, occurance of cystic fibrosis (mucoviscidosis at the concentration of (4,5 mg/kg of body weight ,occurrence of small islets that form of few cells and exocrine-endocrine transformation. There were thickness in the walls of blood vessels, thrombus, congestion of blood vessels, we conclude, that doxorubicin had histopathological effect on pancreas in sub-acute doses more than chronic doses.

  3. Central control of glucose homeostasis: the brain--endocrine pancreas axis.

    Science.gov (United States)

    Thorens, B

    2010-10-01

    A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  5. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    Science.gov (United States)

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  6. Gastrin-releasing peptide in the porcine pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1987-01-01

    to consist of one main form, namely the 27-amino acid peptide originally extracted from porcine stomach, and small amounts of a C-terminal fragment identical with the C-terminal 10-amino acid peptide. Gastrin-releasing peptide-like immunoreactivity released from the isolated perfused porcine pancreas during...... electrical vagal stimulation was shown by gel filtration to consist of the same two forms. By use of immunocytochemical techniques employing an antiserum directed against its N terminus, GRP was localized to varicose nerve fibers in close association with the exocrine tissue of the porcine pancreas...... in particular. Some fibers were found penetrating into pancreatic islets also. Immunoreactive nerve cell bodies as well as fibers were found within intrapancreatic ganglia. The potency of GRP in stimulating exocrine as well as endocrine secretion from the porcine pancreas, its presence in close contact...

  7. Demonstration of epidermal growth factor binding sites in the adult rat pancreas by light microscopic autoradiography

    International Nuclear Information System (INIS)

    Chabot, J.G.; Walker, P.; Pelletier, G.

    1987-01-01

    The distribution of epidermal growth factor (EGF) receptors was studied in the pancreas using light microscopic autoradiography, which was performed at different time intervals (2-60 min) after injecting 125 I-labeled EGF intravenously into the adult rat. In the exocrine pancreas, a labeling was found to occur over the pyramidal cells of the acini and cells lining the intercalated ducts. Moreover, substantial binding of EGF to cells of the islets of Langerhans was also revealed. At the 2-min time interval, most silver grains were found at the periphery of the target cells. The localization, as well as the diminution of silver grains over the cytoplasm of these cells, between 7 and 60 min, suggested the internalization and degradation of 125 I-labeled EGF. Control experiments indicated that the autoradiography reaction was due to specific interaction of 125 I-labeled EGF with its receptor. These results clearly indicate that EGF receptors are present in the acinar cells and the cells of intercalated ducts of the exocrine pancreas, as well as the cells of the endocrine pancreas. Finding that there are EGF binding sites in pancreatic acinar cells supports the physiological role of EGF in the regulation of pancreatic exocrine function. The presence of EGF receptors in cells of the islets of Langerhans suggests that EGF may play a role in the regulation of the endocrine pancreas

  8. MRI of islet cell tumors of the pancreas

    International Nuclear Information System (INIS)

    Ohtomo, Kuni; Itai, Yuji; Yoshikawa, Koki; Kokubo, Taka; Yashiro, Naofumi; Iio, Masahiro; Atomi, Yu

    1986-01-01

    Magnetic resonance imaging (MRI) was performed in five patients with islet cell tumors of the pancreas, using 0.35 T and 1.5 T superconductive magnets. MRI identified tumors in 3 patients. The tumors seen in the 3 patients appeared as areas of higher signal intensity than the liver on spin-echo (SE) images with repetition time of 1,600 msec/echo time of 35 or 70 msec, and as areas of similar or lower intensity on SE 400/35 or 70 images. The tumor imaged by SE techniques with 1,600/35 msec, 400/35 msec, and 1,600/35 or 70 msec in one patient was manifested by prolongation of T1 and T2, as compared with the liver. Tumors in the remaining two patients, which were not detected on MRI, were 15 mm or smaller. MRI remains to be improved in the visualization of small lesions. (Namekawa, K.)

  9. Nuclear envelope and genome interactions in cell fate

    Science.gov (United States)

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  10. A Standardized Method for In Vivo Mouse Pancreas Imaging and Semiquantitative β Cell Mass Measurement by Dual Isotope SPECT

    NARCIS (Netherlands)

    Mathijs, I.; Xavier, C.; Peleman, C.; Caveliers, V.; Brom, M.; Gotthardt, M.; Herrera, P.L.; Lahoutte, T.; Bouwens, L.

    2015-01-01

    In order to evaluate future β cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective β cell tracer within the pancreas.2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and [Lys(40)([(111)In]DTPA)]exendin-3 ([(111)In]Ex3) pancreatic

  11. Pancreas cancer

    International Nuclear Information System (INIS)

    Yamada, Shigeru; Kato, Hirotoshi; Hara, Ryusuke

    2006-01-01

    Adenocarcinoma of the pancreas continues to be a significant source of cancer mortality in Japan, resulting in approximately 19,000 deaths a year. It is the fifth leading cause of cancer-related deaths in Japan, with a less than 5% 5-year expected survival rate. About 70-75% of patients with pancreas cancer present with locally advanced disease or distant metastases and have a median survival time of only 6 months. For unresectable pancreas cancer, the median survival time with external beam radiation (EBRT) was better than with surgical bypass or stents alone. The median survival of EBRT alone was 4 to 7 months. The median survival with combined EBRT and chemotherapy for locally unresectable tumor are 8 to 10 months and better than with the EBRT alone. Local failure of these combined therapies was still 26 to 48%. On the other hand, surgery with curative intent is undertaken in 15-20% of patients. Even after resection, the predicted 5-year survival rates are still less than 20%. Local recurrences in the pancreatic bed are seen in 50% of the patients undergoing presumed curative resection. We examined the effect of carbon ion therapy in terms of reducing the rate of local recurrence in patients with locally advanced adenocarcinoma of the pancreas or undergoing resection for adenocarcinoma of the pancreas. (author)

  12. The Normal Fetal Pancreas.

    Science.gov (United States)

    Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon

    2017-10-01

    The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.

  13. Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development

    Science.gov (United States)

    Nagao, Yusuke; Suzuki, Takao; Shimizu, Atsushi; Kimura, Tetsuaki; Seki, Ryoko; Adachi, Tomoko; Inoue, Chikako; Omae, Yoshihiro; Kamei, Yasuhiro; Hara, Ikuyo; Taniguchi, Yoshihito; Naruse, Kiyoshi; Wakamatsu, Yuko; Kelsh, Robert N.; Hibi, Masahiko; Hashimoto, Hisashi

    2014-01-01

    Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs) are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores), making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3) mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore) from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor). PMID:24699463

  14. Sox5 functions as a fate switch in medaka pigment cell development.

    Directory of Open Access Journals (Sweden)

    Yusuke Nagao

    2014-04-01

    Full Text Available Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores, making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3 mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor.

  15. Amylin under examination. Fibrillogenic polypeptide hormone of the pancreas

    Directory of Open Access Journals (Sweden)

    Małgorzata Marszałek

    2014-01-01

    Full Text Available In patients or animals affected by type 2 diabetes mellitus (DM2, non-insulin dependent diabetes mellitus [NIDDM] some pathological deposits, called amyloid, are observed among cells of islets of Langerhans. Among other constituents, deposits consist of an insoluble, fibrillar form of peptide neurohormone called amylin, produced by pancreatic beta cells. It is thought that formation of fibrillar deposits of misfolded and aggregated peptide is highly toxic to beta cells and leads to cell dysfunction, cell loss, pancreas destruction and progress of the disease. This relatively small 37-amino acid peptide constitutes a serious scientific, research and to some extent a medical problem. This article presents amylin as a hormone, neurohormone and as a fibrillating molecule which participates in amyloid deposit formation in human and animal pancreas. The role of some amino acids important for fibril formation has been highlighted.

  16. IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate

    Science.gov (United States)

    Noviski, Mark; Mueller, James L; Satterthwaite, Anne; Garrett-Sinha, Lee Ann; Brombacher, Frank

    2018-01-01

    Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn−/− B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells. PMID:29521626

  17. Reconstructing the regulatory circuit of cell fate determination in yeast mating response.

    Science.gov (United States)

    Shao, Bin; Yuan, Haiyu; Zhang, Rongfei; Wang, Xuan; Zhang, Shuwen; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2017-07-01

    Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our

  18. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas.

    Science.gov (United States)

    Won, Minho; Ro, Hyunju; Dawid, Igor B

    2015-10-06

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.

  19. Hematopoietic stem cell fate through metabolic control.

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2018-05-25

    Hematopoietic stem cells (HSCs) maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions, and this damage may eventually compromise the cells' self-renewal capacity. HSC divisions result in either self-renewal or differentiation, with the balance between the two directly impacting hematopoietic homeostasis; but the heterogeneity of available HSC-enriched fractions, together with the technical challenges of observing HSC behavior, has long hindered the analysis of individual HSCs, and prevented the elucidation of this process. However, recent advances in genetic models, metabolomics analyses and single-cell approaches have revealed the contributions made to HSC self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality as a key control factor in the equilibrium of HSCs. A deeper understanding of precisely how specific modes of metabolism control HSC fate at the single cell level is therefore not only of great biological interest, but will have clear clinical implications for the development of therapies for hematological disease. Copyright © 2018. Published by Elsevier Inc.

  20. Arterioscanning of pancreas

    International Nuclear Information System (INIS)

    Petrovskij, B.V.; Rabkin, I.Kh.; Matevosov, A.L.

    1980-01-01

    Investigated is the state of precapillary and capillary net of pancreas vessels by way of intra-arterial MAA 1 +H3+H1I injection. Posiible variants of pancreas form, shape and position, and the main sources of blood supply are presented. The knowledge of the above factors is necessary to avoid mistakes in the desiphering of arterioscannograms. Techniques for angiography and arterioscanning in cases of pancreas cancer, benign tumours, pancreas cyst and chronic pancreatitis are described. Arterioscanning is shown to be a valuable addition to angiography, which permits to judge on the angiographically invisible part of the organ arteriolocapillary channel, clarifying the nature of the process and damage length. The summary estimate of results of angiographic and arterioscannographic investigations considerably increases the diagnostic effectiveness

  1. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  2. A methodology for distinguishing divergent cell fates within a common progenitor population: adenoma- and neuroendocrine-like cells are confounders of rat ileal epithelial cell (IEC-18 culture

    Directory of Open Access Journals (Sweden)

    Paxton Jessica B

    2005-01-01

    Full Text Available Abstract Background IEC-18 cells are a non-transformed, immortal cell line derived from juvenile rat ileal crypt cells. They may have experimental advantages over tumor-derived gastrointestinal lineages, including preservation of phenotype, normal endocrine responses and retention of differentiation potential. However, their proclivity for spontaneous differentiation / transformation may be stereotypical and could represent a more profound experimental confounder than previously realized. We hypothesized that IEC-18 cells spontaneously diverge towards a uniform mixture of epigenetic fates, with corresponding phenotypes, rather than persist as a single progenitor lineage. Results IEC-18 cells were cultured for 72 hours in serum free media (SFM, with and without various insulin-like growth factor agonists to differentially boost the basal rate of proliferation. A strategy was employed to identify constitutive genes as markers of divergent fates through gene array analysis by cross-referencing fold-change trends for individual genes against crypt cell abundance in each treatment. We then confirmed the cell-specific phenotype by immunolocalization of proteins corresponding to those genes. The majority of IEC-18 cells in SFM alone had a loss in expression of the adenomatous polyposis coli (APC gene at the mRNA and protein levels, consistent with adenoma-like transformation. In addition, a small subset of cells expressed the serotonin receptor 2A gene and had neuroendocrine-like morphology. Conclusions IEC-18 cells commonly undergo a change in cell fate prior to reaching confluence. The most common fate switch that we were able to detect correlates with a down regulation of the APC gene and transformation into an adenoma-like phenotype.

  3. An immunohistochemical study of the endocrine pancreas in raptors.

    Science.gov (United States)

    Palmieri, C; Shivaprasad, H L

    2014-12-01

    The cytoarchitecture of the endocrine pancreas of 10 raptors (golden eagles, peregrine falcons, Saker falcon, turkey vultures, red-tailed hawk and unspecified falcon) was examined by immunohistochemistry. Three islet types were identified: type A mixed islets composed mainly by glucagon (A)-secreting cells, type B mixed islets with predominantly insulin (B)-secreting cell component and type M mixed islets (type M) consisting of variable number of glucagon-, insulin- and somatostatin (D)-secreting cells. The latter were further characterized into Type I, II or III according to the cell distribution of the three cell types. A and D cells were also randomly scattered within the exocrine pancreas. The results of this study suggest that the classical concept in birds of a segregation of A and B cells in well-defined and distinct islets is not applicable in raptors, reflecting an evolutionary adaptation to different dietary habits and variation in developmental mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. ATP Release and Effects in Pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Amstrup, Jan; Henriksen, Katrine Lütken

    2003-01-01

    ATP and other nucleotides are released from various cells, but the pathway and physiological stimulus for ATP release are often unclear. The focus of our studies is the understanding of ATP release and signaling in rat exocrine pancreas. In acinar suspension mechanical stimulation, hypotonic shock...

  5. Pancreas transplant - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100129.htm Pancreas transplant - series—Normal anatomy To use the sharing ... to slide 6 out of 6 Overview The pancreas resides in the back of the abdomen. It ...

  6. CT findings of pancreas lipomatosis and associated diseases

    International Nuclear Information System (INIS)

    Baek, Seung Yon; Lee, Seung Chul; Kim, Mi Young; Lee, Moon Gyu; Cho, Kyoung Sik; Auh, Yong Ho

    1992-01-01

    Pancreas lipomatosis is defined as fatty replacement of pancreatic acinar cells. Of the nine cases evaluated, seven cases (77.8%) of lipomations were limited in body and tail, one case (11.1%) showed total lipomatosis, excluding uncinate process and the remaining one case (11.1%) only in tail. As to the severity of lipomatosis, complete fat replacement in body and tail was found in four cases (44.4%), incomplete body and complete tail involvement in two (22.2%), incomplete body and tail, complete all except uncinate process, and complete tail involvements were found in one case (11.1%) each. Associated or predisposing factors included three diabetes mellitus(33.3%) combined with pancreas divisum, pancreas lithiasis and cholelithiasis respectively, hepatitis (22.2%) in two, and pseudocyst (11.1%) in one case, but in three cases (33.3%) nothing was found. In conclusion, pancreas lipomations was easily diagnosed by the abdominal CT and it was associated or predisposed by several entities but had no major clinical symptoms, such as pancreatic insufficiency

  7. Union of 99m Tc-HYNIC-TOC at the somatostatin receptors in cells of pancreas cancer

    International Nuclear Information System (INIS)

    Rodriguez C, J.; Ramirez I, M.T.; Ferro F, G.; Pedraza L, M.

    2005-01-01

    The radiation toxic effects have been used in therapy however much 50 years. The absorbed radiation dose can be determined at cellular level using cancerous cell cultures. If the deposited In vitro radiation dose coming from similar activities of several therapeutic radiopharmaceuticals it can compare it will be possible to choose the therapeutic radiopharmaceutical that it offers better dosimetric characteristics for the patient. The objective of this original investigation was to determine the union percentage of the octreotide 99m Tc-HYNlC-TOC to the somatostatin receivers in cells of cancer pancreas as well as the internalization, externalization and cellular viability. It was used the octapeptide, (octreotide, TOC) labelled with 99m Tc by means of the HYNIC chelating agent (6-hydrazine pyridine-3-carboxylic acid) and 3 cellular lines of murine pancreas cancer (AR42J), of cancer of human pancreas (CAPAN) and of one negative cellular line for somatostatin receivers (WRL-68). The 99m Tc-HYNIC-TOC was compared against two negative proofs for somatostatin receivers: the peptide 99m Tc-UBI and the 99m TcO 4 . The cellular lines were conserved in the synthetic media Dulbecco-Eagle. After 2, 4 and 24 h of exhibition to the radiation, the cells are picked up and its are determined the viability by count in a Neubauer camera using tripan blue. In the same times it was calculated the union percentage of the radiopharmaceutical to the cells and the internalization (union to the cytoplasm) and the externalization (union to membrane receivers). With those figures it was calculated the absorbed radiation dose at cellular level. Results: At 4 hours the union percentage of the 99m Tc-HYNlC-TOC to the AR42-J cells was 6.83 times greater than for the WRL-68 control cells of human papilloma, (without receivers of the somatostatin) and for the CAPAN them 4 times greater than for the same cells used as negative control, for the case of the 99m Tc-UBI and the 99m TcO 4 one doesn

  8. Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis.

    OpenAIRE

    Lewis, P J; Partridge, S R; Errington, J

    1994-01-01

    Soon after the initiation of sporulation, Bacillus subtilis divides asymmetrically to produce sister cells that have very different developmental fates. Recently, it has been proposed that the differential gene expression which begins soon after this division is due to cell-specific activation of the transcription factors sigma F and sigma E in the prespore and the mother cell, respectively. We describe the use of a method for the localization of gene expression in individual sporulating cell...

  9. National Pancreas Foundation

    Science.gov (United States)

    ... Stay Informed - Join The Fight Animated Pancreas Patient Animations, Expert and Patient interviews on Pancreas Diseases State ... pancreatic experts at the American Pancreatic Association … Continue Reading More NPF News Social Media Post Read More ...

  10. Pak3 promotes cell cycle exit and differentiation of β-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice.

    Science.gov (United States)

    Piccand, Julie; Meunier, Aline; Merle, Carole; Jia, Zhengping; Barnier, Jean-Vianney; Gradwohl, Gérard

    2014-01-01

    The transcription factor neurogenin3 (Ngn3) triggers islet cell differentiation in the developing pancreas. However, little is known about the molecular mechanisms coupling cell cycle exit and differentiation in Ngn3(+) islet progenitors. We identified a novel effector of Ngn3 endocrinogenic function, the p21 protein-activated kinase Pak3, known to control neuronal differentiation and implicated in X-linked intellectual disability in humans. We show that Pak3 expression is initiated in Ngn3(+) endocrine progenitor cells and next maintained in maturing hormone-expressing cells during pancreas development as well as in adult islet cells. In Pak3-deficient embryos, the proliferation of Ngn3(+) progenitors and β-cells is transiently increased concomitantly with an upregulation of Ccnd1. β-Cell differentiation is impaired at E15.5 but resumes at later stages. Pak3-deficient mice do not develop overt diabetes but are glucose intolerant under high-fat diet (HFD). In the intestine, Pak3 is expressed in enteroendocrine cells but is not necessary for their differentiation. Our results indicate that Pak3 is a novel regulator of β-cell differentiation and function. Pak3 acts downstream of Ngn3 to promote cell cycle exit and differentiation in the embryo by a mechanism that might involve repression of Ccnd1. In the adult, Pak3 is required for the proper control of glucose homeostasis under challenging HFD.

  11. Pancreas and cyst segmentation

    Science.gov (United States)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  12. Decreased α-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: An analysis based on the nPOD repository.

    Directory of Open Access Journals (Sweden)

    Fidéline Bonnet-Serrano

    Full Text Available Abnormal glucagon secretion and functional alterations of the exocrine pancreas have been described in patients with type 1 diabetes (T1D, but their respective anatomical substrata have seldom been investigated. Our aim was to develop an automated morphometric analysis process to characterize the anatomy of α-cell and exocrine pancreas in patients with T1D, using the publicly available slides of the Network for Pancreatic Organ Donors (nPOD.The ratio of β- and α-cell area to total tissue area were quantified in 75 patients with T1D (thereafter patients and 66 control subjects (thereafter controls, on 2 insulin-stained and 4 glucagon-stained slides from both the head and the tail of the pancreas. The β- and α-cell masses were calculated in the 66 patients and the 50 controls for which the pancreas weight was available. Non-exocrine-non-endocrine tissue area (i.e. non-acinar, non-insular tissue to total tissue area ratio was evaluated on both insulin- and glucagon-stained slides. Results were expressed as mean ±SD.An automated quantification method was set up using the R software and was validated by quantification of β-cell mass, a well characterized parameter. β-cell mass was 29.6±112 mg in patients and 628 ±717 mg in controls (p<0.0001. α-cell mass was 181±176 mg in patients and 349 ±241mg in controls (p<0.0001. Non-exocrine-non-endocrine area to total tissue area ratio was 39±9% in patients and 29± 10% in controls (p<0.0001 and increased with age in both groups, with no correlation with diabetes duration in patients.The absolute α-cell mass was lower in patients compared to controls, in proportion to the decrease in pancreas weight observed in patients. Non-exocrine-non-endocrine area to total tissue area ratio increased with age in both groups but was higher in patients at all ages.

  13. Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo

    Directory of Open Access Journals (Sweden)

    Adam Burton

    2013-11-01

    Full Text Available Cell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM and differentiated trophectoderm in the blastocyst. Here, we set out to identify and functionally characterize chromatin modifiers that define the transitions of potency and cell fate in the mouse embryo. Using a quantitative microfluidics approach in single cells, we show that developmental transitions are marked by distinctive combinatorial profiles of epigenetic modifiers. Pluripotent cells of the ICM are distinct from their differentiated trophectoderm counterparts. We show that PRDM14 is heterogeneously expressed in 4-cell-stage embryos. Forced expression of PRDM14 at the 2-cell stage leads to increased H3R26me2 and can induce a pluripotent ICM fate. Our results shed light on the epigenetic networks that govern cellular potency and identity in vivo.

  14. Annular pancreas (image)

    Science.gov (United States)

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  15. Neurofunctional imaging of the pancreas utilizing the cholinergic PET radioligand [18F]4-fluorobenzyltrozamicol

    International Nuclear Information System (INIS)

    Clark, P.B.; Gage, H.D.; Brown-Proctor, C.; Buchheimer, N.; Morton, K.A.; Calles-Escandon, J.; Mach, R.H.

    2004-01-01

    The pancreas is one of the most heavily innervated peripheral organs in the body. Parasympathetic and sympathetic neurons terminate in the pancreas and provide tight control of endocrine and exocrine functions. The aim of this study was to determine whether the pancreas can be imaged with a radioligand that binds to specific neuroreceptors. Using fluorine-18 4-fluorobenzyltrozamicol (FBT), which binds to the presynaptic vesicular acetylcholine transporter, positron emission tomography scans were performed in four adult mice, two adult rhesus monkeys, and one adult human. In these mammals, the pancreas is intensely FBT avid, with uptake greater than in any other organ at 30, 60, and 90 min. The maximum standardized uptake value (SUV) ratios of pancreas to liver, for example, ranged from 1.4 to 1.7 in rhesus monkeys (mean 1.6; median 1.7) and from 1.9 to 4.7 (mean 3.24; median 3.02) in mice. The maximum SUV ratio of pancreas to liver in the human was 1.8. These data suggest that neuroreceptor imaging of the pancreas in vivo is feasible in animal models and humans. This imaging could allow researchers to interrogate functions under control of the autonomic nervous system in the pancreas, with applications possible in transplanted and native pancreata. Also, as beta cell function is intimately related to parasympathetic cholinergic input, FBT activity in the pancreas may correlate with insulin-producing beta cell mass. This could ultimately provide a method of in vivo imaging in animal models and humans for diabetes research. (orig.)

  16. Proteomic analysis of pancreas derived from adult cloned pig

    International Nuclear Information System (INIS)

    Chae, Jung-Il; Cho, Young Keun; Cho, Seong-Keun; Kim, Jin-Hoi; Han, Yong-Mahn; Koo, Deog-Bon; Lee, Kyung-Kwang

    2008-01-01

    The potential medical applications of animal cloning include xenotransplantation, but the complex molecular cascades that control porcine organ development are not fully understood. Still, it has become apparent that organs derived from cloned pigs may be suitable for transplantation into humans. In this study, we examined the pancreas of an adult cloned pig developed through somatic cell nuclear transfer (SCNT) using two-dimensional electrophoresis (2-DE) and Western blotting. Proteomic analysis revealed 69 differentially regulated proteins, including such apoptosis-related species as annexins, lamins, and heat shock proteins, which were unanimously upregulated in the SCNT sample. Among the downregulated proteins in SCNT pancreas were peroxiredoxins and catalase. Western blot results indicate that several antioxidant enzymes and the anti-apoptotic protein were downregulated in SCNT pancreas, whereas several caspases were upregulated. Together, these data suggest that the accumulation of reactive oxygen species (ROS) in the pancreas of an adult cloned pig leads to apoptosis

  17. Concentration Sensing by the Moving Nucleus in Cell Fate Determination: A Computational Analysis.

    Directory of Open Access Journals (Sweden)

    Varun Aggarwal

    Full Text Available During development of the vertebrate neuroepithelium, the nucleus in neural progenitor cells (NPCs moves from the apex toward the base and returns to the apex (called interkinetic nuclear migration at which point the cell divides. The fate of the resulting daughter cells is thought to depend on the sampling by the moving nucleus of a spatial concentration profile of the cytoplasmic Notch intracellular domain (NICD. However, the nucleus executes complex stochastic motions including random waiting and back and forth motions, which can expose the nucleus to randomly varying levels of cytoplasmic NICD. How nuclear position can determine daughter cell fate despite the stochastic nature of nuclear migration is not clear. Here we derived a mathematical model for reaction, diffusion, and nuclear accumulation of NICD in NPCs during interkinetic nuclear migration (INM. Using experimentally measured trajectory-dependent probabilities of nuclear turning, nuclear waiting times and average nuclear speeds in NPCs in the developing zebrafish retina, we performed stochastic simulations to compute the nuclear trajectory-dependent probabilities of NPC differentiation. Comparison with experimentally measured nuclear NICD concentrations and trajectory-dependent probabilities of differentiation allowed estimation of the NICD cytoplasmic gradient. Spatially polarized production of NICD, rapid NICD cytoplasmic consumption and the time-averaging effect of nuclear import/export kinetics are sufficient to explain the experimentally observed differentiation probabilities. Our computational studies lend quantitative support to the feasibility of the nuclear concentration-sensing mechanism for NPC fate determination in zebrafish retina.

  18. Nanomaterials for regulating cancer and stem cell fate

    Science.gov (United States)

    Shah, Birju P.

    The realm of nanomedicine has grown exponentially over the past few decades. However, there are several obstacles that need to be overcome, prior to the wide-spread clinical applications of these nanoparticles, such as (i) developing well-defined nanoparticles of varying size, morphology and composition to enable various clinical applications; (ii) overcome various physiological barriers encountered in order to deliver the therapeutics to the target location; and (iii) real-time monitoring of the nano-therapeutics within the human body for tracking their uptake, localization and effect. Hence, this dissertation focuses on developing multimodal nanotechnology-based approaches to overcome the above-mentioned challenges and thus enable regulation of cancer and stem cell fate. The initial part of this dissertation describes the development of multimodal magnetic core-shell nanoparticles (MCNPs), comprised of a highly magnetic core surrounded by a thin gold shell, thus combining magnetic and plasmonic properties. These nanoparticles were utilized for mainly two applications: (i) Magnetically-facilitated delivery of siRNA and plasmid DNA for effective stem cell differentiation and imaging and (ii) Combined hyperthermia and targeted delivery of a mitochondria-targeting peptide for enhancing apoptosis in cancer cells. The following part of this dissertation presents the generation of a multi-functional cyclodextrin-conjugated polymeric delivery platform (known as DexAMs), for co-delivery of anticancer drugs and siRNAs in a target-specific manner to brain tumor cells. This combined delivery of chemotherapeutics and siRNA resulted in a synergistic effect on the apoptosis of brain tumor cells, as compared to the individual treatments. The final part of this thesis presents development of stimuli-responsive uorescence resonance energy transfer (FRET)-based mesoporous silica nanoparticles for real-time monitoring of drug release in cells. The stimuli-responsive behavior of

  19. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling

    2013-07-01

    Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.

  20. Immunocytochemical detection of glucagon and insulin cells in endocrine pancreas and cyclic disparity of plasma glucose in the turtle Melanochelys trijuga.

    Science.gov (United States)

    Chandavar, Vidya R; Naik, Prakash R

    2008-06-01

    The present investigation was carried out to know the seasonal variation in plasma glucose,insulin and glucagon cells during the reproductive cycle of untreated Melanochelys trijuga. Pancreatic endocrine cells were immunochemically localized.Insulin-immunoreactive (IR) cells occurred in groups of 3-20 and were in close apposition, while glucagon-IR cells were distributed individually between the exocrine pancreas or formed anastomosing cords where cells were not intimately attached. Whenever both IR cell types were present together forming an islet,insulin-IR cells formed clusters in the centre with glucagon-IR cells being scattered at the periphery. Glucagon-IR cells seemed to be secretory throughout the pancreas during the reproductive cycle,while insulin-IR cells were found to be pulsating in their secretion. Mean size of the islet was 1.306, 0.184 and 2.558 mm in the regenerative, reproductive and regressive periods,respectively. In general,insulin-IR cells measured 5.18 (mu)m and glucagon-IR cells 5.22 (mu)m in their longest axis. Invariably, glucagon-IR cells were more in number than insulin-IR cells. The fasting plasma glucose level was 69.97 mg% during the regenerative period, which increased to 97.96 mg% during the reproductive period,and reached a peak value of 113.52 mg% in the regressive period.

  1. The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition

    Science.gov (United States)

    Pierre, Joseph F.; Neuman, Joshua C.; Brill, Allison L.; Brar, Harpreet K.; Thompson, Mary F.; Cadena, Mark T.; Connors, Kelsey M.; Busch, Rebecca A.; Heneghan, Aaron F.; Cham, Candace M.; Jones, Elaina K.; Kibbe, Carly R.; Davis, Dawn B.; Groblewski, Guy E.; Kudsk, Kenneth A.

    2015-01-01

    Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis. PMID:26185331

  2. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors.

    Science.gov (United States)

    Yachida, Shinichi; Vakiani, Efsevia; White, Catherine M; Zhong, Yi; Saunders, Tyler; Morgan, Richard; de Wilde, Roeland F; Maitra, Anirban; Hicks, Jessica; Demarzo, Angelo M; Shi, Chanjuan; Sharma, Rajni; Laheru, Daniel; Edil, Barish H; Wolfgang, Christopher L; Schulick, Richard D; Hruban, Ralph H; Tang, Laura H; Klimstra, David S; Iacobuzio-Donahue, Christine A

    2012-02-01

    Poorly differentiated neuroendocrine carcinomas (NECs) of the pancreas are rare malignant neoplasms with a poor prognosis. The aim of this study was to determine the clinicopathologic and genetic features of poorly differentiated NECs and compare them with other types of pancreatic neoplasms. We investigated alterations of KRAS, CDKN2A/p16, TP53, SMAD4/DPC4, DAXX, ATRX, PTEN, Bcl2, and RB1 by immunohistochemistry and/or targeted exomic sequencing in surgically resected specimens of 9 small cell NECs, 10 large cell NECs, and 11 well-differentiated neuroendocrine tumors (PanNETs) of the pancreas. Abnormal immunolabeling patterns of p53 and Rb were frequent (p53, 18 of 19, 95%; Rb, 14 of 19, 74%) in both small cell and large cell NECs, whereas Smad4/Dpc4, DAXX, and ATRX labeling was intact in virtually all of these same carcinomas. Abnormal immunolabeling of p53 and Rb proteins correlated with intragenic mutations in the TP53 and RB1 genes. In contrast, DAXX and ATRX labeling was lost in 45% of PanNETs, whereas p53 and Rb immunolabeling was intact in these same cases. Overexpression of Bcl-2 protein was observed in all 9 small cell NECs (100%) and in 5 of 10 (50%) large cell NECs compared with only 2 of 11 (18%) PanNETs. Bcl-2 overexpression was significantly correlated with higher mitotic rate and Ki67 labeling index in neoplasms in which it was present. Small cell NECs are genetically similar to large cell NECs, and these genetic changes are distinct from those reported in PanNETs. The finding of Bcl-2 overexpression in poorly differentiated NECs, particularly small cell NEC, suggests that Bcl-2 antagonists/inhibitors may be a viable treatment option for these patients.

  3. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis

    Science.gov (United States)

    Xuan, Shouhong; Borok, Matthew J.; Decker, Kimberly J.; Battle, Michele A.; Duncan, Stephen A.; Hale, Michael A.; Macdonald, Raymond J.; Sussel, Lori

    2012-01-01

    Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. PMID:23006325

  4. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    Science.gov (United States)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  5. Posttranscriptional (Re)programming of Cell Fate: Examples in Stem Cells, Progenitor, and Differentiated Cells.

    Science.gov (United States)

    Kanellopoulou, Chrysi; Muljo, Stefan A

    2018-01-01

    How a single genome can give rise to many different transcriptomes and thus all the different cell lineages in the human body is a fundamental question in biology. While signaling pathways, transcription factors, and chromatin architecture, to name a few determinants, have been established to play critical roles, recently, there is a growing appreciation of the roles of non-coding RNAs and RNA-binding proteins in controlling cell fates posttranscriptionally. Thus, it is vital that these emerging players are also integrated into models of gene regulatory networks that underlie programs of cellular differentiation. Sometimes, we can leverage knowledge about such posttranscriptional circuits to reprogram patterns of gene expression in meaningful ways. Here, we review three examples from our work.

  6. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation?

    International Nuclear Information System (INIS)

    Kang, Jia; Pervaiz, Shazib

    2013-01-01

    Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.

  7. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity with concurrent CD45 expression.

    Science.gov (United States)

    Udani, V M

    2006-02-01

    Recent years have seen a surge of scientific research examining adult stem cell plasticity. For example, the hematopoietic stem cell has been shown to give rise to skin, respiratory epithelium, intestinal epithelium, renal epithelium, liver parenchyma, pancreas, skeletal muscle, vascular endothelium, myocardium, and central nervous system (CNS) neurons. The potential for such stem cell plasticity seems to be enhanced by stressors such as injury and neoplasia. Interestingly, recent studies have demonstrated that hematopoietic stem cells may be able to adopt certain nonhematopoietic phenotypes, such as endothelial, neural, or skeletal muscle phenotypes, without entirely losing their initial hematopoietic identity. We propose that transdifferentiation can, in certain conditions, be a partial rather than a complete event, and we encourage further investigation into the phenomenon of a stem cell simultaneously expressing phenotypic features of two distinct cell fates.

  8. Portal Annular Pancreas

    Science.gov (United States)

    Harnoss, Jonathan M.; Harnoss, Julian C.; Diener, Markus K.; Contin, Pietro; Ulrich, Alexis B.; Büchler, Markus W.; Schmitz-Winnenthal, Friedrich H.

    2014-01-01

    Abstract Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF). On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered. In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery). Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option. PMID:25207658

  9. Intraoperative radiotherapy for cancer of the pancreas

    International Nuclear Information System (INIS)

    Manabe, Tadao; Nagai, Toshihiro; Tobe, Takayoshi; Shibamoto, Yuta; Takahashi, Masaharu; Abe, Mitsuyuki

    1985-01-01

    Seven patients treated by intraoperative radiotherapy for cancer of the pancreas were evaluated. Three patients undergoing pancreaticoduodenectomy for cancer of the head of the pancreas received a dose of 2,500--3,000 rad (6--10 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 2,520 rad (10 MeV lineac X-ray). One patient developed radiation pancreatitis and died 0.8 month after surgery. Autopsy revealed the degeneration of cancer cells in the involved superior mesenteric artery. One died of hepatic metastasis 8.5 months after surgery, however, recurrence was not found in the irradiation field. The other patient who had external beam irradiation combined with intraoperative radiotherapy is alive 7.5 months after surgery. Four patients with unresectable cancer of the body of the pancreas received a dose of 2,500--3,000 rad (13--18 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 1,500--5,520 rad (10 MeV lineac X-ray). One patient died of peritonitis carcinomatosa 3.0 months after surgery. One patient died of DIC 0.6 month after surgery. Two patients are alive 1.0 and 6.5 months after surgery. In these patients with intraoperative radiotherapy for unresectable cancer of the pancreas, remarkable effects on relief of pain and shrinkage of tumor were obtained. Further pursuit of intraoperative and external beam radiotherapies in combination with pancreatectomy should be indicated in an attempt to prolong survival of patient with cancer of the pancreas. (author)

  10. The Drosophila T-box transcription factor Midline functions within the Notch–Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc

    Science.gov (United States)

    Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.

    2014-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751

  11. The Unfolded Protein Response and Cell Fate Control.

    Science.gov (United States)

    Hetz, Claudio; Papa, Feroz R

    2018-01-18

    The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification.

    Science.gov (United States)

    Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung

    2004-03-15

    The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.

  13. Has the gap between pancreas and islet transplantation closed?

    Science.gov (United States)

    Niclauss, Nadja; Morel, Philippe; Berney, Thierry

    2014-09-27

    Both pancreas and islet transplantations are therapeutic options for complicated type 1 diabetes. Until recent years, outcomes of islet transplantation have been significantly inferior to those of whole pancreas. Islet transplantation is primarily performed alone in patients with severe hypoglycemia, and recent registry reports have suggested that results of islet transplantation alone in this indication may be about to match those of pancreas transplant alone in insulin independence. Figures of 50% insulin independence at 5 years for either procedure have been cited. In this article, we address the question whether islet transplantation has indeed bridged the gap with whole pancreas. Looking at the evidence to answer this question, we propose that although pancreas may still be more efficient in taking recipients off insulin than islets, there are in fact numerous "gaps" separating both procedures that must be taken into the equation. These "gaps" relate to organ utilization, organ allocation, indication for transplantation, and morbidity. In-depth analysis reveals that islet transplantation, in fact, has an edge on whole pancreas in some of these aspects. Accordingly, attempts should be made to bridge these gaps from both sides to achieve the same level of success with either procedure. More realistically, it is likely that some of these gaps will remain and that both procedures will coexist and complement each other, to ensure that β cell replacement can be successfully implemented in the greatest possible number of patients with type 1 diabetes.

  14. A COMPARATIVE STUDY OF HUMAN PANCREAS WITH OTHER MAMMALIAN PANCREAS

    Directory of Open Access Journals (Sweden)

    Jyotsna Bhuyan

    2016-09-01

    Full Text Available Human pancreas is the largest digestive gland in the body. It has both endocrine and exocrine functions. Pancreas secretes the hormones insulin and glucagon. Insulin keeps the body in euglycaemic state as the main function of insulin is metabolism of carbohydrate. Diabetes is a disease of altered carbohydrate metabolism. At present, pancreatic transplantation is the only definitive therapy that can establish a euglycaemic state. AIM AND OBJECTIVE Keeping the importance of pancreatic hormones in human, the present study was carried out where we compared the pancreatic morphology of human with that of pig and goat in terms of length, breadth and weight. MATERIALS AND METHODS This study was conducted in the Department of Anatomy, Assam Medical College, Dibrugarh. A total of 90 specimens were included in the study and these were obtained from human, pig and goat. The human specimen (30 in number were collected from the Forensic Medicine Department of AMCH after fulfilling the official requirements. The specimen of pig and goat (30 each in number were collected from the local slaughter house after obtaining ethical clearance from the concerned authority. In all specimens, the length, breadth and weight was recorded with the help of measuring tape, vernier callipers and electronic weighing machine. INCLUSION AND EXCLUSION CRITERIA Specimen showing signs of putrefaction, any cut or crush injury and congenital anomalies were excluded from the study. RESULT AND OBSERVATIONS In human, the length of the pancreas ranged from 12.11 to 15.09 cm. Maximum breadth of the human pancreas ranged from 4.03 to 5.12 cm and the weight ranged from 79.13 to 102.22 gram. In goat, the length of the pancreas ranged from 12.43 to 13.79 cm, the breadth ranged from 3.03 to 4.93 cm and the weight ranged from 48.43 to 70.03 gram. In pig, the length of the pancreas ranged from 12.46 to 15.87 cm. Maximum breadth of pig pancreas ranged from 3.76 to 4.78 cm and the weight ranged

  15. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Meritxell Pons-Espinal

    2017-04-01

    Full Text Available Summary: Adult neurogenesis requires the precise control of neuronal versus astrocyte lineage determination in neural stem cells. While microRNAs (miRNAs are critically involved in this step during development, their actions in adult hippocampal neural stem cells (aNSCs has been unclear. As entry point to address that question we chose DICER, an endoribonuclease essential for miRNA biogenesis and other RNAi-related processes. By specific ablation of Dicer in aNSCs in vivo and in vitro, we demonstrate that miRNAs are required for the generation of new neurons, but not astrocytes, in the adult murine hippocampus. Moreover, we identify 11 miRNAs, of which 9 have not been previously characterized in neurogenesis, that determine neurogenic lineage fate choice of aNSCs at the expense of astrogliogenesis. Finally, we propose that the 11 miRNAs sustain adult hippocampal neurogenesis through synergistic modulation of 26 putative targets from different pathways. : In this article, the authors demonstrate that Dicer-dependent miRNAs are required for the generation of new neurons, but not astrocytes, in the adult hippocampus in vivo and in vitro. The authors identify a new set of 11 miRNAs that synergistically converge on multiple targets in different pathways to sustain neurogenic lineage fate commitment in aNSCs. Keywords: mouse, hippocampus, neural stem cells, fate choice, adult neurogenesis, astrogliogenesis, DICER, microRNAs, synergy

  16. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  17. Physiology of the endocrine pancreas.

    Science.gov (United States)

    Engelking, L R

    1997-11-01

    The endocrine pancreas is composed of nests of cells called the islets of Langerhans, which comprise only about 20% of pancreatic cell mass and secrete insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin is anabolic, increasing storage of glucose, fatty acids and amino acids, while glucagon namely stimulates hepatic glycogenolysis, gluconeogenesis, and ketogenesis. Somatostatin acts as a paracrine agent to inhibit both insulin and glucagon release, and, therefore, to modulate their output. This article explores factors controlling release of these hormones, as well as the way in which they affect fuel metabolism in the whole animal.

  18. Exocrine pancreas glutamate secretion help to sustain enterocyte nutritional needs under protein restriction.

    Science.gov (United States)

    Araya, S; Kuster, E; Gluch, D; Mariotta, L; Lutz, C; Reding, T V; Graf, R; Verrey, F; Camargo, S M R

    2018-04-01

    Glutamine (Gln) is the most concentrated amino acid in blood and considered conditionally essential. Its requirement is increased during physiological stress, such as malnutrition or illness, despite its production by muscle and other organs. In the malnourished state, Gln has been suggested to have a trophic effect on the exocrine pancreas and small intestine. However, the Gln transport capacity, the functional relationship of these two organs, and the potential role of the Gln-glutamate (Glu) cycle are unknown. We observed that pancreatic acinar cells express lower levels of Glu than Gln transporters. Consistent with this expression pattern, the rate of Glu influx into acinar cells was approximately sixfold lower than that of Gln. During protein restriction, acinar cell glutaminase expression was increased and Gln accumulation was maintained. Moreover, Glu secretion by acinar cells into pancreatic juice and thus into the lumen of the small intestine was maintained. In the intestinal lumen, Glu absorption was preserved and Glu dehydrogenase expression was augmented, potentially providing the substrates for increasing energy production via the TCA cycle. Our findings suggest that one mechanism by which Gln exerts a positive effect on exocrine pancreas and small intestine involves the Gln metabolism in acinar cells and the secretion of Glu into the small intestine lumen. The exocrine pancreas acinar cells not only avidly accumulate Gln but metabolize Gln to generate energy and to synthesize Glu for secretion in the pancreatic juice. Secreted Glu is suggested to play an important role during malnourishment in sustaining small intestinal homeostasis. NEW & NOTEWORTHY Glutamine (Gln) has been suggested to have a trophic effect on exocrine pancreas and small intestine in malnourished states, but the mechanism is unknown. In this study, we suggest that this trophic effect derives from an interorgan relationship between exocrine pancreas and small intestine for Gln

  19. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  20. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc.

    Science.gov (United States)

    Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M

    2013-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation.

    Science.gov (United States)

    Li, Yuk Yin; Choy, Tze Hang; Ho, Fu Chak; Chan, Pui Barbara

    2015-06-01

    The stem cell niche, or microenvironment, consists of soluble, matrix, cell and mechanical factors that together determine the cellular fates and/or differentiation patterns of stem cells. Collagen and glycosaminoglycans (GAGs) are important scaffolding materials that can mimic the natural matrix niche. Here, we hypothesize that imposing changes in the scaffold composition or, more specifically, incorporating GAGs into the collagen meshwork, will affect the morphology, cytoskeletal organization and integrin expression profiles, and hence the fate of human mesenchymal stem cells (MSCs) upon the induction of differentiation. Using chondrogenesis as an example, we microencapsulated MSCs in three scaffold systems that had varying matrix compositions: collagen alone (C), aminated collagen (AC) and aminated collagen with GAGs (ACG). We then induced the MSCs to differentiate toward a chondrogenic lineage, after which, we characterized the cell viability and morphology, as well as the level of cytoskeletal organization and the integrin expression profile. We also studied the fate of the MSCs by evaluating the major chondrogenic markers at both the gene and protein level. In C, MSC chondrogenesis was successfully induced and MSCs that spread in the scaffolds had a clear actin cytoskeleton; they expressed integrin α2β1, α5 and αv; promoted sox9 nuclear localization transcription activation; and upregulated the expression of chondrogenic matrix markers. In AC, MSC chondrogenesis was completely inhibited but the scaffold still supported cell survival. The MSCs did not spread and they had no actin cytoskeleton; did not express integrin α2 or αv; they failed to differentiate into chondrogenic lineage cells even on chemical induction; and there was little colocalization or functional interaction between integrin α5 and fibronectin. In ACG, although the MSCs did not express integrin α2, they did express integrin αv and there was strong co-localization and hence functional

  2. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun [Ataturk Training and Research Hospital, Ankara (Turkmenistan); Ugras, Serdar [Selcuk University, Selcuklu Medical Faculty, Konya (Turkmenistan)

    2011-02-15

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  3. Acinar Cell Cyst adenoma (Acinar Cystic Transformation) of the Pancreas: the Radiologic-Pathologic Features

    International Nuclear Information System (INIS)

    Gumus, Mehmet; Algin, Oktay; Gundogdu, Haldun; Ugras, Serdar

    2011-01-01

    Acinar cystic transformation of the pancreas is also known as acinar cell cystadenoma (ACC), and this is an extremely rare benign lesion that was first described in April 2002. We report here on a case of a previously asymptomatic patient with pancreatic ACC and this was diagnosed by computed tomography (CT) and magnetic resonance imaging (MRI). To the best of our knowledge, there is no previous report concerning the CT or MRI features of ACC in the medical literature. We present here the CT, MRI and pathological findings of pancreatic ACC

  4. Monoclonal antibody localization of Na+-K+-ATPase in the exocrine pancreas and parotid of the dog

    International Nuclear Information System (INIS)

    Smith, Z.D.J.; Caplan, M.J.; Forbush, B. III; Jamieson, J.D.

    1987-01-01

    A monoclonal antibody specific to the β-subunit of the canine 125 I-labeled-Na + -K + -ATPase has been characterized and used to directly localize the enzyme in thin frozen sections of dog pancreas and parotid. The antibody, 7-2M, recognizes only the β-subunit of the sodium pump as determined by immunoprecipitation and immunoblot and is not directed against an oligosaccharide determinant. 7-2M immunolocalizes to the same cellular and subcellular domains of renal tubular cells as do other, previously characterized, antibodies directed to the α-subunit of the sodium pump. In the pancreas the preponderance of the Na + -K + -ATPase is found on the basolateral membranes of centroacinar and intralobular duct cells. Interlobular duct cells also express a large component of basolaterally located enzyme, although comparatively little pump is seen on acinar cells. In the parotid a large amount of Na + -K + -ATPase is seen on the striated cut cells, with high levels also noted on cells of the intercalated ducts and serous demilunes. Again the acinar cells show comparatively low levels of Na + -K + -ATPase. In no instance is Na + -K + -ATPase found on the apical membranes of pancreas or parotid cells. These data suggest that Na + -K + -ATPase, located on the basolateral plasmalemma of duct-derived cells, may be involved in water and electrolyte secretion from the pancreas and parotid

  5. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    Science.gov (United States)

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reserve stem cells: Reprogramming of differentiated cells fuels repair, metaplasia, and neoplasia in the adult gastrointestinal tract

    Science.gov (United States)

    Mills, Jason C.; Sansom, Owen J.

    2016-01-01

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494

  7. mTOR Inhibition and Clinical Transplantation: Pancreas and Islet.

    Science.gov (United States)

    Berney, Thierry; Andres, Axel; Toso, Christian; Majno, Pietro; Squifflet, Jean-Paul

    2018-02-01

    This brief overview discusses the beneficial and deleterious effects of mammalian target of rapamycin (mTOR) inhibitors on β cells, and how sirolimus- and everolimus-based immunosuppression have impacted on practices and outcomes of pancreas and islet transplantation. Sirolimus was the cornerstone of immunosuppressive regimens in islet transplantation at the turn of the millenium, but utilization of mTOR inhibitors has progressively decreased from greater than 80% to less than 50% of islet transplant recipients in more recent years. For whole pancreas transplantation, mTOR inhibitors were used in approximately 20% of patients in the early 2000s, but this dropped over the years to less than 10% currently. This decrease is arguably due to less well-tolerated side effects without the advantage of better outcomes. Nonetheless, mTOR inhibitors remain extremely valuable as second-line immunosuppressants in pancreas and islet transplantation.

  8. Minimally Invasive Management of Ectopic Pancreas.

    Science.gov (United States)

    Vitiello, Gerardo A; Cavnar, Michael J; Hajdu, Cristina; Khaykis, Inessa; Newman, Elliot; Melis, Marcovalerio; Pachter, H Leon; Cohen, Steven M

    2017-03-01

    The management of ectopic pancreas is not well defined. This study aims to determine the prevalence of symptomatic ectopic pancreas and identify those who may benefit from treatment, with a particular focus on robotically assisted surgical management. Our institutional pathology database was queried to identify a cohort of ectopic pancreas specimens. Additional clinical data regarding clinical symptomatology, diagnostic studies, and treatment were obtained through chart review. Nineteen cases of ectopic pancreas were found incidentally during surgery for another condition or found incidentally in a pathologic specimen (65.5%). Eleven patients (37.9%) reported prior symptoms, notably abdominal pain and/or gastrointestinal bleeding. The most common locations for ectopic pancreas were the duodenum and small bowel (31% and 27.6%, respectively). Three out of 29 cases (10.3%) had no symptoms, but had evidence of preneoplastic changes on pathology, while one harbored pancreatic cancer. Over the years, treatment of ectopic pancreas has shifted from open to laparoscopic and more recently to robotic surgery. Our experience is in line with existing evidence supporting surgical treatment of symptomatic or complicated ectopic pancreas. In the current era, minimally invasive and robotic surgery can be used safely and successfully for treatment of ectopic pancreas.

  9. Tracing the fate of limbal epithelial progenitor cells in the murine cornea.

    Science.gov (United States)

    Di Girolamo, N; Bobba, S; Raviraj, V; Delic, N C; Slapetova, I; Nicovich, P R; Halliday, G M; Wakefield, D; Whan, R; Lyons, J G

    2015-01-01

    Stem cell (SC) division, deployment, and differentiation are processes that contribute to corneal epithelial renewal. Until now studying the destiny of these cells in a living mammal has not been possible. However, the advent of inducible multicolor genetic tagging and powerful imaging technologies has rendered this achievable in the translucent and readily accessible murine cornea. K14CreER(T2)-Confetti mice that harbor two copies of the Brainbow 2.1 cassette, yielding up to 10 colors from the stochastic recombination of fluorescent proteins, were used to monitor K-14(+) progenitor cell dynamics within the corneal epithelium in live animals. Multicolored columns of cells emerged from the basal limbal epithelium as they expanded and migrated linearly at a rate of 10.8 µm/day toward the central cornea. Moreover, the permanent expression of fluorophores, passed on from progenitor to progeny, assisted in discriminating individual clones as spectrally distinct streaks containing more than 1,000 cells within the illuminated area. The centripetal clonal expansion is suggestive that a single progenitor cell is responsible for maintaining a narrow corridor of corneal epithelial cells. Our data are in agreement with the limbus as the repository for SC as opposed to SC being distributed throughout the central cornea. This is the first report describing stem/progenitor cell fate determination in the murine cornea using multicolor genetic tracing. This model represents a powerful new resource to monitor SC kinetics and fate choice under homeostatic conditions, and may assist in assessing clonal evolution during corneal development, aging, wound-healing, disease, and following transplantation. © 2014 AlphaMed Press.

  10. CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification

    International Nuclear Information System (INIS)

    Rha, Sung Eun; Jung, Seung Eun; Lee, Kang Hoon; Ku, Young Mi; Byun, Jae Young; Lee, Jae Mun

    2007-01-01

    The pancreatic endocrine tumors are rare neuroendocrine tumors of the pancreas originating from totipotential stem cells or differentiated mature endocrine cells within the exocrine gland. Endocrine tumors are usually classified into functioning and non-functioning tumors and presents with a range of benignity or malignancy. In this article, we present the various CT and MR imaging findings of endocrine tumors of pancreas according to recent WHO classification

  11. Atypical E2f functions are critical for pancreas polyploidization

    NARCIS (Netherlands)

    Matondo, Ramadhan B; Moreno, Eva; Toussaint, Mathilda J M; Tooten, Peter C J; van Essen, Saskia C; van Liere, Elsbeth A; Youssef, Sameh A; Bongiovanni, Laura; de Bruin, Alain

    2018-01-01

    The presence of polyploid cells in the endocrine and exocrine pancreas has been reported for four decades. In rodents, pancreatic polyploidization is initiated after weaning and the number of polyploid cells increases with age. Surprisingly the molecular regulators and biological functions of

  12. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Directory of Open Access Journals (Sweden)

    Alexandra E. Proshchina

    2014-04-01

    Full Text Available The ontogeny of the neuro-insular complexes (NIC and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used doublestaining with antibodies specific to pan-neural markers (neuron-specific enolase (NSE and S100 protein and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw 10 onwards. Later the density of S100 and NSE-positive fibers increased. In adults this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onwards. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained neuro-insular complexes and the number of these complexes was reduced in adults. The highest density of neuro-insular complexes is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  13. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.

    Science.gov (United States)

    Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V

    2014-01-01

    The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.

  14. CT diagnosis of annular pancreas

    International Nuclear Information System (INIS)

    Ueno, Eiko; Isobe, Yoshinori; Niimi, Akiko; Shimizu, Yasushi; Yamada, Akiyoshi; Hanyu, Fujio

    1987-01-01

    CT scan was performed in two cases of annular pancreas which could be found in one case preoperatively and in the other case retrospectively. CT scan demonstrated secondary changes of annular pancreas such as medial displacement and dilatation of the duodenal bulb in the former case and stenosis of the duodenal loop and thickened soft tissue density around the narrow segment of the duodenal loop in the latter case, although it failed to demonstrate the peninsular protrusion of the parenchyma of the pancreas head. These findings suggest high possibility of diagnosing annular pancreas by CT scan. (author)

  15. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe

    Directory of Open Access Journals (Sweden)

    Brand Andrea H

    2007-01-01

    Full Text Available Abstract Background The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated. In some tissues cell fate appears to dictate the type of cell division, whereas in other tissues it is thought that stochastic variation in spindle position dictates subsequent sibling cell fate. Results Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation. Conclusion We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.

  16. Co-ordinated regulation of neurogenin-3 expression in the maternal and fetal pancreas during pregnancy

    DEFF Research Database (Denmark)

    Søstrup, Birgitte; Gaarn, Louise W; Nalla, Amarnadh

    2014-01-01

    -3. Messenger RNA levels of neurogenin-3 and the transcription factor musculoaponeurotic fibrosarcoma oncogene family protein B in fetal rat pancreas cells, cultured with serum from pregnant women, were measured by quantitative polymerase chain reaction. MAIN OUTCOME MEASURES: The number...... of neurogenin-3-positive cells present in pregnant mice was increased compared with nonpregnant mice. Neurogenin-3 and musculoaponeurotic fibrosarcoma oncogene family protein B mRNA was detected in fetal rat pancreas exposed to serum from pregnant women. RESULTS: In pregnant mice we found a 3.6-fold increase...... beta cell mass in pregnancy and that circulating factors are involved. SAMPLES: Pancreatic tissue from mice and rat and serum from pregnant women. METHOD: Morphometric analysis of pancreas of pregnant and nonpregnant mice was carried out by immunocytochemical staining for the neogenic marker neurogenin...

  17. Inflammatory pseudotumor of the pancreas: a case report

    International Nuclear Information System (INIS)

    Yang, Jong Myeong; Cho, June Sik; Shin, Kyung Sook; Song, In Sang; Lee, Heon Young; Kang, Dae Young

    2001-01-01

    Inflammatory pseudotumors are tumor-like benign lesions of uncertain pathogenesis and have most commonly been reported in the lungs. In the pancreas they are rare. We describe a case of inflammatory pseudotumor of the pancreas which was seen to be isoattenuating at non-contrast CT, and as a well-defined nodule with homogeneous enhancement in the pancreatic tail at contrast-enhanced CT. After a preoperative diagnosis of islet cell tumor, partial pancreatectomy of the pancreatic tail, with splenectomy, was performed. The gross specimen was a yellowish-white, solid mass and the lesion was histopathologically confirmed as inflammatory pseudotumor with an extensive area of sparse cellular fibrosis and collagen deposition

  18. Inflammatory pseudotumor of the pancreas: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jong Myeong; Cho, June Sik; Shin, Kyung Sook; Song, In Sang; Lee, Heon Young; Kang, Dae Young [Chungnam National Univ. College of medicine, Taejon (Korea, Republic of)

    2001-11-01

    Inflammatory pseudotumors are tumor-like benign lesions of uncertain pathogenesis and have most commonly been reported in the lungs. In the pancreas they are rare. We describe a case of inflammatory pseudotumor of the pancreas which was seen to be isoattenuating at non-contrast CT, and as a well-defined nodule with homogeneous enhancement in the pancreatic tail at contrast-enhanced CT. After a preoperative diagnosis of islet cell tumor, partial pancreatectomy of the pancreatic tail, with splenectomy, was performed. The gross specimen was a yellowish-white, solid mass and the lesion was histopathologically confirmed as inflammatory pseudotumor with an extensive area of sparse cellular fibrosis and collagen deposition.

  19. Intra-peritoneal administration of interleukin-1 beta induces impaired insulin release from the perfused rat pancreas

    DEFF Research Database (Denmark)

    Wogensen, L; Helqvist, S; Pociot, F

    1990-01-01

    Previous studies have demonstrated a stimulatory effect of interleukin-1 beta (IL-1 beta) on insulin and glucagon release from the perfused rat pancreas, accompanied by selective lysis of 20% of beta-cells as assessed by electronmicroscopy. However, we have not observed an inhibitory action of IL-1...... beta on insulin release from the perfused pancreas as shown for isolated islets. To test whether periodical exposure of the endocrine pancreas to circulating IL-1 beta in vivo affects insulin release from the intact perfused pancreas, rats were treated with daily intraperitoneal injections of 4...

  20. Australia and New Zealand Islets and Pancreas Transplant Registry Annual Report 2017—Pancreas Waiting List, Recipients, and Donors

    Science.gov (United States)

    Webster, Angela C; Hedley, James; Patekar, Abhijit; Robertson, Paul; Kelly, Patrick J

    2017-01-01

    Abstract This is a registry report from the Australia and New Zealand Islet and Pancreas Transplant Registry. We report data for all solid organ pancreas transplant activity from inception in 1984 to end of 2016. Data analysis was performed using Stata Software version 14 (StataCorp, College Station, Tex). From 1984 to 2016 a total of 756 solid organ pancreas transplants have been performed in Australia and New Zealand, in 738 individuals. In 2016, 55 people received a pancreas transplant. These transplants were performed in Auckland (4), Monash (22), and Westmead (29). In 2016, 50 transplants were simultaneous pancreas kidney, 4 were pancreas after kidney, and 1 was a pancreas transplant alone. PMID:29026874

  1. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    Science.gov (United States)

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  2. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    Science.gov (United States)

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  3. Dnmt1 activity is dispensable in δ-cells but is essential for α-cell homeostasis.

    Science.gov (United States)

    Damond, Nicolas; Thorel, Fabrizio; Kim, Seung K; Herrera, Pedro L

    2017-07-01

    In addition to β-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive β-cell ablation in mice, may help restoring a functional β-cell mass in type 1 diabetes. Yet, the spontaneous α-to-β and δ-to-β conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a β-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in β-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner.

    Science.gov (United States)

    Brumm, Andrew J; Nunez, Stefanie; Doroudchi, Mehdi M; Kawaguchi, Riki; Duan, Jinhzu; Pellegrini, Matteo; Lam, Larry; Carmichael, S Thomas; Deb, Arjun; Hinman, Jason D

    2017-08-01

    Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.

  5. Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation.

    Science.gov (United States)

    de Lázaro, I; Kostarelos, K

    2016-02-01

    Changes in cell identity occur in adult mammalian organisms but are rare and often linked to disease. Research in the last few decades has thrown light on how to manipulate cell fate, but the conversion of a particular cell type into another within a living organism (also termed in vivo transdifferentiation) has only been recently achieved in a limited number of tissues. Although the therapeutic promise of this strategy for tissue regeneration and repair is exciting, important efficacy and safety concerns will need to be addressed before it becomes a reality in the clinical practice. Here, we review the most relevant in vivo transdifferentiation studies in adult mammalian animal models, offering a critical assessment of this potentially powerful strategy for regenerative medicine.

  6. Metabolic regulation of cellular plasticity in the pancreas.

    Science.gov (United States)

    Ninov, Nikolay; Hesselson, Daniel; Gut, Philipp; Zhou, Amy; Fidelin, Kevin; Stainier, Didier Y R

    2013-07-08

    Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. DMPD: Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function and fate. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15691589 Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function...(.png) (.svg) (.html) (.csml) Show Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function...ty in inflammatory cells: a role for NO inmacrophage function and fate. Authors Bosca L, Zeini M, Traves PG,

  8. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells.

    Science.gov (United States)

    Gorrepati, Lakshmi; Eisenmann, David M

    2015-01-01

    In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.

  9. Cell fate in the Arabidopsis root meristem determined by directional signalling.

    Science.gov (United States)

    van den Berg, C; Willemsen, V; Hage, W; Weisbeek, P; Scheres, B

    1995-11-02

    Postembryonic development in plants is achieved by apical meristems. Surgical studies and clonal analysis have revealed indirectly that cells in shoot meristems have no predictable destiny and that position is likely to play a role in the acquisition of cell identity. In contrast to animal systems, there has been no direct evidence for inductive signalling in plants until now. Here we present evidence for such signalling using laser ablation of cells in the root meristem of Arabidopsis thaliana. Although these cells show rigid clonal relationships, we now demonstrate that it is positional control that is most important in the determination of cell fate. Positional signals can be perpetuated from more mature to initial cells to guide the pattern of meristem cell differentiation. This offers an alternative to the general opinion that meristems are the source of patterning information.

  10. The pancreas from Aristotle to Galen.

    Science.gov (United States)

    Tsuchiya, Ryoichi; Kuroki, Tamotsu; Eguchi, Susumu

    2015-01-01

    The first description of the pancreas in literature is found in Aristotle's Historia Animalium, but it is modified by "so-called". Therefore, the origin is pursued more extensively. The Greek-English Lexicon recommends three treatises as a possible original source. These three and Galen's other papers are investigated. In 2005, Sachs et al. suggested an origin of the pancreas might have derived from the intestinal divination using the avian pancreas. This report is evaluated. The avian pancreas which is the intraperitoneal organ, might have been well known by the intestinal divination, and people have called the organ pankreas or kallikreas. Anatomical dissection on human body was not accepted before the Aristotle's time. "So-called pancreas" in Historia must have been interpolated by Theophrastus. He was the most faithful and reliable disciple of Aristotle and succeeded the Aristotle's school. He and Macedonian ruler of Egypt Ptolemy I had known each other and there had been a strong link between them. The contemporary Herophilus performed many public dissections on both human and animal bodies in Alexandria. He named the various parts of the human body and designated the beginning intestine as duodenum. Yet in his extant works, the pancreas is not found. It is surmised that Herophilus may be the first to recognize the human pancreas, which is fixed with retroperitoneal tissue, and he named it "so-called pancreas". Theophrastus might have interpolated Herophilus' designation in Historia Animalium. Galen also uses "so-called pancreas" to designate the human pancreas. Galen's descriptions, that is, "Nature created 'so-called pancreas 'and spread it beneath all vessels" are not generally acceptable but propose the very rare portal vein anomalies. Since the early years of the 20th century, cases with a preduodenal portal vein or a prepancreatic portal vein have been reported. Although the incidence is very rare, its surgical importance is emphasized. Copyright © 2014

  11. Developmental fate and lineage commitment of singled mouse blastomeres.

    Science.gov (United States)

    Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor

    2012-10-01

    The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.

  12. Histological changes in the pancreas following administration of ...

    African Journals Online (AJOL)

    The experiment lasted for 28 days. The animals were anaesthetized using chloroform inhalation and the peritoneum stripped open and the pancreas removed and prepared for histological observation using haematoxylin and eosin staining technique. Histology showed regenerative changes of pancreatic islet cell at a dose ...

  13. Serous cystadenocarcinoma of pancreas

    International Nuclear Information System (INIS)

    Rathore, M. U.; Arif, A.; Umair, B.

    2013-01-01

    Serous cystic neoplasms of pancreas are relatively rare tumours. Malignancy in these tumours is even more rare which is confirmed by metastasis to other organs or by perineural, vascular or surrounding soft tissue invasion. A 60 years old lady presented with vague upper abdominal pain. Computed tomography scan showed multiloculated cystic mass in the body of pancreas measuring 9 x 6 x 5 cm and not involving spleen. Pancreatectomy specimen showed a multicystic tumour having sponge-like appearance which showed vascular and soft tissue invasion of surrounding stroma on microscopic examination and was diagnosed as serous cystadenocarcinoma of pancreas. (author)

  14. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells.

    Science.gov (United States)

    Di Girolamo, Nick

    2015-09-01

    Lineage tracing allows the destiny of a stem cell (SC) and its progeny to be followed through time. In order to track their long-term fate, SC must be permanently marked to discern their distribution, division, displacement and differentiation. This information is essential for unravelling the mysteries that govern their replenishing activity while they remain anchored within their niche microenvironment. Modern-day lineage tracing uses inducible genetic recombination to illuminate cells within embryonic, newborn and adult tissues, and the advent of powerful high-resolution microscopy has enabled the behaviour of labelled cells to be monitored in real-time in a living organism. The simple structural organization of the mammalian cornea, including its accessibility and transparency, renders it the ideal tissue to study SC fate using lineage tracing assisted by non-invasive intravital microscopy. Despite more than a century of research devoted to understanding how this tissue is maintained and repaired, many limitations and controversies continue to plague the field, including uncertainties about the specificity of current SC markers, the number of SC within the cornea, their mode of division, their location, and importantly the signals that dictate cell migration. This communication will highlight historical discoveries as well as recent developments in the corneal SC field; more specifically how the progeny of these cells are mobilised to replenish this dynamic tissue during steady-state, disease and transplantation. Also discussed is how insights gleaned from animal studies can be used to advance our knowledge of the fundamental mechanisms that govern modelling and remodelling of the human cornea in health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.

    Science.gov (United States)

    Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate

    2017-03-07

    Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Deubiquitylating enzyme UBP64 controls cell fate through stabilization of the transcriptional repressor tramtrack

    NARCIS (Netherlands)

    P.K. Bajpe (Prashanth Kumar); J.A. van der Knaap (Jan); J.A.A. Demmers (Jeroen); K. Bezstarosti (Karel); A. Bassett (Andrew); H.M.M. van Beusekom (Heleen); A.A. Travers (Andrew); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractProtein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate

  17. Effects of glucose, insulin, and supernatant from pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus

    NARCIS (Netherlands)

    Lin, Yan-Hua; Westenbroek, Christel; Tie, Lu; Liu, Ai-Hua; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun

    2006-01-01

    Brain-pancreas relative protein (BPRP) is a novel protein that mainly expresses in brain and pancreas. In our previous study, we found that various stressors significantly decreased the expression of BPRP in pancreas in vivo, accompanied by changes in insulin and glucose levels, and that expression

  18. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological......ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......, particularly during Ca2+ stress conditions. In conclusion, these studies demonstrate a complex regulation of purinergic signalling in exocrine pancreas. A crucial role for duct cells in mediating extracellular nucleotides homeostasis, involving ATP release, subsequent hydrolysis and conversion via...

  19. Development of the Rabbit Pancreas with Particular Regard to the Argyrophilic Cells

    Directory of Open Access Journals (Sweden)

    M. Titlbach

    2007-01-01

    Full Text Available The aim of the study was the description of the prenatal development of rabbit pancreas, cell modifications, and changes in their volume and mitotic activity. Immunohistochemical, light and electron microscopic procedures were employed. Stereological methods were used for estimation of cellular and nuclear volumes. hits on epithelial cells, tubular lumens, and endocrine progenitor cells were counted by systematic field sampling using test grid. Number of mitoses was registered in various cellular types after colchicine treatment. Data obtained were converted to 1 mm3 tissue. First granules were observed in cells on day 10 and 18 hours, however two different granular types are distinguishable by electron microscopy only on day 15, when insulin and glucagon can be detected immunohistochemically. Cellular volume increased remarkably in harmony with findings of granules in serous cells. Number of epithelial cells increased also exponentially. The increase was more rapid between days 13 and 15, later it appeared exponential. Value of mitotic index and length of cell cycle did not change considerably between days 15 and 24. Mitoses were observed in ductal, exocrine, as well as endocrine cells. The dividing endocrine cells were those that contained fine dense granules (progenitor cells. The sub-population of progenitor cells is able to divide, however, this source of cells appears insufficient for exponential growth. Results after colchicine treatment show the increase of cell population but the life-span and a period necessary for volume multiplication vary. Mitoses decrease in both sub-populations during the prenatal period. The progenitor cells arise probably by differentiation from the ducts, because their number increases proportionally to the main cell population.

  20. Histological features of the pancreas in a patient with congenital hyperinsulinism due to Beckwith-Wiedemann syndrome

    DEFF Research Database (Denmark)

    Christensen, Lene; Christesen, Henrik Boye Thybo; Brusgaard, Klaus

    throughout the entire pancreas. Genetic testing revealed paternal uniparental disomy of the entire chromosome 11, consistent with BWS, while ABCC8, KCNJ11 and other known CHI genes were normal. The left-sided resection specimen measured 10x20x70 mm. Histologically, confluent small islets...... and trabeculi of endocrine cells with uniform nuclei and sparse cytoplasm were observed throughout the pancreas. Most of the endocrine cells expressed insulin, while cells positive for glucagon and somatostatin were observed at the periphery of the confluent trabeculi and islets. The endocrine cells occupied...

  1. Skeletal Muscle Satellite Cells Are Committed to Myogenesis and Do Not Spontaneously Adopt Nonmyogenic Fates

    Science.gov (United States)

    Starkey, Jessica D.; Yamamoto, Masakazu; Yamamoto, Shoko; Goldhamer, David J.

    2011-01-01

    The developmental potential of skeletal muscle stem cells (satellite cells) remains controversial. The authors investigated satellite cell developmental potential in single fiber and clonal cultures derived from MyoDiCre/+;R26REYFP/+ muscle, in which essentially all satellite cells are permanently labeled. Approximately 60% of the clones derived from cells that co-purified with muscle fibers spontaneously underwent adipogenic differentiation. These adipocytes stained with Oil-Red-O and expressed the terminal differentiation markers, adipsin and fatty acid binding protein 4, but did not express EYFP and were therefore not of satellite cell origin. Satellite cells mutant for either MyoD or Myf-5 also maintained myogenic programming in culture and did not adopt an adipogenic fate. Incorporation of additional wash steps prior to muscle fiber plating virtually eliminated the non-myogenic cells but did not reduce the number of adherent Pax7+ satellite cells. More than half of the adipocytes observed in cultures from Tie2-Cre mice were recombined, further demonstrating a non-satellite cell origin. Under adipogenesis-inducing conditions, satellite cells accumulated cytoplasmic lipid but maintained myogenic protein expression and did not fully execute the adipogenic differentiation program, distinguishing them from adipocytes observed in muscle fiber cultures. The authors conclude that skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt an adipogenic fate. PMID:21339173

  2. Metabolism of murine TH 17 cells: Impact on cell fate and function.

    Science.gov (United States)

    Wang, Ran; Solt, Laura A

    2016-04-01

    An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract.

    Science.gov (United States)

    Mills, Jason C; Sansom, Owen J

    2015-07-14

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, postmitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the long-term maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like the stomach and intestine, reprogramming may allow mature cells to serve as reserve ("quiescent") stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, postmitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferation in the stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. Copyright © 2015, American Association for the Advancement of Science.

  4. Determination of the Fate and Function of Innate Lymphoid Cells Following Adoptive Transfer of Innate Lymphoid Cell Precursors.

    Science.gov (United States)

    O'Sullivan, Timothy E; Sun, Joseph C

    2018-01-01

    Innate lymphoid cells are a heterogeneous family of tissue-resident and circulating lymphocytes that play an important role in host immunity. Recent studies have profiled the developmental pathways of mature ILCs and have identified ILC progenitors in the bone marrow through the use of transcription factor reporter mice. Here we describe methodology to identify and isolate bone marrow CHILP and ILC2 progenitor (ILC2P) cells based on cell surface marker expression for adoptive transfer into lymphopenic mice to track the fate of developing ILCs.

  5. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism

    Science.gov (United States)

    Ozair, Mohammad Zeeshan; Noggle, Scott; Warmflash, Aryeh; Krzyspiak, Joanna Ela; Brivanlou, Ali H.

    2013-01-01

    Human embryonic stem cells (hESCs) provide a valuable window into the dissection of the molecular circuitry underlying the early formation of the human forebrain. However, dissection of signaling events in forebrain development using current protocols is complicated by non-neural contamination and fluctuation of extrinsic influences. Here we show that SMAD7, a cell-intrinsic inhibitor of TGFβ signaling, is sufficient to directly convert pluripotent hESCs to an anterior neural fate. Time-course gene expression revealed down-regulation of MAPK components, and combining MEK1/2 inhibition with SMAD7-mediated TGFβ inhibition promoted telencephalic conversion. FGF-MEK and TGFβ-SMAD signaling maintain hESCs by promoting pluripotency genes and repressing neural genes. Our findings suggest that in the absence of these cues, pluripotent cells simply revert to a program of neural conversion. Hence the “primed” state of hESCs requires inhibition of the “default” state of neural fate acquisition. This has parallels in amphibians, suggesting an evolutionarily conserved mechanism. PMID:23034881

  6. Histopathological effects of intraoperative radiotherapy on pancreas and adjacent tissues: a postmortem analysis

    International Nuclear Information System (INIS)

    Hoekstra, H.J.; Restrepo, C.; Kinsella, T.J.; Sindelar, W.F.

    1988-01-01

    Intraoperative radiotherapy (IORT) has been utilized in the treatment of resectable and unresectable pancreatic carcinoma at the National Cancer Institute. Detailed autopsy analyses of the radiation effects on the pancreas and adjacent tissues were performed on 13 patients dying at various times following therapy. IORT can induce a progressive retroperitoneal fibrosis and fibrosis of the porta hepatis in patients with resectable pancreatic carcinoma. In unresectable pancreatic carcinoma, the major expression of intraoperative irradiation with external beam irradiation is a progressive fibrosis of the pancreas with vascular sclerosis, nerve degeneration, atrophy of acinar cells, and atypical changes in the ducts of the pancreas, as well as degenerative changes of the pancreatic tumor

  7. Radiology of the pancreas

    International Nuclear Information System (INIS)

    Baert, A.L.; Delorme, G.

    1994-01-01

    This book, written by internationally recognized experts, fully illustrates the diagnosis of both common and rarer diseases of the pancreas, the latest technical developments in relevant imaging modalities are thoroughly discussed and appraised with respect to the pancreas. The book will appeal to both clinicians and researchers in radiology and oncology. (orig.)

  8. Genetics Home Reference: Pearson marrow-pancreas syndrome

    Science.gov (United States)

    ... Health Conditions Pearson marrow-pancreas syndrome Pearson marrow-pancreas syndrome Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Pearson marrow-pancreas syndrome is a severe disorder that usually begins ...

  9. Fetal rat pancreas transplantation in BB rats: immunohistochemical and functional evaluation

    DEFF Research Database (Denmark)

    Yderstræde, Knud Bonnet; Starklint, Henrik; Steinbrüchel, Daniel Andreas

    1993-01-01

    Spontaneously diabetic BB/Wor rats received either a syngeneic fetal pancreas transplant or adult islets. In the former, 4-8 fetal pancreases were transplanted, and in the latter, 3-5000 islets. Transplantation was performed by transferring a blood clot containing the pancreases or islets...... to the renal subcapsular space. Insulin therapy was undertaken postoperatively, except in one experiment with adult islets. Of the fetal pancreas transplanted BB rats, 52% became normoglycaemic, and 21% remained so throughout an observation period of 10 months. Nephrectomy caused a prompt return of diabetes...... that recurrent diabetes is not inevitable following syngeneic fetal pancreas transplantation to spontaneously diabetic BB rats. Recurrent diabetes was only occasionally associated with mononuclear cell infiltration. Transplanted tissue was well-preserved and vascularized; mega-islets were a constant finding....

  10. Egg cell signaling by the secreted peptide ZmEAL1 controls antipodal cell fate.

    Science.gov (United States)

    Krohn, Nadia Graciele; Lausser, Andreas; Juranić, Martina; Dresselhaus, Thomas

    2012-07-17

    Unlike in animals, female gametes of flowering plants are not the direct products of meiosis but develop from a functional megaspore after three rounds of free mitotic divisions. After nuclei migration and positioning, the eight-nucleate syncytium differentiates into the embryo sac, which contains two female gametes as well as accessory cells at the micropylar and chalazal pole, respectively. We report that an egg-cell-specific gene, ZmEAL1, is activated at the micropylar pole of the eight-nucleate syncytium. ZmEAL1 translation is restricted to the egg cell, resulting in the generation of peptide-containing vesicles directed toward its chalazal pole. RNAi knockdown studies show that ZmEAL1 is required for robust expression of the proliferation-regulatory gene IG1 at the chalazal pole of the embryo sac in antipodal cells. We further show that ZmEAL1 is required to prevent antipodal cells from adopting central cell fate. These findings show how egg cells orchestrate differentiation of the embryo sac. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Endoscopic ultrasound and pancreas divisum

    DEFF Research Database (Denmark)

    Rana, Surinder S; Gonen, Can; Vilmann, Peter

    2012-01-01

    Pancreas divisum is the most common congenital anatomic variation of the pancreatic ductal anatomy and in most of the individuals it is asymptomatic. However, in minority of individuals it is presumed to cause recurrent acute pancreatitis and chronic pancreatitis. Endoscopic retrograde cholangiop......Pancreas divisum is the most common congenital anatomic variation of the pancreatic ductal anatomy and in most of the individuals it is asymptomatic. However, in minority of individuals it is presumed to cause recurrent acute pancreatitis and chronic pancreatitis. Endoscopic retrograde...... of the parenchyma also. Therefore EUS, both radial and linear, has potential for being a minimally invasive diagnostic modality for pancreas divisum. A number of EUS criteria have been suggested for the diagnosis of pancreas divisum. These criteria have varying sensitivity and specificity and hence there is a need...

  12. Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Müllerian duct epithelium

    Science.gov (United States)

    Laronda, Monica M.; Unno, Kenji; Ishi, Kazutomo; Serna, Vanida A.; Butler, Lindsey M.; Mills, Alea A.; Orvis, Grant D.; Behringer, Richard R.; Deng, Chuxia; Sinha, Satrajit; Kurita, Takeshi

    2013-01-01

    Women exposed to diethylstilbestrol (DES) in utero frequently develop vaginal adenosis, from which clear cell adenocarcinoma can arise. Despite decades of extensive investigation, the molecular pathogenesis of DES-associated vaginal adenosis remains elusive. Here we report that DES induces vaginal adenosis by inhibiting the BMP4/Activin A-regulated vaginal cell fate decision through a downregulation of RUNX1. BMP4 and Activin A produced by vaginal mesenchyme synergistically activated the expression of ΔNp63, thus deciding vaginal epithelial cell fate in the Müllerian duct epithelial cells (MDECs) via direct binding of SMADs on the highly conserved 5′sequence of ΔNp63. Therefore, mice in which Smad4 was deleted in MDECs failed to express ΔNp63 in vaginal epithelium and developed adenosis. This SMAD-dependent ΔNp63 activation required RUNX1, a binding partner of SMADs. Conditional deletion of Runx1 in the MDECs induced adenosis in the cranial portion of vagina, which mimicked the effect of developmental DES-exposure. Furthermore, neonatal DES exposure downregulated RUNX1 in the fornix of the vagina, where DES-associated adenosis is frequently found. This observation strongly suggests that the downregulation of RUNX1 is the cause of vaginal adenosis. However, once cell fate was determined, the BMP/Activin-SMAD/RUNX1 signaling pathway became dispensable for the maintenance of ΔNp63 expression in vaginal epithelium. Instead, the activity of the ΔNp63 locus in vaginal epithelium was maintained by a ΔNp63-dependent mechanism. This is the first demonstration of a molecular mechanism through which developmental chemical exposure causes precancerous lesions by altering cell fate. PMID:23830984

  13. Simultaneous Kidney-Pancreas Transplantation With an Original "Transverse Pancreas" Technique: Initial 9 Years' Experience With 56 Cases.

    Science.gov (United States)

    Paulino, J; Martins, A; Vigia, E; Marcelino, P; Nobre, A M; Bicho, L; Filipe, E; Barroso, E

    2017-10-01

    An innovative technique for pancreas transplantation is described. The main aspect consists of the horizontal positioning of the pancreas, which allows a better venous outflow, thus preventing thrombosis and graft loss. The program of pancreas transplantation in this national reference center for pancreatic and liver surgery was started in 2007; the initial results were considered poor, resulting in the loss of half of the grafts due to venous thrombosis. After analyzing the possible causes, this technique was proposed and successfully implemented, reducing the postoperative complications, particularly the problem of venous thrombosis. A detailed description of the new surgical technique is provided. The main clinical and demographic characteristics of the 56 patients who underwent the surgery are analyzed. The incidence of venous thrombosis was 5.3% (3 patients) and graft loss was 3.5% (2 patients). Due to the good results, this technique became the standard surgery for transplantation of the pancreas in our center. The technique proved to be safe and successful. Due to the unique pancreas graft implantation, we called it "transverse pancreas surgery." Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    Science.gov (United States)

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  15. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiko

    2010-07-01

    Full Text Available Understanding fate choice and fate switching between the osteoblast lineage (ObL and adipocyte lineage (AdL is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPARgamma.Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL, a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2, PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment.We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively

  16. Method of pancreas scintigraphy

    International Nuclear Information System (INIS)

    Michele, E.; Schmidt, H.A.E.

    1976-01-01

    Scintigraphy of the pancreas is important because of a lack of simple internal and x-ray pancreas diagnostic examination methods, non-burdening to the patient, yet providing sufficient evidence. We conceived a double isotope subtraction method aimed at widespread application; financially, it should be within the range even of smaller nuclear medicine departments. A scanner is combined with double impulse processing and a subtraction unit (Picker Dualscanner) and an adapted x-ray unit with the x-ray tube aimed at the scan-field. Commercial sup(Se-75)selenium methionine is used for pancreas imagining. sup(TC-99m)colloidal sulphur is used as a liver indicator. After barium-brei application orally, an x-ray is taken of the gastro-intestinal tract, so as to be able to delineate the pancreas from other epigastric organs also able to accumulate methionine. The subtraction photoscan is then inscribed on this pre-exposed film without any shift of the patient. It is also possible to use two parallel films (x-ray/photoscan) and then to superposition them

  17. Synthetic Substrata to Instruct Human Pluripotent Stem Cell Fate: From Novel Ligands to Functional Biomaterials

    Science.gov (United States)

    Musah, Samira

    Human pluripotent stem (hPS) cells have the remarkable capacity to self-renew indefinitely and differentiate into desired cell types. They can serve as a virtually unlimited supply of cells for applications ranging from drug screening to cell therapies to understanding human development. Reaping the promise of hPS cells hinges on effective defined culture and differentiation conditions. Efforts to generate chemically-defined environments for hPS cell propagation and directed differentiation have been hindered by access to only a handful of ligands to target hPS cells. Additionally, progress has been limited also by lack of knowledge regarding the relevant functional properties of the cell culture substratum. To address these problems, I first employed forward-chemical-genetics coupled with self-assembled monolayer technology to identify novel peptides that bind to hPS cell-surface receptors. I then developed a controlled synthesis of hydrogels with tailored peptide display and mechanical properties. This approach yielded synthetic hydrogels with specific mechanical properties that function in a defined medium to robustly support hPS cell self-renewal. Finally, by starting from molecular level understanding that matrix elasticity regulates developmental pathways, I generated a highly efficient hydrogel platform that restricts hPS cell differentiation to neurons, even without soluble inductive factors. These results indicate that insoluble cues can be important information conduits to guide hPS cell fate decisions. I envision that the blueprint provided by this work can be utilized to devise new materials to guide hPS cell fate.

  18. Individual fates of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Drasdo Dirk

    2010-05-01

    Full Text Available Abstract Background In vitro cultivated stem cell populations are in general heterogeneous with respect to their expression of differentiation markers. In hematopoietic progenitor populations, this heterogeneity has been shown to regenerate within days from isolated subpopulations defined by high or low marker expression. This kind of plasticity has been suggested to be a fundamental feature of mesenchymal stem cells (MSCs as well. Here, we study MSC plasticity on the level of individual cells applying a multi-scale computer model that is based on the concept of noise-driven stem cell differentiation. Results By simulation studies, we provide detailed insight into the kinetics of MSC organisation. Monitoring the fates of individual cells in high and low oxygen culture, we calculated the average transition times of individual cells into stem cell and differentiated states. We predict that at low oxygen the heterogeneity of a MSC population with respect to differentiation regenerates from any selected subpopulation in about two days. At high oxygen, regeneration becomes substantially slowed down. Simulation results on the composition of the functional stem cell pool of MSC populations suggest that most of the cells that constitute this pool originate from more differentiated cells. Conclusions Individual cell-based models are well-suited to provide quantitative predictions on essential features of the spatio-temporal organisation of MSC in vitro. Our predictions on MSC plasticity and its dependence on the environment motivate a number of in vitro experiments for validation. They may contribute to a better understanding of MSC organisation in vitro, including features of clonal expansion, environmental adaptation and stem cell ageing.

  19. Expression and Localization of microRNAs in Perinatal Rat Pancreas

    DEFF Research Database (Denmark)

    Larsen, Louise; Rosenstierne, Maiken Worsøe; Gaarn, Louise Winkel

    2011-01-01

    OBJECTIVE: To investigate the expression of pancreatic microRNAs (miRNAs) during the period of perinatal beta-cell expansion and maturation in rats, determine the localization of these miRNAs and perform a pathway analysis with predicted target mRNAs expressed in perinatal pancreas. RESEARCH DESIGN...... AND METHODS: RNA was extracted from whole pancreas at embryonic day 20 (E20), on the day of birth (P0) and two days after birth (P2) and hybridized to miRNA microarrays. Differentially expressed miRNAs were verified by northern blotting and their pancreatic localization determined by in situ hybridization...

  20. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  1. Application of Rotating Wall Vessel (RWV) Cell Culture for Pancreas Islet Cell Transplantation

    Science.gov (United States)

    Rutzky, Lynne P.

    1998-01-01

    Type I insulin-dependent diabetes mellitus (IDDM) remains a major cause of morbidity and mortality in both pediatric and adult populations, despite significant advances in medical management. While insulin therapy treats symptoms of acute diabetes, it fails to prevent chronic complications such as microvascular disease, blindness, neuropathy, and chronic renal failure. Strict control of blood glucose concentrations delays but does not prevent the onset and progression of secondary complications. Although, whole pancreas transplantation restores physiological blood glucose levels, a continuous process of allograft rejection causes vascular and exocrine-related complications. Recent advances in methods for isolation and purification of pancreatic islets make transplantation of islet allografts an attractive alternative to whole pancreas transplantation. However, immunosuppressive drugs are necessary to prevent rejection of islet allografts and many of these drugs are known to be toxic to the islets. Since auto-transplants of isolated islets following total pancreatectomy survive and function in vivo, it is apparent that a major obstacle to successful clinical islet transplantation is the immunogenicity of the islet allografts.

  2. Pancreas preserving total duodenectomy for complex duodenal injury.

    Science.gov (United States)

    Wig, Jai Dev; Kudari, Ashwinikumar; Yadav, Thakur Deen; Doley, Rudra Prasad; Bharathy, Kishore Gurumoorthy Subramanya; Kalra, Naveen

    2009-07-06

    To assess the feasibility and safety of a pancreas-preserving total duodenectomy in the management of severe duodenal injury caused by abdominal trauma. Two patients with both extensive injury of the duodenum and diffuse peritonitis underwent pancreas preserving total duodenectomy at our tertiary care centre. These two young male patients (age 20 and 22 years) presented 2 days and 6 hours respectively following blunt abdominal trauma. The duodenum was almost completely separated from the pancreas. Ampulla was seen as a button on the pancreas. Following total duodenectomy, reconstruction was performed by suturing the jejunum to the head of the pancreas anteriorly and posteriorly away from the ampulla (invagination of the pancreas into the jejunum). There were no complications attributable to the procedure. Both patients are well on follow up. A Pancreas-preserving total duodenectomy offers a safe alternative to the Whipple procedure in managing complex duodenal injury. This procedure avoids unnecessary resection of the adjacent pancreas and anastomosis to undilated hepatic and pancreatic ducts.

  3. Clinical evaluation of computed tomography of the pancreas

    International Nuclear Information System (INIS)

    Miura, Takashi; Nakao, Morio; Takayasu, Yukio; Inamoto, Kazuo; Yamazaki, Hideo

    1980-01-01

    The pancreas was observed from many directions on conventional CT images and reconstructed coronal and sagittal tomograms. Absorbed values of x-ray in the pancreas were also counted by setting ROI on conventional CT images. The subjects were 37 patients with pancreatic diseases or normal pancreas. Equipments used were Somatom SD and Evaluskop for analysis of images. Slice width and feed for reconstruction of CT images were 4 mm and 3 mm, respectively. Absorbed values of x-ray was significantly lower in patients with pancreatic carcinoma than in patients with normal pancreas. Slightly low absorbed values of x-ray in pancreas tail could suggest small carcinoma of pancreas even when CT images could not visualize it clearly. There was not a significant difference in absorbed values between chronic pancreatitis and normal pancreas, but their variations were big. Observation of the pancreas from many directions on reconstructed CT images were very useful for the diagnosis of pancreatic diseases. (Tsunoda, M.)

  4. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus.

    Directory of Open Access Journals (Sweden)

    Jaehyuk Yoo

    Full Text Available Lymphatic endothelial cells (LECs are differentiated from blood vascular endothelial cells (BECs during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming, but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming. Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.

  5. Lesions induced in rodent pancreas by azaserine and other pancreatic carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Longnecker, D.S.

    1984-06-01

    Focal proliferative changes in the acinar cells of the pancreas of rats have been induced by several systemically administered carcinogens including azaserine, N-nitrosobis(2-oxopropyl)amine, N-nitroso(2-hydroxypropyl) (2-oxopropyl)amine, and Ndelta-(N-methyl-N-nitrosocarbamoyl)-L-ornithine (MNCO). Foci, nodules, and adenomas induced by these carcinogens are usually made up of atypical-appearing acinar cells that maintain a high degree of differentiation, but a minority of these lesions exhibit anaplastic cellular changes that suggest the development of malignant potential. Such anaplasia may occupy the whole of smaller lesions or may occur as a secondary focal change within larger nodules or adenomas. Many foci and nodules per pancreas have been induced by single or multiple exposures to these known genotoxic carcinogens, but relatively few of them develop into carcinomas. Azaserine and MNCO have induced acinar cell carcinomas in rats. Those induced by azaserine have exhibited a broad spectrum of histologic variants, including ductlike, cystic and undifferentiated patterns. Higher doses of MNCO have induced a second pattern of change in the pancreatic lobules of rats, which includes cystic and tubular ductlike structures that have been called cystic and tubular ductal complexes. MNCO has also induced focal acinar cell lesions, cystic and tubular ductal complexes, and adenocarcinomas in the pancreas of Syrian golden hamsters. In this species, ductal complexes are much more numerous than are proliferative lesions of acinar cells, and the histologic appearance of the carcinomas is ductlike. Hyperplasia and atypical changes were also seen in the epithelium of the intralobular ducts of hamsters. 20 references, 5 figures, 1 table.

  6. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    Energy Technology Data Exchange (ETDEWEB)

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel, E-mail: imarzo@unizar.es

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  7. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    Science.gov (United States)

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  8. Monoclonal antibody localization of Na sup + -K sup + -ATPase in the exocrine pancreas and parotid of the dog

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Z.D.J.; Caplan, M.J.; Forbush, B. III; Jamieson, J.D. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1987-08-01

    A monoclonal antibody specific to the {beta}-subunit of the canine {sup 125}I-labeled-Na{sup +}-K{sup +}-ATPase has been characterized and used to directly localize the enzyme in thin frozen sections of dog pancreas and parotid. The antibody, 7-2M, recognizes only the {beta}-subunit of the sodium pump as determined by immunoprecipitation and immunoblot and is not directed against an oligosaccharide determinant. 7-2M immunolocalizes to the same cellular and subcellular domains of renal tubular cells as do other, previously characterized, antibodies directed to the {alpha}-subunit of the sodium pump. In the pancreas the preponderance of the Na{sup +}-K{sup +}-ATPase is found on the basolateral membranes of centroacinar and intralobular duct cells. Interlobular duct cells also express a large component of basolaterally located enzyme, although comparatively little pump is seen on acinar cells. In the parotid a large amount of Na{sup +}-K{sup +}-ATPase is seen on the striated cut cells, with high levels also noted on cells of the intercalated ducts and serous demilunes. Again the acinar cells show comparatively low levels of Na{sup +}-K{sup +}-ATPase. In no instance is Na{sup +}-K{sup +}-ATPase found on the apical membranes of pancreas or parotid cells. These data suggest that Na{sup +}-K{sup +}-ATPase, located on the basolateral plasmalemma of duct-derived cells, may be involved in water and electrolyte secretion from the pancreas and parotid.

  9. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells.

    Science.gov (United States)

    Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M

    2013-05-01

    The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.

  10. Cellular and molecular mechanisms coordinating pancreas development.

    Science.gov (United States)

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  11. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    Science.gov (United States)

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. MR imaging of pancreas in cystic fibrosis

    International Nuclear Information System (INIS)

    Murayama, S.; Robinson, A.E.; Mulvihill, D.M.; Stallworth, J.M.; Goyco, P.G.; Beckerman, R.C.; Hines, M.R.

    1990-01-01

    The pancreatic regions of 18 patients with cystic fibrosis were analyzed with a 1.5 Tesla MR unit. Signal intensity of the pancreas was correlated with clinical data and ultrasound. A hyperintense pancreas on T1-weighted image was consistent with fatty replacement of pancreatic insufficiency. A pancreas of normal soft tissue intensity was found in two asymptomatic and one symptomatic patient. A very hypointense pancreas on any pulse sequence was considered to be an intermediate stage of pancreatic degeneration. (orig.)

  13. Comparative functional scintigraphic and angiographic examination in pancreas diseases

    International Nuclear Information System (INIS)

    Mendizov, A.; Brilski, V.; Bozhiyanov, A.; Romanova, A.; Mardzhanov, I.; Glavincheva, I.; Meditsinska Akademiya, Sofia

    1979-01-01

    Pancreas scintigraphy with 75 seleno-methionine, pancreocimine-secretine test and selective abdominal angiography was carried out in patients with chronic pancreatitis, pancreas carcinoma and subjects without any pancreas diseases. Scintigraphic changes in pancreas was found in 95,6 per cent of the patients with chronic pancreatitis (136 patients), in 92 per cent of them with pancreas carcinoma (25 patients) and in 53,4 per cent from the subjects without pancreas diseases (30 examined). Pathological changes in pancreatic secretion was found in 93,4 per cent of the patients with chronic pancreatitis (105 patients), in 93,8 per cent of the subjects with pancreas carcinoma (32 patients) and only in 3,9 per cent from the examined without pancreatic diseases. The angiographic examination is informative mainly in case of tumours and cysts of the pancreas. The diagnostic potentialities of the separate methods for pancreas examination were critically assessed. The basic diagnostic problems in pancreas diseases are solved to a great extent with the combined examination with scintigraphy pancreocimine test and angiography (76 patients). (author)

  14. Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.

    Science.gov (United States)

    Ansari, Sahar; Sarrion, Patricia; Hasani-Sadrabadi, Mohammad Mahdi; Aghaloo, Tara; Wu, Benjamin M; Moshaverinia, Alireza

    2017-11-01

    Mesenchymal stem cells (MSCs) derived from dental and orofacial tissues provide an alternative therapeutic option for craniofacial bone tissue regeneration. However, there is still a need to improve stem cell delivery vehicles to regulate the fate of the encapsulated MSCs for high quality tissue regeneration. Matrix elasticity plays a vital role in MSC fate determination. Here, we have prepared various hydrogel formulations based on alginate and gelatin methacryloyl (GelMA) and have encapsulated gingival mesenchymal stem cells (GMSCs) and human bone marrow MSCs (hBMMSCs) within these fabricated hydrogels. We demonstrate that addition of the GelMA to alginate hydrogel reduces the elasticity of the hydrogel mixture. While presence of GelMA in an alginate-based scaffold significantly increased the viability of encapsulated MSCs, increasing the concentration of GelMA downregulated the osteogenic differentiation of encapsulated MSCs in vitro due to decrease in the stiffness of the hydrogel matrix. The osteogenic suppression was rescued by addition of a potent osteogenic growth factor such as rh-BMP-2. In contrast, MSCs encapsulated in alginate hydrogel without GelMA were successfully osteo-differentiated without the aid of additional growth factors, as confirmed by expression of osteogenic markers (Runx2 and OCN), as well as positive staining using Xylenol orange. Interestingly, after two weeks of osteo-differentiation, hBMMSCs and GMSCs encapsulated in alginate/GelMA hydrogels still expressed CD146, an MSC surface marker, while MSCs encapsulated in alginate hydrogel failed to express any positive staining. Altogether, our findings suggest that it is possible to control the fate of encapsulated MSCs within hydrogels by tuning the mechanical properties of the matrix. We also reconfirmed the important role of the presence of inductive signals in guiding MSC differentiation. These findings may enable the design of new multifunctional scaffolds for spatial and temporal

  15. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells.

    Science.gov (United States)

    Sugimoto, Asuna; Miyazaki, Aya; Kawarabayashi, Keita; Shono, Masayuki; Akazawa, Yuki; Hasegawa, Tomokazu; Ueda-Yamaguchi, Kimiko; Kitamura, Takamasa; Yoshizaki, Keigo; Fukumoto, Satoshi; Iwamoto, Tsutomu

    2017-12-18

    The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.

  16. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates.

    Science.gov (United States)

    Shahrousvand, Mohsen; Sadeghi, Gity Mir Mohamad; Shahrousvand, Ehsan; Ghollasi, Marzieh; Salimi, Ali

    2017-08-01

    All of the cells' interactions are done through their surfaces. Evaluation of surface physicochemical scaffolds along with other factors is important and determines the fate of stem cells. In this work, biodegradable and biocompatible polyester/polyether based polyurethanes (PUs) were synthesized by polycaprolactone diol (PCL) and poly (tetra methylene ether) glycol (PTMEG) as the soft segment. To assess better the impact of surface parameters such as stiffness and roughness effects on osteogenic differentiation of the human mesenchymal stem cell (hMSC), the dimension effect of substrates was eliminated and two-dimensional membranes were produced by synthesized polyurethane. Surface and bulk properties of prepared 2D membranes such as surface chemistry, roughness, stiffness and tensile behavior were evaluated by Attenuated total reflectance Fourier transform infrared (ATR-FTIR), atomic force microscopy (AFM) and tensile behavior. The prepared 2D PU films had suitable hydrophilicity, biodegradability, water absorption, surface roughness and bulk strength. The hMSCs showed greater osteogenesis expression in PU substrates with more roughness and stiffness than others. The results demonstrated that surface parameters along with other differentiation cues have a synergistic effect on stem cells fates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An adaptive molecular timer in p53-meidated cell fate decision

    Science.gov (United States)

    Zhang, Xiao-Peng; Wang, Ping; Liu, Feng; Wang, Wei

    The tumor suppressor p53 decides cellular outcomes in the DNA damage response. It is intriguing to explore the link between p53 dynamics and cell fates. We developed a theoretical model of p53 signaling network to clarify the mechanism of cell fate decision mediated by its dynamics. We found that the interplay between p53-Mdm2 negative feedback loop and p53-PTEN-Mdm2 positive feedback loop shapes p53 dynamics. Depending on the intensity of DNA damage, p53 shows three modes of dynamics: persistent pulses, two-phase dynamics with pulses followed by sustained high levels and straightforward high levels. Especially, p53 shows two-phase dynamics upon moderated damage and the required number of p53 pulses before apoptosis induction decreases with increasing DNA damage. Our results suggested there exists an adaptive molecular timer that determines whether and when the apoptosis switch should be triggered. We clarified the mechanism behind the switching of p53 dynamical modes by bifurcation analysis. Moreover, we reproduced the experimental results that drug additions alter p53 pulses to sustained p53 activation and leads to senescence. Our work may advance the understanding the significance of p53 dynamics in tumor suppression. This work was supported by National Natural Science Foundation of China (Nos. 11175084, 11204126 and 31361163003).

  18. Pancreas retransplantation: a second chance for diabetic patients?

    Science.gov (United States)

    Buron, Fanny; Thaunat, Olivier; Demuylder-Mischler, Sandrine; Badet, Lionel; Brunet, Maria; Ber, Charles-Eric; Thivolet, Charles; Martin, Xavier; Berney, Thierry; Morelon, Emmanuel

    2013-01-27

    If pancreas transplantation is a validated alternative for type 1 diabetic patients with end-stage renal disease, the management of patients who have lost their primary graft is poorly defined. This study aims at evaluating pancreas retransplantation outcome. Between 1976 and 2008, 569 pancreas transplantations were performed in Lyon and Geneva, including 37 second transplantations. Second graft survival was compared with primary graft survival of the same patients and the whole population. Predictive factors of second graft survival were sought. Patient survival and impact on kidney graft function and survival were evaluated. Second pancreas survival of the 17 patients transplanted from 1995 was close to primary graft survival of the whole population (71% vs. 79% at 1 year and 59% vs. 69% at 5 years; P=0.5075) and significantly better than their first pancreas survival (71% vs. 29% at 1 year and 59% vs. 7% at 5 years; P=0.0008) regardless of the cause of first pancreas loss. The same results were observed with all 37 retransplantations. Survival of second simultaneous pancreas and kidney transplantations was better than survival of second pancreas after kidney. Patient survival was excellent (89% at 5 years). Pancreas retransplantation had no impact on kidney graft function and survival (100% at 5 years). Pancreas retransplantation is a safe procedure with acceptable graft survival that should be proposed to diabetic patients who have lost their primary graft.

  19. A Study on Pancreas Scanning with Selenium75-Selenomethionine

    International Nuclear Information System (INIS)

    Shin, Hyun Chan; Toh, Sang Hee; Ra, Woo Youn; Suh, Chul Sung

    1968-01-01

    Radiographic visualization of the pancreas is a difficult problem, but the direct visualization of the pancreas is possible by the injection of the amino-acid methionine tagged with selenium 75 (Se 75 ). In order to know the diagnostic value of pancreas scanning, scans were performed on 23 cases using selenium 75 -Selenomethionine. These cases were also given egg white, probanthine and morphine. 1) Good visualization of the pancreas scanning was observed on 19 cases, presumably with normal pancreas. 2) A case which showed diffusely decreased uptake on pancreas scanning was proven to have lesions in the bile duct and the gall bladder. 3) Of those two cases which showed localized cold area, one had pancreas cyst and the other one was not explored. 4) A case which showed no visualization of the pancreas was proven to have pancreatic carcinoma. 5) Two cases which showed widened duodenal loop by upper gastro-intestinal series revealed normal pancreas scanning, and no pancreatic disease was found in both cases.

  20. Immunogenicity of Anti-HLA Antibodies in Pancreas and Islet Transplantation.

    Science.gov (United States)

    Chaigne, Benjamin; Geneugelijk, Kirsten; Bédat, Benoît; Ahmed, Mohamed Alibashe; Hönger, Gideon; De Seigneux, Sophie; Demuylder-Mischler, Sandrine; Berney, Thierry; Spierings, Eric; Ferrari-Lacraz, Sylvie; Villard, Jean

    2016-11-01

    The aim of the current study was to characterize the anti-HLA antibodies before and after pancreatic islet or pancreas transplantation. We assessed the risk of anti-donor-specific antibody (DSA) sensitization in a single-center, retrospective clinical study at Geneva University Hospital. Data regarding clinical characteristics, graft outcome, HLA mismatch, donor HLA immunogenicity, and anti-HLA antibody characteristics were collected. Between January 2008 and July 2014, 18 patients received islet transplants, and 26 patients received a pancreas transplant. Eleven out of 18 patients (61.1%) in the islet group and 12 out of 26 patients (46.2%) in the pancreas group had anti-HLA antibodies. Six patients (33.3%) developed DSAs against HLA of the islets, and 10 patients (38.4%) developed DSAs against HLA of the pancreas. Most of the DSAs were at a low level. Several parameters such as gender, number of times cells were transplanted, HLA mismatch, eplet mismatch and PIRCHE-II numbers, rejection, and infection were analyzed. Only the number of PIRCHE-II was associated with the development of anti-HLA class II de novo DSAs. Overall, the development of de novo DSAs did not influence graft survival as estimated by insulin independence. Our results indicated that pretransplant DSAs at low levels do not restrict islet or pancreas transplantation [especially islet transplantation (27.8% vs. 15.4.%)]. De novo DSAs do occur at a similar rate in both pancreas and islet transplant recipients (mainly of class II), and the immunogenicity of donor HLA is a parameter that should be taken into consideration. When combined with an immunosuppressive regimen and close follow-up, development of low levels of DSAs was not found to result in reduced graft survival or graft function in the current study.

  1. Computed tomography of the pancreas

    International Nuclear Information System (INIS)

    Kolmannskog, F.; Kolbenstvedt, A.; Aakhus, T.; Bergan, A.; Fausa, O.; Elgjo, K.

    1980-01-01

    The findings by computed tomography in 203 cases of suspected pancreatic tumours, pancreatitis or peripancreatic abnormalities were evaluated. The appearances of the normal and the diseased pancreas are described. Computed tomography is highly accurate in detecting pancreatic masses, but can not differentiate neoplastic from inflammatory disease. The only reliable signs of pancreatic carcinoma are a focal mass in the pancreas, together with liver metastasis. When a pancreatic mass is revealed by computed tomography, CT-guided fine-needle aspiration biopsy of the pancreas is recommended. Thus the need for more invasive diagnostic procedures and explorative laparotomy may be avoided in some patients. (Auth.)

  2. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming

    Science.gov (United States)

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-01-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  3. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision?

    Science.gov (United States)

    Lavieu, Gregory; Scarlatti, Francesca; Sala, Giusy; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice

    2007-01-01

    Sphingolipids are major constituents of biological membrane and some of them behave as second messengers involved in the cell fate decision. Ceramide and sphingosine 1-phosphate (S1P) constitute a rheostat system in which ceramide promotes cell death and S1P increases cell survival. We have shown that both sphingolipids are able to trigger autophagy with opposing outcomes on cell survival. Here we discuss and speculate on the diverging functions of the autophagic pathways induced by ceramide and S1P, respectively.

  4. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath.

    Science.gov (United States)

    Morita, Asuka; Ouchi, Motoshi; Terada, Misao; Kon, Hiroe; Kishimoto, Satoko; Satoh, Keitaro; Otani, Naoyuki; Hayashi, Keitaro; Fujita, Tomoe; Inoue, Ken-Ichi; Anzai, Naohiko

    2018-02-09

    Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.

  5. A Case of Successful Simultaneous Pancreas-Kidney Transplantation Using the Injured Pancreas Graft.

    Science.gov (United States)

    Miyagi, S; Shimizu, K; Miyazawa, K; Nakanishi, W; Hara, Y; Tokodai, K; Nakanishi, C; Satomi, S; Goto, M; Unno, M; Kamei, T

    2017-12-01

    Graft injuries sometimes occur and may cause complications such as the leakage of pancreatic secretions, which is often lethal. We report our experience of a case of successful simultaneous pancreas-kidney transplantation using injured pancreas graft. The recipient was a 57-year-old woman with type 1 diabetes mellitus, and the donor was a 30-year-old man with a brain injury. In the donation, the pancreas parenchyma, splenic artery, and gastroduodenal artery were injured iatrogenically. We therefore reconstructed these arteries using vessel grafts and then performed simultaneous pancreas-kidney transplantation. Five days after transplantation, we noted a high titer of amylase in the ascites; therefore, we performed an urgent laparotomy. The origin of the amylase was the injured pancreatic parenchyma, and continued washing and drainage were carried out. We reconstructed the duodenojejunostomy using the Roux-en-Y technique to separate the passage of food from the pancreas graft to prevent injury to other organs due to exposure to pancreatic secretions. Thereafter, we inserted a decompression tube into the anastomosis thorough the blind end of the jejunum. Finally, we inserted 3 drainage tubes for lavage. Following this procedure, the patient recovered gradually and no longer required hemodialysis and insulin therapy. She was discharged from our hospital 56 days after transplantation. The restoration of the injured graft was possible by management of pancreatic secretions and use of the donor's vessel grafts. Shortage of donors is a problem throughout the world; thus, it is important to use injured grafts for transplantation if possible. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mis-specified cells die by an active gene-directed process, and inhibition of this death results in cell fate transformation in Drosophila

    Science.gov (United States)

    Werz, Christian; Lee, Tom V.; Lee, Peter L.; Lackey, Melinda; Bolduc, Clare; Stein, David S.; Bergmann, Andreas

    2009-01-01

    Summary Incorrectly specified or mis-specified cells often undergo cell death or are transformed to adopt a different cell fate during development. The underlying cause for this distinction is largely unknown. In many developmental mutants in Drosophila, large numbers of mis-specified cells die synchronously, providing a convenient model for analysis of this phenomenon. The maternal mutant bicoid is particularly useful model with which to address this issue because its mutant phenotype is a combination of both transformation of tissue (acron to telson) and cell death in the presumptive head and thorax regions. We show that a subset of these mis-specified cells die through an active gene-directed process involving transcriptional upregulation of the cell death inducer hid. Upregulation of hid also occurs in oskar mutants and other segmentation mutants. In hid bicoid double mutants, mis-specified cells in the presumptive head and thorax survive and continue to develop, but they are transformed to adopt a different cell fate. We provide evidence that the terminal torso signaling pathway protects the mis-specified telson tissue in bicoid mutants from hid-induced cell death, whereas mis-specified cells in the head and thorax die, presumably because equivalent survival signals are lacking. These data support a model whereby mis-specification can be tolerated if a survival pathway is provided, resulting in cellular transformation. PMID:16280349

  7. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis

    Science.gov (United States)

    Huch, Meritxell; Bonfanti, Paola; Boj, Sylvia F; Sato, Toshiro; Loomans, Cindy J M; van de Wetering, Marc; Sojoodi, Mozhdeh; Li, Vivian S W; Schuijers, Jurian; Gracanin, Ana; Ringnalda, Femke; Begthel, Harry; Hamer, Karien; Mulder, Joyce; van Es, Johan H; de Koning, Eelco; Vries, Robert G J; Heimberg, Harry; Clevers, Hans

    2013-01-01

    Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt-agonistic R-spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever-expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1-based cultures, and develop into budding cyst-like structures (organoids) that expand five-fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi-potentiality. PMID:24045232

  8. Ectopic Overexpression of Sonic Hedgehog (Shh Induces Stromal Expansion and Metaplasia in the Adult Murine Pancreas

    Directory of Open Access Journals (Sweden)

    Volker Fendrich

    2011-10-01

    Full Text Available Ligand-dependent activation of the Hedgehog (Hh signaling pathway has been implicated in both tumor initiation and metastasis of pancreatic ductal adenocarcinoma (PDAC. Prior studies in genetically engineered mouse models (GEMMs have assessed the role of Hh signaling by cell autonomous expression of a constitutively active Gli2 within epithelial cells. On the contrary, aberrant pathway reactivation in the human exocrine pancreas occurs principally as a consequence of Sonic Hh ligand (Shh overexpression from epithelial cells. To recapitulate the cognate pathophysiology of Hh signaling observed in the human pancreas, we examined GEMM where Hh ligand is conditionally overexpressed within the mature exocrine pancreas using a tamoxifen-inducible Elastase-Cre promoter (Ela-CreERT2;LSL-mShh. We also facilitated potential cell autonomous epithelial responsiveness to secreted Hh ligand by generating compound transgenic mice with concomitant expression of the Hh receptor Smoothened (Ela-CreERT2;LSL-mShh;LSL-mSmo. Of interest, none of these mice developed intraductal precursor lesions or PDAC during the follow-up period of up to 12 months after tamoxifen induction. Instead, all animals demonstrated marked expansion of stromal cells, consistent with the previously described epithelial-to-stromal paracrine Hh signaling. Hh responsiveness was mirrored by the expression of primary cilia within the expanded mesenchymal compartment and the absence within mature acinar cells. In the absence of cooperating mutations, Hh ligand overexpression in the mature exocrine pancreas is insufficient to induce neoplasia, even when epithelial cells coexpress the Smo receptor. This autochthonous model serves as a platform for studying epithelial stromal interactions in pancreatic carcinogenesis.

  9. Laparoscopic removal of a needle from the pancreas

    Directory of Open Access Journals (Sweden)

    Amit Jain

    2013-01-01

    Full Text Available Foreign bodies inside the pancreas are rare and usually occur after the ingestion of sharp objects like fish bone, sewing needle and toothpick. Most of the ingested foreign bodies pass spontaneously through the anus without being noticed but about 1% of them can perforate through the wall of stomach or duodenum to reach solid organs like pancreas or liver. Once inside the pancreas they can produce complications like abscess, pseudoaneurysm or pancreatits. Foreign bodies of pancreas should be removed by endoscopic or surgical methods. We hereby report our experience of successful removal one a sewing needle from pancreas.

  10. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate.

    Directory of Open Access Journals (Sweden)

    Monica Montesi

    Full Text Available Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration.

  11. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc

    2012-01-01

    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  12. Synchronous Primary Tumors of the Kidney and Pancreas: Case ...

    African Journals Online (AJOL)

    ... of the kidney and pancreas. We present a 62-year-old man who had weight loss of 9 kg and epigastric pain. Findings showed a Furhman grade II renal papillary carcinoma confined to the kidney and a synchronous well differentiated pancreatic ductal adenocarcinoma. Key Words: Synchronous double cancer, renal cell ...

  13. Single incision laparoscopic pancreas resection for pancreatic metastasis of renal cell carcinoma.

    Science.gov (United States)

    Barbaros, Umut; Sümer, Aziz; Demirel, Tugrul; Karakullukçu, Nazlı; Batman, Burçin; Içscan, Yalın; Sarıçam, Gülay; Serin, Kürçsat; Loh, Wei-Liang; Dinççağ, Ahmet; Mercan, Selçuk

    2010-01-01

    Transumbilical single incision laparoscopic surgery (SILS) offers excellent cosmetic results and may be associated with decreased postoperative pain, reduced need for analgesia, and thus accelerated recovery. Herein, we report the first transumbilical single incision laparoscopic pancreatectomy case in a patient who had renal cell cancer metastasis on her pancreatic corpus and tail. A 59-year-old female who had metastatic lesions on her pancreas underwent laparoscopic subtotal pancreatectomy through a 2-cm umbilical incision. Single incision pancreatectomy was performed with a special port (SILS port) and articulated equipment. The procedure lasted 330 minutes. Estimated blood loss was 100mL. No perioperative complications occurred. The patient was discharged on the seventh postoperative day with a low-volume (20mL/day) pancreatic fistula that ceased spontaneously. Pathology result of the specimen was renal cell cancer metastases. This is the first reported SILS pancreatectomy case, demonstrating that even advanced surgical procedures can be performed using the SILS technique in well-experienced centers. Transumbilical single incision laparoscopic pancreatectomy is feasible and can be performed safely in experienced centers. SILS may improve cosmetic results and allow accelerated recovery for patients even with malignancy requiring advanced laparoscopic interventions.

  14. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2016-09-01

    Full Text Available The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4 in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.

  15. Adult Intussusception Caused by Heterotopic Pancreas

    Directory of Open Access Journals (Sweden)

    Va-Kei Kok

    2007-05-01

    Full Text Available Heterotopic pancreas causing small bowel intussusception is rare. We report the case of a 24-year-old woman who presented with intermittent episodes of abdominal cramping and pain that had persisted for 10 days. A target-shaped lesion consisting of multiple concentric rings was found on the left side on contrast-enhanced computed tomography. Surgical intervention demonstrated jejunal intussusception caused by a jejunal heterotopic pancreas. Microscopically, several nesidioblastoses of pancreas were identified. Although very rare, small intestinal pancreatic rests may cause subacute bowel obstruction.

  16. Solitary pancreas retransplant: Study of 22 cases

    Directory of Open Access Journals (Sweden)

    Tércio Genzini

    2006-03-01

    Full Text Available Objective: To present our experience with pancreas retransplantin patients previously submitted to simultaneous pancreas-kidneytransplant, pancreas after kidney transplant and pancreastransplant alone. Methods: Between January/1996 and December/2005, 330 pancreas transplants were performed: 308 primarytransplants and 22 (6% retransplants of solitary pancreas. Thefollowing variables were analyzed: patient age; time elapsedbetween the first and the second transplant; causes of loss of thefirst graft; technical characteristics of the transplant andretransplant and the criteria for selecting donors for retransplant.These clinical data were submitted to statistical analysis. Results:The mean age of patients was 34.3 years and the mean elapsedtime between the first and second transplant was 19.3 months.The causes of the first graft loss were venous (8; 35% and arterial(5; 23% thrombosis, chronic rejection (4; 18%, ischemia/reperfusion injury (2, reflux pancreatitis (1, primary non-function(1 and sepsis (1. A second transplant was performed in thesame iliac fossa in 16 patients (72%. Venous drainage wasperformed in the iliac vein in 16 patients (72%, in the inferior venacava in 5 patients (22% and in the portal vein in one patient. 6 allbladder drainage was the technique used in 18 (82% cases andenteric drainage, in 4 patients (18%. Immunosuppressive regimenapplied to all cases was quadruple therapy with antilymphocyteinduction, tacrolimus, mycophenolate mofetil and steroids. Therewas one early death due to sepsis. One-year patient and pancreasgraft survival rates for retransplants were, respectively, 95% and85%. There was no additional risk for removing the pancreas graftat retransplant. Conclusion: Pancreas retransplant was technicallyfeasible in all cases and results similar to those described in theliterature were found for primary pancreas transplant.

  17. Clinical imaging of the pancreas

    International Nuclear Information System (INIS)

    May, G.; Gardiner, R.

    1987-01-01

    Featuring more than 300 high-quality radiographs and scan images, clinical imaging of the pancreas systematically reviews all appropriate imaging modalities for diagnosing and evaluating a variety of commonly encountered pancreatic disorders. After presenting a succinct overview of pancreatic embryology, anatomy, and physiology, the authors establish the clinical indications-including postoperative patient evaluation-for radiologic examination of the pancreas. The diagnostic capabilities and limitations of currently available imaging techniques for the pancreas are thoroughly assessed, with carefully selected illustrations depicting the types of images and data obtained using these different techniques. The review of acute and chronic pancreatitis considers the clinical features and possible complications of their variant forms and offers guidance in selecting appropriate imaging studies

  18. In vivo imaging of vesicular monoamine transporter 2 in pancreas using an {sup 18}F epoxide derivative of tetrabenazine

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)], E-mail: kunghf@sunmac.spect.upenn.edu; Lieberman, Brian P. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Zhuang Zhiping [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Oya, Shunichi; Kung Meiping [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Choi, Seok Rye [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Poessl, Karl; Blankemeyer, Eric; Hou, Catherine [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kilbourn, Michael [Department of Radiology, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-11-15

    Objectives: Development of imaging agents for pancreatic beta cell mass may provide tools for studying insulin-secreting beta cells and their relationship with diabetes mellitus. In this paper, a new imaging agent, [{sup 18}F](+)-2-oxiranyl-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-2,3,4,6,7, 11b-hexahydro-1H-pyrido[2,1-a]isoquinoline [{sup 18}F](+)4, which displays properties targeting vesicular monoamine transporter 2 (VMAT2) binding sites of beta cells in the pancreas, was evaluated as a positron emission tomography (PET) agent for estimating beta cell mass in vivo. The hydrolyzable epoxide group of (+)4 may provide a mechanism for shifting biodistribution from liver to kidney, thus reducing the background signal. Methods: Both {sup 18}F- and {sup 19}F-labeled (+) and (-) isomers of 4 were synthesized and evaluated. Organ distribution was carried out in normal rats. Uptake of [{sup 18}F](+)4 in pancreas of normal rats was measured and correlated with blocking studies using competing drugs, (+)dihydrotetrabenazine [(+)-DTBZ] or 9-fluoropropyl-(+)dihydro tetrabenazine [FP-(+)-DTBZ, (+)2]. Results: In vitro binding study of VMAT2 using rat brain striatum showed a K{sub i} value of 0.08 and 0.15 nM for the (+)4 and ({+-})4, respectively. The in vivo biodistribution of [{sup 18}F](+)4 in rats showed the highest uptake in the pancreas (2.68 %ID/g at 60 min postinjection). In vivo competition experiments with cold FP-(+)-DTBZ, (+)2, (3.5 mg/kg, 5 min iv pretreatment) led to a significant reduction of pancreas uptake (85% blockade at 60 min). The inactive isomer [{sup 18}F](-)4 showed significantly lower pancreas uptake (0.22 %ID/g at 30 min postinjection). Animal PET imaging studies of [{sup 18}F](+)4 in normal rats demonstrated an avid pancreatic uptake in rats. Conclusion: The preliminary results suggest that the epoxide, [{sup 18}F](+)4, is highly selective in binding to VMAT2 and it has an excellent uptake in the pancreas of rats. The liver uptake was significantly

  19. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas, acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist

    Science.gov (United States)

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T.

    2014-01-01

    Objectives Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1) in acute/chronic pancreatitis, however the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues, and the effects of CX3CL1 on activated-PSCs. Methods CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated-PSCs were examined with realtime-PCR, BrdU assays and Western Blotting. Results In normal pancreas, acinar cells expressed CX3CR1 within granule-like-formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal and activated-PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1, did not induce inflammatory-genes expression in activated-PSCs, but induced proliferation. Conclusions CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis and the CX3CR1s are activated. CX3CL1 induces proliferation of activated-PSCs without increasing release of inflammatory-mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSCs proliferation in pancreatitis where CX3CL1 levels are elevated. PMID:24681877

  20. CT features of gastric heterotopic pancreas

    International Nuclear Information System (INIS)

    Wu Guangyao; Tian Zhixiong; Zhang Zaipeng; Huang Xiong

    2007-01-01

    Objective: To analyze CT findings correlated with pathologic findings in ectopic pancreas of the stomach. Methods: CT scans of 15 surgically proven eases of ectopic pancreas of the stomach were reviewed, and enhanced CT scan was performed in 11 cases. CT findings were correlated with the pathologic findings. Results: All cases had single lesion, and all lesions showed homogeneous density on plain scans without cystic or malignant changes. The size ranged from 1.3 to 3.1 cm, with mean diameter of (1.9±0.2) cm. The lesions were round or oval in shape with broad base against the gastric wall. Two showed central umbilication sign. Only 2 cases were correctly diagnosed prior to operation and the rest were misdiagnosed or diagnosed indistinctly. The locations were in the gastric antrum in 11 cases, in the body in 3, and in fundus in one; The ectopic pancreas located in the greater curvature in 10, and in the lesser curvature in 5. Homogeneous or inhomogeneous strong enhancement similar to the pancreas was seen in 8 cases and they consisted mainly of pancreatic acini with the same histologic features as the pancreas. Three cases showed poor enhancement and consisted mainly of ducts and hypertrophied muscle, pancreatic acini were a minor component. Conclusion: Ectopic pancreas of the stomach showed characteristic locations with the findings of submucosal diseases. Different enhancing patterns were correlated with their pathologic findings. (authors)

  1. Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kate L. Loveland

    2015-01-01

    Full Text Available Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets. Knowledge of importin function has expanded substantially in regard to three key developmental systems: embryonic stem cells, muscle cells and the germ line. In the decade since the potential for regulated nucleocytoplasmic transport to contribute to spermatogenesis was proposed, we and others have shown that the importins that ferry transcription factors into the nucleus perform additional roles, which control cell fate. This review presents key findings from studies of mammalian spermatogenesis that reveal potential new pathways by which male fertility and infertility arise. These studies of germline genesis illuminate new ways in which importin proteins govern cellular differentiation, including via directing proteins to distinct intracellular compartments and by determining cellular stress responses.

  2. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  3. Union of {sup 99m} Tc-HYNIC-TOC at the somatostatin receptors in cells of pancreas cancer; Union del {sup 99m} Tc-HYNIC-TOC a los receptores de somatostatina en celulas de cancer de pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez C, J. [Facultad de Medicina, UAEM, 50000 Toluca, Estado de Mexico (Mexico); Ramirez I, M.T. [INCMNSZ, Vasco de Quiroga Num. 15, Tlalpan, 14000 Mexico D.F. (Mexico); Ferro F, G.; Pedraza L, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The radiation toxic effects have been used in therapy however much 50 years. The absorbed radiation dose can be determined at cellular level using cancerous cell cultures. If the deposited In vitro radiation dose coming from similar activities of several therapeutic radiopharmaceuticals it can compare it will be possible to choose the therapeutic radiopharmaceutical that it offers better dosimetric characteristics for the patient. The objective of this original investigation was to determine the union percentage of the octreotide {sup 99m}Tc-HYNlC-TOC to the somatostatin receivers in cells of cancer pancreas as well as the internalization, externalization and cellular viability. It was used the octapeptide, (octreotide, TOC) labelled with {sup 99m}Tc by means of the HYNIC chelating agent (6-hydrazine pyridine-3-carboxylic acid) and 3 cellular lines of murine pancreas cancer (AR42J), of cancer of human pancreas (CAPAN) and of one negative cellular line for somatostatin receivers (WRL-68). The {sup 99m}Tc-HYNIC-TOC was compared against two negative proofs for somatostatin receivers: the peptide {sup 99m}Tc-UBI and the {sup 99m}TcO{sub 4}. The cellular lines were conserved in the synthetic media Dulbecco-Eagle. After 2, 4 and 24 h of exhibition to the radiation, the cells are picked up and its are determined the viability by count in a Neubauer camera using tripan blue. In the same times it was calculated the union percentage of the radiopharmaceutical to the cells and the internalization (union to the cytoplasm) and the externalization (union to membrane receivers). With those figures it was calculated the absorbed radiation dose at cellular level. Results: At 4 hours the union percentage of the {sup 99m}Tc-HYNlC-TOC to the AR42-J cells was 6.83 times greater than for the WRL-68 control cells of human papilloma, (without receivers of the somatostatin) and for the CAPAN them 4 times greater than for the same cells used as negative control, for the case of the {sup 99m

  4. Union of {sup 99m} Tc-HYNIC-TOC at the somatostatin receptors in cells of pancreas cancer; Union del {sup 99m} Tc-HYNIC-TOC a los receptores de somatostatina en celulas de cancer de pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez C, J [Facultad de Medicina, UAEM, 50000 Toluca, Estado de Mexico (Mexico); Ramirez I, M T [INCMNSZ, Vasco de Quiroga Num. 15, Tlalpan, 14000 Mexico D.F. (Mexico); Ferro F, G; Pedraza L, M [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The radiation toxic effects have been used in therapy however much 50 years. The absorbed radiation dose can be determined at cellular level using cancerous cell cultures. If the deposited In vitro radiation dose coming from similar activities of several therapeutic radiopharmaceuticals it can compare it will be possible to choose the therapeutic radiopharmaceutical that it offers better dosimetric characteristics for the patient. The objective of this original investigation was to determine the union percentage of the octreotide {sup 99m}Tc-HYNlC-TOC to the somatostatin receivers in cells of cancer pancreas as well as the internalization, externalization and cellular viability. It was used the octapeptide, (octreotide, TOC) labelled with {sup 99m}Tc by means of the HYNIC chelating agent (6-hydrazine pyridine-3-carboxylic acid) and 3 cellular lines of murine pancreas cancer (AR42J), of cancer of human pancreas (CAPAN) and of one negative cellular line for somatostatin receivers (WRL-68). The {sup 99m}Tc-HYNIC-TOC was compared against two negative proofs for somatostatin receivers: the peptide {sup 99m}Tc-UBI and the {sup 99m}TcO{sub 4}. The cellular lines were conserved in the synthetic media Dulbecco-Eagle. After 2, 4 and 24 h of exhibition to the radiation, the cells are picked up and its are determined the viability by count in a Neubauer camera using tripan blue. In the same times it was calculated the union percentage of the radiopharmaceutical to the cells and the internalization (union to the cytoplasm) and the externalization (union to membrane receivers). With those figures it was calculated the absorbed radiation dose at cellular level. Results: At 4 hours the union percentage of the {sup 99m}Tc-HYNlC-TOC to the AR42-J cells was 6.83 times greater than for the WRL-68 control cells of human papilloma, (without receivers of the somatostatin) and for the CAPAN them 4 times greater than for the same cells used as negative control, for the case of the {sup 99m

  5. Anaplastic carcinoma of the pancreas: Is there a role for palliative surgical procedure?

    Directory of Open Access Journals (Sweden)

    Rajan Vaithianathan

    2014-01-01

    Full Text Available Anaplastic carcinoma (AC or undifferentiated carcinoma of the pancreas is a rare variant among the malignant pancreatic neoplasms. These tumors have a poor prognosis with survival measured in months. The role of surgical palliation to improve the quality of life is not well defined in these patients. We report a case of AC of pancreas in a 65-year-old male patient. Patient had upper abdominal pain with frequent bilious vomiting. Computed tomography scan of the abdomen showed a mass in the body of pancreas with possible infiltration of duodenojejunal flexure (DJF. Laparotomy revealed an inoperable mass with posterior fixity and involvement of the DJF. Patient underwent a palliative duodenojejunostomy. Tissue biopsy from the tumor showed pleomorphic type AC with giant cells. Patient had good symptomatic relief from profuse vomiting and progressed well at follow up. AC of pancreas is a rare and aggressive malignancy with dismal outlook. If obstructive symptoms are present due to duodenal involvement, a palliative bypass may be a worthwhile surgical option in selected cases.

  6. α6-Integrin alternative splicing: distinct cytoplasmic variants in stem cell fate specification and niche interaction.

    Science.gov (United States)

    Zhou, Zijing; Qu, Jing; He, Li; Peng, Hong; Chen, Ping; Zhou, Yong

    2018-05-02

    α6-Integrin subunit (also known as CD49f) is a stemness signature that has been found on the plasma membrane of more than 30 stem cell populations. A growing body of studies have focused on the critical role of α6-containing integrins (α6β1 and α6β4) in the regulation of stem cell properties, lineage-specific differentiation, and niche interaction. α6-Integrin subunit can be alternatively spliced at the post-transcriptional level, giving rise to divergent isoforms which differ in the cytoplasmic and/or extracellular domains. The cytoplasmic domain of integrins is an important functional part of integrin-mediated signals. Structural changes in the cytoplasmic domain of α6 provide an efficient means for the regulation of stem cell responses to biochemical stimuli and/or biophysical cues in the stem cell niche, thus impacting stem cell fate determination. In this review, we summarize the current knowledge on the structural variants of the α6-integrin subunit and spatiotemporal expression of α6 cytoplasmic variants in embryonic and adult stem/progenitor cells. We highlight the roles of α6 cytoplasmic variants in stem cell fate decision and niche interaction, and discuss the potential mechanisms involved. Understanding of the distinct functions of α6 splicing variants in stem cell biology may inform the rational design of novel stem cell-based therapies for a range of human diseases.

  7. De novo malignancy after pancreas transplantation in Japan.

    Science.gov (United States)

    Tomimaru, Y; Ito, T; Marubashi, S; Kawamoto, K; Tomokuni, A; Asaoka, T; Wada, H; Eguchi, H; Mori, M; Doki, Y; Nagano, H

    2015-04-01

    Long-term immunosuppression is associated with an increased risk of cancer. Especially, the immunosuppression in pancreas transplantation is more intensive than that in other organ transplantation because of its strong immunogenicity. Therefore, it suggests that the risk of post-transplant de novo malignancy might increase in pancreas transplantation. However, there have been few studies of de novo malignancy after pancreas transplantation. The aim of this study was to analyze the incidence of de novo malignancy after pancreas transplantation in Japan. Post-transplant patients with de novo malignancy were surveyed and characterized in Japan. Among 107 cases receiving pancreas transplantation in Japan between 2001 and 2010, de novo malignancy developed in 9 cases (8.4%): post-transplant lymphoproliferative disorders in 6 cases, colon cancer in 1 case, renal cancer in 1 case, and brain tumor in 1 case. We clarified the incidence of de novo malignancy after pancreas transplantation in Japan. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Neural cell fate in rca1 and cycA mutants: the roles of intrinsic and extrinsic factors in asymmetric division in the Drosophila central nervous system.

    Science.gov (United States)

    Lear, B C; Skeath, J B; Patel, N H

    1999-11-01

    In the central nervous system (CNS) of Drosophila embryos lacking regulator of cyclin A (rca1) or cyclin A, we observe that several ganglion mother cells (GMCs) fail to divide. Whereas GMCs normally produce two sibling neurons that acquire different fates ('A/B'), non-dividing GMCs differentiate exclusively in the manner of one of their progeny ('B'). In zygotic numb mutants, sibling neuron fate alterations ('A/B' to 'A/A') occur infrequently or do not occur in some sibling pairs; we have determined that depletion of both maternal and zygotic numb causes sibling neurons to acquire equalized fates ('A/A') with near-complete expressivity. In rca1, numb mutant embryos, we observe binary cell fate changes ('B' to 'A') in several GMCs as well. Finally, we have demonstrated that expression of Delta in the mesoderm is sufficient to attain both sibling fates. Our results indicate that the intrinsic determinant Numb is absolutely required to attain differential sibling neuron fates. While the extrinsic factors Notch and Delta are also required to attain both fates, our results indicate that Delta signal can be received from outside the sibling pair.

  9. SIMULTANEOUS PANCREAS-KIDNEY TRANSPLANTATION: EARLY POSTOPERATIVE COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    M.Sh. Khubutia

    2014-01-01

    Full Text Available Aim: evaluation of the incidence of early postoperative complications after simultaneous pancreas-kidney transplantation.Materials and methods. The analysis of early postoperative complications after simultaneous pancreas-kidney transplantation is presented in the paper, the most rational diagnostic algorithms, non-surgical and surgical complications’ treatment; the outcomes of the SPKT are reported.Results. 15,6% of patients experienced surgical complications, 12,5% – immunological complications, 12,5% – infectious complications, 6,25% – complications of the immunosuppressive therapy. 1-year patient survival after SPKT was 91,4%; pancreas graft survival – 85,7%; kidney graft survival – 88,6%.Conclusion. The incidence of early postoperative complications after simultaneous pancreas-kidney transplantation remains signifi cant in spite of progressive improvement of simultaneous pancreas-kidney transplantation due to surgical technique improvement, introduction of new antibacterial and immunosuppressive agents. Data, we recovered, fully correspond to the data obtained from the global medical community.

  10. Annular pancreas in adult: a case report

    International Nuclear Information System (INIS)

    Moreira Neto, M.

    1992-01-01

    A case of a patient complaining of recurrent symptomatology of the upper abdomen and sub occlusion of the gastrointestinal tract with stenosis of the second portion of duodenum and mass evolving the head of pancreas at echographic study, confirmed by CT is presented. Contrasted oral studies confirmed that the mass evolved the stenotic segment, suggesting annular pancreas. Surgery confirmed the presence of annular pancreas surrounding the second portion of duodenum. (author)

  11. Overexpression of miR-183/-96/-182 triggers neuronal cell fate in Human Retinal Pigment Epithelial (hRPE) cells in culture.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Samiei, Shahram; Sharifi, Zohreh; Pirmardan, Ehsan Ranaei

    2017-01-29

    miR-183 cluster, composed of miR-183/-96/-182 genes, is highly expressed in the adult retina, particularly in photoreceptors. It involves in development, maturation and normal function of neuroretina. Ectopic overexpression of miR-183/-96/-182 genes was performed to assess reprogramming of hRPE cells. They were amplified from genomic DNA and cloned independently or in tandem configuration into pAAV.MCS vector. hRPE cells were then transfected with the recombinant constructs. Real-Time PCR was performed to measure the expression levels of miR-183/-96/-182 and that of several retina-specific neuronal genes such as OTX2, NRL, PDC and DCT. The transfected cells also were immunocytochemically examined for retina-specific neuronal markers, including Rhodopsin, red opsin, CRX, Thy1, CD73, recoverin and PKCα, to determine the cellular fate of the transfected hRPE cells. Data showed that upon miR-183/-96/-182 overexpression in hRPE cultures, the expression of neuronal genes including OTX2, NRL, PDC and DCT was also upregulated. Moreover, miR-183 cluster-treated hRPE cells were immunoreactive for neuronal markers such as Rhodopsin, red opsin, CRX and Thy1. Both transcriptional and translational upregulation of neuronal genes in miR-183 cluster-treated hRPE cells suggests that in vitro overexpression of miR-183 cluster could trigger reprogramming of hRPE cells to retinal neuron fate. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The molecular and morphogenetic basis of pancreas organogenesis

    DEFF Research Database (Denmark)

    Larsen, Hjalte List; Grapin-Botton, Anne

    2017-01-01

    The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling...... review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic...

  13. Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation

    Directory of Open Access Journals (Sweden)

    Yiannis Drosos

    2016-03-01

    Full Text Available The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.

  14. Diabetic Foot Complications Despite Successful Pancreas Transplantation.

    Science.gov (United States)

    Seo, Dong-Kyo; Lee, Ho Seong; Park, Jungu; Ryu, Chang Hyun; Han, Duck Jong; Seo, Sang Gyo

    2017-06-01

    It is known that successful pancreas transplantation enables patients with diabetes to maintain a normal glucose level without insulin and reduces diabetes-related complications. However, we have little information about the foot-specific morbidity in patients who have undergone successful pancreas transplantation. The purpose of this study was to investigate the prevalence and predisposing factors for foot complications after successful pancreas transplantation. This retrospective study included 218 patients (91 males, 127 females) who had undergone pancreas transplantation for diabetes. The mean age was 40.7 (range, 15-76) years. Diabetes type, transplantation type, body mass index, and diabetes duration before transplantation were confirmed. After pancreas transplantation, the occurrence and duration of foot and ankle complications were assessed. Twenty-two patients (10.1%) had diabetic foot complications. Fifteen patients (6.9%) had diabetic foot ulcer and 7 patients (3.2%) had Charcot arthropathy. Three patients had both diabetic foot ulcer and Charcot arthropathy. Three insufficiency fractures (1.4%) were included. Mean time of complications after transplantation was 18.5 (range, 2-77) months. Creatinine level 1 year after surgery was higher in the complication group rather than the noncomplication group ( P = .02). Complications of the foot and ankle still occurred following pancreas transplantation in patients with diabetes. Level III, comparative study.

  15. Purinergic receptors in the endocrine and exocrine pancreas.

    Science.gov (United States)

    Novak, I

    2008-09-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.

  16. A Study on Pancreas Scanning with Selenium{sup 75}-Selenomethionine

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Chan; Toh, Sang Hee; Ra, Woo Youn; Suh, Chul Sung [Presbyterian Hospital, Deagu (Korea, Republic of)

    1968-03-15

    Radiographic visualization of the pancreas is a difficult problem, but the direct visualization of the pancreas is possible by the injection of the amino-acid methionine tagged with selenium{sup 75} (Se{sup 75}). In order to know the diagnostic value of pancreas scanning, scans were performed on 23 cases using selenium{sup 75}-Selenomethionine. These cases were also given egg white, probanthine and morphine. 1) Good visualization of the pancreas scanning was observed on 19 cases, presumably with normal pancreas. 2) A case which showed diffusely decreased uptake on pancreas scanning was proven to have lesions in the bile duct and the gall bladder. 3) Of those two cases which showed localized cold area, one had pancreas cyst and the other one was not explored. 4) A case which showed no visualization of the pancreas was proven to have pancreatic carcinoma. 5) Two cases which showed widened duodenal loop by upper gastro-intestinal series revealed normal pancreas scanning, and no pancreatic disease was found in both cases.

  17. Radiologic findings of annular pancreas divisum : a case report

    International Nuclear Information System (INIS)

    Choi, Dong Sik; Lee, Dong Ho; Ko, Young Tae; Han, Tae Il; Yoon, Youp; Dong, Suk Ho

    1996-01-01

    Annular pancreas divisum is a very rare congenital anomaly involving the coexistence of an annular pancreas and pancreatic divisum in one pancreas, and showing characteristic radiologic findings of ring-like pancreatic tissue surrounding the second portion of the duodenum and no evidence of connection between ventral and dorsal ductal systems. We described the radiologic findings of annular pancreas divisum, diagnosed by hypotonic duodenography, CT and ERCP

  18. Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist.

    Science.gov (United States)

    Uchida, Masahiko; Ito, Tetsuhide; Nakamura, Taichi; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Takayanagi, Ryoichi; Jensen, Robert T

    2014-07-01

    Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.

  19. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate

    Directory of Open Access Journals (Sweden)

    Cristina Sobacchi

    2017-05-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.

  20. Current topics in glycemic control by wearable artificial pancreas or bedside artificial pancreas with closed-loop system.

    Science.gov (United States)

    Hanazaki, Kazuhiro; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Munekage, Eri; Shiga, Mai; Maeda, Hiromichi; Namikawa, Tsutomu

    2016-09-01

    The incidence of diabetes is increasing at an unprecedented pace and has become a serious health concern worldwide during the last two decades. Despite this, adequate glycemic control using an artificial pancreas has not been established, although the 21st century has seen rapid developments in this area. Herein, we review current topics in glycemic control for both the wearable artificial pancreas for type 1 and type 2 diabetic patients and the bedside artificial pancreas for surgical diabetic patients. In type 1 diabetic patients, nocturnal hypoglycemia associated with insulin therapy remains a serious problem that could be addressed by the recent development of a wearable artificial pancreas. This smart phone-like device, comprising a real-time, continuous glucose monitoring system and insulin pump system, could potentially significantly reduce nocturnal hypoglycemia compared with conventional glycemic control. Of particular interest in this space are the recent inventions of a low-glucose suspend feature in the portable systems that automatically stops insulin delivery 2 h following a glucose sensor value <70 mg/dL and a bio-hormonal pump system consisting of insulin and glucagon pumps. Perioperative tight glycemic control using a bedside artificial pancreas with the closed-loop system has also proved safe and effective for not only avoiding hypoglycemia, but also for reducing blood glucose level variability resulting in good surgical outcomes. We hope that a more sophisticated artificial pancreas with closed-loop system will now be taken up for routine use worldwide, providing enormous relief for patients suffering from uncontrolled hyperglycemia, hypoglycemia, and/or variability in blood glucose concentrations.

  1. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo

    2014-03-25

    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  2. Effects of chronic isoproterenol administration of β1-adrenoceptors and growth of pancreas of young and adult rats

    International Nuclear Information System (INIS)

    Schneyer, C.A.; Humphreys-Beher, M.

    1988-01-01

    [ 3 H]Dihydroalprenolol (DHA) binding of membranes of adult pancreas differed from that of pancreas of young rats, and the DHA binding in the presence of atenolol or butoxamine also was different in the two age groups. The adult pancreas had 93% β 2 - and 7% β 1 -adrenoceptors and did not exhibit an increased incorporation of [ 3 H]thymidine into deoxyribonucleic acid (DNA) following 2 days of DL-isoproterenol (ISO) administration; in contrast, pancreas of the 20-day-old rat had 71% β 2 -adrenoceptors and 27% β 1 -adrenoceptors and exhibited a 34-fold increase over that of adult, and a 6-fold increase over that of the control 20-day-old pancreas. Acinar cell differentiation was also accelerated by a 7-day regimen of ISO administration from 13 to 20 days of age. These growth responses to ISO appear to be β 1 mediated. The lack of β 1 -adrenoceptors in the adult may account for the failure of the adult pancreas to exhibit a growth response to ISO

  3. Computed tomographic evaluation of the pancreas

    International Nuclear Information System (INIS)

    Stanley, R.J.; Sagel, S.S.

    1979-01-01

    Analysis of the clinical experience in the evaluation of the pancreas with computed tomography (CT) since October 1975 indicates that it is a reliable, often specific and relatively noninvasive method for the detection of pancreatic neoplasms and the varied manifestations of pancreatitis and its complications. The normal pancreas is clearly imaged in all but the leanest or uncooperative patients. Tumors of pancreas are identified as focal alteration in the size or contour of the gland. Obliteration of contiguous fat planes, areas of necrosis within the tumor, and secondary effects on the uninvolved parts of the pancreas and biliary tree can be identified. CBT has substantially reduced the need for pancreatic angiography, percutaneous transhepatic cholangiography, and endoscopic retrograde pancreatocholangiography at this medical center. Although a definitive comparison of ultrasound and CT has not yet been accomplished, initial experience indicates that a complementary rather than competitive relationship will develop between the two imaging methods. (orig.) 891 MG/orig. 892 MB [de

  4. The C. elegans Spalt-like protein SEM-4 functions through the SoxC transcription factor SEM-2 to promote a proliferative blast cell fate in the postembryonic mesoderm.

    Science.gov (United States)

    Shen, Qinfang; Shi, Herong; Tian, Chenxi; Ghai, Vikas; Liu, Jun

    2017-09-01

    Proper development of a multicellular organism relies on well-coordinated regulation of cell fate specification, cell proliferation and cell differentiation. The C. elegans postembryonic mesoderm provides a useful system for uncovering factors involved in these processes and for further dissecting their regulatory relationships. The single Spalt-like zinc finger containing protein SEM-4/SALL is known to be involved in specifying the proliferative sex myoblast (SM) fate. We have found that SEM-4/SALL is sufficient to promote the SM fate and that it does so in a cell autonomous manner. We further showed that SEM-4/SALL acts through the SoxC transcription factor SEM-2 to promote the SM fate. SEM-2 is known to promote the SM fate by inhibiting the expression of two BWM-specifying transcription factors. In light of recent findings in mammals showing that Sall4, one of the mammalian homologs of SEM-4, contributes to pluripotency regulation by inhibiting differentiation, our work suggests that the function of SEM-4/SALL proteins in regulating pluripotency versus differentiation appears to be evolutionarily conserved. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. SU-E-J-65: Motion Difference Between the Pancreas and Nearby Veins for Pancreas Motion Monitoring Using Ultrasound During Radiation Therapy

    International Nuclear Information System (INIS)

    Omari, E; Erickson, B; Li, X; Zhang, J

    2015-01-01

    Purpose: As it is generally difficult to outline the pancreas on an ultrasound b-mode image, visualized structures such as the portal or the splenic veins are assumed to have the same motion as the pancreas. These structures can be used as a surrogate for monitoring pancreas motion during radiation therapy (RT) delivery using ultrasound. To verify this assumption, we studied the motion difference between the head of the pancreas, the portal vein, the tail of the pancreas, and splenic vein. Methods: 4DCT data acquired during RT simulation were analyzed for a total of 5 randomly selected patients with pancreatic cancer. The data was sorted into 10 respiratory phases from 0% to 90% (0%: end of the inspiration, 50%: end of expiration) . The head of the pancreas (HP), tail of the pancreas (TP), portal vein (PV), and splenic vein (SV) were contoured on all 10 phases. The volume change and motion were measured in the left-right (LR), anterior-superior (AP), and superior-inferior (SI) directions. Results: The volume change for all patients/phases were: 1.2 ± 3% for HP, 0.78 ± 1.6% for PV, 2.5 ± 2.9% for TP, and 0.53 ± 2.1% for SV. Motion for each structure was estimated from the centroid displacements due to the uniformity of the structures and the small volume change. The measured motion between HP and PV was: LR: 0.1 ± 0.17 mm, AP: 0.04 ± 0.1 mm, SI: 0.17 ± 0.16 mm and between TP and the PV was: LR: 0.05 ± 0.3 mm, AP: 0.1 ± 0.4 mm, SI: 0.01 ± 0.022 mm. Conclusion: There are small motion differences between the portal vein and the head of the pancreas, and the splenic vein and the tail of the pancreas. This suggests the feasibility of utilizing these features for monitoring the pancreas motion during radiation therapy

  6. Tissue-type plasminogen activator in somatostatin cells of rat pancreas and hypothalamus

    DEFF Research Database (Denmark)

    Kristensen, P; Larsson, L I; Danø, K

    1987-01-01

    -PA, and immunoblotting analysis demonstrated one band with a similar electrophoretic mobility. No urokinase-type PA immunoreactivity was found in the rat endocrine pancreas. A granular t-PA immunoreactivity resembling that found in adjacent sections with somatostatin antiserum was found in the median eminence...

  7. Toxicity of Atorvastatin on Pancreas Mitochondria: A Justification for Increased Risk of Diabetes Mellitus.

    Science.gov (United States)

    Sadighara, Melina; Amirsheardost, Zahra; Minaiyan, Mohsen; Hajhashemi, Valiollah; Naserzadeh, Parvaneh; Salimi, Ahmad; Seydi, Enayatollah; Pourahmad, Jalal

    2017-02-01

    Statins (including atorvastatin) are a widely used class of drugs, and like all medications, they have a potential for adverse effects. Recently, it has been shown that statins also exert side effects on the pancreas. In vitro studies have suggested that this class of drugs induced a reduction in insulin secretion. Also, the use of statins is associated with a raised risk of diabetes mellitus (DM), but the mechanisms underlying statin-induced diabetes are poorly known. Literature data indicate that several statins are able to induce apoptosis signalling. This study was designed to examine the mechanism of atorvastatin on mitochondria obtained from rat pancreas. In our study, mitochondria were obtained from the pancreas and then exposed to atorvastatin and vehicle to investigate probable toxic effects. The results showed that atorvastatin (25, 50, 75, 100 and 125 μM) increased reactive oxygen species (ROS) production, mitochondrial swelling, collapse of mitochondrial membrane potential and cytochrome c release, the orchestrating factor for mitochondria-mediated apoptosis signalling. Atorvastatin also reduced the ATP levels. These results propose that the toxicity of atorvastatin on pancreas mitochondria is a key point for drug-induced apoptotic cell loss in the pancreas and therefore a justification for increased risk of DM. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Progress and challenges of the bioartificial pancreas

    Science.gov (United States)

    Hwang, Patrick T. J.; Shah, Dishant K.; Garcia, Jacob A.; Bae, Chae Yun; Lim, Dong-Jin; Huiszoon, Ryan C.; Alexander, Grant C.; Jun, Ho-Wook

    2016-11-01

    Pancreatic islet transplantation has been validated as a treatment for type 1 diabetes since it maintains consistent and sustained type 1 diabetes reversal. However, one of the major challenges in pancreatic islet transplantation is the body's natural immune response to the implanted islets. Immunosuppressive drug treatment is the most popular immunomodulatory approach for islet graft survival. However, administration of immunosuppressive drugs gives rise to negative side effects, and long-term effects are not clearly understood. A bioartificial pancreas is a therapeutic approach to enable pancreatic islet transplantation without or with minimal immune suppression. The bioartificial pancreas encapsulates the pancreatic islets in a semi-permeable environment which protects islets from the body's immune responses, while allowing the permeation of insulin, oxygen, nutrients, and waste. Many groups have developed various types of the bioartificial pancreas and tested their efficacy in animal models. However, the clinical application of the bioartificial pancreas still requires further investigation. In this review, we discuss several types of bioartificial pancreases and address their advantages and limitations. We also discuss recent advances in bioartificial pancreas applications with microfluidic or micropatterning technology.

  9. Human pancreas scintigraphy using iodine-123-labeled HIPDM and SPECT

    International Nuclear Information System (INIS)

    Yamamoto, K.; Shibata, T.; Saji, H.; Kubo, S.; Aoki, E.; Fujita, T.; Yonekura, Y.; Konishi, J.; Yokoyama, A.

    1990-01-01

    The pancreatic affinity of iodine-123-labeled HIPDM (N,N,N'-trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)-1,3-propane diamine) ([ 123 I]HIPDM) was studied in 18 cases (5 normal volunteers, 7 cases with pancreas cancer, and 6 with chronic pancreatitis). In the normal cases, the pancreas was visualized in the planar images as early as 3 hr, and again at 20 hr postinjection. Single-photon emission computed tomography (SPECT) performed following 3-hr planar scintigraphy, provided excellent pancreas images without an overlap of activity in the liver or spleen. The mean pancreas-to-liver (P/L) ratio was 1.26 +/- 0.22 in normal controls. With the exception of one case of massive calcification in the pancreas, the entire pancreas could be observed in the cases with chronic pancreatitis, but the P/L ratio was 0.74 +/- 0.15, significantly lower than that of normal cases. Defective areas of the distal portion of the pancreas were clearly seen in those with cancer of the pancreas. The results of our study indicate that [ 123 I] HIPDM may have clinical potential as a human pancreas imaging agent

  10. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT.

    Science.gov (United States)

    Zhu, Jianjian; Kwan, Kin Ming; Mackem, Susan

    2016-04-05

    The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial-mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.

  11. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  12. Measure of pancreas transection and postoperative pancreatic fistula.

    Science.gov (United States)

    Takahashi, Shinichiro; Gotohda, Naoto; Kato, Yuichiro; Konishi, Masaru

    2016-05-15

    In pancreaticoduodenectomy (PD), a standard protocol for pancreas transection has not been established although the method of pancreas transection might be involved in the occurrence of postoperative pancreatic fistula (POPF). This study aimed to compare whether pancreas transection by ultrasonically activated shears (UAS) or that by scalpel contributed more to POPF development. A prospective database of 171 patients who underwent PD for periampullary tumor at National Cancer Center Hospital East between January 2010 and June 2013 was reviewed. Among the 171 patients, 93 patients with soft pancreas were specifically included in this study. Surgical results and background were compared between patients with pancreas transection by UAS and scalpel to evaluate the effectiveness of UAS on reducing POPF. Body mass index, main pancreatic duct diameter, or other clinicopathologic factors that have been reported as predictive factors for POPF were not significantly different between the two groups. The incidence of all grades of POPF and that of grade B were significantly lower in the scalpel group (52%, 4%) than in the UAS group (74%, 42%). Postoperative complications ≥ grade III were also significantly fewer in the scalpel group. Scalpel transection was less associated with POPF than UAS transection in patients who underwent PD for soft pancreas. The method of pancreas transection plays an important role in the prevention of clinical POPF. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Obesity in Pregnancy in Southeast Nigeria

    African Journals Online (AJOL)

    EGOLUM

    2011-12-22

    Dec 22, 2011 ... prevalent chronic diseases in the world characterized by high blood ... damaged β-cells of the pancreas and an increased .... Previous toxicity works with the seed of B. coriacea ... use in drug fate and metabolism, methods.

  14. Pancreas transplantation: an overview

    Directory of Open Access Journals (Sweden)

    Andre Ibrahim David

    2010-12-01

    Full Text Available Pancreas transplantation is the only treatment able to reestablish normal glucose and glycated hemoglobin levels in insulin-dependent diabetic patients without the use of exogenous insulin. The evolution of pancreas transplantation in treatment of diabetes was determined by advances in the fields of surgical technique, organ preservation and immunosuppressants. The main complication leading to graft loss is technical failure followed by acute or chronic rejection. Technical failure means graft loss within the first three months following transplantation due to vascular thrombosis (50%, pancreatitis (20%, infection (18%, fistula (6.5% and bleeding (2.4%. Immunological complications still affect 30% of patients, and rejection is the cause of graft loss in 10% of cases. Chronic rejection is the most common late complication. Cardiovascular diseases are the most common causes of late mortality in pancreas transplantation, so it remains the most effective treatment for type 1 diabetes patients. There is a significant improvement in quality of life and in patient’s survival rates. The development of islet transplantation could eliminate or minimize surgical complications and immunosuppression.

  15. Clinical Application of 18F-FDG PET in Pancreas Cancer

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2008-01-01

    The prevalence of pancreas cancer is increasing. Due to difficulty in detecting early stage disease, the prognosis of pancreas cancer is known to be poor. Clinical use of FDG PET in pancreas has been reported. FDG PET showed good performance in diagnosing pancreas cancer, and is expected to be useful in staging and detecting recurrence

  16. File list: Unc.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.10.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX1125784,SRX1125785,...1125798 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.10.AllAg.Pancreas.bed ...

  17. File list: Unc.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.20.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX1125784,SRX1125785,...1125798 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.20.AllAg.Pancreas.bed ...

  18. File list: Unc.Pan.50.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX1125784,SRX1125785,...1125791 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.50.AllAg.Pancreas.bed ...

  19. Endosonographic Features of Histologically Proven Gastric Ectopic Pancreas

    Directory of Open Access Journals (Sweden)

    Jen-Wei Chou

    2014-01-01

    Full Text Available Gastric ectopic pancreas is an uncommon developmental anomaly and its histological diagnosis is usually difficult by using a conventional biopsy forceps. In the literature, most cases of gastric ectopic pancreas were usually diagnosed by gross pattern during endoscopic examination or features of endoscopic ultrasound. In contrast, this disease was seldom diagnosed by histology in clinical practice. Although the typical endoscopic ultrasonographic features of ectopic pancreas include heterogeneous echogenicity, indistinct borders, and a location within 2 or more layers, it can also exhibit hypoechoic homogeneous echogenicity and a distinct border within the fourth sonographic layer (muscularis propria similar to the endoscopic ultrasonographic features of gastrointestinal stromal tumors. In our study, we found that 53% of gastric ectopic pancreas originated within the fourth sonographic layer, demonstrating hypoechoic, homogeneous echogenicity, and distinct borders. Therefore, recognizing endoscopic ultrasonographic features, combining with deep biopsy, endoscopic ultrasound-guided fine needle aspiration/core needle biopsy can prevent conducting unnecessary resection. Surgical resection is the mainstay treatment for symptomatic gastric ectopic pancreas, but endoscopic resection using endoscopic mucosal resection or endoscopic submucosal dissection technique provides an alternative method of removing superficial-type and deep-type gastric ectopic pancreas.

  20. Result of radiation therapy for inoperable pancreas cancer

    International Nuclear Information System (INIS)

    Okawa, Tomohiko; Ikeda, Michio; Tazaki, Eisei; Kaneda, Koichi; Tsuya, Akira.

    1978-01-01

    Twenty cases of the pancreas cancer were treated by means of 60 Co γ or Linac x-rays during the period between 1958 and 1977 at the Cancer Institute Hospital and Tokyo Women's Medical College. 11 were irradiated by external radiation and 9 by intraoperative radiation. Pancreas irradiation was indicated for relief of pain and alleviation of jaundice although the effect was symptomatic. 2500 rad of intraoperative radiation was reasonable dose in about 10 x 10 cm radiation field. Radical curative irradiation for pancreas cancer might be rarely indicated. Radiotherapy of pancreas cancer should be considered in conjunction with multimodal treatment in the future. (author)

  1. Radioisotope Scanning of the Pancreas with Selenomethionine-Se{sup 75}; Gammagraphie du Pancreas a l'Aide de la Selenomethionine-{sup 75}Se; Diagnosticheskoe fotoskennirovanie podzheludochnoj zhelezy; Gammagrafia del Pancreas Mediante Radioisotopos

    Energy Technology Data Exchange (ETDEWEB)

    Sodee, D. B. [Doctors Hospital and Renner Clinic Foundation, Cleveland Heights, OH (United States)

    1964-10-15

    Photoscanning of the pancreas utilizing selenomethionine- Se{sup 75} has recently been shown to be a practical technique. In a series of 100 patients who underwent 250 such photoscans, the pancreas was visualized in 90% of the cases. The physiological stimulation of the pancreas was found to be the most important factor in pancreatic selenomethionine-Se{sup 75} concentration. Utilizing a 30-g protein meal, physiological stimulation of the pancreas was begun one hour before the intravenous administration of 3 to 4- {mu}c/kg selenomethionine-Se{sup 75}. Fifteen minutes later continued stimulation of the pancreas was ensured by the oral administration of 900 {mu}g of glutamic acid hydrochloride. Before scanning the pancreas, a 3/8 - in curved lead shield was placed over the liver bed previously outlined by an Au{sup 198} liver scan. This lead shield blocks the radiation from the concentration of selenomethionine-Se{sup 75} in the liver that in the past impaired accurate delineation of the pancreas. The authors have recently utilized a 5-in by 3-in crystal and a 121-hole lead collimator with a 5-in focal distance. This has further improved delineation of the pancreas and, as the technique is perfected, smaller lesions at greater depths may be visualized. The results show that pancreatic carcinoma does not concentrate selenomethionine-Se{sup 75} as well as normal tissue. Five of six patients with pancreatic carcinoma had their disease correctly interpreted by this procedure. The smallest carcinoma not visualized was obscured by an enlarged liver. Acute and chronic pancreatitis are also confirmed by the pancreatic scan as the impaired cells of the pancreas do not concentrate selenomethionine-Se{sup 75}. The author also reports selective uptake of selenomethionine-Se{sup 75} by parathyroid tissue. Utilizing the. same scanning technique parathyroid adenomas in a small group of hyperparathyroid patients have been visualized. Photoscanning of the pancreas is already a

  2. File list: Unc.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.05.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX527836,SRX1125784,S...X527839 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.05.AllAg.Pancreas.bed ...

  3. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges.

    Science.gov (United States)

    Iacovacci, Veronica; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2016-01-15

    The bioartificial pancreas (BAP) represents a viable solution for the treatment of type 1 diabetes (T1D). By encapsulating pancreatic cells in a semipermeable membrane to allow nutrient, insulin and glucose exchange, the side effects produced by islets and whole organ transplantation-related immunosuppressive therapy can be circumvented. Several factors, mainly related to materials properties, capsule morphology and biological environment, play a key role in optimizing BAP systems. The BAP is an extremely complex delivery system for insulin. Despite considerable efforts, in some instances meeting with limited degree of success, a BAP capable of restoring physiological pancreas functions without the need for immunosuppressive drugs and of controlling blood glucose levels especially in large animal models and a few clinical trials, does not exist. The state of the art in terms of materials, fabrication techniques and cell sources, as well as the current status of commercial devices and clinical trials, are described in this overview from an interdisciplinary viewpoint. In addition, challenges to the creation of effective BAP systems are highlighted including future perspectives in terms of component integration from both a biological and an engineering viewpoint. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    Science.gov (United States)

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  5. The Miracle of an Artificial Pancreas | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Diabetes Follow us The Miracle of an Artificial Pancreas Four NIH-funded Artificial Pancreas Research Efforts Underway Thanks to investments in new ... diabetes are on the horizon, including the artificial pancreas. The artificial pancreas is an integrated system that ...

  6. Endoscopic findings following retroperitoneal pancreas transplantation.

    Science.gov (United States)

    Pinchuk, Alexey V; Dmitriev, Ilya V; Shmarina, Nonna V; Teterin, Yury S; Balkarov, Aslan G; Storozhev, Roman V; Anisimov, Yuri A; Gasanov, Ali M

    2017-07-01

    An evaluation of the efficacy of endoscopic methods for the diagnosis and correction of surgical and immunological complications after retroperitoneal pancreas transplantation. From October 2011 to March 2015, 27 patients underwent simultaneous retroperitoneal pancreas-kidney transplantation (SPKT). Diagnostic oesophagogastroduodenoscopy (EGD) with protocol biopsy of the donor and recipient duodenal mucosa and endoscopic retrograde pancreatography (ERP) were performed to detect possible complications. Endoscopic stenting of the main pancreatic duct with plastic stents and three-stage endoscopic hemostasis were conducted to correct the identified complications. Endoscopic methods showed high efficiency in the timely diagnosis and adequate correction of complications after retroperitoneal pancreas transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. File list: ALL.Pan.50.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383750,SRX672452 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Pancreas.bed ...

  8. File list: ALL.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.10.AllAg.Pancreas.bed ...

  9. File list: ALL.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreas mm9 All antigens Pancreas Pancreas ERX651337,SRX527836,SR...ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Pancreas.bed ...

  10. File list: ALL.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383750,SRX672452 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.20.AllAg.Pancreas.bed ...

  11. Complete agenesis of the dorsal pancreas: Case report with ...

    African Journals Online (AJOL)

    pancreatic head and uncinate process were normal, but the distal neck, body ... The neck, body, tail, and cephalic aspects of the head of the pancreas originate from the .... Embryology, normal variation, and congenital anomalies of the pancreas. ... M. A 3D reconstruction of pancreas development in the human embryos.

  12. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    Science.gov (United States)

    El Shahawy, Maha; Reibring, Claes-Göran; Neben, Cynthia L; Hallberg, Kristina; Marangoni, Pauline; Harfe, Brian D; Klein, Ophir D; Linde, Anders; Gritli-Linde, Amel

    2017-07-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  13. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    Directory of Open Access Journals (Sweden)

    Maha El Shahawy

    2017-07-01

    Full Text Available The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH and retinoic acid (RA signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  14. Macrophage-derived Wnt opposes notch signaling to specify hepatic progenitor cell fate in chronic liver disease

    NARCIS (Netherlands)

    Boulter, L.; Govaere, O.; Bird, T.G.; Radulescu, S.; Ramachandran, P.; Pellicoro, A.; Ridgway, R.; Seo, S.S.; Spee, B.|info:eu-repo/dai/nl/304830925; van Rooijen, N.; Sansom, O.J.; Iredale, J.P.; Lowell, S.; Roskams, T.A.; Forbes, S.J.

    2012-01-01

    Nat Med. 2012 Mar 4;18(4):572-9. doi: 10.1038/nm.2667. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ,

  15. Sonographic evaluation of retroperitoneal pancreas transplants and their complications

    International Nuclear Information System (INIS)

    Rao, B.K.; Rosnberg, R.; McDermott, J.C.; Sollinger, H.W.; Belzer, F.O.

    1986-01-01

    Pancreas transplantation is an experimental procedure performed to restore insulin secretion in patients with diabetes mellitus. The authors reviewed 65 real-time sonograms in 42 kidney transplant recipients who also had a homologous pancreas transplanted into the retroperitoneum. Sonograms were analyzed for size of the pancreas transplant, its echo texture, size of the pancreatic duct, fluid collections around the pancreas transplant, vascular pulsations, and anastomotic site between the pancreatic duct and the urinary bladder. A normal pancreas transplant is moderately echogenic and may have small hypoechoic areas (possibly representing fibrosis or infarcts) in the early postsurgical period (based on findings in 14 of 42 patients). Dilation of the pancreatic duct (3-9 mm) and air in the pancreatic duct were common postoperatively. Pancreatitis was also common (36 patients) and was recognized by an increase in the size of the pancreas transplant and by a focally or diffusely hypoechoic texture. Rejection of the pancreas transplant was uncommon (six patients) and was detected on the basis of reduced vascular flow, an increase in size of the pancreas transplant, and a nonhomogeneous echotexture. Infraction of the transplant was rare and had an irregular, nonhomogeneously hypoechoic appearance (two patients). Seromas (eight patients), abscesses (three), and hematomas (two) were detected on the basis of septa, floating debris, mural nodules, and irregular thick walls. Enzymatic fat necrosis was recognized from floating echogenic fat debris (two patients). Air-containing abscesses were identified and confirmed on CT or US-guided aspiration (three patients). US was extremely useful for detecting, localizing, and characterizing fluid collections and provided guidance for aspiration. It is the imaging modality of choice for screening pancreas transplant recipients for postoperative changes

  16. File list: ALL.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreas hg19 All antigens Pancreas Pancreas SRX347280,SRX134735,S...71,SRX342269,SRX188948,SRX188958 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.05.AllAg.Pancreas.bed ...

  17. File list: ALL.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Pancreas hg19 All antigens Pancreas Pancreas SRX136972,ERX103432,S...58,SRX188948,SRX270968,SRX347271 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.20.AllAg.Pancreas.bed ...

  18. File list: ALL.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreas hg19 All antigens Pancreas Pancreas SRX136972,SRX136967,S...71,SRX342269,SRX188948,SRX188958 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.10.AllAg.Pancreas.bed ...

  19. Design of a bioartificial pancreas

    Science.gov (United States)

    Pareta, Rajesh A; Farney, Alan C; Opara, Emmanuel C

    2013-01-01

    Summary Islet transplantation has been shown to be a viable treatment option for patients afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles to routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets in hydrogels for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this review article, we will discuss the need for bioartificial pancreas, provide a detailed description of the microencapsulation process, and review the status of the technology in clinical development. We will also critically review the various factors that need to be taken into consideration in order to achieve the ultimate goal of routine clinical application. PMID:23652283

  20. MR imaging of the normal pancreas

    International Nuclear Information System (INIS)

    Itoh, Hisao; Takahashi, Norio; Uchida, Yoshie; Nakayama, Gen; Bito, Kaoru; Haba, Hirotsugu; Kawamura, Masashi; Kataoka, Masaaki; Hamamoto, Ken.

    1989-01-01

    To evaluate current 1.5-T MR imaging with respiratory ordered phase encoding (ROPE) technique in the identification of pancreatic contour and main pancreatic duct, 100 normal subjects examined with spin echo technique including transaxial scans of T 1 -WI,T 2 -WI, and proton density (PD)-WI were reviewed. The results of MR imaging were then compared with computed tomography (CT). Pancreatic contour was divided into 3 parts; head, body, and tail. T 1 -WI was the best pulse sequence in describing pancreas and the rates of specific identification of head, body, and tail were 69%, 97%, and 92%, respectively. While these rates were 62%, 90%, and 92% with plain CT and 69%, 94%, and 94% with contrast-enhanced CT, respectively. A combination of MR imaging and CT yielded better rates of identification. The main pancreatic duct was visible in 44% as a low intensity line on T 1 -WI and in 16% on plain CT. Dorsal to pancreas, all of the major vessels were seen in every patients. Ventrally, retroperitoneal fat was important, however, it was not a limiting factor. When respiratory compensation using ROPE functioned well, it was possible to differentiate bowel from pancreas in patients with sparse fat because signal intensity of the pancreas tended to be higher than that of gastrointestinal wall and its contents on T 1 -WI. Current MR imaging seemed to be a complementary method with CT in the identification of the pancreas. (author)

  1. Polyamine biosynthesis is critical for growth and differentiation of the pancreas

    Science.gov (United States)

    Mastracci, Teresa L.; Robertson, Morgan A.; Mirmira, Raghavendra G.; Anderson, Ryan M.

    2015-01-01

    The pancreas, in most studied vertebrates, is a compound organ with both exocrine and endocrine functions. The exocrine compartment makes and secretes digestive enzymes, while the endocrine compartment, organized into islets of Langerhans, produces hormones that regulate blood glucose. High concentrations of polyamines, which are aliphatic amines, are reported in exocrine and endocrine cells, with insulin-producing β cells showing the highest concentrations. We utilized zebrafish as a model organism, together with pharmacological inhibition or genetic manipulation, to determine how polyamine biosynthesis functions in pancreatic organogenesis. We identified that inhibition of polyamine biosynthesis reduces exocrine pancreas and β cell mass, and that these reductions are at the level of differentiation. Moreover, we demonstrate that inhibition of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, phenocopies inhibition or knockdown of the enzyme deoxyhypusine synthase (DHS). These data identify that the pancreatic requirement for polyamine biosynthesis is largely mediated through a requirement for spermidine for the downstream posttranslational modification of eIF5A by its enzymatic activator DHS, which in turn impacts mRNA translation. Altogether, we have uncovered a role for polyamine biosynthesis in pancreatic organogenesis and identified that it may be possible to exploit polyamine biosynthesis to manipulate pancreatic cell differentiation. PMID:26299433

  2. File list: Oth.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383750,ERX383751,ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Pancreas.bed ...

  3. File list: Oth.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383750,ERX383751,ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.AllAg.Pancreas.bed ...

  4. File list: Oth.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383752,ERX383751,ERX383754,ERX383750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.20.AllAg.Pancreas.bed ...

  5. File list: Oth.Pan.50.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383752,ERX383751,ERX383754,ERX383750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.50.AllAg.Pancreas.bed ...

  6. Where have all the Na+ channels gone? In search of functional ENaC in exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Hansen, Mette R

    2002-01-01

    was to investigate if pancreatic ducts express functional ENaC. Membrane voltages (V) of ducts isolated from rat pancreas were measured with microelectrodes or whole-cell patch-clamp technique. Amiloride and benzamil given from bath or luminal sides did not hyperpolarize V. Lowering of extracellular Na...... with glucocorticoids had no effect on pancreatic fluid secretion evoked from ducts, or from acini. Hence, our study shows that pancreas especially pancreatic ducts do not express functional ENaC....

  7. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny.

    Science.gov (United States)

    Conboy, Michael J; Karasov, Ariela O; Rando, Thomas A

    2007-05-01

    Decades ago, the "immortal strand hypothesis" was proposed as a means by which stem cells might limit acquiring mutations that could give rise to cancer, while continuing to proliferate for the life of an organism. Originally based on observations in embryonic cells, and later studied in terms of stem cell self-renewal, this hypothesis has remained largely unaccepted because of few additional reports, the rarity of the cells displaying template strand segregation, and alternative interpretations of experiments involving single labels or different types of labels to follow template strands. Using sequential pulses of halogenated thymidine analogs (bromodeoxyuridine [BrdU], chlorodeoxyuridine [CldU], and iododeoxyuridine [IdU]), and analyzing stem cell progeny during induced regeneration in vivo, we observed extraordinarily high frequencies of segregation of older and younger template strands during a period of proliferative expansion of muscle stem cells. Furthermore, template strand co-segregation was strongly associated with asymmetric cell divisions yielding daughters with divergent fates. Daughter cells inheriting the older templates retained the more immature phenotype, whereas daughters inheriting the newer templates acquired a more differentiated phenotype. These data provide compelling evidence of template strand co-segregation based on template age and associated with cell fate determination, suggest that template strand age is monitored during stem cell lineage progression, and raise important caveats for the interpretation of label-retaining cells.

  8. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny.

    Directory of Open Access Journals (Sweden)

    Michael J Conboy

    2007-05-01

    Full Text Available Decades ago, the "immortal strand hypothesis" was proposed as a means by which stem cells might limit acquiring mutations that could give rise to cancer, while continuing to proliferate for the life of an organism. Originally based on observations in embryonic cells, and later studied in terms of stem cell self-renewal, this hypothesis has remained largely unaccepted because of few additional reports, the rarity of the cells displaying template strand segregation, and alternative interpretations of experiments involving single labels or different types of labels to follow template strands. Using sequential pulses of halogenated thymidine analogs (bromodeoxyuridine [BrdU], chlorodeoxyuridine [CldU], and iododeoxyuridine [IdU], and analyzing stem cell progeny during induced regeneration in vivo, we observed extraordinarily high frequencies of segregation of older and younger template strands during a period of proliferative expansion of muscle stem cells. Furthermore, template strand co-segregation was strongly associated with asymmetric cell divisions yielding daughters with divergent fates. Daughter cells inheriting the older templates retained the more immature phenotype, whereas daughters inheriting the newer templates acquired a more differentiated phenotype. These data provide compelling evidence of template strand co-segregation based on template age and associated with cell fate determination, suggest that template strand age is monitored during stem cell lineage progression, and raise important caveats for the interpretation of label-retaining cells.

  9. Solitary Fibrous Tumor of the Pancreas: Imaging Findings

    International Nuclear Information System (INIS)

    Kwon, Heon Ju; Byun, Jae Ho; Kang, Jun; Park, Seong Ho; Lee, Moon Gyu

    2008-01-01

    We report here a case of a pathologically proven solitary fibrous tumor of the pancreas. A 54-year-old man was referred to our hospital for further evaluation of a pancreatic mass that was found incidentally. CT, MR imaging, and endoscopic ultrasonography showed a well-defined, enhancing mass with cystic portions of the pancreas body. MR cholangiopancreatography showed no pancreatic duct dilatation. A solitary fibrous tumor of the pancreas is a very rare lesion

  10. Primary hydatid cysts of the pancreas

    African Journals Online (AJOL)

    Kurt

    Hydatid cysts of the pancreas are rare. The reported incidence varies from 0.1% to 2% of patients with hydatid disease.4-7. Management may be diffi- cult as a hydatid cyst in the head of the pancreas may closely simulate a cystic tumour. In this study we report 4 cases of primary hydatid cysts involving the head of the ...

  11. Intrapancreatic Splenule in a Pancreas Allograft: Case Report.

    Science.gov (United States)

    Yadav, K; Serrano, O K; Kandaswamy, R

    2016-11-01

    A 16-year-old white man was involved in a motor vehicle collision and suffered head, chest, and abdominal trauma. Despite initial resuscitative efforts, he progressed to brain death and was designated to be an organ donor by his family. He had no earlier medical or surgical history and no high-risk behaviors. Blood work revealed normal creatinine, liver function tests, lipase, and amylase. Viral serologies were negative except for cytomegalovirus IgG and Epstein-Barr virus nucleic acid. Imaging revealed a right kidney contusion, a manubrial fracture, and fractures of right first rib and bilateral scapulae. No other abdominal trauma was identified, specifically to the pancreas, duodenum, or spleen. Our transplant center accepted the pancreas from this donor. During back-table inspection of the pancreas, a 1.5 × 1.5 cm dark purple rubbery mass was identified within the parenchyma of the pancreas in the tail. An incisional biopsy of the lesion was sent for frozen section, which yielded a mixed inflammatory infiltrate consisting of neutrophils and lymphocytes and an overlying fibrous capsule. The diagnosis of lymphoma or another neoplasm could not be definitely ruled out. Owing to uncertainty in diagnosis, the entire lesion was excised along with the distal pancreas with the use of a linear stapler. The staple line was oversewn with running 4-0 polypropylene suture, and the pancreas was transplanted. After surgery, the pancreas allograft functioned well with a small pancreatic leak, which had resolved by the first postoperative outpatient visit. Published by Elsevier Inc.

  12. Heterotopic Pancreas: Histopathologic Features, Imaging Findings, and Complications.

    Science.gov (United States)

    Rezvani, Maryam; Menias, Christine; Sandrasegaran, Kumaresan; Olpin, Jeffrey D; Elsayes, Khaled M; Shaaban, Akram M

    2017-01-01

    Heterotopic pancreas is a congenital anomaly in which pancreatic tissue is anatomically separate from the main gland. The most common locations of this displacement include the upper gastrointestinal tract-specifically, the stomach, duodenum, and proximal jejunum. Less common sites are the esophagus, ileum, Meckel diverticulum, biliary tree, mesentery, and spleen. Uncomplicated heterotopic pancreas is typically asymptomatic, with the lesion being discovered incidentally during an unrelated surgery, during an imaging examination, or at autopsy. The most common computed tomographic appearance of heterotopic pancreas is that of a small oval intramural mass with microlobulated margins and an endoluminal growth pattern. The attenuation and enhancement characteristics of these lesions parallel their histologic composition. Acinus-dominant lesions demonstrate avid homogeneous enhancement after intravenous contrast material administration, whereas duct-dominant lesions are hypovascular and heterogeneous. At magnetic resonance imaging, the heterotopic pancreas is isointense to the orthotopic pancreas, with characteristic T1 hyperintensity and early avid enhancement after intravenous gadolinium-based contrast material administration. Heterotopic pancreatic tissue has a rudimentary ductal system in which an orifice is sometimes visible at imaging as a central umbilication of the lesion. Complications of heterotopic pancreas include pancreatitis, pseudocyst formation, malignant degeneration, gastrointestinal bleeding, bowel obstruction, and intussusception. Certain complications may be erroneously diagnosed as malignancy. Paraduodenal pancreatitis is thought to be due to cystic degeneration of heterotopic pancreatic tissue in the medial wall of the duodenum. Recognizing the characteristic imaging features of heterotopic pancreas aids in differentiating it from cancer and thus in avoiding unnecessary surgery. © RSNA, 2017.

  13. Dual-phase CT of the liver and the pancreas

    International Nuclear Information System (INIS)

    Dragiyski, B.; Velkova, K.

    2004-01-01

    This survey covers the introduction of Spiral CT in the diagnostics of lesions of the liver and the pancreas. It describes the possibility to display separate images of the arterial and portal-venous phases of saturation of the liver and the pancreas. It also considers the indications leading to use of dual-phase Spiral CT on the liver and the pancreas. We trace the development of the dual-phase Spiral CT in visualization of the structure of blood vessels in the area of liver and pancreas. The survey puts forward the potential of the dual-phase method to improve the diagnostics and description of many primary and secondary malignant tumors of the liver and the pancreas, their differentiation from benign neoplasm, as well as the existing problems and some controversial aspects of its application

  14. Ectopic pancreas with pseudocyst and pseudoaneurysm formation

    International Nuclear Information System (INIS)

    Surov, A.; Hainz, M.; Hinz, L.; Holzhausen, H.-J.; Finke, R.; Spielmann, R.-P.; Kunze, C.

    2009-01-01

    Ectopic pancreas is a rare congenital anomaly. It is usually asymptomatic, or presents with non specific gastrointestinal symptoms. We describe here a case of ectopic pancreas in the gastric antrum, with pseudocyst and pseudoaneurysm formation. This entity has not been reported previously in the literature.

  15. Autoradiography of manganese: accumulation and retention in the pancreas

    International Nuclear Information System (INIS)

    Lyden, A.; Lindquist, N.G.; Larsson, B.S.

    1983-01-01

    By means of whole-body autoradiography, the general distribution of 54 MnCl 2 was studied in mice and a Marmoset monkey. High accumulation and retention were observed in the pancreas in both species. Gamma counting experiments in mice after a single intravenous injection of 54 MnCl 2 showed that the level in the pancreas exceeded that of the liver at all survival times (20 min. - 30 days). Also in the monkey, the concentration in the pancreas exceeded that of the liver, and the pancreas had the highest tissue/liver ratio of the organs measured at 24 hours after injection. The high uptake and long retention in the pancreas suggest that manganese is of importance for the pancreatic function but also that the pancreas may be a target organ for manganese toxicity. Positron tomography, using 11 C-labelled amino acids, has been found to be a promising diagnostic technique for the study of pancreatic disease. Positron emitting manganese isotopes may be worth further studies as possible agents for pancreatic imaging. (author)

  16. Wnt signaling maintains the notochord fate for progenitor cells and supports the posterior extension of the notochord.

    Science.gov (United States)

    Ukita, Kanako; Hirahara, Shino; Oshima, Naoko; Imuta, Yu; Yoshimoto, Aki; Jang, Chuan-Wei; Oginuma, Masayuki; Saga, Yumiko; Behringer, Richard R; Kondoh, Hisato; Sasaki, Hiroshi

    2009-10-01

    The notochord develops from notochord progenitor cells (NPCs) and functions as a major signaling center to regulate trunk and tail development. NPCs are initially specified in the node by Wnt and Nodal signals at the gastrula stage. However, the underlying mechanism that maintains the NPCs throughout embryogenesis to contribute to the posterior extension of the notochord remains unclear. Here, we demonstrate that Wnt signaling in the NPCs is essential for posterior extension of the notochord. Genetic labeling revealed that the Noto-expressing cells in the ventral node contribute the NPCs that reside in the tail bud. Robust Wnt signaling in the NPCs was observed during posterior notochord extension. Genetic attenuation of the Wnt signal via notochord-specific beta-catenin gene ablation resulted in posterior truncation of the notochord. In the NPCs of such mutant embryos, the expression of notochord-specific genes was down-regulated, and an endodermal marker, E-cadherin, was observed. No significant alteration of cell proliferation or apoptosis of the NPCs was detected. Taken together, our data indicate that the NPCs are derived from Noto-positive node cells, and are not fully committed to a notochordal fate. Sustained Wnt signaling is required to maintain the NPCs' notochordal fate.

  17. Expanding the indications of pancreas transplantation alone.

    Science.gov (United States)

    Mehrabi, Arianeb; Golriz, Mohammad; Adili-Aghdam, Fatemeh; Hafezi, Mohammadreza; Ashrafi, Maryam; Morath, Christian; Zeier, Martin; Hackert, Thilo; Schemmer, Peter

    2014-11-01

    Total pancreatectomy (TP) is associated with postoperative endocrine and exocrine insufficiency. Especially, insulin therapy reduces quality of life and may lead to long-term complications. We review the literature with regard to the potential option of pancreas transplantation alone (PTA) after TP in patients with chronic pancreatitis or benign tumors. A MEDLINE search (1958-2013) using the terminologies pancreas transplantation, pancreas transplantation alone, total pancreatectomy, morbidity, mortality, insulin therapy, and quality of life was performed. In addition, the current book and congress publications were reviewed. Total pancreatectomy after benign and borderline tumors as well as chronic pancreatitis is continuously increasing. Despite improvement of exogenous insulin therapy, more than 50% of these patients experience severe glucose control problems, which cause up to 50% long-term mortality. Pancreas transplantation alone can cure both endocrine and exocrine insufficiency and reduce the associated risks. The 3-year graft and patient survival rates after PTA are up to 73% and 100%, respectively. Pancreas transplantation alone after TP in patients with pancreatitis or benign tumors improves the recipient's quality of life and reduces long-term mortality. Considering the amount of available organs and potential candidates, PTA can be a treatment option for patients after TP with chronic pancreatitis or benign tumors.

  18. Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration

    DEFF Research Database (Denmark)

    Bruun, Susanne W.; Josefsen, Knud; Tanassi, Julia T

    2016-01-01

    secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally...

  19. Islet alloautotransplantation: Allogeneic pancreas transplantation followed by transplant pancreatectomy and islet transplantation.

    Science.gov (United States)

    Nijhoff, M F; Dubbeld, J; van Erkel, A R; van der Boog, P J M; Rabelink, T J; Engelse, M A; de Koning, E J P

    2018-04-01

    Simultaneous pancreas-kidney (SPK) transplantation is an important treatment option for patients with type 1 diabetes (T1D) and end-stage renal disease (ESRD). Due to complications, in up to 10% of patients, allograft pancreatectomy is necessary shortly after transplantation. Usually the donor pancreas is discarded. Here, we report on a novel procedure to rescue endocrine tissue after allograft pancreatectomy. A 39-year-old woman with T1D and ESRD who had undergone SPK transplantation required emergency allograft pancreatectomy due to bleeding at the vascular anastomosis. Islets were isolated from the removed pancreas allograft, and almost 480 000 islet equivalents were infused into the portal vein. The patient recovered fully. After 3 months, near-normal mixed meal test (fasting glucose 7.0 mmol/L, 2-hour glucose 7.5 mmol/L, maximal stimulated C-peptide 3.25 nmol/L, without insulin use in the preceding 36 hours) was achieved. Glycated hemoglobin while taking a low dose of long-acting insulin was 32.7 mmol/mol hemoglobin (5.3%). When a donor pancreas is lost after transplantation, rescue β cell therapy by islet alloautotransplantation enables optimal use of scarce donor pancreata to optimize glycemic control without additional HLA alloantigen exposure. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Agenesis of the dorsal pancreas

    Science.gov (United States)

    Schnedl, Wolfgang J; Piswanger-Soelkner, Claudia; Wallner, Sandra J; Krause, Robert; Lipp, Rainer W

    2009-01-01

    During the last 100 years in medical literature, there are only 54 reports, including the report of Pasaoglu et al (World J Gastroenterol 2008; 14: 2915-2916), with clinical descriptions of agenesis of the dorsal pancreas in humans. Agenesis of the dorsal pancreas, a rare congenital pancreatic malformation, is associated with some other medical conditions such as hyperglycemia, abdominal pain, pancreatitis and a few other diseases. In approximately 50% of reported patients with this congenital malformation, hyperglycemia was demonstrated. Evaluation of hyperglycemia and diabetes mellitus in all patients with agenesis of the dorsal pancreas including description of fasting blood glucose, oral glucose tolerance test, glycated hemoglobin and medical treatment would be a future goal. Since autosomal dominant transmission has been suggested in single families, more family studies including imaging technologies with demonstration of the pancreatic duct system are needed for evaluation of this disease. With this letter to the editor, we aim to increase available information for the better understanding of this rare disease. PMID:19140241

  1. Microcystic adenoma of the pancreas

    Directory of Open Access Journals (Sweden)

    Čolović Radoje B.

    2002-01-01

    Full Text Available Microcystic adenoma of the pancreas is a rare benign tumour of the pancreas without malignant potential which usually appears in older women. Pain weight loss, palpable mass and jaundice (if the tumor is localized in the head of the pancreas are the main symptoms. Thanks to the modern imaging techniques (US, CT, FNB the tumor is discovered and with rising frequency exactly preoperatively diagnosed. Surgical excision is the treatment of choice. In risk patients without symptoms surgery is not necessary but patients have to be regularly followed-up. The authors present a 70-year old woman in whom, because of constant epigastric pain, a multicystic mass of the pancreatic body, 58 x 40 mm in diameter, was discovered and removed by distal pancreatectomy. The spleen could not be saved. Histologic examination showed a microcystic adenoma. Three years after surgery the patient is symptom-free with normal ultra-sonographic findings.

  2. Vasoactive intestinal polypeptide (VIP) in the pig pancreas

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    Vasoactive intestinal polypeptide (VIP) in the pig pancreas is localized to nerves, many of which travel along the pancreatic ducts. VIP stimulates pancreatic fluid and bicarbonate secretion like secretin. Electrical vagal stimulation in the pig causes an atropine-resistant profuse secretion...... of bicarbonate-rich pancreatic juice. In an isolated perfused preparation of the pig pancreas with intact vagal nerve supply, electrical vagal stimulation caused an atropine-resistant release of VIP, which accurately parallelled the exocrine secretion of juice and bicarbonate. Perfusion of the pancreas...... with a potent VIP-antiserum inhibited the effect of vagal stimulation on the exocrine secretion. It is concluded, that VIP is responsible for (at least part of) the neurally controlled fluid and bicarbonate secretion from the pig pancreas....

  3. A comparative study of the ultrastructure of submandibular, parotid and exocrine pancreas in diabetes and fasting

    International Nuclear Information System (INIS)

    Take, G.; Ilgaz, C.; Erdogan, D.; Ozogul, C.; Elmas, C.

    2007-01-01

    To comparatively analyze the ultrastructural changes in the submandibular and parotid glands and in the exocrine pancreas following diabetes induced by Streptozotocin exposure and the effects of fasting and insulin treatment on these alterations. For experimental procedure, we included 48 Sprague-Dawley type rats in July 2001-March 2002 at Gazi University, Turkey. We divided the rats into 8 groups following the infusion of Streptozotocin. While the degeneration manifested itself as accumulation of secretions within the mucous cells in the submandibular gland, lipid droplets were absent, being replaced by vacuolar structures. The parotid gland and exocrine pancreas, having similar properties, were affected similarly. Diabetes-induced loss of granules was observed in the serous cells in both glands. There was diffuse lipid accumulation within these cells. Regarding granule content, we observed the most prominent degenerative changes in the parotid gland. While cellular loss was observed in neither the submandibular, nor the parotid gland, we noted presence of apoptotic cells was noted in the pancreas. State of fasting was found to cause alterations within the glands indicating increased activity. While insulin treatment was seen to restore the structure to normal in general was in both of the 3 glands. This study demonstrated that both of the 3 glands are affected by diabetes and concomitant fasting, and this effect manifests itself via the granule content. (author)

  4. Building the Future: Post-transcriptional Regulation of Cell Fate Decisions Prior to the Xenopus Midblastula Transition.

    Science.gov (United States)

    Sheets, Michael D

    2015-01-01

    In all animals, a critical period in early development is when embryonic cells switch from relying solely upon maternally deposited RNAs and proteins to relying upon molecules encoded by the zygotic genome. Xenopus embryos have served as a model for examining this switch, as well as the maternally controlled stages that prepare for it. In Xenopus, the robust activation of zygotic transcription occurs at the 12th cleavage division and is referred to as the midblastula transition (MBT). Prior to MBT, gene expression is regulated by post-transcriptional events including mRNA and protein localization, protein post-translational modification, and mRNA translation. After the MBT, appropriate transcriptional regulation of the zygotic genome becomes critical and predominates. However, it is important to realize that the first key cell fate decisions that have profound impacts on development occur prior to the MBT and these are governed by regulating the expression of maternally deposited regulatory mRNAs and proteins. In this chapter, I will discuss post-transcriptional mechanisms that function during the maternal stages of Xenopus development with an emphasis on mechanisms known to directly modulate cell fate decisions. Emerging approaches and technologies that will help better understand this phase of development will also be discussed. © 2015 Elsevier Inc. All rights reserved.

  5. Tetraploidization or autophagy: The ultimate fate of senescent human endometrial stem cells under ATM or p53 inhibition.

    Science.gov (United States)

    Borodkina, Aleksandra V; Shatrova, Alla N; Deryabin, Pavel I; Grukova, Anastasiya A; Nikolsky, Nikolay N; Burova, Elena B

    2016-01-01

    Previously we demonstrated that endometrium-derived human mesenchymal stem cells (hMESCs) via activation of the ATM/p53/p21/Rb pathway enter the premature senescence in response to oxidative stress. Down regulation effects of the key components of this signaling pathway, particularly ATM and p53, on a fate of stressed hMESCs have not yet been investigated. In the present study by using the specific inhibitors Ku55933 and Pifithrin-α, we confirmed implication of both ATM and p53 in H(2)O(2)-induced senescence of hMESCs. ATM or p53 down regulation was shown to modulate differently the cellular fate of H(2)O(2)-treated hMESCs. ATM inhibition allowed H(2)O(2)-stimulated hMESCs to escape the permanent cell cycle arrest due to loss of the functional ATM/p53/p21/Rb pathway, and induced bypass of mitosis and re-entry into S phase, resulting in tetraploid cells. On the contrary, suppression of the p53 transcriptional activity caused a pronounced cell death of H(2)O(2)-treated hMESCs via autophagy induction. The obtained data clearly demonstrate that down regulation of ATM or p53 shifts senescence of human endometrial stem cells toward tetraploidization or autophagy.

  6. Primary Extraskeletal Mesenchymal Chondrosarcoma Arising from the Pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Bae Geun; Han, Yoon Hee; Lee, Byung Hoon; Kim, Su Young; Hwang, Yoon Joon; Seo, Jung Wook; Kim, Yong Hoon; Cha, Soon Joo; Hur, Gham; Joo, Mee [Inje University, School of Medicine, Goyang (Korea, Republic of)

    2007-12-15

    The CT scans showed a heterogeneously enhancing necrotic mass with numerous areas of coarse calcification, and this was located in the left side of the retroperitoneal space and involved the body and tail of the pancreas. Portal venography via the celiac axis also showed invasion of the splenic vein. It represents approximately 1% of all chondrosarcomas and it carries a poor prognosis. It can occur in extraskeletal locations and mainly in the soft tissues of the orbit, the cranial and spinal meningeal coverings and the lower limbs. To the best of our knowledge, there has been no reported case of primary extraskeletal mesenchymal chondrosarcoma of the pancreas. Only two instances of metastatic chondrosarcomas in the pancreas have been reported in the literature. We report here on a case of primary mesenchymal chondrosarcoma arising from the pancreas in a 41-year-old man. In summary, we present here a case of primary extraskeletal mesenchymal chondrosarcoma that arose from the pancreas. Radiologically, it manifested as a necrotic soft tissue mass with chondroid calcifications.

  7. A comparative immunohistochemical study on amylase localization in the rat and human exocrine pancreas

    International Nuclear Information System (INIS)

    Aughsteen, Adib A.

    2001-01-01

    Objective was to localize amylase enzyme immunohistochemically in the pancreatic acinar cells of rats and humans using polyclonal sheep anti-human amylase antibody, and to compare between the intensities of their amylase-immunostaining. Indirect immunofluorescence method was applied on formaldehyde-fixed, and paraffin-embedded pancreatic sections obtained from adult male Wistar rats and autopsied human samples. Primary incubation was performed using sheep anti-amylase antibody followed by secondary incubation with fluorescein isothiocyanate-labeled rabbit anti-sheep IgG serum. Control tests of amylase immunospecificity were also undertaken either by incubation with primary antibodies previously pre-adsorbed with an excess of human pancreatic amylase, or only with secondary antibodies. The amylase immunofluorescence was positively and homogenously detected in all acinar cells of both rat and human pancreatic stained sections. The immunostaining was clearly demonstrated in the cell apices and peri-nuclear areas, but it was consistently brighter and more intense in the human acinar cells compared with that of the rat pancreas. Control tests of amylase immunofluorescence revealed the specificity of the antibodies applied for amylase localization in rat and human pancreas. Although many previous immunohisto- and cytochemical reports have successfully localized amylase in the pancreas of different mammalian species, but all of them have used locally prepared anti-amylase antibodies. The present report successfully illustrates immuno-localization of amylase in the pancreatic acinar cells of rats and humans using commercial polyclonal sheep anti-human pancreatic amylase antibodies, and also suggests their useful application in the immunochemical studies on various mammalian species. Additionally, the results indicate a structural similarity between the human and rat pancreatic amylases, a concept required further exploration. (author)

  8. Pancreas Center Data Profile

    Science.gov (United States)

    ... Composite Allograft Organ Transport Living Donation Informing Patients Ethics Guidance Calendar of Events Glossary Organ Procurement and Transplantation Network Pancreas Home Data Organ Datasource ...

  9. Tachykinins in the porcine pancreas

    DEFF Research Database (Denmark)

    Schmidt, P T; Tornøe, K; Poulsen, Steen Seier

    2000-01-01

    The localization, release, and effects of substance P and neurokinin A were studied in the porcine pancreas and the localization of substance P immunoreactive nerve fibers was examined by immunohistochemistry. The effects of electrical vagus stimulation and capsaicin infusion on tachykinin release...... and the effects of substance P and neurokinin A infusion on insulin, glucagon, somatostatin, and exocrine secretion were studied using the isolated perfused porcine pancreas with intact vagal innervation. NK-1 and NK-2 receptor antagonists were used to investigate receptor involvement. Substance P immunoreactive...

  10. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Kanikkai Raja Aseer

    Full Text Available Secreted protein acidic and rich in cysteine (SPARC is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ and its targets (TNFα, Il6, CRP, and Fn1 as well as myeloperoxidase (Mpo and C-X-C chemokine receptor type 2 (Cxcr2. Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels.

  11. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  12. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  13. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    Science.gov (United States)

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Fatty Pancreas: Should We Be Concerned?

    Science.gov (United States)

    Majumder, Shounak; Philip, Nissy A; Takahashi, Naoki; Levy, Michael J; Singh, Vijay P; Chari, Suresh T

    The metabolic consequences of visceral fat deposition are well known, and the presence of intrapancreatic fat (IPF) has been recognized for decades. However, our knowledge about the distribution of fat in the pancreas and its clinical implications is in a nascent stage. Various terms have been proposed to describe IPF; for the purpose of this narrative review, we chose the general term fatty pancreas. Herein, we describe the radiologic, endoscopic, and histopathologic aspects of diagnosing fatty pancreas and provide an overview of the diseases associated with this condition. Our purpose is to highlight diagnostic challenges and identify specific clinical questions that would benefit from further study. As evident in this review, IPF is associated with various metabolic diseases, pancreatitis, pancreatic cancer, and precancer-yet establishing causality needs careful, further study.

  15. Feasibility and safety of electrochemotherapy (ECT) in the pancreas: a pre-clinical investigation

    International Nuclear Information System (INIS)

    Girelli, Roberto; Prejanò, Simona; Cataldo, Ivana; Corbo, Vincenzo; Martini, Lucia; Scarpa, Aldo; Claudio, Bassi

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease generally refractory to standard chemotherapeutic agents; therefore improvements in anticancer therapies are mandatory. A major determinant of therapeutic resistance in PDAC is the poor drug delivery to neoplastic cells, mainly due to an extensive fibrotic reaction. Electroporation can be used in vivo to increase cancer cells’ local uptake of chemotherapeutics (electrochemotherapy, ECT), thus leading to an enhanced tumour response rate. In the present study, we evaluated the in vivo effects of reversible electroporation in normal pancreas in a rabbit experimental model. We also tested the effect of electroporation on pancreatic cancer cell lines in order to evaluate their increased sensitivity to chemotherapeutic agents. The application in vivo of the European Standard Operating Procedure of Electrochemotherapy (ESOPE) pulse protocol (1000 V/cm, 8 pulses, 100 μs, 5 KHz) was tested on the pancreas of normal New Zealand White Rabbits and short and long-term toxicity were assessed. PANC1 and MiaPaCa2 cell lines were tested for in vitro electrochemotherapy experiments with and without electroporation. Levels of cell permeabilization were determined by flow cytometry, whereas cell viability and drug (cisplatin and bleomycin) sensitivity of pulsed cells were measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS) assay. In healthy rabbits, neither systemic nor local toxic effects due to the electroporation procedure were observed, demonstrating the safety of the optimized electric parameters in the treatment of the pancreas in vivo. In parallel, we established an optimized protocol for ECT in vitro that determined an enhanced anti-cancer effect of bleomycin and cisplatin with respect to treatment without electroporation. Our data suggest that electroporation is a safe procedure in the treatment of PDAC because it does not affect normal pancreatic parenchyma

  16. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis.

    Science.gov (United States)

    Shan, Tizhong; Xu, Ziye; Wu, Weiche; Liu, Jiaqi; Wang, Yizhen

    2017-11-01

    Adult skeletal muscle stem cells, also called satellite cells, are indispensable for the growth, maintenance, and regeneration of the postnatal skeletal muscle. Satellite cells, predominantly quiescent in mature resting muscles, are activated after skeletal muscle injury or degeneration. Notch1 signaling is an evolutionarily conserved pathway that plays crucial roles in satellite cells homeostasis and postnatal skeletal myogenesis and regeneration. Activation of Notch1 signaling promotes the muscle satellite cells quiescence and proliferation, but inhibits differentiation of muscle satellite cells. Notably, the new roles of Notch1 signaling during late-stage of skeletal myogenesis including in post-differentiation myocytes and post-fusion myotubes have been recently reported. Here, we mainly review and discuss the regulatory roles of Notch1 in regulating satellite cell fates choices and skeletal myogenesis. J. Cell. Physiol. 232: 2964-2967, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated...... involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation...

  18. Ectopic pancreas in a giant mediastinal cyst

    NARCIS (Netherlands)

    Li, Wilson W.; van Boven, Wim Jan; Jurhill, Roy R.; Bonta, Peter I.; Annema, Jouke T.; de Mol, Bas A.

    2016-01-01

    Ectopic pancreas located in the mediastium is an extremely rare anomaly. We present a case of an ectopic pancreas located in a giant mediastinal cyst in an 18-year-old man. He presented with symptoms of dyspnea due to external compression of the cyst on the left main bronchus. Complete surgical

  19. Developmental biology of the Psammomys obesus pancreas

    DEFF Research Database (Denmark)

    Vedtofte, Louise; Bödvarsdóttir, Thóra B; Karlsen, Allan E

    2007-01-01

    The desert gerbil Psammomys obesus, an established model of type 2 diabetes (T2D), has previously been shown to lack pancreatic and duodenal homeobox gene 1 (Pdx-1) expression. Pdx-1 deficiency leads to pancreas agenesis in both mice and humans. We have therefore further examined the pancreas of ...

  20. Carriers of loss-of-function mutations in EXT display impaired pancreatic beta-cell reserve due to smaller pancreas volume.

    Directory of Open Access Journals (Sweden)

    Sophie J Bernelot Moens

    Full Text Available Exotosin (EXT proteins are involved in the chain elongation step of heparan sulfate (HS biosynthesis, which is intricately involved in organ development. Loss of function mutations (LOF in EXT1 and EXT2 result in hereditary exostoses (HME. Interestingly, HS plays a role in pancreas development and beta-cell function, and genetic variations in EXT2 are associated with an increased risk for type 2 diabetes mellitus. We hypothesized that loss of function of EXT1 or EXT2 in subjects with hereditary multiple exostoses (HME affects pancreatic insulin secretion capacity and development. We performed an oral glucose tolerance test (OGTT followed by hyperglycemic clamps to investigate first-phase glucose-stimulated insulin secretion (GSIS in HME patients and age and gender matched non-affected relatives. Pancreas volume was assessed with magnetic resonance imaging (MRI. OGTT did not reveal significant differences in glucose disposal, but there was a markedly lower GSIS in HME subjects during hyperglycemic clamp (iAUC HME: 0.72 [0.46-1.16] vs. controls 1.53 [0.69-3.36] nmol·l-1·min-1, p<0.05. Maximal insulin response following arginine challenge was also significantly attenuated (iAUC HME: 7.14 [4.22-10.5] vs. controls 10.2 [7.91-12.70] nmol·l-1·min-1 p<0.05, indicative of an impaired beta-cell reserve. MRI revealed a significantly smaller pancreatic volume in HME subjects (HME: 72.0±15.8 vs. controls 96.5±26.0 cm3 p = 0.04. In conclusion, loss of function of EXT proteins may affect beta-cell mass and insulin secretion capacity in humans, and render subjects at a higher risk of developing type 2 diabetes when exposed to environmental risk factors.

  1. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling

    Science.gov (United States)

    Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony

    2017-01-01

    During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965

  2. File list: NoD.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.20.AllAg.Pancreas mm9 No description Pancreas Pancreas ERX651337,ERX651340,...ERX651341,ERX651342 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.20.AllAg.Pancreas.bed ...

  3. File list: NoD.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.05.AllAg.Pancreas mm9 No description Pancreas Pancreas ERX651337,ERX651340,...ERX651342,ERX651341 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.05.AllAg.Pancreas.bed ...

  4. File list: NoD.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.10.AllAg.Pancreas mm9 No description Pancreas Pancreas ERX651337,ERX651340,...ERX651342,ERX651341 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.10.AllAg.Pancreas.bed ...

  5. Changes on the Pancreas in Experimental Diabetes and the Effect of Lycopene on These Changes: Pdx-1, Ngn-3, and Nestin Expressions.

    Science.gov (United States)

    Sandikci, Mustafa; Karagenc, Levent; Yildiz, Mustafa

    2017-12-01

    The aim of the present study was to investigate changes occurring in the number of beta cells, as well as the expressions of Ngn-3, nestin and Pdx-1 of pancreatic progenitor cells in the pancreas of experimentally-induced adult diabetic rats and to determine the effect of orally-administered lycopene on these changes. Following the administration of 50 mg/kg streptozotocin to rats, four groups of animals were established: control + corn oil, control + lycopene, diabetic + corn oil and diabetic + lycopene. The animals in the control + lycopene and diabetic + lycopene groups received 4 mg/kg lycopene for a period of four weeks. The expressions of insulin, Ngn-3, nestin, and Pdx-1 were determined through immunohistochemistry in sections taken from pancreas tissue samples at the end of the experiment. The number of insulin-positive cells was found to be significantly low in the diabetic groups compared to the control groups. In addition, the presence of Ngn-3 and nestin-positive cells within the exocrine pancreas surrounding the islands was noted in the diabetic groups. Lycopene, in general did not have any effect in any of the parameters analyzed in the present study. It is suggested that these cells would function as stem cells to replace the lost beta-cell population. It is also suggested that it is possible to demonstrate the antioxidant effects of lycopene in the pancreas of diabetic rats by increasing the dose and duration of lycopene administration. Anat Rec, 300:2200-2207, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Endoscopic ultrasound-guided fine-needle aspiration diagnosis of secondary tumors involving the pancreas: An institution′s experience

    Directory of Open Access Journals (Sweden)

    Ahmed K Alomari

    2016-01-01

    Full Text Available Background: Pancreatic masses may seldom represent a metastasis or secondary involvement by lymphoproliferative disorders. Recognition of this uncommon occurrence may help render an accurate diagnosis and avoid diagnostic pitfalls during endoscopic ultrasound-guided fine needle aspiration (EUS-FNA. In this study, we review our experience in diagnosing secondary tumors involving the pancreas. Materials and Methods: The electronic database of cytopathology archives was searched for cases of secondary tumors involving the pancreas at our institution and a total of 31 cases were identified. The corresponding clinical presentations, imaging study findings, cytological diagnoses, the results of ancillary studies, and surgical follow-up, if available, were reviewed. Results: Nineteen of the patients were male and 12 female, with a mean age of 66 years. Twenty-three patients (74% had a prior history of malignancy, with the latency ranging from 6 months to 19 years. The secondary tumors involving the pancreas included metastatic carcinoma (24 cases, metastatic sarcoma (3 cases, diffuse large B-cell lymphoma (2 cases, and plasma cell neoplasm (2 cases. The most common metastatic tumors were renal cell carcinoma (8 cases and lung carcinoma (7 cases. Correct diagnoses were rendered in 29 cases (94%. The remaining two cases were misclassified as primary pancreatic carcinoma. In both cases, the patients had no known history of malignancy, and no ancillary studies were performed. Conclusions: Secondary tumors involving the pancreas can be accurately diagnosed by EUS-FNA. Recognizing uncommon cytomorphologic features, knowing prior history of malignancy, and performing ancillary studies are the keys to improve diagnostic performance and avoid diagnostic pitfalls.

  7. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling

    NARCIS (Netherlands)

    Budry, L.; Balsalobre, A.; Gauthier, Y.; Khetchoumian, K.; L'Honore, A.; Vallette-Kasic, S.; Brue, T; Figarella-Branger, D.; Meij, B.P.; Drouin, J.

    2012-01-01

    Genes Dev. 2012 Oct 15;26(20):2299-310. doi: 10.1101/gad.200436.112. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'honoré A, Vallette S, Brue T, Figarella-Branger D, Meij B,

  8. Dynamic positional fate map of the primary heart-forming region.

    Science.gov (United States)

    Cui, Cheng; Cheuvront, Tracey J; Lansford, Rusty D; Moreno-Rodriguez, Ricardo A; Schultheiss, Thomas M; Rongish, Brenda J

    2009-08-15

    Here we show the temporal-spatial orchestration of early heart morphogenesis at cellular level resolution, in vivo, and reconcile conflicting positional fate mapping data regarding the primary heart-forming field(s). We determined the positional fates of precardiac cells using a precision electroporation approach in combination with wide-field time-lapse microscopy in the quail embryo, a warm-blooded vertebrate (HH Stages 4 through 10). Contrary to previous studies, the results demonstrate the existence of a "continuous" circle-shaped heart field that spans the midline, appearing at HH Stage 4, which then expands to form a wide arc of progenitors at HH Stages 5-7. Our time-resolved image data show that a subset of these cardiac progenitor cells do not overlap with the expression of common cardiogenic factors, Nkx-2.5 and Bmp-2, until HH Stage 10, when a tubular heart has formed, calling into question when cardiac fate is specified and by which key factors. Sub-groups and anatomical bands (cohorts) of heart precursor cells dramatically change their relative positions in a process largely driven by endodermal folding and other large-scale tissue deformations. Thus, our novel dynamic positional fate maps resolve the origin of cardiac progenitor cells in amniotes. The data also establish the concept that tissue motion contributes significantly to cellular position fate - i.e., much of the cellular displacement that occurs during assembly of a midline heart tube (HH Stage 9) is NOT due to "migration" (autonomous motility), a commonly held belief. Computational analysis of our time-resolved data lays the foundation for more precise analyses of how cardiac gene regulatory networks correlate with early heart tissue morphogenesis in birds and mammals.

  9. Stabilization of beta-catenin induces pancreas tumor formation.

    Science.gov (United States)

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  10. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension

    Directory of Open Access Journals (Sweden)

    Ueno Kazuko

    2009-04-01

    Full Text Available Abstract Background Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. Results A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules – Rule I and Rule II – to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in

  11. MR imaging in pancreas head cancer

    International Nuclear Information System (INIS)

    Yokota, Hajime; Yamanouchi, Baisetsu; Takarada, Akira; Tonami, Hisao; Okimura, Tetsuro; Miyamura, Toshio; Yamamoto, Itaru; Kinami, Yoshio

    1989-01-01

    To reduce artifacts associated with MRI, we used abdominal belts and anticholinergic during the examinations in patients with pancreas head cancer. In selected cases, foric pyrophosphate was injected into the common bile duct as a contrast medium. We made a comparative study of the results of MRI with those of CT with regard to lesion detectability and diagnostic ability of tumor invasion. MR examinations were performed at 0.5 Tesla superconducting unit using spin-echo (SE) pulse sequences. Eleven patients with pancreas head cancer were enrolled in this study. As to the lesion detectability, eight cases (73%) were detected clearly or moderately clearly on MRI, almost corresponding to 9 cases (82%) on CT. With regard to the neoplastic infiltration to the surrounding area, MRI and CT were almost equally efficient as to the capsular and the arterial invasion. However, as to the invasion to the posterion surface of pancreas and the portal system, MRI was a little superior to CT. In patients to whom foric pyrophosphate was injected, the choledochal duct was clearly separated from the tumor. In conclusion, our results suggest that MRI using abdominal belts, anticholinergic and foric pyrophosphate solution is extremely effective in the diagnosis of pancreas head cancer and is almost as efficient as CT. (author)

  12. Imaging long-term fate of intramyocardially implanted mesenchymal stem cells in a porcine myocardial infarction model.

    Directory of Open Access Journals (Sweden)

    Emerson C Perin

    Full Text Available The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [(18F]FEAU to monitor the long-term (up to 5 months spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [(18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33-35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC-associated [(18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [(18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI.

  13. Evaluation of the pancreas by MRI

    International Nuclear Information System (INIS)

    Imanishi, Yoshimasa; Hou, V.Y.; Chako, A.C.; Tempany, C.M.C.; Herold, C.J.; Zerhouni, E.A.

    1994-01-01

    Using T1-, P- and T2-weighted images of the upper abdomen obtained on 1.5 T MRI system, 18 items on the pancreas were evaluated in 89 controls. The items included pancreas sizes on T1-weighted image, pancreatic intensity compared with those of renal cortex, subcutaneous fat tissue, liver and spleen, obliteration of pancreas margin, and diameter of pancreatic duct on all images. Normal criteria, which were determined from data in the controls, were applied to images in the 40 patients with pancreatic or peripancreatic diseases. All 4 patients with an extrapancreatic tumor had no abnormality of pancreatic intensity, pancreatic margin, and pancreatic duct on T2-weighted image, except for pancreatic sizes and intensities at tumor sites. In contrast, 34 of 36 patients with pancreatic disease had abnormalities which pathologically depended on acute and/or chronic pancreatitis. (orig.)

  14. Computed tomography and ultrasound of the normal pancreas

    International Nuclear Information System (INIS)

    Kolmannskog, F.; Swensen, T.; Vatn, M.H.; Larsen, S.

    1982-01-01

    Computed tomography (CT) and ultrasound (US) were performed on 47 patients with a normal pancreas. CT was a significantly better method than US to demonstrate the pancreatic body and tail. The pancreatic head was also shown more often using CT than US, but this difference was not statistically significant. The diameters of the different parts of the pancreas measured at CT were significantly larger than measured at US. The explanation is most probably that the widths of the splenic and superior mesenteric veins are added to the diameters of the pancreas measured at CT, while using US, these vessels are clearly differentiated from the pancreatic tissue. US was a significantly better technique than CT to register the vascular structures surrounding the pancreas, except from the left renal vein, which was more often demonstrated at CT. (Auth.)

  15. Testosterone biotransformation by the isolated perfused canine pancreas

    International Nuclear Information System (INIS)

    Fernandez-del Castillo, C.; Diaz-Sanchez, V.; Varela-Fascinetto, G.; Altamirano, A.; Odor-Morales, A.; Lopez-Medrano, R.M.; Robles-Diaz, G.

    1991-01-01

    There is strong evidence indicating that the pancreas is under the influence of sex steroid hormones, and that it may even participate in their biosynthesis and metabolism. In the present study, [3H]testosterone was perfused into the isolated canine pancreas, and measured in the effluent with several of its metabolites (5 alpha-dihydrotestosterone, androstenedione, and estradiol). Results show that testosterone is readily transformed by the canine pancreas. The main product found in the effluent is androstenedione. The testis and spleen were also perfused with [3H]testosterone and used as controls. In both cases, this hormone appeared mostly unchanged in the effluent as compared to the pancreatic perfusion (p less than 0.0001). From our data, we conclude that the canine pancreas has the capacity to transform sex steroid hormones, and could be considered an extragonadal site of sex steroid biosynthesis

  16. Testosterone biotransformation by the isolated perfused canine pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-del Castillo, C.; Diaz-Sanchez, V.; Varela-Fascinetto, G.; Altamirano, A.; Odor-Morales, A.; Lopez-Medrano, R.M.; Robles-Diaz, G. (Instituto Nacional de la Nutricion Salvador Zubiran, Mexico City (Mexico))

    1991-01-01

    There is strong evidence indicating that the pancreas is under the influence of sex steroid hormones, and that it may even participate in their biosynthesis and metabolism. In the present study, (3H)testosterone was perfused into the isolated canine pancreas, and measured in the effluent with several of its metabolites (5 alpha-dihydrotestosterone, androstenedione, and estradiol). Results show that testosterone is readily transformed by the canine pancreas. The main product found in the effluent is androstenedione. The testis and spleen were also perfused with (3H)testosterone and used as controls. In both cases, this hormone appeared mostly unchanged in the effluent as compared to the pancreatic perfusion (p less than 0.0001). From our data, we conclude that the canine pancreas has the capacity to transform sex steroid hormones, and could be considered an extragonadal site of sex steroid biosynthesis.

  17. Multi-slice CT features of annular pancreas in neonates

    International Nuclear Information System (INIS)

    He Mingqing; Zhu Youzhi; Hu Kefei; Yin Chuangao; Hu Jun; Wang Song; Li Xu; Lu Zhongbin; Wang Yue; Liu Xiang

    2013-01-01

    Objective: To investigate the MSCT manifestations and their values in the diagnosis of annular pancreas in neonates. Methods: Retrospective analysis of clinical and CT findings in 27 cases with surgery-proved annular pancreas in neonates was made. The unenhanced and contrast-enhanced CT images were obtained in 20 patients. Two experienced radiologists determined the site and degree of obstruction, the relationship between the head of the pancreas and the obstruction point, and the surrounding tissue structure. Results: The direct signs included the fluid-filled or gas-filled bowel in the head of pancreas in 4 cases, the enhancement of surrounding soft tissue as enhanced pancreas in 17 cases, disappearance of the fat gap between the intestinal wall and the annular pancreas in 17 cases. The indirect signs included intestinal obstruction in 20 cases, 'single-bubble sign' in 2 cases, 'double-bubble sign' in 18 cases, the distal bowel without gas in 5 cases, small amount of gas in the distal bowel in 15 cases. In 12 of 18 cases showing 'double-bubble sign', the ratio of duodenal bubble diameter (Dd) to stomach bubble diameter (Ds)was over 1.0. The site of obstruction was located in the descending duodenum in 20 cases. The form of obstructed point presented with 'nipple sign' in 15 cases, with 'the mouse tail' in 5 cases. The expansion bowel was located in the head of pancreas in 1 case. Gas was found in the pancreatic duct in 1 case, and 'swirl sign' was shown in 2 cases. Conclusions: MSCT combined with three-dimensional reconstruction techniques can clearly demonstrate the annular pancreas' s shape, the site and degree of obstruction and other malformations. It can provide important information for clinical treatment. (authors)

  18. Dynamics of p53: A Master Decider of Cell Fate

    Directory of Open Access Journals (Sweden)

    Qingyin Luo

    2017-02-01

    Full Text Available Cellular stress‐induced temporal alterations—i.e., dynamics—are typically exemplified  by the dynamics of p53 that serve as a master to determine cell fate. p53 dynamics were initially  identified as the variations of p53 protein levels. However, a growing number of studies have  shown that p53 dynamics are also manifested in variations in the activity, spatial location, and  posttranslational modifications of p53 proteins, as well as the interplay among all p53 dynamical  features. These are essential in determining a specific outcome of cell fate. In this review, we  discuss the importance of the multifaceted features of p53 dynamics and their roles in the cell fate  decision process, as well as their potential applications in p53‐based cancer therapy. The review  provides new insights into p53 signaling pathways and their potentials in the development of new  strategies in p53‐based cancer therapy.

  19. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  20. Solid and papillary neoplasm of the pancreas

    DEFF Research Database (Denmark)

    Jørgensen, L J; Hansen, A B; Burcharth, F

    1992-01-01

    In two cases of solid and papillary neoplasm of the pancreas (SPN), positive staining for argyrophil granules, chromogranin-A, neuron-specific enolase, chymotrypsin, alpha 1-antitrypsin, vimentin, cytokeratin, and estrogen receptors was present. Ultrastructurally, neurosecretory as well as zymoge......In two cases of solid and papillary neoplasm of the pancreas (SPN), positive staining for argyrophil granules, chromogranin-A, neuron-specific enolase, chymotrypsin, alpha 1-antitrypsin, vimentin, cytokeratin, and estrogen receptors was present. Ultrastructurally, neurosecretory as well...... as zymogenlike granules were demonstrated. Measurements of mean nuclear volume and volume-corrected mitotic index discriminated between SPN and well-differentiated ductal adenocarcinoma of the pancreas, with notably lower values being seen in SPN. Silver-stained nucleolar organizer region counts showed wide...

  1. Expression of blood group antigens A and B in pancreas of vertebrates

    Directory of Open Access Journals (Sweden)

    ELENKA GEORGIEVA

    2012-01-01

    Full Text Available The biological role of blood group antigens (BGA A and B in tissues of different vertebrates is s