WorldWideScience

Sample records for pan-neural crest expression

  1. Xenopus reduced folate carrier regulates neural crest development epigenetically.

    Directory of Open Access Journals (Sweden)

    Jiejing Li

    Full Text Available Folic acid deficiency during pregnancy causes birth neurocristopathic malformations resulting from aberrant development of neural crest cells. The Reduced folate carrier (RFC is a membrane-bound receptor for facilitating transfer of reduced folate into the cells. RFC knockout mice are embryonic lethal and develop multiple malformations, including neurocristopathies. Here we show that XRFC is specifically expressed in neural crest tissues in Xenopus embryos and knockdown of XRFC by specific morpholino results in severe neurocristopathies. Inhibition of RFC blocked the expression of a series of neural crest marker genes while overexpression of RFC or injection of 5-methyltetrahydrofolate expanded the neural crest territories. In animal cap assays, knockdown of RFC dramatically reduced the mono- and trimethyl-Histone3-K4 levels and co-injection of the lysine methyltransferase hMLL1 largely rescued the XRFC morpholino phenotype. Our data revealed that the RFC mediated folate metabolic pathway likely potentiates neural crest gene expression through epigenetic modifications.

  2. Utility of Phox2b immunohistochemical stain in neural crest tumours and non-neural crest tumours in paediatric patients.

    Science.gov (United States)

    Warren, Mikako; Matsuno, Ryosuke; Tran, Henry; Shimada, Hiroyuki

    2018-03-01

    This study evaluated the utility of Phox2b in paediatric tumours. Previously, tyrosine hydroxylase (TH) was the most widely utilised sympathoadrenal marker specific for neural crest tumours with neuronal/neuroendocrine differentiation. However, its sensitivity is insufficient. Recently Phox2b has emerged as another specific marker for this entity. Phox2b immunohistochemistry (IHC) was performed on 159 paediatric tumours, including (group 1) 65 neural crest tumours with neuronal differentiation [peripheral neuroblastic tumours (pNT)]: 15 neuroblastoma undifferentiated (NB-UD), 10 NB poorly differentiated (NB-PD), 10 NB differentiating (NB-D), 10 ganglioneuroblastoma intermixed (GNBi), 10 GNB nodular (GNBn) and 10 ganglioneuroma (GN); (group 2) 23 neural crest tumours with neuroendocrine differentiation [pheochromocytoma/paraganglioma (PCC/PG)]; (group 3) 27 other neural crest tumours including one composite rhabdomyosarcoma/neuroblastoma; and (group 4) 44 non-neural crest tumours. TH IHC was performed on groups 1, 2 and 3. Phox2b was expressed diffusely in pNT (n = 65 of 65), strongly in NB-UD and NB-PD and with less intensity in NB-D, GNB and GN. Diffuse TH was seen in all NB-PD, NB-D, GNB and GN, but nine of 15 NB-UD and a nodule in GNBn did not express TH (n = 55 of 65). PCC/PG expressed diffuse Phox2b (n = 23 of 23) and diffuse TH, except for one tumour (n = 22 of 23). In composite rhabdomyosarcoma, TH was expressed only in neuroblastic cells and Phox2b was diffusely positive in neuroblastic cells and focally in rhabdomyosarcoma. All other tumours were negative for Phox2b (n = none of 44). Phox2b was a specific and sensitive marker for pNT and PCC/PG, especially useful for identifying NB-UD often lacking TH. Our study also presented a composite rhabdomyosarcoma/neuroblastoma of neural crest origin. © 2017 John Wiley & Sons Ltd.

  3. Neural Crest Cells Isolated from the Bone Marrow of Transgenic Mice Express JCV T-Antigen.

    Directory of Open Access Journals (Sweden)

    Jennifer Gordon

    Full Text Available JC virus (JCV, a common human polyomavirus, is the etiological agent of the demyelinating disease, progressive multifocal leukoencephalopathy (PML. In addition to its role in PML, studies have demonstrated the transforming ability of the JCV early protein, T-antigen, and its association with some human cancers. JCV infection occurs in childhood and latent virus is thought to be maintained within the bone marrow, which harbors cells of hematopoietic and non-hematopoietic lineages. Here we show that non-hematopoietic mesenchymal stem cells (MSCs isolated from the bone marrow of JCV T-antigen transgenic mice give rise to JCV T-antigen positive cells when cultured under neural conditions. JCV T-antigen positive cells exhibited neural crest characteristics and demonstrated p75, SOX-10 and nestin positivity. When cultured in conditions typical for mesenchymal cells, a population of T-antigen negative cells, which did not express neural crest markers arose from the MSCs. JCV T-antigen positive cells could be cultured long-term while maintaining their neural crest characteristics. When these cells were induced to differentiate into neural crest derivatives, JCV T-antigen was downregulated in cells differentiating into bone and maintained in glial cells expressing GFAP and S100. We conclude that JCV T-antigen can be stably expressed within a fraction of bone marrow cells differentiating along the neural crest/glial lineage when cultured in vitro. These findings identify a cell population within the bone marrow permissible for JCV early gene expression suggesting the possibility that these cells could support persistent viral infection and thus provide clues toward understanding the role of the bone marrow in JCV latency and reactivation. Further, our data provides an excellent experimental model system for studying the cell-type specificity of JCV T-antigen expression, the role of bone marrow-derived stem cells in the pathogenesis of JCV-related diseases

  4. Expression of cardiac neural crest and heart genes isolated by modified differential display.

    Science.gov (United States)

    Martinsen, Brad J; Groebner, Nathan J; Frasier, Allison J; Lohr, Jamie L

    2003-08-01

    The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent outflow tract septation are critical events during vertebrate heart development. We have performed four modified differential display screens in the chick embryo to identify genes that may be involved in CNC, OFT, secondary heart field, and heart development. The screens included differential display of RNA isolated from three different axial segments containing premigratory cranial neural crest cells; of RNA from distal outflow tract, proximal outflow tract, and atrioventricular tissue of embryonic chick hearts; and of RNA isolated from left and right cranial tissues, including the early heart fields. These screens have resulted in the identification of the five cDNA clones presented here, which are expressed in the cardiac neural crest, outflow tract and developing heart in patterns that are unique in heart development.

  5. Robo signaling regulates the production of cranial neural crest cells.

    Science.gov (United States)

    Li, Yan; Zhang, Xiao-Tan; Wang, Xiao-Yu; Wang, Guang; Chuai, Manli; Münsterberg, Andrea; Yang, Xuesong

    2017-12-01

    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1 + cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development. Copyright © 2017. Published by Elsevier Inc.

  6. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    Science.gov (United States)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  7. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.

    Science.gov (United States)

    Tribulo, Celeste; Aybar, Manuel J; Nguyen, Vu H; Mullins, Mary C; Mayor, Roberto

    2003-12-01

    There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest

  8. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    Science.gov (United States)

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  9. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  10. Recycling signals in the neural crest

    OpenAIRE

    Taneyhill, Lisa A.; Bronner-Fraser, Marianne E.

    2006-01-01

    Vertebrate neural crest cells are multipotent and differentiate into structures that include cartilage and the bones of the face, as well as much of the peripheral nervous system. Understanding how different model vertebrates utilize signaling pathways reiteratively during various stages of neural crest formation and differentiation lends insight into human disorders associated with the neural crest.

  11. Recycling signals in the neural crest.

    Science.gov (United States)

    Taneyhill, Lisa A; Bronner-Fraser, Marianne

    2005-01-01

    Vertebrate neural crest cells are multipotent and differentiate into structures that include cartilage and the bones of the face, as well as much of the peripheral nervous system. Understanding how different model vertebrates utilize signaling pathways reiteratively during various stages of neural crest formation and differentiation lends insight into human disorders associated with the neural crest.

  12. Aebp2 as an epigenetic regulator for neural crest cells.

    Directory of Open Access Journals (Sweden)

    Hana Kim

    Full Text Available Aebp2 is a potential targeting protein for the mammalian Polycomb Repression Complex 2 (PRC2. We generated a mutant mouse line disrupting the transcription of Aebp2 to investigate its in vivo roles. Aebp2-mutant homozygotes were embryonic lethal while heterozygotes survived to adulthood with fertility. In developing mouse embryos, Aebp2 is expressed mainly within cells of neural crest origin. In addition, many heterozygotes display a set of phenotypes, enlarged colon and hypopigmentation, similar to those observed in human patients with Hirschsprung's disease and Waardenburg syndrome. These phenotypes are usually caused by the absence of the neural crest-derived ganglia in hindguts and melanocytes. ChIP analyses demonstrated that the majority of the genes involved in the migration and development process of neural crest cells are downstream target genes of AEBP2 and PRC2. Furthermore, expression analyses confirmed that some of these genes are indeed affected in the Aebp2 heterozygotes. Taken together, these results suggest that Aebp2 may regulate the migration and development of the neural crest cells through the PRC2-mediated epigenetic mechanism.

  13. SOX10-Nano-Lantern Reporter Human iPS Cells; A Versatile Tool for Neural Crest Research.

    Directory of Open Access Journals (Sweden)

    Tomoko Horikiri

    Full Text Available The neural crest is a source to produce multipotent neural crest stem cells that have a potential to differentiate into diverse cell types. The transcription factor SOX10 is expressed through early neural crest progenitors and stem cells in vertebrates. Here we report the generation of SOX10-Nano-lantern (NL reporter human induced pluripotent stem cells (hiPS by using CRISPR/Cas9 systems, that are beneficial to investigate the generation and maintenance of neural crest progenitor cells. SOX10-NL positive cells are produced transiently from hiPS cells by treatment with TGFβ inhibitor SB431542 and GSK3 inhibitor CHIR99021. We found that all SOX10-NL-positive cells expressed an early neural crest marker NGFR, however SOX10-NL-positive cells purified from differentiated hiPS cells progressively attenuate their NL-expression under proliferation. We therefore attempted to maintain SOX10-NL-positive cells with additional signaling on the plane and sphere culture conditions. These SOX10-NL cells provide us to investigate mass culture with neural crest cells for stem cell research.

  14. Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus.

    Science.gov (United States)

    Bae, Chang-Joon; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2018-01-15

    During embryogenesis vertebrates develop a complex craniofacial skeleton associated with sensory organs. These structures are primarily derived from two embryonic cell populations the neural crest and cranial placodes, respectively. Neural crest cells and cranial placodes are specified through the integrated action of several families of signaling molecules, and the subsequent activation of a complex network of transcription factors. Here we describe the expression and function of Anosmin-1 (Anos1), an extracellular matrix protein, during neural crest and cranial placodes development in Xenopus laevis. Anos1 was identified as a target of Pax3 and Zic1, two transcription factors necessary and sufficient to generate neural crest and cranial placodes. Anos1 is expressed in cranial neural crest progenitors at early neurula stage and in cranial placode derivatives later in development. We show that Anos1 function is required for neural crest and sensory organs development in Xenopus, consistent with the defects observed in Kallmann syndrome patients carrying a mutation in ANOS1. These findings indicate that anos1 has a conserved function in the development of craniofacial structures, and indicate that anos1-depleted Xenopus embryos represent a useful model to analyze the pathogenesis of Kallmann syndrome. Copyright © 2017. Published by Elsevier Inc.

  15. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  16. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

    Science.gov (United States)

    Holland, L. Z.; Holland, N. D.

    2001-01-01

    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  17. Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.

    Science.gov (United States)

    Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto

    2018-03-06

    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    Science.gov (United States)

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  19. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  20. DNA methyltransferase 3b is dispensable for mouse neural crest development.

    Directory of Open Access Journals (Sweden)

    Bridget T Jacques-Fricke

    Full Text Available The neural crest is a population of multipotent cells that migrates extensively throughout vertebrate embryos to form diverse structures. Mice mutant for the de novo DNA methyltransferase DNMT3b exhibit defects in two neural crest derivatives, the craniofacial skeleton and cardiac ventricular septum, suggesting that DNMT3b activity is necessary for neural crest development. Nevertheless, the requirement for DNMT3b specifically in neural crest cells, as opposed to interacting cell types, has not been determined. Using a conditional DNMT3b allele crossed to the neural crest cre drivers Wnt1-cre and Sox10-cre, neural crest DNMT3b mutants were generated. In both neural crest-specific and fully DNMT3b-mutant embryos, cranial neural crest cells exhibited only subtle migration defects, with increased numbers of dispersed cells trailing organized streams in the head. In spite of this, the resulting cranial ganglia, craniofacial skeleton, and heart developed normally when neural crest cells lacked DNMT3b. This indicates that DNTM3b is not necessary in cranial neural crest cells for their development. We conclude that defects in neural crest derivatives in DNMT3b mutant mice reflect a requirement for DNMT3b in lineages such as the branchial arch mesendoderm or the cardiac mesoderm that interact with neural crest cells during formation of these structures.

  1. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  2. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells.

    Science.gov (United States)

    Uribe, Rosa A; Hong, Stephanie S; Bronner, Marianne E

    2018-01-01

    The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. AKT signaling displays multifaceted functions in neural crest development.

    Science.gov (United States)

    Sittewelle, Méghane; Monsoro-Burq, Anne H

    2018-05-31

    AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Constitutively active Notch1 converts cranial neural crest-derived frontonasal mesenchyme to perivascular cells in vivo

    Directory of Open Access Journals (Sweden)

    Sophie R. Miller

    2017-03-01

    Full Text Available Perivascular/mural cells originate from either the mesoderm or the cranial neural crest. Regardless of their origin, Notch signalling is necessary for their formation. Furthermore, in both chicken and mouse, constitutive Notch1 activation (via expression of the Notch1 intracellular domain is sufficient in vivo to convert trunk mesoderm-derived somite cells to perivascular cells, at the expense of skeletal muscle. In experiments originally designed to investigate the effect of premature Notch1 activation on the development of neural crest-derived olfactory ensheathing glial cells (OECs, we used in ovo electroporation to insert a tetracycline-inducible NotchΔE construct (encoding a constitutively active mutant of mouse Notch1 into the genome of chicken cranial neural crest cell precursors, and activated NotchΔE expression by doxycycline injection at embryonic day 4. NotchΔE-targeted cells formed perivascular cells within the frontonasal mesenchyme, and expressed a perivascular marker on the olfactory nerve. Hence, constitutively activating Notch1 is sufficient in vivo to drive not only somite cells, but also neural crest-derived frontonasal mesenchyme and perhaps developing OECs, to a perivascular cell fate. These results also highlight the plasticity of neural crest-derived mesenchyme and glia.

  5. The neural crest migrating into the 21st century

    Science.gov (United States)

    Bronner, Marianne E.; Simões-Costa, Marcos

    2016-01-01

    From the initial discovery of the neural crest over 150 years ago to the seminal studies of Le Douarin and colleagues in the latter part of the 20th century, understanding of the neural crest has moved from the descriptive to the experimental. Now, in the 21st century, neural crest research has migrated into the genomic age. Here we reflect upon the major advances in neural crest biology and the open questions that will continue to make research on this incredible vertebrate cell type an important subject in developmental biology for the century to come. PMID:26970616

  6. Insights into neural crest development from studies of avian embryos

    OpenAIRE

    Gandhi, Shashank; Bronner, Marianne E.

    2018-01-01

    The neural crest is a multipotent and highly migratory cell type that contributes to many of the defining features of vertebrates, including the skeleton of the head and most of the peripheral nervous system. 150 years after the discovery of the neural crest, avian embryos remain one of the most important model organisms for studying neural crest development. In this review, we describe aspects of neural crest induction, migration and axial level differences, highlighting what is known about ...

  7. Krox20 defines a subpopulation of cardiac neural crest cells contributing to arterial valves and bicuspid aortic valve.

    Science.gov (United States)

    Odelin, Gaëlle; Faure, Emilie; Coulpier, Fanny; Di Bonito, Maria; Bajolle, Fanny; Studer, Michèle; Avierinos, Jean-François; Charnay, Patrick; Topilko, Piotr; Zaffran, Stéphane

    2018-01-03

    Although cardiac neural crest cells are required at early stages of arterial valve development, their contribution during valvular leaflet maturation remains poorly understood. Here, we show in mouse that neural crest cells from pre-otic and post-otic regions make distinct contributions to the arterial valve leaflets. Genetic fate-mapping analysis of Krox20-expressing neural crest cells shows a large contribution to the borders and the interleaflet triangles of the arterial valves. Loss of Krox20 function results in hyperplastic aortic valve and partially penetrant bicuspid aortic valve formation. Similar defects are observed in neural crest Krox20 -deficient embryos. Genetic lineage tracing in Krox20 -/- mutant mice shows that endothelial-derived cells are normal, whereas neural crest-derived cells are abnormally increased in number and misplaced in the valve leaflets. In contrast, genetic ablation of Krox20 -expressing cells is not sufficient to cause an aortic valve defect, suggesting that adjacent cells can compensate this depletion. Our findings demonstrate a crucial role for Krox20 in arterial valve development and reveal that an excess of neural crest cells may be associated with bicuspid aortic valve. © 2018. Published by The Company of Biologists Ltd.

  8. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  9. EGF–FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    International Nuclear Information System (INIS)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva; Costa, Ana Paula; Leal, Rodrigo Bainy; Trentin, Andrea Gonçalves

    2014-01-01

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF 2 ) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF 2 , however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF 2 in neuronal differentiation protocols. - Highlights: • EPI-NCSCs express

  10. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition

    Science.gov (United States)

    Barriga, Elias H.; Maxwell, Patrick H.

    2013-01-01

    One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell–cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells. PMID:23712262

  11. Neural Crest-Derived Mesenchymal Cells Require Wnt Signaling for Their Development and Drive Invagination of the Telencephalic Midline

    Science.gov (United States)

    Choe, Youngshik; Zarbalis, Konstantinos S.; Pleasure, Samuel J.

    2014-01-01

    Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs) leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis. PMID:24516524

  12. Neural crest-derived mesenchymal cells require Wnt signaling for their development and drive invagination of the telencephalic midline.

    Directory of Open Access Journals (Sweden)

    Youngshik Choe

    Full Text Available Embryonic neural crest cells contribute to the development of the craniofacial mesenchyme, forebrain meninges and perivascular cells. In this study, we investigated the function of ß-catenin signaling in neural crest cells abutting the dorsal forebrain during development. In the absence of ß-catenin signaling, neural crest cells failed to expand in the interhemispheric region and produced ectopic smooth muscle cells instead of generating dermal and calvarial mesenchyme. In contrast, constitutive expression of stabilized ß-catenin in neural crest cells increased the number of mesenchymal lineage precursors suggesting that ß-catenin signaling is necessary for the expansion of neural crest-derived mesenchymal cells. Interestingly, the loss of neural crest-derived mesenchymal stem cells (MSCs leads to failure of telencephalic midline invagination and causes ventricular system defects. This study shows that ß-catenin signaling is required for the switch of neural crest cells to MSCs and mediates the expansion of MSCs to drive the formation of mesenchymal structures of the head. Furthermore, loss of these structures causes striking defects in forebrain morphogenesis.

  13. Review: the role of neural crest cells in the endocrine system.

    Science.gov (United States)

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  14. Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2005-01-01

    Full Text Available During the early stages of embryogenesis, pluripotent neural crest cells (NCC are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR. The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development.

  15. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Costa, Ana Paula; Leal, Rodrigo Bainy [Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Trentin, Andrea Gonçalves, E-mail: andrea.trentin@ufsc.br [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil)

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  16. The Neural Border: Induction, Specification and Maturation of the territory that generates Neural Crest cells.

    Science.gov (United States)

    Pla, Patrick; Monsoro-Burq, Anne H

    2018-05-28

    The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions. Copyright © 2018. Published by Elsevier Inc.

  17. Development of teeth in chick embryos after mouse neural crest transplantations.

    Science.gov (United States)

    Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-05-27

    Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.

  18. Requirement for Foxd3 in the maintenance of neural crest progenitors.

    Science.gov (United States)

    Teng, Lu; Mundell, Nathan A; Frist, Audrey Y; Wang, Qiaohong; Labosky, Patricia A

    2008-05-01

    Understanding the molecular mechanisms of stem cell maintenance is crucial for the ultimate goal of manipulating stem cells for the treatment of disease. Foxd3 is required early in mouse embryogenesis; Foxd3(-/-) embryos fail around the time of implantation, cells of the inner cell mass cannot be maintained in vitro, and blastocyst-derived stem cell lines cannot be established. Here, we report that Foxd3 is required for maintenance of the multipotent mammalian neural crest. Using tissue-specific deletion of Foxd3 in the neural crest, we show that Foxd3(flox/-); Wnt1-Cre mice die perinatally with a catastrophic loss of neural crest-derived structures. Cranial neural crest tissues are either missing or severely reduced in size, the peripheral nervous system consists of reduced dorsal root ganglia and cranial nerves, and the entire gastrointestinal tract is devoid of neural crest derivatives. These results demonstrate a global role for this transcriptional repressor in all aspects of neural crest maintenance along the anterior-posterior axis, and establish an unprecedented molecular link between multiple divergent progenitor lineages of the mammalian embryo.

  19. Development of teeth in chick embryos after mouse neural crest transplantations

    OpenAIRE

    Mitsiadis, Thimios A.; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-01-01

    Teeth were lost in birds 70–80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick ...

  20. Establishing neural crest identity: a gene regulatory recipe

    Science.gov (United States)

    Simões-Costa, Marcos; Bronner, Marianne E.

    2015-01-01

    The neural crest is a stem/progenitor cell population that contributes to a wide variety of derivatives, including sensory and autonomic ganglia, cartilage and bone of the face and pigment cells of the skin. Unique to vertebrate embryos, it has served as an excellent model system for the study of cell behavior and identity owing to its multipotency, motility and ability to form a broad array of cell types. Neural crest development is thought to be controlled by a suite of transcriptional and epigenetic inputs arranged hierarchically in a gene regulatory network. Here, we examine neural crest development from a gene regulatory perspective and discuss how the underlying genetic circuitry results in the features that define this unique cell population. PMID:25564621

  1. Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis.

    Science.gov (United States)

    Milstone, Zachary J; Lawson, Grace; Trivedi, Chinmay M

    2017-12-01

    Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Modelling collective cell migration of neural crest.

    Science.gov (United States)

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Germ layers, the neural crest and emergent organization in development and evolution.

    Science.gov (United States)

    Hall, Brian K

    2018-04-10

    Discovered in chick embryos by Wilhelm His in 1868 and named the neural crest by Arthur Milnes Marshall in 1879, the neural crest cells that arise from the neural folds have since been shown to differentiate into almost two dozen vertebrate cell types and to have played major roles in the evolution of such vertebrate features as bone, jaws, teeth, visceral (pharyngeal) arches, and sense organs. I discuss the discovery that ectodermal neural crest gave rise to mesenchyme and the controversy generated by that finding; the germ layer theory maintained that only mesoderm could give rise to mesenchyme. A second topic of discussion is germ layers (including the neural crest) as emergent levels of organization in animal development and evolution that facilitated major developmental and evolutionary change. The third topic is gene networks, gene co-option, and the evolution of gene-signaling pathways as key to developmental and evolutionary transitions associated with the origin and evolution of the neural crest and neural crest cells. © 2018 Wiley Periodicals, Inc.

  4. Sagittal crest formation in great apes and gibbons

    OpenAIRE

    Balolia, K. L.; Soligo, C.; Wood, B.

    2017-01-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfur...

  5. The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Hartley Rebecca S

    2010-01-01

    Full Text Available Abstract Background The neural crest is a unique population of cells that arise in the vertebrate ectoderm at the neural plate border after which they migrate extensively throughout the embryo, giving rise to a wide range of derivatives. A number of proteins involved in neural crest development have dynamic expression patterns, and it is becoming clear that ubiquitin-mediated protein degradation is partly responsible for this. Results Here we demonstrate a novel role for the F-box protein Cdc4/Fbxw7 in neural crest development. Two isoforms of Xenopus laevis Cdc4 were identified, and designated xCdc4α and xCdc4β. These are highly conserved with vertebrate Cdc4 orthologs, and the Xenopus proteins are functionally equivalent in terms of their ability to degrade Cyclin E, an established vertebrate Cdc4 target. Blocking xCdc4 function specifically inhibited neural crest development at an early stage, prior to expression of c-Myc, Snail2 and Snail. Conclusions We demonstrate that Cdc4, an ubiquitin E3 ligase subunit previously identified as targeting primarily cell cycle regulators for proteolysis, has additional roles in control of formation of the neural crest. Hence, we identify Cdc4 as a protein with separable but complementary functions in control of cell proliferation and differentiation.

  6. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  7. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  8. Regeneration of neural crest derivatives in the Xenopus tadpole tail

    Directory of Open Access Journals (Sweden)

    Slack Jonathan MW

    2007-05-01

    Full Text Available Abstract Background After amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper. Results Labelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration. There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation. The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them. Conclusion On regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.

  9. Animal models for studying neural crest development: is the mouse different?

    Science.gov (United States)

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  10. File list: Pol.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  11. File list: Pol.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  12. File list: Pol.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.hESC_derived_neural_crests hg19 RNA polymerase Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  13. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Kirby, M.; Stewart, D.

    1984-01-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [ 3 H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [ 3 H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [ 3 H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  14. File list: Unc.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  15. File list: Unc.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.hESC_derived_neural_crests hg19 Unclassified Pluripotent stem cell hESC derived neural... crests SRX059366 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  16. Modeling Cerebrovascular Pathophysiology in Amyloid-β Metabolism using Neural-Crest-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Christine Cheung

    2014-10-01

    Full Text Available Summary: There is growing recognition of cerebrovascular contributions to neurodegenerative diseases. In the walls of cerebral arteries, amyloid-beta (Aβ accumulation is evident in a majority of aged people and patients with cerebral amyloid angiopathy. Here, we leverage human pluripotent stem cells to generate vascular smooth muscle cells (SMCs from neural crest progenitors, recapitulating brain-vasculature-specific attributes of Aβ metabolism. We confirm that the lipoprotein receptor, LRP1, functions in our neural-crest-derived SMCs to mediate Aβ uptake and intracellular lysosomal degradation. Hypoxia significantly compromises the contribution of SMCs to Aβ clearance by suppressing LRP1 expression. This enabled us to develop an assay of Aβ uptake by using the neural crest-derived SMCs with hypoxia as a stress paradigm. We then tested several vascular protective compounds in a high-throughput format, demonstrating the value of stem-cell-based phenotypic screening for novel therapeutics and drug repurposing, aimed at alleviating amyloid burden. : The contribution of blood vessel pathologies to neurodegenerative disorders is relatively neglected, partly due to inadequate human tissues for research. By using human stem cells, Cheung et al. establish a method of generating vascular smooth muscle cells (SMCs from neural crest progenitors, the primary precursors that give rise to brain blood vessels. These stem-cell-derived SMCs display defective amyloid processing under chronic hypoxia, a phenomenon well documented in the cerebral vasculatures of aged people and patients with Alzheimer’s disease.

  17. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  18. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Epperlein, Hans-Henning; Khattak, Shahryar; Knapp, Dunja; Tanaka, Elly M; Malashichev, Yegor B

    2012-01-01

    A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum) donor embryos into white (d/d) axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.

  19. Neural crest does not contribute to the neck and shoulder in the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Hans-Henning Epperlein

    Full Text Available BACKGROUND: A major step during the evolution of tetrapods was their transition from water to land. This process involved the reduction or complete loss of the dermal bones that made up connections to the skull and a concomitant enlargement of the endochondral shoulder girdle. In the mouse the latter is derived from three separate embryonic sources: lateral plate mesoderm, somites, and neural crest. The neural crest was suggested to sustain the muscle attachments. How this complex composition of the endochondral shoulder girdle arose during evolution and whether it is shared by all tetrapods is unknown. Salamanders that lack dermal bone within their shoulder girdle were of special interest for a possible contribution of the neural crest to the endochondral elements and muscle attachment sites, and we therefore studied them in this context. RESULTS: We grafted neural crest from GFP+ fluorescent transgenic axolotl (Ambystoma mexicanum donor embryos into white (d/d axolotl hosts and followed the presence of neural crest cells within the cartilage of the shoulder girdle and the connective tissue of muscle attachment sites of the neck-shoulder region. Strikingly, neural crest cells did not contribute to any part of the endochondral shoulder girdle or to the connective tissue at muscle attachment sites in axolotl. CONCLUSIONS: Our results in axolotl suggest that neural crest does not serve a general function in vertebrate shoulder muscle attachment sites as predicted by the "muscle scaffold theory," and that it is not necessary to maintain connectivity of the endochondral shoulder girdle to the skull. Our data support the possibility that the contribution of the neural crest to the endochondral shoulder girdle, which is observed in the mouse, arose de novo in mammals as a developmental basis for their skeletal synapomorphies. This further supports the hypothesis of an increased neural crest diversification during vertebrate evolution.

  20. File list: NoD.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  1. File list: NoD.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.20.AllAg.hESC_derived_neural_crests hg19 No description Pluripotent stem cell hESC derived neural... crests http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  2. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    Science.gov (United States)

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  3. File list: InP.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  4. File list: InP.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.50.AllAg.hESC_derived_neural_crests hg19 Input control Pluripotent stem cell hESC derived neural... crests SRX1091573,SRX059369,SRX059361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  5. A negative modulatory role for rho and rho-associated kinase signaling in delamination of neural crest cells

    Directory of Open Access Journals (Sweden)

    Kalcheim Chaya

    2008-10-01

    Full Text Available Abstract Background Neural crest progenitors arise as epithelial cells and then undergo a process of epithelial to mesenchymal transition that precedes the generation of cellular motility and subsequent migration. We aim at understanding the underlying molecular network. Along this line, possible roles of Rho GTPases that act as molecular switches to control a variety of signal transduction pathways remain virtually unexplored, as are putative interactions between Rho proteins and additional known components of this cascade. Results We investigated the role of Rho/Rock signaling in neural crest delamination. Active RhoA and RhoB are expressed in the membrane of epithelial progenitors and are downregulated upon delamination. In vivo loss-of-function of RhoA or RhoB or of overall Rho signaling by C3 transferase enhanced and/or triggered premature crest delamination yet had no effect on cell specification. Consistently, treatment of explanted neural primordia with membrane-permeable C3 or with the Rock inhibitor Y27632 both accelerated and enhanced crest emigration without affecting cell proliferation. These treatments altered neural crest morphology by reducing stress fibers, focal adhesions and downregulating membrane-bound N-cadherin. Reciprocally, activation of endogenous Rho by lysophosphatidic acid inhibited emigration while enhancing the above. Since delamination is triggered by BMP and requires G1/S transition, we examined their relationship with Rho. Blocking Rho/Rock function rescued crest emigration upon treatment with noggin or with the G1/S inhibitor mimosine. In the latter condition, cells emigrated while arrested at G1. Conversely, BMP4 was unable to rescue cell emigration when endogenous Rho activity was enhanced by lysophosphatidic acid. Conclusion Rho-GTPases, through Rock, act downstream of BMP and of G1/S transition to negatively regulate crest delamination by modifying cytoskeleton assembly and intercellular adhesion.

  6. Synthesis on accumulation of putative neurotransmitters by cultured neural crest cells

    International Nuclear Information System (INIS)

    Maxwell, G.D.; Sietz, P.D.; Rafford, C.E.

    1982-01-01

    The events mediating the differentiation of embryonic neural crest cells into several types of neurons are incompletely understood. In order to probe one aspect of this differentiation, we have examined the capacity of cultured quail trunk neural crest cells to synthesize, from radioactive precursors, and store several putative neurotransmitter compounds. These neural crest cultures develop the capacity to synthesize and accumulate acetylcholine and the catecholamines norepinephrine and dopamine. In contrast, detectable but relatively little synthesis and accumulation of 5-hydroxytryptamine gamma-aminobutyric acid, or octopamine from the appropriate radiolabeled precursors were observed. The capacity for synthesis and accumulation of radiolabeled acetylcholine and catecholamines is very low or absent at 2 days in vitro. Between 3 and 7 days in vitro, there is a marked rise in both catecholamine and acetylcholine accumulation in the cultures. These findings suggest that, under the particular conditions used in these experiments, the development of neurotransmitter biosynthesis in trunk neural crest cells ijs restricted and resembles, at least partially, the pattern observed in vivo. The development of this capacity to synthesize and store radiolabeled acetylcholine and catecholamines from the appropriate radioactive precursors coincides closely with the development of the activities of the synthetic enzymes choline acetyltransferase and dopamine beta-hydroxylase reported by others

  7. Expression of the capacity to release [3H]norepinephrine by neural crest cultures

    International Nuclear Information System (INIS)

    Maxwell, G.D.; Sietz, P.D.

    1983-01-01

    Cultures of trunk neural crest cells from quail embryos were tested for their ability to release [ 3 H]norepinephrine [( 3 H]NE) in response to depolarization. After 7 days in vitro, exposure of the cultures to either the alkaloid veratridine or 40 mM K+ results in the evoked release of [ 3 H]NE. The release evoked by veratridine is blocked in the presence of tetrodotoxin. The release evoked by increased K+ is blocked by the calcium antagonist cobalt. Release in response to the nicotinic cholinergic agonist 1,1-dimethyl-4-phenylpiperazine was also observed. The amount of evoked release is highly correlated with the number of histochemically demonstrable catecholamine-containing cells in a given culture. Autoradiography reveals that the radioactivity taken up by these cultures is located in a subpopulation of cells whose morphology resembles that of the histochemically detectable catecholamine-containing cell population. Whereas capacity for the release of [ 3 H] NE is readily detectable after 7 days in vitro, it is detectable only with difficulty after 4 days in vitro. There is a greater than 6-fold increase in uptake capacity over the period of 4 to 7 days in vitro. These results demonstrate that neural crest cultures grown without their normal synaptic inputs or targets can exhibit the capacity for stimulus secretion coupling characteristic of synaptic neurotransmitter release

  8. File list: ALL.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...RX059366,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  9. File list: ALL.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.hESC_derived_neural_crests hg19 All antigens Pluripotent stem cell hESC derived neural...X1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  10. File list: His.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...3,SRX1091531,SRX059364,SRX1091530 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  11. File list: His.PSC.20.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.20.AllAg.hESC_derived_neural_crests.bed ...

  12. File list: His.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.hESC_derived_neural_crests hg19 Histone Pluripotent stem cell hESC derived neural...30,SRX059362,SRX1091539,SRX059364 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  13. Zebrafish msxB, msxC and msxE function together to refine the neural-nonneural border and regulate cranial placodes and neural crest development.

    Science.gov (United States)

    Phillips, Bryan T; Kwon, Hye-Joo; Melton, Colt; Houghtaling, Paul; Fritz, Andreas; Riley, Bruce B

    2006-06-15

    The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.

  14. File list: Oth.PSC.05.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.05.AllAg.hESC_derived_neural_crests.bed ...

  15. File list: Oth.PSC.10.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091546,SRX1091550,SRX059360,SRX059368,SRX059367 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.10.AllAg.hESC_derived_neural_crests.bed ...

  16. File list: Oth.PSC.50.AllAg.hESC_derived_neural_crests [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.hESC_derived_neural_crests hg19 TFs and others Pluripotent stem cell hESC derived neural...X1091550,SRX059360,SRX1091547,SRX059367,SRX059368 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.PSC.50.AllAg.hESC_derived_neural_crests.bed ...

  17. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Ericsson, Rolf; Cerny, Robert; Falck, Pierre; Olsson, Lennart

    2004-10-01

    The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates. 2004 Wiley-Liss, Inc.

  18. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene

    Science.gov (United States)

    Hasegawa, Sumitaka; Sato, Tomoyuki; Akazawa, Hiroshi; Okada, Hitoshi; Maeno, Akiteru; Ito, Masaki; Sugitani, Yoshinobu; Shibata, Hiroyuki; Miyazaki, Jun-ichi; Katsuki, Motoya; Yamauchi, Yasutaka; Yamamura, Ken-ichi; Katamine, Shigeru; Noda, Tetsuo

    2002-01-01

    Apc is a gene associated with familial adenomatous polyposis coli (FAP) and its inactivation is a critical step in colorectal tumor formation. The protein product, adenomatous polyposis coli (APC), acts to down-regulate intracellular levels of β-catenin, a key signal transducer in the Wnt signaling. Conditional targeting of Apc in the neural crest of mice caused massive apoptosis of cephalic and cardiac neural crest cells at about 11.5 days post coitum, resulting in craniofacial and cardiac anomalies at birth. Notably, the apoptotic cells localized in the regions where β-catenin had accumulated. In contrast to its role in colorectal epithelial cells, inactivation of APC leads to dysregulation of β-catenin/Wnt signaling with resultant apoptosis in certain tissues including neural crest cells. PMID:11756652

  19. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype

    DEFF Research Database (Denmark)

    Breau, Marie A; Pietri, Thomas; Eder, Olivier

    2006-01-01

    The enteric nervous system arises mainly from vagal and sacral neural crest cells that colonise the gut between 9.5 and 14 days of development in mice. Using the Cre-LoxP system, we removed beta1 integrins in the neural crest cells when they emerge from the neural tube. beta1-null enteric neural...

  20. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome.

    Science.gov (United States)

    Eason, Jessica; Williams, Antionette L; Chawla, Bahaar; Apsey, Christian; Bohnsack, Brenda L

    2017-09-01

    Ethanol (ETOH) exposure during pregnancy is associated with craniofacial and neurologic abnormalities, but infrequently disrupts the anterior segment of the eye. In these studies, we used zebrafish to investigate differences in the teratogenic effect of ETOH on craniofacial, periocular, and ocular neural crest. Zebrafish eye and neural crest development was analyzed by means of live imaging, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, immunostaining, detection of reactive oxygen species, and in situ hybridization. Our studies demonstrated that foxd3-positive neural crest cells in the periocular mesenchyme and developing eye were less sensitive to ETOH than sox10-positive craniofacial neural crest cells that form the pharyngeal arches and jaw. ETOH increased apoptosis in the retina, but did not affect survival of periocular and ocular neural crest cells. ETOH also did not increase reactive oxygen species within the eye. In contrast, ETOH increased ventral neural crest apoptosis and reactive oxygen species production in the facial mesenchyme. In the eye and craniofacial region, sod2 showed high levels of expression in the anterior segment and in the setting of Sod2 knockdown, low levels of ETOH decreased migration of foxd3-positive neural crest cells into the developing eye. However, ETOH had minimal effect on the periocular and ocular expression of transcription factors (pitx2 and foxc1) that regulate anterior segment development. Neural crest cells contributing to the anterior segment of the eye exhibit increased ability to withstand ETOH-induced oxidative stress and apoptosis. These studies explain the rarity of anterior segment dysgenesis despite the frequent craniofacial abnormalities in fetal alcohol syndrome. Birth Defects Research 109:1212-1227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  2. Diprosopia revisited in light of the recognized role of neural crest cells in facial development.

    Science.gov (United States)

    Carles, D; Weichhold, W; Alberti, E M; Léger, F; Pigeau, F; Horovitz, J

    1995-01-01

    The aim of this study is to compare the theory of embryogenesis of the face with human diprosopia. This peculiar form of conjoined twinning is of great interest because 1) only the facial structures are duplicated and 2) almost all cases have a rather monomorphic pattern. The hypothesis is that an initial duplication of the notochord leads to two neural plates and subsequently duplicated neural crests. In those conditions, derivatives of the neural crests will be partially or totally duplicated; therefore, in diprosopia, the duplicated facial structures would be considered to be neural crest derivatives. If these structures are identical to those that are experimentally demonstrated to be neural crest derivatives in animals, these findings are an argument to apply this theory of facial embryogenesis in man. Serial horizontal sections of the face of two diprosopic fetuses (11 and 21 weeks gestation) were studied macro- and microscopically to determine the external and internal structures that are duplicated. Complete postmortem examination was performed in search for additional malformations. The face of both fetuses showed a very similar morphologic pattern with duplication of ocular, nasal, and buccal structures. The nasal fossae and the anterior part of the tongue were also duplicated, albeit the posterior part and the pharyngolaryngeal structures were unique. Additional facial clefts were present in both fetuses. Extrafacial anomalies were represented by a craniorachischisis, two fused vertebral columns and, in the older fetus, by a complex cardiac malformation morphologically identical to malformations induced by removal or grafting of additional cardiac neural crest cells in animals. These pathological findings could identify the facial structures that are neural crest derivatives in man. They are similar to those experimentally demonstrated to be neural crest derivatives in animals. In this respect, diprosopia could be considered as the end of a spectrum

  3. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development.

    Science.gov (United States)

    Luo, Ting; Xu, Yanhua; Hoffman, Trevor L; Zhang, Tailin; Schilling, Thomas; Sargent, Thomas D

    2007-04-01

    Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural crest (NC). Knockdown experiments in frog and fish using antisense morpholinos reveal essential functions for Inca in a subset of NC cells that form craniofacial cartilage. Cells lacking Inca migrate successfully but fail to condense into skeletal primordia. Overexpression of Inca disrupts cortical actin and prevents formation of actin "purse strings", which are required for wound healing in Xenopus embryos. We show that Inca physically interacts with p21-activated kinase 5 (PAK5), a known regulator of the actin cytoskeleton that is co-expressed with Inca in embryonic ectoderm, including in the NC. These results suggest that Inca and PAK5 cooperate in restructuring cytoskeletal organization and in the regulation of cell adhesion in the early embryo and in NC cells during craniofacial development.

  4. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yu, E-mail: tanyu2048@163.com; Fu, Runqing, E-mail: furunqing@sjtu.edu.cn; Liu, Jiaqiang, E-mail: liujqmj@163.com; Wu, Yong, E-mail: wyonger@gmail.com; Wang, Bo, E-mail: wb228@126.com; Jiang, Ning, E-mail: 179639060@qq.com; Nie, Ping, E-mail: nieping1011@sina.com; Cao, Haifeng, E-mail: 0412chf@163.com; Yang, Zhi, E-mail: wcums1981@163.com; Fang, Bing, E-mail: fangbing@sjtu.edu.cn

    2016-07-08

    Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.

  5. ADAM10 is essential for cranial neural crest-derived maxillofacial bone development

    International Nuclear Information System (INIS)

    Tan, Yu; Fu, Runqing; Liu, Jiaqiang; Wu, Yong; Wang, Bo; Jiang, Ning; Nie, Ping; Cao, Haifeng; Yang, Zhi; Fang, Bing

    2016-01-01

    Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development. -- Highlights: •We firstly reported that ADAM10 was essentially involved in maxillofacial bone development. •ADAM10 cKO mice present craniofacial dysmorphia and bone defects. •Impaired osteoblast differentiation,proliferation and apoptosis underlie the bone deformity.

  6. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  7. Gene expression profiling analysis of the effects of low-intensity pulsed ultrasound on induced pluripotent stem cell-derived neural crest stem cells.

    Science.gov (United States)

    Xia, Bin; Zou, Yang; Xu, Zhiling; Lv, Yonggang

    2017-11-01

    Low-intensity pulsed ultrasound (LIPUS) is a noninvasive technique that has been shown to affect cell proliferation, migration, and differentiation and promote the regeneration of damaged peripheral nerve. Our previous studies had proved that LIPUS can significantly promote the neural differentiation of induced pluripotent stem cell-derived neural crest stem cells (iPSCs-NCSCs) and enhance the repair of rat-transected sciatic nerve. To further explore the underlying mechanisms of LIPUS treatment of iPSCs-NCSCs, this study reported the gene expression profiling analysis of iPSCs-NCSCs before and after LIPUS treatment using the RNA-sequencing (RNA-Seq) method. It was found that expression of 76 genes of iPSCs-NCSCs cultured in a serum-free neural induction medium and expression of 21 genes of iPSCs-NCSCs cultured in a neuronal differentiation medium were significantly changed by LIPUS treatment. The differentially expressed genes are related to angiogenesis, nervous system activity and functions, cell activities, and so on. The RNA-seq results were further verified by a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). High correlation was observed between the results obtained from qRT-PCR and RNA-Seq. This study presented new information on the global gene expression patterns of iPSCs-NCSCs after LIPUS treatment and may expand the understanding of the complex molecular mechanism of LIPUS treatment of iPSCs-NCSCs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  8. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    SUMMARY The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identified as substrates for ADAM13. ADAM13 upregulates canonical Wnt signaling and early expression of the transcription factor snail2, whereas EfnB1 inhibits the canonical Wnt pathway and snail2 expression. We propose that by cleaving class B Efns, ADAM13 promotes canonical Wnt signaling and early CNC induction. PMID:20708595

  9. A role for chemokine signaling in neural crest cell migration and craniofacial development

    Science.gov (United States)

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  10. Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development☆

    Science.gov (United States)

    Neilson, Karen M.; Abbruzzesse, Genevieve; Kenyon, Kristy; Bartolo, Vanessa; Krohn, Patrick; Alfandari, Dominique; Moody, Sally A.

    2016-01-01

    Mutations in SIX1 and in its co-factor, EYA1, underlie Branchiootorenal Spectrum disorder (BOS), which is characterized by variable branchial arch, otic and kidney malformations. However, mutations in these two genes are identified in only half of patients. We screened for other potential co-factors, and herein characterize one of them, Pa2G4 (aka Ebp1/Plfap). In human embryonic kidney cells, Pa2G4 binds to Six1 and interferes with the Six1-Eya1 complex. In Xenopus embryos, knock-down of Pa2G4 leads to down-regulation of neural border zone, neural crest and cranial placode genes, and concomitant expansion of neural plate genes. Gain-of-function leads to a broader neural border zone, expanded neural crest and altered cranial placode domains. In loss-of-function assays, the later developing otocyst is reduced in size, which impacts gene expression. In contrast, the size of the otocyst in gain-of-function assays is not changed but the expression domains of several otocyst genes are reduced. Together these findings establish an interaction between Pa2G4 and Six1, and demonstrate that it has an important role in the development of tissues affected in BOS. Thereby, we suggest that pa2g4 is a potential candidate gene for BOS. PMID:27940157

  11. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Science.gov (United States)

    Wrage, Philip C; Tran, Thi; To, Khai; Keefer, Edward W; Ruhn, Kelly A; Hong, John; Hattangadi, Supriya; Treviño, Isaac; Tansey, Malú G

    2008-01-16

    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key

  12. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    Science.gov (United States)

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  13. [Comparison of the Latissimus dorsi insertions on the iliac crest in chimpanzee (Pan troglodytes) and in man].

    Science.gov (United States)

    Vacher, C; Ben Hadj Yahia, S; Braun, M; Journeau, P

    2014-03-01

    Comparing to other primates, one of the most important specificities of the human anatomy are consequences of bipedalism. Although bone consequences are well known (lumbar lordosis, horizontal position of the foramen magnum, lengthening of the lower limbs, reduction of the pelvis, specialization of the foot), consequences of our locomotion on the Latissimus dorsi are still unclear. One dissection of a chimpanzee Latissimus dorsi (Pan troglodytes) has been performed and compared to 30 human Latissimus dorsi dissections (10 fresh cadavers and 20 formoled cadavers). In each dissection, the existence of direct muscular insertions on the iliac crest has been investigated and the constitution of the thoracolumbar fascia has been described. In chimpanzee dissection, a muscular direct insertion of the Latissimus dorsi was present on the iliac crest of 9 cm long. The TLF was made of the superficial and the deep fascias of the Latissimus dorsi and the superficial fascia of the erector spinae muscles which was deeper. In man, there was no direct muscular insertion of the Latissimus dorsi in 90 % of cases, the TLF was constituted the same way. This study suggests that the Latissimus dorsi has been separated from the iliac crest in man during the evolution because of the permanent bipedalism and that it stayed inserted on the iliac crest in chimpanzee because of the brachiation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. An amphioxus Msx gene expressed predominantly in the dorsal neural tube.

    Science.gov (United States)

    Sharman, A C; Shimeld, S M; Holland, P W

    1999-04-01

    Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage.

  15. Changes in cholinergic parameters associated with failure of conotruncal septation in embryonic chick hearts after neural crest ablation

    International Nuclear Information System (INIS)

    Kirby, M.L.; Aronstam, R.S.; Buccafusco, J.J.

    1985-01-01

    Cells from the neural crest over occipital somites migrate to the heart, where they give rise to parasympathetic postganglionic neurons as well as ectomesenchymal elements which contribute to conotruncal septation. With a microcautery needle, the neural crest over occipital somites was ablated bilaterally in chicken embryos at an early stage of development. Histological examination on incubation day 15 revealed conotruncal malformations, involving malformation or absence of the conotruncal septum in all embryos. Two peaks of embryo mortality were observed. One peak (incubation days 6-8) occurred at the same time as conotruncal septal closure; the second peak (incubation days 11-13) was concurrent with the onset of functional parasympathetic innervation. A disruption of parasympathetic innervation was indicated by: (1) a decrease in acetylcholinesterase staining, (2) a decrease (27%) in the number of ganglion cells in the conotruncus, (3) decreases in the acetylcholine content of atrium (31%) and ventricle (39%), and (4) a decrease (21%) in muscarinic acetylcholine receptor density on incubation day 15. Radiolabeled ligand-binding studies revealed no change in the affinity of cardiac muscarinic receptors for [ 3 H]methylscopolamine (K/sub D/ . 0.17-0.21 nM). Agonist-binding affinity and sensitivity to guanine nucleotides were similarly unaffected. The reasons for the limited extent of the parasympathetic lesion are unclear, but may involve recruitment of precursor cells from other regions of the neural crest, partial regeneration of the neural crest following surgical removal, or an alteration in the contribution of incoming sympathetic or preganglionic parasympathetic elements. No such plasticity was associated with neural crest contributions to the structural development of the conotruncus. Malformations were observed in all lesioned embryos

  16. Cut loose and run: The complex role of ADAM proteases during neural crest cell development.

    Science.gov (United States)

    Alfandari, Dominique; Taneyhill, Lisa A

    2018-02-24

    ADAM metalloproteases have been shown to play critical roles during development. In this review, we will describe functional evidence that implicates ADAM proteins during the genesis, migration and differentiation of neural crest cells. We will restrict our analysis to the transmembrane ADAMs as other reviews have addressed the role of extracellular metalloproteases (Christian et al. [2013] Critical Reviews in Biochemistry and Molecular Biology 48:544-560). This review will describe advances that have been obtained mainly through the use of two vertebrate model systems, the frog, and avian embryos. The role of the principal substrates of ADAMs, the cadherins, has been extensively described in other reviews, most recently in (Cousin [1997] Mechanisms of Development 148:79-88; Taneyhill and Schiffmacher [2017] Genesis, 55). The function of ADAMs in the migration of other cell types, including the immune system, wound healing and cancer has been described previously in (Dreymueller et al. [2017] Mediators of Inflammation 2017: 9621724). Our goal is to illustrate both the importance of ADAMs in controlling neural crest behavior and how neural crest cells have helped us understand the molecular interactions, substrates, and functions of ADAM proteins in vivo. © 2018 Wiley Periodicals, Inc.

  17. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1

    DEFF Research Database (Denmark)

    Fuchs, Sebastian; Herzog, Dominik; Sumara, Grzegorz

    2009-01-01

    -renewal and proliferation of later stage, but not early migratory NCSCs. This stage-specific requirement for small Rho GTPases is due to changes in NCSCs that, during development, acquire responsiveness to mitogenic EGF acting upstream of both Cdc42 and Rac1. Thus, our data reveal distinct mechanisms for growth control......The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially...

  18. Bmps and id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest.

    Directory of Open Access Journals (Sweden)

    Ankita Das

    Full Text Available Cranial neural crest cells (CNCCs have the remarkable capacity to generate both the non-ectomesenchyme derivatives of the peripheral nervous system and the ectomesenchyme precursors of the vertebrate head skeleton, yet how these divergent lineages are specified is not well understood. Whereas studies in mouse have indicated that the Twist1 transcription factor is important for ectomesenchyme development, its role and regulation during CNCC lineage decisions have remained unclear. Here we show that two Twist1 genes play an essential role in promoting ectomesenchyme at the expense of non-ectomesenchyme gene expression in zebrafish. Twist1 does so by promoting Fgf signaling, as well as potentially directly activating fli1a expression through a conserved ectomesenchyme-specific enhancer. We also show that Id2a restricts Twist1 activity to the ectomesenchyme lineage, with Bmp activity preferentially inducing id2a expression in non-ectomesenchyme precursors. We therefore propose that the ventral migration of CNCCs away from a source of Bmps in the dorsal ectoderm promotes ectomesenchyme development by relieving Id2a-dependent repression of Twist1 function. Together our model shows how the integration of Bmp inhibition at its origin and Fgf activation along its migratory route would confer temporal and spatial specificity to the generation of ectomesenchyme from the neural crest.

  19. Meis2 is essential for cranial and cardiac neural crest development

    Czech Academy of Sciences Publication Activity Database

    Machoň, Ondřej; Mašek, Jan; Machoňová, Olga; Krauss, S.; Kozmik, Zbyněk

    2015-01-01

    Roč. 15, Nov 6 (2015) ISSN 1471-213X R&D Projects: GA ČR GAP305/12/2042; GA MŠk(CZ) LK11214 Institutional support: RVO:68378050 Keywords : Meis2 * Persistent truncus arteriosus * Neural crest * Craniofacial skeleton * Cranial nerves Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.096, year: 2015

  20. SOXE neofunctionalization and elaboration of the neural crest during chordate evolution

    Science.gov (United States)

    Tai, Andrew; Cheung, Martin; Huang, Yong-Heng; Jauch, Ralf; Bronner, Marianne E.; Cheah, Kathryn S. E.

    2016-01-01

    During chordate evolution, two genome-wide duplications facilitated acquisition of vertebrate traits, including emergence of neural crest cells (NCCs), in which neofunctionalization of the duplicated genes are thought to have facilitated development of craniofacial structures and the peripheral nervous system. How these duplicated genes evolve and acquire the ability to specify NC and their derivatives are largely unknown. Vertebrate SoxE paralogues, most notably Sox9/10, are essential for NC induction, delamination and lineage specification. In contrast, the basal chordate, amphioxus, has a single SoxE gene and lacks NC-like cells. Here, we test the hypothesis that duplication and divergence of an ancestral SoxE gene may have facilitated elaboration of NC lineages. By using an in vivo expression assay to compare effects of AmphiSoxE and vertebrate Sox9 on NC development, we demonstrate that all SOXE proteins possess similar DNA binding and homodimerization properties and can induce NCCs. However, AmphiSOXE is less efficient than SOX9 in transactivation activity and in the ability to preferentially promote glial over neuronal fate, a difference that lies within the combined properties of amino terminal and transactivation domains. We propose that acquisition of AmphiSoxE expression in the neural plate border led to NCC emergence while duplication and divergence produced advantageous mutations in vertebrate homologues, promoting elaboration of NC traits. PMID:27734831

  1. Sagittal crest formation in great apes and gibbons.

    Science.gov (United States)

    Balolia, Katharine L; Soligo, Christophe; Wood, Bernard

    2017-06-01

    The frequency of sagittal crest expression and patterns of sagittal crest growth and development have been documented in hominoids, including some extinct hominin taxa, and the more frequent expression of the sagittal crest in males has been traditionally linked with the need for larger-bodied individuals to have enough attachment area for the temporalis muscle. In the present study, we investigate sagittal cresting in a dentally mature sample of four hominoid taxa (Pan troglodytes schweinfurthii, Gorilla gorilla gorilla, Pongo pygmaeus pygmaeus and Hylobates lar). We investigate whether sagittal crest size increases with age beyond dental maturity in males and females of G. g. gorilla and Po. pyg. pygmaeus, and whether these taxa show sex differences in the timing of sagittal crest development. We evaluate the hypothesis that the larger sagittal crest of males may not be solely due to the requirement for a larger surface area than the un-crested cranial vault can provide for the attachment of the temporalis muscle, and present data on sex differences in temporalis muscle attachment area and sagittal crest size relative to cranial size. Gorilla g. gorilla and Po. pyg. pygmaeus males show significant relationships between tooth wear rank and sagittal crest size, and they show sagittal crest size differences between age groups that are not found in females. The sagittal crest emerges in early adulthood in the majority of G. g. gorilla males, whereas the percentage of G. g. gorilla females possessing a sagittal crest increases more gradually. Pongo pyg. pygmaeus males experience a three-fold increase in the number of specimens exhibiting a sagittal crest in mid-adulthood, consistent with a secondary growth spurt. Gorilla g. gorilla and Po. pyg. pygmaeus show significant sex differences in the size of the temporalis muscle attachment area, relative to cranial size, with males of both taxa showing positive allometry not shown in females. Gorilla g

  2. Properties of Neural Crest-Like Cells Differentiated from Human Embryonic Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Křivánek, J.; Švandová, Eva; Králik, J.; Hajda, S.; Fedr, Radek; Vinařský, V.; Jaroš, J.; Souček, Karel

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 30-38 ISSN 0015-5500 R&D Projects: GA ČR(CZ) GAP304/11/1418 Institutional support: RVO:68081707 Keywords : stem cell differentiation * neural crest * odontogenesis Subject RIV: BO - Biophysics; ED - Physiology (UZFG-Y) Impact factor: 1.000, year: 2014

  3. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  4. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Science.gov (United States)

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  5. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    Science.gov (United States)

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  6. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-08-01

    Full Text Available Individuals with bicuspid aortic valves (BAV are at a higher risk of developing thoracic aortic aneurysms (TAA than patients with trileaflet aortic valves (TAV. The aneurysms associated with BAV most commonly involve the ascending aorta and spare the descending aorta. Smooth muscle cells (SMCs in the ascending and descending aorta arise from neural crest (NC and paraxial mesoderm (PM, respectively. We hypothesized defective differentiation of the neural crest stem cells (NCSCs-derived SMCs but not paraxial mesoderm cells (PMCs-derived SMCs contributes to the aortopathy associated with BAV. When induced pluripotent stem cells (iPSCs from BAV/TAA patients were differentiated into NCSC-derived SMCs, these cells demonstrated significantly decreased expression of marker of SMC differentiation (MYH11 and impaired contraction compared to normal control. In contrast, the PMC-derived SMCs were similar to control cells in these aspects. The NCSC-SMCs from the BAV/TAA also showed decreased TGF-β signaling based on phosphorylation of SMAD2, and increased mTOR signaling. Inhibition of mTOR pathway using rapamycin rescued the aberrant differentiation. Our data demonstrates that decreased differentiation and contraction of patient's NCSC-derived SMCs may contribute to that aortopathy associated with BAV.

  7. I131-meta-iodobenzylguanidine in the diagnosis and treatment of neural crest tumours

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.; Hartog Jager, F.C.A. den; Taal, B.G.; Engelsman, E.; Kraker, J. de; Voute, P.A.

    1988-01-01

    Iodine-131-meta-iodobenzylguanidine (I-131-MIBG) was used for scintigraphic detection and therapy of neural crest tumours. The methodology of both techniques is described. Based upon experience with I-131-MIBG-scintigraphy in 170 patients with neural crest tumours, of whom 46 received multiple therapeutic doses of I-131-MIBG, and upon the cumulative reports in the literature, the role of I-131-MIBG in diagnosis and treatment of each of these diseases is indicated. I-131-MIBG-scintigraphy is one of the most sensitive and specific techniques for the diagnosis, staging and follow-up of phaeochromocytoma and neuroblastoma and I-131-MIBG-therapy may induce remission in a number of these patients. In carcinoid and medullary thyroid carcinoma the diagnostic sensitivity is less; however, once the diagnosis has been made, it is useful to establish that the tumour concentrates I-131-MIBG, to see if the patients at some point in time may be amenable to I-131-MIBG-therapy

  8. In vivo transplantation of enteric neural crest cells into mouse gut; Engraftment, functional integration and long-term safety

    NARCIS (Netherlands)

    J.E. Cooper (Julie E.); C. Mccann; D. Natarajan (Dipa); S. Choudhury; W. Boesmans (Werend); J.-M. Delalande (Jean-Marie); P.V. Berghe (Pieter Vanden); A.J. Burns (Alan); N. Thapar (Nikhil)

    2016-01-01

    textabstractObjectives: Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and

  9. Tcf7l1 protects the anterior neural fold from adopting the neural crest fate

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Machoň, Ondřej; Kořínek, Vladimír; Taketo, M.M.; Kozmik, Zbyněk

    2016-01-01

    Roč. 143, č. 12 (2016), s. 2206-2216 ISSN 0950-1991 R&D Projects: GA ČR GAP305/12/2042; GA ČR(CZ) GA14-33952S; GA MŠk(CZ) LK11214; GA MŠk LO1419; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : Tcf/Lef * Wnt dignaling * neural crest * forebrain * mouse * zebrafish Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.843, year: 2016

  10. Modeling initiation of Ewing sarcoma in human neural crest cells.

    Directory of Open Access Journals (Sweden)

    Cornelia von Levetzow

    2011-04-01

    Full Text Available Ewing sarcoma family tumors (ESFT are aggressive bone and soft tissue tumors that express EWS-ETS fusion genes as driver mutations. Although the histogenesis of ESFT is controversial, mesenchymal (MSC and/or neural crest (NCSC stem cells have been implicated as cells of origin. For the current study we evaluated the consequences of EWS-FLI1 expression in human embryonic stem cell-derived NCSC (hNCSC. Ectopic expression of EWS-FLI1 in undifferentiated hNCSC and their neuro-mesenchymal stem cell (hNC-MSC progeny was readily tolerated and led to altered expression of both well established as well as novel EWS-FLI1 target genes. Importantly, whole genome expression profiling studies revealed that the molecular signature of established ESFT is more similar to hNCSC than any other normal tissue, including MSC, indicating that maintenance or reactivation of the NCSC program is a feature of ESFT pathogenesis. Consistent with this hypothesis, EWS-FLI1 induced hNCSC genes as well as the polycomb proteins BMI-1 and EZH2 in hNC-MSC. In addition, up-regulation of BMI-1 was associated with avoidance of cellular senescence and reversible silencing of p16. Together these studies confirm that, unlike terminally differentiated cells but consistent with bone marrow-derived MSC, NCSC tolerate expression of EWS-FLI1 and ectopic expression of the oncogene initiates transition to an ESFT-like state. In addition, to our knowledge this is the first demonstration that EWS-FLI1-mediated induction of BMI-1 and epigenetic silencing of p16 might be critical early initiating events in ESFT tumorigenesis.

  11. Embryonic cell-cell adhesion: a key player in collective neural crest migration.

    Science.gov (United States)

    Barriga, Elias H; Mayor, Roberto

    2015-01-01

    Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.

  12. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation.

    Science.gov (United States)

    Kabatas, S; Demir, C S; Civelek, E; Yilmaz, I; Kircelli, A; Yilmaz, C; Akyuva, Y; Karaoz, E

    2018-01-01

    This study aimed to analyze the effect of human Dental Pulp-Neural Crest Stem Cells (hDP-NCSCs) delivery on lesion site after spinal cord injury (SCI), and to observe the functional recovery after transplantation. Neural Crest Stem Cells (NCSCs) were isolated from human Dental Pulp (hDP). The experimental rat population was divided into four groups (n = 6/24). Their behavioral motility was scored regularly. After 4-weeks, rats were sacrificed, and their spinal cords were examined for Green Fluorescent Protein (GFP) labeled hDP-NCSCs by immunofluorescence (IF) staining. In early post-injury (p.i) period, the ultrastructure of spinal cord tissue was preserved in Group 4. The majority of cells forming the ependymal region around the central canal were found to be hDP-NCSCs. While the grey-and-white-matter around the ependymal region was composed of e.g. GFP cells, with astrocytic-like appearance. The scores showed significant motor recovery in hind limb functions in Group 4. However, no obvious change was observed in other groups. Cells e.g., mesenchymal (Vimentin+) which express GFP+ cells in the gray-and-white-matter around the ependymal region could indicate the potential to self-renewal and plasticity. Thus, transplantation of hDP-NCSCs might be an effective strategy to improve functional recovery following spinal cord trauma (Fig. 10, Ref. 32).

  13. The neural crest, a multifaceted structure of the vertebrates.

    Science.gov (United States)

    Dupin, Elisabeth; Le Douarin, Nicole M

    2014-09-01

    In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals. © 2014 Wiley Periodicals, Inc.

  14. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    Science.gov (United States)

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  15. Neuropilin-1 interacts with the second branchial arch microenvironment to mediate chick neural crest cell dynamics

    Science.gov (United States)

    McLennan, Rebecca; Kulesa, Paul M.

    2011-01-01

    Cranial neural crest cells (NCCs) require neuropilin signaling to reach and invade the branchial arches. Here, we use an in vivo chick model to investigate whether the neuropilin-1 knockdown phenotype is specific to the second branchial arch (ba2), changes in NCC behaviors and phenotypic consequences, and whether neuropilins work together to facilitate entry into and invasion of ba2. We find that cranial NCCs with reduced neuropilin-1 expression displayed shorter protrusions and decreased cell body and nuclear length-to-width ratios characteristic of a loss in polarity and motility, after specific interaction with ba2. Directed NCC migration was rescued by transplantation of transfected cells into rhombomere 4 of younger hosts. Lastly, reduction of neuropilin-2 expression by shRNA either solely or with reduction of neuropilin-1 expression did not lead to a stronger head phenotype. Thus, NCCs, independent of rhombomere origin, require neuropilin-1, but not neuropilin-2 to maintain polarity and directed migration into ba2. PMID:20503363

  16. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    OpenAIRE

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identif...

  17. Sonic Hedgehog promotes the survival of neural crest cells by limiting apoptosis induced by the dependence receptor CDON during branchial arch development.

    Science.gov (United States)

    Delloye-Bourgeois, Céline; Rama, Nicolas; Brito, José; Le Douarin, Nicole; Mehlen, Patrick

    2014-09-26

    Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    Science.gov (United States)

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the

  19. A spatial neural fuzzy network for estimating pan evaporation at ungauged sites

    Directory of Open Access Journals (Sweden)

    C.-H. Chung

    2012-01-01

    Full Text Available Evaporation is an essential reference to the management of water resources. In this study, a hybrid model that integrates a spatial neural fuzzy network with the kringing method is developed to estimate pan evaporation at ungauged sites. The adaptive network-based fuzzy inference system (ANFIS can extract the nonlinear relationship of observations, while kriging is an excellent geostatistical interpolator. Three-year daily data collected from nineteen meteorological stations covering the whole of Taiwan are used to train and test the constructed model. The pan evaporation (Epan at ungauged sites can be obtained through summing up the outputs of the spatially weighted ANFIS and the residuals adjusted by kriging. Results indicate that the proposed AK model (hybriding ANFIS and kriging can effectively improve the accuracy of Epan estimation as compared with that of empirical formula. This hybrid model demonstrates its reliability in estimating the spatial distribution of Epan and consequently provides precise Epan estimation by taking geographical features into consideration.

  20. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    Science.gov (United States)

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  1. Temporally Regulated Neural Crest Transcription Factors Distinguish Neuroectodermal Tumors of Varying Malignancy and Differentiation

    Directory of Open Access Journals (Sweden)

    Timothy R. Gershon

    2005-06-01

    Full Text Available Neuroectodermal tumor cells, like neural crest (NC cells, are pluripotent, proliferative, and migratory. We tested the hypothesis that genetic programs essential to NC development are activated in neuroectodermal tumors. We examined the expression of transcription factors PAX3, PAX7, AP-2α, and SOX10 in human embryos and neuroectodermal tumors: neurofibroma, schwannoma, neuroblastoma, malignant nerve sheath tumor, melanoma, medulloblastoma, supratentorial primitive neuroectodermal tumor, and Ewing's sarcoma. We also examined the expression of P0, ERBB3, and STX, targets of SOX10, AP-2α, and PAX3, respectively. PAX3, AP-2α, and SOX10 were expressed sequentially in human NC development, whereas PAX7 was restricted to mesoderm. Tumors expressed PAX3, AP-2α, SOX10, and PAX7 in specific combinations. SOX10 and AP-2α were expressed in relatively differentiated neoplasms. The early NC marker, PAX3, and its homologue, PAX7, were detected in poorly differentiated tumors and tumors with malignant potential. Expression of NC transcription factors and target genes correlated. Transcription factors essential to NC development are thus present in neuroectodermal tumors. Correlation of specific NC transcription factors with phenotype, and with expression of specific downstream genes, provides evidence that these transcription factors actively influence gene expression and tumor behavior. These findings suggest that PAX3, PAX7, AP-2α, and SOX10 are potential markers of prognosis and targets for therapeutic intervention.

  2. Zebrafish Adar2 Edits the Q/R site of AMPA receptor Subunit gria2α transcript to ensure normal development of nervous system and cranial neural crest cells.

    Directory of Open Access Journals (Sweden)

    I-Chen Li

    Full Text Available BACKGROUND: Adar2 deaminates selective adenosines to inosines (A-to-I RNA editing in the double-stranded region of nuclear transcripts. Although the functions of mouse Adar2 and its biologically most important substrate gria2, encoding the GluA2 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, have been extensively studied, the substrates and functions of zebrafish Adar2 remain elusive. METHODS/PRINCIPAL FINDINGS: Expression of Adar2 was perturbed in the adar2 morphant (adar2MO, generated by antisense morpholio oligonucleotides. The Q/R editing of gria2α was reduced in the adar2MO and was enhanced by overexpression of Adar2, demonstrating an evolutionarily conserved activity between zebrafish and mammalian Adar2 in editing the Q/R site of gria2. To delineate the role of Q/R editing of gria2α in the developmental defects observed in the adar2MO, the Q/R editing of gria2α was specifically perturbed in the gria2αQRMO, generated by a morpholio oligonucleotide complementary to the exon complementary sequence (ECS required for the Q/R editing. Analogous to the adar2-deficient and Q/R-editing deficient mice displaying identical neurological defects, the gria2αQRMO and adar2MO displayed identical developmental defects in the nervous system and cranial cartilages. Knockdown p53 abolished apoptosis and partially suppressed the loss of spinal cord motor neurons in these morphants. However, reducing p53 activity neither replenished the brain neuronal populations nor rescued the developmental defects. The expressions of crestin and sox9b in the neural crest cells were reduced in the adar2MO and gria2αQRMO. Overexpressing the edited GluA2αR in the adar2MO restored normal expressions of cresting and sox9b. Moreover, overexpressing the unedited GluA2αQ in the wild type embryos resulted in reduction of crestin and sox9b expressions. These results argue that an elevated GluA2αQ level is sufficient for generating the

  3. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75+ stem cells with dental follicle cell conditioned medium

    International Nuclear Information System (INIS)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin

    2015-01-01

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75 + ) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75 + CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75 + cells, suggesting their differentiation along cementoblast-like lineage. p75 + stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75 + ) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75 + CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75 + cells express cementoblast specific mineralization markers. • p75 + cells are pure stem

  4. Epithelial–Mesenchymal Transitions during Neural Crest and Somite Development

    Directory of Open Access Journals (Sweden)

    Chaya Kalcheim

    2015-12-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT is a central process during embryonic development that affects selected progenitor cells of all three germ layers. In addition to driving the onset of cellular migrations and subsequent tissue morphogenesis, the dynamic conversions of epithelium into mesenchyme and vice-versa are intimately associated with the segregation of homogeneous precursors into distinct fates. The neural crest and somites, progenitors of the peripheral nervous system and of skeletal tissues, respectively, beautifully illustrate the significance of EMT to the above processes. Ongoing studies progressively elucidate the gene networks underlying EMT in each system, highlighting the similarities and differences between them. Knowledge of the mechanistic logic of this normal ontogenetic process should provide important insights to the understanding of pathological conditions such as cancer metastasis, which shares some common molecular themes.

  5. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin, E-mail: dr.xinnie@gmail.com

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization

  6. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Science.gov (United States)

    Kennedy, Allyson E; Kandalam, Suraj; Olivares-Navarrete, Rene; Dickinson, Amanda J G

    2017-01-01

    Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  7. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  8. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  9. Prediction and characterisation of a highly conserved, remote and cAMP responsive enhancer that regulates Msx1 gene expression in cardiac neural crest and outflow tract.

    Science.gov (United States)

    Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair

    2008-05-15

    Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.

  10. Dental anomalies in different cleft groups related to neural crest developmental fields contributes to the understanding of cleft aetiology

    DEFF Research Database (Denmark)

    Riis, Louise Claudius; Kjær, Inger; Mølsted, Kirsten

    2014-01-01

    OBJECTIVE: To analyze dental deviations in three cleft groups and relate findings to embryological neural crest fields (frontonasal, maxillary, and palatal). The overall purpose was to evaluate how fields are involved in different cleft types. DESIGN: Retrospective audit of clinical photographs...

  11. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety.

    Directory of Open Access Journals (Sweden)

    Julie E Cooper

    Full Text Available Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety.Neurospheres generated from yellow fluorescent protein (YFP expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B. Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression.YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16 ± 0.01;43 cells, n = 6 in YFP+ transplanted ENCCs (abolished with TTX. Long-term follow-up (24 months showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites. In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone.Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.

  12. Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Matthias Schürmann

    2014-07-01

    Full Text Available Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm, human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.

  13. A key role for poly(ADP-ribose polymerase 3 in ectodermal specification and neural crest development.

    Directory of Open Access Journals (Sweden)

    Michèle Rouleau

    2011-01-01

    Full Text Available The PARP family member poly(ADP-ribose polymerase 3 (PARP3 is structurally related to the well characterized PARP1 that orchestrates cellular responses to DNA strand breaks and cell death by the synthesis of poly(ADP-ribose. In contrast to PARP1 and PARP2, the functions of PARP3 are undefined. Here, we reveal critical functions for PARP3 during vertebrate development.We have used several in vitro and in vivo approaches to examine the possible functions of PARP3 as a transcriptional regulator, a function suggested from its previously reported association with several Polycomb group (PcG proteins. We demonstrate that PARP3 gene occupancy in the human neuroblastoma cell line SK-N-SH occurs preferentially with developmental genes regulating cell fate specification, tissue patterning, craniofacial development and neurogenesis. Addressing the significance of this association during zebrafish development, we show that morpholino oligonucleotide-directed inhibition of parp3 expression in zebrafish impairs the expression of the neural crest cell specifier sox9a and of dlx3b/dlx4b, the formation of cranial sensory placodes, inner ears and pectoral fins. It delays pigmentation and severely impedes the development of the median fin fold and tail bud.Our findings demonstrate that Parp3 is crucial in the early stages of zebrafish development, possibly by exerting its transcriptional regulatory functions as early as during the specification of the neural plate border.

  14. E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells.

    Directory of Open Access Journals (Sweden)

    Allyson E Kennedy

    Full Text Available Since electronic cigarette (ECIG introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.

  15. Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells.

    Science.gov (United States)

    Bagher, Zohreh; Kamrava, Seyed Kamran; Alizadeh, Rafieh; Farhadi, Mohammad; Absalan, Moloud; Falah, Masoumeh; Faghihi, Faezeh; Zare-Sadeghi, Arash; Komeili, Ali

    2018-05-25

    Cell transplantation is a potential therapeutic approach for repairing neuropathological and neurodegenerative disorders of central nervous system by replacing the degenerated cells with new ones. Among a variety of stem cell candidates to provide these new cells, olfactory ectomesenchymal stem cells (OE-MSCs) have attracted a great attention due to their neural crest origin, easy harvest, high proliferation, and autologous transplantation. Since there is no report on differentiation potential of these cells into motor neuron-like cells, we evaluated this potential using Real-time PCR, flowcytometry and immunocytochemistry after the treatment with differentiation cocktail containing retinoic acid and Sonic Hedgehog. Immunocytochemistry staining of the isolated OE-MSCs demonstrated their capability to express nestin and vimentin, as the two markers of primitive neuroectoderm. The motor neuron differentiation of OE-MSCs resulted in changing their morphology into bipolar cells with high expression of motor neuron markers of ChAT, Hb-9 and Islet-1 at the level of mRNA and protein. Consequently, we believe that the OE-MSCs have great potential to differentiate into motor neuron-like cells and can be an ideal stem cell source for the treatment of motor neuron-related disorders of central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Melanocyte Fate in Neural Crest is Triggered by Myb Proteins through Activation of c-kit

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Pajer, Petr; Čermák, Vladimír; Dvořák, Michal

    2007-01-01

    Roč. 64, č. 21 (2007), s. 2975-2984 ISSN 1420-682X R&D Projects: GA MŠk(CZ) LC06061; GA ČR GA204/06/1728 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb proto-oncogene * v-mybAMV oncogene * neural crest * cell fate determination * melanocytes * c-kit signal Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.239, year: 2007

  17. PSA-NCAM-Negative Neural Crest Cells Emerging during Neural Induction of Pluripotent Stem Cells Cause Mesodermal Tumors and Unwanted Grafts

    Science.gov (United States)

    Lee, Dongjin R.; Yoo, Jeong-Eun; Lee, Jae Souk; Park, Sanghyun; Lee, Junwon; Park, Chul-Yong; Ji, Eunhyun; Kim, Han-Soo; Hwang, Dong-Youn; Kim, Dae-Sung; Kim, Dong-Wook

    2015-01-01

    Summary Tumorigenic potential of human pluripotent stem cells (hPSCs) is an important issue in clinical applications. Despite many efforts, PSC-derived neural precursor cells (NPCs) have repeatedly induced tumors in animal models even though pluripotent cells were not detected. We found that polysialic acid-neural cell adhesion molecule (PSA-NCAM)− cells among the early NPCs caused tumors, whereas PSA-NCAM+ cells were nontumorigenic. Molecular profiling, global gene analysis, and multilineage differentiation of PSA-NCAM− cells confirm that they are multipotent neural crest stem cells (NCSCs) that could differentiate into both ectodermal and mesodermal lineages. Transplantation of PSA-NCAM− cells in a gradient manner mixed with PSA-NCAM+ cells proportionally increased mesodermal tumor formation and unwanted grafts such as PERIPHERIN+ cells or pigmented cells in the rat brain. Therefore, we suggest that NCSCs are a critical target for tumor prevention in hPSC-derived NPCs, and removal of PSA-NCAM− cells eliminates the tumorigenic potential originating from NCSCs after transplantation. PMID:25937368

  18. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development.

    Science.gov (United States)

    Chung, Il-Hyuk; Yamaza, Takayoshi; Zhao, Hu; Choung, Pill-Hoon; Shi, Songtao; Chai, Yang

    2009-04-01

    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.

  19. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube.

    Science.gov (United States)

    Shimeld, S M; McKay, I J; Sharpe, P T

    1996-04-01

    The mouse homeobox-genes Msx-1 and Msx-2 are expressed in several areas of the developing embryo, including the neural tube, neural crest, facial processes and limb buds. Here we report the characterisation of a third mouse Msx gene, which we designate Msx-3. The embryonic expression of Msx-3 was found to differ from that of Msx-1 and -2 in that it was confined to the dorsal neural tube. In embryos with 5-8 somites a segmental pattern of expression was observed in the hindbrain, with rhombomeres 3 and 5 lacking Msx-3 while other rhombomeres expressed Msx-3. This pattern was transient, however, such that in embryos with 18 or more somites expression was continuous throughout the dorsal hindbrain and anterior dorsal spinal cord. Differentiation of dorsal cell types in the neural tube can be induced by addition of members of the Tgf-beta family. Additionally, Msx-1 and -2 have been shown to be activated by addition of the Tgf-beta family member Bmp-4. To determine if Bmp-4 could activate Msx-3, we incubated embryonic hindbrain explants with exogenous Bmp-4. The dorsal expression of Msx-3 was seen to expand into more ventral regions of the neurectoderm in Bmp-4-treated cultures, implying that Bmp-4 may be able to mimic an in vivo signal that induces Msx-3.

  20. Dicer activity in neural crest cells is essential for craniofacial organogenesis and pharyngeal arch artery morphogenesis

    Science.gov (United States)

    Nie, Xuguang; Wang, Qin; Jiao, Kai

    2014-01-01

    MicroRNAs (miRNAs) play important roles in regulating gene expression during numerous biological/pathological processes. Dicer encodes an RNase III endonuclease that is essential for generating most, if not all, functional miRNAs. In this work, we applied a conditional gene inactivation approach to examine the function of Dicer during neural crest cell (NCC) development. Mice with NCC-specific inactivation of Dicer died perinatally. Cranial and cardiac NCC migration into target tissues was not affected by Dicer disruption, but their subsequent development was disturbed. NCC derivatives and their associated mesoderm-derived cells displayed massive apoptosis, leading to severe abnormalities during craniofacial morphogenesis and organogenesis. In addition, the 4th pharyngeal arch artery (PAA) remodeling was affected, resulting in interrupted aortic arch artery type B (IAA-B) in mutant animals. Taken together, our results show that Dicer activity in NCCs is essential for craniofacial development and pharyngeal arch artery morphogenesis. PMID:21256960

  1. Postotic and preotic cranial neural crest cells differently contribute to thyroid development.

    Science.gov (United States)

    Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko

    2016-01-01

    Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    Science.gov (United States)

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  3. Isolation and culture of neural crest cells from embryonic murine neural tube.

    Science.gov (United States)

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from

  4. In vivo impact of Dlx3 conditional inactivation in Neural Crest-Derived Craniofacial Bones

    Science.gov (United States)

    Duverger, Olivier; Isaac, Juliane; Zah, Angela; Hwang, Joonsung; Berdal, Ariane; Lian, Jane B.; Morasso, Maria I.

    2012-01-01

    Mutations in DLX3 in humans lead to defects in craniofacial and appendicular bones, yet the in vivo activity related to Dlx3 function during normal skeletal development have not been fully elucidated. Here we used a conditional knockout approach to analyze the effects of neural crest deletion of Dlx3 on craniofacial bones development. At birth, mutant mice exhibit a normal overall positioning of the skull bones, but a change in the shape of the calvaria was observed. Molecular analysis of the genes affected in the frontal bones and mandibles from these mice identified several bone markers known to affect bone development, with a strong prediction for increased bone formation and mineralization in vivo. Interestingly, while a subset of these genes were similarly affected in frontal bones and mandibles (Sost, Mepe, Bglap, Alp, Ibsp, Agt), several genes, including Lect1 and Calca, were specifically affected in frontal bones. Consistent with these molecular alterations, cells isolated from the frontal bone of mutant mice exhibited increased differentiation and mineralization capacities ex vivo, supporting cell autonomous defects in neural crest cells. However, adult mutant animals exhibited decreased bone mineral density in both mandibles and calvaria, as well as a significant increase in bone porosity. Together, these observations suggest that mature osteoblasts in the adult respond to signals that regulate adult bone mass and remodeling. This study provides new downstream targets for Dlx3 in craniofacial bone, and gives additional evidence of the complex regulation of bone formation and homeostasis in the adult skeleton. PMID:22886599

  5. Search for the Missing lncs: Gene Regulatory Networks in Neural Crest Development and Long Non-coding RNA Biomarkers of Hirschsprung's Disease

    Science.gov (United States)

    Hirschsprung’s disease (HSCR), a birth defect characterized by variable aganglionosis of the gut, affects about 1 in 5000 births, and is a consequence of abnormal development of neural crest cells, from which enteric ganglia derive. In the companion article in this issue (Shen et...

  6. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Bernd Willems

    Full Text Available During vertebrate neurulation, cranial neural crest cells (CNCCs undergo epithelial to mesenchymal transition (EMT, delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL receptor-related protein 5 (Lrp5 plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.

  7. Transcrition factor c-Myb is involved in the regulation of the epithelial-mesenchymal transition in the avian neural crest

    Czech Academy of Sciences Publication Activity Database

    Karafiát, Vít; Dvořáková, Marta; Krejčí, E.; Králová, Jarmila; Pajer, Petr; Šnajdr, P.; Mandíková, Sonja; Bartůněk, Petr; Grim, M.; Dvořák, Michal

    2005-01-01

    Roč. 62, č. 21 (2005), s. 2516-2525 ISSN 1420-682X R&D Projects: GA ČR GA304/03/0463; GA AV ČR IAA5052309 Institutional research plan: CEZ:AV0Z50520514 Keywords : c-myb gene * epithelial-mesenchymal transition * neural crest Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.582, year: 2005

  8. The SWI/SNF BAF-A complex is essential for neural crest development.

    Science.gov (United States)

    Chandler, Ronald L; Magnuson, Terry

    2016-03-01

    Growing evidence indicates that chromatin remodeler mutations underlie the pathogenesis of human neurocristopathies or disorders that affect neural crest cells (NCCs). However, causal relationships among chromatin remodeler subunit mutations and NCC defects remain poorly understood. Here we show that homozygous loss of ARID1A-containing, SWI/SNF chromatin remodeling complexes (BAF-A) in NCCs results in embryonic lethality in mice, with mutant embryos succumbing to heart defects. Strikingly, monoallelic loss of ARID1A in NCCs led to craniofacial defects in adult mice, including shortened snouts and low set ears, and these defects were more pronounced following homozygous loss of ARID1A, with the ventral cranial bones being greatly reduced in size. Early NCC specification and expression of the BRG1 NCC target gene, PLEXINA2, occurred normally in the absence of ARID1A. Nonetheless, mutant embryos displayed incomplete conotruncal septation of the cardiac outflow tract and defects in the posterior pharyngeal arteries, culminating in persistent truncus arteriosus and agenesis of the ductus arteriosus. Consistent with this, migrating cardiac NCCs underwent apoptosis within the circumpharyngeal ridge. Our data support the notion that multiple, distinct chromatin remodeling complexes govern genetically separable events in NCC development and highlight a potential pathogenic role for NCCs in the human BAF complex disorder, Coffin-Siris Syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2.

    Science.gov (United States)

    Rabadán, M Angeles; Herrera, Antonio; Fanlo, Lucia; Usieto, Susana; Carmona-Fontaine, Carlos; Barriga, Elias H; Mayor, Roberto; Pons, Sebastián; Martí, Elisa

    2016-06-15

    Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination. © 2016. Published by The Company of Biologists Ltd.

  10. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro.

    Directory of Open Access Journals (Sweden)

    Chengqun Ju

    Full Text Available The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC to differentiate to functional corneal endothelial cell (CEC-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na(+/K(+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet's membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.

  11. Dataset of TWIST1-regulated genes in the cranial mesoderm and a transcriptome comparison of cranial mesoderm and cranial neural crest

    Directory of Open Access Journals (Sweden)

    Heidi Bildsoe

    2016-12-01

    Full Text Available This article contains data related to the research article entitled “Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance” by Bildsoe et al. (2016 [1]. The data presented here are derived from: (1 a microarray-based comparison of sorted cranial mesoderm (CM and cranial neural crest (CNC cells from E9.5 mouse embryos; (2 comparisons of transcription profiles of head tissues from mouse embryos with a CM-specific loss-of-function of Twist1 and control mouse embryos collected at E8.5 and E9.5; (3 ChIP-seq using a TWIST1-specific monoclonal antibody with chromatin extracts from TWIST1-expressing MDCK cells, a model for a TWIST1-dependent mesenchymal state.

  12. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    Science.gov (United States)

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Safety and efficacy of an 8-week regimen of grazoprevir plus ruzasvir plus uprifosbuvir compared with grazoprevir plus elbasvir plus uprifosbuvir in participants without cirrhosis infected with hepatitis C virus genotypes 1, 2, or 3 (C-CREST-1 and C-CREST-2, part A)

    DEFF Research Database (Denmark)

    Gane, Edward J; Pianko, Stephen; Roberts, Stuart K

    2017-01-01

    BACKGROUND: New hepatitis C virus (HCV) therapies with pan-genotypic efficacy are needed. The goals of part A of C-CREST-1 and C-CREST-2 were to compare the efficacies of two doses (300 mg or 450 mg once daily) of uprifosbuvir (MK-3682; NS5B inhibitor) in an 8-week regimen combined with grazoprev...

  14. Role of the extracellular matrix during neural crest cell migration.

    Science.gov (United States)

    Perris, R; Perissinotto, D

    2000-07-01

    Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio

  15. Stephen L. Gans Distinguished Overseas Lecture. The neural crest in pediatric surgery.

    Science.gov (United States)

    Tovar, Juan A

    2007-06-01

    This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.

  16. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    International Nuclear Information System (INIS)

    Colleoni, Silvia; Galli, Cesare; Giannelli, Serena G.; Armentero, Marie-Therese; Blandini, Fabio; Broccoli, Vania; Lazzari, Giovanna

    2010-01-01

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  17. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  18. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration

    Directory of Open Access Journals (Sweden)

    Jo Richardson

    2016-05-01

    Full Text Available Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration.

  19. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells

    International Nuclear Information System (INIS)

    Rieske, Piotr; Augelli, Brian J.; Stawski, Robert; Gaughan, John; Azizi, S. Ausim; Krynska, Barbara

    2009-01-01

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of βIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors

  20. Protocadherin PAPC is expressed in the CNC and can compensate for the loss of PCNS.

    Science.gov (United States)

    Schneider, Martina; Huang, Chaolie; Becker, Sarah F S; Gradl, Dietmar; Wedlich, Doris

    2014-02-01

    Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration. Copyright © 2013 Wiley Periodicals, Inc.

  1. Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation.

    Science.gov (United States)

    Pünzeler, Sebastian; Link, Stephanie; Wagner, Gabriele; Keilhauer, Eva C; Kronbeck, Nina; Spitzer, Ramona Mm; Leidescher, Susanne; Markaki, Yolanda; Mentele, Edith; Regnard, Catherine; Schneider, Katrin; Takahashi, Daisuke; Kusakabe, Masayuki; Vardabasso, Chiara; Zink, Lisa M; Straub, Tobias; Bernstein, Emily; Harata, Masahiko; Leonhardt, Heinrich; Mann, Matthias; Rupp, Ralph Aw; Hake, Sandra B

    2017-08-01

    Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development. © 2017 The Authors.

  2. Disruption of Smad4 in neural crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac defects

    Science.gov (United States)

    Nie, Xuguang; Deng, Chu-xia; Wang, Qin; Jiao, Kai

    2008-01-01

    TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development. PMID:18334251

  3. Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression.

    Science.gov (United States)

    Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M; Singh, Manvendra K; Li, Li; Epstein, Jonathan A

    2013-05-15

    Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. CREST Revealed

    DEFF Research Database (Denmark)

    Rapp, Hermann; Parisi, Cristiana; Bridgeman, Alfia

    This report covers the period from 1993 when the CREST project was initiated, to its launch in 1996, and considers the environment that prompted its instigation. The report looks at the massive cooperation of Government, industry and a range of different service providers that all came together......, under the central control of the CREST project team. It proposes five reasons why the CREST project was successful and examines why the CREST system continues to be at the heart of UK settlement, 20 years on....

  5. Mastication markedly affects mandibular condylar cartilage growth, gene expression, and morphology.

    Science.gov (United States)

    Enomoto, Akiko; Watahiki, Junichi; Nampo, Tomoki; Irie, Tarou; Ichikawa, Yuuta; Tachikawa, Tetsuhiko; Maki, Koutaro

    2014-09-01

    Mandibular growth is believed to be strongly related to mastication. Furthermore, mandibular condylar cartilage is known to be derived from neural crest cells. We examined whether the degree of chewing affects condylar cartilage growth of the mandible. Mice were fed diets with varying hardness. Genes specific to neural crest-derived cells were measured by real-time polymerase chain reaction to compare the expression changes between the mandibular and tibia cartilages. The mandibular condylar cartilage was then evaluated histologically, and proliferation was evaluated using proliferating cell nuclear antigen. Immunostaining was conducted for osteopontin, type X collagen, and Musashi1, and real-time polymerase chain reaction was used to assess the expression levels of osteopontin and type X collagen. Markers including P75, Wnt-1, Musashi1, and Nestin were upregulated in the mandibular condylar cartilage as compared with the tibial cartilage. Histologic assessment of the mandibular cartilage showed that the hypertrophic chondrocyte zone was statistically significantly thicker in mice fed a hard diet. Chondrocyte proliferation and Musashi1 expression were lower in mice fed a hard diet. After 4 weeks, numerous osteopontin and type X collagen-positive cells were observed in mice fed a mixed diet. Mastication affects the balance between differentiation and proliferation in the mandibular condylar cartilage. This phenomenon might be attributed to the presence of neural crest-derived cells. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  6. Neural Crossroads in the Hematopoietic Stem Cell Niche.

    Science.gov (United States)

    Agarwala, Sobhika; Tamplin, Owen J

    2018-05-29

    The hematopoietic stem cell (HSC) niche supports steady-state hematopoiesis and responds to changing needs during stress and disease. The nervous system is an important regulator of the niche, and its influence is established early in development when stem cells are specified. Most research has focused on direct innervation of the niche, however recent findings show there are different modes of neural control, including globally by the central nervous system (CNS) and hormone release, locally by neural crest-derived mesenchymal stem cells, and intrinsically by hematopoietic cells that express neural receptors and neurotransmitters. Dysregulation between neural and hematopoietic systems can contribute to disease, however new therapeutic opportunities may be found among neuroregulator drugs repurposed to support hematopoiesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available The importance of BMP receptor Ia (BMPRIa mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa in cranial neural crest (CNC cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.

  8. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  9. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    International Nuclear Information System (INIS)

    Costa-Silva, Bruno; Coelho da Costa, Meline; Melo, Fernanda Rosene; Neves, Cynara Mendes; Alvarez-Silva, Marcio; Calloni, Giordano Wosgrau; Trentin, Andrea Goncalves

    2009-01-01

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells

  10. Skeletogenic fate of zebrafish cranial and trunk neural crest.

    Directory of Open Access Journals (Sweden)

    Erika Kague

    Full Text Available The neural crest (NC is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two-transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC-derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late-forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.

  11. Transplanted Dental Pulp Stem Cells Migrate to Injured Area and Express Neural Markers in a Rat Model of Cerebral Ischemia.

    Science.gov (United States)

    Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin

    2018-01-01

    Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. ADAM13 function is required in the 3 dimensional context of the embryo during cranial neural crest cell migration in Xenopus laevis

    Science.gov (United States)

    Cousin, Hélène; Abbruzzese, Genevieve; McCusker, Catherine; Alfandari, Dominique

    2012-01-01

    The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration. Here we show that the knock down of ADAM13 inhibits CNC migration in vivo but not in vitro, indicating that ADAM13 function is required in the 3-dimentional context of the embryo. We further show that the migration of CNC that do not express ADAM13 and ADAM19 can be rescued in vivo by co-grafting wild type CNC. Furthermore, the migration of CNC lacking ADAM13 can be rescued by mechanically separating the CNC from the surrounding ectoderm and mesoderm. Finally, we show that ADAM13 function is autonomous to CNC tissue, as the migration of morphant CNC can only be rescued by ADAM13 expression in the CNC and not the surrounding tissues. Together our results suggest that ADAM13 changes CNC interaction with the extracellular environment and that this change is necessary for their migration in vivo. PMID:22683825

  13. Impaired Cellular Immunity in the Murine Neural Crest Conditional Deletion of Endothelin Receptor-B Model of Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    Ankush Gosain

    Full Text Available Hirschsprung's disease (HSCR is characterized by aganglionosis from failure of neural crest cell (NCC migration to the distal hindgut. Up to 40% of HSCR patients suffer Hirschsprung's-associated enterocolitis (HAEC, with an incidence that is unchanged from the pre-operative to the post-operative state. Recent reports indicate that signaling pathways involved in NCC migration may also be involved in the development of secondary lymphoid organs. We hypothesize that gastrointestinal (GI mucosal immune defects occur in HSCR that may contribute to enterocolitis. EdnrB was deleted from the neural crest (EdnrBNCC-/- resulting in mutants with defective NCC migration, distal colonic aganglionosis and the development of enterocolitis. The mucosal immune apparatus of these mice was interrogated at post-natal day (P 21-24, prior to histological signs of enterocolitis. We found that EdnrBNCC-/- display lymphopenia of their Peyer's Patches, the major inductive site of GI mucosal immunity. EdnrBNCC-/- Peyer's Patches demonstrate decreased B-lymphocytes, specifically IgM+IgDhi (Mature B-lymphocytes, which are normally activated and produce IgA following antigen presentation. EdnrBNCC-/- animals demonstrate decreased small intestinal secretory IgA, but unchanged nasal and bronchial airway secretory IgA, indicating a gut-specific defect in IgA production or secretion. In the spleen, which is the primary source of IgA-producing Mature B-lymphocytes, EdnrBNCC-/- animals display decreased B-lymphocytes, but an increase in Mature B-lymphocytes. EdnrBNCC-/- spleens are also small and show altered architecture, with decreased red pulp and a paucity of B-lymphocytes in the germinal centers and marginal zone. Taken together, these findings suggest impaired GI mucosal immunity in EdnrBNCC-/- animals, with the spleen as a potential site of the defect. These findings build upon the growing body of literature that suggests that intestinal defects in HSCR are not restricted

  14. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module

    Directory of Open Access Journals (Sweden)

    Rogers Crystal D

    2011-12-01

    Full Text Available Abstract Background The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. Results To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. Conclusions We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.

  15. Mef2c-F10N enhancer driven β-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells.

    Science.gov (United States)

    Aoto, Kazushi; Sandell, Lisa L; Butler Tjaden, Naomi E; Yuen, Kobe C; Watt, Kristin E Noack; Black, Brian L; Durnin, Michael; Trainor, Paul A

    2015-06-01

    Neural crest cells (NCC) comprise a multipotent, migratory stem cell and progenitor population that gives rise to numerous cell and tissue types within a developing embryo, including craniofacial bone and cartilage, neurons and glia of the peripheral nervous system, and melanocytes within the skin. Here we describe two novel stable transgenic mouse lines suitable for lineage tracing and analysis of gene function in NCC. Firstly, using the F10N enhancer of the Mef2c gene (Mef2c-F10N) linked to LacZ, we generated transgenic mice (Mef2c-F10N-LacZ) that express LacZ in the majority, if not all migrating NCC that delaminate from the neural tube. Mef2c-F10N-LacZ then continues to be expressed primarily in neurogenic, gliogenic and melanocytic NCC and their derivatives, but not in ectomesenchymal derivatives. Secondly, we used the same Mef2c-F10N enhancer together with Cre recombinase to generate transgenic mice (Mef2c-F10N-Cre) that can be used to indelibly label, or alter gene function in, migrating NCC and their derivatives. At early stages of development, Mef2c-F10N-LacZ and Mef2c-F10N-Cre label NCC in a pattern similar to Wnt1-Cre mice, with the exception that Mef2c-F10N-LacZ and Mef2c-F10N-Cre specifically label NCC that have delaminated from the neural plate, while premigratory NCC are not labeled. Thus, our Mef2c-F10N-LacZ and Mef2c-F10N-Cre transgenic mice provide new resources for tracing migratory NCC and analyzing gene function in migrating and differentiating NCC independently of NCC formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

    Directory of Open Access Journals (Sweden)

    Makoto Fukuta

    Full Text Available Neural crest cells (NCCs are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs from human pluripotent stem cells (hPSCs, such as embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin very efficiently induced hNCCs (70-80% from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.

  17. Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors.

    Science.gov (United States)

    Mundell, Nathan A; Plank, Jennifer L; LeGrone, Alison W; Frist, Audrey Y; Zhu, Lei; Shin, Myung K; Southard-Smith, E Michelle; Labosky, Patricia A

    2012-03-15

    The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs) self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our earlier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progenitors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to enteric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage labeling of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in patterning and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells derived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre transgene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor proliferation, neural patterning, and glial

  18. Molecular Prognostic Markers in Uveal Melanoma: Expression Profiling and Genomic Studies

    NARCIS (Netherlands)

    W. Gils (Walter)

    2008-01-01

    textabstractUveal Melanomas (UMs) arise from melanocytes. This cell type originates from neural crest cells and thereby uveal melanomas share their origin with pheochromocytomas, neuroblastomas, paragangliomas and cutaneous melanomas, other tumors that develop from neural crest originating cells.

  19. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10

    Directory of Open Access Journals (Sweden)

    Pavan William J

    2008-10-01

    Full Text Available Abstract Background A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. SOX10 expression is highly conserved between all vertebrates characterised. Results We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish sox10 gene. Both approaches converged on the 3' end of the conserved 1st intron as being critical for spatial patterning of sox10 in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in sox10 regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic sox10 expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results. Conclusion We have thus identified two major sites of sox10 regulation in vertebrates and provided evidence supporting a role for at least three factors in driving sox10 expression in neural crest, otic epithelium and oligodendrocyte domains.

  20. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-05-01

    Full Text Available Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs. epidermal neural crest stems cells (EPI-NCSCs are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM and poly (lactide-co-glycolide (PLGA. Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT, sciatic function index (SFI, gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13 was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.

  1. [Molecular cloning, expression of rat Msx-1 and Msx-2 during early embryo genesis and roles for mandibular chondrogenesis].

    Science.gov (United States)

    Ishiguro, S

    1999-03-01

    Quail-chick chimera experiments have shown a contribution of carnial neural crest cells to the craniofacial skeletal elements. Moreover, tissue interactions between epithelial-mesenchymal interaction during early facial process development are required for both skeletal differentiation and morphogenesis. In this study, it was observed that Msx homeobox containing genes expressed in the facial process were important molecules of cartilage morphogenesis. Rat cDNAs were isolated and encoded by Msx-1 and -2, and then the expression patterns using in situ hybridization were investigated during early rat face development. These genes were correlatively expressed in the cranial neural crest forming area (E 9.5 dpc) and the facial process (E 12.5 dpc). Antisence inhibition of Msx genes in the E 12.5 mandibular process exhibited the alteration of their gene expression and cartilage patterns. Antisence inhibition of Msx-1 induced lack of the medial portion of cartilage, and antisence inhibition of Msx-2 enhanced chondrogenesis of mandibular process under the organ culture condition. Thus it was concluded that expression of Msx genes during mandibular process development comprises important signals of chondrogenesis.

  2. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    2007-08-01

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  3. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging

    Directory of Open Access Journals (Sweden)

    Kawakami Minoru

    2011-11-01

    Full Text Available Abstract Background Neural crest cells (NCCs are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. Results In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA, we demonstrated that PDGF-AA acts as an NCC-attractant in embryos. We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. Conclusions Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis.

  4. Using Of Learning Vector Quantization Network for Pan Evaporation Estimation

    Directory of Open Access Journals (Sweden)

    Kamil7 A. Abdulmohsen

    2013-05-01

    Full Text Available A modern technique is presented to study the evaporation process which is considered as an important component of the hydrological cycle. The Pan Evaporation depth is estimated depending upon four metrological factors viz. (temperature, relative humidity, sunshine, and wind speed. Unsupervised Artificial Neural Network has been proposed to accomplish the study goal, specifically, a type called Linear Vector Quantitization, (LVQ.  A step by step method is used to cope with difficulties that usually associated with computation procedures inherent in these kind of networks. Such systematic approach may close the gap between the hesitation of the user to make use of the capabilities of these type of neural networks and the relative complexity involving the computations procedures. The results reveal the possibility of using LVQ for of Pan Evaporation depth estimation where a good agreement has been noticed between the outputs of the proposed network and the observed values of the Pan Evaporation depth with a correlation coefficient of 0.986. 

  5. A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Shi-Yu Yang

    2017-03-01

    Full Text Available Numerically the most important risk factor for the development of Parkinson's disease (PD is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD. Cells showed reduced GCase protein and activity, impaired macroautophagy, and increased α-synuclein levels. Advantages of this approach include easy access to stem cells, no requirement to reprogram, and retention of the intact host genome. Treatment with a GCase chaperone increased GCase protein levels and activity, rescued the autophagic defects, and decreased α-synuclein levels. These results provide the basis for further investigation of GCase chaperones or similar drugs to slow the progression of PD.

  6. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.

    Science.gov (United States)

    Yu, Jingwen; Wu, Yanqing; Yang, Peixin

    2016-05-01

    Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses

  7. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function.

    Science.gov (United States)

    Isern, Joan; García-García, Andrés; Martín, Ana M; Arranz, Lorena; Martín-Pérez, Daniel; Torroja, Carlos; Sánchez-Cabo, Fátima; Méndez-Ferrer, Simón

    2014-09-25

    Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. In this study, we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin(-) MSCs participate in fetal skeletogenesis and lose MSC activity soon after birth. In contrast, quiescent neural crest-derived nestin(+) cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP(+) Pdgfrα(-) cell population also contains Schwann cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.

  8. Effect of low dose 131I-MIBG therapy in metastatic neural crest tumors: Evaluation by RECIST and quality of life questionnaire

    International Nuclear Information System (INIS)

    Basu, S.; Joseph, J.K.

    2004-01-01

    Full text: The primary aim of 131I-MIBG therapy in advanced metastatic or recurrent neural crest tumors is palliation i.e. disease control and improvement of health related quality of life. No clear guidelines regarding the dosage and schedule of 131I-MIBG therapy in neural crest tumors exist at present. In general, a fixed dose of 100-300 mCi has been suggested for each therapy. We share our experience of 131I-MIBG therapy in various subgroups of neural crest tumors and discuss the response assessed by the RECIST and the quality of life questionnaire. A total number of 14 patients were treated with indigenously produced 131I-MIBG, which was administered as continuous intravenous infusion over a period of 2-4 hours. Patient isolation according to guidelines set by the national regulatory authority and thyroid blockade with Lugol's iodide were strictly adhered to. Antihypertensive measures were undertaken in case of pheochromocytoma and paraganglioma to prevent effects of catecholamine release during or following 131I-MIBG infusion. The primaries included neuroblastoma (n=7), pheochromocytoma (n=5) and paraganglioma (n=2). The cases of neuroblastoma included patients with progressive disease where the conventional chemotherapy had failed, while those of pheochromocytoma and paraganglioma were cases with recurrent / metastatic disease following surgery. In cases of multiple therapies, the minimum interval between two consecutive therapies was 12 weeks. Regular renal and haematological profiles were monitored in all the cases. Response to therapy was assessed by RECIST. The findings of 131I-MIBG scintigraphy were incorporated with CT scan in assessing the target lesions. Biochemical response was evaluated by 24 hours urinary VMA estimation. The quality of life status was evaluated by the conventional questionnaire. A total of 27 therapies were administered in 14 patients. In five treated cases of pheochromocytoma, three received multiple therapies. Follow up results

  9. Prolonged Expansion Induces Spontaneous Neural Progenitor Differentiation from Human Gingiva-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Rajan, Thangavelu Soundara; Scionti, Domenico; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2017-12-01

    Neural crest-derived mesenchymal stem cells (MSCs) obtained from dental tissues received considerable interest in regenerative medicine, particularly in nerve regeneration owing to their embryonic origin and ease of harvest. Proliferation efficacy and differentiation capacity into diverse cell lineages propose dental MSCs as an in vitro tool for disease modeling. In this study, we investigated the spontaneous differentiation efficiency of dental MSCs obtained from human gingiva tissue (hGMSCs) into neural progenitor cells after extended passaging. At passage 41, the morphology of hGMSCs changed from typical fibroblast-like shape into sphere-shaped cells with extending processes. Next-generation transcriptomics sequencing showed increased expression of neural progenitor markers such as NES, MEIS2, and MEST. In addition, de novo expression of neural precursor genes, such as NRN1, PHOX2B, VANGL2, and NTRK3, was noticed in passage 41. Immunocytochemistry results showed suppression of neurogenesis repressors TP53 and p21, whereas Western blot results revealed the expression of neurotrophic factors BDNF and NT3 at passage 41. Our results showed the spontaneous efficacy of hGMSCs to differentiate into neural precursor cells over prolonged passages and that these cells may assist in producing novel in vitro disease models that are associated with neural development.

  10. CREST biorepository for translational studies on malignant mesothelioma, lung cancer and other respiratory tract diseases: Informatics infrastructure and standardized annotation.

    Science.gov (United States)

    Ugolini, Donatella; Neri, Monica; Bennati, Luca; Canessa, Pier Aldo; Casanova, Georgia; Lando, Cecilia; Leoncini, Giacomo; Marroni, Paola; Parodi, Barbara; Simonassi, Claudio; Bonassi, Stefano

    2012-03-01

    Advances in molecular epidemiology and translational research have led to the need for biospecimen collection. The Cancer of the Respiratory Tract (CREST) biorepository is concerned with pleural malignant mesothelioma (MM) and lung cancer (LC). The biorepository staff has collected demographic and epidemiological data directly from consenting subjects using a structured questionnaire, in agreement with The Public Population Project in Genomics (P(3)G). Clinical and follow-up data were collected. Sample data were also recorded. The architecture is based on a database designed with Microsoft Access. Data standardization was carried out to conform with established conventions or procedures. As from January 31, 2011, the overall number of recruited subjects was 1,857 (454 LC, 245 MM, 130 other cancers and 1,028 controls). Due to its infrastructure, CREST was able to join international projects, sharing samples and/or data with other research groups in the field. The data management system allows CREST to be involved, through a minimum data set, in the national project for the construction of the Italian network of Oncologic BioBanks (RIBBO), and in the infrastructure of a pan-European biobank network (BBMRI). The CREST biorepository is a valuable tool for translational studies on respiratory tract diseases, because of its simple and efficient infrastructure.

  11. Conditional deletion of AP-2β in mouse cranial neural crest results in anterior segment dysgenesis and early-onset glaucoma

    Directory of Open Access Journals (Sweden)

    Vanessa B. Martino

    2016-08-01

    Full Text Available Anterior segment dysgenesis (ASD encompasses a group of developmental disorders in which a closed angle phenotype in the anterior chamber of the eye can occur and 50% of patients develop glaucoma. Many ASDs are thought to involve an inappropriate patterning and migration of the periocular mesenchyme (POM, which is derived from cranial neural crest cells (NCCs and mesoderm. Although, the mechanism of this disruption is not well understood, a number of transcriptional regulatory molecules have previously been implicated in ASDs. Here, we investigate the function of the transcription factor AP-2β, encoded by Tfap2b, which is expressed in NCCs and their derivatives. Wnt1-Cre-mediated conditional deletion of Tfap2b in NCCs resulted in post-natal ocular defects typified by opacity. Histological data revealed that the conditional AP-2β NCC knockout (KO mutants exhibited dysgenesis of multiple structures in the anterior segment of the eye including defects in the corneal endothelium, corneal stroma, ciliary body and disruption in the iridocorneal angle with adherence of the iris to the cornea. We further show that this phenotype leads to a significant increase in intraocular pressure and a subsequent loss of retinal ganglion cells and optic nerve degeneration, features indicative of glaucoma. Overall, our findings demonstrate that AP-2β is required in the POM for normal development of the anterior segment of the eye and that the AP-2β NCC KO mice might serve as a new and exciting model of ASD and glaucoma that is fully penetrant and with early post-natal onset.

  12. Combination of exogenous cell transplantation and 5-HT4 receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model.

    Science.gov (United States)

    Yu, Hui; Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2017-02-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT 4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT 4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75 NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT 4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Augmented Indian hedgehog signaling in cranial neural crest cells leads to craniofacial abnormalities and dysplastic temporomandibular joint in mice.

    Science.gov (United States)

    Yang, Ling; Gu, Shuping; Ye, Wenduo; Song, Yingnan; Chen, YiPing

    2016-04-01

    Extensive studies have pinpointed the crucial role of Indian hedgehog (Ihh) signaling in the development of the appendicular skeleton and the essential function of Ihh in the formation of the temporomandibular joint (TMJ). In this study, we have investigated the effect of augmented Ihh signaling in TMJ development. We took a transgenic gain-of-function approach by overexpressing Ihh in the cranial neural crest (CNC) cells using a conditional Ihh transgenic allele and the Wnt1-Cre allele. We found that Wnt1-Cre-mediated tissue-specific overexpression of Ihh in the CNC lineage caused severe craniofacial abnormalities, including cleft lip/palate, encephalocele, anophthalmos, micrognathia, and defective TMJ development. In the mutant TMJ, the glenoid fossa was completely absent, whereas the condyle and the articular disc appeared relatively normal with slightly delayed chondrocyte differentiation. Our findings thus demonstrate that augmented Ihh signaling is detrimental to craniofacial development, and that finely tuned Ihh signaling is critical for TMJ formation. Our results also provide additional evidence that the development of the condyle and articular disc is independent of the glenoid fossa.

  14. Occipital cephalocele with neural crest remnants? Radiological and pathological findings in a newborn boy.

    Science.gov (United States)

    Arishima, Hidetaka; Neishi, Hiroyuki; Kikuta, Ken-Ichiro

    2016-06-01

    A cephalocele is a congenital anomaly involving the herniation of intracranial tissue from a skull defect. The sac containing the central nervous system (CNS) with the ventricle system is called the encephalocystocele. An atretic cephalocele is thought to be an abortive form of cephalocele, and the essential nature is still controversial. Here, we report the case of a newborn boy with an occipital cephalocele containing a small cystic component which was composed of ependymal cells and the immature CNS tissue. A newborn boy was admitted to our hospital because of an occipital mass, which was about 2.5 cm in diameter, located at the posterior midline, and covered with alopetic skin without CSF leakage. He had a cleft palate. Magnetic resonance imaging (MRI) clearly showed an occipital cephalocele with a tiny cystic component connecting to the subarachnoid space. MRI also showed mild hydrocephalus, hypoplasia of the corpus callosum and tentorium cerebelli, dropping down of the bilateral occipital lobes and vermicular agenesis. We performed the extirpation of the subscalp module under general anesthesia and histologically examined the resected mass. On immunohistopathological examination, most part of the subscalp module was fibrous tissue with numerous vessels and meningeal origin cells. In a small part of the innermost layer, we found a small island consisting of CNS tissue and a tiny cyst lined with a single layer of ependymal cells. Based on radiological and immunohistopathological findings, we speculate that the cystic component at the base of the nodule seems to correspond to neural crest remnants but not to true herniation of the brain and cerebral ventricles.

  15. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  16. Task-dependent neural bases of perceiving emotionally expressive targets

    Directory of Open Access Journals (Sweden)

    Jamil eZaki

    2012-08-01

    Full Text Available Social cognition is fundamentally interpersonal: individuals’ behavior and dispositions critically affect their interaction partners’ information processing. However, cognitive neuroscience studies, partially because of methodological constraints, have remained largely perceiver-centric: focusing on the abilities, motivations, and goals of social perceivers while largely ignoring interpersonal effects. Here, we address this knowledge gap by examining the neural bases of perceiving emotionally expressive and inexpressive social targets. Sixteen perceivers were scanned using fMRI while they watched targets discussing emotional autobiographical events. Perceivers continuously rated each target’s emotional state or eye-gaze direction. The effects of targets’ emotional expressivity on perceiver’s brain activity depended on task set: when perceivers explicitly attended to targets’ emotions, expressivity predicted activity in neural structures—including medial prefrontal and posterior cingulate cortex—associated with drawing inferences about mental states. When perceivers instead attended to targets’ eye-gaze, target expressivity predicted activity in regions—including somatosensory cortex, fusiform gyrus, and motor cortex—associated with monitoring sensorimotor states and biological motion. These findings suggest that expressive targets affect information processing in manner that depends on perceivers’ goals. More broadly, these data provide an early step towards understanding the neural bases of interpersonal social cognition.

  17. Dynamic methylation and expression of Oct4 in early neural stem cells.

    Science.gov (United States)

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-09-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.

  18. Numerical Simulation of 3-D Wave Crests

    Institute of Scientific and Technical Information of China (English)

    YU Dingyong; ZHANG Hanyuan

    2003-01-01

    A clear definition of 3-D wave crest and a description of the procedures to detect the boundary of wave crest are presented in the paper. By using random wave theory and directional wave spectrum, a MATLAB-platformed program is designed to simulate random wave crests for various directional spectral conditions in deep water. Statistics of wave crests with different directional spreading parameters and different directional functions are obtained and discussed.

  19. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  20. AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning.

    Science.gov (United States)

    Van Otterloo, Eric; Li, Hong; Jones, Kenneth L; Williams, Trevor

    2018-01-25

    The evolution of a hinged moveable jaw with variable morphology is considered a major factor behind the successful expansion of the vertebrates. DLX homeobox transcription factors are crucial for establishing the positional code that patterns the mandible, maxilla and intervening hinge domain, but how the genes encoding these proteins are regulated remains unclear. Herein, we demonstrate that the concerted action of the AP-2α and AP-2β transcription factors within the mouse neural crest is essential for jaw patterning. In the absence of these two proteins, the hinge domain is lost and there are alterations in the size and patterning of the jaws correlating with dysregulation of homeobox gene expression, with reduced levels of Emx, Msx and Dlx paralogs accompanied by an expansion of Six1 expression. Moreover, detailed analysis of morphological features and gene expression changes indicate significant overlap with various compound Dlx gene mutants. Together, these findings reveal that the AP-2 genes have a major function in mammalian neural crest development, influencing patterning of the craniofacial skeleton via the DLX code, an effect that has implications for vertebrate facial evolution, as well as for human craniofacial disorders. © 2018. Published by The Company of Biologists Ltd.

  1. Emotional facial expressions reduce neural adaptation to face identity.

    Science.gov (United States)

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing.

  2. Chicken HOXA3 Gene: Its Expression Pattern and Role in Branchial Nerve Precursor Cell Migration

    Science.gov (United States)

    Watari-Goshima, Natsuko; Chisaka, Osamu

    2011-01-01

    In vertebrates, the proximal and distal sensory ganglia of the branchial nerves are derived from neural crest cells (NCCs) and placodes, respectively. We previously reported that in Hoxa3 knockout mouse embryos, NCCs and placode-derived cells of the glossopharyngeal nerve were defective in their migration. In this report, to determine the cell-type origin for this Hoxa3 knockout phenotype, we blocked the expression of the gene with antisense morpholino oligonucleotides (MO) specifically in either NCCs/neural tube or placodal cells of chicken embryos. Our results showed that HOXA3 function was required for the migration of the epibranchial placode-derived cells and that HOXA3 regulated this cell migration in both NCCs/neural tube and placodal cells. We also report that the expression pattern of chicken HOXA3 was slightly different from that of mouse Hoxa3. PMID:21278919

  3. Expressive suppression and neural responsiveness to nonverbal affective cues.

    Science.gov (United States)

    Petrican, Raluca; Rosenbaum, R Shayna; Grady, Cheryl

    2015-10-01

    Optimal social functioning occasionally requires concealment of one's emotions in order to meet one's immediate goals and environmental demands. However, because emotions serve an important communicative function, their habitual suppression disrupts the flow of social exchanges and, thus, incurs significant interpersonal costs. Evidence is accruing that the disruption in social interactions, linked to habitual expressive suppression use, stems not only from intrapersonal, but also from interpersonal causes, since the suppressors' restricted affective displays reportedly inhibit their interlocutors' emotionally expressive behaviors. However, expressive suppression use is not known to lead to clinically significant social impairments. One explanation may be that over the lifespan, individuals who habitually suppress their emotions come to compensate for their interlocutors' restrained expressive behaviors by developing an increased sensitivity to nonverbal affective cues. To probe this issue, the present study used functional magnetic resonance imaging (fMRI) to scan healthy older women while they viewed silent videos of a male social target displaying nonverbal emotional behavior, together with a brief verbal description of the accompanying context, and then judged the target's affect. As predicted, perceivers who reported greater habitual use of expressive suppression showed increased neural processing of nonverbal affective cues. This effect appeared to be coordinated in a top-down manner via cognitive control. Greater neural processing of nonverbal cues among perceivers who habitually suppress their emotions was linked to increased ventral striatum activity, suggestive of increased reward value/personal relevance ascribed to emotionally expressive nonverbal behaviors. These findings thus provide neural evidence broadly consistent with the hypothesized link between habitual use of expressive suppression and compensatory development of increased responsiveness to

  4. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Science.gov (United States)

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  5. Specific and spatial labeling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos.

    Science.gov (United States)

    Chen, Guiqian; Ishan, Mohamed; Yang, Jingwen; Kishigami, Satoshi; Fukuda, Tomokazu; Scott, Greg; Ray, Manas K; Sun, Chenming; Chen, Shi-You; Komatsu, Yoshihiro; Mishina, Yuji; Liu, Hong-Xiang

    2017-06-01

    P0-Cre and Wnt1-Cre mouse lines have been widely used in combination with loxP-flanked mice to label and genetically modify neural crest (NC) cells and their derivatives. Wnt1-Cre has been regarded as the gold standard and there have been concerns about the specificity of P0-Cre because it is not clear about the timing and spatial distribution of the P0-Cre transgene in labeling NC cells at early embryonic stages. We re-visited P0-Cre and Wnt1-Cre models in the labeling of NC cells in early mouse embryos with a focus on cranial NC. We found that R26-lacZ Cre reporter responded to Cre activity more reliably than CAAG-lacZ Cre reporter during early embryogenesis. Cre immunosignals in P0-Cre and reporter (lacZ and RFP) activity in P0-Cre/R26-lacZ and P0-Cre/R26-RFP embryos was detected in the cranial NC and notochord regions in E8.0-9.5 (4-19 somites) embryos. P0-Cre transgene expression was observed in migrating NC cells and was more extensive in the forebrain and hindbrain but not apparent in the midbrain. Differences in the Cre distribution patterns of P0-Cre and Wnt1-Cre were profound in the midbrain and hindbrain regions, that is, extensive in the midbrain of Wnt1-Cre and in the hindbrain of P0-Cre embryos. The difference between P0-Cre and Wnt1-Cre in labeling cranial NC may provide a better explanation of the differential distributions of their NC derivatives and of the phenotypes caused by Cre-driven genetic modifications. © 2017 Wiley Periodicals, Inc.

  6. Neural stem cell sex dimorphism in aromatase (CYP19 expression: a basis for differential neural fate

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-11-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Quebec, CanadaPurpose: Neural stem cell (NSC transplantation and pharmacologic activation of endogenous neurogenesis are two approaches that trigger a great deal of interest as brain repair strategies. However, the success rate of clinical attempts using stem cells to restore neurologic functions altered either after traumatic brain injury or as a consequence of neurodegenerative disease remains rather disappointing. This suggests that factors affecting the fate of grafted NSCs are largely understudied and remain to be characterized. We recently reported that aging differentially affects the neurogenic properties of male and female NSCs. Although the sex steroids androgens and estrogens participate in the regulation of neurogenesis, to our knowledge, research on how gender-based differences affect the capacity of NSCs to differentiate and condition their neural fate is lacking. In the present study, we explored further the role of cell sex as a determining factor of the neural fate followed by differentiating NSCs and its relationship with a potential differential expression of aromatase (CYP19, the testosterone-metabolizing enzyme.Results: Using NSCs isolated from the subventricular zone of three-month-old male and female Long-Evans rats and maintained as neurospheres, we showed that differentiation triggered by retinoic acid resulted in a neural phenotype that depends on cell sex. Differentiated male NSCs mainly expressed markers of neuronal fate, including ßIII-tubulin, microtubule associated protein 2, growth-associated protein 43, and doublecortin. In contrast, female NSCs essentially expressed the astrocyte marker glial fibrillary acidic protein. Quantification of the expression of aromatase showed a very low level of expression in undifferentiated female NSCs

  7. Pan-pan Girls: Humiliating Liberation in Postwar Japanese Literature

    Directory of Open Access Journals (Sweden)

    Rumi Sakamoto

    2010-09-01

    Full Text Available This paper looks at some literary representations of the ‘pan-pan girls’ in postwar Japan. ‘Pan-pan’ is a derogatory term for street prostitutes who (mostly served the soldiers of the occupying forces. Immediately after World War II, the Japanese government established the RAA (Recreation Amusement Association and employed several thousand women to provide sexual services for foreign soldiers, ostensibly to protect Japanese women of middle and upper classes from rape and other violence. When the RAA was closed down in 1946 due to the US concern over widespread VD, many of the women who lost their jobs went out on the street and became private and illegal prostitutes – the pan-pan girls. With their red lipstick, cigarettes, nylon stockings and high-heel shoes, often holding onto the arms of tall, uniformed American GIs, the ‘pan-pan girls’ became a symbol of the occupation, and have been textually reproduced throughout the postwar period. This paper analyses the images and representations of the ‘pan-pan girls’ in postwar Japanese literature, to consider how the ‘pan-pan girls’ have functioned as a metaphor for the occupation and contributed to the public memory construction of the occupation. I identify some major codes of representations (victimisation, humiliation, and national trauma; eroticism and decadence; sexual freedom and materialism and argue that the highly gendered and sexualised bodies of the ‘pan-pan girls’ have continued to allow simplistic and selective remembering of the occupation at the expense of recalling the pivotal role of Japanese patriarchy in the postwar period.

  8. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  9. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    Directory of Open Access Journals (Sweden)

    Shengxiu Li

    Full Text Available TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  10. Personality traits modulate neural responses to emotions expressed in music.

    Science.gov (United States)

    Park, Mona; Hennig-Fast, Kristina; Bao, Yan; Carl, Petra; Pöppel, Ernst; Welker, Lorenz; Reiser, Maximilian; Meindl, Thomas; Gutyrchik, Evgeny

    2013-07-26

    Music communicates and evokes emotions. The number of studies on the neural correlates of musical emotion processing is increasing but few have investigated the factors that modulate these neural activations. Previous research has shown that personality traits account for individual variability of neural responses. In this study, we used functional magnetic resonance imaging (fMRI) to investigate how the dimensions Extraversion and Neuroticism are related to differences in brain reactivity to musical stimuli expressing the emotions happiness, sadness and fear. 12 participants (7 female, M=20.33 years) completed the NEO-Five Factor Inventory (NEO-FFI) and were scanned while performing a passive listening task. Neurofunctional analyses revealed significant positive correlations between Neuroticism scores and activations in bilateral basal ganglia, insula and orbitofrontal cortex in response to music expressing happiness. Extraversion scores were marginally negatively correlated with activations in the right amygdala in response to music expressing fear. Our findings show that subjects' personality may have a predictive power in the neural correlates of musical emotion processing and should be considered in the context of experimental group homogeneity. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Whistler wave trapping in a density crest

    International Nuclear Information System (INIS)

    Sugai, H.; Niki, H.; Inutake, M.; Takeda, S.

    1979-11-01

    The linear trapping process of whistler waves in a field-aligned density crest is investigated theoretically and experimentally below ω = ωsub(c)/2 (half gyrofrequency). The conditions of the crest trapping are derived in terms of the frequency ω/ωsub(c), the incident wave-normal angle theta sub(i), and the density ratio n sub(i)/n sub(o), where n sub(i) and n sub(o) denote the density at the incident point and that at the ridge, respectively. The oscillation length of the trapped ray path is calculated for a parabolic density profile. The experiment on antenna-excited whistler wave has been performed in a large magnetized plasma with the density crest. The phase and amplitude profile of the whistler wave is measured along and across the crest. The measurement has verified characteristic behaviors of the crest trapping. (author)

  12. Crest Level Optimization of the Multi Level Overtopping based Wave Energy Converter Seawave Slot-Cone Generator

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Osaland, E.

    2005-01-01

    The paper describes the optimization of the crest levels and geometrical layout of the SSG structure, focusing on maximizing the obtained potential energy in the overtopping water. During wave tank testing at AAU average overtopping rates into the individual reservoirs have been measured. The ini......The paper describes the optimization of the crest levels and geometrical layout of the SSG structure, focusing on maximizing the obtained potential energy in the overtopping water. During wave tank testing at AAU average overtopping rates into the individual reservoirs have been measured....... The initial tests led to an expression describing the derivative of the overtopping rate with respect to the vertical distance. Based on this, numerical optimizations of the crest levels, for a number of combinations of wave conditions, have been performed. The hereby found optimal crest levels have been...

  13. Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2009-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs. Results In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values Conclusion Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.

  14. The effects of gratitude expression on neural activity.

    Science.gov (United States)

    Kini, Prathik; Wong, Joel; McInnis, Sydney; Gabana, Nicole; Brown, Joshua W

    2016-03-01

    Gratitude is a common aspect of social interaction, yet relatively little is known about the neural bases of gratitude expression, nor how gratitude expression may lead to longer-term effects on brain activity. To address these twin issues, we recruited subjects who coincidentally were entering psychotherapy for depression and/or anxiety. One group participated in a gratitude writing intervention, which required them to write letters expressing gratitude. The therapy-as-usual control group did not perform a writing intervention. After three months, subjects performed a "Pay It Forward" task in the fMRI scanner. In the task, subjects were repeatedly endowed with a monetary gift and then asked to pass it on to a charitable cause to the extent they felt grateful for the gift. Operationalizing gratitude as monetary gifts allowed us to engage the subjects and quantify the gratitude expression for subsequent analyses. We measured brain activity and found regions where activity correlated with self-reported gratitude experience during the task, even including related constructs such as guilt motivation and desire to help as statistical controls. These were mostly distinct from brain regions activated by empathy or theory of mind. Also, our between groups cross-sectional study found that a simple gratitude writing intervention was associated with significantly greater and lasting neural sensitivity to gratitude - subjects who participated in gratitude letter writing showed both behavioral increases in gratitude and significantly greater neural modulation by gratitude in the medial prefrontal cortex three months later. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Noise suppress or express exponential growth for hybrid Hopfield neural networks

    International Nuclear Information System (INIS)

    Zhu Song; Shen Yi; Chen Guici

    2010-01-01

    In this Letter, we will show that noise can make the given hybrid Hopfield neural networks whose solution may grows exponentially become the new stochastic hybrid Hopfield neural networks whose solution will grows at most polynomially. On the other hand, we will also show that noise can make the given hybrid Hopfield neural networks whose solution grows at most polynomially become the new stochastic hybrid Hopfield neural networks whose solution will grows at exponentially. In other words, we will reveal that the noise can suppress or express exponential growth for hybrid Hopfield neural networks.

  16. Combination of exogenous cell transplantation and 5-HT4 receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    International Nuclear Information System (INIS)

    Yu, Hui; Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2017-01-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT 4 receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT 4 receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75 NTR and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT 4 receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.

  17. Uncovering the Role of BMP Signaling in Melanocyte Development and Melanoma Tumorigenesis

    Science.gov (United States)

    2016-09-01

    specifiers’, genes that are initially expressed broadly in the neural crest and help to maintain neural crest identity (Fig. 2G ) (6). As development...melanoma cells, GDF6 and the BMP pathway negatively regulated SOX9 expression (Fig. 3G ; Fig. S13A-C). Epistasis analyses showed that SOX9 knockdown rescued...criteria, if the tumor volume reached >1,000 mm3; if tumor size or location affected the mobility or general health of animal, the animal was euthanized

  18. Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair

    Science.gov (United States)

    Luo, Lihua; Wang, Xiaoyan; Key, Brian; Lee, Bae Hoon

    2018-01-01

    This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases. PMID:29853908

  19. Overflow Characteristic of Cylindrical Shape Crest Weirs Over Horizontal Bed

    OpenAIRE

    Emad4 AbdulGabbar

    2013-01-01

    The most common types of weirs are the broad-crested weir, the sharp-crested weir, the circular crested weir and the ogee crested weir. Advantages of the cylindrical weir shape include the stable overflow pattern, the ease to pass floating debris, the simplicity of design compared to ogee crest design and the associated lower costs. In present study, it was investigated the overflow characteristics of circular weirs in laboratory for various cylinder radii of three sizes (11.4, 9.0, 6.3 cm), ...

  20. CREST--classification resources for environmental sequence tags.

    Directory of Open Access Journals (Sweden)

    Anders Lanzén

    Full Text Available Sequencing of taxonomic or phylogenetic markers is becoming a fast and efficient method for studying environmental microbial communities. This has resulted in a steadily growing collection of marker sequences, most notably of the small-subunit (SSU ribosomal RNA gene, and an increased understanding of microbial phylogeny, diversity and community composition patterns. However, to utilize these large datasets together with new sequencing technologies, a reliable and flexible system for taxonomic classification is critical. We developed CREST (Classification Resources for Environmental Sequence Tags, a set of resources and tools for generating and utilizing custom taxonomies and reference datasets for classification of environmental sequences. CREST uses an alignment-based classification method with the lowest common ancestor algorithm. It also uses explicit rank similarity criteria to reduce false positives and identify novel taxa. We implemented this method in a web server, a command line tool and the graphical user interfaced program MEGAN. Further, we provide the SSU rRNA reference database and taxonomy SilvaMod, derived from the publicly available SILVA SSURef, for classification of sequences from bacteria, archaea and eukaryotes. Using cross-validation and environmental datasets, we compared the performance of CREST and SilvaMod to the RDP Classifier. We also utilized Greengenes as a reference database, both with CREST and the RDP Classifier. These analyses indicate that CREST performs better than alignment-free methods with higher recall rate (sensitivity as well as precision, and with the ability to accurately identify most sequences from novel taxa. Classification using SilvaMod performed better than with Greengenes, particularly when applied to environmental sequences. CREST is freely available under a GNU General Public License (v3 from http://apps.cbu.uib.no/crest and http://lcaclassifier.googlecode.com.

  1. Facial Expression Recognition By Using Fisherface Methode With Backpropagation Neural Network

    Directory of Open Access Journals (Sweden)

    Zaenal Abidin

    2011-01-01

    Full Text Available Abstract— In daily lives, especially in interpersonal communication, face often used for expression. Facial expressions give information about the emotional state of the person. A facial expression is one of the behavioral characteristics. The components of a basic facial expression analysis system are face detection, face data extraction, and facial expression recognition. Fisherface method with backpropagation artificial neural network approach can be used for facial expression recognition. This method consists of two-stage process, namely PCA and LDA. PCA is used to reduce the dimension, while the LDA is used for features extraction of facial expressions. The system was tested with 2 databases namely JAFFE database and MUG database. The system correctly classified the expression with accuracy of 86.85%, and false positive 25 for image type I of JAFFE, for image type II of JAFFE 89.20% and false positive 15,  for type III of JAFFE 87.79%, and false positive for 16. The image of MUG are 98.09%, and false positive 5. Keywords— facial expression, fisherface method, PCA, LDA, backpropagation neural network.

  2. Degradation processes and the methods of securing wall crests

    Directory of Open Access Journals (Sweden)

    Maciej Trochonowicz

    2017-12-01

    Full Text Available The protection of historical ruins requires solution of doctrinal and technical problems. Technical problems concern above all preservation of walls, which are exposed to the influence of atmospheric factors. The problem that needs to be solved in any historic ruin is securing of wall crests. Form of protection of the wall crests depends on many factors, mainly technical features of the wall and architectural and conservatory vision. The following article presents three aspects important for protection of wall crests. Firstly, analysis of features of the wall as a structure, secondly the characteristics of destructive agents, thirdly forms of protection of wall crests. In the summary of the following article, advantages and disadvantages of each method of preservation of the wall crests were presented.

  3. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    Science.gov (United States)

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  4. Combination of exogenous cell transplantation and 5-HT{sub 4} receptor agonism induce endogenous enteric neural crest-derived cells in a rat hypoganglionosis model

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Zheng, Bai-Jun; Pan, Wei-Kang; Wang, Huai-Jie; Xie, Chong; Zhao, Yu-Ying [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2017-02-01

    Enteric neural crest-derived cells (ENCCs) can migrate into endogenous ganglia and differentiate into progeny cells, and have even partially rescued bowel function; however, poor reliability and limited functional recovery after ENCC transplantation have yet to be addressed. Here, we investigated the induction of endogenous ENCCs by combining exogenous ENCC transplantation with a 5-HT{sub 4} receptor agonist mosapride in a rat model of hypoganglionosis, established by benzalkonium chloride treatment. ENCCs, isolated from the gut of newborn rats, were labeled with a lentiviral eGFP reporter. ENCCs and rats were treated with the 5-HT{sub 4} receptor agonist/antagonist. The labeled ENCCs were then transplanted into the muscular layer of benzalkonium chloride-treated colons. At given days post-intervention, colonic tissue samples were removed for histological analysis. ENCCs and neurons were detected by eGFP expression and immunoreactivity to p75{sup NTR} and peripherin, respectively. eGFP-positive ENCCs and neurons could survive and maintain levels of fluorescence after transplantation. With longer times post-intervention, the number of peripherin-positive cells gradually increased in all groups. Significantly more peripherin-positive cells were found following ENCCs plus mosapride treatment, compared with the other groups. These results show that exogenous ENCCs combined with the 5-HT{sub 4} receptor agonist effectively induced endogenous ENCCs proliferation and differentiation in a rat hypoganglionosis model. - Highlights: • Survival and differentiation of exogenous ENCCs in treated colons. • With longer times post-intervention, the number of ENCCs and their progeny cells gradually increased. • Exogenous ENCCs combined with the 5-HT4 receptor agonist ffectively induced ENCCs proliferation and differentiation.

  5. Modelling the perceptual similarity of facial expressions from image statistics and neural responses.

    Science.gov (United States)

    Sormaz, Mladen; Watson, David M; Smith, William A P; Young, Andrew W; Andrews, Timothy J

    2016-04-01

    The ability to perceive facial expressions of emotion is essential for effective social communication. We investigated how the perception of facial expression emerges from the image properties that convey this important social signal, and how neural responses in face-selective brain regions might track these properties. To do this, we measured the perceptual similarity between expressions of basic emotions, and investigated how this is reflected in image measures and in the neural response of different face-selective regions. We show that the perceptual similarity of different facial expressions (fear, anger, disgust, sadness, happiness) can be predicted by both surface and feature shape information in the image. Using block design fMRI, we found that the perceptual similarity of expressions could also be predicted from the patterns of neural response in the face-selective posterior superior temporal sulcus (STS), but not in the fusiform face area (FFA). These results show that the perception of facial expression is dependent on the shape and surface properties of the image and on the activity of specific face-selective regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    Science.gov (United States)

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  7. Crest syndrome

    International Nuclear Information System (INIS)

    Koch, B.; Roedl, W.

    1988-01-01

    If a patient has peri- and intra-articular calcinosis, as well as acro-osteolysis and esophageal hypomotility, and rheumatic symptoms, Crest syndrome should be considered as a manifestation of progressive systemic sclerosis. In connection with relevant symptoms on the skin and visceral involvement, radiological studies offer the possibility of classifying progressive systemic sclerosis more accurately. (orig.) [de

  8. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells

    DEFF Research Database (Denmark)

    Vincent, P.; Benedikz, Eirikur; Uhlén, Per

    2017-01-01

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast...... to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem...... cells (CD133+/CD24lo), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology...

  9. Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos

    International Nuclear Information System (INIS)

    Zhang, Ting; Zhou, Xin-Ying; Ma, Xu-Fa; Liu, Jing-Xia

    2015-01-01

    Highlights: Using high-throughput in situ hybridization screening, we found that genes labeling the neural crest and its derivative pigment cells were sensitive to cadmium toxicity during zebrafish organogenesis, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in cadmium-exposed embryos. Based on neural crest markers, we identified the doses and times of cadmium exposure that cause damage to the zebrafish organogenesis, and we also found that compounds BIO or RA could neutralize the toxic effects of cadmium. - Abstract: Cadmium-caused head and eye hypoplasia and hypopigmentation has been recognized for a long time, but knowledge of the underlying mechanisms is limited. In this study, we found that high mortality occurred in exposed embryos after 24 hpf, when cadmium (Cd) dosage was above 17.8 μM. Using high-throughput in situ hybridization screening, we found that genes labelling the neural crest and its derivative pigment cells exhibited obviously reduced expression in Cd-exposed embryos from 24 hpf, 2 days earlier than head and eye hypoplasia and hypopigmentation occurred. Moreover, based on expression of crestin, a neural crest marker, we found that embryos before the gastrula stage were more sensitive to cadmium toxicity and that damage caused by Cd on embryogenesis was dosage dependent. In addition, by phenotype observation and detection of neural crest and pigment cell markers, we found that BIO and retinoic acid (RA) could neutralize the toxic effects of Cd on zebrafish embryogenesis. In this study, we first determined that Cd blocked the formation of the neural crest and inhibited specification of pigment cells, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in Cd-exposed embryos. Moreover, we found that compounds BIO or RA could neutralize the toxic effects of Cd.

  10. Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ting, E-mail: zting@webmail.hzau.edu.cn; Zhou, Xin-Ying, E-mail: 290356082@qq.com; Ma, Xu-Fa, E-mail: xufama@mail.hzau.edu.cn; Liu, Jing-Xia, E-mail: ichliu@mail.hzau.edu.cn

    2015-10-15

    Highlights: Using high-throughput in situ hybridization screening, we found that genes labeling the neural crest and its derivative pigment cells were sensitive to cadmium toxicity during zebrafish organogenesis, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in cadmium-exposed embryos. Based on neural crest markers, we identified the doses and times of cadmium exposure that cause damage to the zebrafish organogenesis, and we also found that compounds BIO or RA could neutralize the toxic effects of cadmium. - Abstract: Cadmium-caused head and eye hypoplasia and hypopigmentation has been recognized for a long time, but knowledge of the underlying mechanisms is limited. In this study, we found that high mortality occurred in exposed embryos after 24 hpf, when cadmium (Cd) dosage was above 17.8 μM. Using high-throughput in situ hybridization screening, we found that genes labelling the neural crest and its derivative pigment cells exhibited obviously reduced expression in Cd-exposed embryos from 24 hpf, 2 days earlier than head and eye hypoplasia and hypopigmentation occurred. Moreover, based on expression of crestin, a neural crest marker, we found that embryos before the gastrula stage were more sensitive to cadmium toxicity and that damage caused by Cd on embryogenesis was dosage dependent. In addition, by phenotype observation and detection of neural crest and pigment cell markers, we found that BIO and retinoic acid (RA) could neutralize the toxic effects of Cd on zebrafish embryogenesis. In this study, we first determined that Cd blocked the formation of the neural crest and inhibited specification of pigment cells, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in Cd-exposed embryos. Moreover, we found that compounds BIO or RA could neutralize the toxic effects of Cd.

  11. A career at the interface of cell and developmental biology: a view from the crest.

    Science.gov (United States)

    Bronner, Marianne E

    2012-11-01

    Just as neural crest cells migrate great distances through the embryo, my journey has taken me from a childhood in a distant land to a career as a biologist. My mentoring relationships have shaped not only the careers of my trainees, but also the trajectory of my own science. One of the most satisfying aspects of mentoring comes from helping to empower the next generation of scientists to do more tomorrow than is possible today. This, together with a passion for discovery and learning new things, motivates me and makes science such a rewarding career.

  12. Lessons learned from the EU project T-CREST

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2016-01-01

    A three year EU project, such a T-CREST, with partners from all over Europe and with backgrounds from different domains is a challenging endeavor. Successful execution of such a project depends on more factors than simply performing excellent research. Within the three-year project T-CREST eight...... partners from academia and industry developed and evaluated a time-predictable multi-core processor with an accompanying compiler and a worst-case execution time analysis tool. The tight cooperation of the partners and the shared vision of the need of new computer architectures for future real-time systems...... enabled the successful completion of the T-CREST project. The T-CREST platform is now available, with most components in open source, to be used for future real-time systems and as a platform for further research....

  13. Iliac Crest Donor Site for Children With Cleft Lip and Palate Undergoing Alveolar Bone Grafting: A Long-term Assessment.

    Science.gov (United States)

    Wheeler, Jonathan; Sanders, Megan; Loo, Stanley; Moaveni, Zac; Bartlett, Glenn; Keall, Heather; Pinkerton, Mark

    2016-05-01

    The authors aimed to accurately assess the donor site morbidity from iliac crest bone grafts for secondary bone grafting in patients with cleft lip and palate alveolar defects. Fifty patients between 3 months and 10 years following alveolar bone grafting for cleft lip and palate were entered into the study. Two-thirds of patients had no significant concerns about the donor site. The remaining third had some concerns about the appearance of their hips and less than 10% of patients expressing strong agreement with statements about concerns with shape, appearance, and self-consciousness about the iliac crest donor site. Examination findings showed the average length of scar being 5.4 cm and a third of patients having some minor palpable boney irregularities of the iliac crest. The authors found that the alveolar crest donor site is well tolerated by patients long term but has a measurable morbidity long term.

  14. Coastal defence through low crested breakwater structures: jumping out of the frying pan into the fire?

    Science.gov (United States)

    Munari, Cristina; Corbau, Corinne; Simeoni, Umberto; Mistri, Michele

    2011-08-01

    The Adriatic coast of Punta Marina (Ravenna) is protected by 3-km long low crested breakwater structures (LCSs). Through a 3-years long multidisciplinar study, we assessed the impact of such defensive structures on environmental and biological condition. LCSs create pools where conditions are very different from the surrounding nearshore system. Mechanical disturbance by currents and waves varied greatly in intensity and frequency between seaward and landward sides of the structures. Sedimentary budget was positive at the landward side, but it was due to a gain on the seafloor and not on the emerged beach. The budget at seaward was negative. LCSs determine differences in benthic assemblages, alter the seasonal pattern of communities, and modify seasonal fluctuations of animal assemblages. Landward sheltered areas can be seen as "lagoonal island" surrounded by a "sea of marine habitat". Differences in ecological quality status, obtained through M-AMBI, are due to the sum of these factors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.

    Science.gov (United States)

    De Castro, Sandra C P; Hirst, Caroline S; Savery, Dawn; Rolo, Ana; Lickert, Heiko; Andersen, Bogi; Copp, Andrew J; Greene, Nicholas D E

    2018-03-15

    Failure of neural tube closure leads to neural tube defects (NTDs), common congenital abnormalities in humans. Among the genes whose loss of function causes NTDs in mice, Grainyhead-like3 (Grhl3) is essential for spinal neural tube closure, with null mutants exhibiting fully penetrant spina bifida. During spinal neurulation Grhl3 is initially expressed in the surface (non-neural) ectoderm, subsequently in the neuroepithelial component of the neural folds and at the node-streak border, and finally in the hindgut endoderm. Here, we show that endoderm-specific knockout of Grhl3 causes late-arising spinal NTDs, preceded by increased ventral curvature of the caudal region which was shown previously to suppress closure of the spinal neural folds. This finding supports the hypothesis that diminished Grhl3 expression in the hindgut is the cause of spinal NTDs in the curly tail, carrying a hypomorphic Grhl3 allele. Complete loss of Grhl3 function produces a more severe phenotype in which closure fails earlier in neurulation, before the stage of onset of expression in the hindgut of wild-type embryos. This implicates additional tissues and NTD mechanisms in Grhl3 null embryos. Conditional knockout of Grhl3 in the neural plate and node-streak border has minimal effect on closure, suggesting that abnormal function of surface ectoderm, where Grhl3 transcripts are first detected, is primarily responsible for early failure of spinal neurulation in Grhl3 null embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  17. Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin.

    Science.gov (United States)

    Gouignard, Nadège; Maccarana, Marco; Strate, Ina; von Stedingk, Kristoffer; Malmström, Anders; Pera, Edgar M

    2016-06-01

    Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in

  18. Musculocontractural Ehlers–Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin

    Directory of Open Access Journals (Sweden)

    Nadège Gouignard

    2016-06-01

    Full Text Available Of all live births with congenital anomalies, approximately one-third exhibit deformities of the head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC. Musculocontractural Ehlers–Danlos syndrome (MCEDS is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused by dysfunction of dermatan sulfate (DS biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE. Studies in mice have extended our understanding of DS-epi1 in connective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1 is important for the generation of isolated iduronic acid residues in chondroitin sulfate (CS/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial–mesenchymal transition (EMT and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo. Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and

  19. The neural crest and neural crest cells

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    papers and independent studies in the 1920s and '30s by. Landacre ..... Four possibilities, which are not mutually exclusive, could explain evolutionary changes in gene function: .... description of the results of the chief course of events in the.

  20. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    Science.gov (United States)

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2012-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in X. tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus. PMID:22227340

  1. Predicting Expressive Dynamics in Piano Performances using Neural Networks

    NARCIS (Netherlands)

    van Herwaarden, Sam; Grachten, Maarten; de Haas, W. Bas

    2014-01-01

    This paper presents a model for predicting expressive accentuation in piano performances with neural networks. Using Restricted Boltzmann Machines (RBMs), features are learned from performance data, after which these features are used to predict performed loudness. During feature learning, data

  2. Expression of sodium/iodide symporter transgene in neural stem cells

    International Nuclear Information System (INIS)

    Kim, Yun Hui; Lee, Dong Soo; Kang, Joo Hyun; Lee, Yong Jin; Chung, June Key; Lee, Myung Chul

    2004-01-01

    The ability to noninvasively track the migration of neural progenitor cells would have significant clinical and research implications. We generated stably transfected F3 human neural progenitor cells with human sodium/iodide symporter (hNIS) for noninvasively tracking F3. In this study, the expression patterns of hNIS gene in F3-NIS were examined according to the cultured time and the epigenetic modulation. F3 human neural stem cells had been obtained from Dr. Seung U. Kim (Ajou University, Suwon, Korea). hNIS and hygromycin resistance gene were linked with IRES (internal Ribosome Entry Site) under control of CMV promoter. This construct was transfected to F3 with Liposome. To investigate the restoration of hNIS gene expression in F3-NIS, cells were treated with demethylating agent (5-Azacytidine) and Histone deacetylase inhibitor (Trichostatin A: TSA). The expression of hNIS was measured by I-125 uptake assay and RT-PCR analysis. The iodide uptake of the F3-NIS was higher 12.86 times than F3 cell line. According to the cell passage number, hNIS expression in F3-NIS gradually diminished. After treatment of 5-Azacytidine and TSA with serial doses (up to 20μM, up to 62.5nM, respectively) for 24 hours, I-125 uptake and mRNA of hNIS in F3-NIS were increased. These results suggest that hNIS transfected F3 might undergo a change in its biological characters by cell passage. Therefore, the gene expression of exogenous gene transferred human stem cell might be affected to the epigenetic modulation such as promoter methylation and Histone deacetylation and to the cell culture conditions

  3. Pax3 stimulates p53 ubiquitination and degradation independent of transcription.

    Directory of Open Access Journals (Sweden)

    Xiao Dan Wang

    Full Text Available Pax3 is a developmental transcription factor that is required for neural tube and neural crest development. We previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we investigated the mechanism by which Pax3 blocks p53 function.We employed murine embryonic stem cell (ESC-derived neuronal precursors as a cell culture model of embryonic neuroepithelium or neural crest. Pax3 reduced p53 protein stability, but had no effect on p53 mRNA levels or the rate of p53 synthesis. Full length Pax3 as well as fragments that contained either the DNA-binding paired box or the homeodomain, expressed as GST or FLAG fusion proteins, physically associated with p53 and Mdm2 both in vitro and in vivo. In contrast, Splotch Pax3, which causes neural tube and neural crest defects in homozygous embryos, bound weakly, or not at all, to p53 or Mdm2. The paired domain and homeodomain each stimulated Mdm2-mediated ubiquitination of p53 and p53 degradation in the absence of the Pax3 transcription regulatory domains, whereas Splotch Pax3 did not stimulate p53 ubiquitination or degradation.Pax3 inactivates p53 function by stimulating its ubiquitination and degradation. This process utilizes the Pax3 paired domain and homeodomain but is independent of DNA-binding and transcription regulation. Because inactivating p53 is the only required Pax3 function during neural tube closure and cardiac neural crest development, and inactivating p53 does not require Pax3-dependent transcription regulation, this indicates that Pax3 is not required to function as a transcription factor during neural tube closure and cardiac neural crest development. These findings further suggest novel explanations for PAX3 functions in human diseases, such as in neural crest-derived cancers and Waardenburg syndrome types 1 and 3.

  4. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  5. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells.

    Science.gov (United States)

    Xu, Xin; Francis, Richard; Wei, Chih Jen; Linask, Kaari L; Lo, Cecilia W

    2006-09-01

    Connexin 43 knockout (Cx43alpha1KO) mice have conotruncal heart defects that are associated with a reduction in the abundance of cardiac neural crest cells (CNCs) targeted to the heart. In this study, we show CNCs can respond to changing fibronectin matrix density by adjusting their migratory behavior, with directionality increasing and speed decreasing with increasing fibronectin density. However, compared with wild-type CNCs, Cx43alpha1KO CNCs show reduced directionality and speed, while CNCs overexpressing Cx43alpha1 from the CMV43 transgenic mice show increased directionality and speed. Altered integrin signaling was indicated by changes in the distribution of vinculin containing focal contacts, and altered temporal response of Cx43alpha1KO and CMV43 CNCs to beta1 integrin function blocking antibody treatment. High resolution motion analysis showed Cx43alpha1KO CNCs have increased cell protrusive activity accompanied by the loss of polarized cell movement. They exhibited an unusual polygonal arrangement of actin stress fibers that indicated a profound change in cytoskeletal organization. Semaphorin 3A, a chemorepellent known to inhibit integrin activation, was found to inhibit CNC motility, but in the Cx43alpha1KO and CMV43 CNCs, cell processes failed to retract with semaphorin 3A treatment. Immunohistochemical and biochemical analyses suggested close interactions between Cx43alpha1, vinculin and other actin-binding proteins. However, dye coupling analysis showed no correlation between gap junction communication level and fibronectin plating density. Overall, these findings indicate Cx43alpha1 may have a novel function in mediating crosstalk with cell signaling pathways that regulate polarized cell movement essential for the directional migration of CNCs.

  6. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    Science.gov (United States)

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  7. Epigenetic control of skull morphogenesis by histone deacetylase 8

    OpenAIRE

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of...

  8. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    International Nuclear Information System (INIS)

    Yu, Hui; Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2016-01-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin"+ cells decreased whilst the percentage of GFAP"+ cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  9. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2016-05-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin{sup +} cells decreased whilst the percentage of GFAP{sup +} cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  10. Static facial expression recognition with convolution neural networks

    Science.gov (United States)

    Zhang, Feng; Chen, Zhong; Ouyang, Chao; Zhang, Yifei

    2018-03-01

    Facial expression recognition is a currently active research topic in the fields of computer vision, pattern recognition and artificial intelligence. In this paper, we have developed a convolutional neural networks (CNN) for classifying human emotions from static facial expression into one of the seven facial emotion categories. We pre-train our CNN model on the combined FER2013 dataset formed by train, validation and test set and fine-tune on the extended Cohn-Kanade database. In order to reduce the overfitting of the models, we utilized different techniques including dropout and batch normalization in addition to data augmentation. According to the experimental result, our CNN model has excellent classification performance and robustness for facial expression recognition.

  11. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta [St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong-Mei [St. Jude Children' s Research Hospital, Memphis, TN (United States); Lykidis, Athanasios [DOE Joint Genome Inst., Walnut Creek, CA (United States); Rock, Charles O. [St. Jude Children' s Research Hospital, Memphis, TN (United States); Jackowski, Suzanne [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  12. Enteric neurospheres are not specific to neural crest cultures : Implications for neural stem cell therapies

    NARCIS (Netherlands)

    Binder, E. (Ellen); D. Natarajan (Dipa); J.E. Cooper (Julie E.); Kronfli, R. (Rania); Cananzi, M. (Mara); J.-M. Delalande (Jean-Marie); C. Mccann; A.J. Burns (Alan); N. Thapar (Nikhil)

    2015-01-01

    textabstractObjectives Enteric neural stem cells provide hope of curative treatment for enteric neuropathies. Current protocols for their harvesting from humans focus on the generation of 'neurospheres' from cultures of dissociated gut tissue. The study aims to better understand the derivation,

  13. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.

    Science.gov (United States)

    Ho, Lin; Hsu, Shan-Hui

    2018-04-01

    3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ∼190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration. There is no study so far on cell reprogramming in situ with 3D bioprinting. In this manuscript, a new thermoresponsive polyurethane bioink was developed and employed to deliver FoxD3 plasmid into human fibroblasts by the extrusion-based bioprinting. When the polyurethane gel was extruded through the syringe tip, the shear stress generated may have caused the transient membrane permeability for transfection. The shear stress was optimized for transfection in situ by 3D bioprinting. We demonstrated that human fibroblasts could be

  14. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway

    Directory of Open Access Journals (Sweden)

    Douglas Blackiston

    2011-01-01

    Understanding the mechanisms that coordinate stem cell behavior within the host is a high priority for developmental biology, regenerative medicine and oncology. Endogenous ion currents and voltage gradients function alongside biochemical cues during pattern formation and tumor suppression, but it is not known whether bioelectrical signals are involved in the control of stem cell progeny in vivo. We studied Xenopus laevis neural crest, an embryonic stem cell population that gives rise to many cell types, including melanocytes, and contributes to the morphogenesis of the face, heart and other complex structures. To investigate how depolarization of transmembrane potential of cells in the neural crest’s environment influences its function in vivo, we manipulated the activity of the native glycine receptor chloride channel (GlyCl. Molecular-genetic depolarization of a sparse, widely distributed set of GlyCl-expressing cells non-cell-autonomously induces a neoplastic-like phenotype in melanocytes: they overproliferate, acquire an arborized cell shape and migrate inappropriately, colonizing numerous tissues in a metalloprotease-dependent fashion. A similar effect was observed in human melanocytes in culture. Depolarization of GlyCl-expressing cells induces these drastic changes in melanocyte behavior via a serotonin-transporter-dependent increase of extracellular serotonin (5-HT. These data reveal GlyCl as a molecular marker of a sparse and heretofore unknown cell population with the ability to specifically instruct neural crest derivatives, suggest transmembrane potential as a tractable signaling modality by which somatic cells can control stem cell behavior at considerable distance, identify a new biophysical aspect of the environment that confers a neoplastic-like phenotype upon stem cell progeny, reveal a pre-neural role for serotonin and its transporter, and suggest a novel strategy for manipulating stem cell behavior.

  15. The CREST reactive-burn model for explosives

    Directory of Open Access Journals (Sweden)

    Maheswaran M-A.

    2011-01-01

    Full Text Available CREST is an innovative reactive-burn model that has been developed at AWE for simulating shock initiation and detonation propagation behaviour in explosives. The model has a different basis from other reactive-burn models in that its reaction rate is independent of local flow variables behind the shock wave e.g. pressure and temperature. The foundation for CREST, based on a detailed analysis of data from particle-velocity gauge experiments, is that the reaction rate depends only on the local shock strength and the time since the shock passed. Since a measure of shock strength is the entropy of the non-reacted explosive, which remains constant behind a shock, CREST uses an entropy-dependent reaction rate. This paper will provide an overview of the CREST model and its predictive capability. In particular, it will be shown that the model can predict a wide range of experimental phenomena for both shock initiation (e.g. the effects of porosity and initial temperature on sustained-shock and thin-flyer initiation and detonation propagation (e.g. the diameter effect curve and detonation failure cones using a single set of coefficients.

  16. Cryoglobulinemic vasculitis in a patient with CREST syndrome.

    Science.gov (United States)

    Hurst, Rebecca L; Berianu, Florentina; Ginsburg, William W; Klein, Christopher J; Englestad, Janean K; Kennelly, Kathleen D

    2014-10-01

    Cryoglobulinemic vasculitis is a rare entity. Although it has been reported in diffuse systemic sclerosis, it has not been reported in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia (CREST) syndrome. We report a patient with cryoglobulinemic vasculitis with CREST syndrome who did not have typical clinical features of vasculitis. This 58-year-old woman presented with mild generalized weakness and a diagnosis of CREST syndrome, which included Raynaud's syndrome, dysphagia and telangiectasias. She was positive for serum cryoglobulins, which led to a sural nerve biopsy. The biopsy results were consistent with cryoglobulinemic vasculitis. Cryoglobulinemic vasculitis has not been previously reported in CREST syndrome to our knowledge. Additionally, the patient also had limited clinical symptoms. Our patient displays the importance of checking for cryoglobulins and obtaining a nerve biopsy when the serum is positive. Both of these diagnostic tests were integral for directing appropriate treatment for this patient. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  18. Design Guidelines for Low Crested Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Lamberti, Alberto

    2004-01-01

    1998-2002. The Guidelines comprise engineering aspects related to morphological impact and structure stability, biological aspects related to ecological impact, and socio-economical aspects related to the implementation of LCS-schemes. The guidelines are limited to submerged and regularly overtopped......The paper presents an overview of the design guidelines for low crested structures (LCS's) to be applied in coastal protection schemes. The design guidelines are formulated as a part of the research project: Environmental Design of Low Crested Coastal Defence Structures (DELOS) within the EC 5FP...

  19. Sex Differences in Neural Activation to Facial Expressions Denoting Contempt and Disgust

    Science.gov (United States)

    Aleman, André; Swart, Marte

    2008-01-01

    The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a

  20. Sex differences in neural activation to facial expressions denoting contempt and disgust.

    Science.gov (United States)

    Aleman, André; Swart, Marte

    2008-01-01

    The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a

  1. Sex differences in neural activation to facial expressions denoting contempt and disgust.

    Directory of Open Access Journals (Sweden)

    André Aleman

    Full Text Available The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt than women. We performed an experiment using functional magnetic resonance imaging (fMRI, in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus, anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions, in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our

  2. Renal excretion of iodine-131 labelled meta-iodobenzylguanidine and metabolites after therapeutic doses in patients suffering from different neural crest-derived tumours

    International Nuclear Information System (INIS)

    Wafelman, A.R.; Hoefnagel, C.A.; Maessen, H.J.M.; Maes, R.A.A.; Beijnen, J.H.

    1997-01-01

    Iodine-131 labelled meta-iodobenzylguanidine ([ 131 I[MIBG) is used for diagnostic scintigraphy and radionuclide therapy of neural crest-derived tumours. After administration of therapeutic doses of [ 131 I[MIBG (3.1-7.5 GBq) to 17 patients (n=32 courses), aged 2-73 years, 56%±10%, 73%±11%, 80%±10% and 83%±10% of the dose was cumulatively excreted as total radioactivity in urine at t=24 h, 48 h, 72 h and 96 h, respectively. Except for two adult patients, who showed excretion of 14%-18% of [ 131 I[meta-iodohippuric acid ([ 131 I[MIHA), the cumulatively excreted radioactivity consisted of >85% [ 131 I[MIBG, with 6% of the dose excreted as free [ 131 I[iodide, 4% as [ 131 I[MIHA and 2.5% as an unknown iodine-131 labelled metabolite. Cumulative renal excretion rates of total radioactivity and of [ 131 I[MIBG appeared to be higher in neuroblastoma and phaeochromocytoma patients than in carcinoid patients. Based on the excretion of small amounts of [ 131 I[meta-iodobenzoic acid in two patients, a possible metabolic pathway for [ 131 I[MIBG is suggested. The degree of metabolism was not related to the extent of liver uptake of radioactivity. (orig.). With 2 figs., 5 tabs

  3. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells.

    Science.gov (United States)

    Vincent, Per Henrik; Benedikz, Eirikur; Uhlén, Per; Hovatta, Outi; Sundström, Erik

    2017-06-15

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem cells (CD133 + /CD24 lo ), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology, as did the nonexpressing cells. Depletion experiments showed that after the complete removal of the subpopulations of NANOG- and REX1-expressing NPCs, the expression of these genes appeared in other NPCs within a few days. The percentage of NANOG- and REX1-expressing cells returned to that observed before depletion. Our results are best explained by a model in which there is stochastic transient expression of pluripotency-associated genes in proliferating NPCs.

  4. New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian.

    Science.gov (United States)

    Kanska, Justyna; Frank, Uri

    2013-07-15

    Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.

  5. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  6. Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos.

    Science.gov (United States)

    Zhang, Ting; Zhou, Xin-Ying; Ma, Xu-Fa; Liu, Jing-Xia

    2015-10-01

    Cadmium-caused head and eye hypoplasia and hypopigmentation has been recognized for a long time, but knowledge of the underlying mechanisms is limited. In this study, we found that high mortality occurred in exposed embryos after 24 hpf, when cadmium (Cd) dosage was above 17.8 μM. Using high-throughput in situ hybridization screening, we found that genes labelling the neural crest and its derivative pigment cells exhibited obviously reduced expression in Cd-exposed embryos from 24 hpf, 2 days earlier than head and eye hypoplasia and hypopigmentation occurred. Moreover, based on expression of crestin, a neural crest marker, we found that embryos before the gastrula stage were more sensitive to cadmium toxicity and that damage caused by Cd on embryogenesis was dosage dependent. In addition, by phenotype observation and detection of neural crest and pigment cell markers, we found that BIO and retinoic acid (RA) could neutralize the toxic effects of Cd on zebrafish embryogenesis. In this study, we first determined that Cd blocked the formation of the neural crest and inhibited specification of pigment cells, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in Cd-exposed embryos. Moreover, we found that compounds BIO or RA could neutralize the toxic effects of Cd. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Overflow Characteristic of Cylindrical Shape Crest Weirs Over Horizontal Bed

    Directory of Open Access Journals (Sweden)

    Emad4 AbdulGabbar

    2013-05-01

    Full Text Available The most common types of weirs are the broad-crested weir, the sharp-crested weir, the circular crested weir and the ogee crested weir. Advantages of the cylindrical weir shape include the stable overflow pattern, the ease to pass floating debris, the simplicity of design compared to ogee crest design and the associated lower costs. In present study, it was investigated the overflow characteristics of circular weirs in laboratory for various cylinder radii of three sizes (11.4, 9.0, 6.3 cm, and the models fixed on the channel bed vertically to the direction of flow. The result shows that the increase in the ratio of head to weir radius ratio (Hw/R value causes an increase in discharge coefficient (Cd value for the same height of weir. It was observed that the cylinder size (i.e. radius of cylindrical weir (R has an effect on the (Cd. The flow magnification factor (qw/qs increases with an increase in (Hw/R value and values of (qw/qs were always higher than one for all values of (Hw/R, this means that weirs of cylindrical shape performed better than those of sharp crest for any value of weir radius tested in this study.

  8. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4.

    Science.gov (United States)

    Bergeron, Karl-F; Nguyen, Chloé M A; Cardinal, Tatiana; Charrier, Baptiste; Silversides, David W; Pilon, Nicolas

    2016-11-01

    Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4. © 2016. Published by The Company of Biologists Ltd.

  9. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4

    Directory of Open Access Journals (Sweden)

    Karl-F. Bergeron

    2016-11-01

    Full Text Available Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line – obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC development – is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.

  10. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Science.gov (United States)

    Ballotta, Daniela; Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  11. Morphology of chimpanzee pinworms, Enterobius (Enterobius) anthropopitheci (Gedoelst, 1916) (Nematoda: Oxyuridae), collected from chimpanzees, Pan troglodytes, on Rubondo Island, Tanzania.

    Science.gov (United States)

    Hasegawa, Hideo; Ikeda, Yatsukaho; Fujisaki, Akiko; Moscovice, Liza R; Petrzelkova, Klara J; Kaur, Taranjit; Huffman, Michael A

    2005-12-01

    The chimpanzee pinworm, Enterobius (Enterobius) anthropopitheci (Gedoelst, 1916) (Nematoda: Oxyuridae), is redescribed based on light and scanning electron microscopy of both sexes collected from the feces of chimpanzees, Pan troglodytes, of an introduced population on Rubondo Island, Tanzania. Enterobius (E.) anthropopitheci is characterized by having a small body (males 1.13-1.83 mm long, females 3.33-4.73 mm long), a rather straight spicule with a ventral membranous formation in males, double-crested lateral alae in females, small eggs (53-58 by 24-28 microm), and a smooth eggshell with 3 longitudinal thickenings. Morphological comparison is made between the present and previous descriptions.

  12. The 'Unicorn' dinosaur that wasn't: a new reconstruction of the crest of Tsintaosaurus and the early evolution of the lambeosaurine crest and rostrum.

    Directory of Open Access Journals (Sweden)

    Albert Prieto-Márquez

    Full Text Available The lambeosaurine Tsintaosaurus spinorhinus has traditionally been reconstructed with an elevated, hollow, spike-like crest composed entirely of the nasal bones, although this has been disputed. Here, we provide a new reconstruction of the skull of this species based on reexamination and reinterpretation of the morphology and articular relationships of the type and Paratype skulls and a fragmentary crest. We confirm the presence of a supracranial crest composed of the elevated nasal bones, but also including the premaxillae. We hypothesize that the crest is a tall, lobate, hollow structure that projects dorsally and slightly caudally a distance greater than the height of the skull along the quadrate. In our reconstruction, the nasal passage passes through the crest, but enters the skull rostral to the tubular process of the nasals, not through it. Tsintaosaurus spinorhinus is rediagnosed on the basis of a suite of cranial autapomorphies including a circumnarial fossa subdivided into three accessory fossae, prefrontal with ascending rostral process and lateral flange, nasals fused sagittally to form elongate tubular process that rises dorsally from skull roof, each nasal being expanded rostrocaudally into a rhomboid distal process, and medial processes of premaxillae at the summit of the cranial crest inserted between rhomboid processes of nasals. Tsintaosaurus spinorhinus lacks characters that are present in more derived lambeosaurines (parasaurolophins and lambeosaurins, such as rotation of the caudal margin of the crest to an acute angle with the skull roof, lateral processes of the nasals that enclose part of the intracranial cavity and participate in the formation of the walls of the common median chamber, and a smooth narial fossa lacking ridges and accessory fossae. We hypothesize that ancestrally the rostrum of lambeosaurines may have been more similar to that in Saurolophinae, and became subsequently reduced in complexity during

  13. The 'Unicorn' dinosaur that wasn't: a new reconstruction of the crest of Tsintaosaurus and the early evolution of the lambeosaurine crest and rostrum.

    Science.gov (United States)

    Prieto-Márquez, Albert; Wagner, Jonathan R

    2013-01-01

    The lambeosaurine Tsintaosaurus spinorhinus has traditionally been reconstructed with an elevated, hollow, spike-like crest composed entirely of the nasal bones, although this has been disputed. Here, we provide a new reconstruction of the skull of this species based on reexamination and reinterpretation of the morphology and articular relationships of the type and Paratype skulls and a fragmentary crest. We confirm the presence of a supracranial crest composed of the elevated nasal bones, but also including the premaxillae. We hypothesize that the crest is a tall, lobate, hollow structure that projects dorsally and slightly caudally a distance greater than the height of the skull along the quadrate. In our reconstruction, the nasal passage passes through the crest, but enters the skull rostral to the tubular process of the nasals, not through it. Tsintaosaurus spinorhinus is rediagnosed on the basis of a suite of cranial autapomorphies including a circumnarial fossa subdivided into three accessory fossae, prefrontal with ascending rostral process and lateral flange, nasals fused sagittally to form elongate tubular process that rises dorsally from skull roof, each nasal being expanded rostrocaudally into a rhomboid distal process, and medial processes of premaxillae at the summit of the cranial crest inserted between rhomboid processes of nasals. Tsintaosaurus spinorhinus lacks characters that are present in more derived lambeosaurines (parasaurolophins and lambeosaurins), such as rotation of the caudal margin of the crest to an acute angle with the skull roof, lateral processes of the nasals that enclose part of the intracranial cavity and participate in the formation of the walls of the common median chamber, and a smooth narial fossa lacking ridges and accessory fossae. We hypothesize that ancestrally the rostrum of lambeosaurines may have been more similar to that in Saurolophinae, and became subsequently reduced in complexity during evolution of the group.

  14. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  15. Superficial Velocity Effects on HZ-PAN and AgZ-PAN for Kr/Xe Capture

    Energy Technology Data Exchange (ETDEWEB)

    Welty, Amy Keil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, Troy Gerry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, Mitchell Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Nearly all previous testing of HZ-PAN and AgZ-PAN was conducted at the same flow rate in order to maintain consistency among tests. This testing was sufficient for sorbent capacity determinations, but did not ensure that sorbents were capable of functioning under a range of flow regimes. Tests were conducted on both HZ-PAN and AgZ-PAN at superficial velocities between 20 and 700 cm/min. For HZ-PAN, Kr capacity increased from 60 mmol/kg to 110 mmol/kg as superficial velocity increased from 21 to 679 cm/min. Results for AgZ-PAN were similar, with capacity ranging from 72 to 124 mmol/kg over the same range of superficial. These results are promising for scaling up to process flows, demonstrating flexibility to operate in a broad range of superficial velocities while maintaining sorbent capacity. While preparing for superficial velocity testing it was also discovered that AgZ-PAN Xe capacity, previously observed to diminish over time, could be recovered with increased desorption temperature. Further, a substantial Xe capacity increase was observed. Previous room temperature capacities in the range of 22-25 mmol Xe/kg AgZ-PAN were increased to over 60 mmol Xe/kg AgZ-PAN. While this finding has not yet been fully explored to optimize activation and desorption temperatures, it is encouraging.

  16. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    International Nuclear Information System (INIS)

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim

    2006-01-01

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research

  17. Effects of peroxyacetyl nitrate (PAN) on vegetation. I. Herbaceous plants PAN injury symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Nouchi, I.; Iijima, T.; Oodaira, T.

    1975-01-01

    A series of exposure experiments were conducted in a controlled-atmosphere exposure chamber equipped with artificial light apparatus, using PAN synthesized from ultraviolet irradiation of ethyl nitrite vapor in oxygen. Exposures of 6 approx. 16 hours and 10 pphm PAN caused serious damage like caving with glazing or bronzing in caved lesions to the lower surface of younger leaves. Leaves of white-flowered petunia were found to be most sensitive to PAN and were damaged even by a 3 pphm exposure. Microscopic examinations showed that the PAN characteristically caused injuries of spongy cells and that these cells collapsed and turned brown. Leaf injury symptoms on herbaceous plants caused by synthesized PAN in the exposure experiments were found to be quite similar to those seen in the field under high oxidant emergence. Therefore, it seems that the said type of injuries to leaf beet, kidney bean, and head lettuce observed in the field were caused by PAN. 21 references. 4 figures, 3 tables.

  18. Hydraulic model tests of an innovative dike crest design

    NARCIS (Netherlands)

    Verhagen, H.J.; Kortenhaus, A.; Bollinger, K.; Dassayanake, D.

    2007-01-01

    Report on laboratory tests on a crest drainage dike; investigation if a channel in the crest of the dike is able to decrease the amount of overtopping over the dike. Chapter 2 provides details about findings from previous studies and the relevance of those findings to this research project.

  19. msh/Msx gene family in neural development.

    Science.gov (United States)

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  20. Snail regulates p21WAF/CIP1 expression in cooperation with E2 A and Twist

    International Nuclear Information System (INIS)

    Takahashi, Eishi; Funato, Noriko; Higashihori, Norihisa; Hata, Yuiro; Gridley, Thomas; Nakamura, Masataka

    2004-01-01

    Snail, a zinc-finger transcriptional repressor, is essential for mesoderm and neural crest cell formation and epithelial-mesenchymal transition. The basic helix-loop-helix transcription factors E2A and Twist have been linked with Snail during embryonic development. In this study, we examined the role of Snail in cellular differentiation through regulation of p21 WAF/CIP1 expression. A reporter assay with the p21 promoter demonstrated that Snail inhibited expression of p21 induced by E2A. Co-expression of Snail with Twist showed additive inhibitory effects. Deletion mutants of the p21 promoter revealed that sequences between -270 and -264, which formed a complex with unidentified nuclear factor(s), were critical for E2A and Snail function. The E2A-dependent expression of the endogenous p21 gene was also inhibited by Snail

  1. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Directory of Open Access Journals (Sweden)

    Daniela Ballotta

    Full Text Available According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a whether observation of facial expressions of pain interferes with time production; and b the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1 the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2 the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  2. Modulation of neural circuits underlying temporal production by facial expressions of pain

    Science.gov (United States)

    Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems. PMID:29447256

  3. Analysis list: pan [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available pan Embryo,Larvae,Pupae + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target.../pan.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/pan.5.tsv http://dbarchive.biosciencedbc.jp.../kyushu-u/dm3/target/pan.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/pan.Embryo.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/dm3/colo/pan.Larvae.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/dm3/colo/pan.Pupae.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Embryo.gml,http://dbarchive.bioscience

  4. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The ‘Unicorn’ Dinosaur That Wasn’t: A New Reconstruction of the Crest of Tsintaosaurus and the Early Evolution of the Lambeosaurine Crest and Rostrum

    Science.gov (United States)

    Prieto-Márquez, Albert; Wagner, Jonathan R.

    2013-01-01

    The lambeosaurine Tsintaosaurus spinorhinus has traditionally been reconstructed with an elevated, hollow, spike-like crest composed entirely of the nasal bones, although this has been disputed. Here, we provide a new reconstruction of the skull of this species based on reexamination and reinterpretation of the morphology and articular relationships of the type and Paratype skulls and a fragmentary crest. We confirm the presence of a supracranial crest composed of the elevated nasal bones, but also including the premaxillae. We hypothesize that the crest is a tall, lobate, hollow structure that projects dorsally and slightly caudally a distance greater than the height of the skull along the quadrate. In our reconstruction, the nasal passage passes through the crest, but enters the skull rostral to the tubular process of the nasals, not through it. Tsintaosaurus spinorhinus is rediagnosed on the basis of a suite of cranial autapomorphies including a circumnarial fossa subdivided into three accessory fossae, prefrontal with ascending rostral process and lateral flange, nasals fused sagittally to form elongate tubular process that rises dorsally from skull roof, each nasal being expanded rostrocaudally into a rhomboid distal process, and medial processes of premaxillae at the summit of the cranial crest inserted between rhomboid processes of nasals. Tsintaosaurus spinorhinus lacks characters that are present in more derived lambeosaurines (parasaurolophins and lambeosaurins), such as rotation of the caudal margin of the crest to an acute angle with the skull roof, lateral processes of the nasals that enclose part of the intracranial cavity and participate in the formation of the walls of the common median chamber, and a smooth narial fossa lacking ridges and accessory fossae. We hypothesize that ancestrally the rostrum of lambeosaurines may have been more similar to that in Saurolophinae, and became subsequently reduced in complexity during evolution of the group

  6. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  7. Meninges harbor cells expressing neural precursor markers during development and adulthood.

    Science.gov (United States)

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

  8. Structural and molecular study of the supraspinatus muscle of modern humans (Homo sapiens) and common chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Potau, J M; Casado, A; de Diego, M; Ciurana, N; Arias-Martorell, J; Bello-Hellegouarch, G; Barbosa, M; de Paz, F J; Pastor, J F; Pérez-Pérez, A

    2018-04-21

    To analyze the muscle architecture and the expression pattern of the myosin heavy chain (MyHC) isoforms in the supraspinatus of Pan troglodytes and Homo sapiens in order to identify differences related to their different types of locomotion. We have analyzed nine supraspinatus muscles of Pan troglodytes and ten of Homo sapiens. For each sample, we have recorded the muscle fascicle length (MFL), the pennation angle, and the physiological cross-sectional area (PCSA). In the same samples, by real-time quantitative polymerase chain reaction, we have assessed the percentages of expression of the MyHC-I, MyHC-IIa, and MyHC-IIx isoforms. The mean MFL of the supraspinatus was longer (p = 0.001) and the PCSA was lower (p sapiens than in Pan troglodytes. Although the percentage of expression of MyHC-IIa was lower in Homo sapiens than in Pan troglodytes (p = 0.035), the combination of MyHC-IIa and MyHC-IIx was expressed at a similar percentage in the two species. The longer MFL in the human supraspinatus is associated with a faster contractile velocity, which reflects the primary function of the upper limbs in Homo sapiens-the precise manipulation of objects-an adaptation to bipedal locomotion. In contrast, the larger PCSA in Pan troglodytes is related to the important role of the supraspinatus in stabilizing the glenohumeral joint during the support phase of knuckle-walking. These functional differences of the supraspinatus in the two species are not reflected in differences in the expression of the MyHC isoforms. © 2018 Wiley Periodicals, Inc.

  9. Temporal and spatial expression of Drosophila DLGS97 during neural development.

    Science.gov (United States)

    Albornoz, Valeria; Mendoza-Topaz, Carolina; Oliva, Carlos; Tello, Judith; Olguín, Patricio; Sierralta, Jimena

    2008-07-01

    The products of the Drosophila discs-large (dlg) gene are members of the MAGUK family of proteins, a group of proteins involved in localization, transport and recycling of receptors and channels in cell junctions, including the synapse. In vertebrates, four genes with multiple splice variants homologous to dlg are described. dlg originates two main proteins, DLGA, similar to the vertebrate neuronal protein PSD95, and DLGS97, similar to the vertebrate neuronal and epithelial protein SAP97. DLGA is expressed in epithelia, neural tissue and muscle. DLGS97 is expressed in neural tissue and muscle but not in epithelia. The distinctive difference between them is the presence in DLGS97 of an L27 domain. The differential expression between these variants makes the study of DLGS97 of key relevance to understand the in vivo role of synaptic MAGUKs in neurons. Here we present the temporal and spatial expression pattern of DLGS97 during embryonic and larval nervous system development, during eye development and in adult brain. Our results show that DLGS97 is expressed zygotically, in neurons in the embryo, larvae and adult, and is absent at all stages in glial cells. During eye development DLGS97 starts to be expressed in photoreceptor cells at early stages of differentiation and localizes basal to the basolateral junctions. In the brain, DLGS97 is expressed in the mushroom bodies and optic lobes at larval and adult stages; and in the antennal lobe in the adult stage. In addition we show that both, dlgS97 and dlgA transcripts, express during development multiple splice variants with differences in the use of exons in two sites.

  10. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses.

    Science.gov (United States)

    Itoh, K; Stevens, B; Schachner, M; Fields, R D

    1995-11-24

    Development of the mammalian nervous system is regulated by neural impulse activity, but the molecular mechanisms are not well understood. If cell recognition molecules [for example, L1 and the neural cell adhesion molecule (NCAM)] were influenced by specific patterns of impulse activity, cell-cell interactions controlling nervous system structure could be regulated by nervous system function at critical stages of development. Low-frequency electrical pulses delivered to mouse sensory neurons in culture (0.1 hertz for 5 days) down-regulated expression of L1 messenger RNA and protein (but not NCAM). Fasciculation of neurites, adhesion of neuroblastoma cells, and the number of Schwann cells on neurites was reduced after 0.1-hertz stimulation, but higher frequencies or stimulation after synaptogenesis were without effect.

  11. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets.

    Science.gov (United States)

    Muralidharan, Pooja; Sarmah, Swapnalee; Zhou, Feng C; Marrs, James A

    2013-06-19

    Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  12. Fetal Alcohol Spectrum Disorder (FASD Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    James A. Marrs

    2013-06-01

    Full Text Available Fetal alcohol spectrum disorder (FASD, caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  13. HOW TO PAN-SHARPEN IMAGES USING THE GRAM-SCHMIDT PAN-SHARPEN METHOD – A RECIPE

    Directory of Open Access Journals (Sweden)

    T. Maurer

    2013-05-01

    Full Text Available Since its publication in 1998 (Laben and Brower, 2000, the Gram-Schmidt pan-sharpen method has become one of the most popular algorithms to pan-sharpen multispectral (MS imagery. It outperforms most other pan-sharpen methods in both maximizing image sharpness and minimizing color distortion. It is, on the other hand, also more complex and computationally expensive than most other methods, as it requires forward and backward transforming the entire image. Another complication is the lack of a clear recipe of how to compute the sensor dependent MS to Pan weights that are needed to compute the simulated low resolution pan band. Estimating them from the sensor’s spectral sensitivity curves (in different ways, or using linear regression or least square methods are typical candidates which can include other degrees of freedom such as adding a constant offset or not. As a result, most companies and data providers do it somewhat differently. Here we present a solution to both problems. The transform coefficients can be computed directly and in advance from the MS covariance matrix and the MS to Pan weights. Once the MS covariance matrix is computed and stored with the image statistics, any small section of the image can be pan-sharpened on the fly, without having to compute anything else over the entire image. Similarly, optimal MS to Pan weights can be computed directly from the full MS-Pan covariance matrix, guaranteeing optimal image quality and consistency.

  14. Flow characteristics at trapezoidal broad-crested side weir

    Directory of Open Access Journals (Sweden)

    Říha Jaromír

    2015-06-01

    Full Text Available Broad-crested side weirs have been the subject of numerous hydraulic studies; however, the flow field at the weir crest and in front of the weir in the approach channel still has not been fully described. Also, the discharge coefficient of broad-crested side weirs, whether slightly inclined towards the stream or lateral, still has yet to be clearly determined. Experimental research was carried out to describe the flow characteristics at low Froude numbers in the approach flow channel for various combinations of in- and overflow discharges. Three side weir types with different oblique angles were studied. Their flow characteristics and discharge coefficients were analyzed and assessed based on the results obtained from extensive measurements performed on a hydraulic model. The empirical relation between the angle of side weir obliqueness, Froude numbers in the up- and downstream channels, and the coefficient of obliqueness was derived.

  15. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    YanYan Mao

    Full Text Available Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents.

  16. Targeted Deletion of Sox10 by Wnt1-cre Defects Neuronal Migration and Projection in the Mouse Inner Ear

    Science.gov (United States)

    Mao, YanYan; Reiprich, Simone; Wegner, Michael; Fritzsch, Bernd

    2014-01-01

    Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents. PMID:24718611

  17. O pan das ánimas

    OpenAIRE

    Antón, Fina; Mandianes Castro, Manuel

    1996-01-01

    O pan, ademais de cumprir una función alimenticia de primeira orde, está revestido dunha significación simbólica importante. O pan durante a vida axuda a pasa-los límites, a da-lo paso, a integrarse entre os cristiáns por cousa do bautismo e a integrarse no grupo dos homes e mulleres co adaxo da boda, pero o pan axuda, sobre todo, a pasa-lo río Xordán, que é, sen dúbida o límite que separa este mundo do outro; a serpe e as ánimas constitúen un límite e o pan facilita o seu paso. O pan está in...

  18. What is adapted in face adaptation? The neural representations of expression in the human visual system.

    Science.gov (United States)

    Fox, Christopher J; Barton, Jason J S

    2007-01-05

    The neural representation of facial expression within the human visual system is not well defined. Using an adaptation paradigm, we examined aftereffects on expression perception produced by various stimuli. Adapting to a face, which was used to create morphs between two expressions, substantially biased expression perception within the morphed faces away from the adapting expression. This adaptation was not based on low-level image properties, as a different image of the same person displaying that expression produced equally robust aftereffects. Smaller but significant aftereffects were generated by images of different individuals, irrespective of gender. Non-face visual, auditory, or verbal representations of emotion did not generate significant aftereffects. These results suggest that adaptation affects at least two neural representations of expression: one specific to the individual (not the image), and one that represents expression across different facial identities. The identity-independent aftereffect suggests the existence of a 'visual semantic' for facial expression in the human visual system.

  19. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception

    DEFF Research Database (Denmark)

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent...... males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two.......2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were...

  20. Concentration profiling of minerals in iliac crest bone tissue of opium addicted humans using inductively coupled plasma and discriminant analysis techniques.

    Science.gov (United States)

    Mani-Varnosfaderani, Ahmad; Jamshidi, Mahbobeh; Yeganeh, Ali; Mahmoudi, Mani

    2016-02-20

    Opium addiction is one of the main health problems in developing countries and induces serious defects on the human body. In this work, the concentrations of 32 minerals including alkaline, heavy and toxic metals have been determined in the iliac crest bone tissue of 22 opium addicted individuals using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The bone tissues of 30 humans with no physiological and metabolomic diseases were used as the control group. For subsequent analyses, the linear and quadratic discriminant analysis techniques have been used for classification of the data into "addicted" and "non-addicted" groups. Moreover, the counter-propagation artificial neural network (CPANN) has been used for clustering of the data. The results revealed that the CPANN is a robust model and thoroughly classifies the data. The area under the curve for the receiver operating characteristic curve for this model was more than 0.91. Investigation of the results revealed that the opium consumption causes a deficiency in the level of Calcium, Phosphate, Potassium and Sodium in iliac crest bone tissue. Moreover, this type of addiction induces an increment in the level of toxic and heavy metals such as Co, Cr, Mo and Ni in iliac crest tissue. The correlation analysis revealed that there were no significant dependencies between the age of the samples and the mineral content of their iliac crest, in this study. The results of this work suggest that the opium addicted individuals need thorough and restricted dietary and medical care programs after recovery phases, in order to have healthy bones. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Unique Preservation of Neural Cells in Hutchinson- Gilford Progeria Syndrome Is Due to the Expression of the Neural-Specific miR-9 MicroRNA

    Directory of Open Access Journals (Sweden)

    Xavier Nissan

    2012-07-01

    Full Text Available One puzzling observation in patients affected with Hutchinson-Gilford progeria syndrome (HGPS, who overall exhibit systemic and dramatic premature aging, is the absence of any conspicuous cognitive impairment. Recent studies based on induced pluripotent stem cells derived from HGPS patient cells have revealed a lack of expression in neural derivatives of lamin A, a major isoform of LMNA that is initially produced as a precursor called prelamin A. In HGPS, defective maturation of a mutated prelamin A induces the accumulation of toxic progerin in patient cells. Here, we show that a microRNA, miR-9, negatively controls lamin A and progerin expression in neural cells. This may bear major functional correlates, as alleviation of nuclear blebbing is observed in nonneural cells after miR-9 overexpression. Our results support the hypothesis, recently proposed from analyses in mice, that protection of neural cells from progerin accumulation in HGPS is due to the physiologically restricted expression of miR-9 to that cell lineage.

  2. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  3. SLUG (SNAI2) deletions in patients with Waardenburg disease.

    Science.gov (United States)

    Sánchez-Martín, Manuel; Rodríguez-García, Arancha; Pérez-Losada, Jesús; Sagrera, Ana; Read, Andrew P; Sánchez-García, Isidro

    2002-12-01

    Waardenburg syndrome (WS; deafness with pigmentary abnormalities) is a congenital disorder caused by defective function of the embryonic neural crest. Depending on additional symptoms, WS is classified into four types: WS1, WS2, WS3 and WS4. WS1 and WS3 are caused by mutations in PAX3, whereas WS2 is heterogenous, being caused by mutations in the microphthalmia (MITF) gene in some but not all affected families. The identification of Slugh, a zinc-finger transcription factor expressed in migratory neural crest cells, as the gene responsible for pigmentary disturbances in mice prompted us to analyse the role of its human homologue SLUG in neural crest defects. Here we show that two unrelated patients with WS2 have homozygous deletions in SLUG which result in absence of the SLUG product. We further show that Mitf is present in Slug-deficient cells and transactivates the SLUG promoter, and that Slugh and Kit genetically interact in vivo. Our findings further define the locus heterogeneity of WS2 and point to an essential role of SLUG in the development of neural crest-derived human cell lineages: its absence causes the auditory-pigmentary symptoms in at least some individuals with WS2.

  4. A Comparative Study of Growth Patterns in Crested Langurs and Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Debra R. Bolter

    2011-01-01

    Full Text Available The physical growth patterns of crested langurs and vervet monkeys are investigated for several unilinear dimensions. Long bone lengths, trunk height, foot length, epiphyseal fusion of the long bones and the pelvis, and cranial capacity are compared through six dental growth stages in male Trachypithecus cristatus (crested langurs and Cercopithecus aethiops (vervet monkeys. Results show that the body elements of crested langurs mature differently than those of vervets. In some dimensions, langurs and vervets grow comparably, in others vervets attain adult values in advance of crested langurs, and in one feature the langurs are accelerated. Several factors may explain this difference, including phylogeny, diet, ecology, and locomotion. This study proposes that locomotor requirements affect differences in somatic growth between the species.

  5. Perceived differences between chimpanzee (Pan troglodytes) and human (Homo sapiens) facial expressions are related to emotional interpretation.

    Science.gov (United States)

    Waller, Bridget M; Bard, Kim A; Vick, Sarah-Jane; Smith Pasqualini, Marcia C

    2007-11-01

    Human face perception is a finely tuned, specialized process. When comparing faces between species, therefore, it is essential to consider how people make these observational judgments. Comparing facial expressions may be particularly problematic, given that people tend to consider them categorically as emotional signals, which may affect how accurately specific details are processed. The bared-teeth display (BT), observed in most primates, has been proposed as a homologue of the human smile (J. A. R. A. M. van Hooff, 1972). In this study, judgments of similarity between BT displays of chimpanzees (Pan troglodytes) and human smiles varied in relation to perceived emotional valence. When a chimpanzee BT was interpreted as fearful, observers tended to underestimate the magnitude of the relationship between certain features (the extent of lip corner raise) and human smiles. These judgments may reflect the combined effects of categorical emotional perception, configural face processing, and perceptual organization in mental imagery and may demonstrate the advantages of using standardized observational methods in comparative facial expression research. Copyright 2007 APA.

  6. Flow structure in front of the broad-crested weir

    Directory of Open Access Journals (Sweden)

    Zachoval Zbyněk

    2015-01-01

    Full Text Available The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.

  7. Degradation processes and the methods of securing wall crests

    OpenAIRE

    Maciej Trochonowicz; Bogusław Szmygin

    2017-01-01

    The protection of historical ruins requires solution of doctrinal and technical problems. Technical problems concern above all preservation of walls, which are exposed to the influence of atmospheric factors. The problem that needs to be solved in any historic ruin is securing of wall crests. Form of protection of the wall crests depends on many factors, mainly technical features of the wall and architectural and conservatory vision. The following article presents three aspects important for ...

  8. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition

    Directory of Open Access Journals (Sweden)

    Min Peng

    2017-10-01

    Full Text Available Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve.

  9. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition.

    Science.gov (United States)

    Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan

    2017-01-01

    Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve.

  10. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition

    Science.gov (United States)

    Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan

    2017-01-01

    Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve. PMID:29081753

  11. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages.

    Science.gov (United States)

    Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D

    2005-08-01

    Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.

  12. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  13. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens).

    Science.gov (United States)

    Potau, J M; Arias-Martorell, J; Bello-Hellegouarch, G; Casado, A; Pastor, J F; de Paz, F; Diogo, R

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) and compared them to anatomic variations in these muscles in humans (Homo sapiens) . We have macroscopically dissected these muscles in six adult Pan troglodytes , five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens . Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes ; none of the Pan paniscus , however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus . In all six Pan troglodytes , the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens , it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues.

  14. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes, Bonobos (Pan paniscus, and Humans (Homo sapiens

    Directory of Open Access Journals (Sweden)

    J. M. Potau

    2018-01-01

    Full Text Available We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes and bonobos (Pan paniscus and compared them to anatomic variations in these muscles in humans (Homo sapiens. We have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes; none of the Pan paniscus, however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus. In all six Pan troglodytes, the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens, it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues.

  15. ATLAS BigPanDA Monitoring

    CERN Document Server

    Padolski, Siarhei; The ATLAS collaboration; Klimentov, Alexei; Korchuganova, Tatiana

    2017-01-01

    BigPanDA monitoring is a web based application which provides various processing and representation of the Production and Distributed Analysis (PanDA) system objects states. Analyzing hundreds of millions of computation entities such as an event or a job BigPanDA monitoring builds different scale and levels of abstraction reports in real time mode. Provided information allows users to drill down into the reason of a concrete event failure or observe system bigger picture such as tracking the computation nucleus and satellites performance or the progress of whole production campaign. PanDA system was originally developed for the Atlas experiment and today effectively managing more than 2 million jobs per day distributed over 170 computing centers worldwide. BigPanDA is its core component commissioned in the middle of 2014 and now is the primary source of information for ATLAS users about state of their computations and the source of decision support information for shifters, operators and managers. In this wor...

  16. ATLAS BigPanDA Monitoring

    CERN Document Server

    Padolski, Siarhei; The ATLAS collaboration

    2017-01-01

    BigPanDA monitoring is a web-based application that provides various processing and representation of the Production and Distributed Analysis (PanDA) system objects states. Analysing hundreds of millions of computation entities such as an event or a job BigPanDA monitoring builds different scale and levels of abstraction reports in real time mode. Provided information allows users to drill down into the reason of a concrete event failure or observe system bigger picture such as tracking the computation nucleus and satellites performance or the progress of whole production campaign. PanDA system was originally developed for the Atlas experiment and today effectively managing more than 2 million jobs per day distributed over 170 computing centers worldwide. BigPanDA is its core component commissioned in the middle of 2014 and now is the primary source of information for ATLAS users about state of their computations and the source of decision support information for shifters, operators and managers. In this work...

  17. The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration.

    Directory of Open Access Journals (Sweden)

    Ketan Mathavan

    Full Text Available During development, a multi-potent group of cells known as the cranial neural crest (CNC migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3 is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors.

  18. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    Science.gov (United States)

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  19. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells

    DEFF Research Database (Denmark)

    Gao, Yu; Jammes, Helen; Rasmussen, Mikkel Aabech

    2011-01-01

    in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast......, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs). We found that OCT4, NANOG, and SOX2 were highly expressed in the epiblast and hypoblast, while VIMENTIN was only highly expressed in the epiblast. Moreover, low expression of OCT4, NANOG, SOX2 and VIMENTIN was noted in the TE....... Most CpG sites of OCT4, NANOG, SOX2 and VIMENTIN displayed low methylation levels in the epiblast and hypoblast and, strikingly, also in the TE. Hence, the expression patterns of these genes were not directly related to levels of DNA methylation in the TE in contrast to the situation in the mouse...

  20. Genotyping-by-sequencing data of 272 crested wheatgrass (Agropyron cristatum genotypes

    Directory of Open Access Journals (Sweden)

    Pingchuan Li

    2017-12-01

    Full Text Available Crested wheatgrass [Agropyron cristatum L. (Gaertn.] is an important cool-season forage grass widely used for early spring grazing. However, the genomic resources for this non-model plant are still lacking. Our goal was to generate the first set of next generation sequencing data using the genotyping-by-sequencing technique. A total of 272 crested wheatgrass plants representing seven breeding lines, five cultivars and five geographically diverse accessions were sequenced with an Illumina MiSeq instrument. These sequence datasets were processed using different bioinformatics tools to generate contigs for diploid and tetraploid plants and SNPs for diploid plants. Together, these genomic resources form a fundamental basis for genomic studies of crested wheatgrass and other wheatgrass species. The raw reads were deposited into Sequence Read Archive (SRA database under NCBI accession SRP115373 (https://www.ncbi.nlm.nih.gov/sra?term=SRP115373 and the supplementary datasets are accessible in Figshare (10.6084/m9.figshare.5345092. Keywords: Crested wheatgrass, Genotyping-by-sequencing, Diploid, Tetraploid, Raw sequence data

  1. Precision Photometry and Astrometry from Pan-STARRS

    Science.gov (United States)

    Magnier, Eugene A.; Pan-STARRS Team

    2018-01-01

    The Pan-STARRS 3pi Survey has been calibrated with excellent precision for both astrometry and photometry. The Pan-STARRS Data Release 1, opened to the public on 2016 Dec 16, provides photometry in 5 well-calibrated, well-defined bandpasses (grizy) astrometrically registered to the Gaia frame. Comparisons with other surveys illustrate the high quality of the calibration and provide tests of remaining systematic errors in both Pan-STARRS and those external surveys. With photometry and astrometry of roughly 3 billion astronomical objects, the Pan-STARRS DR1 has substantial overlap with Gaia, SDSS, 2MASS and other surveys. I will discuss the astrometric tie between Pan-STARRS DR1 and Gaia and show comparisons between Pan-STARRS and other large-scale surveys.

  2. Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer

    Science.gov (United States)

    Charité, Jeroen; McFadden, David G.; Merlo, Giorgio; Levi, Giovanni; Clouthier, David E.; Yanagisawa, Masashi; Richardson, James A.; Olson, Eric N.

    2001-01-01

    Neural crest cells play a key role in craniofacial development. The endothelin family of secreted polypeptides regulates development of several neural crest sublineages, including the branchial arch neural crest. The basic helix–loop–helix transcription factor dHAND is also required for craniofacial development, and in endothelin-1 (ET-1) mutant embryos, dHAND expression in the branchial arches is down-regulated, implicating it as a transcriptional effector of ET-1 action. To determine the mechanism that links ET-1 signaling to dHAND transcription, we analyzed the dHAND gene for cis-regulatory elements that control transcription in the branchial arches. We describe an evolutionarily conserved dHAND enhancer that requires ET-1 signaling for activity. This enhancer contains four homeodomain binding sites that are required for branchial arch expression. By comparing protein binding to these sites in branchial arch extracts from endothelin receptor A (EdnrA) mutant and wild-type mouse embryos, we identified Dlx6, a member of the Distal-less family of homeodomain proteins, as an ET-1-dependent binding factor. Consistent with this conclusion, Dlx6 was down-regulated in branchial arches from EdnrA mutant mice. These results suggest that Dlx6 acts as an intermediary between ET-1 signaling and dHAND transcription during craniofacial morphogenesis. PMID:11711438

  3. Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans

    International Nuclear Information System (INIS)

    Anwar, S.I.

    2010-01-01

    In this paper the concept of fins has been used for heating purpose for improving efficiency of open pan jaggery making furnace. Pan is the integral part of these furnaces where boiling/concentration of sugarcane juice take place. Parallel fins were provided to the bottom of main pan and gutter pan of IISR Lucknow 2-pan furnace. Choice for type of fins was based on movement of flames and hot flue gases generated due to combustion of bagasse. Fins helped in more heat transfer to the sugarcane juice being concentrated. Considerable improvement in heat utilization efficiency (9.44%) was observed which resulted in saving of fuel and energy (31.34%).

  4. Pan-tropical monitoring of deforestation

    International Nuclear Information System (INIS)

    Achard, F; DeFries, R; Eva, H; Hansen, M; Mayaux, P; Stibig, H-J

    2007-01-01

    This paper reviews the technical capabilities for monitoring deforestation from a pan-tropical perspective in response to the United Nations Framework Convention on Climate Change (UNFCCC) process, which is studying the technical issues surrounding the ability to reduce greenhouse gas emissions from deforestation in developing countries. The successful implementation of such policies requires effective forest monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented from national to pan-tropical levels. Remotely sensed data, supported by ground observations, are crucial to such efforts. Recent developments in global to regional monitoring of forests can contribute to reducing the uncertainties in estimates of emissions from deforestation. Monitoring systems at national levels in developing countries can also benefit from pan-tropical and regional observations, mainly by identifying hot spots of change and prioritizing areas for monitoring at finer spatial scales. A pan-tropical perspective is also required to ensure consistency between different national monitoring systems. Data sources already exist to determine baseline periods in the 1990s as historical reference points. Key requirements for implementing such monitoring programs, both at pan-tropical and at national scales, are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standardized, consensus protocols for data interpretation and analysis

  5. Epigenetic control of skull morphogenesis by histone deacetylase 8

    Science.gov (United States)

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  6. Ontogeny in the tube-crested dinosaur Parasaurolophus (Hadrosauridae and heterochrony in hadrosaurids

    Directory of Open Access Journals (Sweden)

    Andrew A. Farke

    2013-10-01

    Full Text Available The tube-crested hadrosaurid dinosaur Parasaurolophus is remarkable for its unusual cranial ornamentation, but little is known about its growth and development, particularly relative to well-documented ontogenetic series for lambeosaurin hadrosaurids (such as Corythosaurus, Lambeosaurus, and Hypacrosaurus. The skull and skeleton of a juvenile Parasaurolophus from the late Campanian-aged (∼75.5 Ma Kaiparowits Formation of southern Utah, USA, represents the smallest and most complete specimen yet described for this taxon. The individual was approximately 2.5 m in body length (∼25% maximum adult body length at death, with a skull measuring 246 mm long and a femur 329 mm long. A histological section of the tibia shows well-vascularized, woven and parallel-fibered primary cortical bone typical of juvenile ornithopods. The histological section revealed no lines of arrested growth or annuli, suggesting the animal may have still been in its first year at the time of death. Impressions of the upper rhamphotheca are preserved in association with the skull, showing that the soft tissue component for the beak extended for some distance beyond the limits of the oral margin of the premaxilla. In marked contrast with the lengthy tube-like crest in adult Parasaurolophus, the crest of the juvenile specimen is low and hemicircular in profile, with an open premaxilla-nasal fontanelle. Unlike juvenile lambeosaurins, the nasal passages occupy nearly the entirety of the crest in juvenile Parasaurolophus. Furthermore, Parasaurolophus initiated development of the crest at less than 25% maximum skull size, contrasting with 50% of maximum skull size in hadrosaurs such as Corythosaurus. This early development may correspond with the larger and more derived form of the crest in Parasaurolophus, as well as the close relationship between the crest and the respiratory system. In general, ornithischian dinosaurs formed bony cranial ornamentation at a relatively younger age

  7. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens)

    OpenAIRE

    Potau, J. M.; Arias-Martorell, J.; Bello-Hellegouarch, G.; Casado, A.; Pastor, J. F.; de Paz, F.; Diogo, R.

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan\\ud troglodytes) and bonobos(Pan paniscus) and compared them to anatomic variations in these muscles in humans(Homo sapiens). We\\ud have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and\\ud five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we...

  8. Effects of task demands on the early neural processing of fearful and happy facial expressions.

    Science.gov (United States)

    Itier, Roxane J; Neath-Tavares, Karly N

    2017-05-15

    Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Investigation of needleless electrospun PAN nanofiber mats

    Science.gov (United States)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  10. Short-crested waves in deep water: a numerical investigation of recent laboratory experiments

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2006-01-01

    A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centerlines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features...

  11. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.

    Science.gov (United States)

    Zeng, Tao; Li, Rongjian; Mukkamala, Ravi; Ye, Jieping; Ji, Shuiwang

    2015-05-07

    Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.

  12. MR imaging findings of medial tibial crest friction

    International Nuclear Information System (INIS)

    Klontzas, Michail E.; Akoumianakis, Ioannis D.; Vagios, Ilias; Karantanas, Apostolos H.

    2013-01-01

    Objective: Medial tibial condyle bone marrow edema (BME), associated with soft tissue edema (STe) surrounding the medial collateral ligament, was incidentally observed in MRI examinations of young and athletic individuals. The aim of the present study was to 1. Prospectively investigate the association between these findings and coexistence of localized pain, and 2. Explore the possible contribution of the tibial morphology to its pathogenesis. Methods: The medial tibial condyle crest was evaluated in 632 knee MRI examinations. The angle and depth were measured by two separate evaluators. The presence of STe and BME was recorded. A third evaluator blindly assessed the presence of pain at this site. Results: BME associated with STe was found in 24 patients (with no history of previous trauma, osteoarthritis, tumor or pes anserine bursitis). The mean crest angle was 151.3° (95%CI 147.4–155.3°) compared to 159.4° (95%CI 158.8–160°) in controls (Mann–Whitney test, P < 0.0001). MRI findings were highly predictive of localized pain (sensitivity 92% specificity 99%, Fisher's exact test, P < 0.0001). Conclusion: Friction at the medial tibial condyle crest is a painful syndrome. MRI is a highly specific and sensitive imaging modality for its diagnosis

  13. MR imaging findings of medial tibial crest friction

    Energy Technology Data Exchange (ETDEWEB)

    Klontzas, Michail E., E-mail: miklontzas@gmail.com; Akoumianakis, Ioannis D., E-mail: ioannis.akoumianakis@gmail.com; Vagios, Ilias, E-mail: iliasvagios@gmail.com; Karantanas, Apostolos H., E-mail: akarantanas@gmail.com

    2013-11-01

    Objective: Medial tibial condyle bone marrow edema (BME), associated with soft tissue edema (STe) surrounding the medial collateral ligament, was incidentally observed in MRI examinations of young and athletic individuals. The aim of the present study was to 1. Prospectively investigate the association between these findings and coexistence of localized pain, and 2. Explore the possible contribution of the tibial morphology to its pathogenesis. Methods: The medial tibial condyle crest was evaluated in 632 knee MRI examinations. The angle and depth were measured by two separate evaluators. The presence of STe and BME was recorded. A third evaluator blindly assessed the presence of pain at this site. Results: BME associated with STe was found in 24 patients (with no history of previous trauma, osteoarthritis, tumor or pes anserine bursitis). The mean crest angle was 151.3° (95%CI 147.4–155.3°) compared to 159.4° (95%CI 158.8–160°) in controls (Mann–Whitney test, P < 0.0001). MRI findings were highly predictive of localized pain (sensitivity 92% specificity 99%, Fisher's exact test, P < 0.0001). Conclusion: Friction at the medial tibial condyle crest is a painful syndrome. MRI is a highly specific and sensitive imaging modality for its diagnosis.

  14. Peter Pan-demien

    DEFF Research Database (Denmark)

    Holm, Claus

    2009-01-01

    Ungdommelig opførsel er moderne. I gamle dage skulle vi blive voksne. I dag skal selv gamle mænd og kvinder holde sig unge. Peter Pan-panikken er i os, og en af vores væsentligste sociale lidelser er umodenhed.......Ungdommelig opførsel er moderne. I gamle dage skulle vi blive voksne. I dag skal selv gamle mænd og kvinder holde sig unge. Peter Pan-panikken er i os, og en af vores væsentligste sociale lidelser er umodenhed....

  15. A Peptide-Fc Opsonin with Pan-Amyloid Reactivity

    Directory of Open Access Journals (Sweden)

    James S. Foster

    2017-09-01

    Full Text Available There is a continuing need for therapeutic interventions for patients with the protein misfolding disorders that result in systemic amyloidosis. Recently, specific antibodies have been employed to treat AL amyloidosis by opsonizing tissue amyloid deposits thereby inducing cell-mediated dissolution and organ improvement. To develop a pan-amyloid therapeutic agent, we have produced an Fc-fusion product incorporating a peptide, p5, which binds many if not all forms of amyloid. This protein, designated Fcp5, expressed in mammalian cells, forms the desired bivalent dimer structure and retains pan-amyloid reactivity similar to the p5 peptide as measured by immunosorbent assays, immunohistochemistry, surface plasmon resonance, and pulldown assays using radioiodinated Fcp5. Additionally, Fcp5 was capable of opsonizing amyloid fibrils in vitro using a pH-sensitive fluorescence assay of phagocytosis. In mice,125 I-labeled Fcp5 exhibited an extended serum circulation time, relative to the p5 peptide. It specifically bound AA amyloid deposits in diseased mice, as evidenced by biodistribution and microautoradiographic methods, which coincided with an increase in active, Iba-1-positive macrophages in the liver at 48 h postinjection of Fcp5. In healthy mice, no specific tissue accumulation was observed. The data indicate that polybasic, pan-amyloid-targeting peptides, in the context of an Fc fusion, can yield amyloid reactive, opsonizing reagents that may serve as next-generation immunotherapeutics.

  16. TeV electron measurement with CREST experiment

    Science.gov (United States)

    Park, Nahee; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Muller, D.; Musser, J.; Nutter, S.

    CREST, the Cosmic Ray Electron Synchrotron Telescope is a balloon-borne experiment de-signed to measure the spectrum of multi-TeV electrons by the detection of the x-ray synchrotron photons generated in the magnetic field of the Earth. Electrons in the TeV range are expected to reflect the properties of local sources because fluxes from remote locations are suppressed by radiative losses during propagation. Since CREST needs to intersect only a portion of the kilometers-long trail of photons generated by the high-energy electron, the method yields a larger effective area than the physical size of the detector, boosting detection areas. The in-strument is composed of an array of 1024 BaF2 crystals and a set of scintillating veto counters. A long duration balloon flight in Antarctica is currently planned for the 2010-11 season.

  17. Stability of Cubipod Armoured Roundheads in Short Crested Waves

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Medina, Josep R.

    2011-01-01

    The paper presents a comparison of the stability of concrete cube armour and Cubipod armour in a breakwater roundhead with slope 1:1.5, exposed to both 2-D (long-crested) and 3-D (short-crested) waves. The model tests were performed at the Hydraulics and Coastal Engineering Laboratory at Aalborg...... University, Denmark. The model tests showed that Cubipod armour is more stable than cube armour when exposed to longer waves (steepness approx. 0.025) and has equal stability to cubes in shorter waves. The Cubipod armour layer contained due to its high porosity approximately 6-17% less concrete than the cube...

  18. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure.

    Science.gov (United States)

    Hamblet, Natasha S; Lijam, Nardos; Ruiz-Lozano, Pilar; Wang, Jianbo; Yang, Yasheng; Luo, Zhenge; Mei, Lin; Chien, Kenneth R; Sussman, Daniel J; Wynshaw-Boris, Anthony

    2002-12-01

    The murine dishevelled 2 (Dvl2) gene is an ortholog of the Drosophila segment polarity gene Dishevelled, a member of the highly conserved Wingless/Wnt developmental pathway. Dvl2-deficient mice were produced to determine the role of Dvl2 in mammalian development. Mice containing null mutations in Dvl2 present with 50% lethality in both inbred 129S6 and in a hybrid 129S6-NIH Black Swiss background because of severe cardiovascular outflow tract defects, including double outlet right ventricle, transposition of the great arteries and persistent truncus arteriosis. The majority of the surviving Dvl2(-/-) mice were female, suggesting that penetrance was influenced by sex. Expression of Pitx2 and plexin A2 was attenuated in Dvl2 null mutants, suggesting a defect in cardiac neural crest development during outflow tract formation. In addition, approximately 90% of Dvl2(-/-) mice have vertebral and rib malformations that affect the proximal as well as the distal parts of the ribs. These skeletal abnormalities were more pronounced in mice deficient for both Dvl1 and Dvl2. Somite differentiation markers used to analyze Dvl2(-/-) and Dvl1(-/-);Dvl2(-/-) mutant embryos revealed mildly aberrant expression of Uncx4.1, delta 1 and myogenin, suggesting defects in somite segmentation. Finally, 2-3% of Dvl2(-/-) embryos displayed thoracic spina bifida, while virtually all Dvl1/2 double mutant embryos displayed craniorachishisis, a completely open neural tube from the midbrain to the tail. Thus, Dvl2 is essential for normal cardiac morphogenesis, somite segmentation and neural tube closure, and there is functional redundancy between Dvl1 and Dvl2 in some phenotypes.

  19. Damage of plants due to peroxyacyl nitrates (PAN)

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, H.; Terakado, K.

    1974-02-01

    In Japan plant damages began to resemble those due to PAN about 1972. Exposure experiments with artifically synthesized PAN in an environment simulation room determined the concentration of PAN and its duration to examine the relationship between these data in the field and crop damage. Synthesized PAN created by irradiating a mixture of ethyl nitrate and oxygen with ultraviolet light gave results similar to those seen in fields. From the end of April to the end of November, damages to petunias seemingly due to PAN appeared 15 times. The symptoms differed with the variety of petunia. After 14 experiments in fields from September 20 to November 30 with a continuous determination of the environmental concentration of PAN, damages to petunia were confirmed on 6 days when the maximum PAN concentration range was 3.0-6.7 ppb. The duration of concentrations higher than 3 ppb was 2-13 hr. The most serious damage appeared on September 20 when a concentration of more than 5 ppb continued for 7 hours. No damage appeared with a long continuation (6-12 hr) of a lower concentration of PAN of 2 ppb. Inter-varietal grafting showed that the symptoms and the degree of damage due to PAN were influenced only by the physiological specificity of the aerial portion of the plant. Leaves which are most affected by PAN differed with the variety of petunia.

  20. A new fossil dolphin Dilophodelphis fordycei provides insight into the evolution of supraorbital crests in Platanistoidea (Mammalia, Cetacea)

    Science.gov (United States)

    Boersma, Alexandra T.; McCurry, Matthew R.; Pyenson, Nicholas D.

    2017-05-01

    Many odontocete groups have developed enlarged facial crests, although these crests differ in topography, composition and function. The most elaborate crests occur in the South Asian river dolphin (Platanista gangetica), in which they rise dorsally as delicate, pneumatized wings anterior of the facial bones. Their position wrapping around the melon suggests their involvement in sound propagation for echolocation. To better understand the origin of crests in this lineage, we examined facial crests among fossil and living Platanistoidea, including a new taxon, Dilophodelphis fordycei, nov. gen. and sp., described herein, from the Early Miocene Astoria Formation of Oregon, USA. We measured the physical extent and thickness of platanistoid crests, categorized their relative position and used computed tomography scans to examine their internal morphology and relative bone density. Integrating these traits in a phylogenetic context, we determined that the onset of crest elaboration or enlargement and the evolution of crest pneumatization among the platanistoids were separate events, with crest enlargement beginning in the Oligocene. However, we find no evidence for pneumatization until possibly the Early Miocene, although certainly by the Middle Miocene. Such an evolutionary context, including data from the fossil record, should inform modelling efforts that seek to understand the diversity of sound generation morphology in Odontoceti.

  1. Adenocarcinoma of the third portion of the duodenum in a man with CREST syndrome

    Directory of Open Access Journals (Sweden)

    Fragulidis Georgios

    2008-10-01

    Full Text Available Abstract Background CREST (Calcinosis, Raynaud's phenomenon, Esophageal dysmotility, Sclerodactyly and Telangiectasias syndrome has been rarely associated with other malignancies (lung, esophagus.This is the first report of a primary adenocarcinoma of the third portion of the duodenum in a patient with CREST syndrome. Case presentation A 54-year-old male patient with CREST syndrome presented with colicky postprandial pain of the upper abdomen, diminished food uptake and a 6-Kg-body weight loss during the previous 2 months. An ulcerative lesion in the third portion of the duodenum was revealed during duodenoscopy, with a diagnosis of adenocarcinoma on biopsy specimen histology. The patient underwent a partial pancreatoduodenectomy. No adjuvant therapy was instituted and follow-up is negative for local recurrence or metastases 21 months postoperatively. Conclusion CREST syndrome has been associated with colon cancer, gastric polyps, familial adenomatous polyposis (FAP syndrome and Crohn's disease; however, this is the first report of a primary adenocarcinoma of the duodenum in a patient with CREST syndrome. However, any etiologic relationship remains to be further investigated.

  2. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  3. The detection of great crested newts year round via environmental DNA analysis.

    Science.gov (United States)

    Rees, Helen C; Baker, Claire A; Gardner, David S; Maddison, Ben C; Gough, Kevin C

    2017-07-26

    Analysis of environmental DNA (eDNA) is a method that has been used for the detection of various species within water bodies. The great crested newt (Triturus cristatus) has a short eDNA survey season (mid-April to June). Here we investigate whether this season could be extended into other months using the current methodology as stipulated by Natural England. Here we present data to show that in monthly water samples taken from two ponds (March 2014-February 2015) we were able to detect great crested newt DNA in all months in at least one of the ponds. Similar levels of great crested newt eDNA (i.e. highly positive identification) were detected through the months of March-August, suggesting it may be possible to extend the current survey window. In order to determine how applicable these observations are for ponds throughout the rest of the UK, further work in multiple other ponds over multiple seasons is suggested. Nevertheless, the current work clearly demonstrates, in two ponds, the efficacy and reproducibility of eDNA detection for determining the presence of great crested newts.

  4. Improving Feature Representation Based on a Neural Network for Author Profiling in Social Media Texts.

    Science.gov (United States)

    Gómez-Adorno, Helena; Markov, Ilia; Sidorov, Grigori; Posadas-Durán, Juan-Pablo; Sanchez-Perez, Miguel A; Chanona-Hernandez, Liliana

    2016-01-01

    We introduce a lexical resource for preprocessing social media data. We show that a neural network-based feature representation is enhanced by using this resource. We conducted experiments on the PAN 2015 and PAN 2016 author profiling corpora and obtained better results when performing the data preprocessing using the developed lexical resource. The resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. Each of the dictionaries was built for the English, Spanish, Dutch, and Italian languages. The resource is freely available.

  5. Concentration of uranium on TiO-PAN and NaTiO-PAN composite absorbers

    International Nuclear Information System (INIS)

    Motl, Alois; Sebesta, Ferdinand; John, Jan; Spendlikova, Irena; Nemec, Mojmir

    2013-01-01

    Inorganic ion exchangers have been extensively tested for use in separation and concentration of uranium from Surface water. Except for separation of uranium from uranium -Contaminated waste water (e.g. waste water from mining and milling of uranium, Waste from nuclear fuel reprocessing) their main area of application has been foreseen to be their use for extraction of uranium from sea water which could partially cover future needs of uranium. Another perspective area of application is pre-concentration of uranium from natural waters followed by uranium determination via various specialized techniques such as TRLFS or AMS. Possibilities of uranium extraction from sea water have been subject of several international conferences (e.g. Topical meetings on the Recovery of Uranium from Seawater in 1980's, ACS National Meetings 2012 etc.) and are critically evaluated in a review by Bitte or recently by Kim. In the Czech Republic uranium-selective inorganic ion exchangers might be applied for treatment of various wastes from uranium industry, namely underground Water, uranium milling over-balance water, or acid waste water from underground uranium leaching and also like in other countries for determination of uranium isotopic composition focusing on anthropogenic and natural 236 U content. Among the best performing inorganic ion exchangers for the above listed purposes hydrated titanium dioxide (abbreviated as TiO) and sodium titanate (abbreviated as NaTiO) can be listed. Properties of TiO and NaTiO were reviewed by Lehto. From the point of view of ion-exchange, properties of hydrated titanium oxide and sodium titanate are very similar. The main disadvantage of these ion exchangers for industrial-scale application is their insufficient mechanical stability. To improve this property, the sorption materials can be embedded into a binding matrix. Modified polyacrylonitrile (PAN) has been proposed at the Czech Technical University in Prague as a universal binding matrix for

  6. ATLAS BigPanDA Monitoring and Its Evolution

    CERN Document Server

    Wenaus, Torre; The ATLAS collaboration; Korchuganova, Tatiana

    2016-01-01

    BigPanDA is the latest generation of the monitoring system for the Production and Distributed Analysis (PanDA) system. The BigPanDA monitor is a core component of PanDA and also serves the monitoring needs of the new ATLAS Production System Prodsys-2. BigPanDA has been developed to serve the growing computation needs of the ATLAS Experiment and the wider applications of PanDA beyond ATLAS. Through a system-wide job database, the BigPanDA monitor provides a comprehensive and coherent view of the tasks and jobs executed by the system, from high level summaries to detailed drill-down job diagnostics. The system has been in production and has remained in continuous development since mid 2014, today effectively managing more than 2 million jobs per day distributed over 150 computing centers worldwide. BigPanDA also delivers web-based analytics and system state views to groups of users including distributed computing systems operators, shifters, physicist end-users, computing managers and accounting services. Provi...

  7. Specification of jaw identity by the Hand2 transcription factor

    Science.gov (United States)

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  8. Immunohistochemical Examination for the Distribution of Podoplanin-Expressing Cells in Developing Mouse Molar Tooth Germs

    Science.gov (United States)

    Imaizumi, Yuri; Amano, Ikuko; Tsuruga, Eichi; Kojima, Hiroshi; Sawa, Yoshihiko

    2010-01-01

    We recently reported the expression of podoplanin in the apical bud of adult mouse incisal tooth. This study was aimed to investigate the distribution of podoplanin-expressing cells in mouse tooth germs at several developing stages. At the bud stage podoplanin was expressed in oral mucous epithelia and in a tooth bud. At the cap stage podoplanin was expressed on inner and outer enamel epithelia but not in mesenchymal cells expressing the neural crest stem cell marker nestin. At the early bell stage nestin and podoplanin were expressed in cervical loop and odontoblasts. At the root formation stage both nestin and podoplanin were weakly expressed in odontoblasts generating radicular dentin. Podoplanin expression was also found in the Hertwig epithelial sheath. These results suggest that epithelial cells of developing tooth germ acquire the ability to express nestin, and that tooth germ epithelial cells maintain the ability to express podoplanin in oral mucous epithelia. The expression of podoplanin in odontoblasts was induced as tooth germ development advanced, but was suppressed with the completion of the primary dentin, suggesting that podoplanin may be involved in the cell growth of odontoblasts. Nestin may function as an intermediate filament that binds podoplanin in odontoblasts. PMID:21060740

  9. Identifying Tmem59 related gene regulatory network of mouse neural stem cell from a compendium of expression profiles

    Directory of Open Access Journals (Sweden)

    Guo Xiuyun

    2011-09-01

    Full Text Available Abstract Background Neural stem cells offer potential treatment for neurodegenerative disorders, such like Alzheimer's disease (AD. While much progress has been made in understanding neural stem cell function, a precise description of the molecular mechanisms regulating neural stem cells is not yet established. This lack of knowledge is a major barrier holding back the discovery of therapeutic uses of neural stem cells. In this paper, the regulatory mechanism of mouse neural stem cell (NSC differentiation by tmem59 is explored on the genome-level. Results We identified regulators of tmem59 during the differentiation of mouse NSCs from a compendium of expression profiles. Based on the microarray experiment, we developed the parallelized SWNI algorithm to reconstruct gene regulatory networks of mouse neural stem cells. From the inferred tmem59 related gene network including 36 genes, pou6f1 was identified to regulate tmem59 significantly and might play an important role in the differentiation of NSCs in mouse brain. There are four pathways shown in the gene network, indicating that tmem59 locates in the downstream of the signalling pathway. The real-time RT-PCR results shown that the over-expression of pou6f1 could significantly up-regulate tmem59 expression in C17.2 NSC line. 16 out of 36 predicted genes in our constructed network have been reported to be AD-related, including Ace, aqp1, arrdc3, cd14, cd59a, cds1, cldn1, cox8b, defb11, folr1, gdi2, mmp3, mgp, myrip, Ripk4, rnd3, and sncg. The localization of tmem59 related genes and functional-related gene groups based on the Gene Ontology (GO annotation was also identified. Conclusions Our findings suggest that the expression of tmem59 is an important factor contributing to AD. The parallelized SWNI algorithm increased the efficiency of network reconstruction significantly. This study enables us to highlight novel genes that may be involved in NSC differentiation and provides a shortcut to

  10. A comparative evaluation of the in vitro penetration performance of the improved Crest complete toothbrush versus the Current Crest complete toothbrush, the Colgate Precision toothbrush and the Oral-B P40 toothbrush.

    Science.gov (United States)

    Volpenhein, D W; Handel, S E; Hughes, T J; Wild, J

    1996-01-01

    Removal of plaque and debris from interproximal surfaces during toothbrushing has generally been difficult to achieve, in large part because traditional flat-bristled toothbrushes do not offer good interproximal penetration. As a result, a number of varying bristle designs have been developed, with the rippled-design brush shown to be particularly effective at removing interproximal plaque. Recently, an existing brush, the original Crest Complete, was modified to offer a more deeply rippled version. This study evaluated the interproximal penetration of four bristle designs: rippled pattern (original Crest Complete), deeper rippled pattern (improved Crest Complete), multi-level (Colgate Precision), and flat-tufted (Oral-B P40). The study used a previously reported in vitro model for determining interproximal penetration of manual toothbrushes (J Clin Dent 5:27-33, 1994). In order to effectively mimic the in-use characteristics of toothbrushing, this model is based on analysis of videotaped consumer brushing habits, tooth morphology, and in vivo plaque tenacity characteristics and uses the three most predominantly used brushing techniques (circular, up-and-down, and back-and-forth, with the brush held at both 45 and 90 degrees to the tooth surface). In addition, the model's brush stroke length, brush force, and brush speed are likewise based on analysis of consumer brushing patterns. The results of the study indicate that the new Crest Complete with deeper rippled bristles provided significantly superior (p Colgate Precision and Oral-B brushes overall and for three of the four brush strokes tested. In addition, the new Crest Complete was found to provide significantly superior interproximal penetration to the original Crest Complete overall and in circular and up-and-down strokes, and the original Crest Complete provided superior overall interproximal penetration to the Colgate and Oral-B brushes.

  11. Maternal Diabetes Alters Expression of MicroRNAs that Regulate Genes Critical for Neural Tube Development

    Directory of Open Access Journals (Sweden)

    Seshadri Ramya

    2017-07-01

    Full Text Available Maternal diabetes is known to cause neural tube defects (NTDs in embryos and neuropsychological deficits in infants. Several metabolic pathways and a plethora of genes have been identified to be deregulated in developing brain of embryos by maternal diabetes, although the exact mechanism remains unknown. Recently, miRNAs have been shown to regulate genes involved in brain development and maturation. Therefore, we hypothesized that maternal diabetes alters the expression of miRNAs that regulate genes involved in biological pathways critical for neural tube development and closure during embryogenesis. To address this, high throughput miRNA expression profiling in neural stem cells (NSCs isolated from the forebrain of embryos from normal or streptozotocin-induced diabetic pregnancy was carried out. It is known that maternal diabetes results in fetal hypoglycemia/hyperglycemia or hypoxia. Hence, NSCs from embryos of control pregnant mice were exposed to low or high glucose or hypoxia in vitro. miRNA pathway analysis revealed distinct deregulation of several biological pathways, including axon guidance pathway, which are critical for brain development in NSCs exposed to different treatments. Among the differentially expressed miRNAs, the miRNA-30 family members which are predicted to target genes involved in brain development was upregulated in NSCs from embryos of diabetic pregnancy when compared to control. miRNA-30b was found to be upregulated while its target gene Sirtuin 1 (Sirt1, as revealed by luciferase assay, was down regulated in NSCs from embryos of diabetic pregnancy. Further, overexpression of miRNA-30b in NSCs, resulted in decreased expression of Sirt1 protein, and altered the neuron/glia ratio. On the other hand, siRNA mediated knockdown of Sirt1 in NSCs promoted astrogenesis, indicating that miRNA-30b alters lineage specification via Sirt1. Overall, these results suggest that maternal diabetes alters the genes involved in neural tube

  12. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-01-01

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708

  13. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-07-24

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.

  14. Deletion of a conserved regulatory element required for Hmx1 expression in craniofacial mesenchyme in the dumbo rat: a newly identified cause of congenital ear malformation

    Directory of Open Access Journals (Sweden)

    Lely A. Quina

    2012-11-01

    Hmx1 is a homeodomain transcription factor expressed in the developing eye, peripheral ganglia, and branchial arches of avian and mammalian embryos. Recent studies have identified a loss-of-function allele at the HMX1 locus as the causative mutation in the oculo-auricular syndrome (OAS in humans, characterized by ear and eye malformations. The mouse dumbo (dmbo mutation, with similar effects on ear and eye development, also results from a loss-of-function mutation in the Hmx1 gene. A recessive dmbo mutation causing ear malformation in rats has been mapped to the chromosomal region containing the Hmx1 gene, but the nature of the causative allele is unknown. Here we show that dumbo rats and mice exhibit similar neonatal ear and eye phenotypes. In midgestation embryos, dumbo rats show a specific loss of Hmx1 expression in neural-crest-derived craniofacial mesenchyme (CM, whereas Hmx1 is expressed normally in retinal progenitors, sensory ganglia and in CM, which is derived from mesoderm. High-throughput resequencing of 1 Mb of rat chromosome 14 from dmbo/dmbo rats, encompassing the Hmx1 locus, reveals numerous divergences from the rat genomic reference sequence, but no coding changes in Hmx1. Fine genetic mapping narrows the dmbo critical region to an interval of ∼410 kb immediately downstream of the Hmx1 transcription unit. Further sequence analysis of this region reveals a 5777-bp deletion located ∼80 kb downstream in dmbo/dmbo rats that is not apparent in 137 other rat strains. The dmbo deletion region contains a highly conserved domain of ∼500 bp, which is a candidate distal enhancer and which exhibits a similar relationship to Hmx genes in all vertebrate species for which data are available. We conclude that the rat dumbo phenotype is likely to result from loss of function of an ultraconserved enhancer specifically regulating Hmx1 expression in neural-crest-derived CM. Dysregulation of Hmx1 expression is thus a candidate mechanism for congenital ear

  15. Panning artifacts in digital pathology images

    Science.gov (United States)

    Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.

    2017-03-01

    In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.

  16. Structural Stability Of Detached Low Crested Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Kramer, Morten; Lamberti, Alberto

    2006-01-01

    The aim of the paper is to describe hydraulic stability of rock-armoured low-crested structures on the basis of new experimental tests and prototype observations. Rock armour stability results from earlier model tests under non-depth-limited long-crested head-on waves are reviewed. Results from new...... determining armour stone size in shallow water conditions is given together with a rule of thumb for the required stone size in depth-limited design waves. Rock toe stability is discussed on the basis of prototype experience, hard bottom 2-D tests in depth-limited waves and an existing hydraulic stability...... formula. Toe damage predicted by the formula is in agreement with experimental results. In field sites, damage at the toe induced by scour or by sinking is observed and the volume of the berm is often insufficient to avoid regressive erosion of the armour layer. Stone sinking and settlement in selected...

  17. Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells

    Directory of Open Access Journals (Sweden)

    Naoto Ito

    2016-04-01

    Full Text Available X-linked dystonia-parkinsonism (XDP is a hereditary neurodegenerative disorder involving a progressive loss of striatal medium spiny neurons. The mechanisms underlying neurodegeneration are not known, in part because there have been few cellular models available for studying the disease. The XDP haplotype consists of multiple sequence variations in a region of the X chromosome containing TAF1, a large gene with at least 38 exons, and a multiple transcript system (MTS composed of five unconventional exons. A previous study identified an XDP-specific insertion of a SINE-VNTR-Alu (SVA-type retrotransposon in intron 32 of TAF1, as well as a neural-specific TAF1 isoform, N-TAF1, which showed decreased expression in post-mortem XDP brain compared with control tissue. Here, we generated XDP patient and control fibroblasts and induced pluripotent stem cells (iPSCs in order to further probe cellular defects associated with this disease. As initial validation of the model, we compared expression of TAF1 and MTS transcripts in XDP versus control fibroblasts and iPSC-derived neural stem cells (NSCs. Compared with control cells, XDP fibroblasts exhibited decreased expression of TAF1 transcript fragments derived from exons 32-36, a region spanning the SVA insertion site. N-TAF1, which incorporates an alternative exon (exon 34′, was not expressed in fibroblasts, but was detectable in iPSC-differentiated NSCs at levels that were ∼threefold lower in XDP cells than in controls. These results support the previous findings that N-TAF1 expression is impaired in XDP, but additionally indicate that this aberrant transcription might occur in neural cells at relatively early stages of development that precede neurodegeneration.

  18. Chondroitin sulfate effects on neural stem cell differentiation.

    Science.gov (United States)

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  19. Foliar injury response of petunia and kidney bean to simultaneous and alternate exposures to ozone and PAN

    Energy Technology Data Exchange (ETDEWEB)

    Nouchi, I.; Mayumi, H.; Yamazoe, F.

    1984-01-01

    Petunia at about 6 weeks old and kidney bean at two growing stages (6-7 days old and 16-18 days old) were exposed separately to O/sub 3/ (0-0.40 ppm) and PAN (0-0.25 ppm) for 4 h and to the mixture for the same time. In addition, petunia was exposed to O/sub 3/ (0.10-0.40 ppm) and then PAN (0.010-0.040 ppm) for 4 h, respectively. Foliar injury of petunia and kidney bean in exposures to the mixtures of O/sub 3/ and PAN was significantly smaller than that induced by each oxidant, with the exception of PAN injury on young leaves of 16-18 day-old kidney bean. The percentage of foliar injury caused by either of the mixed pollutants decreased with an increase of the concentration of the other oxidant, and was found to approximate a logarithmic function of the combined pollutant concentrations expressed as O/sub 3/ minum PAN or vice versa. Alternate exposures caused no additive or synergistic injuries. 23 references, 3 figures, 6 tables.

  20. Foliar injury response of petunia and kidney bean to simultaneous and alternate exposures to ozone and pan

    Science.gov (United States)

    Nouchi, Isamu; Mayumi, Hirokazu; Yamazoe, Fumio

    Petunia at about 6 weeks old and kidney bean at two growing stages (6-7 days old and 16-18 days old) were exposed separately to O 3, (0-0.40 ppm) and PAN (0-0.25 ppm) for 4 h and to the mixture for the same time. In addition, petunia was exposed to O, (0.10-0.40 ppm) and then PAN (0.010-0.040 ppm) for 4 h, respectively. Foliar injury of petunia and kidney bean in exposures to the mixtures of O 3 and PAN was significantly smaller than that induced by each oxidant, with the exception of PAN injury on young leaves of 16-18 day-old kidney bean. The percentage of foliar injury caused by either of the mixed pollutants decreased with an increase of the concentration of the other oxidant, and was found to approximate a logarithmic function of the combined pollutant concentrations expressed as O 3, minum PAN or vice versa. Alternate exposures caused no additive or synergistic injuries.

  1. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.

    Science.gov (United States)

    Han, Youngmahn; Kim, Dongsup

    2017-12-28

    Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc

  2. Neural Correlates of Conflict Control on Facial Expressions with a Flanker Paradigm

    DEFF Research Database (Denmark)

    Liu, T.; Xiao, T; Shi, Jiannong

    2013-01-01

    it was flanked by happy distractors comparing with sad distractors. Taken together, the current findings of temporal dynamic of brain activity during cognitive control on affective conflicts shed light on the essential relationship between cognitive control and affective information processing.......Conflict control is an important cognitive control ability and it is also crucial for human beings to execute conflict control on affective information. To address the neural correlates of cognitive control on affective conflicts, the present study recorded event-related potentials (ERPs) during...... a revised Eriksen Flanker Task. Participants were required to indicate the valence of the central target expression while ignoring the flanker expressions in the affective congruent condition, affective incongruent condition and neutral condition (target expressions flanked by scramble blocks). Behavioral...

  3. CREST Calcinosis Affecting the Lumbar and Cervical Spine and the Use of Minimally-Invasive Surgery

    OpenAIRE

    Faraj, Kassem; Perez-Cruet, Kristin; Perez-Cruet, Mick

    2017-01-01

    Calcinosis in CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia) syndrome can affect the spinal and paraspinal areas. We present the first case to our knowledge where a CREST syndrome patient required surgery for spinal calcinosis in both the cervical and lumbar areas.?A 66-year-old female with a history of CREST syndrome presented with right-sided lower extremity radicular pain. A computed tomography (CT) scan showed bilateral lumbar masses (5...

  4. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue.

    Science.gov (United States)

    Jandzik, David; Garnett, Aaron T; Square, Tyler A; Cattell, Maria V; Yu, Jr-Kai; Medeiros, Daniel M

    2015-02-26

    A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.

  5. Prevalence of oral lesions in pan vendor

    Directory of Open Access Journals (Sweden)

    Prakash Gadodia

    2011-01-01

    Full Text Available Background: Being a portal of entry to various smoking and smokeless tobacco products, oral cavity is prone to deleterious effects. Present study consist of epidemiological survey to elucidate oral lesions in pan vendors. Aims and objectives: To detect oral lesions in pan vendors and compare it with controls. To detect habit pattern and prevalence of OSMF and other lesions in pan vendors as compared to controls- To identify, recognize and evaluate the possible etiology for OSMF, encompassing various chewing and smoking habits. Materials and methods: Study population consist of 170 pan vendors with age ranging from 15 to 55 years and equal number of sex matched controls selected randomly. Results: Prevalence of oral lesions in pan vendors is statistically significantly higher as compared to controls. The habit of arecanut chewing in various forms was present in all cases. The habit of smoking and smokeless tobacco products was present in all cases. Conclusion: Pan vendors are at higher risk for oral lesions than controls. There is increase in relative risk with increase in duration and frequency of habit.

  6. Quill injury - cause od death of captive indian crested porcupine(Hystrix indica, Kerr, 1792

    Directory of Open Access Journals (Sweden)

    Tanja Švara

    2015-03-01

    Full Text Available Indian crested porcupine (Hystrix indica is a member of the family of Old World porcupines (Hystricidae. Its body is covered with multiple layers of quills, which serve for warning and attack if animal is threatened. However, the literature data on injuries caused by Indian crested porcupine are absent. We describe pathomorphological lesions in an Indian crested porcupine from the Ljubljana Zoo, which died after a fight with a younger male that caused a perforative quill injury of the thoracic wall, followed by septicaemia. Macroscopic, microscopic and bacteriological findings were detailed

  7. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    International Nuclear Information System (INIS)

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-01-01

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders

  8. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung Ho [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Yeo, Sang Won, E-mail: swyeo@catholic.ac.kr [Department of Otolaryngology Head and Neck Surgery, College of Medicine, Catholic University, Seoul (Korea, Republic of); Troy, Frederic A., E-mail: fatroy@ucdavis.edu [Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, CA 95616 (United States); Xiamen University, School of Medicine, Xiamen City (China)

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  9. Convergent Evolution of Head Crests in Two Domesticated Columbids Is Associated with Different Missense Mutations in EphB2

    Science.gov (United States)

    Vickrey, Anna I.; Domyan, Eric T.; Horvath, Martin P.; Shapiro, Michael D.

    2015-01-01

    Head crests are important display structures in wild bird species and are also common in domesticated lineages. Many breeds of domestic rock pigeon (Columba livia) have crests of reversed occipital feathers, and this recessive trait is associated with a nonsynonymous coding mutation in the intracellular kinase domain of EphB2 (Ephrin receptor B2). The domestic ringneck dove (Streptopelia risoria) also has a recessive crested morph with reversed occipital feathers, and interspecific crosses between crested doves and pigeons produce crested offspring, suggesting a similar genetic basis for this trait in both species. We therefore investigated EphB2 as a candidate for the head crest phenotype of ringneck doves and identified a nonsynonymous coding mutation in the intracellular kinase domain that is significantly associated with the crested morph. This mutation is over 100 amino acid positions away from the crest mutation found in rock pigeons, yet both mutations are predicted to negatively affect the function of ATP-binding pocket. Furthermore, bacterial toxicity assays suggest that “crest” mutations in both species severely impact kinase activity. We conclude that head crests are associated with different mutations in the same functional domain of the same gene in two different columbid species, thereby representing striking evolutionary convergence in morphology and molecules. PMID:26104009

  10. Functional MRI studies of the neural mechanisms of human brain attentional networks

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Chen Qi; Wang Yan; Peng Xiaozhe; Zhou Xiaolin

    2005-01-01

    Objective: To identify the neural mechanisms of the anterior attention network (AAN) and posterior attention network (PAN) , investigate the possible interaction between them with event-related functional MRI(ER-fMRI). Methods: Eight right-handed healthy volunteers participated in the experiment designed with inhibition of return in visual orienting and Stroop color-word interference effect. The fMRI data were collected on Siemens 1.5 T Sonata MRI systems and analyzed by AFNI to generate the activation map. Results: The data sets from 6 of 8 subjects were used in the study. The functional localizations of the Stroop and IOR, which manifest the function of the AAN and PAN respectively, were consistent with previous imaging researches. On cued locations, left inferior parietal lobule (IPL), area MT/V5, right dorsolateral prefrontal cortex (DLPFC) and left anterior cingulated cortex (ACC) were significantly activated. On uncued locations, right superior parietal lobule (SPL) and bilateral area MT/V5 were significantly activated. Conclusion: The AAN exerts control over the PAN, while its function can be in turn modulated by the PAN. There are interaction between the AAN and PAN. In addition, it is also proved that ER-fMRI is a feasible method to revise preexisting cognitive model and theory. (authors)

  11. The Effect of Iliac Crest Autograft on the Outcome of Fusion in the Setting of Degenerative Spondylolisthesis

    Science.gov (United States)

    Radcliff, Kristen; Hwang, Raymond; Hilibrand, Alan; Smith, Harvey E.; Gruskay, Jordan; Lurie, Jon D.; Zhao, Wenyan; Albert, Todd; Weinstein, James

    2012-01-01

    Background: There is considerable controversy about the long-term morbidity associated with the use of posterior autologous iliac crest bone graft for lumbar spine fusion procedures compared with the use of bone-graft substitutes. The hypothesis of this study was that there is no long-term difference in outcome for patients who had posterior lumbar fusion with or without iliac crest autograft. Methods: The study population includes patients enrolled in the degenerative spondylolisthesis cohort of the Spine Patient Outcomes Research Trial who underwent lumbar spinal fusion. Patients were divided according to whether they had or had not received posterior autologous iliac crest bone graft. Results: There were 108 patients who had fusion with iliac crest autograft and 246 who had fusion without iliac crest autograft. There were no baseline differences between groups in demographic characteristics, comorbidities, or baseline clinical scores. At baseline, the group that received iliac crest bone graft had an increased percentage of patients who had multilevel fusions (32% versus 21%; p = 0.033) and L5-S1 surgery (37% versus 26%; p = 0.031) compared with the group without iliac crest autograft. Operative time was higher in the iliac crest bone-graft group (233.4 versus 200.9 minutes; p case-by-case basis for lumbar spinal fusion. Level of Evidence: Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence. PMID:22878599

  12. Diversification of crested wheatgrass stands in Utah

    Science.gov (United States)

    April Hulet

    2009-01-01

    Agropyron cristatum [L.] Gaertner (crested wheatgrass) continues to be seeded on burned wildlands. Effective control methods need to be developed to convert these seedings to more diverse native plant communities. This research was designed to determine effective ways to control A. cristatum and establish native species while...

  13. Long-throated flumes and broad-crested weirs

    NARCIS (Netherlands)

    Bos, M.G.

    1985-01-01

    Vital for water management are structures that can measure the flow in a wide variety of channels. Chapter 1 introduces the long-throated flume and the broad-crested weir; it explains why this family of structures can meet the boundary conditions and hydraulic demands of most measuring

  14. The CREST Simulation Development Process: Training the Next Generation.

    Science.gov (United States)

    Sweet, Robert M

    2017-04-01

    The challenges of training and assessing endourologic skill have driven the development of new training systems. The Center for Research in Education and Simulation Technologies (CREST) has developed a team and a methodology to facilitate this development process. Backwards design principles were applied. A panel of experts first defined desired clinical and educational outcomes. Outcomes were subsequently linked to learning objectives. Gross task deconstruction was performed, and the primary domain was classified as primarily involving decision-making, psychomotor skill, or communication. A more detailed cognitive task analysis was performed to elicit and prioritize relevant anatomy/tissues, metrics, and errors. Reference anatomy was created using a digital anatomist and clinician working off of a clinical data set. Three dimensional printing can facilitate this process. When possible, synthetic or virtual tissue behavior and textures were recreated using data derived from human tissue. Embedded sensors/markers and/or computer-based systems were used to facilitate the collection of objective metrics. A learning Verification and validation occurred throughout the engineering development process. Nine endourology-relevant training systems were created by CREST with this approach. Systems include basic laparoscopic skills (BLUS), vesicourethral anastomosis, pyeloplasty, cystoscopic procedures, stent placement, rigid and flexible ureteroscopy, GreenLight PVP (GL Sim), Percutaneous access with C-arm (CAT), Nephrolithotomy (NLM), and a vascular injury model. Mixed modalities have been used, including "smart" physical models, virtual reality, augmented reality, and video. Substantial validity evidence for training and assessment has been collected on systems. An open source manikin-based modular platform is under development by CREST with the Department of Defense that will unify these and other commercial task trainers through the common physiology engine, learning

  15. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Gregory P. Way

    2018-04-01

    Full Text Available Summary: Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these “hidden responders” may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders. : Way et al. develop a machine-learning approach using PanCanAtlas data to detect Ras activation in cancer. Integrating mutation, copy number, and expression data, the authors show that their method detects Ras-activating variants in tumors and sensitivity to MEK inhibitors in cell lines. Keywords: Gene expression, machine learning, Ras, NF1, KRAS, NRAS, HRAS, pan-cancer, TCGA, drug sensitivity

  16. Archives: Pan African Medical Journal

    African Journals Online (AJOL)

    Items 1 - 28 of 28 ... Archives: Pan African Medical Journal. Journal Home > Archives: Pan African Medical Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 28 of 28 Items ...

  17. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    International Nuclear Information System (INIS)

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal

    2006-01-01

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS

  18. Neural evidence for cultural differences in the valuation of positive facial expressions

    Science.gov (United States)

    Park, BoKyung; Chim, Louise; Blevins, Elizabeth; Knutson, Brian

    2016-01-01

    European Americans value excitement more and calm less than Chinese. Within cultures, European Americans value excited and calm states similarly, whereas Chinese value calm more than excited states. To examine how these cultural differences influence people’s immediate responses to excited vs calm facial expressions, we combined a facial rating task with functional magnetic resonance imaging. During scanning, European American (n = 19) and Chinese (n = 19) females viewed and rated faces that varied by expression (excited, calm), ethnicity (White, Asian) and gender (male, female). As predicted, European Americans showed greater activity in circuits associated with affect and reward (bilateral ventral striatum, left caudate) while viewing excited vs calm expressions than did Chinese. Within cultures, European Americans responded to excited vs calm expressions similarly, whereas Chinese showed greater activity in these circuits in response to calm vs excited expressions regardless of targets’ ethnicity or gender. Across cultural groups, greater ventral striatal activity while viewing excited vs. calm expressions predicted greater preference for excited vs calm expressions months later. These findings provide neural evidence that people find viewing the specific positive facial expressions valued by their cultures to be rewarding and relevant. PMID:26342220

  19. The low-affinity neurotrophin receptor, p75, is upregulated in ganglioneuroblastoma/ganglioneuroma and reduces tumorigenicity of neuroblastoma cells in vivo

    NARCIS (Netherlands)

    Schulte, Johannes H.; Pentek, Falk; Hartmann, Wolfgang; Schramm, Alexander; Friedrichs, Nicolaus; Ora, Ingrid; Koster, Jan; Versteeg, Rogier; Kirfel, Jutta; Buettner, Reinhard; Eggert, Angelika

    2009-01-01

    Neuroblastoma, the most common extracranial tumor of childhood, is derived from neural crest progenitor cells that fail to differentiate along their predefined route to sympathetic neurons or sympatho-adrenergic adrenal cells. Although expression of the high-affinity neurotrophin receptors, TrkA and

  20. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Benjamin W Okaty

    Full Text Available Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM, Translating Ribosome Affinity Purification (TRAP, Immunopanning (PAN, Fluorescence Activated Cell Sorting (FACS, and manual sorting of fluorescently labeled cells (Manual. We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

  1. Can FDG-PET/CT replace blind bone marrow biopsy of the posterior iliac crest in Ewing sarcoma?

    International Nuclear Information System (INIS)

    Kasalak, Oemer; Glaudemans, Andor W.J.M.; Overbosch, Jelle; Kwee, Thomas C.; Jutte, Paul C.

    2018-01-01

    To determine and compare the value of 18 F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) to blind bone marrow biopsy (BMB) of the posterior iliac crest in detecting metastatic bone marrow involvement in newly diagnosed Ewing sarcoma. This retrospective study included 20 patients with newly diagnosed Ewing sarcoma who underwent pretreatment FDG-PET/CT and a total of 38 blind BMBs (two unilateral and 18 bilateral) of the posterior iliac crest. FDG-PET/CT scans were evaluated for bone marrow involvement, both in the posterior iliac crest and other sites, and compared to blind BMB results. FDG-PET/CT was positive for bone marrow involvement in 7/38 posterior iliac crests, whereas BMB was positive in 5/38 posterior iliac crests. FDG-PET/CT and BMB results in the posterior iliac crest agreed in 36/38 cases (94.7%, 95% confidence interval [CI]: 82.7-98.5%). On a patient level, FDG-PET/CT was positive for bone marrow involvement in 4/20 patients, whereas BMB of the posterior iliac crest was positive in 3/20 patients. On a patient level, FDG-PET/CT and BMB results agreed in 19/20 patients (95.0%, 95% CI: 76.4-99.1%). The only discrepancies between FDG-PET/CT and BMB were observed in two BMBs of one patient. Both BMBs in this patient were negative, whereas FDG-PET/CT indicated bilateral posterior iliac crest involvement and also extensive bone marrow involvement elsewhere. FDG-PET/CT appears to be a valuable method for metastatic bone marrow assessment in newly diagnosed Ewing sarcoma. The routine use of blind BMB of the posterior iliac crest should be reconsidered when FDG-PET/CT is available. (orig.)

  2. Can FDG-PET/CT replace blind bone marrow biopsy of the posterior iliac crest in Ewing sarcoma?

    Energy Technology Data Exchange (ETDEWEB)

    Kasalak, Oemer; Glaudemans, Andor W.J.M.; Overbosch, Jelle; Kwee, Thomas C. [University of Groningen, Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen (Netherlands); Jutte, Paul C. [University of Groningen, Department of Orthopedics, University Medical Center Groningen (Netherlands)

    2018-03-15

    To determine and compare the value of {sup 18}F-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT) to blind bone marrow biopsy (BMB) of the posterior iliac crest in detecting metastatic bone marrow involvement in newly diagnosed Ewing sarcoma. This retrospective study included 20 patients with newly diagnosed Ewing sarcoma who underwent pretreatment FDG-PET/CT and a total of 38 blind BMBs (two unilateral and 18 bilateral) of the posterior iliac crest. FDG-PET/CT scans were evaluated for bone marrow involvement, both in the posterior iliac crest and other sites, and compared to blind BMB results. FDG-PET/CT was positive for bone marrow involvement in 7/38 posterior iliac crests, whereas BMB was positive in 5/38 posterior iliac crests. FDG-PET/CT and BMB results in the posterior iliac crest agreed in 36/38 cases (94.7%, 95% confidence interval [CI]: 82.7-98.5%). On a patient level, FDG-PET/CT was positive for bone marrow involvement in 4/20 patients, whereas BMB of the posterior iliac crest was positive in 3/20 patients. On a patient level, FDG-PET/CT and BMB results agreed in 19/20 patients (95.0%, 95% CI: 76.4-99.1%). The only discrepancies between FDG-PET/CT and BMB were observed in two BMBs of one patient. Both BMBs in this patient were negative, whereas FDG-PET/CT indicated bilateral posterior iliac crest involvement and also extensive bone marrow involvement elsewhere. FDG-PET/CT appears to be a valuable method for metastatic bone marrow assessment in newly diagnosed Ewing sarcoma. The routine use of blind BMB of the posterior iliac crest should be reconsidered when FDG-PET/CT is available. (orig.)

  3. Decoding the neural signatures of emotions expressed through sound.

    Science.gov (United States)

    Sachs, Matthew E; Habibi, Assal; Damasio, Antonio; Kaplan, Jonas T

    2018-03-01

    Effective social functioning relies in part on the ability to identify emotions from auditory stimuli and respond appropriately. Previous studies have uncovered brain regions engaged by the affective information conveyed by sound. But some of the acoustical properties of sounds that express certain emotions vary remarkably with the instrument used to produce them, for example the human voice or a violin. Do these brain regions respond in the same way to different emotions regardless of the sound source? To address this question, we had participants (N = 38, 20 females) listen to brief audio excerpts produced by the violin, clarinet, and human voice, each conveying one of three target emotions-happiness, sadness, and fear-while brain activity was measured with fMRI. We used multivoxel pattern analysis to test whether emotion-specific neural responses to the voice could predict emotion-specific neural responses to musical instruments and vice-versa. A whole-brain searchlight analysis revealed that patterns of activity within the primary and secondary auditory cortex, posterior insula, and parietal operculum were predictive of the affective content of sound both within and across instruments. Furthermore, classification accuracy within the anterior insula was correlated with behavioral measures of empathy. The findings suggest that these brain regions carry emotion-specific patterns that generalize across sounds with different acoustical properties. Also, individuals with greater empathic ability have more distinct neural patterns related to perceiving emotions. These results extend previous knowledge regarding how the human brain extracts emotional meaning from auditory stimuli and enables us to understand and connect with others effectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Tanaka, Yuji; Kawaji, Hideya

    2016-01-01

    Genes that are commonly deregulated in cancer are clinically attractive as candidate pan-diagnostic markers and therapeutic targets. To globally identify such targets, we compared Cap Analysis of Gene Expression (CAGE) profiles from 225 different cancer cell lines and 339 corresponding primary cell...

  5. A Native Arbuscular Mycorrhizal Fungus, Acaulospora scrobiculata Stimulated Growth of Mongolian Crested Wheatgrass ( Agropyron cristatum (L. Gaertn.

    Directory of Open Access Journals (Sweden)

    Burenjargal Otgonsuren

    2010-12-01

    Full Text Available Agr opyron cristatum (L. Gaertn. (crested wheatgrass is an endemic plant species, which dominates most area of the Mongolian steppe and forest steppe. In the present study, spores of arbuscular mycorrhizal fungi in the rhizosphere soil of crested wheatgrass were isolated with wet- sieving/decanting methods, and the major species was identifi ed as Acaulospora scrobiculata Trappe. For arbuscular-mycorrhizal resynthesis, the spores of A. scrobiculata were propagated with corn pot-culture technique and inoculated onto the roots of crested wheatgrass seedlings. The inoculated crested wheatgrass seedlings exhibited vigor in growth, and examination of the root structure revealed the occurrence of arbuscules and vesicles in the cortical cells. These results demonstrated that A. scrobiculata could effectively form arbuscular mycorrhizas with crested wheatgrass and promote its growth, which can be used to restore Mongolian grassland.

  6. Overview of ATLAS PanDA Workload Management

    Science.gov (United States)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  7. Overview of ATLAS PanDA Workload Management

    International Nuclear Information System (INIS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G.A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.

    2011-01-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  8. A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle.

    Science.gov (United States)

    Dutton, Kirsten; Abbas, Leila; Spencer, Joanne; Brannon, Claire; Mowbray, Catriona; Nikaido, Masataka; Kelsh, Robert N; Whitfield, Tanya T

    2009-01-01

    In humans, mutations in the SOX10 gene are a cause of the auditory-pigmentary disorder Waardenburg syndrome type IV (WS4) and related variants. SOX10 encodes an Sry-related HMG box protein essential for the development of the neural crest; deafness in WS4 and other Waardenburg syndromes is usually attributed to loss of neural-crest-derived melanocytes in the stria vascularis of the cochlea. However, SOX10 is strongly expressed in the developing otic vesicle and so direct roles for SOX10 in the otic epithelium might also be important. Here, we examine the otic phenotype of zebrafish sox10 mutants, a model for WS4. As a cochlea is not present in the fish ear, the severe otic phenotype in these mutants cannot be attributed to effects on this tissue. In zebrafish sox10 mutants, we see abnormalities in all otic placodal derivatives. Gene expression studies indicate deregulated expression of several otic genes, including fgf8, in sox10 mutants. Using a combination of mutant and morphant data, we show that the three sox genes belonging to group E (sox9a, sox9b and sox10) provide a link between otic induction pathways and subsequent otic patterning: they act redundantly to maintain sox10 expression throughout otic tissue and to restrict fgf8 expression to anterior macula regions. Single-cell labelling experiments indicate a small and transient neural crest contribution to the zebrafish ear during normal development, but this is unlikely to account for the strong defects seen in the sox10 mutant. We discuss the implication that the deafness in WS4 patients with SOX10 mutations might reflect a haploinsufficiency for SOX10 in the otic epithelium, resulting in patterning and functional abnormalities in the inner ear.

  9. Expression of Truncated Neurokinin-1 Receptor in Childhood Neuroblastoma is Independent of Tumor Biology and Stage.

    Science.gov (United States)

    Pohl, Alexandra; Kappler, Roland; Mühling, Jakob; VON Schweinitz, Dietrich; Berger, Michael

    2017-11-01

    Neuroblastoma is an embryonal malignancy arising from the aberrant growth of neural crest progenitor cells of the sympathetic nervous system. The tachykinin receptor 1 (TACR1) - substance P complex is associated with tumoral angiogenesis and cell proliferation in a variety of cancer types. Inhibition of TACR1 was recently described to impede growth of NB cell lines. However, the relevance of TACR1 in clinical settings is unknown. We investigated gene expression levels of full-length and truncated TACR1 in 59 neuroblastomas and correlated these data with the patients' clinical parameters such as outcome, metastasis, International Neuroblastoma Staging System (INSS) status, MYCN proto-oncogene, bHLH transcription factor (MYCN) status, gender and age. Our results indicated that TACR1 is ubiquitously expressed in neuroblastoma but expression levels are independent of clinical parameters. Our data suggest that TACR1 might serve as a potent anticancer target in a large variety of patients with neuroblastoma, independent of tumor biology and clinical stage. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Student-Centered Designs of Pan-African Literature Courses

    Science.gov (United States)

    M'Baye, Babacar

    2010-01-01

    A student-centered teaching methodology is an essential ingredient of a successful Pan-African literary course. In this article, the author defines Pan-Africanism and how to go about designing a Pan-African literature course. The author combines reading assignments with journals, film presentations, and lectures in a productive learning…

  11. First report and breeding record of the Chinese Crested Tern Thalasseus bernsteini on the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    Se-Kyu Song

    2017-06-01

    Full Text Available The Chinese Crested Tern Thalasseus bernsteini is a critically endangered species (as designated by the IUCN (International Union for Conservation of Nature and Natural Resources. This report expands the known breeding grounds of these birds eastward. An individual of the Chinese Crested Tern was first observed at an uninhabited island of Jeollanam-do in Korea on April 28, 2016. On May 9, 2016 five Chinese Crested Terns (consisting of 2 breeding pairs and a single bird were observed. Nests from the breeding pairs were found, at a distance of 0.6 m from each other; each pair was observed incubating one egg in the nest. To our knowledge, this is the easternmost record of breeding grounds for the Chinese Crested Tern.

  12. Modulation of neural circuits underlying temporal production by facial expressions of pain

    OpenAIRE

    Ballotta, Daniela; Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirt...

  13. Transplantation of motoneurons derived from MASH1-transfected mouse ES cells reconstitutes neural networks and improves motor function in hemiplegic mice.

    Science.gov (United States)

    Ikeda, Ritsuko; Kurokawa, Manae S; Chiba, Shunmei; Yoshikawa, Hideshi; Hashimoto, Takuo; Tadokoro, Mamoru; Suzuki, Noboru

    2004-10-01

    Mouse embryonic stem (ES) cells were transfected with a MASH1 expression vector and G418-resistant cells were selected. The MASH1-transfected cells became neuron-like appearance and expressed betaIIItubulin and panNCAM. Glial fibrillary acidic protein (GFAP) and galactocerebroside (GalC)-expressing cells were rarely detected. Half of the neural cells differentiated into the Islet1+ motoneuron lineage. Thus, we obtained motoneuron lineage-enriched neuronal cells by transfection of ES cells with MASH1. A hemiplegic model of mice was developed by cryogenic injury of the motor cortex, and motoneuron lineage-enriched neuronal cells were transplanted underneath the injured motor cortex neighboring the periventricular region. The motor function of the recipients was assessed by a beam walking and rotarod tests, whereby the results gradually improved, but little improvement was observed in vehicle injected control mice. We found that the grafted cells not only remained close to the implantation site, but also exhibited substantial migration, penetrating into the damaged lesion in a directed manner up to the cortical region. Grafted neuronal cells that had migrated into the cortex were elongated axon-positive for neurofilament middle chain (NFM). Synaptophysin immunostaining showed a positive staining pattern around the graft, suggesting that the transplanted neurons interacted with the recipient neurons to form a neural network. Our study suggests that the motoneuron lineage can be induced from ES cells, and grafted cells adapt to the host environment and can reconstitute a neural network to improve motor function of a paralyzed limb.

  14. Is Pan-Asian Economic Integration Moving Forward?: Evidence from Pan-Asian Trade Statistics

    OpenAIRE

    Sapkota, Jeet Bahadur; Shuto, Motoko

    2016-01-01

    Asia is growing economically faster than any other region in the world; this led to the shift of the center of gravity of the global economy from the West to the East. However, it is not clear whether the Asian economy is integrating regionally or globally. In the context of the growing efforts of regional or sub-regional pan-Asian integration, it is worthwhile to explore the pan-Asian trade flows regionally as well as globally. Thus, this paper examines the trend and determinants of economic...

  15. Neural evidence for cultural differences in the valuation of positive facial expressions.

    Science.gov (United States)

    Park, BoKyung; Tsai, Jeanne L; Chim, Louise; Blevins, Elizabeth; Knutson, Brian

    2016-02-01

    European Americans value excitement more and calm less than Chinese. Within cultures, European Americans value excited and calm states similarly, whereas Chinese value calm more than excited states. To examine how these cultural differences influence people's immediate responses to excited vs calm facial expressions, we combined a facial rating task with functional magnetic resonance imaging. During scanning, European American (n = 19) and Chinese (n = 19) females viewed and rated faces that varied by expression (excited, calm), ethnicity (White, Asian) and gender (male, female). As predicted, European Americans showed greater activity in circuits associated with affect and reward (bilateral ventral striatum, left caudate) while viewing excited vs calm expressions than did Chinese. Within cultures, European Americans responded to excited vs calm expressions similarly, whereas Chinese showed greater activity in these circuits in response to calm vs excited expressions regardless of targets' ethnicity or gender. Across cultural groups, greater ventral striatal activity while viewing excited vs. calm expressions predicted greater preference for excited vs calm expressions months later. These findings provide neural evidence that people find viewing the specific positive facial expressions valued by their cultures to be rewarding and relevant. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Electrically controllable artificial PAN muscles

    Science.gov (United States)

    Salehpoor, Karim; Shahinpoor, Mohsen; Mojarrad, Mehran

    1996-02-01

    Artificial muscles made with polyacrylonitrile (PAN) fibers are traditionally activated in electrolytic solution by changing the pH of the solution by the addition of acids and/or bases. This usually consumes a considerable amount of weak acids or bases. Furthermore, the synthetic muscle (PAN) itself has to be impregnated with an acid or a base and must have an appropriate enclosure or provision for waste collection after actuation. This work introduces a method by which the PAN muscle may be elongated or contracted in an electric field. We believe this is the first time that this has been achieved with PAN fibers as artificial muscles. In this new development the PAN muscle is first put in close contact with one of the two platinum wires (electrodes) immersed in an aqueous solution of sodium chloride. Applying an electric voltage between the two wires changes the local acidity of the solution in the regions close to the platinum wires. This is because of the ionization of sodium chloride molecules and the accumulation of Na+ and Cl- ions at the negative and positive electrode sites, respectively. This ion accumulation, in turn, is accompanied by a sharp increase and decrease of the local acidity in regions close to either of the platinum wires, respectively. An artificial muscle, in close contact with the platinum wire, because of the change in the local acidity will contract or expand depending on the polarity of the electric field. This scheme allows the experimenter to use a fixed flexible container of an electrolytic solution whose local pH can be modulated by an imposed electric field while the produced ions are basically trapped to stay in the neighborhood of a given electrode. This method of artificial muscle activation has several advantages. First, the need to use a large quantity of acidic or alkaline solutions is eliminated. Second, the use of a compact PAN muscular system is facilitated for applications in active musculoskeletal structures. Third, the

  17. A PanDA backend for the ganga analysis interface

    International Nuclear Information System (INIS)

    Vanderster, D C; Elmsheuser, J; Walker, R; Liko, D; Maeno, T; Wenaus, T; Nilsson, P

    2010-01-01

    Ganga provides a uniform interface for running ATLAS user analyses on a number of local, batch, and grid backends. PanDA is a pilot-based production and distributed analysis system developed and used extensively by ATLAS. This work presents the implementation and usage experiences of a PanDA backend for Ganga. Built upon reusable application libraries from GangaAtlas and PanDA, the Ganga PanDA backend allows users to run their analyses on the worldwide PanDA resources, while providing the ability for users to develop simple or complex analysis workflows in Ganga. Further, the backend allows users to submit and manage 'personal' PanDA pilots: these pilots run under the user's grid certificate and provide a secure alternative to shared pilot certificates while enabling the usage of local resource allocations.

  18. The Effect of Agmatine on Expression of IL-1β and TLX Which Promotes Neuronal Differentiation in Lipopolysaccharide-Treated Neural Progenitors.

    Science.gov (United States)

    Song, Juhyun; Kumar, Bokara Kiran; Kang, Somang; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-12-01

    Differentiation of neural progenitor cells (NPCs) is important for protecting neural cells and brain tissue during inflammation. Interleukin-1 beta (IL-1β) is the most common pro- inflammatory cytokine in brain inflammation, and increased IL-1β levels can decrease the proliferation of NPCs. We aimed to investigate whether agmatine (Agm), a primary polyamine that protects neural cells, could trigger differentiation of NPCs by activating IL-1β in vitro. The cortex of ICR mouse embryos (E14) was dissociated to culture NPCs. NPCs were stimulated by lipopolysaccharide (LPS). After 6 days, protein expression of stem cell markers and differentiation signal factors was confirmed by using western blot analysis. Also, immunocytochemistry was used to confirm the cell fate. Agm treatment activated NPC differentiation significantly more than in the control group, which was evident by the increased expression of a neuronal marker, MAP2, in the LPS-induced, Agm-treated group. Differentiation of LPS-induced, Agm-treated NPCs was regulated by the MAPK pathway and is thought to be related to IL-1β activation and decreased expression of TLX, a transcription factor that regulates NPC differentiation. Our results reveal that Agm can promote NPC differentiation to neural stem cells by modulating IL-1β expression under inflammatory condition, and they suggest that Agm may be a novel therapeutic strategy for neuroinflammatory diseases.

  19. Neural circuitry of emotional and cognitive conflict revealed through facial expressions.

    Science.gov (United States)

    Chiew, Kimberly S; Braver, Todd S

    2011-03-09

    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference.

  20. Cardiac outflow tract malformations in chick embryos exposed to homocysteine

    NARCIS (Netherlands)

    M.J. Boot (Marit); R.P.M. Steegers-Theunissen (Régine); R.E. Poelmann (Robert); L. van Iperen (Liesbeth); A.C. Gittenberger-De Groot (Adriana)

    2004-01-01

    textabstractIncreased homocysteine concentrations have been associated with cardiac outflow tract defects. It has been hypothesized that cardiac neural crest cells were the target cells in these malformations. Cardiac neural crest cells migrate from the neural tube and contribute to the condensed

  1. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    Science.gov (United States)

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross

  2. SOX10-positive cells emerge in the rat pituitary gland during late embryogenesis and start to express S100β.

    Science.gov (United States)

    Ueharu, Hiroki; Yoshida, Saishu; Kanno, Naoko; Horiguchi, Kotaro; Nishimura, Naoto; Kato, Takako; Kato, Yukio

    2018-04-01

    In the pituitary gland, S100β-positive cells localize in the neurohypophysis and adenohypophysis but the lineage of the two groups remains obscure. S100β is often observed in many neural crest-derived cell types. Therefore, in this study, we investigate the origin of pituitary S100β-positive cells by immunohistochemistry for SOX10, a potent neural crest cell marker, using S100β-green fluorescence protein-transgenic rats. On embryonic day 21.5, a SOX10-positive cell population, which was also positive for the stem/progenitor cell marker SOX2, emerged in the pituitary stalk and posterior lobe and subsequently expanded to create a rostral-caudal gradient on postnatal day 3 (P3). Thereafter, SOX10-positive cells appeared in the intermediate lobe by P15, localizing to the boundary facing the posterior lobe, the gap between the lobule structures and the marginal cell layer, a pituitary stem/progenitor cell niche. Subsequently, there was an increase in SOX10/S100β double-positive cells; some of these cells in the gap between the lobule structures showed extended cytoplasm containing F-actin, indicating a feature of migration activity. The proportion of SOX10-positive cells in the postnatal anterior lobe was lower than 0.025% but about half of them co-localized with the pituitary-specific progenitor cell marker PROP1. Collectively, the present study identified that one of the lineages of S100β-positive cells is a SOX10-positive one and that SOX10-positive cells express pituitary stem/progenitor cell marker genes.

  3. Development and characterization of highly oriented PAN nanofiber

    Directory of Open Access Journals (Sweden)

    M. Sadrjahani

    2010-12-01

    Full Text Available A simple and non-conventional electrospinning technique was employed for producing highly oriented Polyacrylonitrile (PAN nanofibers. The PAN nanofibers were electrospun from 14 wt% solution of PAN in dimethylformamid (DMF at 11 kv on a rotating drum with various linear speeds from 22.5 m/min to 67.7 m/min. The influence of take up velocity was investigated on the degree of alignment, internal structure and mechanical properties of collected PAN nanofibers. Using an image processing technique, the best degree of alignment was obtained for those nanofibers collected at a take up velocity of 59.5 m/min. Moreover, Raman spectroscopy was used for measuring molecular orientation of PAN nanofibers. Similarly, a maximum chain orientation parameter of 0.25 was determined for nanofibers collected at a take up velocity of 59.5 m/min.

  4. Artificial neural network applying for justification of tractors undercarriages parameters

    Directory of Open Access Journals (Sweden)

    V. A. Kuz’Min

    2017-01-01

    Full Text Available One of the most important properties that determine undercarriage layout on design stage is the soil compaction effect. Existing domestic standards of undercarriages impact to soil do not meet modern agricultural requirements completely. The authors justify the need for analysis of traction and transportation machines travel systems and recommendations for these parameters applied to machines that are on design or modernization stage. The database of crawler agricultural tractors particularly in such parameters as traction class and basic operational weight, engine power rating, average ground pressure, square of track basic branch surface area was modeled. Meanwhile the considered machines were divided into two groups by producing countries: Europe/North America and Russian Federation/CIS. The main graphical dependences for every group of machines are plotted, and the conforming analytical dependences within the ranges with greatest concentration of machines are generated. To make the procedure of obtaining parameters of the soil panning by tractors easier it is expedient to use the program tool - artificial neural network (or perceptron. It is necessary to apply to the solution of this task multilayered perceptron - neutron network of direct distribution of signals (without feedback. To carry out the analysis of parameters of running systems taking into account parameters of the soil panning by them and to recommend the choice of these parameters for newly created machines. The program code of artificial neural network is developed. On the basis of the created base of tractors the artificial neural network was created and tested. Accumulated error was not more than 5 percent. These data indicate the results accuracy and tool reliability. It is possible by operating initial design-data base and using the designed artificial neural network to define missing parameters.

  5. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos.

  6. Discharge coefficient of a rectangular sharp-edged broad-crested weir

    Directory of Open Access Journals (Sweden)

    Zachoval Zbyněk

    2014-06-01

    Full Text Available This paper is concerned with the determination of the relationship for the calculation of the discharge coefficient at free overflow over a rectangular sharp-edged broad-crested weir without lateral contraction. The determination was made on the basis of new measurement in a range of the relative thickness of the weir from 0.12 to 0.30 and newly in a large range of relative height of the weir extremely from 0.24 to 6.8 which greatly expands the application possibilities of low weirs. In addition, the effects of friction and surface tension on the value of the discharge coefficient were evaluated as well as the effect of the relative thickness of the weir. The new equation for discharge coefficient, expressed using the relative height of the weir, was subjected to verification made by an independent laboratory which confirmed its accuracy.

  7. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Neural processing of fearful and happy facial expressions during emotion-relevant and emotion-irrelevant tasks: a fixation-to-feature approach

    Science.gov (United States)

    Neath-Tavares, Karly N.; Itier, Roxane J.

    2017-01-01

    Research suggests an important role of the eyes and mouth for discriminating facial expressions of emotion. A gaze-contingent procedure was used to test the impact of fixation to facial features on the neural response to fearful, happy and neutral facial expressions in an emotion discrimination (Exp.1) and an oddball detection (Exp.2) task. The N170 was the only eye-sensitive ERP component, and this sensitivity did not vary across facial expressions. In both tasks, compared to neutral faces, responses to happy expressions were seen as early as 100–120ms occipitally, while responses to fearful expressions started around 150ms, on or after the N170, at both occipital and lateral-posterior sites. Analyses of scalp topographies revealed different distributions of these two emotion effects across most of the epoch. Emotion processing interacted with fixation location at different times between tasks. Results suggest a role of both the eyes and mouth in the neural processing of fearful expressions and of the mouth in the processing of happy expressions, before 350ms. PMID:27430934

  9. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    Science.gov (United States)

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  10. A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics

    Science.gov (United States)

    Chatterjee, S.; Chakraborty, S. K.; Veenadhari, B.; Banola, S.

    2014-02-01

    Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011-2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989-1990 and explained in terms of modulation effects of enhanced equatorial fountain.

  11. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus

    Directory of Open Access Journals (Sweden)

    Imaizumi Yoichi

    2011-01-01

    Full Text Available Abstract Background In the adult mammalian brain, neural stem cells (NSCs proliferate in the dentate gyrus (DG of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.

  12. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions.

    Science.gov (United States)

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-03-27

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.

  13. Neural activity during affect labeling predicts expressive writing effects on well-being: GLM and SVM approaches.

    Science.gov (United States)

    Memarian, Negar; Torre, Jared B; Haltom, Kate E; Stanton, Annette L; Lieberman, Matthew D

    2017-09-01

    Affect labeling (putting feelings into words) is a form of incidental emotion regulation that could underpin some benefits of expressive writing (i.e. writing about negative experiences). Here, we show that neural responses during affect labeling predicted changes in psychological and physical well-being outcome measures 3 months later. Furthermore, neural activity of specific frontal regions and amygdala predicted those outcomes as a function of expressive writing. Using supervised learning (support vector machines regression), improvements in four measures of psychological and physical health (physical symptoms, depression, anxiety and life satisfaction) after an expressive writing intervention were predicted with an average of 0.85% prediction error [root mean square error (RMSE) %]. The predictions were significantly more accurate with machine learning than with the conventional generalized linear model method (average RMSE: 1.3%). Consistent with affect labeling research, right ventrolateral prefrontal cortex (RVLPFC) and amygdalae were top predictors of improvement in the four outcomes. Moreover, RVLPFC and left amygdala predicted benefits due to expressive writing in satisfaction with life and depression outcome measures, respectively. This study demonstrates the substantial merit of supervised machine learning for real-world outcome prediction in social and affective neuroscience. © The Author (2017). Published by Oxford University Press.

  14. A complex RARE is required for the majority of Nedd9 embryonic expression.

    Science.gov (United States)

    Knutson, Danielle C; Clagett-Dame, Margaret

    2015-02-01

    Neural precursor cell expressed, developmentally down-regulated 9 (Nedd9, Casl, Hef1, p105cas, Ef1) is a scaffolding protein that assembles complexes involved in regulating cell adhesion, migration, division, and survival. Nedd9 is found very early in the developing embryonic nervous system. A highly conserved complex retinoic acid response element (RARE) is located 485 base pairs (bp) upstream of exon 2B in the promoter of the Nedd9 gene. Mice transgenic for a 5.2 kilobase (kb) region of the 2B Nedd9 promoter containing the RARE upstream of a lacZ reporter gene [Nedd9(RARE)-lacZ] show a large subset of the normal endogenous Nedd9 expression including that in the caudal hindbrain neuroepithelium, spinal cord, dorsal root ganglia (drg) and migrating neural crest (ncc). However, the transgenic mice do not recapitulate the native Nedd9 expression pattern in presumptive rhombomeres (pr) 3 and 5 of the early hindbrain, the base of the neuroepithelium in the midbrain, nor the forebrain telencephalon. Thus, the 5.2 kb region containing the intact RARE drives a large subset of Nedd9 expression, with additional sequences outside of this region needed to define the full complement of expression. When the 5.2 kb construct is modified (eight point mutations) to eliminate responsiveness of the RARE to all-trans retinoic acid (atRA) [Nedd9(mutRARE)-lacZ], virtually all β-galactosidase (β-gal, lacZ) expression is lost. Exposure of Nedd9(RARE)-lacZ transgenic embryos to excess atRA at embryonic day 8.0 (E8.0) leads to rostral ectopic transgene expression within 6 h whereas the Nedd9(mutRARE)-lacZ mutant does not show this effect. Thus the RARE upstream of the Nedd9 2B promoter is necessary for much of the endogenous gene expression during early development as well as ectopic expression in response to atRA.

  15. Migration of ATLAS PanDA to CERN

    International Nuclear Information System (INIS)

    Stewart, Graeme Andrew; Klimentov, Alexei; Maeno, Tadashi; Nevski, Pavel; Nowak, Marcin; De Castro Faria Salgado, Pedro Emanuel; Wenaus, Torre; Koblitz, Birger; Lamanna, Massimo

    2010-01-01

    The ATLAS Production and Distributed Analysis System (PanDA) is a key component of the ATLAS distributed computing infrastructure. All ATLAS production jobs, and a substantial amount of user and group analysis jobs, pass through the PanDA system, which manages their execution on the grid. PanDA also plays a key role in production task definition and the data set replication request system. PanDA has recently been migrated from Brookhaven National Laboratory (BNL) to the European Organization for Nuclear Research (CERN), a process we describe here. We discuss how the new infrastructure for PanDA, which relies heavily on services provided by CERN IT, was introduced in order to make the service as reliable as possible and to allow it to be scaled to ATLAS's increasing need for distributed computing. The migration involved changing the backend database for PanDA from MySQL to Oracle, which impacted upon the database schemas. The process by which the client code was optimised for the new database backend is discussed. We describe the procedure by which the new database infrastructure was tested and commissioned for production use. Operations during the migration had to be planned carefully to minimise disruption to ongoing ATLAS offline computing. All parts of the migration were fully tested before commissioning the new infrastructure and the gradual migration of computing resources to the new system allowed any problems of scaling to be addressed.

  16. Reconstruction of iliac crest with rib to prevent donor site complications: A prospective study of 26 cases

    Directory of Open Access Journals (Sweden)

    Dave B

    2007-01-01

    Full Text Available Background: The tricortical bone graft from the iliac crest are used to reconstruct the post corpectomy spinal defects. The donor iliac area defect is large and may give rise to pain at donor site, instability of pelvis, fracture of ilium, donor site muscle herniation or abdominal content herniation. Rib removed during thoracotomy was used by us to reconstruct the iliac crest defect. Materials and Methods: Twenty-six patients who underwent thoracotomy for dorsal spine corpectomy or curettage for various spinal pathologies from June 2002 to May 2004 were included in the study. After adequate decompression the spine was reconstructed by tricortical bone graft from iliac crest and reconstruction of the iliac crest was done with the rib removed for exposure during thoracotomy. Results: The mean follow up was 15 months. All patients had good graft incorporation which was evaluated on the basis of local tenderness and radiographs. One patient had graft displacement. Conclusion: The reconstruction of iliac crest by rib is a simple and effective procedure to prevent donor site complications.

  17. Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN

    International Nuclear Information System (INIS)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil; Watson, Tony Leroy

    2016-01-01

    Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns' compositions. Two Stirling coolers were installed in series to perform this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.

  18. Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, Mitchell Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, Troy Gerry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy Keil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns’ compositions. Two Stirling coolers were installed in series to perform this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.

  19. The occurrence of large branchiopod crustaceans in perennial pans ...

    African Journals Online (AJOL)

    Pans are isolated, shallow depressions that are endorheic in nature. Because of the natural hydrological functioning of pans, these systems are usually restricted to arid regions and complete desiccation occurs seasonally. In the eastern provinces of South Africa many pans are perennial in nature often remaining inundated ...

  20. Neural correlates of conflict control on facial expressions with a flanker paradigm.

    Science.gov (United States)

    Liu, Tongran; Xiao, Tong; Shi, Jian-Nong

    2013-01-01

    Conflict control is an important cognitive control ability and it is also crucial for human beings to execute conflict control on affective information. To address the neural correlates of cognitive control on affective conflicts, the present study recorded event-related potentials (ERPs) during a revised Eriksen Flanker Task. Participants were required to indicate the valence of the central target expression while ignoring the flanker expressions in the affective congruent condition, affective incongruent condition and neutral condition (target expressions flanked by scramble blocks). Behavioral results manifested that participants exhibited faster response speed in identifying neutral target face when it was flanked by neutral distractors than by happy distractors. Electrophysiological results showed that happy target expression induced larger N2 amplitude when flanked by sad distractors than by happy distractors and scramble blocks during the conflict monitoring processing. During the attentional control processing, happy target expression induced faster P3 response when it was flanked by happy distractors than by sad distractors, and sad target expression evoked larger P3 amplitude when it was flanked by happy distractors comparing with sad distractors. Taken together, the current findings of temporal dynamic of brain activity during cognitive control on affective conflicts shed light on the essential relationship between cognitive control and affective information processing.

  1. Neural correlates of conflict control on facial expressions with a flanker paradigm.

    Directory of Open Access Journals (Sweden)

    Tongran Liu

    Full Text Available Conflict control is an important cognitive control ability and it is also crucial for human beings to execute conflict control on affective information. To address the neural correlates of cognitive control on affective conflicts, the present study recorded event-related potentials (ERPs during a revised Eriksen Flanker Task. Participants were required to indicate the valence of the central target expression while ignoring the flanker expressions in the affective congruent condition, affective incongruent condition and neutral condition (target expressions flanked by scramble blocks. Behavioral results manifested that participants exhibited faster response speed in identifying neutral target face when it was flanked by neutral distractors than by happy distractors. Electrophysiological results showed that happy target expression induced larger N2 amplitude when flanked by sad distractors than by happy distractors and scramble blocks during the conflict monitoring processing. During the attentional control processing, happy target expression induced faster P3 response when it was flanked by happy distractors than by sad distractors, and sad target expression evoked larger P3 amplitude when it was flanked by happy distractors comparing with sad distractors. Taken together, the current findings of temporal dynamic of brain activity during cognitive control on affective conflicts shed light on the essential relationship between cognitive control and affective information processing.

  2. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Science.gov (United States)

    Barriga, Elias H; Franze, Kristian; Charras, Guillaume; Mayor, Roberto

    2018-02-22

    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis.

  3. Results of operative treatment of avulsion fractures of the iliac crest apophysis in adolescents.

    Science.gov (United States)

    Li, Xigong; Xu, Sanzhong; Lin, Xiangjin; Wang, Quan; Pan, Jun

    2014-04-01

    Avulsion fracture of the iliac crest apophysis is a rare condition that commonly occurs in adolescent athletes. Conservative treatment for this injury can produce excellent functional outcomes. However, the rehabilitation process requires a rather long immobilisation period. This study aimed to evaluate the use of cannulated screws for fixation of avulsion fractures of iliac crest apophysis. Ten patients with avulsion fractures of iliac crest apophysis were treated by open reduction and internal fixation using cannulated screws. The mean age of patients was 14.6 years (range, 13-15 years). The mean intraoperative blood loss was 14.9 ml (range, 10-25 ml). The mean operative time was 40.3 min (range, 33-52 min). The mean follow-up period was 11.2 months (range, 6-20 months). At the 4-week follow-up, all patients returned to previously normal activity without pain and had no evidence of lower extremity muscle weakness. At the final follow-up, all patients resumed their athletic activity without any complications. Open reduction and internal fixation for the treatment of avulsion fracture of iliac crest apophysis can be recommended for patients requiring rapid rehabilitation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression.

    Science.gov (United States)

    Zaim, Merve; Isik, Sevim

    2018-04-25

    DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases.

  5. Unique protein expression signatures of survival time in kidney renal clear cell carcinoma through a pan-cancer screening.

    Science.gov (United States)

    Han, Guangchun; Zhao, Wei; Song, Xiaofeng; Kwok-Shing Ng, Patrick; Karam, Jose A; Jonasch, Eric; Mills, Gordon B; Zhao, Zhongming; Ding, Zhiyong; Jia, Peilin

    2017-10-03

    In 2016, it is estimated that there will be 62,700 new cases of kidney cancer in the United States, and 14,240 patients will die from the disease. Because the incidence of kidney renal clear cell carcinoma (KIRC), the most common type of kidney cancer, is expected to continue to increase in the US, there is an urgent need to find effective diagnostic biomarkers for KIRC that could help earlier detection of and customized treatment strategies for the disease. Accordingly, in this study we systematically investigated KIRC's prognostic biomarkers for survival using the reverse phase protein array (RPPA) data and the high throughput sequencing data from The Cancer Genome Atlas (TCGA). With comprehensive data available in TCGA, we systematically screened protein expression based survival biomarkers in 10 major cancer types, among which KIRC presented many protein prognostic biomarkers of survival time. This is in agreement with a previous report that expression level changes (mRNAs, microRNA and protein) may have a better performance for prognosis of KIRC. In this study, we also identified 52 prognostic genes for KIRC, many of which are involved in cell-cycle and cancer signaling, as well as 15 tumor-stage-specific prognostic biomarkers. Notably, we found fewer prognostic biomarkers for early-stage than for late-stage KIRC. Four biomarkers (the RPPA protein IDs: FASN, ACC1, Cyclin_B1 and Rad51) were found to be prognostic for survival based on both protein and mRNA expression data. Through pan-cancer screening, we found that many protein biomarkers were prognostic for patients' survival in KIRC. Stage-specific survival biomarkers in KIRC were also identified. Our study indicated that these protein biomarkers might have potential clinical value in terms of predicting survival in KIRC patients and developing individualized treatment strategies. Importantly, we found many biomarkers in KIRC at both the mRNA expression level and the protein expression level. These

  6. La dionisización del dios Pan

    Directory of Open Access Journals (Sweden)

    Silvia Porres Caballero

    2012-09-01

    Full Text Available Pan is a god peculiar in many respects. In contrast to the other gods of the Greek pantheon, he is not anthropomorphic, but he has the legs, tail and horns of a goat. These features show his age. A god like Pan can only survive in Arcadia, a region that preserves many religious archaisms. However, from 490 BC, when his cult is established in Athens, this god begins to change. In his evolution, Pan becomes increasingly assimilated the god Dionysus. The rapprochement between the two gods left his mark on the mythology, but especially in the cult of Pan. Thus, a god who was worshiped in Arcadia in sanctuaries built by men, in the rest of Greece is worshiped in wild shrines, mainly caves. Out of Arcadia, the grotto also is the place reserved for the mystery cults, including the Dionysian ones. Does not seem a coincidence

  7. Myocardial function and perfusion in the CREST syndrome variant of progressive systemic sclerosis. Exercise radionuclide evaluation and comparison with diffuse scleroderma

    International Nuclear Information System (INIS)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Owens, G.R.; Steen, V.D.; Rodnan, G.P.

    1984-01-01

    Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patients with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease

  8. Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis.

    Science.gov (United States)

    Saito, Kanako; Dubreuil, Veronique; Arai, Yoko; Wilsch-Bräuninger, Michaela; Schwudke, Dominik; Saher, Gesine; Miyata, Takaki; Breier, Georg; Thiele, Christoph; Shevchenko, Andrej; Nave, Klaus-Armin; Huttner, Wieland B

    2009-05-19

    Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.

  9. PanJen

    DEFF Research Database (Denmark)

    Jensen, Cathrine Ulla; Panduro, Toke Emil

    functional transformations, driven by an a priori and theory-based hypothesis. The plots and model fit metrics enable users to make an informed choice of how to specify the functional form the regression. We show that the PanJen ranking outperforms the Box-Tidwell transformation, especially in the presence...... of inefficiency, heteroscedasticity or endogeneity....

  10. Incisional Colopexy for Treatment of Chronic, Recurrent Colocloacal Prolapse in a Sulphur-Crested Cockatoo (Cacatua galerita)

    NARCIS (Netherlands)

    van Zeeland, Yvonne; Schoemaker, Nico; van Sluijs, Freek

    2014-01-01

    Objective To report a surgical technique for treatment of chronic, recurrent cloacal prolapse in a sulphur-crested cockatoo (Cacatua galerita). Study Design Clinical report Animals Sulphur-crested cockatoo (n = 1) Methods The bird was admitted with a 2-year history of periodic lethargy, decreased

  11. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis.

    Directory of Open Access Journals (Sweden)

    Kari D Hagen

    2011-12-01

    Full Text Available Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.

  12. Dynamic changes in connexin expression following engraftment of neural stem cells to striatal tissue

    International Nuclear Information System (INIS)

    Jaederstad, Johan; Jaederstad, Linda Maria; Herlenius, Eric

    2011-01-01

    Gap-junctional intercellular communication between grafted neural stem cells (NSCs) and host cells seem to be essential for many of the beneficial effects associated with NSC engraftment. Utilizing murine NSCs (mNSCs) grafted into an organotypic ex vivo model system for striatal tissue we examined the prerequisites for formation of gap-junctional couplings between graft and host cells at different time points following implantation. We utilized flow cytometry (to quantify the proportion of connexin (Cx) 26 and 43 expressing cells), immunohistochemistry (for localization of the gap-junctional proteins in graft and host cells), dye-transfer studies with and without pharmacological gap-junctional blockers (assaying the functionality of the formed gap-junctional couplings), and proliferation assays (to estimate the role of gap junctions for NSC well-being) to this end. Immunohistochemical staining and dye-transfer studies revealed that the NSCs already form functional gap junctions prior to engraftment, thereby creating a substrate for subsequent graft and host communication. The expression of Cx43 by grafted NSCs was decreased by neurotrophin-3 overexpression in NSCs and culturing of grafted tissue in serum-free Neurobasal B27 medium. Cx43 expression in NSC-derived cells also changed significantly following engraftment. In host cells the expression of Cx43 peaked following traumatic stimulation and then declined within two weeks, suggesting a window of opportunity for successful host cell rescue by NSC engraftment. Further investigation of the dynamic changes in gap junction expression in graft and host cells and the associated variations in intercellular communication between implanted and endogenous cells might help to understand and control the early positive and negative effects evident following neural stem cell transplantation and thereby optimize the outcome of future clinical NSC transplantation therapies.

  13. Jaccoud's arthropathy and pulmonary fibrosis in CREST syndrome

    International Nuclear Information System (INIS)

    Spinel B, Nestor; Montenegro, Pablo; Rondon Federico; Restrepo, Jose F; Iglesias G, Antonio

    2010-01-01

    We report a case of a 48 years old patient with diagnosis of incomplete CREST syndrome (variant limited systemic sclerosis) in who we documented the presence of Jaccoud's arthropathy of the hands and pulmonary involvement by pulmonary fibrosis type usual interstitial pneumonia, with positivity for rheumatoid factor and anti-cyclic citrullinated peptide antibody.

  14. Rho-associated kinase is a therapeutic target in neuroblastoma.

    Science.gov (United States)

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN -driven neuroblastoma growth in TH- MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  15. 75 FR 47262 - Federal Consistency Appeal by Pan American Grain Co.

    Science.gov (United States)

    2010-08-05

    ... by Pan American Grain Co. AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department..., closure of the decision record in an administrative appeal filed by Pan American Grain Co. (Pan American..., 2010, Pan American Grain Co. filed notice of an appeal with the Secretary of Commerce (Secretary...

  16. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress.

    Science.gov (United States)

    Fouad, W M; Altpeter, F

    2009-10-01

    Metabolic engineering for beta-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia coli L-aspartate-alpha-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of L-aspartate to generate beta-alanine and carbon dioxide. The constitutive E. coli panD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. coli panD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. beta-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45 degrees C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO(2) assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30-40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the beta-alanine pathway by over-expression of the E. coli panD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

  17. Identification of tumor associated single-chain Fv by panning and screening antibody phage library using tumor cells

    Science.gov (United States)

    Nie, Yong-Zhan; He, Feng-Tian; Li, Zhi-Kui; Wu, Kai-Chun; Cao, Yun-Xin; Chen, Bao-Jun; Fan, Dai-Ming

    2002-01-01

    AIM: To study the feasibility of panning and screening phage-displaying recombinant single-chain variable fragment (ScFv) of anti-tumor monoclonal antibodies for fixed whole cells as the carriers of mAb-binding antigens. METHODS: The recombinant phage displaying libraries for anti-colorectal tumor mAb MC3Ab, MC5Ab and anti-gastric tumor mAb MGD1 was constructed. Panning and screening were carried out by means of modified fixation of colorectal and gastric tumor cells expressed the mAb-binding antigens. Concordance of binding specificity to tumor cells between phage clones and parent antibodies was analyzed. The phage of positive clones was identified with competitive ELISA, and infected by E. coli HB2151 to express soluble ScFv. RESULTS: The ratio of positive clones to MC3-ScF-MC5-ScFv and MGD1-ScFv were 60%, 24% and 30%. MC3-ScFv had Mr 32000 confirmed by Western blot. The specificity to antigen had no difference between 4 positive recombinant phage antibodies and MC3Ab. CONCLUSION: The modified process of fixing whole tumor cells is efficient, convenient and feasible to pan and screen the phage-displaying ScFv of anti-tumor monoclonal antibodies. PMID:12174367

  18. The core proteome and pan proteome of Salmonella Paratyphi A epidemic strains.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Comparative proteomics of the multiple strains within the same species can reveal the genetic variation and relationships among strains without the need to assess the genomic data. Similar to comparative genomics, core proteome and pan proteome can also be obtained within multiple strains under the same culture conditions. In this study we present the core proteome and pan proteome of four epidemic Salmonella Paratyphi A strains cultured under laboratory culture conditions. The proteomic information was obtained using a Two-dimensional gel electrophoresis (2-DE technique. The expression profiles of these strains were conservative, similar to the monomorphic genome of S. Paratyphi A. Few strain-specific proteins were found in these strains. Interestingly, non-core proteins were found in similar categories as core proteins. However, significant fluctuations in the abundance of some core proteins were also observed, suggesting that there is elaborate regulation of core proteins in the different strains even when they are cultured in the same environment. Therefore, core proteome and pan proteome analysis of the multiple strains can demonstrate the core pathways of metabolism of the species under specific culture conditions, and further the specific responses and adaptations of the strains to the growth environment.

  19. Hydraulic Evaluation of the Crest Wing Wave Energy Converter

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave to generate power. Model tests have been performed using a scale...... model (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg (Frigaard et al., 2008......). The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate total power take off....

  20. Status and Evolution of ATLAS Workload Management System PanDA

    CERN Document Server

    AUTHOR|(CDS)2067365; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC uses a sophisticated workload management system, PanDA, to provide access for thousands of physicists to distributed computing resources of unprecedented scale. This system has proved to be robust and scalable during three years of LHC operations. We describe the design and performance of PanDA in ATLAS. The features which make PanDA successful in ATLAS could be applicable to other exabyte scale scientific projects. We describe plans to evolve PanDA towards a general workload management system for the new BigData initiative announced by the US government. Other planned future improvements to PanDA will also be described

  1. Optimization of Pan Bread Prepared with Ramie Powder and Preservation of Optimized Pan Bread Treated by Gamma Irradiation during Storage

    International Nuclear Information System (INIS)

    Lee, H.J.; Joo, N.M.

    2012-01-01

    This study was conducted to develop an optimal composite recipe for pan bread with ramie powder that has high sensory approval with all age groups and to estimate the DPPH radical scavenging activity and the pan bread shelf life after gamma irradiation. The sensory evaluation results showed significant differences in flavor (p less than 0.05), appearance (p less than 0.01), color (p less than 0.01), moistness (p less than 0.01), and overall quality (p less than 0.05) based on the amount of ramie powder added. As a result, the optimum formulations by numerical and graphical methods were calculated to be as follows: ramie powder 2.76 g (0.92%) and water 184.7 mL. Optimized pan bread with ramie powder and white pan bread were irradiated with gamma-rays at doses of 0, 10, 15, and 20 kGy. The total bacterial growth increased with the longer storage time and the least amount of ramie powder added. Consequently, these results suggest that the addition of ramie powder to pan bread provides added value to the bread in terms of increased shelf life

  2. Radioimmunodetection of human pancreatic tumor xenografts using DU-PAN II monoclonal antibody

    International Nuclear Information System (INIS)

    Nakamura, Kayoko; Kubo, Atsushi; Hashimoto, Shozo; Furuuchi, Takayuki; Abe, Osahiko; Takami, Hiroshi.

    1988-01-01

    The potential of DU-PAN II, monoclonal antibody (IgM), which was raised against the human tumor cell line, was evaluated for radioimmunodetection of human pancreatic tumors (PAN-5-JCK and EXP-58) grown in nude mice. 125 I-labeled DU-PAN II was accumulated into PAN-5-JCK producing DU-PAN II antigen with a tumor-to-blood ratio of 2.72 ± 3.00, but it did not localize in EXP-58 because of insufficient DU-PAN II. There was no significant uptake of 125 I-nonimmunized IgM in PAN-5-JCK. These facts indicated the specific tumor uptake of DU-PAN II. Excellent images of the tumor PAN-5-JCK were obtained 3 days after the injection of 125 I-DU-PAN II. Gel chromatography was also investigated with respect to the plasma taken from mice injected with antibody, or incubated with antibody in vitro. The results indicate that circulating antigen affected the tumor uptake of DU-PAN II: The more the tumor grew, the higher the amount of antigen excreted into the blood, leading to the degradation of DU-PAN II before it reached the tumor sites. Consequently, the immunoscintigram of the small tumor was remarkably clear. The catabolism and the radiolysis of the labeled IgM injected are critical points in applying immunoscintigraphy. (author)

  3. PanViz: interactive visualization of the structure of functionally annotated pangenomes

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin; Nookaew, Intawat; Wayne Ussery, David

    2017-01-01

    with gene ontology based navigation of gene groups. Furthermore it allows for rich and complex visual querying of gene groups in the pangenome. PanViz visualizations require no external programs and are easily sharable, allowing for rapid pangenome analyses. PanViz is written entirely in Java......PanViz is a novel, interactive, visualization tool for pangenome analysis. PanViz allows visualization of changes in gene group (groups of similar genes across genomes) classification as different subsets of pangenomes are selected, as well as comparisons of individual genomes to pangenomes......Script and is available on https://github.com/thomasp85/PanViz A companion R package that facilitates the creation of PanViz visualizations from a range of data formats is released through Bioconductor and is available at https://bioconductor.org/packages/PanVizGenerator CONTACT: thomasp85@gmail...

  4. Real-Time Audio Processing on the T-CREST Multicore Platform

    DEFF Research Database (Denmark)

    Ausin, Daniel Sanz; Pezzarossa, Luca; Schoeberl, Martin

    2017-01-01

    of the audio signal. This paper presents a real-time multicore audio processing system based on the T-CREST platform. T-CREST is a time-predictable multicore processor for real-time embedded systems. Multiple audio effect tasks have been implemented, which can be connected together in different configurations...... forming sequential and parallel effect chains, and using a network-onchip for intercommunication between processors. The evaluation of the system shows that real-time processing of multiple effect configurations is possible, and that the estimation and control of latency ensures real-time behavior.......Multicore platforms are nowadays widely used for audio processing applications, due to the improvement of computational power that they provide. However, some of these systems are not optimized for temporally constrained environments, which often leads to an undesired increase in the latency...

  5. Subject independent facial expression recognition with robust face detection using a convolutional neural network.

    Science.gov (United States)

    Matsugu, Masakazu; Mori, Katsuhiko; Mitari, Yusuke; Kaneda, Yuji

    2003-01-01

    Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In this study, we address the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. The result shows reliable detection of smiles with recognition rate of 97.6% for 5600 still images of more than 10 subjects. The proposed algorithm demonstrated the ability to discriminate smiling from talking based on the saliency score obtained from voting visual cues. To the best of our knowledge, it is the first facial expression recognition model with the property of subject independence combined with robustness to variability in facial appearance.

  6. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation.

    Science.gov (United States)

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo; Lee, Jong Eun

    2016-11-01

    Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.

  7. Thermal and radiochemical degradation of some PAN copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, S. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Zaharescu, T. [' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania)], E-mail: traian_zaharescu@yahoo.com; Setnescu, R. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Dragan, E.S.; Dinu, M.V. [' Petru Poni' Institute of Macromolecular Chemistry, Iasi 700487 (Romania)

    2008-12-01

    Polyacrylonitrile (PAN) and some copolymers of acrylonitrile with divinylbenzene (AN-DVB) were investigated by the characterization of their thermal and radiation stabilities. The contribution of DVB to the thermal stability of PAN by the modification in the amount of unsaturated hydrocarbon between 6 and 20% was revealed by the evaluation of oxidation induction periods and required activation energies. The exposure of these materials to the action of {gamma}-radiation points out the higher stability of copolymers (AN-DVB) in comparison to the relative stability of PAN.

  8. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  9. On linearity of pan-integral and pan-integrable functions space

    Czech Academy of Sciences Publication Activity Database

    Ouyang, Y.; Li, J.; Mesiar, Radko

    2017-01-01

    Roč. 90, č. 1 (2017), s. 307-318 ISSN 0888-613X Institutional support: RVO:67985556 Keywords : linearity * monotone measure * Pan-integrable space Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0477549.pdf

  10. Expression of neural cell adhesion molecules and neurofilament protein isoforms in Ewing's sarcoma of bone and soft tissue sarcomas of other than rhabdomyosarcoma

    NARCIS (Netherlands)

    Molenaar, W.M.; Muntinghe, F.L.H.

    1999-01-01

    In a previous study, it was shown that rhabdomyosarcomas widely express "neural" markers, such as neural cell adhesion molecules (N-CAM) and neurofilament protein isoforms, In the current study, a series of Ewing's sarcomas of bone and soft tissue sarcomas other than rhabdomyosarcoma was probed for

  11. Neural correlates of the perception of dynamic versus static facial expressions of emotion.

    Science.gov (United States)

    Kessler, Henrik; Doyen-Waldecker, Cornelia; Hofer, Christian; Hoffmann, Holger; Traue, Harald C; Abler, Birgit

    2011-04-20

    This study investigated brain areas involved in the perception of dynamic facial expressions of emotion. A group of 30 healthy subjects was measured with fMRI when passively viewing prototypical facial expressions of fear, disgust, sadness and happiness. Using morphing techniques, all faces were displayed as still images and also dynamically as a film clip with the expressions evolving from neutral to emotional. Irrespective of a specific emotion, dynamic stimuli selectively activated bilateral superior temporal sulcus, visual area V5, fusiform gyrus, thalamus and other frontal and parietal areas. Interaction effects of emotion and mode of presentation (static/dynamic) were only found for the expression of happiness, where static faces evoked greater activity in the medial prefrontal cortex. Our results confirm previous findings on neural correlates of the perception of dynamic facial expressions and are in line with studies showing the importance of the superior temporal sulcus and V5 in the perception of biological motion. Differential activation in the fusiform gyrus for dynamic stimuli stands in contrast to classical models of face perception but is coherent with new findings arguing for a more general role of the fusiform gyrus in the processing of socially relevant stimuli.

  12. RECONSTRUCTION OF ATROPHIC MAXILLA BY ANTERIOR ILIAC CREST BONE GRAFTING VIA NEUROAXIAL BLOCKADE TECHNIQUE: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Erol CANSIZ

    2017-01-01

    Full Text Available Anterior iliac crest bone grafting is a well-established modality in the treatment of alveolar bone deficiencies. However, this procedure may also have considerable postoperative morbidity which is mostly related to general anesthesia. Postoperative pain-related complications can be managed by neuroaxial blockade techniques which provide adequate surgical analgesia and reduce postoperative pain. This clinical report describes the reconstruction of a severely atrophic maxilla with anterior iliac crest bone grafting using combined spinal epidural anesthesia. Neuroaxial blockade techniques may be a useful alternative to eliminate general anesthesia related challenges of anterior iliac crest bone grafting procedures.

  13. Preparation and performance of biofouling resistant PAN/chitosan hollow fiber membranes.

    Science.gov (United States)

    Shanthana Lakshmi, D; Jaiswar, Santlal; Saxena, Mayank; Tasselli, Franco; Raval, Hiren D

    2017-07-01

    The preparation of polyacrylonitrile (PAN) hollow fiber (HF) membranes has been carried out by dry-jet wet spinning. PAN HF membranes were coated with chitosan biopolymers 2 wt% by dip coating and further crosslinked by chemical reagents (Tri sodium polyphosphate). PAN HF (Virgin) and PAN/chitosan coated membrane were characterized by SEM and tested for water flux. Proteins Pepsin, Albumin, and Clay of 1000 ppm concentration were tested for separation efficiency. In addition, bacterial species Escherichia coli and Bacillus subtilis were tested for fouling control efficiency and found out that PAN/chitosan membranes were quite superior to virgin PAN fibers. The adhesion of bacterial cells on the surface of the hollow fiber membranes assessed through alcian blue staining and SEM analysis. It was observed that PAN/chitosan membranes (310A and 310C) possessed best antibacterial activities (based on SEM results), qualifying them as a very promising candidates for anti-biofouling coatings.

  14. Calsyntenins Are Expressed in a Dynamic and Partially Overlapping Manner during Neural Development

    Directory of Open Access Journals (Sweden)

    Gemma de Ramon Francàs

    2017-08-01

    Full Text Available Calsyntenins form a family of linker proteins between distinct populations of vesicles and kinesin motors for axonal transport. They were implicated in synapse formation and synaptic plasticity by findings in worms, mice and humans. These findings were in accordance with the postsynaptic localization of the Calsyntenins in the adult brain. However, they also affect the formation of neural circuits, as loss of Calsyntenin-1 (Clstn1 was shown to interfere with axonal branching and axon guidance. Despite the fact that Calsyntenins were discovered originally in embryonic chicken motoneurons, their distribution in the developing nervous system has not been analyzed in detail so far. Here, we summarize our analysis of the temporal and spatial expression patterns of the cargo-docking proteins Clstn1, Clstn2 and Clstn3 during neural development by comparing the dynamic distribution of their mRNAs by in situ hybridization in the spinal cord, the cerebellum, the retina and the tectum, as well as in the dorsal root ganglia (DRG.

  15. Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats

    International Nuclear Information System (INIS)

    Park, Sang-Joon; Jeong, Kyu-Shik

    2004-01-01

    We examined the time-course activation and the cell-type specific role of MAP kinases in puromycin aminonucleoside (PAN)-induced renal disease. The maximal activation of c-Jun-NH 2 -terminal kinase (JNK), extracellular signal regulated kinase (ERK), and p38 MAP kinase was detected on Days 52, 38, and 38 after PAN-treatment, respectively. p-JNK was localized in mesangial and proximal tubular cells at the early renal injury. It was expressed, therefore, in the inflammatory cells of tubulointerstitial lesions. While, p-ERK was markedly increased in the glomerular regions and macrophages p-p38 was observed in glomerular endothelial cells, tubular cells, and some inflammatory cells. The results show that the activation of MAP kinases in the early renal injury by PAN-treatment involves cellular changes such as cell proliferation or apoptosis in renal native cells. The activation of MAP kinases in infiltrated inflammatory cells and fibrotic cells plays an important role in destructive events such as glomerulosclerosis and tubulointerstitial fibrosis

  16. Oral Crest Lengthening for Increasing Removable Denture Retention by Means of CO2 Laser

    Directory of Open Access Journals (Sweden)

    Samir Nammour

    2014-01-01

    Full Text Available The loss of teeth and their replacement by artificial denture is associated with many problems. The denture needs a certain amount of ridge height to give it retention and a long-term function. Crest lengthening procedures are performed to provide a better anatomic environment and to create proper supporting structures for more stability and retention of the denture. The purpose of our study is to describe and evaluate the effectiveness of CO2 laser-assisted surgery in patients treated for crest lengthening (vestibular deepening. There have been various surgical techniques described in order to restore alveolar ridge height by pushing muscles attaching of the jaws. Most of these techniques cause postoperative complications such as edemas, hemorrhage, pain, infection, slow healing, and rebound to initial position. Our clinical study describes the treatment planning and clinical steps for the crest lengthening with the use of CO2 laser beam (6–15 Watts in noncontact, energy density range: 84.92–212.31 J/cm2, focus, and continuous mode with a focal point diameter of 0.3 mm. At the end of each surgery, dentures were temporarily relined with a soft material. Patients were asked to mandatorily wear their relined denture for a minimum of 4–6 weeks and to remove it for hygienic purposes. At the end of each surgery, the deepest length of the vestibule was measured by the operator. No sutures were made and bloodless wounds healed in second intention without grafts. Results pointed out the efficiency of the procedure using CO2 laser. At 8 weeks of post-op, the mean of crest lengthening was stable without rebound. Only a loss of 15% was noticed. To conclude, the use of CO2 laser is an effective option for crest lengthening.

  17. Decreased FOXD3 Expression Is Associated with Poor Prognosis in Patients with High-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Wei Du

    Full Text Available The transcription factor forkhead box D3 (FOXD3 plays important roles in the development of neural crest and has been shown to suppress the development of various cancers. However, the expression and its potential biological roles of FOXD3 in high-grade gliomas (HGGs remain unknown.The mRNA and protein expression levels of FOXD3 were examined using real-time quantitative PCR and western blotting in 23 HGG and 13 normal brain samples, respectively. Immunohistochemistry was used to validate the expression FOXD3 protein in 184 HGG cases. The association between FOXD3 expression and the prognosis of HGG patients were analyzed using Kaplan-Meier survival curves and Cox proportional hazards regression models. In addition, we further examined the effects of FOXD3 on the proliferation and serum starvation-induced apoptosis of glioma cells.In comparison to normal brain tissues, FOXD3 expression was significantly decreased in HGG tissues at both mRNA and protein levels. Immunohistochemistry further validated the expression of FOXD3 in HGG tissues. Moreover, low FOXD3 expression was significantly associated with poor prognosis in HGG patients. Depletion of FOXD3 expression promoted glioma cell proliferation and inhibited serum starvation-induced apoptosis, whereas overexpression of FOXD3 inhibited glioma cell proliferation and promoted serum starvation-induced apoptosis.Our results indicated that FOXD3 might serve as an independent prognostic biomarker and a potential therapeutic target for HGGs, which warrant further investigation.

  18. Is mitochondrial DNA divergence of near easter crested newts, Triturus karelinii group, reflected by differentiation of skull shape

    NARCIS (Netherlands)

    Ivanovic, A.; Uzum, N.; Wielstra, B.M.; Olgun, K.; Litvinchuk, S.N.; Kalezic, M.L.; Arntzen, J.W.

    2013-01-01

    The Eurasian Triturus karelinii group of crested newts comprises three distinct, geographically coherent mitochondrial DNA lineages, designated as the eastern, central and western lineage. These three lineages are genetically as diverged as other, morphologically well-differentiated crested newt

  19. Differential expression of the neural cell adhesion molecule NCAM 140 in human pituitary tumors

    OpenAIRE

    Aletsee-Ufrecht, M. C.; Langley, O. K.; Gratzl, O.; Gratzl, Manfred

    1990-01-01

    We have analyzed the expression of the intracellular marker protein neuron specific enolase (NSE), synaptophysin (SYN) and of the cell surface marker NCAM (neural cell adhesion molecule) in both normal human hypophysis and in pituitary adenomas in order to explore their potential use as diagnostic tools. All adenomas (4 prolactinomas, 3 growth hormone (GH) producing adenomas and 4 inactive adenomas) showed SYN and NSE immunoreactivity on tissue sections and this was confirmed by immunoblots. ...

  20. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    Science.gov (United States)

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  1. Pelvic instability after bone graft harvesting from posterior iliac crest: report of nine patients

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.; Pathria, M.; Jacobson, J. [Dept. of Radiology, Univ. of California, San Diego, CA (United States); Resnick, D. [Dept. of Radiology, Veterans Affairs Medical Center, San Diego, CA (United States)

    2001-05-01

    Objective. To report the imaging findings in nine patients who developed pelvic instability after bone graft harvest from the posterior aspect of the iliac crest.Design and patients. A retrospective study was performed of the imaging studies of nine patients who developed pelvic pain after autologous bone graft was harvested from the posterior aspect of the ilium for spinal arthrodesis. Plain films, bone scans, and CT and MR examinations of the pelvis were reviewed. Pertinent aspects of the clinical history of these patients were noted, including age, gender and clinical symptoms.Results. The age of the patients ranged from 52 to 77 years (average 69 years) and all were women. The bone graft had been derived from the posterior aspect of the iliac crest about the sacroiliac joint. All patients subsequently developed subluxation of the pubic symphysis. Eight patients had additional insufficiency fractures of the iliac crest adjacent to the bone graft donor site, and five patients also revealed subluxation of the sacroiliac joint. Two had insufficiency fractures of the sacrum and one had an additional fracture of the pubic ramus.Conclusions. Pelvic instability is a potential complication of bone graft harvesting from the posterior aspect of the iliac crest. The pelvic instability is manifested by insufficiency fractures of the ilium and subluxation of the sacroiliac joints and pubic symphysis. (orig.)

  2. Pelvic instability after bone graft harvesting from posterior iliac crest: report of nine patients

    International Nuclear Information System (INIS)

    Chan, K.; Pathria, M.; Jacobson, J.; Resnick, D.

    2001-01-01

    Objective. To report the imaging findings in nine patients who developed pelvic instability after bone graft harvest from the posterior aspect of the iliac crest.Design and patients. A retrospective study was performed of the imaging studies of nine patients who developed pelvic pain after autologous bone graft was harvested from the posterior aspect of the ilium for spinal arthrodesis. Plain films, bone scans, and CT and MR examinations of the pelvis were reviewed. Pertinent aspects of the clinical history of these patients were noted, including age, gender and clinical symptoms.Results. The age of the patients ranged from 52 to 77 years (average 69 years) and all were women. The bone graft had been derived from the posterior aspect of the iliac crest about the sacroiliac joint. All patients subsequently developed subluxation of the pubic symphysis. Eight patients had additional insufficiency fractures of the iliac crest adjacent to the bone graft donor site, and five patients also revealed subluxation of the sacroiliac joint. Two had insufficiency fractures of the sacrum and one had an additional fracture of the pubic ramus.Conclusions. Pelvic instability is a potential complication of bone graft harvesting from the posterior aspect of the iliac crest. The pelvic instability is manifested by insufficiency fractures of the ilium and subluxation of the sacroiliac joints and pubic symphysis. (orig.)

  3. ETHANOL EXPOSURE DISRUPTS CRANIAL NEURAL CREST MIGRATION AND PRIMARY CILIA IN DEVELOPING ZEBRAFISH EMBRYOS

    OpenAIRE

    BORIC BRENET, KATICA ANDREA; BORIC BRENET, KATICA ANDREA

    2012-01-01

    Durante el desarrollo temprano la exposición a etanol (EtOH) puede causar el Síndrome de Alcohol Fetal (SAF), el cual afecta estructuras craneofaciales (CF) y partes del sistema nervioso (SN), ambos derivados de las células de la cresta neural craneal (CCNC). Por lo tanto, proponemos que la migración de las CCNC se ve afectada por la exposición a EtOH. Para determinar si la exposición a EtOH altera la migración celular, incubamos embriones de pez cebra durante 20 horas usando conc...

  4. Migration flyway of the Mediterranean breeding Lesser Crested Tern ...

    African Journals Online (AJOL)

    The Lesser Crested Tern Thalasseus bengalensis emigratus breeding population in the Mediterranean is found exclusively in Libya, on the two coastal islands of Gara and Elba and one wetland on the mainland coast at Benghazi. In order to improve knowledge of the species migration to wintering quarters in West Africa, ...

  5. Microstructural characterization of PAN based carbon fiber reinforced nylon 6 polymer composites

    Science.gov (United States)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2018-04-01

    Microstructural characterization of nylon 6/polyacrolonitrile based carbon fibers (PAN-CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o-Ps lifetime (τ3), o-Ps intensity (I3) and fractional free volume (Fv) of nylon 6/PAN-CF composites are correlated with the mechanical properties viz., Tensile strength and Young's modulus. The Fv show negative deviation with the reinforcement of 10 to 40 wt% of PAN-CF from the linear additivity relation. The negative deviation in nylon 6/PAN-CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN-CF. This is evident from Fourier Transform Infrared Spectrometry (FTIR) studies. The FTIR results suggests that observed negative deviation in PALS results of nylon 6/PAN-CF reinforced polymer composites is due to the induced chemical interaction at N-H-O sites. The improved tensile strength (TS) and Young's modulus (YM) in nylon 6/PAN-CF reinforced polymer composites is due to AS4C (surface treated and epoxy coated) PAN-CF has shown highest adhesion level due to better stress transfer between nylon 6 and PAN-CF.

  6. Nuclear security in major public events: the XV Pan American Games and the III Para-Pan American Games in Brazil

    International Nuclear Information System (INIS)

    Mello, Luiz A. de; Monteiro Filho, Joselio S.; Belem, Lilia M.J.; Torres, Luiz F.B.

    2009-01-01

    The organization of a major public event involving large numbers of spectators and participants, presents important security challenges. Taking this into consideration, the Brazilian Nuclear Energy Commission (CNEN) has been requested, by the National Secretary of Public Security/ Ministry of Justice (SENASP/MJ), by the end of 2006, to participate on the security actions to be implemented in both the XV Pan American Games and III Para Pan American Games. The XV Pan American Games 2007 and the III Para Pan American Games were held in Rio de Janeiro, Brazil from 13 to 29 July 2007 and from 12 to 19 August 2007, respectively. Those events had 8700 participants between athletes, coaches and referees from 42 countries. More than 300 competition events were held at 17 different venues and were covered by 4910 professionals from TV, radio and written press. Around 2 million tickets have been sold or distributed and 18,000 volunteers participated on the organization. The participation of CNEN was concentrated on the implementation of specific nuclear and radiological security measures to be applied at those events. This was part of a multi-institutional plan for the security of the Games, coordinated by the National Secretary of Public Security of the Ministry of Justice (SENASP/MJ). The support provided by IAEA under a Cooperation Arrangement with the Brazilian authorities was a key factor for the success of the whole operation. The actions taken and the lessons identified by the Brazilian Nuclear Energy Commission related to nuclear and radiological security for the Pan American Games and for the Para Pan American Games are presented. (author)

  7. Duct- and Acinar-Derived Pancreatic Ductal Adenocarcinomas Show Distinct Tumor Progression and Marker Expression

    Directory of Open Access Journals (Sweden)

    Rute M.M. Ferreira

    2017-10-01

    Full Text Available The cell of origin of pancreatic ductal adenocarcinoma (PDAC has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs, duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development.

  8. Carabelli's trait revisited: an examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars.

    Science.gov (United States)

    Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques

    2012-10-01

    Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin.

    Directory of Open Access Journals (Sweden)

    Charles W Higdon

    Full Text Available In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.

  10. 75 FR 61698 - Federal Consistency Appeal by Pan American Grain Co.

    Science.gov (United States)

    2010-10-06

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Federal Consistency Appeal by Pan American Grain Co. AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department... Commerce (Secretary) by Pan American Grain Co. (Pan American) has closed. No additional information, briefs...

  11. Evaluation of water balance parameters from isotopic measurements in evaporation pans

    International Nuclear Information System (INIS)

    Allison, G.B.

    1979-01-01

    The evaluation of the parameters governing the isotopic composition of evaporating water bodies was attempted by means of evaporation pans. The instability of the meteorological conditions, however, makes it virtually impossible to evaluate the atmospheric relative humidity and its isotopic composition with pans. Pans are only suitable to obtain seasonal trends of the isotopic composition of the net evaporated water. For this, a technique based on two pans is also proposed. (author)

  12. Using TES retrievals to investigate PAN in North American biomass burning plumes

    Science.gov (United States)

    Fischer, Emily V.; Zhu, Liye; Payne, Vivienne H.; Worden, John R.; Jiang, Zhe; Kulawik, Susan S.; Brey, Steven; Hecobian, Arsineh; Gombos, Daniel; Cady-Pereira, Karen; Flocke, Frank

    2018-04-01

    Peroxyacyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (˜ 750 hPa) even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15-32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF) > 0.6) overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  13. Developmental expression of membrane type 4-matrix metalloproteinase (Mt4-mmp/Mmp17) in the mouse embryo

    Science.gov (United States)

    Clemente, Cristina; Montalvo, María Gregoria; Seiki, Motoharu; Arroyo, Alicia G.

    2017-01-01

    Matrix metalloproteinases (MMPs) constitute a large group of endoproteases that play important functions during embryonic development, tumor metastasis and angiogenesis by degrading components of the extracellular matrix. Within this family, we focused our study on Mt4-mmp (also called Mmp17) that belongs to a distinct subset that is anchored to the cell surface via a glycosylphosphatidylinositol (GPI) moiety and with the catalytic site exposed to the extracellular space. Information about its function and substrates is very limited to date, and little has been reported on its role in the developing embryo. Here, we report a detailed expression analysis of Mt4-mmp during mouse embryonic development by using a LacZ reporter transgenic mouse line. We showed that Mt4-mmp is detected from early stages of development to postnatal stages following a dynamic and restricted pattern of expression. Mt4-mmp was first detected at E8.5 limited to the intersomitic vascularization, the endocardial endothelium and the dorsal aorta. Mt4-mmpLacZ/+ cells were also observed in the neural crest cells, somites, floor plate and notochord at early stages. From E10.5, expression localized in the limb buds and persists during limb development. A strong expression in the brain begins at E12.5 and continues to postnatal stages. Specifically, staining was observed in the olfactory bulb, cerebral cortex, hippocampus, striatum, septum, dorsal thalamus and the spinal cord. In addition, LacZ-positive cells were also detected during eye development, initially at the hyaloid artery and later on located in the lens and the neural retina. Mt4-mmp expression was confirmed by quantitative RT-PCR and western blot analysis in some embryonic tissues. Our data point to distinct functions for this metalloproteinase during embryonic development, particularly during brain formation, angiogenesis and limb development. PMID:28926609

  14. The Pan-STARRS1 Surveys

    Science.gov (United States)

    Chambers, Kenneth; Pan-STARRS Team

    2018-01-01

    The Pan-STARRS1 Surveys are complete and the first data release, DR1, is available from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute. The data include a database of measured attributes of 3 billion objects, stacked images, and metadata of the 3pi Steradian Survey. The DR1 contains all stationary objects with mean and stack photometry registered on the GAIA astrometric frame. DR2 is in preparation and will be released this winter with all the individual epoch images and time domain photometry and forced photometry on the individual epoch images. The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of the Pan-STARRS1 Surveys and data releases will be presented together with a brief description of the data collected since the end of the PS1 Science Consortium surveys, and the plans for the upcoming survey with PS1 and PS2 begining in February 2018.

  15. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Towards a holistic review of Pan-Africanism: linking the idea and the movement.

    Science.gov (United States)

    Young, Kurt B

    2010-01-01

    This article explores two general approaches to defining Pan-Africanism. Traditional Pan-Africanism reflects definitions of Pan-Africanism that begin with the assumption that distinctions must be made between early "ideas" of group identification with Africa versus modern organizational activities. However, holistic approaches emphasize the interconnectivity of Pan-African ideas and concrete activities. This discussion explores these approaches and their implications for contemporary analyses of Pan-Africanism. The essay concludes that the holistic line is best suited for developing a new model in Pan-Africanism.

  17. Damage symptoms of plants due to PAN exposure

    Energy Technology Data Exchange (ETDEWEB)

    Nouchi, I; Sawada, T; Ohashi, T; Odaira, T

    1974-11-01

    In order to identify the cause of plant damage which differed from that by ozone, a series of exposure experiments was carried out on Beta vulgaris, Japanese radish, French bean, luthern, tomato, and spinach in a controlled weather room by artificially synthesized PAN (peroxyacetyl nitrate). The damage appeared generally on younger leaves as a lustering and bronzing on the lower surface; there was a specific symptom in which the interveinary part of the lower surface depressed, leaving the veins in relief. At higher concentrations of PAN, damages appeared on the upper surface of leaves, however, bronzing and lustering were clearer during exposure to lower concentrations of PAN. The position of the leaves and the part of a leaf which was damaged were constant in the petunia, morning glory, and tobacco. There was a hyperbolic relationship between the concentration of PAN and the time period of appearance of the damage as was seen during sulfur dioxide and ozone exposures.

  18. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction.

    Science.gov (United States)

    Yanochko, Gina M; Vitsky, Allison; Heyen, Jonathan R; Hirakawa, Brad; Lam, Justine L; May, Jeff; Nichols, Tim; Sace, Frederick; Trajkovic, Dusko; Blasi, Eileen

    2013-10-01

    The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.

  19. In-air PIXE for analyzing heavy metals in water boiled in pans

    International Nuclear Information System (INIS)

    Tomita, M.; Haruyama, Y.; Saito, M.

    1993-01-01

    The release rates of heavy metals from pans were measured for boiling water as well as for an acidic solution prior to an investigation on the release or sorption of trace elements due to cooking of food by boiling. The boiled samples were condensed and analyzed by means of in-air PIXE. The release of heavy metals was measured for five kinds of pans. For all pans the release rates were considerably more increased by boiling of a 5% solution of acetic acid. Furthermore it was found that by using the alumina coated aluminum pan (alumina pan) the respective release rates of Fe, Cu and Zn were all less than 50 μg per 100 cm 2 of the pan surface dipped in the solution, and that monitoring of the contents of aluminum in the boiled solution enabled the estimation of the contribution of metal elements from the pan wall. (orig.)

  20. The Pan-STARRS1 Survey Data Release

    Science.gov (United States)

    Chambers, Kenneth C.; Pan-STARRS Team

    2017-01-01

    The first Pan-STARRS1 Science Mission is complete and an initial Data Release 1, or DR1, including a database of measured attributes, stacked images, and metadata of the 3PI Survey, will be available from the STScI MAST archive. This release will contain all stationary objects with mean and stack photometry registered on the GAIA astrometric frame.The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of both DR1 and the second data release DR2, to follow in the spring of 2017, will be presented. DR2 will add all time domain data and individual warped images. We will also report on the status of the Pan-STARRS2 Observatory and ongoing science with Pan-STARRS. The science from the PS1 surveys has included results in many t fields of astronomy from Near Earth Objects to cosmology.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grants No. NNX08AR22G, NNX12AR65G, NNX14AM74G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National Science Foundation under Grant No. AST

  1. Using TES retrievals to investigate PAN in North American biomass burning plumes

    Directory of Open Access Journals (Sweden)

    E. V. Fischer

    2018-04-01

    Full Text Available Peroxyacyl nitrate (PAN is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (∼ 750 hPa even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS smoke plumes. Depending on the year, 15–32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF > 0.6 overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  2. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  3. Sampling bee communities using pan traps: alternative methods increase sample size

    Science.gov (United States)

    Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...

  4. Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients

    Directory of Open Access Journals (Sweden)

    Karina Karis

    2018-01-01

    Full Text Available Neural adhesion proteins are crucial in the development and maintenance of functional neural connectivity. Growing evidence suggests that the IgLON family of neural adhesion molecules LSAMP, NTM, NEGR1, and OPCML are important candidates in forming the susceptibility to schizophrenia (SCZ. IgLON proteins have been shown to be involved in neurite outgrowth, synaptic plasticity and neuronal connectivity, all of which have been shown to be altered in the brains of patients with the diagnosis of schizophrenia. Here we optimized custom 5′-isoform-specific TaqMan gene-expression analysis for the transcripts of human IgLON genes to study the expression of IgLONs in the dorsolateral prefrontal cortex (DLPFC of schizophrenic patients (n = 36 and control subjects (n = 36. Uniform 5′-region and a single promoter was confirmed for the human NEGR1 gene by in silico analysis. IgLON5, a recently described family member, was also included in the study. We detected significantly elevated levels of the NEGR1 transcript (1.33-fold increase and the NTM 1b isoform transcript (1.47-fold increase in the DLPFC of schizophrenia patients compared to healthy controls. Consequent protein analysis performed in male subjects confirmed the increase in NEGR1 protein content both in patients with the paranoid subtype and in patients with other subtypes. In-group analysis of patients revealed that lower expression of certain IgLON transcripts, mostly LSAMP 1a and 1b, could be related with concurrent depressive endophenotype in schizophrenic patients. Additionally, our study cohort provides further evidence that cannabis use may be a relevant risk factor associated with suicidal behaviors in psychotic patients. In conclusion, we provide clinical evidence of increased expression levels of particular IgLON family members in the DLPFC of schizophrenic patients. We propose that alterations in the expression profile of IgLON neural adhesion molecules are associated with brain

  5. Compilation of PRF Canyon Floor Pan Sample Analysis Results

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wahl, Jon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, Lawrence R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Garrett N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clark, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    On September 28, 2015, debris collected from the PRF (236-Z) canyon floor, Pan J, was observed to exhibit chemical reaction. The material had been transferred from the floor pan to a collection tray inside the canyon the previous Friday. Work in the canyon was stopped to allow Industrial Hygiene to perform monitoring of the material reaction. Canyon floor debris that had been sealed out was sequestered at the facility, a recovery plan was developed, and drum inspections were initiated to verify no additional reactions had occurred. On October 13, in-process drums containing other Pan J material were inspected and showed some indication of chemical reaction, limited to discoloration and degradation of inner plastic bags. All Pan J material was sealed back into the canyon and returned to collection trays. Based on the high airborne levels in the canyon during physical debris removal, ETGS (Encapsulation Technology Glycerin Solution) was used as a fogging/lock-down agent. On October 15, subject matter experts confirmed a reaction had occurred between nitrates (both Plutonium Nitrate and Aluminum Nitrate Nonahydrate (ANN) are present) in the Pan J material and the ETGS fixative used to lower airborne radioactivity levels during debris removal. Management stopped the use of fogging/lock-down agents containing glycerin on bulk materials, declared a Management Concern, and initiated the Potential Inadequacy in the Safety Analysis determination process. Additional drum inspections and laboratory analysis of both reacted and unreacted material are planned. This report compiles the results of many different sample analyses conducted by the Pacific Northwest National Laboratory on samples collected from the Plutonium Reclamation Facility (PRF) floor pans by the CH2MHill’s Plateau Remediation Company (CHPRC). Revision 1 added Appendix G that reports the results of the Gas Generation Rate and methodology. The scope of analyses requested by CHPRC includes the determination of

  6. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.

    2017-12-01

    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water

  7. Evolution of the ATLAS PanDA Workload Management System for Exascale Computational Science

    CERN Document Server

    Maeno, T; The ATLAS collaboration; Klimentov, A; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Schovancova, J; Vaniachine, A; Wenaus, T; Yu, D

    2013-01-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated a...

  8. Evolution of the ATLAS PanDA Workload Management System for Exascale Computational Science

    CERN Document Server

    Maeno, T; The ATLAS collaboration; Klimentov, A; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Schovancova, J; Vaniachine, A; Wenaus, T; Yu, D

    2014-01-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated a...

  9. Pan-sharpening via compressed superresolution reconstruction and multidictionary learning

    Science.gov (United States)

    Shi, Cheng; Liu, Fang; Li, Lingling; Jiao, Licheng; Hao, Hongxia; Shang, Ronghua; Li, Yangyang

    2018-01-01

    In recent compressed sensing (CS)-based pan-sharpening algorithms, pan-sharpening performance is affected by two key problems. One is that there are always errors between the high-resolution panchromatic (HRP) image and the linear weighted high-resolution multispectral (HRM) image, resulting in spatial and spectral information lost. The other is that the dictionary construction process depends on the nontruth training samples. These problems have limited applications to CS-based pan-sharpening algorithm. To solve these two problems, we propose a pan-sharpening algorithm via compressed superresolution reconstruction and multidictionary learning. Through a two-stage implementation, compressed superresolution reconstruction model reduces the error effectively between the HRP and the linear weighted HRM images. Meanwhile, the multidictionary with ridgelet and curvelet is learned for both the two stages in the superresolution reconstruction process. Since ridgelet and curvelet can better capture the structure and directional characteristics, a better reconstruction result can be obtained. Experiments are done on the QuickBird and IKONOS satellites images. The results indicate that the proposed algorithm is competitive compared with the recent CS-based pan-sharpening methods and other well-known methods.

  10. Experience with ATLAS MySQL PanDA database service

    International Nuclear Information System (INIS)

    Smirnov, Y; Wlodek, T; Hover, J; Smith, J; Wenaus, T; Yu, D; De, K; Ozturk, N

    2010-01-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  11. Experience with ATLAS MySQL PanDA database service

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Y; Wlodek, T; Hover, J; Smith, J; Wenaus, T; Yu, D [Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); De, K; Ozturk, N [Department of Physics, University of Texas at Arlington, Arlington, TX, 76019 (United States)

    2010-04-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  12. PanDA Beyond ATLAS: Workload Management for Data Intensive Science

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Klimentov, A; Maeno, T; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Vaniachine, A; Wenaus, T; Yu, D

    2013-01-01

    The PanDA Production ANd Distributed Analysis system has been developed by ATLAS to meet the experiment's requirements for a data-driven workload management system for production and distributed analysis processing capable of operating at LHC data processing scale. After 7 years of impressively successful PanDA operation in ATLAS there are also other experiments which can benefit from PanDA in the Big Data challenge, with several at various stages of evaluation and adoption. The new project "Next Generation Workload Management and Analysis System for Big Data" is extending PanDA to meet the needs of other data intensive scientific applications in HEP, astro-particle and astrophysics communities, bio-informatics and other fields as a general solution to large scale workload management. PanDA can utilize dedicated or opportunistic computing resources such as grids, clouds, and High Performance Computing facilities, and is being extended to leverage next generation intelligent networks in automated workflow mana...

  13. Nuchal crest avulsion fracture in 2 horses : a cause of headshaking : clinical communication

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2009-05-01

    Full Text Available The medical records of 2 Thoroughbred horses that developed headshaking after blunt trauma to the occipital region are reviewed. The history, signalment, clinical signs, diagnostic methods, diagnosis and treatment were recorded in each case. Both horses displayed headshaking, while one horse repeatedly lifted its upper lip and pawed excessively at the ground. In both horses, diagnostic imaging of the occipital region revealed avulsion fragments of the nuchal crest and a nuchal desmitis in association with hyperfibrinogenaemia. The presence of an avulsion fragment of the nuchal crest with associated nuchal desmitis should be considered in horses presenting with headshaking and may respond favourably to conservative therapy.

  14. Microbial comparative pan-genomics using binomial mixture models

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2009-08-01

    Full Text Available Abstract Background The size of the core- and pan-genome of bacterial species is a topic of increasing interest due to the growing number of sequenced prokaryote genomes, many from the same species. Attempts to estimate these quantities have been made, using regression methods or mixture models. We extend the latter approach by using statistical ideas developed for capture-recapture problems in ecology and epidemiology. Results We estimate core- and pan-genome sizes for 16 different bacterial species. The results reveal a complex dependency structure for most species, manifested as heterogeneous detection probabilities. Estimated pan-genome sizes range from small (around 2600 gene families in Buchnera aphidicola to large (around 43000 gene families in Escherichia coli. Results for Echerichia coli show that as more data become available, a larger diversity is estimated, indicating an extensive pool of rarely occurring genes in the population. Conclusion Analyzing pan-genomics data with binomial mixture models is a way to handle dependencies between genomes, which we find is always present. A bottleneck in the estimation procedure is the annotation of rarely occurring genes.

  15. Radiological Protection Measurements Implemented during the 16. Pan American and 4. ParaPan American Games: Guadalajara, Mexico, 2011

    International Nuclear Information System (INIS)

    2014-02-01

    Terrorism remains a threat to international stability and security. Often national and international high level public events are the subject of much public interest and receive extensive coverage in the media. In this sense, it is well known that there is a real threat of a terrorist attack in important public events, such as major economic summits, high level political meetings or sporting events. In 1955 and 1975, the 2nd and 7th Pan American Games were organized by the City of Mexico. In 2011, the Pan American Games was the third event of its kind held in Guadalajara, Jalisco. At the national level, the implementation of nuclear security measures in the Pan American Games laid the foundations for a sustainable national nuclear security framework that will continue long after the event. The political decision, the existing legal basis and structure, agency coordination facilitated the incorporation of nuclear security measures. It was also a challenge to integrate all the relevant organizations, provide focus to the threat of terrorism linked to weapons of mass destruction for security games, plan resources and execute the project on time, among other details. For this reason, information and lessons learned that are reported in this document, received in Mexico during the 16th edition of the Pan American Games will be useful for the implementation of nuclear security measures in States with similar situations

  16. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    Science.gov (United States)

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  17. Age-related changes in vertebral and iliac crest 3D bone microstructure-differences and similarities

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Jensen, Michael Vinkel; Niklassen, Andreas Steenholt

    2015-01-01

    Summary Age-related changes of vertebra and iliac crest 3D microstructure were investigated, and we showed that they were in general similar. The 95th percentile of vertebral trabecular thickness distribution increased with age for women. Surprisingly, vertebral and iliac crest bone microstructure...... was only weakly correlated (r = 0.38 to 0.75), despite the overall similar age-related changes.Introduction The purposes of the study were to determine the age-related changes in iliac and vertebral bone microstructure for women and men over a large age range and to investigate the relationship between...... the bone microstructure at these skeletal sites.Methods Matched sets of transiliac crest bone biopsies and lumbar vertebral body (L2) specimens from 41 women (19–96 years) and 39 men (23–95 years) were micro-computed tomography (μCT) scanned, and the 3D microstructure was quantified.Results For both women...

  18. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars.

    Science.gov (United States)

    Liu, Xiao-Jing; Chuang, Yao-Nung; Chiou, Chung-Yi; Chin, Dan-Chu; Shen, Fu-Quan; Yeh, Kai-Wun

    2012-08-01

    The anthocyanin-biosynthetic pathway was studied in flowers of Oncidium Gower Ramsey with yellow floral color and mosaic red anthocyanin in lip crests, sepals and petals, and compared with the anthocyanin biosynthesis in flowers of Oncidium Honey Dollp, a natural somatoclone derived from tissue culture of Gower Ramsey, with a yellow perianth without red anthocyanins in floral tissues. HPLC analysis revealed that the red anthocyanin in lip crests of the Gower Ramsey cultivar comprised peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, whereas Honey Dollp was devoid of anthocyanin compounds. Among the five anthocyanin-biosynthetic genes, OgCHS was actively expressed in lip crests of Gower Ramsey flowers, but no transcripts of OgCHS were detected in Honey Dollp floral tissues. Transient expression of OgCHS by bombardment confirmed that recovery of the OgCHS gene expression completed the anthocyanin pathway and produced anthocyanin compounds in lip crests of Honey Dollp flowers. Transcription factor genes regulating anthocyanin biosynthesis showed no distinctive differences in the expression level of OgMYB1, OgbHLH and OgWD40 between the two cultivars. A methylation assay revealed that the promoter of OgCHS was not methylated in Gower Ramsey, while a positive methylation effect was present in the upstream promoter region of OgCHS in Honey Dollp. Overall, our results suggest that the failure of anthocyanin accumulation in Honey Dollp floral tissues may be attributed to inactivation of the OgCHS gene resulting from the epigenetic methylation of 5'-upstream promoter region.

  19. Clash of pans: pan-Africanism and pan-Anglo-Saxonism and the global colour line, 1919–1945

    OpenAIRE

    Ledwidge, M.; Parmar, I.

    2017-01-01

    The article demonstrates both conceptually and empirically that pan-Anglo-Saxonist knowledge networks reconstructed and reimagined an apparently de-racialised, scientific, sober and liberal world order that outwardly abandoned, but did not eradicate the twin phenomena of racism and imperialism. Rather the new liberal (imperial) internationalists, organised in newly formed “think tanks” such as Chatham House and the Council on Foreign Relations, and through their increasingly global elite netw...

  20. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten; Zanuttigh, B.; van der Meer, J.W.

    2005-01-01

    New unique laboratory experiments on low-crested structures (LCSs) have been performed within the DELOS project. The experiments were carried out in three European laboratories aiming at extending and completing existing available information with respect to a wide range of engineering design...... in a wave channel at small scale, and scale effects regarding wave transmission and reflection were studied in a wave channel at a large scale facility. The paper describes the experiments and associated databank with respect to objectives, test program, set-ups and measurements. Results, guidelines...... and recommendations elaborated from the tests are included in the other companion papers of the Coastal Engineering Special Issue on DELOS....