WorldWideScience

Sample records for palladium-silver alloys tested

  1. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites

    Science.gov (United States)

    Pal, Hemant; Sharma, Vimal

    2014-11-01

    The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.

  2. Characterising palladium-silver and palladium-nickel alloy membranes using SEM, XRD and PIXE

    International Nuclear Information System (INIS)

    Keuler, J.N.; Lorenzen, L.; Sanderson, R.D.; Prozesky, V.; Przybylowicz, W.J.

    1999-01-01

    Palladium alloy membranes were prepared by successive electroless plating steps on an alumina-zirconia support membrane. Palladium, silver and nickel were deposited in layers and then the metal films were heat treated for 5 h in a hydrogen atmosphere at 650 deg. C. The topography of the metal coatings and cross-sections of the films (before and after heating) were characterised using scanning electron microscopy (SEM). XRD was used to determine the crystal phase of the alloy coatings. Both SEM and XRD provide only surface information and therefore micro-PIXE was used to extract depth information of the alloy coating. Concentration profiles across the thickness of the films were constructed to determine penetration of the coating into the support membrane pores during electroless plating and to investigate diffusion of coated layers during the heating step

  3. Potentiodynamic polarization study of the corrosion behavior of palladium-silver dental alloys.

    Science.gov (United States)

    Sun, Desheng; Brantley, William A; Frankel, Gerald S; Heshmati, Reza H; Johnston, William M

    2018-04-01

    Although palladium-silver alloys have been marketed for over 3 decades for metal-ceramic restorations, understanding of the corrosion behavior of current alloys is incomplete; this understanding is critical for evaluating biocompatibility and clinical performance. The purpose of this in vitro study was to characterize the corrosion behavior of 3 representative Pd-Ag alloys in simulated body fluid and oral environments and to compare them with a high-noble Au-Pd alloy. The study obtained values of important electrochemical corrosion parameters, with clinical relevance, for the rational selection of casting alloys. The room temperature in vitro corrosion characteristics of the 3 Pd-Ag alloys and the high-noble Au-Pd alloy were evaluated in 0.9% NaCl, 0.09% NaCl, and Fusayama solutions. After simulated porcelain firing heat treatment, 5 specimens of each alloy were immersed in the electrolytes for 24 hours. For each specimen, the open-circuit potential (OCP) was first recorded, and linear polarization was then performed from -20 mV to +20 mV (versus OCP) at a rate of 0.125 mV/s. Cyclic polarization was subsequently performed on 3 specimens of each alloy from -300 mV to +1000 mV and back to -300 mV (versus OCP) at a scanning rate of 1 mV/s. The differences in OCP and corrosion resistance parameters (zero-current potential and polarization resistance) among alloys and electrolyte combinations were compared with the 2-factor ANOVA (maximum-likelihood method) with post hoc Tukey adjustments (α=.05). The 24-hour OCPs and polarization resistance values of the 3 Pd-Ag alloys and the Au-Pd alloy were not significantly different (P=.233 and P=.211, respectively) for the same electrolyte, but significant differences were found for corrosion test results in different electrolytes (Palloy and electrolyte (P=.249 and P=.713, respectively). The 3 Pd-Ag silver alloys appeared to be resistant to chloride ion corrosion, and passivation and de-alloying were identified for these

  4. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  5. Silver-palladium catalysts for the direct synthesis of hydrogen peroxide

    Science.gov (United States)

    Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.

    2017-11-01

    A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  6. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  7. Chemical recovery of a palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets were irradiated by protons with the energy of 60-140 MeV to generate palladium-103. Other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver are also formed at the same time. Two methods of Pd-103 recovering from irradiated silver target are considered. The first one includes the dissolving of the irradiated silver target in nitric acid followed by adding of hydrochloric acid to the solution. Palladium with rhodium, ruthenium and technetium completely remained in solution while silver was precipitated in the form of silver chloride. Extraction of palladium from the obtained solution was provided by the formation of palladium complex with a chelate sorbent which is specific to palladium in acidic solutions. The sorbent makes it possible to separate palladium from admixtures of rhodium, ruthenium and technetium isotopes. The polymeric complex-forming sorbent of fibrous structure with the groups of 3 (5) - methylpyrazole (POLYORGS-15n) is used. An other possible method has been also studied. It includes again dissolving of metallic silver in nitric acid, but does not need silver chloride precipitation. Silver may be sorbed by the complex-forming sorbents, but its sorption is very sensitive to acid concentration. Chelate sorbents of fibrous structure with the groups of amidoxime and hydrazidine (POLYORGS-33n) have been successfully used in our experiments. A high efficiency of palladium extraction by POLYORGS-33n from 2-4 M nitric acid solutions was achieved. Concentrated hydrochloric acid (without heating) was used for palladium desorption with higher yield than in the first method. (authors)

  8. Chemical recovery of palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets may be irradiated by protons with energy of 60-200 MeV or more to generate palladium-103 simultaneously with other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver. According to the dependence experimental production yield of Pd-103 and isotopes of other elements in thick silver target vs. Proton energy the most suitable energy for maximum yield of Pd-103 and minimum yield of other elements is from about 100 to about 140 MeV. Activity of radionuclides produced in silver target depends from many factors (target thickness, irradiation time, etc.). Two methods of Pd-103 recovering from irradiated silver target are considered in this work: (1) Silver target is dissolved in nitric acid followed by silver precipitation in the form of silver chloride by addition of HCl. The solution containing Pd, Rh and other radionuclides is passed through the layer of fibrous sorbent POLYORGS-15n. Then the sorbent is washed and Pd is desorbed by hot 12 M hydrochloric acid; (2) Silver target is dissolved in nitric acid followed by passing of the obtained solution (2 M HNO 3 ) through a disk set of complex forming sorbent POLYORGS-33n. Under these conditions palladium is sorbed by the sorbent while silver, rhodium, ruthenium and technetium are passed through the sorbent. Then the sorbent is washed with 2M nitric acid, and Pd is desorbed by 12 M hydrochloric acid. Extraction of palladium is occurred during the formation of palladium complex with a chelate sorbent specific to palladium in acidic solutions. Such a sorbent makes possible separation of palladium from accompanying radionuclides such as rhodium, ruthenium and technetium. The polymeric complex-forming sorbent of fibrous structure with the groups of 3(5)-methylpyrazole (POLYORGS-15) is used. The distinctive feature of the sorbents in the form of fibrous 'filled' material is

  9. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    OpenAIRE

    Lushi Kong; Guanchun Rui; Guangyu Wang; Rundong Huang; Ran Li; Jiajie Yu; Shengli Qi; Dezhen Wu

    2017-01-01

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for u...

  10. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers.

    Science.gov (United States)

    Kong, Lushi; Rui, Guanchun; Wang, Guangyu; Huang, Rundong; Li, Ran; Yu, Jiajie; Qi, Shengli; Wu, Dezhen

    2017-11-02

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  11. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    Directory of Open Access Journals (Sweden)

    Lushi Kong

    2017-11-01

    Full Text Available A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  12. Polarographic determination of selenium and tellurium in silver-gold alloys

    International Nuclear Information System (INIS)

    Gornostaeva, T.D.; Shmargun, S.V.

    1986-01-01

    The determination of selenium and tellurium is of importance in monitoring the composition of silver-gold alloys (SGA) since these elements are harmful impurities in the pure metals. Tellurium is determined in silver alloys by atomic absorption and atomic emmission methods; selenium determination is made by atomic absorption methods. This paper examines the polarographic determination of silver and tellurium in SGA containing platinum metals and copper. Copper and the bulk of the platinum and palladium were removed by precipitating selenium and tellurium with potassium hypophosphite in the elementary state from 6 M HC1. The results of an analysis of samples of SGA according to the proposed method were compared with the results obtained by the atomic absorption method. the relative deviation in the determination of 0.02-1.0% by weight selenium and tellurium does not exceed 0.12 (n = 5)

  13. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  14. Low-cost method for fabricating palladium and palladium-alloy thin films on porous supports

    Science.gov (United States)

    Lee, Tae H; Park, Chan Young; Lu, Yunxiang; Dorris, Stephen E; Balachandran, Uthamalingham

    2013-11-19

    A process for forming a palladium or palladium alloy membrane on a ceramic surface by forming a pre-colloid mixture comprising a powder palladium source, carrier fluid, dispersant and a pore former and a binder. Ultrasonically agitating the precolloid mixture and applying to a substrate with an ultrasonic nozzle and heat curing the coating form a palladium-based membrane.

  15. Absorption of hydrogen by vanadium-palladium alloys

    International Nuclear Information System (INIS)

    Artman, D.; Lynch, J.F.; Flanagan, T.B.

    1976-01-01

    Pressure composition isotherms (273-373 K) have been determined for the absorption of hydrogen by a series of six palladium alloys (f.c.c) in the composition range from 1 to 8 at.% vanadium. At a given hydrogen content, the equilibrium hydrogen pressure progressively increases with vanadium content. Thermodynamic parameters for the absorption of hydrogen are reported at infinite dilution of hydrogen and for the formation of the nonstoichiometric hydride from the hydrogen-saturated alloy. The relative, partial molar enthalpy of solution of hydrogen at infinite dilution increases slightly with vanadium content. The presence of vanadium, which absorbs hydrogen itself in its normal b.c.c. structure, greatly inhibits the ability of palladium to absorb hydrogen. For example, the isobaric solubility of hydrogen (1 atm, 298K) decreases from H/Pd=0.7 (palladium) to 0.024 (V(6%)-Pd). The lattice expansion due to the presence of interstitial hydrogen has been determined by X-ray diffraction. From these data it can be concluded that the formation of two non-stoichiometric hydride phases does not occur at vanadium contents greater that 5 at.% (298 K). Electrical resistance has been measured as a function of the hydrogen content of the alloys. The electrical resistance increases more markedly with hydrogen content for these alloys than for any of the palladium alloys previously examined. (Auth.)

  16. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  17. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    Biofouling can cause many undesirable effects in industrial and medical settings. In this study, a new biofouling inhibiting Ag-Pd surface was designed to form an inhibiting effect by itself. This design was based on silver combined with nobler palladium, both with catalytic properties. Owing to ...

  18. Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes

    International Nuclear Information System (INIS)

    Gutes, Albert; Carraro, Carlo; Maboudian, Roya

    2011-01-01

    Highlights: → New nonenzymatic glucose sensor material. → Modified epoxy-silver electrodes with palladium nanoparticles. → Simple electroless surface modification. → Wide linear response range. → Easy implementation. - Abstract: A new approach for nonenzymatic glucose sensing, based on a simple modification of epoxy-silver surfaces deposited on the tip of commercial copper electric wires, is presented. Palladium was galvanically displaced on the surface of the epoxy-silver surface in order to obtain metal nanoparticles that act as catalyst for the direct oxidation of glucose. Scanning electron microscopy revealed the formation of the metal nanoparticles. X-ray photoelectron spectroscopy confirmed the metallic nature of the formed nanostructures on the surface. Electrochemical characterization and calibration of the palladium-modified epoxy-silver electrode is reported, obtaining a linear range of 1-20 mM for the detection of glucose with low interference of ascorbic acid and uric acid. A simple 3-step coulometry was used as the detection technique. The developed sensing material is believed to be a great candidate for integration in small devices for clinical essays, due to the simplicity and cost effectiveness of the presented approach, compared to the state-of-the-art devices reported recently in the literature. Simplicity in the coulometry determinations makes these Pd-modified epoxy-silver sensors a good candidate for easy glucose determinations.

  19. Palladium alloys for hydrogen diffusion

    International Nuclear Information System (INIS)

    1977-01-01

    A palladium-base alloy with tin and/or a silicon addition and its use in the production of hydrogen from water via a cycle of chemical reactions, of which the decomposition of HI into H 2 and I 2 is the most important, is described

  20. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    International Nuclear Information System (INIS)

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  1. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  2. A simple approach to uniform PdAg alloy membranes: Comparative study of conventional and silver concentration-controlled co-plating

    KAUST Repository

    Zeng, Gaofeng

    2014-03-01

    An Ag-controlled co-plating method was developed for the preparation of palladium/silver alloy membranes on porous tubular alumina supports. By controlling the feed rate of Ag to the Pd bath, the concentration of the silver in the plating bath was restricted during the course of plating. As a result, preferential deposition of silver at the beginning was suppressed and uniform dispersion of silver inside the membrane with silver composition in the desired range was achieved. Ultrathin (∼2.5 μm) PdAg alloy membranes with uniform silver composition of ∼25% were successfully obtained. The membrane showed a hydrogen permeance of 0.88 mol m-2 s-1 and pure-gas H2/N2 selectivity of 2140 at 823 K with ΔP = 100 kPa. Only one hydride phase existed in the studied temperature range from 373 to 823 K with ΔPH=100kPa. Direct comparisons with the conventional simply-mixed co-plating method showed that membranes made by the novel Ag-controlled co-plating method had much more uniform silver distribution, smoother surface, denser membrane structure, higher utilization rate of metal sources, and shorter alloying time. © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  3. A simple approach to uniform PdAg alloy membranes: Comparative study of conventional and silver concentration-controlled co-plating

    KAUST Repository

    Zeng, Gaofeng; Shi, Lei; Liu, Yunyang; Zhang, Yanfeng; Sun, Yuhan

    2014-01-01

    An Ag-controlled co-plating method was developed for the preparation of palladium/silver alloy membranes on porous tubular alumina supports. By controlling the feed rate of Ag to the Pd bath, the concentration of the silver in the plating bath was restricted during the course of plating. As a result, preferential deposition of silver at the beginning was suppressed and uniform dispersion of silver inside the membrane with silver composition in the desired range was achieved. Ultrathin (∼2.5 μm) PdAg alloy membranes with uniform silver composition of ∼25% were successfully obtained. The membrane showed a hydrogen permeance of 0.88 mol m-2 s-1 and pure-gas H2/N2 selectivity of 2140 at 823 K with ΔP = 100 kPa. Only one hydride phase existed in the studied temperature range from 373 to 823 K with ΔPH=100kPa. Direct comparisons with the conventional simply-mixed co-plating method showed that membranes made by the novel Ag-controlled co-plating method had much more uniform silver distribution, smoother surface, denser membrane structure, higher utilization rate of metal sources, and shorter alloying time. © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  4. Standard test methods for chemical and spectrochemical analysis of nuclear-Grade silver-indium-cadmium alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1990-01-01

    1.1 These test methods cover procedures for the chemical and spectrochemical analysis of nuclear grade silver-indium-cadmium (Ag-In-Cd) alloys to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Silver, Indium, and Cadmium by a Titration Method 7-15 Trace Impurities by Carrier-Distillation Spectro- chemical Method 16-22 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard and precautionary statements, see Section 5 and Practices E50. 7.1 This test method is applicable to the determination of silver, indium, and cadmium in alloys of approximately 80 % silver, 15 % indium, and 5 % cadmium used in nuclear reactor control r...

  5. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    Science.gov (United States)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the

  6. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  7. Study on a multi-component palladium alloy membrane for the fusion fuel cycle

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Okuno, Kenji; Nagasaki, Takanori; Noda, Kenji; Ishii, Yoshinobu; Takeshita, Hidefumi.

    1985-11-01

    A feasibility study on the material integrity with respect to the hydride formation and helium damage of the palladium alloy membrane was performed for an application of the palladium diffuser to a fusion fuel cleanup process. This study was conducted under the Japan/US Fusion Cooperation Program. Experimental works on the crystallography, hydrogen solubility and 3 He release characteristics were carried out with a multi-component palladium alloy(Pd-25Ag.Au.Ru). The excellent hydrogen permeability and mechanical properties of the membrane made of this alloy had been confirmed by authors' previous study. Based on the present study, this alloy membrane has high resistivity to the hydrogen embrittlement, and swelling and fracture due to the helium bubble formation under the practical operating conditions of the diffuser. (author)

  8. Palladium alloy membrane process for the treatment of hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee [KAERI, Daejeon (Korea, Republic of); Shim, Myunghwa [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2005-11-15

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  9. Palladium alloy membrane process for the treatment of hydrogen isotopes

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee; Shim, Myunghwa

    2005-01-01

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  10. Fission products silver, palladium, and cadmium identification in neutron-irradiated SiC TRISO particles using a Cs-Corrected HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: isabella.vanrooyen@inl.gov [Fuel Design and Development Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Olivier, E.J.; Neethling, J.H. [Centre for High Resolution Electron Microscopy, Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2016-08-01

    Electron microscopy investigations of selected coated particles from the first advanced gas reactor experiment at Idaho National Laboratory provided important information on fission product distribution and chemical composition in the silicon-carbide (SiC) layer. Silver precipitates were nano-sized, and therefore high-resolution transmission electron microscopy (HRTEM) was used to provide more information at the atomic level. Based on gamma-ray analysis, this particle which was irradiated to an average burnup of 19.38% fissions per initial metal atom, may have released as much as 10% of its available Ag-110 m inventory during irradiation. The HRTEM investigation focused on silver, palladium, and cadmium due to interest in silver transport mechanisms and possible correlation with palladium and silver previously found. Palladium, silver, and cadmium were found to co-exist in some of the SiC grain boundaries and triple junctions. This study confirmed palladium both at inter and intragranular sites. Phosphor was identified in SiC grain boundaries and triple points. - Highlights: • First high resolution electron microscopy fission product nano-structural locations of irradiated TRISO coated particles. • Pd observed inside SiC grains in proximity to planar defects e.g. stacking faults. • Ag co-exists with Pd and Cd only may suggest a Pd-assisted transport mechanism. • First finding of neutron transmutation product P, in SiC layer of TRISO coated particles. No direct link to Ag transport. • No significant Pd corrosion of SiC observed even at this high resolution images.

  11. Density functional theory metadynamics of silver, caesium and palladium diffusion at β-SiC grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Rabone, Jeremy, E-mail: jeremy.rabone@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, D-76125 Karlsruhe (Germany); López-Honorato, Eddie [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila (Mexico)

    2015-03-15

    Highlights: • DFT metadynamics of diffusion of Pd, Ag and Cs on grain boundaries in β-SiC. • The calculated diffusion rates for Pd and Ag tally with experimental release rates. • A mechanism of release other than grain boundary diffusion seems likely for Cs. - Abstract: The use of silicon carbide in coated nuclear fuel particles relies on this materials impermeability towards fission products under normal operating conditions. Determining the underlying factors that control the rate at which radionuclides such as Silver-110m and Caesium-137 can cross the silicon carbide barrier layers, and at which fission products such as palladium could compromise or otherwise alter the nature of this layer, are of paramount importance for the safety of this fuel. To this end, DFT-based metadynamics simulations are applied to the atomic diffusion of silver, caesium and palladium along a Σ5 grain boundary and to palladium along a carbon-rich Σ3 grain boundary in cubic silicon carbide at 1500 K. For silver, the calculated diffusion coefficients lie in a similar range (7.04 × 10{sup −19}–3.69 × 10{sup −17} m{sup 2} s{sup −1}) as determined experimentally. For caesium, the calculated diffusion rates are very much slower (3.91 × 10{sup −23}–2.15 × 10{sup −21} m{sup 2} s{sup −1}) than found experimentally, suggesting a different mechanism to the simulation. Conversely, the calculated atomic diffusion of palladium is very much faster (7.96 × 10{sup −11}–7.26 × 10{sup −9} m{sup 2} s{sup −1}) than the observed penetration rate of palladium nodules. This points to the slow dissolution and rapid regrowth of palladium nodules as a possible ingress mechanism in addition to the previously suggested migration of entire nodules along grain boundaries. The diffusion rate of palladium along the Σ3 grain boundary was calculated to be slightly slower (2.38 × 10{sup −11}–8.24 × 10{sup −10} m{sup 2} s{sup −1}) than along the Σ5 grain boundary. Rather

  12. Investigation of short-lived neutron-rich palladium and silver isotopes after fast chemical separation from fission fragments

    International Nuclear Information System (INIS)

    Bruechle, W.

    1976-01-01

    In this paper, chemical separation processes are described permitting fast and neat isolation of short-lived palladium and silver nuclides from fusion product mixtures. The process for palladium is based on the stability of palladium diethyldithiophosphate. From fission products of the reactions 238 U(n,f) and 249 Cf(nth,f), the following palladium niclides could be studied for the first time by gamma spectroscopy: 1.66 min 113 Pd, 2.45 min 114 Pd, 29 sec sup(115a)Pd, 54 sec sup(115b)Pd, 12.5 sec 116 Pd. 113 Pd could also be indentified according to the reaction 116 Cd(n,α) 113 Pd. The separation of silver is based on the fast isotopic exchange on AgCl. With this process, the following nuclides have been separated from fission product mixtures and studied by gamma spectroscopy: 70 sec sup(113m)Ag, 5.0 sec 114 Ag, 19.2 sec sup(115m)Ag, 2.65 min sup(116g)Ag, 10.5 sec sup(116m)Ag, 1.3 min sup(117g)Ag, 6.0 sec sup(117m)Ag, 4.0 sec 118 Ag. (orig./WL) [de

  13. Effect of heating palladium-silver alloys on ceramic bond strength.

    Science.gov (United States)

    Li, Jie-yin; Li, Rui-nan; Chang, Shao-hai; Zhuang, Pei-lin; Liao, Juan-kun; Ye, Xiu-hua; Ye, Jian-tao

    2015-11-01

    The effects of different heat treatments on the internal oxidation and metal-ceramic bond in Pd-Ag alloys with different trace elements require further documentation. The purpose of this in vitro study was to determine whether heat treatment affects the metal-ceramic bond strength of 2 Pd-Ag alloys containing different trace elements. Thirteen cast specimens (25×3×0.5 mm) from each of 2 Pd-Ag alloy groups (W-1 and Argelite 61+3) were allocated to heat treatments before porcelain application: heating under reduced atmospheric pressure of 0.0014 MPa and 0.0026 MPa and heating under normal atmospheric pressure. Bond strengths were evaluated using a 3-point bending test according to ISO9693. Results were analyzed using 2-way ANOVA and Tukey HSD test (α=.05). Visual observation was used to determine the failure types of the fractured specimens. Scanning electron microscopy and energy dispersive spectroscopy were used to study morphologies, elemental compositions, and distributions in the specimens. The W-1 group had a mean bond strength significantly higher than that of Argelite 61+3 (PHeating under reduced atmospheric pressures of 0.0014 MPa and 0.0026 MPa resulted in similar bond strengths (P=.331), and both pressures had significantly higher bond strengths than that of heating under normal atmospheric pressure (P=.002, PHeating under different air pressures resulted in Pd-Ag alloys that contained either Sn or In and Ga, with various degrees of internal oxidation and different quantities of metallic nodules. Heating under reduced atmospheric pressure effectively improved the bond strength of the ceramic-to-Pd-Ag alloys. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Investigation of the mechanism of mercury removal from a silver dental amalgam alloy

    Directory of Open Access Journals (Sweden)

    M. DJURDJEVIC

    2004-12-01

    Full Text Available An investigation of silver dental amalgam decomposition and the mercury removal mechanism was performed. The decomposition process was analysed during thermal treatment in the temperature interval from 400 °C to 850 °C and for times from 0.5 to 7.5 h. The chemical compositions of the silver dental amalgam alloy and the treated alloy were tested and microstructure analysis using optical and scanning electron microscopy was carried out. The phases were identified using energy disperse electron probe microanalysis. A mechanism for the mercury removal process from silver dental amalgam alloy is suggested.

  15. Definition of the size of nanoclusters of silver and palladium in carbon fiber

    International Nuclear Information System (INIS)

    Volobuev, V.S.; Bashmakov, I.A.; Lukashevich, S.M.; Tolkacheva, E.A.; Tikhonova, T.F.; Lukashevich, M.G.; Kaputskij, F.N.

    2008-01-01

    Size of palladium and silver nanoclusters is carbon matrix prepared by heart treatment of metal-polymer precursor has been determined by means of XR diffractions study. It was shown that the cluster size increases with increasing annealing temperature from 700 to 900 degree Celsius by factor two. No structuring of carbon matrix was observed under clusters forming. (authors)

  16. Palladium allergy in relation to dentistry

    NARCIS (Netherlands)

    Muris, J.

    2015-01-01

    Palladium is a metal that is used as alloying metal for dental crowns and bridges. This thesis focusses on the possible impact of oral exposure to this metal on the immune system, and allergy in particular. An alternative skin test allergen for diagnosing palladium allergy is introduced: (di)sodium

  17. GREEN SYNTHESIS OF SILVER AND PALLADIUM NANOPARTICLES AT ROOM TEMPERATURE USING COFFEE AND TEA EXTRACT

    Science.gov (United States)

    An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...

  18. ERRATUM Study of microstructure in vanadium–palladium alloys by ...

    Indian Academy of Sciences (India)

    WINTEC

    ERRATUM. Study of microstructure in vanadium–palladium alloys by X-ray diffraction technique. J Ghosh, S K Chattopadhyay, A K Meikap, S K Chatterjee and P Chatterjee 2007 Bull. Mater. Sci. 30 447–454. In page 448, under §2.1 Warren–Averbach method, after equation (1), the sentence starting with “Then the domain ...

  19. Aggregation in thin-film silver: Induced by chlorine and inhibited by alloying with two dopants

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Shimada, Koichi; Fukuda, Shin

    2009-01-01

    The Ag aggregation mechanism triggered by chlorine (Cl) is discussed. The frontier orbital theory by K. Fukui is applied in order to determine the growing point in the silver (Ag) cluster. Ag in the thin-film silver would grow to Ag n Cl and stack, triggered by Cl from the outside according to the mechanism described. This would lead to an aggregate with a high Ag density. It is suggested that this would be the generating mechanism of the silver-gray aggregate consisting mostly of Ag, which is generated by exposing it to Cl. Two tactics in order to prevent restrain aggregation induced by Cl according to the mechanism are proposed. Tactic 1 is a restraining of structure change to a plane in the process of Ag 6 Cl + Ag → Ag 7 Cl. Tactic 2 is the trapping of Cl before it generates a bond to Ag. The ability of the two combined dopants with the abilities of tactics 1 and 2, such as in an Ag alloy including palladium and copper (APC), and including neodymium and gold (ANA) is expected to be very high. The aggregation resistance of an Ag alloy including two dopants is evaluated by a salt water immersion test. The APC and ANA demonstrated a very high resistance to Cl, because of the combination of the dopants working with tactic 1 (Pd, Au) and tactic 2 (Cu, Nd). The multilayer sputter coating with an ANA layer demonstrated a very interesting profile where the light transmittance and the electrical sheet resistance are almost the same as the multilayer sputter coating with a pure Ag. The multilayer sputter coating with AIS also demonstrates a very interesting profile, where the light transmittance is higher than the multilayer sputter coating with a pure Ag.

  20. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Willms, R.S.; Birdsell, S.A.; Wilhelm, R.C.

    1995-01-01

    The palladium membrane reactor (PMR) is proving to be a simple and effective means for recovering hydrogen isotopes from fusion fuel impurities such as methane and water. This device directly combines two techniques which have long been utilized for hydrogen processing, namely catalytic shift reactions and palladium/silver permeators. A proof-of-principle (PMR) has been constructed and tested at the Tritium Systems Test Assembly of Los Alamos National Laboratory. The first tests with this device showed that is was effective for the proposed purpose. Initial work concluded that a nickel catalyst was an appropriate choice for use in a PMR. More detailed testing of the PMR with such a catalyst was performed and reported in other works. It was shown that a nickel catalyst-packed PMR did, indeed, recover hydrogen from water and methane with efficiencies approaching 100% in a single processing pass. These experiments were conducted over an extended period of time and no failure or need for regeneration was encountered. These positive results have prompted further PMR development. Topics addressed include alternate PMR geometries and initial testing of the PMR with tritium. These are the subjects of this paper

  1. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  2. Test of the palladium diffuser in the JAERI Fuel Cleanup System in the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Hayashi, Takumi; O-hira, Shigeru

    1993-03-01

    The JAERI Fuel Cleanup System (JFCU) is a major subsystem of the TSTA simulated fusion fuel loop. The palladium diffuser, that accepts simulated plasma exhaust and purifies the hydrogen isotopes mixture for the feed to the Isotope Separation System, was tested with deuterium to investigate the characteristics of the components. Permeation flow rate is a linear function of the difference of the square root of the pressure across the palladium alloy membrane. However at the low pressure region, an impediment on the permeation was observed. It was suspected to be caused by the impurity adsorbed on the surface of the permeated side of the membrane and was reduced by oxidation treatment. (author)

  3. Effects of impurities on hydrogen permeability through palladium alloy membrane at comparatively high pressure and temperature

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Katsuta, Hiroji; Naruse, Yuji

    1982-02-01

    Palladium alloy membrane method is considered to be a useful technique for fusion reactor fuel purification process. To study the feasibility of this method, the effects of impurities on permeation characteristics of palladium alloy membrane were examined. Experiments were carried out at practical conditions: pressure; 120 - 1200 kPa, temperature; about 700 K. No poisoning effect on hydrogen permeability of commercial Pd-Ag (Au.Ru) alloy was observed for impurities such as NH 3 , CH 4 , CO, CO 2 , O 2 and N 2 , which were mixed with hyper-pure H 2 at low concentration level (10 - 10000 ppm). Deterioration occurred by contamination with oil vapor. However, regeneration of the membrane was easily performed by air baking followed by hydrogen reduction. Chemical reactions in the permeation cell were also examined. (author)

  4. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  5. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    International Nuclear Information System (INIS)

    Wang, Boyi; Zhu, Yong; Chen, Youping; Song, Han; Huang, Pengcheng; Dao, Dzung Viet

    2017-01-01

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  6. Experiments on a ceramic electrolysis cell and a palladium diffuser at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yoshida, Hiroshi; Ohno, Hideo; Naruse, Yuji; Coffin, D.O.; Walthers, C.R.; Binning, K.E.

    1985-01-01

    A ceramic electrolysis cell and a palladium diffuser are developed in Japan and is tested with tritium in Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory, in order to confirm the feasibility as possible upgrades for the fuel cleanup system (PCU). The ceramic electrolysis cell made of stabilized zirconia was operated at 630 0 C for an extended period with a mixture of 3% T 2 O in He carrier gas in the circulation system with oxidizing catalyst bed. The palladium diffuser was tested with circulated pure tritium gas at 280 0 C to verify the compatibility of the alloy with tritium, since the 3 He produced in the metal could cause a degradation. The isotopic effects were also measured for both devices

  7. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    Science.gov (United States)

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  8. The influence of a hyperbaric environment and increased oxygen partial pressure on the corrosion of dental alloys.

    Science.gov (United States)

    Mehl, Christian; Heblich, Frank; Lenz, Rudolf; Ludwig, Klaus; Kern, Matthias

    2011-09-01

    The purpose of this in-vitro study was to determine whether there is a correlation between a hyperbaric environment or increased oxygen partial pressure and the corrosion of dental alloys used for dental restorations in divers. Samples of three commercially available dental alloys (palladium-based, reduced-gold-content and high-gold-content) were tested in the DIN EN ISO 1562 static immersion test and the amount of dissolved ions measured by atomic absorption spectrometry. The specimens were exposed to one of the following three conditions: normobaric and normoxic conditions (PO2 21 kPa); 608 kPa (6 bar, PO2 127 kPa) pressurised air in a pressure chamber or 506 kPa (5 bar, PO2 304 kPa) pressurised nitrox in a pressure chamber. None of the exposures suggested a correlation between increased ion solubility as a measure of corrosion and increased ambient pressure of the three alloys. The reduced-gold-content alloy released zinc ions at twice the weekly recommended dose. When the palladium-based alloy was exposed to a hyperbaric or hyperbaric/hyperoxic environment, ion solubility increased only slightly for gallium and silver. Within the limited sample size of the current study it can be concluded that hyperbaric and/or hyperoxic conditions do not seem to be a risk for increased corrosion for any of the three tested alloys.

  9. Determination of the Debye-Waller Factor of hydrogen in Palladium and Palladium Silver alloy

    International Nuclear Information System (INIS)

    Khodabakhsh, R.

    1986-01-01

    The mean square amplitude of the vibrating hydrogen in metals can be determined by using coherent elastic neutron scattering experiments, inelastic one-phonon scattering measurements. To determine the D.W.F. Debye-Waller Factor from the coherent elastic scattering measurements, information about the positions of atoms within the unit is required, and vice versa. The main difficulty concerning the determination of the D.W.F. from the inelastic experiment is in elimination of multi-phonon contribution from the measured spectrum. However, the D.W.F. of hydrogen in palladium has been usually determined by the intensity of the quasi-elastic line. An integration of the measured scattering law S(Q,W) at constant Q, over a certain energy window ΔE, results in the quasi-elastic intensity. To obtain an accurate result, this window has to be chosen large enough to comprise most of the quasi-elastic line, but sufficiently small so that the phonon contributions are small. The MARX spectrometer is ideally constructed for this type of measurement where the window is about +-1 Mev for incident neutron wavelength, =4.115 A. Thus, the quasi-elastic scattering method was considered the best method of determining the D.W.F. of hydrogen in palladium using the MARX spectrometer. However, if the acoustic part overlaps with the quasi-elastic part, one has to obtain the D.W.F. by fitting the data to a quasi-elastic model. The work to be reported here is the investigation of variations of the D.W.F. of hydrogen in Pd and PdAgsub(0.085) with temperature and extension of the available data to as high a temperature as possible. Therefore the integrated intensity of incoherent quasi-elastic neutron scattering by proton in polycrystallin Pd/H and PdAgsub(0.085)/H was investigated as a function of the scattering vector Q. A quasi-harmonic D.W.F. behaviour was observed at elevated temperatures. The observed Debye-Waller Factor depends strongly on the form of the amplitude weighted frequency

  10. Ratio of dialytic coefficients of hydrogen and tritium in permeation through palladium alloy film

    International Nuclear Information System (INIS)

    Fujita, Haruyuki; Fujita, Kunio; Sakamoto, Hiroshi; Higashi, Kunio; Okada, Sakae.

    1982-01-01

    The dialytic coefficient for hydrogen is especially large in palladium and its alloys. Recently, with the research on fusion reactors, the dialytic coefficient of tritium permeating through solids and its isotopic effect have been the object of interest. The ratio of the dialytic coefficients of tritium and hydrogen has been usually assumed to be 3. The measurement of the dialytic coefficient in solids using pure tritium is practically difficult. Therefore, the authors carried out the experiment to determine the ratio of the dialytic coefficients of pure T 2 and pure H 2 by permeating the mixed gas of T and H through Pd-Au-Ag alloy. The mixed hydrogen gas was filled in a separation cell containing a palladium alloy tube, and the separation factor of tritium and hydrogen was measured by changing pressure, flow rate and temperature. The separation factor depends mainly on the relative dialytic coefficients of tritium and hydrogen, therefore, the ratio of dialytic coefficients can be determined by the simple analysis of the experimental results. This experimental method is suitable to determine the relative value of dialytic coefficients, and the obtained ratio was about 2.1. (Kako, I.)

  11. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  12. Tin-Silver Alloys for Flip-Chip Bonding Studied with a Rotating Cylinder Electrode

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Pedersen, E.H.; Bech-Nielsen, G.

    1999-01-01

    Electrodeposition of solder for flip-chip bonding is studied in the form of a pyrophosphate/iodide tin-silver alloy bath. The objective is to obtain a uniform alloy composition, with 3.8 At.% silver, over a larger area. This specific alloy will provide an eutectic solder melting at 221°C (or 10°C...... photoresist, have shown a stable and promising alternative to pure tin and tin-lead alloys for flip-chip bonding applications....

  13. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    Science.gov (United States)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  14. Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys In Vitro

    Directory of Open Access Journals (Sweden)

    Zhidan Liu

    2017-01-01

    Full Text Available Implantation is a frequent procedure in orthopedic surgery, particularly in the aging population. However, it possesses the risk of infection and biofilm formation at the surgical site. This can cause unnecessary suffering to patients and burden on the healthcare system. Pure Mg, as a promising metal for biodegradable orthopedic implants, exhibits some antibacterial effects due to the alkaline pH produced during degradation. However, this antibacterial effect may not be sufficient in a dynamic environment, for example, the human body. The aim of this study was to increase the antibacterial properties under harsh and dynamic conditions by alloying silver metal with pure Mg as much as possible. Meanwhile, the Mg-Ag alloys should not show obvious cytotoxicity to human primary osteoblasts. Therefore, we studied the influence of the microstructure and the silver content on the degradation behavior, cytocompatibility, and antibacterial properties of Mg-Ag alloys in vitro. The results indicated that a higher silver content can increase the degradation rate of Mg-Ag alloys. However, the degradation rate could be reduced by eliminating the precipitates in the Mg-Ag alloys via T4 treatment. By controlling the microstructure and increasing the silver content, Mg-Ag alloys obtained good antibacterial properties in harsh and dynamic conditions but had almost equivalent cytocompatibility to human primary osteoblasts as pure Mg.

  15. Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys In Vitro.

    Science.gov (United States)

    Liu, Zhidan; Schade, Ronald; Luthringer, Bérengère; Hort, Norbert; Rothe, Holger; Müller, Sören; Liefeith, Klaus; Willumeit-Römer, Regine; Feyerabend, Frank

    2017-01-01

    Implantation is a frequent procedure in orthopedic surgery, particularly in the aging population. However, it possesses the risk of infection and biofilm formation at the surgical site. This can cause unnecessary suffering to patients and burden on the healthcare system. Pure Mg, as a promising metal for biodegradable orthopedic implants, exhibits some antibacterial effects due to the alkaline pH produced during degradation. However, this antibacterial effect may not be sufficient in a dynamic environment, for example, the human body. The aim of this study was to increase the antibacterial properties under harsh and dynamic conditions by alloying silver metal with pure Mg as much as possible. Meanwhile, the Mg-Ag alloys should not show obvious cytotoxicity to human primary osteoblasts. Therefore, we studied the influence of the microstructure and the silver content on the degradation behavior, cytocompatibility, and antibacterial properties of Mg-Ag alloys in vitro. The results indicated that a higher silver content can increase the degradation rate of Mg-Ag alloys. However, the degradation rate could be reduced by eliminating the precipitates in the Mg-Ag alloys via T4 treatment. By controlling the microstructure and increasing the silver content, Mg-Ag alloys obtained good antibacterial properties in harsh and dynamic conditions but had almost equivalent cytocompatibility to human primary osteoblasts as pure Mg.

  16. Cloud point extraction of palladium in water samples and alloy mixtures using new synthesized reagent with flame atomic absorption spectrometry (FAAS)

    International Nuclear Information System (INIS)

    Priya, B. Krishna; Subrahmanayam, P.; Suvardhan, K.; Kumar, K. Suresh; Rekha, D.; Rao, A. Venkata; Rao, G.C.; Chiranjeevi, P.

    2007-01-01

    The present paper outlines novel, simple and sensitive method for the determination of palladium by flame atomic absorption spectrometry (FAAS) after separation and preconcentration by cloud point extraction (CPE). The cloud point methodology was successfully applied for palladium determination by using new reagent 4-(2-naphthalenyl)thiozol-2yl azo chromotropic acid (NTACA) and hydrophobic ligand Triton X-114 as chelating agent and nonionic surfactant respectively in the water samples and alloys. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. The preconcentration factor was found to be (50-fold) for 250 ml of water sample. Under optimum condition the detection limit was found as 0.067 ng ml -1 for palladium in various environmental matrices. The present method was applied for the determination of palladium in various water samples, alloys and the result shows good agreement with reported method and the recoveries are in the range of 96.7-99.4%

  17. Measurement of the isotope effect of the diffusion of silver and gold in gold and of silver in silver-gold alloys

    International Nuclear Information System (INIS)

    Wolter, D.

    1974-01-01

    The silver isotopes Ag 105 and Agsup(110m) and the gold isotopes Au 195 and Au 199 were used for isotope effect measurements. The isotope effect of the gold self-diffusion was measured on four monocrystals samples at about 850 0 C, that of silver in gold monocrystals at five different temperatures between 731 0 C and 1050 0 C. Furthermore, the isotope effect for silver at 904 0 C was measured on seven silver-gold alloys of varying silver concentration. The correlation factor was determined from the measurements. (HPOE/LH) [de

  18. Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys

    NARCIS (Netherlands)

    Muris, J.; Goossens, A.; Gonçalo, M.; Bircher, A.J.; Giménez-Arnau, A.; Foti, C.; Rustemeyer, T.; Feilzer, A.J.; Kleverlaan, C.J.

    2015-01-01

    Background The role of palladium and nickel sensitization in oral disease and dermatitis is not fully understood. Objectives To investigate whether sensitization to these metals was associated with exposure to dental alloys and oral and skin complaints/symptoms in a European multicentre study.

  19. Electrochemical reduction of oxygen on lead-silver alloys in an alkaline medium

    International Nuclear Information System (INIS)

    Seliverstov, S.D.; Arkhangel'skaya, Z.P.; Lyzlov, N.Y.

    1986-01-01

    The use of lead-silver alloys as materials for the gas-absorbing electrode in sealed silver-cadmium alkaline storage batteries is desirable primarily from the stanpoint of saving the costly silver. The authors studied reduction of oxygen with the aim of optimizing the composition of the Pb-Ag alloy and of the porous structure of the electrodes. The alloys were made in a muffle furnace in corundum crucibles under a layer of VI-2 flux. Curves are shown which represent the dependence of the ionization current of molecular oxygen on smooth partially immersed electrodes made from alloys differing in composition on the length of the part of the electrode withdrawn from the solution. It is shown that decrease of the corrosion resistance of the alloy in the porous electrode causes partial loss of its mechanical strength. Worsening of the electric contact between the particles of active material is also possible. An alloy of the composition (mass %) 60 Pb-40 Ag is the most suitable from the practical standpoint

  20. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  1. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    Science.gov (United States)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  2. Physical Properties Of Some Pd-Au-Ag Ternary Alloys: A Md Study

    International Nuclear Information System (INIS)

    Aydin, G.

    2010-01-01

    Mechanical properties of palladium (Pd), gold (Au) and silver (Ag) and their ternary alloys in the following concentrations (Au 5 0Ag 2 5Pd 2 5, Au 4 0Ag 2 0Pd 4 0) are studied by using by using molecular dynamics with Quantum Sutton-Chen (Q-SC) potential. Cell constants, densities, enthalpies, elastic constants and heat capacities are investigated. Calculations are performed in the solid phase. Rafii-Tabar combination rules are used and it is showed that these combination rules are valid for ternary alloys also. Additionally, temperature dependence of mechanical properties of alloys are investigated.

  3. Determination of phosphorus in gold or silver brazing alloys

    International Nuclear Information System (INIS)

    Antepenko, R.J.

    1976-01-01

    A spectrophotometric method has been devised for measuring microgram levels of phosphorus in brazing alloys of gold or silver alloys is normally measured by solid mass spectrometry, but the high nickel concentration produces a double ionized nickel spectral interference. The described procedures is based upon the formation of molybdovandophosphoric acid when a molybdate solution is added to an acidic solution containing orthophosphate and vanadate ions. The optimum acidity for forming the yellow colored product is 0.5 N hydrochloric acid. The working concentration range is from 0.1 to 1 ppm phosphorus using 100-mm cells and measuring the absorbance at 460 nm. The sample preparation procedure employs aqua regia to dissolve the alloy oxidize the phosphorus to orthophosphate. Cation-exchange chromatography is used to remove nickel ions and anion-exchange and chromatography to remove gold ions as the chloride complex. Excellent recoveries are obtained for standard phosphorus solutions run through the sample procedure. The procedure is applicable to a variety of gold or silver braze alloys requiring phosphorus analysis

  4. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  5. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  6. Rheocasting of Al-Cu alloy A201 with different silver content

    CSIR Research Space (South Africa)

    Masuku, EP

    2008-09-01

    Full Text Available Rheocasting of alloys A206 and A201 was investigated in this study. Conical bars with different silver contents were produced using CSIR rheoprocess technology, together with high pressure die casting. The results showed that addition of Ag to alloy...

  7. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  8. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    Science.gov (United States)

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-07

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.

  10. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Horwood, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stadermann, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percent gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.

  11. New electrocatalysts for hydrogen-oxygen fuel cells

    Science.gov (United States)

    Cattabriga, R. A.; Giner, J.; Parry, J.; Swette, L. L.

    1970-01-01

    Platinum-silver, palladium-gold, and platinum-gold alloys serve as oxygen reduction catalysts in high-current-density cells. Catalysts were tested on polytetrafluoroethylene-bonded cathodes and a hydrogen anode at an operating cell temperature of 80 degrees C.

  12. Silver surface enrichment of silver-copper alloys: a limitation for the analysis of ancient silver coins by surface techniques

    International Nuclear Information System (INIS)

    Beck, L.; Bosonnet, S.; Reveillon, S.; Eliot, D.; Pilon, F.

    2004-01-01

    The surface enrichment of archaeological silver-copper alloys has been recognized for many years. However, the origin of this enrichment is not well defined and many hypotheses have been put forward to account for this behaviour: segregation of the components during casting, deliberate thermal and/or chemical post-treatment, abrasion or corrosion. Among the hypotheses mentioned above, we have focused our study on the first step of coin manufacturing. Replications of silver-copper standards of various compositions ranging from 30% to 80% Ag, reflecting the composition of silver blanks, have been produced. Metallographic examination, PIXE and SEM-EDS have been used for the characterization of each sample. A model of the direct enrichment has been established. This model allows us to propose a relationship between the surface composition and the silver content of the core. Comparison with data of Roman coins from the Roman site of Cha-hat teaubleau (France) and from the literature and consequences for the analyses of ancient coins by surface methods are presented

  13. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pereira, E [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, 4169-007 Porto (Portugal); Franco, R, E-mail: pmvb@fct.unl.pt [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2010-06-25

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  14. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    International Nuclear Information System (INIS)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V; Pereira, E; Franco, R

    2010-01-01

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  15. Martensitic transformation and shape memory effect in NiTi alloy covered by chitosan/silver layer

    Directory of Open Access Journals (Sweden)

    Goryczka Tomasz

    2015-01-01

    Full Text Available The NiTi shape memory alloy was covered with chitosan/silver layer. Coatings were deposited at room temperature using combination of processing parameters such as deposition voltage and amount of silver in colloidal suspension. Structure of layers was studied by means of X-ray diffraction. Quality of the coatings was evaluated basing on observations done in scanning electron microscopy. Transformation behaviour of coated samples was studied with use of differential scanning calorimeter. The covered sample revealed presence of the reversible martensitic transformation and ability to deformation (in bending mode up to 8%. Forward martensitic transformation, in as-received NiTi alloy and in alloy after layer deposition occurred in two steps B2-R-B19’. After deformation quality of the chitosan/silver layer remained unchanged.

  16. Adsorption of volatile polonium species on metals in various gas atmospheres. Pt. II. Adsorption of volatile polonium on platinum, silver and palladium

    Energy Technology Data Exchange (ETDEWEB)

    Maugeri, Emilio Andrea; Joerg Neuhausen; Dressler, Rugard; Piguet, David; Voegele, Alexander; Schumann, Dorothea [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Misiak, Ryszard [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Eichler, Robert [Paul Scherrer Institut (PSI), Villigen (Switzerland). Lab. for Radiochemistry; Bern Univ. (Switzerland). Dept. for Chemistry and Biochemistry

    2016-07-01

    This work presents the results obtained from studying the interaction between polonium compounds formed in different atmospheres and platinum, palladium and silver surfaces obtained by thermochromatography. These results are of crucial importance for the design of cover gas filter systems for lead-bismuth eutectic (LBE)-based nuclear facilities such as accelerator driven systems (ADS). The results obtained from studying the interaction of polonium and platinum under inert atmosphere and reducing atmospheres with and without addition of moisture show that polonium is deposited at temperatures between 993 and 1221 K, with adsorption enthalpies ranging from -235 to -291 kJ mol{sup -1}, indicating a very strong adsorption of the polonium species present on platinum surfaces. The interaction between polonium and silver was investigated using purified inert, reducing and oxidizing carrier gases. Results show a deposition temperature between 867 and 990 K, with adsorption enthalpies ranging from -205 to -234 kJ mol{sup -1}. The interaction of polonium and palladium was studied in purified helium and purified hydrogen. For both conditions a deposition temperature of 1221 K was observed corresponding to an adsorption enthalpy of -340 kJ mol{sup -1}. No highly volatile polonium species was formed at any of the applied experimental conditions.

  17. Standard specification for nuclear-grade silver-indium-cadmium alloy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This specification covers silver-indium-cadmium alloy for use as a control material in light-water nuclear reactors. 1.2 The scope of this specification excludes the use of this material in applications where material strength of this alloy is a prime requisite. Also, this material must be protected from the primary water by a corrosion and wear resistant cladding. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  18. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  19. Engineering Defect-Free Nanoporous Pd from Optimized Pd-Ni Precursor Alloy by Understanding Palladium-Hydrogen Interactions During Dealloying

    Science.gov (United States)

    Schoop, Julius; Balk, T. John

    2014-04-01

    Thin films of nanoporous palladium (np-Pd) were produced from binary palladium-nickel (Pd-Ni) precursor alloys. A suitable precursor alloy and a method of dealloying to yield optimum nanoporosity (average pore/ligament size of 7 nm) were developed by studying the effects of various processing parameters on final microstructure. To obtain crack-free np-Pd, a 100 nm thin film of 20 at. pct Pd (80 at. pct Ni) can be dealloyed for ~5 hours in a 1 M solution of sulfuric acid, with oleic acid and oleylamine added as surfactants. Both shorter and longer dealloying times, as well as heating, inhibit the formation of crack-free np-Pd. Stress measurements at different stages of dealloying revealed that the necessary dealloying time is determined by the diffusion-controlled corrosion reaction occurring within the thin film during dealloying. Strong interaction between hydrogen and np-Pd was reflected in the stress evolution during dealloying. A mechanism is proposed for the formation of a Ni-rich dense top layer that results from H-induced swelling during initial dealloying and permits the development of defect-free np-Pd beneath, by limiting the speed of dealloying.

  20. Palladium-alloy catalysts as ethanol tolerant cathodes for direct alcohol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Varela, F.J.R. [Centro de Investigacion y de Estudios Avanzados, Coahuila (Mexico). Unidad Saltillo

    2008-07-01

    Recent studies have demonstrated that electroactive palladium (Pd) and Pd-alloy catalysts prepared using a sputtering technique possess a similar degree of activity as platinum (Pt) electrodes. This study demonstrated that Pd and Pd-alloys show a high degree of tolerance to ethanol during oxygen reduction reaction (ORR) processes. The onset potential of the ORR process in the presence of 0.5M of ethanol decreased by only 33 mV and 18 mV on Pd and Pd-cobalt (Co) catalysts. Linear sweep voltammetry experiments showed that no peak current density caused by the electro-oxidation of ethanol was observed in the Pd-based catalysts. The selective behaviour of the Pd and Pd-Co catalysts was attributed to a slow rate of adsorption of the ethanol as well as the presence of reaction intermediates on the catalytic surface. Results suggested that the Pd and Pd-Co catalysts are suitable candidates for direct alcohol fuel cell applications. 10 refs., 2 figs.

  1. Silver doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  2. Silver-doped metal layers for medical applications

    International Nuclear Information System (INIS)

    Kocourek, T; Jelínek, M; Mikšovský, J; Jurek, K; Weiserová, M

    2014-01-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness. (paper)

  3. Unsupported palladium alloy membranes and methods of making same

    Science.gov (United States)

    Way, J. Douglas; Thoen, Paul; Gade, Sabina K.

    2015-06-02

    The invention provides support-free palladium membranes and methods of making these membranes. Single-gas testing of the unsupported foils produced hydrogen permeabilities equivalent to thicker membranes produced by cold-rolling. Defect-free films as thin as 7.2 microns can be fabricated, with ideal H.sub.2/N.sub.2 selectivities as high as 40,000. Homogeneous membrane compositions may also be produced using these methods.

  4. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  5. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-01-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  6. Long term creep strength of silver alloyed copper

    International Nuclear Information System (INIS)

    Auerkari, P.; Sandlin, S.

    1988-12-01

    The long term creep strength of silver alloyed copper has been estimated using literature creep data for materials with less than 0.1% Ag. The available data was very limited, and it was necessary to test the differences between various data sets and extrapolation methods. Assuming constant stress level and constant or changing temperature, the creep behaviour has been assessed using mainly Larson-Miller and theta-projection approaches. The calculations indicate that the different extrapolation methods and data sources can yield strongly different life estimates. With the available incomplete data the theta projection method may give the conservative life predictions, whereas the Larson-Miller approach grossly overestimates creep life. It is recommended that supplementary data is acquired to better assess the long term creep properties of canisters in repository conditions

  7. Studies on the preparation of 109Pd and 111Ag by (n,γ) reactions on natural palladium for possible applications in radionuclide therapy

    International Nuclear Information System (INIS)

    Vimalnath, K.V.; Chirayil, Viju; Saha, Sujata

    2007-01-01

    Natural palladium on neutron activation provided two radionuclides viz 111 Ag and 109 Pd with attractive nuclear properties for use in radionuclide therapy applications in nuclear medicine. 109 Pd (t 1/2 13.7h, E βmax 1.03MeV) was produced by neutron activation of 108 Pd, while in the same target 111 Ag (t 1/2 7.45d, E βmax 1.04MeV) is formed by the beta decay of co-produced radioactive 111 Pd. Measured samples of palladium foils were neutron irradiated in Dhruva reactor for 7d at a flux of 9 x 10 13 n.cm -2 .s -1 . Radioactive palladium and silver were separated by ion-exchange chromatography over Dowex 1x8, 200-400 mesh size anion exchanger column. Radiochemical mixture of palladium and silver loaded in 10M HCl acid medium showed retention of palladium, while silver eluted out freely. The separated radionuclidically pure fractions of 109 Pd and 111 Ag activity were reconstituted as chloride and nitrate solutions respectively. About 133 GBq 109 Pd and 930 MBq of 111 Ag activity were produced from 100mg palladium. (author)

  8. Development of Separation Materials Containing Palladium for Hydrogen Isotopes Separation

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qian Xiaojing

    2010-01-01

    Displacement chromatography (DC) is a ascendant technique for hydrogen isotopes separation. The performance of separation materials is a key factor to determine the separation effect of DC. At present,kinds of materials are researched, including palladium materials and non-palladium materials. It is hardly replaceable because of its excellent separation performance, although palladium is expensive. The theory of hydrogen isotopes separation using DC was introduced at a brief manner, while several palladium separation materials were expatiated in detail(Pd/K, Pd-Al 2 O 3 , Pd-Pt alloy). Development direction of separation materials for DC was forecasted elementarily. (authors)

  9. Preparation of palladium impregnated alumina adsorbents: Thermal and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Sumanta; Gupta, N.K.; Roy, S.P.; Dash, S.; Kumar, A.; Bamankar, Y.R.; Rao, T.V. Vittal [Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, N. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Naik, Y., E-mail: ynaik@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-02-10

    Highlights: • Pd/Al{sub 2}O{sub 3} composite microspheres particles with high surface area were prepared sol–gel process. • Scanning electron microscopy (SEM) studies on silver coated particle. • Content of the palladium was determined using Neutron Activation Analysis (NAA). • Decomposition study has been done by quadrupole mass analyser. - Abstract: Pd/Al{sub 2}O{sub 3} composite microspheres particles with high surface area were prepared sol–gel process. The decomposition of dried gel-particles was studied by TGA/DTA and FT-IR technique. TGA studies indicated that formation of palladium is marked by a broad exothermic peak with a loss of water and oxidation of trapped HMTA/Urea nitrate mixture. The main decomposition reaction took place in the temperature range of 660–1250 K in helium and relatively lower temperature of 400 K to 1250 K in oxygen. Optical microscopy indicated that the distribution of palladium is uniform. SEM studies on silver coated particle indicated that there was surface erosion of some gel spheres while in few of them micro cracks were seen at high resolution. Content of the palladium was determined using Neutron Activation Analysis (NAA). Decomposition at various temperatures was studied using Residual gas analyser and decomposition species were identified using quadrupole mass analyser.

  10. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  11. Preparation technology of 103Pd-110Agm composite alloy membranes

    International Nuclear Information System (INIS)

    Liu Zhuo; Chen Daming; Jin Xiaohai; Li Zhongyong; Guo Feihu; Qin Hongbin

    2012-01-01

    The preparation of 103 Pd- 110 Ag m alloy membranes was the basis for the production of 103 Pd- 125 I composite sources. Taking 103 Pd and 110 Ag m as trace elements, the method of non-electrolytical plating was chosen to prepare the alloy membrane. A γ-detector and electron microscope (SEM) were used for quantitative and qualitative analysis, respectively. The pre-treatment of the support before the preparation of Palladium-silver composite membranes was discussed in detail. It was found that when the concentration of PdCl 2 was between 0.5 and 2.0 mmol/L the result was good. The effects of various factors were investigated, including the proportion of Pd and Ag, the concentrations of the total metal, ammonium hydroxide hydrazine and ethylenediaminetetraacetic acid, temperature, the time, and the rotation speed. By improving the reaction conditions the alloy membrane with metallic luster was obtained. Besides, the presence of Pd and Ag was observed in the alloy membranes by qualitative analysis. (authors)

  12. Adhesion enhancement between electroless nickel and polyester fabric by a palladium-free process

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yinxiang, E-mail: yxlu@fudan.edu.cn [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Xue Longlong; Li Feng [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2011-01-15

    A new, efficient, palladium- and etchant-free process for the electroless nickel plating of poly(ethylene terephthalate) (PET) fabric has been developed. PET electroless plating can be prepared in three steps, namely: (i) the grafting of thiol group onto PET, (ii) the silver Ag{sup 0} seeding of the PET surface, and (iii) the nickel metallization using electroless plating bath. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG) were used to characterize the samples in the process, and the nickel loading was quantified by weighing. This process successfully compares with the traditional one based on KMnO{sub 4}/H{sub 2}SO{sub 4} etching and palladium-based seed layer. The nickel coating obtained in this palladium-free process can pass through ultrasonic washing challenge, and shows excellent adhesion with the PET substrate. However, the sample with Pd catalyst via traditional process was damaged during the testing experiment.

  13. Investigation on adhering properties of dental materials by means of radioactively labelled bacteria

    International Nuclear Information System (INIS)

    Pfister, W.; Kleinert, P.; Sandig, H.C.; Wutzler, P.; Ruschitschka, A.; Schaefer, U.

    1987-01-01

    Bacteria of the species Streptococcus mutans were radioactively labelled with 113 In-oxinate. Different dental materials were incubated with the labelled bacteria. Counts per minute of the dental materials could be determined as proportion of the quantity of adhering microorganisms. Silver-palladium-alloy had a lower adherence than silver-tin-alloy. Finest polished alloys had lower adhering properties than unpolished surfaces of materials. (author)

  14. The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Frefer, Abdulbaset Ali; Raddad, Bashir S.; Abosdell, Alajale M.

    2013-01-01

    In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations

  15. Co-deposition of palladium with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dash, J.; Ambadkar, A.

    2006-01-01

    Palladium was co-deposited with hydrogen isotopes on a Pd cathode. This resulted in enhanced production of excess thermal power. After electrolysis the Pd Lβ/ Lα ratio was found to be increased in characteristic X-ray spectra from localized, microscopic areas on the surface of the Pd cathode. This suggests the possibility that appreciable amounts of silver are present in these areas. (authors)

  16. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    Science.gov (United States)

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  17. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  18. Sensitization to palladium in Europe

    DEFF Research Database (Denmark)

    Muris, Joris; Goossens, An; Gonçalo, Margarida

    2015-01-01

    BACKGROUND: Recently, sodium tetrachloropalladate (Na2 PdCl4 ) was found to be a more sensitive palladium patch test allergen than palladium dichloride (PdCl2 ). OBJECTIVES: To determine the optimal test concentration of Na2 PdCl4 , to evaluate the prevalence of palladium sensitization with Na2 P...... patch test concentration. Sensitization to palladium is almost as prevalent as sensitization to nickel. The sex distribution is different between nickel-sensitized and palladium-sensitized patients, suggesting different sources of exposure.......Cl4 and PdCl2 , and to compare the results with nickel sensitization in a European multicentre study. MATERIALS AND METHODS: In addition to the European or national baseline series including NiSO4 ·6H2 0 5% pet., consecutive patients were tested with PdCl2 and Na2 PdCl4 2%, 3% and 4% pet. in eight...... European dermatology clinics. The age and sex distributions were also evaluated in patients sensitized to nickel and palladium. RESULTS: In total, 1651 patients were tested. Relative to 3% Na2 PdCl4 , 4% Na2 PdCl4 did not add any information. Two per cent Na2 PdCl4 resulted in more doubtful reactions...

  19. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  20. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  1. A novel luminol chemiluminescent method catalyzed by silver/gold alloy nanoparticles for determination of anticancer drug flutamide.

    Science.gov (United States)

    Chaichi, Mohammad Javad; Azizi, Seyed Naser; Heidarpour, Maryam

    2013-12-01

    It was found that silver/gold alloy nanoparticles enhance the chemiluminescence (CL) of the luminol-H2O2 system in alkaline solution. The studies of UV-Vis spectra, CL spectra, effects of concentrations luminol, hydrogen peroxide and silver/gold alloy nanoparticles solutions were carried out to explore the CL enhancement mechanism. Flutamide was found to quench the CL signals of the luminol-H2O2 reaction catalyzed by silver/gold alloy nanoparticles, which made it applicable for the determination of flutamide. Under the optimum conditions, the CL intensity is proportional to the concentration of the flutamide in solution over the range 5.0 × 10(-7) to 1.0 × 10(-4)mol L(-1). Detection limit was obtained 1.2 × 10(-8)mol L(-1)and the relative standard deviation (RSD) γ5%. This work is introduced as a new method for the determination of flutamide in commercial tablets. Box-Behnken experimental design is applied to investigate and validate the CL measurement parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of bismuth and silver on the corrosion behavior of Sn-9Zn alloy in NaCl 3 wt.% solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmido, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Sabbar, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Zouihri, H.; Dakhsi, K. [UATRS, CNRST, Angle Allal Fassi, FAR, BP 8027, Hay Riad, Rabat (Morocco); Guedira, F. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Serghini-Idrissi, M. [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); El Hajjaji, S., E-mail: selhajjaji@hotmail.com [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco)

    2011-08-15

    Highlights: > Sn-9Zn-xAg-yBi as alternative for Sn-Pb solder. > Effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt%. > Bi and Ag lead to the increase of corrosion rate. > EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product. - Abstract: The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential E{sub corr} is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn{sub 5}(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.

  3. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1994-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum-4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  4. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-01-01

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory's Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 μm) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications

  5. The structure of Cu-Cd alloys obtained by electrolysis on monocrystalline silver substrates

    International Nuclear Information System (INIS)

    Lagiewka, E.

    1981-01-01

    The structure of Cu-Cd alloys obtained by electrolysis on monocrystalline silver cathodes with a surface parallel to the (111), (110) and (100) planes has been investigated. It has been found that depending on the range of the cathode potentials, one-phase (phase α) or two-phase (phase α + cadmium) alloy are obtained. In the alloys the occurrence of twins has been observed, the orientation of which is the result of twinning along the [111] planes of crystallites with epitaxial orientation with respect to the cathode surface and of a random orientation of crystallites. The volume of the layer containing crystallites with a random arrangement increases with the obtaining potential of the alloy and with the decrease in the surface density of the cathode atoms. (author)

  6. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    International Nuclear Information System (INIS)

    Moreira dos Santos, Margarida; Queiroz, Margarida João; Baptista, Pedro V.

    2012-01-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  7. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreira dos Santos, Margarida, E-mail: margarida.santos@fct.unl.pt; Queiroz, Margarida Joao; Baptista, Pedro V. [Universidade Nova de Lisboa, CIGMH, Departamento Ciencias da Vida, Faculdade de Ciencias e Tecnologia (Portugal)

    2012-05-15

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 {+-} 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a {beta}-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  8. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    In this study, silver-palladium surfaces and silver-bearing stainless steels were designed and investigated focusing on electrochemical principles to form inhibiting effects on planktonic and/or biofilm bacteria in water systems. Silver-resistant Escherichia coli and silver-sensitive E. coli were...... silver ions release can occur from their Surfaces. For silver-bearing stainless steels, the inhibiting effect can only be explained by high local silver ions release. and can be limited or deactivated dependent on the specific environment. (c) 2008 Elsevier Ltd. All rights reserved....

  9. Thermodynamic properties of liquid silver-antimony alloys determined from emf measurements

    International Nuclear Information System (INIS)

    Krzyzak, Agnieszka; Fitzner, Krzysztof

    2004-01-01

    The thermodynamic properties of the liquid Ag-Sb alloys were determined using solid oxide galvanic cells with zirconia electrolyte. The emfs of the cells:Ag x Sb (1-x), Sb 2 O 3 /O 2- /airwere measured in the temperatures range 950-1100K in the whole range of the alloy compositions.First, the Gibbs free energy of formation of liquid Sb 2 O 3 from pure elements was derived:ΔG o f(Sb2O3) (J/mol)=-687100+243.23T.Next, the activities of antimony were measured as a function of the alloy compositions, x. Redlich-Kister polynomial expansion was used to describe the thermodynamic properties of the liquid phase. From the model equations the limiting value of the logarithm of activity coefficient of antimony in silver was obtained as a function of temperature:lnγ Sb 0 =-3812.5/T+0.4112.The obtained results were compared with the experimental values reported in the literature

  10. 40 CFR 471.02 - General definitions.

    Science.gov (United States)

    2010-07-01

    ...” include gold, platinum, palladium, and silver and their alloys. Any alloy containing 30 or greater percent... (usually water) to locate inhomogeneities or structural discontinuities. (oo) “Wet air pollution control scrubbers” are air pollution control devices used to remove particulates and fumes from air by entraining...

  11. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures.

    Science.gov (United States)

    Zhao, Yi-Ying; Chu, Qiang; Shi, Xu-Er; Zheng, Xiao-Dong; Shen, Xiao-Ting; Zhang, Yan-Zhen

    To address the controversial issue of the toxicity of dental alloys and silver nanoparticles in medical applications, an in vivo-like LO2 3-D model was constructed within polyvinylidene fluoride hollow fiber materials to mimic the microenvironment of liver tissue. The use of microscopy methods and the measurement of liver-specific functions optimized the model for best cell performances and also proved the superiority of the 3-D LO2 model when compared with the traditional monolayer model. Toxicity tests were conducted using the newly constructed model, finding that four dental castings coated with silver nanoparticles were toxic to human hepatocytes after cell viability assays. In general, the toxicity of both the castings and the coated silver nanoparticles aggravated as time increased, yet the nanoparticles attenuated the general toxicity by preventing metal ion release, especially at high concentrations.

  12. Testing of a 7-tube palladium membrane reactor for potential use in TEP

    International Nuclear Information System (INIS)

    Carlson, Bryan J.; Trujillo, Stephen; Willms, R. Scott

    2010-01-01

    A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO 2 ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m 2 and a catalyst volume to membrane area ratio of 4.63 cc/cm 2 (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m 2 ). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m 2 . The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm 2 . The total membrane area of the 7-tube PMR (0.0851 m 2 ) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m 2 ). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR

  13. Development of inductively coupled plasma atomic emission spectrometry for palladium and Rhodium determination in platinum-based alloy

    International Nuclear Information System (INIS)

    Kovacevic, R.; Todorovic, M.; Manojlovic, D.; Mutic, J.

    2008-01-01

    Inductively coupled plasma atomic emission spectroscopy with internal standardization was applied for the analysis of an in-house reference platinum alloy containing palladium and rhodium (approximately 5% by weight). In order to compensate for variations in signal recovery due to matrix interferences, and therefore to improve the precision, platinum. the major component, was chosen as an internal standard. Quantitative analysis was based on calibration using a set of matrix-matched calibration standards with and without employing the internal standard. These results were compared with those obtained by X-ray fluorescence spectroscopy. The results for both techniques were in a good agreement, although the precision was slightly better in the inductively coupled plasma atomic emission spectroscopy technique, with or without the internal standard

  14. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V., E-mail: bulgakov@itp.nsc.ru

    2017-02-28

    Highlights: • Laser damage thresholds of Ag, Au and Ag-Au alloys in air and water are measured. • Alloy thresholds are lower than those of Ag and Au due to low thermal conductivity. • Laser damage thresholds in water are ∼1.5 times higher than those in air. • Light scattering mechanisms responsible for high thresholds in water are suggested. • Light scattering mechanisms are supported by optical reflectance measurements. - Abstract: The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  15. Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems

    International Nuclear Information System (INIS)

    Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

    1987-01-01

    Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs

  16. Antibacterial effect of PEO coating with silver on AA7075

    Energy Technology Data Exchange (ETDEWEB)

    Cerchier, P., E-mail: pietrogiovanni.cerchier@studenti.unipd.it [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy); Pezzato, L.; Brunelli, K. [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy); Dolcet, P. [Department of Chemical Science, University of Padua, INSTM, UdR Padova and ICMATE-CNR, Padova (Italy); Bartolozzi, A.; Bertani, R.; Dabalà, M. [Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova (Italy)

    2017-06-01

    In this work, plasma electrolytic oxidation (PEO) coatings were produced on AA7075 using alkaline solution containing silicates compounds and silver micrometric particles in order to give to the coating an antimicrobial effect. In the optic of circular economy, silver chloride derived from the acid pre-treatment of electronic scraps was used as raw material and successively silver powders were synthesized from silver chloride solution using glucose syrup as reducing agent. The coatings were characterized by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and antimicrobial tests. The results evidenced that the obtained coatings were homogenous and give to the samples higher corrosion resistance than untreated alloy. The silver particles, found both inside and outside of the pores that characterize the PEO layer, produced an efficacious antimicrobial effect both against E. coli and S. aureus. - Highlights: • Silver particles were incorporated into PEO coatings produced on aluminum alloys. • The incorporation was performed with direct addition of the particles in the electrolyte. • The particles resulted equally distributed on the samples surfaces. • The obtained coatings show antimicrobial activity with both E. coli and S. aureus. • The obtained coatings were characterized by acceptable corrosion resistance.

  17. Antibacterial effect of PEO coating with silver on AA7075

    International Nuclear Information System (INIS)

    Cerchier, P.; Pezzato, L.; Brunelli, K.; Dolcet, P.; Bartolozzi, A.; Bertani, R.; Dabalà, M.

    2017-01-01

    In this work, plasma electrolytic oxidation (PEO) coatings were produced on AA7075 using alkaline solution containing silicates compounds and silver micrometric particles in order to give to the coating an antimicrobial effect. In the optic of circular economy, silver chloride derived from the acid pre-treatment of electronic scraps was used as raw material and successively silver powders were synthesized from silver chloride solution using glucose syrup as reducing agent. The coatings were characterized by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and antimicrobial tests. The results evidenced that the obtained coatings were homogenous and give to the samples higher corrosion resistance than untreated alloy. The silver particles, found both inside and outside of the pores that characterize the PEO layer, produced an efficacious antimicrobial effect both against E. coli and S. aureus. - Highlights: • Silver particles were incorporated into PEO coatings produced on aluminum alloys. • The incorporation was performed with direct addition of the particles in the electrolyte. • The particles resulted equally distributed on the samples surfaces. • The obtained coatings show antimicrobial activity with both E. coli and S. aureus. • The obtained coatings were characterized by acceptable corrosion resistance.

  18. Kinetic Characteristics of Hydrogen Transfer Through Palladium-Modified Membrane

    Science.gov (United States)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2018-01-01

    The paper deals with hydrogen transfer through Pd-23%Ag alloy membrane, the surface of which is modified by the electrolytic deposition of highly dispersed palladium. The dependence between the density of hydrogen flow and its excess pressure on the input surface of membrane is well approximated by the first-order curve. This fact indicates that the process of hydrogen permeability is defined by its dissociation on the input surface. Activation energy of this process is 47.9 kJ/mol which considerably exceeds that of the process of hydrogen transfer through palladium (22-30 kJ/mol). This confirms the fact that the chemisorption is a rate-controlling step of the hydrogen transfer through membrane.

  19. Method for palladium activating molybdenum metallized features on a ceramic substrate

    International Nuclear Information System (INIS)

    Kumar, A.H.; Schwartz, B.

    1985-01-01

    A molybdenum or tungsten metallurgical pattern is formed on or in a dielectric green sheet. Palladium, nickel, platinum or rhodium is coated on a layer of polyvinyl butyral which is carried on a polyester film. The metal layer of this assembly is laminated to a dielectric green sheet which carries the molybdenum or tungsten metallurgy. The polyester film is stripped off. The resulting assembly is sintered to a fired structure, whereby the polyvinyl butyral is volatilized off and the palladium, nickel, platinum or rhodium is alloyed with the molybdenum or tungsten metallurgy to provide a densified metallurgy whose surface is free of glass

  20. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Science.gov (United States)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  1. Development of low-silver radiographic detectors

    International Nuclear Information System (INIS)

    Troitskij, V.A.; Novikov, I.A.; Nikitin, V.F.; Krasnyj-Admoni, L.V.; Valevich, M.I.; Belyj, N.G.; Grom, V.S.

    1988-01-01

    The results of investigations on radiographic testing of welded joints of St20, 08Kh18N10T steels, the AMG-6 alloy, copper, titanium using radiographic detectors with the low silver content are presented. The roentgenographic and photographic paper, as well as the samples of experimental films with heavy elements in the photolayer are tested using intensifying screens of different types. Experimental films containing silver 2 times as less as standard X-ray films are shown to provide the similar sensitivity of testing under equal conditions, but the exposure time is two times higher. Prints on the radiophotographic paper in quality and exposure time approach to prints obtained on the RT-1 film containing silver 10 times less than that in the roentgenographic film. The exposure time of the radiographic paper is several times less than that of the ''unibrom'' contrast paper. The testing sensitivity decreases to some extent in this case

  2. Synthesis and characterization of palladium-cobalt alloy for new medical micro-devices

    Science.gov (United States)

    Kafrouni, Lina

    According to Canadian Cancer Statistics, it is estimated that 196,900 Canadians will develop cancer and 78,000 will die of cancer in 2015. Given that tumor cells are more sensitive to a temperature increase than healthy ones, this property can be used in vivo to destroy the cancerous cells by elevation of body temperature, otherwise known as hyperthermia. Magnetic hyperthermia is a promising technique for cancer treatment because of ease in targeting the cancerous cells using magnetic nanoparticles (MNPs) and hence having fewer side effects than chemotherapy and radiotherapy. Despite the use of magnetic hyperthermia to treat cancer for thousands of years, the challenge of only heating malignant cells remains daunting. Thus, oncologists often use the heat treatment in combination with radiotherapy or chemotherapy or both. The combined approach results in eliminating many cancer cells in addition to making the resistant cancer cells more vulnerable to other treatments. To use stand-alone magnetic hyperthermia therapy, difficulties in surface modification of magnetic particles for selective uptake by cancerous cells and stability as well as magnetic properties for high heating capacity (> 1000 W/g) must be overcome. The ultimate objective of this thesis is to synthesize an excellent candidate for a powerful magnetic hyperthermia. Due to rapid advances in nanotechnology, a synthesis method of nanoparticles (NPs) with the ability to rigorously control the structure and morphology, such as size, shape and crystallinity, is needed. Electrodeposition is a versatile method for the synthesis of metal NPs directly and selectively onto conductive substrates, simply by regulating applied current or voltage. Furthermore, the particles size and the shape are easily controllable. Besides, studies have shown that the electrodeposition technique is of great utility in the fabrication of nanocrystalline palladium-cobalt (PdCo) alloys. The primary goal of this project is to synthesize

  3. Vacancy enhancement of diffusion after quenching and during irradiation in silver-zinc alloys

    International Nuclear Information System (INIS)

    Schuele, W.

    1980-01-01

    Quenching and annealing experiments were performed on silver-zinc alloys with 8.14 and 30 at %Zn. From the changes of the electrical resistivity due to an increase of the degree of short-range order, the activation energy of self-diffusion was determined to be Qsub(SD) = 1.60 and Qsub(SD) = 1.38 eV for both alloys, respectively. For the migration energy of vacancies, a value Esub(V)sup(M) = 0.64 eV was found for the alloy with 8.14 at %Zn. Evidence is given that the vacancy migration energy Esub(V)sup(M) of the alloys with 30 at %Zn is smaller than 0.60 eV in agreement with data given by Berry and Orehotsky. The results of measurements of radiation-enhanced diffusion obtained by a Russian and a French group, are reinterpreted. It follows that the increase of the degree of order during irradiation is obtained only be vacancy enhancement of diffusion and that the migration activation energy of self-interstitials is Esub(I)sup(M) approximately 0.46 eV and Esub(I)sup(M) approximately 0.41 eV for the alloys with 8.14 and 30 at %Zn, respectively. (author)

  4. Application of Box–Behnken design for fabrication of titanium alloy and 304 stainless steel joints with silver interlayer by diffusion bonding

    International Nuclear Information System (INIS)

    Balasubramanian, M.

    2015-01-01

    Highlights: • Diffusion bonding of Ti–6Al–4V to SS304 with silver interlayer was successful. • Hardness and shear strength increased with the increase in the bonding temperature. • Shear strength of 149 MPa and 18% strain to failure were achieved. • Joint efficiency of 80% was obtained for the Ti–6Al–4V and SS304L joints. - Abstract: Direct bonding between titanium (Ti)/titanium alloy(Ti alloy) and stainless steel (SS) promotes the formation of various Fe–Ti and Fe–Cr–Ti intermetallics in the diffusion zone, because the solid solubility of Fe, Cr, Ni and Ti in each other is limited and these intermetallics weaken the mechanical properties of the joint. The present study focuses on the titanium alloy Ti–6Al–4V diffusion bonded to AISI 304 stainless steel with silver foil as an interlayer. The process parameters were chosen appropriately and hence, the bonding is achieved without any defect. Box–Behnken design is used to decide the optimum number of experiments required to do the investigation. Microhardness measurements and the lap shear test were carried out to determine the hardness and strength of the joints respectively. The results show that atomic diffusion and migration between Ti and Fe or C are effectively prevented by adding pure Ag as the interlayer metal. The results from mechanical testing showed that shear strength values have a direct relationship with bonding time. The maximum lap shear strength of 149 MPa and 18% strain to failure was observed for joints obtained with bonding time of 60 min. However, effective bonding was not possible at 850 °C due to incomplete coalescence of mating surfaces

  5. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat.

    Science.gov (United States)

    Gallocchio, Federica; Cibin, Veronica; Biancotto, Giancarlo; Roccato, Anna; Muzzolon, Orietta; Carmen, Losasso; Simone, Belluco; Manodori, Laura; Fabrizi, Alberto; Patuzzi, Ilaria; Ricci, Antonia

    2016-06-01

    Migration of nanomaterials from food containers into food is a matter of concern because of the potential risk for exposed consumers. The aims of this study were to evaluate silver migration from a commercially available food packaging containing silver nanoparticles into a real food matrix (chicken meat) under plausible domestic storage conditions and to test the contribution of such packaging to limit food spoilage bacteria proliferation. Chemical analysis revealed the absence of silver in chicken meatballs under the experimental conditions in compliance with current European Union legislation, which establishes a maximum level of 0.010 mg kg(-1) for the migration of non-authorised substances through a functional barrier (Commission Regulation (EU) No. 10/2011). On the other hand, microbiological tests (total microbial count, Pseudomonas spp. and Enterobacteriaceae) showed no relevant difference in the tested bacteria levels between meatballs stored in silver-nanoparticle plastic bags or control bags. This study shows the importance of testing food packaging not only to verify potential silver migration as an indicator of potential nanoparticle migration, but also to evaluate the benefits in terms of food preservation so as to avoid unjustified usage of silver nanoparticles and possible negative impacts on the environment.

  6. High temperature creep of single crystals of gold, silver and solid solution gold silver 50-50

    International Nuclear Information System (INIS)

    Dorizzi, Paul

    1973-01-01

    We have studied in compression creep along a direction, single crystals of gold, silver and a 50-50 gold-silver solid solution. The experiments were made at temperatures above 0.7 Tf. We have shown that under these conditions and for these three metals a new slip system is operating: the deformation is due to the slip of dislocations having a 1/2 burgers vector on the {110} planes. For gold the activation energy for creep is equal to the self-diffusion energy. We found the same result for silver when the contribution of divacancies to the self-diffusion energy is taken into account. For the alloy the activation energy for creep is very close to the self-diffusion energy of gold in a 50-50 gold-silver alloy, gold being the slower diffusing species in the alloy. The curves giving the creep rate versus the stress can be fitted with the following laws: ε 0 = σ 5 for gold; ε 0 = σ 2,2 for silver and ε 0 = σ 2,5 for the alloy. The dislocation substructure was studied using the crystalline contrast given by the electron microprobe. This new method gives images which are very sensitive to the sub-grains misorientation. The substructure is made of parallelepipedic cells divided by tilt boundaries that are perpendicular to the {110} slip planes. (author) [fr

  7. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals

    Science.gov (United States)

    Bhaumik, Saikat; Guchhait, Asim; Pal, Amlan J.

    2014-04-01

    We report solution-processed growth of zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals followed by fabrication and characterization of light-emitting diodes (LEDs) based on such nanostructures. While growing the low dimensional crystals, we vary the ratio between the silver and zinc contents that in turn tunes the bandgap and correspondingly their photoluminescence (PL) emission. We also dope the AIZS nanocrystals with manganese, so that their PL emission, which appears due to a radiative transition between the d-states of the dopants, becomes invariant in energy when the diameter of the quantum dots or the dopant concentration in the nanostructures varies. The LEDs fabricated with such undoped and manganese-doped AIZS nanocrystals emit electroluminescence (EL) that matches the PL spectrum of the respective nanomaterial. The results demonstrate examples of quantum dot LEDs (QDLEDs) based on nontoxic AIZS nanocrystals.

  8. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  9. Corrosion resistance of ZrTi alloys with hydroxyapatite-zirconia-silver layer in simulated physiological solution containing proteins for biomaterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Trincă, L.C. [“Ion Ionescu de la Brad” University of Agricultural Science and Veterinary Medicine, Faculty of Horticulture, Science Department, 3, Mihail Sadoveanu Alley, Iaşi, 700490 (Romania); Căilean, D. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain)

    2016-12-15

    Highlights: • Hydroxyapatite-zirconia coated ZrTi alloys were characterized for biocompatibility. • Silver nanoparticles added for antimicrobial activity. • Electrochemical behaviour consistent with surface layer of duplex structure. • Porous coating forms on passivating oxide layer. • HA-ZrO{sub 2}-Ag coated Zr45Ti exhibits high potential for implant application. - Abstract: The degradation characteristics of hydroxyapatite-zirconia-silver films (HA-ZrO{sub 2}-Ag) coatings on three ZrTi alloys were investigated in Ringer’s solution containing 10% human albumin protein at 37 °C. Samples were immersed for 7 days while monitored by electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP). The electrochemical analysis in combination with surface analytical characterization by scanning electron microscopy (SEM/EDX) reveals the stability and corrosion resistance of the HA-ZrO{sub 2}-Ag coated ZrTi alloys. The characteristic feature that describes the electrochemical behaviour of the coated alloys is the coexistence of large areas of the coating presenting pores in which the ZrTi alloy substrate is exposed to the simulated physiological environment. The EIS interpretation of results was thus performed using a two-layer model of the surface film. The blocking effect in the presence the human albumin protein produces an enhancement of the corrosion resistance. The results disclose that the Zr45Ti alloy is a promising material for biomedical devices, since electrochemical stability is directly associated to biocompatibility.

  10. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-01-01

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  11. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  12. External-beam PIXE spectrometry for the study of Punic jewellery (SW Spain): The geographical provenance of the palladium-bearing gold

    International Nuclear Information System (INIS)

    Ontalba Salamanca, M.A.; Gomez-Tubio, B.; Ortega-Feliu, I.; Respaldiza, M.A.; Luisa de la Bandera, M.; Ovejero Zappino, G.; Bouzas, A.; Gomez-Moron, A.

    2006-01-01

    This paper presents the study of a set of Punic gold items (400 B.C.), from the Museum of Cadiz (Spain). An external beam set-up has been employed for the absolutely non-destructive analysis of the objects. PIXE spectrometry has been performed in order to characterize the metallic alloys and the manufacturing techniques. Compositional differences have been found and soldering procedures have been identified. By comparison with the rings and other coetaneous jewellery, the presence of palladium in the bulk alloy of the earrings can be pointed out. The geographical provenance of the palladium-bearing gold is discussed based on geological and archaeological considerations

  13. External-beam PIXE spectrometry for the study of Punic jewellery (SW Spain): The geographical provenance of the palladium-bearing gold

    Energy Technology Data Exchange (ETDEWEB)

    Ontalba Salamanca, M.A. [Departamento de Fisica, Escuela Politecnica, Universidad de Extremadura, Avda. de la Universidad s/n., 10071 Caceres (Spain)]. E-mail: ontalba@unex.es; Gomez-Tubio, B. [Centro Nacional de Aceleradores, Sevilla (Spain); Ortega-Feliu, I. [Centro Nacional de Aceleradores, Sevilla (Spain); Respaldiza, M.A. [Centro Nacional de Aceleradores, Sevilla (Spain); Luisa de la Bandera, M. [Departamento de Arqueologia, Universidad de Sevilla (Spain); Ovejero Zappino, G. [Cobre Las Cruces SA, Gerena, Sevilla (Spain); Bouzas, A. [Instituto Andaluz de Patrimonio Historico, Sevilla (Spain); Gomez-Moron, A. [Instituto Andaluz de Patrimonio Historico, Sevilla (Spain)

    2006-08-15

    This paper presents the study of a set of Punic gold items (400 B.C.), from the Museum of Cadiz (Spain). An external beam set-up has been employed for the absolutely non-destructive analysis of the objects. PIXE spectrometry has been performed in order to characterize the metallic alloys and the manufacturing techniques. Compositional differences have been found and soldering procedures have been identified. By comparison with the rings and other coetaneous jewellery, the presence of palladium in the bulk alloy of the earrings can be pointed out. The geographical provenance of the palladium-bearing gold is discussed based on geological and archaeological considerations.

  14. Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria

    DEFF Research Database (Denmark)

    Beier, Matthias Josef; Hansen, Thomas Willum; Grunwaldt, Jan-Dierk

    2009-01-01

    simultaneously. When a high catalytic conversion (>30% over 2 h) was found the number of catalyst components was reduced in the following tests. Thereby, a collaborative effect between a physical mixture of ceria nanoparticles and silver-impregnated silica (10 wt.% Ag–SiO2) was found. The catalytic activity...... by in situ XAS experiments. Oxygen species incorporated in the silver lattice appear to be important for the catalytic oxidation of the alcohol for which a preliminary mechanism is presented. The application of the catalyst was extended to the oxidation of a wide range of primary and secondary alcohols....... Compared to palladium and gold catalysts, the new silver catalyst performed similarly or even superior in the presence of CeO2. In addition, the presence of ceria increased the catalytic activity of all investigated catalysts....

  15. Influence of silver on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloys as positive grids in lead acid batteries

    International Nuclear Information System (INIS)

    Tizpar, A.; Ghasemi, Z.

    2006-01-01

    The influence of silver addition in the range 0.01-0.09 wt.% on the anodic corrosion and gas evolution of Pb-Sb-As-Se alloy in 1.28 sp.gr. H 2 SO 4 solution at 25 deg. C was studied using linear sweep voltammetry, cyclic voltammetry, weight loss measurements and scanning electron microscopy. The results drawn from different techniques are comparable. The effect of different concentration of silver on the corrosion behavior of Pb-Sb-As-Se was investigated. The experimental results show that the silver added to Pb-Sb-As-Se alloy inhibits the growth of anodic corrosion layer. A decrease in the oxygen evolution overpotential and an increase in the hydrogen evolution overpotential with the addition of Ag were also observed during the experiments. Cyclic voltammetric measurements provided information on the effect of Ag on the oxidation of PbSO 4 to PbO 2

  16. A nanoflower shaped gold-palladium alloy on graphene oxide nanosheets with exceptional activity for electrochemical oxidation of ethanol

    International Nuclear Information System (INIS)

    Wang, Qiyu; Cui, Xiaoqiang; Zhang, Xiaoming; Liu, Chang; Xue, Tianyu; Wang, Haitao; Zheng, Weitao; Guan, Weiming

    2014-01-01

    We report on a new and facile method for the preparation of well-dispersed gold-palladium (AuPd) flower-shaped nanostructures on sheets of graphene oxide (GO). Transmission electron microscopy and high angle annular dark field STEM were used to characterize the morphology and composition of the new nanohybrids. The AuPd/GO composites display high electrocatalytic activity for the oxidation of ethanol in strongly alkaline medium as examined by cyclic voltammetry and chronoamperometry. Both the current density (13.16 mA · cm −2 at a working potential of −0.12 V) and the long-time stability are superior to a commercial Pd-on-carbon catalyst which is attributed to the cooperative action of the catalytic activities of Au and Pd, and the good dispersion of the alloy on the nanosheets. (author)

  17. Testing Commodities as Safe Haven and Hedging Instrument on ASEAN's Five Stock Markets

    Directory of Open Access Journals (Sweden)

    Robiyanto Robiyanto

    2017-08-01

    Full Text Available This study attempts to analyze commodity market instruments such as gold, silver, platinum, palladium, and West Texas Intermediate (WTI crude oil’s potential as hedge and safe haven toward some stock markets in South East Asia such as in Indonesia, Singapore, Malaysia, Philippines, and Thailand. To analyze the data, GARCH (1,1 was applied. The research findings showed that gold, silver, platinum, palladium, and WTI could not play their role as hedging instrument for five South East Asian capital markets. WTI could act as a robust safe haven for most South East Asian capital markets. Gold could do the role as a robust safe haven in Singapore and Malaysia, whereas, platinum and silver consistently could be safe haven only for Singapore Stock Exchange. Palladium could only be safe haven for Philippines Stock Exchange.

  18. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  19. Determination of palladium content in palladium-alumina/palladium-silica/palladium-tin oxide catalyst for nuclear reactor applications

    International Nuclear Information System (INIS)

    Sharma, P.K.; Bassan, M.K.T.; Avhad, D.K.; Singhal, R.K.

    2012-01-01

    Alumina and silica act as support for finely divided palladium metal powder in synthesis of catalyst. These catalyst (Pd-Al 2 O 3 , Pd-SiO 2 and Pd-SnO 2 ) used in nuclear power reactor (moderator cover gas system) for the conversion of hydrogen. In Indian nuclear power programme these catalyst are regularly used in Kaiga 1 and 2 and Rajasthan atomic power plant 3 and 4. The performance of the catalyst, solely depends on the concentration of palladium, which is the active component in this catalyst composition. Therefore it is highly desirable to have rouged analytical methodology for the accurate estimation of palladium. Leaching of Pd from the bulk matrix is tedious due to the less reactive nature of Pd therefore complete solubilization of the matrix is carried out by fusion method

  20. Reducing Stress-Corrosion Cracking in Bearing Alloys

    Science.gov (United States)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  1. Testing Commodities as Safe Haven and Hedging Instrument on ASEAN's Five Stock Markets

    OpenAIRE

    Robiyanto, Robiyanto

    2017-01-01

    This study attempts to analyze commodity market instruments such as gold, silver, platinum, palladium, and West Texas Intermediate (WTI) crude oil’s potential as hedge and safe haven toward some stock markets in South East Asia such as in Indonesia, Singapore, Malaysia, Philippines, and Thailand. To analyze the data, GARCH (1,1) was applied. The research findings showed that gold, silver, platinum, palladium, and WTI could not play their role as hedging instrument for five South East Asi...

  2. Observations of ’Economical’ Fixed Prosthodontic Alloys,

    Science.gov (United States)

    1982-01-01

    Office) 15. SECURITY CLASS. (of this ,.portj Ia. OS7RI~fl3 ~TATM~T1of5sA. DECLASSIFICATION/OO44GRAUTIV S Unlimited 17. 0137 PI3UT10ON STATEMENT (of the...however, the silver-palladium and silver-indium materials require ~DA~3 47 EOfl4O tO’/SfOBOLTE UNCLASSIFIED 8 2’ 02 R -/ SECURITY CLASSIFICATION OF...ous grain boundary netowrk , whereas those of Salivan revealed large grains, discontinuous grain boundaries and prominent subgrains. Microstructures

  3. ESR study of thermal demagnetization processes in ferromagnetic nanoparticles with Curie temperatures between 40 and 60 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation)]. E-mail: kuznetsov_oa@yahoo.com; Sorokina, Olga N. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Leontiev, Vladimir G. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Shlyakhtin, Oleg A. [Institute of Chemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Kovarski, Alexander L. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation)

    2007-04-15

    Thermal demagnetization in the vicinity of the Curie temperature of silver and sodium manganite nanoparticles, as well as copper-nickel and palladium-nickel alloy nanoparticles were studied by both static magnetic measurements and by electron spin resonance (ESR). ESR data indicate that some magnetic ordering remains even above the Curie temperature, determined by static magnetometry. Mechanisms of thermal demagnetization in alloy nanoparticles appear to be different from that in manganites.

  4. ESR study of thermal demagnetization processes in ferromagnetic nanoparticles with Curie temperatures between 40 and 60 deg. C

    International Nuclear Information System (INIS)

    Kuznetsov, Oleg A.; Sorokina, Olga N.; Leontiev, Vladimir G.; Shlyakhtin, Oleg A.; Kovarski, Alexander L.; Kuznetsov, Anatoly A.

    2007-01-01

    Thermal demagnetization in the vicinity of the Curie temperature of silver and sodium manganite nanoparticles, as well as copper-nickel and palladium-nickel alloy nanoparticles were studied by both static magnetic measurements and by electron spin resonance (ESR). ESR data indicate that some magnetic ordering remains even above the Curie temperature, determined by static magnetometry. Mechanisms of thermal demagnetization in alloy nanoparticles appear to be different from that in manganites

  5. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.; Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.

    2013-01-01

    Summary: • Pd will bind lanthanide fission products. • 2 wt% Pd in alloy is expected to allow 20 at% Heavy Metal burnup, 4 wt% Pd possibly 30-40 at% HM burnup. • For recycled fuel with some lanthanide carryover, palladium additive will also prevent premature FCCI. • Novel uranium alloy systems suitable for burning transuranics were identified. • U-Mo-Ti-Zr and U-W-Mo irradiations may perform comparably to U-10Zr, but the real tests needed must include Pu and Np for TRU burning. – Diffusion couples with alloys and Fe or cladding; – Irradiations

  6. Palladium-based electrocatalysts for ethanol oxidation reaction in DEFC

    International Nuclear Information System (INIS)

    Moraes, L.P.R. de; Elsheikh, A.; Silva, E. L. da; Radtke, C.; Amico, S.C.; Malfatti, C.F.

    2014-01-01

    Direct ethanol fuel cells require the use of electrocatalysts to promote bond cleavage of the ethanol molecule in an efficient way. Currently, most electrocatalysts contain platinum, which enables improved catalytic activity and stability in acidic media. However platinum presents high cost and low availability. Based on that, novel catalysts have been developed, such as those based on palladium and its alloys, which have attained excellent results in the oxidation of ethanol in alkaline media. In this work, Pd, PdSn and PdNiSn catalysts supported on Vulcan XC72R carbon were synthesized via impregnation/reduction. The electrocatalysts were characterized by RBS, XRD and cyclic voltammetry. The X-ray diffraction results showed the formation of an alloy and not the deposition of isolated elements. The synthesized catalysts displayed good catalytic activity, as observed by cyclic voltammetry, being the best electrochemical performance achieved by the ternary alloy. (author)

  7. Impurities determination in precious metals like rhodium, palladium and platinum by neutron activation without separation

    International Nuclear Information System (INIS)

    May, S.; Piccot, D.; Pinte, G.

    1978-01-01

    The possibilities of the method explored using an installation of gamma or X ray spectrometry of good performance. The irradiations were realized in the reactors EL.3 (flux approximately 6.10 12 n.cm -2 .s -1 ) and Osiris (flux > 10 14 n.cm -2 .s -1 ) of the CEN Saclay. In rhodium the presence of iridium limits the analysis possibilities. However gold, silver and platinum are easily determined, just as the other elements (As, Br, Cl, Co, Mn, Na, Sb). In platinum it is possible to determine the elements of long period, especially antimony, silver, cobalt, iridium, tantalum and zinc. As for palladium the principal impurities are gold, silver and ruthenium for what is of precious metals and particularly zinc among the other metals. For the three matrices considered the detection limits of a certain number of elements are indicated [fr

  8. Wear and corrosion behaviors of Ti6Al4V alloy biomedical materials by silver plasma immersion ion implantation process

    Energy Technology Data Exchange (ETDEWEB)

    Hongxi, Liu [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Qian, Xu, E-mail: vipliuhx@yahoo.com.cn [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Xiaowei, Zhang; Chuanqi, Wang [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Baoyin, Tang [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-10-30

    In order to improve the wear resistance and anti-corrosion behaviors of Ti6Al4V (TC4) alloy, polished samples were implanted with silver (Ag) ions by plasma immersion ion implantation (PIII) technique. The phase composition and element concentration-depth distribution in modified layer were characterized by X-ray diffraction (XRD) and Auger electron spectrum (AES). Corrosion resistance, microhardness, friction and wear behaviors of PIII-TC4 alloy changed with the Ag ion implantation dose. XRD analysis reveals that the surface modified layer consists of Ag and a small amount of TiAg phases. AES results show that Ag atomic peak concentration is 9.88%, about 14.4 nm from the surface. The maximum nanohardness and elastic modulus of PIII-TC4 alloy increases by 62.5% and 54.5%, respectively. The lowest friction coefficient reduces from 0.78 to 0.2. The test result of potentiodynamic polarization in 3.5% NaCl saturated solution indicates that the sample of Ag ion dose at 1.0 Multiplication-Sign 10{sup 17} ions/cm{sup 2} has the best corrosion resistance with the lowest corrosion current density and the least porosity.

  9. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    Science.gov (United States)

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  10. Migration behavior of palladium in UO2, (3)

    International Nuclear Information System (INIS)

    Yoneyama, Mitsuru; Sato, Seichi; Ohashi, Hiroshi; Ogawa, Toru; Ito, Akinori; Fukuda, Kousaku.

    1992-08-01

    Palladium (Pd) is easily released from UO 2 kernels in HTGR coated fuel particles, and reacts with SiC coating layer. In addition, Pd is one of metallic fission products in irradiation UO 2 , which constitutes in dissoluble residue in reprocessing of LWR fuels. In the present investigation, the migration of palladium in UO 2 was examined by heating diffusion pairs sandwiched Pd foil between UO 2 wafers at 1300 ∼ 1800degC. Experiments were also carried out on affinity of Pd to UP 2 and a formation of U-Pd alloy. Pd was found mainly in the pores of UO 2 . The maximum depth intruded by Pd in fairly large amount was more than 100 μm for UO 2 with 90%TD and 50μm for UO 2 with 95%TD, while the maximum length of open pores was 330 μm for UO 2 with 90%TD, and 50 m for that with 95%TD. Fused Pd wetted UO 2 very much. Pd intruded deeply into UO 2 , especially in the edge of Pd droplet. Furthermore, U was detected either in precipitates or the Pd source with α-Pd phase of U-Pd alloy containing Pd at about 10at%. This fact indicates that Pd highly reacts with UO 2 . From the above results, the transport of Pd in UO 2 was explained by the model of gaseous diffusion through pores in UO 2 , which is retarded by formation of U-Pd alloy. It is also indicated that UPd 3 forms even at the oxygen potential condition of O/U ratio, which is a little higher than 2.00 on the basis of thermodynamic calculation. (author)

  11. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    International Nuclear Information System (INIS)

    Evans, K.J.; Day, S.D.; Ilevbare, G.O.; Whalen, M.T.; King, K.J.; Hust, G.A.; Wong, L.L.; Estill, J.C.; Rebak, R.B.

    2003-01-01

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl 2 ) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl 2 at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy

  12. Antibacterial properties and mechanisms of gold-silver nanocages

    Science.gov (United States)

    Wang, Yulan; Wan, Jiangshan; Miron, Richard J.; Zhao, Yanbin; Zhang, Yufeng

    2016-05-01

    Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics.

  13. Direct determination of thermodynamic activities of gold in the systems gold-palladium and gold-silver-palladium

    International Nuclear Information System (INIS)

    Hoehn, R.; Herzig, C.

    1986-01-01

    The thermodynamic activity of the gold component was directly measured in Au-Pd alloys in the concentration range between X Au =0.048 and 0.850 and in the temperature range 1070 and 1300 K. The ratio of the vapour pressures of pure gold and of the gold component of the alloys was determined - after effusion from a Knudsen twin cell and condensation on a collecting plate - by analysing the decay rate of the radioisotopes 195 Au and 198 Au in an intrinsic germanium well-type detector. The partial mixing enthalpy and the partial mixing entropy of Au were directly obtained from these results. By Gibbs-Duhem integration the integral mixing functions were deduced. Similar measurements were performed in several ternary Au-Ag-Pd alloys of fixed mole fraction X Ag /X Pd =1/9. A comparison of the directly measured partial free excess enthalpy of Au in these ternary alloys with data obtained by the approximate models of Kohler, Toop and Bonnier using data of the corresponding three binary systems yields satisfactory agreement. (orig.) [de

  14. A prospective interventional study to examine the effect of a silver alloy and hydrogel-coated catheter on the incidence of catheter-associated urinary tract infection.

    Science.gov (United States)

    Chung, P Hy; Wong, C Wy; Lai, C Kc; Siu, H K; Tsang, D Nc; Yeung, K Y; Ip, D Km; Tam, P Kh

    2017-06-01

    Catheter-associated urinary tract infection is a major hospital-acquired infection. This study aimed to analyse the effect of a silver alloy and hydrogel-coated catheter on the occurrence of catheter-associated urinary tract infection. This was a 1-year prospective study conducted at a single centre in Hong Kong. Adult patients with an indwelling urinary catheter for longer than 24 hours were recruited. The incidence of catheter-associated urinary tract infection in patients with a conventional latex Foley catheter without hydrogel was compared with that in patients with a silver alloy and hydrogel-coated catheter. The most recent definition of urinary tract infection was based on the latest surveillance definition of the National Healthcare Safety Network managed by Centers for Disease Control and Prevention. A total of 306 patients were recruited with a similar ratio between males and females. The mean (standard deviation) age was 81.1 (10.5) years. The total numbers of catheter-days were 4352 and 7474 in the silver-coated and conventional groups, respectively. The incidences of catheter-associated urinary tract infection per 1000 catheter-days were 6.4 and 9.4, respectively (P=0.095). There was a 31% reduction in the incidence of catheter-associated urinary tract infection per 1000 catheter-days in the silver-coated group. Escherichia coli was the most commonly involved pathogen (36.7%) of all cases. Subgroup analysis revealed that the protective effect of silver-coated catheter was more pronounced in long-term users as well as female patients with a respective 48% (P=0.027) and 42% (P=0.108) reduction in incidence of catheter-associated urinary tract infection. The mean catheterisation time per person was the longest in patients using a silver-coated catheter (17.0 days) compared with those using a conventional (10.8 days) or both types of catheter (13.6 days) [P=0.01]. Silver alloy and hydrogel-coated catheters appear to be effective in preventing catheter

  15. Laccases as palladium oxidases.

    Science.gov (United States)

    Mekmouche, Yasmina; Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A Jalila; Bochot, Constance; Réglier, Marius; Tron, Thierry

    2015-02-01

    The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation.

  16. Hydrogen gas detector

    International Nuclear Information System (INIS)

    Bohl, T.L.

    1982-01-01

    A differential thermocouple hydrogen gas detector has one thermocouple junction coated with an activated palladium or palladium-silver alloy catalytic material to allow heated hydrogen gas to react with the catalyst and raise the temperature of that junction. The other juction is covered with inert glass or epoxy resin, and does not experience a rise in temperature in the presence of hydrogen gas. A coil heater may be mounted around the thermocouple junctions to heat the hydrogen, or the gas may be passed through a heated block prior to exposing it to the thermocouples

  17. The generalized lewis acid-base titration of palladium and niobium

    Science.gov (United States)

    Cima, M.; Brewer, L.

    1988-12-01

    The high thermodynamic stability of alloys composed of platinum group metals and group IVB and VB metals has been explained by an electronic interaction analogous to the Lewis acid-base concept for nontransition elements. The analogy is further demonstrated by the titration of palladium by addition of niobium. The activity of niobium in solid palladium was measured as a function of concentration by solid-state galvanic cells and study of the ternary oxide phase diagram. The galvanic cells were of the type Pt/NbO2,Nb2O4.8/YDTJNbOy,Nbpd/Pt where the solid electrolyte is yttria-doped thoria (YDT). Ternary phase diagrams for the Pd-Nb-0 and Rh-Nb-0 systems were obtained by characterizing samples equilibrated at 1000 °C. The phase relationships found in the ternary diagrams were also used to derive thermochemical data for the alloys. Thermochemical quantities for other acid-base stabilized alloys such as Nb-Rh, Ti-Pd, and Ti-Rh were also measured. The excess partial molar ΔGxs/R of niobium at infinite dilution was determined to be -31 kilo-Kelvin at 1000 °C, and the AG°JR of formation of a mole of NbPd3.55 is —21 kilo-Kelvin. These results and those for the other systems are used to assess the importance of valence electron configuration, nuclear charge, and crystal field effects in the context of generalized Lewis acid-base theory. It is concluded that both the nuclear charge of the atom and crystal field splitting of the valence orbitals significantly affect the basicity of the platinum group metals.

  18. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  19. Electrochemical permeation tests on the kinetics of the hydrogen absorption of palladium and iron

    International Nuclear Information System (INIS)

    Dafft, E.G.

    1977-01-01

    Electrochemical permeation tests were performed to investigate the kinetics of the hydrogen development and hydrogen absorption. The cathode side of the samples was galvanostatically cathodically polarized in different electrolyte solutions with and without additions. THe hydrogen atoms diffusing out of the opposite side for iron and α-palladium were oxidized with potentiostatic, sufficiently anodic polarization. The thus registered stationary current is proportional to the hydrogen activity on the cathode side. Test apparatus and conditions are described. The measurements on iron are discussed. (orig./HPOE) [de

  20. Solar cell contact pull strength as a function of pull-test temperature

    Science.gov (United States)

    Yasui, R. K.; Berman, P. A.

    1972-01-01

    Four types of solar cell contacts were given pull-strength tests at temperatures between -173 and +165 C. Contacts tested were: (1) solder-coated titanium-silver contacts on n-p cells, (2) palladium-containing titanium-silver contacts on n-p cells, (3) titanium-silver contacts on 0.2-mm-thick n-p cells, and (4) solder-coated electroless-nickel-plated contacts on p-n cells. Maximum pull strength was demonstrated at temperatures significantly below the air mass zero cell equilibrium temperature of +60 C. At the lowest temperatures, the chief failure mechanism was silicon fracture along crystallographic planes; at the highest temperatures, it was loss of solder strength. In the intermediate temperatures, many failure mechanisms operated. Pull-strength tests give a good indication of the suitability of solar cell contact systems for space use. Procedures used to maximize the validity of the results are described.

  1. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    International Nuclear Information System (INIS)

    Motes, B.G.; Fernandez, S.J.; Tkachyk, J.W.

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10 -2 % and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  2. An Investigation into the Effects of Sprue Attachment Design on Porosity and Castability

    Science.gov (United States)

    1990-12-01

    perdue" or "wasting wax" process. Hollenback (1962) reported on the utilization of the lost wax technique by the Chinese 5,000 to 6,000 years ago and...1982b). They suggested that a sprue be attached to the wax pattern without flaring for "precious metal porcelain veneer alloys". They reported that a...status report on palladium-silver alloys, Huget (1974) discussed the potential problems of castability and fit and porcelain discoloration due to high

  3. The characteristics of laser welded magnesium alloy using silver nanoparticles as insert material

    International Nuclear Information System (INIS)

    Ishak, M.; Maekawa, K.; Yamasaki, K.

    2012-01-01

    Highlights: ► Ag nanoparticles are used as insert material for welding Mg alloy with laser. ► We examine the microstructure and mechanical properties of welded Mg alloys. ► Nananoparticle promote grain refinement to the weld structure. ► Finer nanoparticle produces high weld efficiency and mechanical properties. - Abstract: This paper describes the characteristics of the laser welding of thin-sheet magnesium alloys using silver (Ag) nanoparticles as an insert material. The experiment was conducted using nanoparticles with 5 nm and 100 nm diameters that were welded with a Nd:YAG laser. The microstructure and mechanical properties of the specimens welded using inserts with different sizes of nanoparticles and without an insert material, were examined. Electron probe micro-analyzer (EPMA) analysis was conducted to confirm the existence of Ag in the welded area. The introduction of the Ag nanoparticle insert promoted large area of fine grain and broadened the acceptable range of scanning speed parameters compared to welds without an insert. Welds with 5 nm nanoparticles yielded the highest fracture load of up to 818 N while the lowest fracture load was found for weld specimens with 100 nm nanoparticles. This lower fracture load was due to larger voids and a smaller throat length, which contributed to a lower fracture load when using larger nanoparticles.

  4. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  5. Iodine, krypton and xenon retention efficiencies of silver impregnated silica gel media with different silver loadings and under different test conditions

    Energy Technology Data Exchange (ETDEWEB)

    Motes, B G; Fernandez, S J; Tkachyk, J W

    1983-02-01

    The purpose of an independent study conducted by Exxon Nuclear Idaho, Co. (ENICO) was to evaluate a silver impregnated silica gel adsorption medium associated with a radioiodine air sampler developed at Brookhaven National Laboratory (BNL). Specifically, ENICO's responsibility was to evaluate the iodine and noble gas retention efficiencies of the adsorption medium. The evaluation was comprised of a four-phase program: 1) test assemblies capable of challenging the silver silica gel filled adsorber canister with radioiodine species or noble gases at flow rates up to 10 scfm and relative humidities up to 83% were constructed; 2) more than 45 kgs of the 4 and 8% silver impregnated silica gel were prepared and characterized for particle size distribution, bulk silver content, bulk density, and silver content by particle size; 3) iodine species retention efficiencies of the silver silica gel were determined; and 4 krypton and xenon retention efficiencies were measured. The iodine species retention efficiencies were greater than 90% under most conditions. A combination of flow rates >5 scfm and 4% silver loaded silica gel reduced the methyl iodide retention efficiency to less than 90%. The retention efficiencies for both krypton and xenon were on the order of 8 x 10{sup -2}% and were not affected greatly by any test variable except test duration. A reduced retention efficiency with increased test durations indicates adsorption equilibrium may be established within five minutes. (author)

  6. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  7. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    International Nuclear Information System (INIS)

    Ghaedi, Mehrorang; Shokrollahi, Ardeshir; Niknam, Khodabakhsh; Niknam, Ebrahim; Najibi, Asma; Soylak, Mustafa

    2009-01-01

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L -1 HNO 3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL -1 for Cd 2+ , Pb 2+ , Pd 2+ and Ag + along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd 2+ , Pb 2+ , Pd 2+ and Ag + , respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  8. On the problem of soldering refractory metals with silver-containing solders

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Andryushchenko, V.I.; Chepelenko, V.N.; Batov, V.M.

    1981-01-01

    The processes of wetting, spreading and interphase interactions of copper-silver liquid alloys alloyed with Ni and Si, with niobium, tantalum, molybdenum, tungsten, 12Kh18N10T steel and nickel are studied. It has been determined that Ni or Si additions into the copper-silver solder improve the wetting and adhesion. When soldering with the alloy containing Ni additions, the strength of a soldered Joint grows with the increase of soldering duration while soldering with the alloy containing Si additions, the strength decreases. That is why Ni-containing solders are preferable for soldering thick-walled structures, and Si-containing solders - for thin-walled structures [ru

  9. Synthesis of honeycomb-like palladium nanostructures by using cucurbit[7]uril and their catalytic activities for reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Thathan [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); The University College/Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Geckeler, Kurt E., E-mail: keg@gist.ac.kr [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2014-12-15

    An eco-friendly one-pot method to synthesize self-assembled palladium nanoclusters using a macrocycle, namely cucurbit[7]uril, in the alkaline medium without employing any special reducing or capping agents and/or external energy at room temperature is described. This greener approach, which utilizes water as a benign solvent and biocompatible cucurbit[7]uril as both reducing and protecting agents, can be applied to synthesize other noble metal nanoparticles such as gold, silver, and platinum. Owing to unique structural arrangement of cucurbit[7]uril, it was possible to prepare palladium nanoclusters of honeycomb-like structure irrespective of the reaction conditions. The honeycomb-like palladium nanoclusters were characterized using transmission electron microscopy (TEM), higher-resolution TEM (HR-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV–vis, and FT-IR spectroscopy. Significantly, the synthesized palladium nanoclusters exhibited catalytic activity for the reduction reaction of 4-nitrophenol at room temperature. The approach launched here is easy, green, and user-friendly in contrast to the conventional techniques using polymers or surfactants and harsh reductants. - Highlights: • A simple and one-pot method to synthesis palladium nanostructures with honey-comb like structure. • The strategy established here does not require any harsh and toxic reducing agents. • It has a potential to be a general method for the synthesis of metal nanoparticles in water medium. • Palladium nanoclusters can be used as catalyst for the reduction reaction of 4-nitrophenol. • This system makes a novel platform for industrial and biomedical applications.

  10. Fabrication and test of inorganic/organic separators. [for silver zinc batteries

    Science.gov (United States)

    Smatko, J. S.

    1974-01-01

    Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.

  11. On the thermomechanical deformation of silver shape memory nanowires

    International Nuclear Information System (INIS)

    Park, Harold S.; Ji, Changjiang

    2006-01-01

    We present an analysis of the uniaxial thermomechanical deformation of single-crystal silver shape memory nanowires using atomistic simulations. We first demonstrate that silver nanowires can show both shape memory and pseudoelastic behavior, then perform uniaxial tensile loading of the shape memory nanowires at various deformation temperatures, strain rates and heat transfer conditions. The simulations show that the resulting mechanical response of the shape memory nanowires depends strongly upon the temperature during deformation, and can be fundamentally different from that observed in bulk polycrystalline shape memory alloys. The energy and temperature signatures of uniaxially loaded silver shape memory nanowires are correlated to the observed nanowire deformation, and are further discussed in comparison to bulk polycrystalline shape memory alloy behavior

  12. Silver-catalyzed synthesis of amides from amines and aldehydes

    Science.gov (United States)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun; Friend, Cynthia M; Freyschlag, Cassandra G

    2014-11-18

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  13. Metal allergen of the 21st century--a review on exposure, epidemiology and clinical manifestations of palladium allergy

    DEFF Research Database (Denmark)

    Faurschou, Annesofie; Menné, Torkil; Johansen, Jeanne D

    2011-01-01

    Consumers are mainly exposed to palladium from jewellery and dental restorations. Palladium contact allergy is nearly always seen together with nickel allergy, as palladium and nickel tend to cross-react. We aimed to analyse the available palladium patch test data and case reports to determine...

  14. Nickel, palladium and rhodium induced IFN-gamma and IL-10 production as assessed by in vitro ELISpot-analysis in contact dermatitis patients

    Science.gov (United States)

    Bordignon, Valentina; Palamara, Francesca; Cordiali-Fei, Paola; Vento, Antonella; Aiello, Arianna; Picardo, Mauro; Ensoli, Fabrizio; Cristaudo, Antonio

    2008-01-01

    Background Recent attempts to diminish nickel use in most industrial products have led to an increasing utilization of alternative metal compounds for destinations such as the alloys used in orthopaedics, jewellery and dentistry. The present study was undertaken with the aim to evaluate the potential for an allergic response to nickel, palladium and rhodium on the basis of antigen-specific induction of inflammatory/regulatory cytokines, and to characterize, according to the cytokine profiles, the nature of simultaneous positive patch tests elicited in vivo. Peripheral blood mononuclear cells (PBMC) from 40 patients with different patch test results were kept in short term cultures in the presence of optimized concentrations of NiSO4 × 6H2O, PdCl2 and Rh(CH3COO)2. The production of IFN-γ and IL-10 elicited by metal compounds were analyzed by the ELISpot assay. Results We found a specific IFN-γ response by PBMC upon in vitro stimulation with nickel or palladium in well recognized allergic individuals. All controls with a negative patch test to a metal salt showed an in vitro IL-10 response and not IFN-γ production when challenged with the same compound. Interestingly, all subjects with positive patch test to both nickel and palladium (group 3) showed an in vitro response characterized by the release of IFN-γ after nickel stimulation and production of IL-10 in response to palladium. Conclusion These results strongly suggest that the different cytokine profiles elicited in vitro reflect different immune responses which may lead to the control of the allergic responses or to symptomatic allergic contact dermatitis. The development of sensitive and specific in vitro assays based on the determination of the cytokine profiles in response to contact allergens may have important diagnostic and prognostic implications and may prove extremely useful in complementing the diagnostic limits of traditional patch testing. PMID:18482439

  15. Nickel, palladium and rhodium induced IFN-gamma and IL-10 production as assessed by in vitro ELISpot-analysis in contact dermatitis patients

    Directory of Open Access Journals (Sweden)

    Ensoli Fabrizio

    2008-05-01

    Full Text Available Abstract Background Recent attempts to diminish nickel use in most industrial products have led to an increasing utilization of alternative metal compounds for destinations such as the alloys used in orthopaedics, jewellery and dentistry. The present study was undertaken with the aim to evaluate the potential for an allergic response to nickel, palladium and rhodium on the basis of antigen-specific induction of inflammatory/regulatory cytokines, and to characterize, according to the cytokine profiles, the nature of simultaneous positive patch tests elicited in vivo. Peripheral blood mononuclear cells (PBMC from 40 patients with different patch test results were kept in short term cultures in the presence of optimized concentrations of NiSO4 × 6H2O, PdCl2 and Rh(CH3COO2. The production of IFN-γ and IL-10 elicited by metal compounds were analyzed by the ELISpot assay. Results We found a specific IFN-γ response by PBMC upon in vitro stimulation with nickel or palladium in well recognized allergic individuals. All controls with a negative patch test to a metal salt showed an in vitro IL-10 response and not IFN-γ production when challenged with the same compound. Interestingly, all subjects with positive patch test to both nickel and palladium (group 3 showed an in vitro response characterized by the release of IFN-γ after nickel stimulation and production of IL-10 in response to palladium. Conclusion These results strongly suggest that the different cytokine profiles elicited in vitro reflect different immune responses which may lead to the control of the allergic responses or to symptomatic allergic contact dermatitis. The development of sensitive and specific in vitro assays based on the determination of the cytokine profiles in response to contact allergens may have important diagnostic and prognostic implications and may prove extremely useful in complementing the diagnostic limits of traditional patch testing.

  16. Chloride removal from plutonium alloy

    International Nuclear Information System (INIS)

    Holcomb, H.P.

    1983-01-01

    SRP is evaluating a program to recover plutonium from a metallic alloy that will contain chloride salt impurities. Removal of chloride to sufficiently low levels to prevent damaging corrosion to canyon equipment is feasible as a head-end step following dissolution. Silver nitrate and mercurous nitrate were each successfully used in laboratory tests to remove chloride from simulated alloy dissolver solution containing plutonium. Levels less than 10 ppM chloride were achieved in the supernates over the precipitated and centrifuged insoluble salts. Also, less than 0.05% loss of plutonium in the +3, +4, or +6 oxidation states was incurred via precipitate carrying. These results provide impetus for further study and development of a plant-scale process to recover plutonium from metal alloy at SRP

  17. Superparamagnetic bimetallic iron-palladium nanoalloy: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia; Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Akhtar, M Javed; Nadeem, M; Siddique, Muhammad [Physics Division, PINSTECH, PO Nilore, Islamabad 44000 (Pakistan); Shah, M Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Khan, Nawazish A [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mehmood, Mazhar [National Centre for Nanotechnology, PIEAS, Islamabad 45650 (Pakistan); Butt, N M [Pakistan Science Foundation, Islamabad 44000 (Pakistan)], E-mail: mazhar42pk@yahoo.com

    2008-05-07

    Iron-palladium nanoalloy in the particle size range of 15-30 nm is synthesized by the relatively low temperature thermal decomposition of coprecipitated [Fe(Bipy){sub 3}]Cl{sub 2} and [Pd(Bipy){sub 3}]Cl{sub 2} in an inert ambient of dry argon gas. The silvery black Fe-Pd alloy nanoparticles are air-stable and have been characterized by EDX-RF, XRD, AFM, TEM, magnetometry, {sup 57}Fe Moessbauer and impedance spectroscopy. This Fe-Pd nanoalloy is in single phase and contains iron sites having up to 11 nearest-neighboring atoms. It is superparamagnetic in nature with high magnetic susceptibility, low coercivity and hyperfine field.

  18. Influence of metal dental materials on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi [Nippon Medical School, Tokyo (Japan). Main Hospital; Nakata, Minoru; Fujita, Isao

    1998-11-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  19. Influence of metal dental materials on MR imaging

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Nakata, Minoru; Fujita, Isao

    1998-01-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  20. Thermodynamic properties of liquid silver-gallium alloys determined from e.m.f. and calorimetric measurements

    International Nuclear Information System (INIS)

    Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof

    2011-01-01

    The thermodynamic properties of the liquid Ag-Ga alloys were determined using e.m.f. and calorimetric methods. In the e.m.f. method, solid oxide galvanic cells were used with zirconia electrolyte. The cells of the type W,Ag x Ga (1-x) ,Ga 2 O 3 //ZrO 2 +(Y 2 O 3 )//FeO,Fe,W were used in the temperature range from 1098 K to 1273 K, and in the range of mole fraction from x Ga = 0.1 to x Ga = 1.0. At first, the Gibbs free energy of formation of pure solid gallium oxide, Ga 2 O 3 , from pure elements was derived. Using values of the measured e.m.f. for the cell with x Ga = 1.0, the following temperature dependence was obtained: Δ f G m,Ga 2 O 3 0 (±4kJ·mol -1 J)=-1061.7235+0.2899T/K. Next, the activity of the gallium was derived as a function of the alloy composition from the values of the measured e.m.f. Activities of silver were calculated using the Gibbs-Duhem equation. The drop calorimetric measurements were carried out at two temperatures, viz. 923 K and 1123 K, using a Setaram MHTC calorimeter. Integral enthalpies of mixing of liquid binary alloys were determined at those temperatures. Finally, thermodynamic properties of the liquid alloys were described with the Redlich-Kister equation using ThermoCalc software.

  1. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-03-30

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  2. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    International Nuclear Information System (INIS)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-01-01

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  3. Machinability of experimental Ti-Ag alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2008-03-01

    This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.

  4. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2010-10-01

    A novel electrocatalyst, nanoporous palladium (npPd) rods can be facilely fabricated by dealloying a binary Al{sub 80}Pd{sub 20} alloy in a 5 wt.% HCl aqueous solution under free corrosion conditions. The microstructure of these nanoporous palladium rods has been characterized using scanning electron microscopy and transmission electron microscopy. The results show that each Pd rod is several microns in length and several hundred nanometers in diameter. Moreover, all the rods exhibit a typical three-dimensional bicontinuous interpenetrating ligament-channel structure with length scale of 15-20 nm. The electrochemical experiments demonstrate that these peculiar nanoporous palladium rods (mixed with Vulcan XC-72 carbon powders to form a npPd/C catalyst) reveal a superior electrocatalytic performance toward methanol oxidation in the alkaline media. In addition, the electrocatalytic activity obviously depends on the metal loading on the electrode and will reach to the highest level (223.52 mA mg{sup -1}) when applying 0.4 mg cm{sup -2} metal loading on the electrode. Moreover, a competing adsorption mechanism should exist when performing methanol oxidation on the surface of npPd rods, and the electro-oxidation reaction is a diffusion-controlled electrochemical process. Due to the advantages of simplicity and high efficiency in the mass production, the npPd rods can act as a promising candidate for the anode catalyst for direct methanol fuel cells (DMFCs). (author)

  5. An Approach to Microanalysis and Conservation of Silver - Copper Object in Agriculture Museum, Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    prof.ABEER Gharib

    2013-01-01

    Full Text Available This research dealt examining, analysis and treatment of a silver - copper belt, it exhibited in Agriculture Museum in Cairo. This research aims to study the ancient silver alloy; because of the successful examination and analysis helps in the treatment of old metal objects and then maintain them. The analysis of archaeological objects requires simultaneously non-destructive (the objects are unique and precious, versatile (samples with different geometry, sensitive (trace elements are often important and multi-elemental methods. In this paper, scanning electron microscopy (SEM employed to diagnose the characteristic morphology and environmental effects of the silver-copper object. X- Ray diffraction (XRD used to identify the mineralogical composition of samples, inductively coupled plasma optical emission spectrometer (ICP used to determine the accurate elemental composition of the silver-copper object. The results obtained by this research showed that the alloy containing about 22% silver, 65% copper, and it covered with copper corrosion products, these results represent the correct diagnosis, which will help us to understand the fabrication of ancient silver-copper alloy, which is still needed more studies.

  6. Phase equilibrium of the system Ag-Fe-Nd, and Nd extraction from magnet scraps using molten silver

    International Nuclear Information System (INIS)

    Takeda, O.; Okabe, T.H.; Umetsu, Y.

    2004-01-01

    To develop a new recycling process, we examined the direct extraction of neodymium (Nd) metal from Nd-Fe-B magnet scraps using molten silver (Ag) as an extraction medium. Prior to the extraction experiment, the phase equilibrium of the system Ag-Fe-Nd was investigated to estimate the theoretical extraction limit. It was observed that the Fe/Nd 2 Fe 17 mixture equilibrates with the molten Ag-Nd alloy containing 50-52 mol% Nd (57-59 mass% Nd) at 1363 K. The experimental results were in good agreement with the thermodynamic calculation based on literature values. By reacting Nd-Fe-B magnet scraps with molten silver at 1273 K, more than 90% of the neodymium in the scrap was extracted, and an Ag-Nd alloy containing 40-50 mass% Nd was obtained. The neodymium in the Ag-Nd alloy was separated from silver as Nd 2 O 3 by oxidizing the obtained alloy in air. Although the wettability of Nd 2 O 3 with molten silver caused some difficulties in the separation of neodymium from silver, molten silver is shown to be an effective medium for neodymium extraction from magnet scrap

  7. Influence of liquid copper-silver brazing alloy on properties of high-strength and heat resistant alloys and steels

    International Nuclear Information System (INIS)

    Semenov, V.N.

    1999-01-01

    The influence of temperature, heating rate, microstructure, the duration of Cu-Ag melt attack during brazing, the thickness and the material of barrier coating on properties of materials (Ni-Cr alloys, Cr-Ni steals, a Fe-Ni base EhJ-702 alloy) being brazed is studied. The tests of specimens with a brazing alloy are carried out in the temperature range of 780-1000 deg C. It is revealed that heat resistant alloys under brazing conditions experience brittle fracture. Multiphase structure coarse grain, increased hydrogen content mechanical stress concentrators are found to intensity embrittlement of the materials. The use of barrier coating displaying a chemical affinity to the brazing alloy results in a decrease of the tendency to embrittlement

  8. Characterization of aqueous silver nitrate solutions for leakage tests

    Directory of Open Access Journals (Sweden)

    José Ferreira Costa

    2011-06-01

    Full Text Available OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled and three brands of silver nitrate salt (Merck, Synth or Cennabras at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h and concentrations (1, 5, 25, 50% of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%. RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9. Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm. In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000. CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were

  9. Cycle life test. Evaluation program for secondary spacecraft cells. [performance tests on silver zinc batteries, silver cadmium batteries, and nickel cadmium batteries

    Science.gov (United States)

    Harkness, J. D.

    1976-01-01

    Considerable research is being done to find more efficient and reliable means of starting electrical energy for orbiting satellites. Rechargeable cells offer one such means. A test program is described which has been established in order to further the evaluation of certain types of cells and to obtain performance and failure data as an aid to their continued improvement. The purpose of the program is to determine the cycling performance capabilities of packs of cells under different load and temperature conditions. The various kinds of cells tested were nickel-cadmium, silver-cadmium, and silver-zinc sealed cells. A summary of the results of the life cycling program is given in this report.

  10. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  12. Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system

    International Nuclear Information System (INIS)

    Tarasevich, M.R.; Zhutaeva, G.V.; Bogdanovskaya, V.A.; Radina, M.V.; Ehrenburg, M.R.; Chalykh, A.E.

    2007-01-01

    Binary nanodispersed carbon XC72 supported PdFe catalysts with different atomic palladium-to-iron ratios are synthesized and studied in oxygen reduction reaction in acid solution at 60 o C. The Pd:Fe ratio was well controlled by the initial concentrations of Pd and Fe in the precursor solutions. The nanoparticles were characterized by transmission electron microscopy, X-ray diffractometry and X-ray photoelectron spectroscopy. The optimum Pd:Fe ratio for this reaction was determined to be 3:1. The comparison of activities of the catalysts with component ratios equaled 3:1 and 10:1 is shown that the activities are differed from each other by 10-15 times in advantage of catalyst with lesser content of palladium. This phenomenon can be related to the different particle size of both catalysts and different distribution of particles by size discovered by TEM method. The achievement of maximum activity near the ratio of Pd:Fe = 3:1 is due to as effect of alloy-forming and the influence of binary system component ratio and synthesis conditions on dispersity degree of metallic phase nanoparticles. Under optimal conditions of precursor mixture high-temperature pyrolysis, iron produces the stabilizing effect palladium. It gives rise to obtaining the uniform and finely divided (7-8 nm) metallic particles

  13. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Scott, W.R.; Birdsell, S.A.; Wilhelm, R.C.

    1995-01-01

    The palladium membrane reactor (PMR) is being investigated as a means for recovering hydrogen isotopes (including tritium) from compounds such as water and methane. Previous work with protiated water and methane showed that this device can be used to obtain high hydrogen recovery efficiencies using a single processing pass and with essentially no waste production. With these successful proof-of-principle results completed, recent work has focused on PMR development. This included studies of various geometries and testing with tritium. The results, which are reported here, have led to a better understanding of the PMR and will lead to the ultimate goal of building a production PMR and putting it into practical tritium processing service. 3 refs., 5 figs., 1 tab

  14. Testing of cobalt-free alloys for valve applications using a special test loop

    International Nuclear Information System (INIS)

    Benhamou, C.

    1992-01-01

    Considering that use of cobalt alloys should be avoided as far as possible in PWR components, a programme aimed at establishing the performance of cobalt-free alloys has been performed for valve applications, where cobalt alloys are mainly used. Referring to past work, two types of cobalt-free alloys were selected: Ni-Cr-B-Si and Ni-Cr-Fe alloys. Cobalt-free valves' behaviour has been evaluated comparatively with cobalt valves by implementation of a programme in a special PWR test loop. At the issue of the loop test programme, which included endurance, thermal shock and erosion tests, cobalt-free alloys candidate to replace cobalt alloys are proposed in relation with valve type (globe valve and swing check valve). The following was established: (i) Colmonoy 4-26 (Ni-Cr-B-Si alloy) and Cenium Z20 (Ni-Cr-Fe alloy) deposited by plasma arc process were found suitable for use in 3inch swing check valves; (ii) for integral parts acting as guide rings, Nitronic 60 and Cesium Z20/698 were tested successfully; (iii) for small-bore components such as 2inch globe valves, no solution can yet be proposed; introduction of cobalt-free alloys is dependent on the development of automatic advanced arc surfacing techniques applied to small-bore components

  15. Cu assisted synthesis of self-supported PdCu alloy nanowires with enhanced performances toward ethylene glycol electrooxidation

    Science.gov (United States)

    Yan, Bo; Xu, Hui; Zhang, Ke; Li, Shujin; Wang, Jin; Shi, Yuting; Du, Yukou

    2018-03-01

    Self-supported PdCu alloy nanowires fabricated by a facile one-pot method have been reported, which copper assists in the morphological transformation from graininess to nanowires. The copper incorporated with palladium to form alloy structures cannot only cut down the usage of noble metal but also enhance their catalytic performances. The catalysts with self-supported structure and proper ratio of palladium to copper show great activity and long-term stability for the electrooxidation of ethylene glycol in alkaline solution. Especially for Pd43Cu57, its mass activity reaches to 5570.83 mA mg-1, which is 3.12 times as high as commercial Pd/C. This study highlights an accessible strategy to prepare self-supported PdCu alloy nanowires and their potential applications in renewable energy fields.

  16. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    International Nuclear Information System (INIS)

    Keturakis, Christopher J.; Notis, Ben; Blenheim, Alex; Miller, Alfred C.; Pafchek, Rob; Notis, Michael R.; Wachs, Israel E.

    2016-01-01

    Highlights: • Five ancient silver alloy coins (225 BCE–244 CE) were analyzed using surface characterization techniques. • Both destructive and non-destructive surface characterization methods were developed. • Alloying with copper, even in small amounts, leads to the formation of an outer Cu 2 O corrosion layer. - Abstract: Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE–244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1–3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300–1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu 2 O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu 2 O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu 2 O layer. Depth profiling revealed the presence of K, Na, Cl, and S as key

  17. Theory of surface enrichment in disordered monophasic binary alloys. Numerical computations for Ag-Au alloys

    NARCIS (Netherlands)

    Santen, van R.A.; Boersma, M.A.M.

    1974-01-01

    The regular solution model is used to compute the surface enrichment in the (111)- and (100)-faces of silver-gold alloys. Surface enrichment by silver is predicted to increase if the surface plane becomes less saturated and decreases if one raises the temperature. The possible implications of these

  18. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    Science.gov (United States)

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Stage I/sub E/ recovery of electron-irradiated pure silver and of its dilute alloys with cadmium and indium

    International Nuclear Information System (INIS)

    Rizk, R.; Vajda, P.; Maury, F.; Lucasson, A.; Lucasson, P.

    1977-01-01

    Irradiations of silver specimens with electrons in the energy range 0.4--1.7 MeV were performed at liquid-helium temperatures. A subthreshold phenomenon has been observed which is taking over below approx. 750 keV. After separation of this effect, we have studied the annealing spectra of pure silver and of AgCd (25 and 50 ppm Cd) and AgIn (15 and 50 ppm In) diluted alloys following irradiation with different doses of 1.7-MeV electrons and after irradiation doping. The stage I/sub E/ recovery has been analyzed in terms of the chemical reaction rate theory. The corresponding rate equations have been solved numerically, and and the following values for the capture radii of a silver self-interstitial atom by a Cd and an In impurity were obtained: r/sub Cd//sup Ag/ = 0.15r/sub v/, r/sub In//sup Ag/ = (0.05--0.10) r/sub v/, where r/sub v/ is its annihilation radius at a vacancy. The best fit was obtained with a value of E/sub m/ = 88 meV for the migration energy of a self-interstitial

  20. Development of high temperature reference electrodes for in-pile application: Part I. Feasibility study of the external pressure balanced Ag/AgCl reference electrode (EPBRE) and the cathodically charged Palladium hydrogen electrode

    International Nuclear Information System (INIS)

    Bosch, R.W.; Van Nieuwenhove, R.

    1998-10-01

    The main problems connected with corrosion potential measurements at elevated temperatures and pressures are related to the stability and lifetime of the reference electrode and the correct estimation of the potential related to the Standard Hydrogen Scale (SHE). Under Pressurised Water Reactor (PWR) conditions of 300 degrees Celsius and 150 bar, the choice of materials is also a limiting factor due to the influence of radiation. Investigations on two reference electrodes that can be used under PWR conditions are reported: the cathodically charged palladium hydrogen electrode, and the external pressure balanced silver/silver chloride electrode. Preliminary investigations with the Pd-electrode were focused on the calculation of the required charging time and the influence of dissolved oxygen. High temperature applications are discussed on the basis of results reported in the literature. Investigations with the silver/silver chloride reference electrode mainly dealt with the salt bridge which is necessary to connect the reference electrode with the testing solution. It is shown that the thermal junction potential is independent of the length of the salt bridge. In addition, the high temperature contributes to an increase of the conductivity of the solution, which is beneficial for the salt bridge connection

  1. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  2. Synthesis of vanadium-doped palladium nanoparticles for hydrogen storage materials

    Science.gov (United States)

    Yamamoto, Yuki; Miyachi, Mariko; Yamanoi, Yoshinori; Minoda, Ai; Maekawa, Shunsuke; Oshima, Shinji; Kobori, Yoshihiro; Nishihara, Hiroshi

    2011-12-01

    Palladium-vanadium (Pd/V) alloy nanoparticles stabilized with n-pentyl isocyanide were prepared as new hydrogen storage materials by a facile polyol-based synthetic route with tetraethylene glycol and NaOH at 250 °C. The size distribution of the nanoparticles thus obtained featured two peaks at 4.0 ± 1.1 and 1.4 ± 0.3 nm in diameter, which were the mixture of Pd/V alloy and Pd nanoparticles. The ratio between the number of Pd/V and that of Pd nanoparticles was 51:49, and the Pd:V ratio of the overall product was 9:1 in wt%, indicating that the 4.0 nm Pd/V nanoparticles were composed of 81% Pd and 19% V. The inclusion of vanadium caused the increase in the d-spacing and thus expansion of lattice constant. A rapid increase in hydrogen content at low H2 pressures was observed for the Pd/V nanoparticles, and a 0.47 wt% H2 adsorption capacity was achieved under a H2 pressure of 10 MPa at 303 K. Hydrogen storage performances of Pd/V alloy nanoparticles was superior compared with Pd nanoparticles.

  3. High temperature soldering of the VT14 titanium alloy

    International Nuclear Information System (INIS)

    Besednyj, V.A.

    1978-01-01

    Two methods of brazing the VT14 alloys have been investigated, as well as the effect of annealing and heating during brazing and on mechanical properties of this alloy. Contact reaction brazing using a palladium layer has been shown to be applicable for simple-shape products, while capillary brazing using Cu-Ti, Ni-Ti and Fe-Ti brazing alloy systems, for complex-shape products. Brazed joints strength is similar to the strength of the VT14 alloy. Heating during brazing (960 deg - 1160 deg C) and the following annealing (900 deg C) have but a slight effect on the properties of the base metal, reducing strength by 2-5% and increasing ductility by 10-20%

  4. Silver-zinc electrodeposition from a thiourea solution with added EDTA or HEDTA

    International Nuclear Information System (INIS)

    Oliveira, G.M. de; Carlos, I.A.

    2009-01-01

    This paper shows the study of silver-zinc electrodeposition from a thiourea solution with added (ethylenedinitrilo)tetraacetic acid (EDTA), disodium salt and N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), trisodium salt. Voltammetric results indicated that silver-zinc alloy can be obtained applying overpotential higher than 0.495 V, in Tu solution containing 1.0 x 10 -1 mol L -1 Zn(NO 3 ) 2 + 2.5 x 10 -2 mol L -1 AgNO 3 . This was due to silver(I) ion complexation with thiourea, which shifted the silver deposition potential to more negative value and due to silver-zinc alloy deposition, which occurred at potentials more positive than the potential to zinc deposition alone. EDTA or HEDTA did not significantly affect the silver and zinc deposition potentials, but decreased the current density for silver-zinc deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of the silver-zinc deposits showed that the morphology and composition changed as a function of the conditions of deposition, viz, deposition potential (E d ), deposition charge density (q d ) and solution composition (silver, EDTA and HEDTA concentrations). EDS analysis of the deposits showed sulphur (S) incorporated into the silver-zinc deposit, while SEM images showed that this sulphur content seemed to improve the silver-zinc morphology, as did the presence of EDTA and HEDTA in the solution, which enhanced the sulphur incorporation into the silver-zinc deposit. X-ray diffraction (XRD) analysis of the silver-zinc deposit showed that it was amorphous, irrespective of its composition and morphology

  5. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  6. Silver-indium-cadmium control rod behaviour during a severe reactor accident

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Jenkins, R.A.; Nichols, A.L.; Rowe, N.A.; Simpson, J.A.H.

    1986-04-01

    An alloy of silver, indium and cadmium is commonly used as control rod material in pressurised water reactors (PWRs). The behaviour of this alloy has been studied in a series of experiments using an induction furnace to achieve temperatures up to 1900K. The aerosols released from overheated clad and unclad control rod samples have been characterised in both steam and inert atmospheres. Mass balance experiments have been undertaken to determine the distribution of the control rod alloy constituents following rupture of the cladding, and this work has been supported by thermogravimetric studies of silver-indium mixtures. Metallographic studies were also undertaken to assess the failure mode of the stainless steel cladding and the interaction of the molten alloy with Zircaloy. The results of this work are discussed in terms of aerosol/vapour behaviour during severe reactor accidents. (author)

  7. Silver Matrix Composites - Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wieczorek J.

    2016-03-01

    Full Text Available Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting technology, followed by plastic work (the KOBO method. The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.

  8. High temperature interaction between UO2 and Zircaloy-4/silver mixture

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Nagase, Fumihisa; Otomo, Takashi

    1995-12-01

    The reaction between UO 2 and Zircaloy is a main material interaction in the reactor core during a severe accident of LWR. With a view of examining the influence of the core materials having low melting temperatures on the reaction, the effect of silver that is main component of PWR control rod alloy was investigated in the temperature range from 1373 to 1703K. Zircaloy was completely liquefied by the same weight of liquid silver at tested temperatures. The reaction between UO 2 and (Zircaloy+silver) mixture roughly obeyed a parabolic rate law. The determined reaction rate below about 1600K was much lower than that obtained by Hofmann et al. for the reaction between UO 2 and Zircaloy. However, it sharply increased with temperature and became comparable with the rate of UO 2 /Zircaloy reaction at about 1700K. Metallurgical examination including EPMA analysis revealed that Zr(O) layer formed at the reaction interface only for the tests below about 1600K correlated with the discontinuity of the temperature dependence of reaction rate. (author)

  9. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keturakis, Christopher J. [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Ben [Brandeis University, Waltham, MA 02453 (United States); Blenheim, Alex [Department of Mechanical Engineering, Pennsylvania State University, College Park, PA 16802 (United States); Miller, Alfred C.; Pafchek, Rob [Zettlemoyer Center for Surface Studies, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Michael R., E-mail: mrn1@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Wachs, Israel E., E-mail: iew0@lehigh.edu [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2016-07-15

    Highlights: • Five ancient silver alloy coins (225 BCE–244 CE) were analyzed using surface characterization techniques. • Both destructive and non-destructive surface characterization methods were developed. • Alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O corrosion layer. - Abstract: Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE–244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1–3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300–1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu{sub 2}O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu{sub 2}O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O layer. Depth profiling revealed the presence of K, Na, Cl, and

  10. Ageing of palladium tritide: mechanical characterization, helium state and modelling

    International Nuclear Information System (INIS)

    Segard, M.

    2010-01-01

    Palladium is commonly used for the storage of tritium (the hydrogen radioactive isotope), since it forms a low-equilibrium-pressure and reversible tritide. Tritium decay into helium-3 is responsible for the ageing of the tritide, leading to the apparition of helium-3 bubbles for instance. Both experimental and theoretical aspects of this phenomenon are studied here.Previous works on ageing modelling led to two main models, dealing with:- Helium-3 bubbles nucleation (using a cellular automaton), - Bubbles growth (using continuum mechanics).These models were quite efficient, but their use was limited by the lack of input data and fitting experimental parameters.To get through these limitations, this work has consisted in studying the most relevant experimental data to improve the modelling of the palladium tritide ageing.The first part of this work was focused on the assessment of the mechanical properties of the palladium tritide (yield strength, ultimate strength, mechanical behaviour). They were deduced from the in situ tensile tests performed on palladium hydride and deuteride. In the second part, ageing characterization was undertaken, mainly focusing on: - Bubbles observations in palladium tritide using transmission electron microscopy, - Internal bubble pressure measurements using nuclear magnetic resonance, - Macroscopic swelling measurements using pycno-metry.The present work has led to significant progress in ageing understanding and has brought very valuable improvements to the modelling of such a phenomenon. (author) [fr

  11. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    Science.gov (United States)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  12. Palladium transport in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2012-01-01

    Highlights: ► We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. ► The high temperature mobility of palladium silicides within polycrystalline SiC was studied. ► Corrosion of SiC by Pd was seen in all cases. ► The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. ► The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd 2 Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  13. Preparation of 103Pd seed-molecular plating of 103Pd onto silver rod

    International Nuclear Information System (INIS)

    Zhang Chunfu; Wang Yongxian; Tian Haibin; Yin Duanzhi

    2002-01-01

    A method for 103 Pd 'molecular plating' onto the surface of a silver rod is reported. The optimal composition of the plating bath is as follows: palladium chloride 0.1 mol/l, formaldehyde 2 mol/l, nitric acid 1 mol/l, and formic acid 0.4 mol/l. The 103 Pd molecular plating procedure will last 25 min at 30 deg. C. This article provides a valuable experience for the preparation of 103 Pd brachytherapy seed

  14. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive...

  15. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  16. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  17. Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens

    KAUST Repository

    Yates, Matthew D.

    2013-09-03

    Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell reuse. The DMRB Geobacter sulfurreducens was shown here to reduce soluble Pd(II) to Pd(0) nanoparticles primarily outside the cell, reducing the toxicity of metal ions, and allowing nanoparticle recovery without cell destruction that has previously been observed using other microorganisms. Cultures reduced 50 ± 3 mg/L Pd(II) with 1% hydrogen gas (v/v headspace) in 6 h incubation tests [100 mg/L Pd(II) initially], compared to 8 ± 3 mg/L (10 mM acetate) without H2. Acetate was ineffective as an electron donor for palladium removal in the presence or absence of fumarate as an electron acceptor. TEM imaging verified that Pd(0) nanoparticles were predominantly in the EPS surrounding cells in H2-fed cultures, with only a small number of particles visible inside the cell. Separation of the cells and EPS by centrifugation allowed reuse of the cell suspensions and effective nanoparticle recovery. These results demonstrate effective palladium recovery and nanoparticle production using G. sulfurreducens cell suspensions and renewable substrates such as H2 gas. © 2013 American Chemical Society.

  18. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    Science.gov (United States)

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The impact of the proportion of nanoparticles to the spherical microparticles of silver on the connection parameters LTJT

    Science.gov (United States)

    Szałapak, J.; Kiełbasiński, K.; Krzemiński, J.; Jakubowska, M.

    2017-08-01

    There are few EU directives restricting use of lead and other hazardous substances in electronics. That leads to ban Pb- Sn alloy from use, the consequence of which is a search for new ways of preparing joints. One of the discussed solutions is using silver particles in Low Temperature Joining Technique (LTJT). This technique allows to use different conducting pastes and lower their sintering temperatures with the use of pressure. The most popular material for the joining tests was silver. Due to its high melting temperature and high pressures needed for lowering the temperature, silver nanoparticles were considered and tested. The temperatures of sintering decreased to 300ºC and the pressures went down from about 40 to less than 10 MPa. Due to unsatisfactory parameters of such joints, the authors prepared mixtures of spherical, submicron-sized silver particles with nanoparticles. Joints were tested for their electrical and shears strength parameters. In this article, the authors show the comparison of different variations of the mixtures with joints prepared only with nanoparticles.

  20. Palladium transport in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. Black-Right-Pointing-Pointer The high temperature mobility of palladium silicides within polycrystalline SiC was studied. Black-Right-Pointing-Pointer Corrosion of SiC by Pd was seen in all cases. Black-Right-Pointing-Pointer The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. Black-Right-Pointing-Pointer The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd{sub 2}Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  1. Experimental observation of silver and gold penetration into dental ceramic by means of a radiotracer technique

    International Nuclear Information System (INIS)

    Moya, F.; Payan, J.; Bernardini, J.; Moya, E.G.

    1987-01-01

    A radiotracer technique was used to study silver and gold diffusion into dental porcelain under experimental conditions close to the real conditions in prosthetic laboratories for porcelain bakes. It was clearly shown that these non-oxidizable elements were able to diffuse into the ceramic as well as oxidizable ones. The penetration depth varied widely according to the element. The ratio DAg/DAu was about 10(3) around 850 degrees C. In contrast to gold, the silver diffusion rate was high enough to allow silver, from the metallic alloy, to be present at the external ceramic surface after diffusion into the ceramic. Hence, the greening of dental porcelains baked on silver-rich alloys could be explained mainly by a solid-state diffusion mechanism

  2. Unexpectedly high uptake of palladium by bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J. [Research Lab. for Mining Chemistry, Hungarian Academy of Sciences, Miskolc-Egyetemvaros (Hungary); Brown, S.D.; Snape, C.E. [Univ. of Strathclyde, Dept. of Pure and Applied Chemistry, Glasgow (United Kingdom)

    1997-12-31

    The uptake of palladium as a conversion catalyst onto coals of different rank was investigated. Palladium fixation occurs by a different mode to that for alkaline earth and first row transition metals. Therefore, the dispersion of relatively high concentration of palladium by an ion sorption process is even possible for bituminous coals. (orig.)

  3. Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saud, Safaa N.; Hamzah, E., E-mail: esah@fkm.utm.my; Abubakar, T.; Bakhsheshi-Rad, H.R.; Farahany, S.; Abdolahi, A.; Taheri, M.M.

    2014-11-05

    Highlights: • Thermal analysis showed four different phase β, α, NiAl and γ2 during solidification. • The martensite appeared in the microstructure as a plate and needle like shape. • Shape recovery ratio of 80% was obtained after Ag nanoparticles addition. • Effect of Ag nanoparticles on the corrosion behaviour of Cu–Al–Ni SMA was investigated. - Abstract: Incorporation of silver nanoparticles into Cu-based shape memory alloys is recommended to enhance their phase transformation behaviour. However, this incorporation can affect their transformation temperatures, mechanical, microstructural and corrosion characteristics. Four different phase reactions β, α, NiAl and γ{sub 2} were detected on a derivative curve during the solidification by-computer-aided cooling curve thermal analysis. The highest fraction solid (82%) was calculated for the parent phase (β) based on the Newtonian baseline method. The microstructural changes and mechanical properties were investigated using field emission scanning electron microscopy, X-ray diffraction tensile test and shape memory effect test. It was found that the addition of Ag can control the phase morphology and orientations along with the formation of the Ag-rich precipitates, and thus the tensile strength, elongation, fracture stress–strain, yield strength and shape memory effect are improved. Remarkably, the shape recovery ratio reached approximately 80% of the original shape. The corrosion behaviour of the Cu–Al–Ni shape memory alloy were investigated using electrochemical tests in NaCl solution and their results showed that the corrosion potential (E{sub corr}) of Cu–Al–Ni SMA is shifted towards the nobler direction from −307.4 to −277.1 m V{sub SCE} with the addition of 0.25 wt.% Ag.

  4. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda [Pall Corporation, Port Washington, NY (United States); Zhao, Hongbin [Pall Corporation, Port Washington, NY (United States); Hopkins, Scott [Pall Corporation, Port Washington, NY (United States)

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  5. Copper-Silver Alloy Depositions Using Thermionic Vacuum ARC (TVA)

    International Nuclear Information System (INIS)

    Akan, T.

    2004-01-01

    TVA is a plasma source generating pure metal vapor plasma and consists of a heated cathode emitting thermo electrons and an anode containing material to be evaporated. We used Cu and Ag pieces as anode materials and produced their alloys by electron bombarding. Cu-Ag alloys in various mass ratios were prepared by using the TVA and the TVA discharges were generated in the vapors of these alloys. The volt-ampere characteristics of the TVA discharges generated in the vapors of these alloys were investigated with respect to the ratio of Ag in the Cu-Ag alloy. Cu-Ag alloy thin films with various mass ratios were deposited onto the glass substrates by using their TVA discharges. The ratios of Cu and Ag in the thin Cu-Ag alloy films were found using scanning electron microscope-energy dispersive xray (SEM-EDX) microanalyses

  6. : Recyclable, ligand free palladium(II) catalyst for Heck reaction

    Indian Academy of Sciences (India)

    well as heterogeneous palladium catalysts, generated from either palladium(0) compounds or palladium(II) acetate or chloride salts.6 Several ligands such as phosphines, phoshites, carbenes, thioethers have been successfully employed for this reaction.7 However, homogeneous catalysis results in problems of recovery.

  7. Molecular dynamics study of atomic displacements in disordered solid alloys

    Science.gov (United States)

    Puzyrev, Yevgeniy S.

    The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.

  8. Creep of OFHC and silver copper at simulated final repository canister-service conditions

    International Nuclear Information System (INIS)

    Auerkari, P.; Leinonen, H.; Sandlin, S.

    1991-07-01

    Result of high-resolution creep rate measurements are described for estimating very long term creep life of copper and silver alloyed copper at room temperature and at stresses approaching the expected service conditions of final repository canisters. The aim was to assess the limiting service stress levels for potential canister wall materials. The 0.1 % silver alloyed copper showed minimum creep rates of 10 - 9 to 10 - 10 l/h, corresponding to 1 % strain in about 1000 to 10000 years, at room temperature and uniaxial stress level of 50 to 75 MPa. The predicted time to 1 % strain, when extrapolated from literature data, was at least one order of magnitude shorter. From the results of the present work, the 1 % creep life for OFHC copper was at most a few hundreds of years at 50 MPa stress level. The technique developed and used in this work for measuring very low strain rates appears useful for assessing low temperature creep life of practical structures essentially without accelerating the test from the service conditions

  9. Creep of OFHC and silver copper at simulated final repository canister-service conditions

    International Nuclear Information System (INIS)

    Auerkari, P.; Leinonen, H.; Sandlin, S.

    1991-09-01

    Results of high-resolution creep rate measurements are described for estimating very long term creep life of copper and silver alloyed copper at room temperature and at stresses approaching the expected service conditions of final repository canisters. The aim was to assess the limiting service stress levels for potential canister wall materials. The 0.1% silver alloyed copper showed minimum creep rates of 10 -9 to 10 -10 l/h, corresponding to 1 % strain in about 1000 to 10000 years, at room temperature and uniaxial stress level of 50 to 75 MPa. The predicted time to 1 % strain, when extrapolated from literature data, was at least one order of magnitude shorter. From the results of the present work, the 1 % creep life for OFHC copper was at most a few hundreds of years at 50 MPa stress level. The technique developed and used in this work for measuring very low strain rates appears useful for assessing low temperature creep life of practical structures essentially without accelerating the test from the service conditions. (au)

  10. Silver Drawing Test of Cognition and Emotion. Third Edition, Revised.

    Science.gov (United States)

    Silver, Rawley

    This test, the Silver Drawing Test (SDT), evolved from a belief that the intelligence of children and adults who have poor language skills tends to be underestimated. The aim of the SDT is to provide an instrument for assessing the cognitive skills of individuals who have difficulty understanding others and making themselves understood. There are…

  11. In vitro human digestion test to monitor the dissolution of silver nanoparticles

    International Nuclear Information System (INIS)

    Bove, P; Sabella, S; Malvindi, M A

    2017-01-01

    Nanotechnology is a scientific revolution that the food industry has experienced over the last years. Widely employed as food additives and/or food contact materials in consumer products, silver nanoparticles are an example of this innovation. However, their increasing use makes also likely the human ingestion, thus requiring a proper risk analysis. In this framework, a comprehensive characterization of biotransformation of silver nanoparticles in biological fluids is fundamental for the regulatory needs. Herein, we aimed at studying the dissolution behaviour of silver nanoparticles using an in vitro test, which simulates the human oral ingestion of NPs during their passage through the gastrointestinal tract. The nanoparticle suspensions were characterized in the different digestion phases using several techniques to follow the changes of key physical properties ( e.g. , size, surface charge and plasmon peak) and to quantify the biotransformed products arisen by the process, as for example free silver ions. (paper)

  12. Thermodynamic assessment of the palladium-tellurium (Pd-Te) system

    International Nuclear Information System (INIS)

    Gosse, S.; Gueneau, C.

    2011-01-01

    Among the fission products formed in nuclear fuels, the platinum-group metal palladium and the chalcogen element tellurium exhibit strong interaction. It is therefore of interest to be able to predict the chemical equilibria involving the Pd and Te fission products. A thermodynamic assessment is carried out using the Calphad (Calculation of Phase Diagram) method to investigate the behaviour of Pd-Te alloy system in nuclear fuels under irradiation and under waste disposal conditions. The Pd-Te binary description was optimized using experimental data found in literature including thermodynamic properties and phase diagram data. To validate the calculated phase diagram and thermodynamic properties, the results are compared with data from the literature. Both calculated and experimental phase diagrams and thermodynamic properties are in good agreement in the whole Pd-Te composition range. (authors)

  13. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt

    1973-01-01

    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  14. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  15. MONTANA PALLADIUM RESEARCH INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    Peters, John; McCloskey, Jay; Douglas, Trevor; Young, Mark; Snyder, Stuart; Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4

  16. Investigation of radiation-chemical behaviour of divalent palladium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kalinina, S.V.

    1988-01-01

    Gamma-radiolysis of divalent palladium in perchloric acid solutions is studied. Absorption spectra of intermediate palladium compounds formed in the irradiated solution are taken. The analysis of literature data as well as comparative analysis of the absorption spectra obtained under irradiation of palladium (2) perchloric acid solutions with absorption spectra of palladium chlorocomplexes allows to suppose that the mentioned compounds are chlorocomplexes of palladium (2) of different composition depending on HClO 4 concentration in the initial solution and absorbed radiation dose. Radiation-chemical reduction of palladium (2) up to metal is stated to take place in the whole studied range of initial concentrations of components of the system and dose rates. Kinetic dependences of metallic palladium formation are obtained. Values of radiation-chemical yields of metallic palladium formation depending on the initial concentrations of palladium (2) and perchloric acid are given. A mechanism of radiolytic reduction of palladium (2) in the investigated system is suggested based on the experimental data, and a theoretical value of the radiation-chemical yield of palladium (2) reduction being in a good agreement with experimentally found values is calculated

  17. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  18. Mechanistic insight into oxide-promoted palladium catalysts for the electro-oxidation of ethanol.

    Science.gov (United States)

    Martinez, Ulises; Serov, Alexey; Padilla, Monica; Atanassov, Plamen

    2014-08-01

    Recent advancements in the development of alternatives to proton exchange membrane fuel cells utilizing less-expensive catalysts and renewable liquid fuels, such as alcohols, has been observed for alkaline fuel cell systems. Alcohol fuels present the advantage of not facing the challenge of storage and transportation encountered with hydrogen fuel. Oxidation of alcohols has been improved by the promotion of alloyed or secondary phases. Nevertheless, currently, there is no experimental understanding of the difference between an intrinsic and a synergistic promotion effect in high-pH environments. This report shows evidence of different types of promotion effects on palladium electrocatalysts obtained from the presence of an oxide phase for the oxidation of ethanol. The correlation of mechanistic in situ IR spectroscopic studies with electrochemical voltammetry studies on two similar electrocatalytic systems allow the role of either an alloyed or a secondary phase on the mechanism of oxidation of ethanol to be elucidated. Evidence is presented for the difference between an intrinsic effect obtained from an alloyed system and a synergistic effect produced by the presence of an oxide phase. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  20. Manufacturing and testing of self-passivating tungsten alloys of different composition

    Directory of Open Access Journals (Sweden)

    A. Calvo

    2016-12-01

    Bulk W-15Cr, W-10Cr-2Ti and W-12Cr-0.5Y alloys were manufactured by mechanical alloying followed by can encapsulation and HIP. This route resulted in fully dense materials with nano-structured grains. The ability of Ti and especially of Y to inhibit grain growth was observed in the W-10Cr-2Ti and W-12Cr-0.5Y alloys. Besides, Y formed Y-rich oxide nano-precipitates at the grain boundaries, and is thus expected to improve the mechanical behaviour of the Y-containing alloy. Isothermal oxidation tests at 800 ºC (1073K and oxidation tests under accident-like conditions revealed that the W-12Cr-0.5Y alloy exhibits the best oxidation behaviour of all alloys, especially in the accident-like scenario. Preliminary HHF tests performed at GLADIS indicated that the W-10Cr-2Ti alloy is able to withstand power densities of 2 MW/m2 without significant damage of the bulk structure. Thermo-shock tests at JUDITH-1 to simulate mitigated disruptions resulted in chipping of part of the surface of the as-HIPed W-10Cr-2Ti alloy. An additional thermal treatment at 1600 °C (1873K improves the thermo-shock resistance of the W-10Cr-2Ti alloy since only crack formation is observed.

  1. Processing Tritiated Water at the Savannah River Site: A Production-Scale Demonstration of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Sessions, K

    2004-01-01

    The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory. The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented

  2. Atomistic simulation of helium bubble nucleation in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu, Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: sfxiao@yahoo.com.cn; Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Deng Huiqiu [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2009-09-15

    A palladium crystal has been constructed with 11808 atoms. 55 helium atoms occupied the octahedral position of palladium crystal are introduced and retained in a spherical region. Molecular dynamic simulations are performed in a constant temperature and constant volume ensemble (NVT) with temperature controlled by Nose-Hoover thermostat. The interactions between palladium atoms are described with modified analytic embedded atom method (MAEAM), the interactions between palladium atom and helium atom are in the form of Morse potential, and the interactions between helium atoms are in the form of L-J potential function. With the analysis of the radial distribution function (RDF) and microstructure, it reveals that some of helium atoms form a series of clusters with different size, and the nucleation core is random at low temperature, and which is the embryo of helium bubble. Increasing temperature can accelerate the process of bubble nucleation, and the clusters will aggregate and coalesce into a bigger one in which there are no palladium atoms, and it is considered as a helium bubble.

  3. Wetting of refractory metals with copper base alloys

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Kostikov, V.I.; Chepelenko, V.N.; Batov, V.M.

    1978-01-01

    The effect is studied of phosphorus upon the wetting of molybdenum, niobium and tantalum by an alloy of the system copper-silver (10%) as a function of contact time and phosphorus concentration. Experiments have been conducted in vacuum of 5x10 -4 mm Hg at 900 deg C. It is established that the introduction of phosphorus into a copper-silver alloy improves the wetting of molybdenum, niobium and tantalum. Formation of intermetallic compounds on the alloy-refractory metal interface can be avoided by adjusting the time of contact of the solder with molybdenum, niobium and tantalum. As a solder with 2.9% phosphorus spreads well over copper, it is suggested to use said solder for brazing copper and the investigated refractory metals in items intended for service at temperatures of up to 600 deg C

  4. Nested Fermi surfaces and order in the rare earth nickel borocarbides and copper palladium alloys

    International Nuclear Information System (INIS)

    Wilkinson, Ian

    2002-01-01

    The electronic structure of two systems, each displaying a different type of order believed to derive from their respective Fermi surface topologies, has been investigated using the two-dimensional angular correlation of annihilation radiation (2D-ACAR) technique. A particular topological feature of a generic rare earth nickel borocarbide (general formula RNi 2 B 2 C) Fermi surface is popularly believed to be responsible for a particular modulated arrangement of local moments observed in several magnetic borocarbides. Accordingly, c-axis 2D-ACAR spectra were collected from four representative members of the series, namely the Er, Tm, Yb and Lu compounds. A further a-axis projection from LuNi 2 B 2 C provides an additional comparison with electronic structure calculations performed for this compound. The c-axis projected k-space electron occupancies reveal a fundamentally similar Fermi surface topology across the measured compounds. The a- and c-axis k-space occupancies obtained from LuNi 2 B 2 C showed exceptional qualitative agreement with the corresponding calculated electron occupancy. A number of edge-detection methods were employed to identify the projected Fermi surface, and the existence of the proposed feature was confirmed by direct observation in each of the measured compounds. Calipers of this feature were found to be in good general agreement with those predicted by relevant calculation and expected from indirect experimental evidence. The compositional phase behaviour of copper-palladium solid solutions is believed to be strongly influenced by the shape of their respective Fermi surfaces. In particular, the concentration-dependent positions of diffuse peaks in electron and X-ray diffraction patterns from disordered samples has been associated with the corresponding evolution of flat, parallel areas on the alloy Fermi surface. Electronic structure calculations indicate these areas to be maximal around 40 at. % Pd, and it has been further suggested that

  5. Recovery of hydrogen from impurities using a palladium membrane reactor

    International Nuclear Information System (INIS)

    Willms, R.S.; Okuno, K.

    1993-01-01

    One of the important steps in processing the exhaust from a fusion reactor is recovering tritium which is incorporated into molecules such as water and methane. One device which may prove to be very effective for this purpose is a palladium membrane reactor. This is a reactor which incorporates a Pd/Ag membrane in the reactor geometry. Reactions such as water gas shift, steam reforming and methane cracking can be carried out over the reactor catalyst, and the product hydrogen can be simultaneously removed from the reacting mixture. Because product is removed, greater than usual conversions can be obtained. In addition ultrapure hydrogen is produced, eliminating the need for an additional processing step. A palladium membrane reactor has been built and tested with three different catalysts. Initial results with a Ni-based catalyst show that it is very effective at promoting all three reactions listed above. Under the proper conditions, hydrogen recoveries approaching 100% have been observed. This study serves to experimentally validate the palladium membrane reactor as potentially important tool for fusion fuel processing

  6. Cost-Effective Method for Producing Self Supported Palladium Alloy Membranes for Use in Efficient Production of Coal Derived Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    K. Coulter

    2008-03-31

    Southwest Research Institute{reg_sign} (SwRI{reg_sign}) has utilized its expertise in large-area vacuum deposition methods to conduct research into the fabrication of dense, freestanding Pd-alloy membranes that are 3-5 microns thick and over 100 in{sup 2} in area. The membranes were deposited onto flexible and rigid supports that were subsequently removed and separated using novel techniques developed over the course of the project. Using these methods, the production of novel alloy compositions centered around the Pd-Cu system were developed with the objective of producing a thermally stable, nano-crystalline grain structure with the highest flux recorded as 242 SCFH/ft{sup 2} for a 2 {micro}m thick Pd{sub 53}Cu{sub 47} at 400 C and 20 psig feed pressure which when extrapolated is over twice the 2010 Department of Energy pure H{sub 2} flux target. Several membranes were made with the same permeability, but with different thicknesses and these membranes were highly selective. Researchers at the Colorado School of Mines supported the effort with extensive testing of experimental membranes as well as design and modeling of novel alloy composite structures. IdaTech provided commercial bench testing and analysis of SwRI-manufactured membranes. The completed deliverables for the project include test data on the performance of experimental membranes fabricated by vacuum deposition and several Pd-alloy membranes that were supplied to IdaTech for testing.

  7. Development of aluminum (Al5083)-clad ternary Ag-In-Cd alloy for JSNS decoupled moderator

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Oikawa, K.; Maekawa, F.; Futakawa, M.; Kikuchi, K.; Kato, T.; Ikeda, Y.; Naoe, T.; Koyama, T.; Ooi, T.; Zherebtsov, S.; Kawai, M.; Kurishita, H.; Konashi, K.

    2006-01-01

    To develop Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between Al alloy (Al5083) and the ternary Ag-In-Cd alloy. We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 10 min. for small test pieces (φ22 mm in dia. x 6 mm in height). Hardened layer due to the formation of AlAg 2 was found in the bonding layer, however, the rupture strength of the bonding layer is more than 30 MPa, the calculated design stress. Bonding tests of a large size piece (200 x 200 x 30 mm 3 ), which simulated the real scale, were also performed according to the results of small size tests. The result also gave good bonding and enough required-mechanical-strength

  8. The Electrodeposition of Rhenium and Its Alloys

    Science.gov (United States)

    2015-09-18

    did not have benefit. A combination of vanillin, sodium lauryl sulfate, and gelatin , and equal concentrations of Ni2+ and ReO4 - yielded a coating...substrate, thus facilitating good bonding between the coating and substrate. Similar phenomenon would occur between a silver substrate and...electrodeposited metal coating. Historically, this is why most successful electroplating process used copper, brass (copper-zinc alloy), and silver as substrates

  9. Control of texture in Ag and Ag-alloy substrates for superconducting tapes

    International Nuclear Information System (INIS)

    Gladstone, T.A.

    2000-01-01

    The use of a biaxially textured silver tape as a substrate for high temperature superconductor (HTS) phases is one possible route towards the fabrication of high-J c superconducting tape. Using a cold-rolling and annealing process we have reproducibly fabricated {110} textured silver which is stable up to 900 deg. C. We have found that there are two critical process requirements for the formation of this texture; a low oxygen content in the material prior to deformation, and a cold-rolling thickness reduction of less than 97%. To overcome the problems associated with the poor mechanical strength of pure silver, texture development in Ag-Mg and Ag-Hf alloys with improved mechanical properties has been studied. Heat treatments in a reducing atmosphere allow the {110} annealing texture to be obtained in Ag-0.1 wt%Mg. The recrystallization behaviour of a Ag-Pd alloy with an increased stacking fault energy was also investigated and a partial cube texture was obtained in this material. Using orientation distribution function (ODF) analysis we have shown that minor variations in the deformation texture of both pure silver and Ag-based alloys can lead to significant differences in the recrystallization textures obtained. (author)

  10. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  11. Fracture resistance of Zr–Nb alloys under low-cycle fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, S.A.; Rozhnov, A.B. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Gusev, A.Yu. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM), Rogova St. 5a, 123060 Moscow (Russian Federation); Nechaykina, T.A. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Rogachev, S.O., E-mail: csaap@mail.ru [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation); Zadorozhnyy, M.Yu. [The National University of Science and Technology ‘‘MISIS’’, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-15

    Highlights: •Low-cycle fatigue tests of Zr–Nb alloys using DMA have been carried out. •The characteristics of low-cycle fatigue of the Zr–Nb alloy at 25/350 °C were determined. •Increasing test temperature up to 350 °C leads to a decrease of fatigue life. •The test temperature doesn’t have an effect on the character of fatigue curves. -- Abstract: Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  12. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    Science.gov (United States)

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  13. Fabrication of palladium-based microelectronic devices by microcontact printing

    International Nuclear Information System (INIS)

    Wolfe, Daniel B.; Love, J. Christopher; Paul, Kateri E.; Chabinyc, Michael L.; Whitesides, George M.

    2002-01-01

    This letter demonstrates the patterning of thin films of metallic palladium by microcontact printing (μCP) of octadecanethiol, and the use of the patterned films in the fabrication of a functional sensor. This technique was also used to prepare templates of palladium for the electroless deposition of copper. The resistivity of the palladium and copper microstructures was 13.8 and 2.8 μΩ cm, respectively; these values are approximately 40% larger than the values for the pure bulk metals. Palladium patterned into serpentine wires using μCP functioned as a hydrogen sensor with sensitivity of 0.03 vol % H 2 in N 2 , and a response time of ∼10 s (at room temperature)

  14. The determination, by atomic-absorption spectrophotometry using electrothermal atomization, of platinum, palladium, rhodium, ruthenium, and iridium

    International Nuclear Information System (INIS)

    Haines, J.; Robert, R.V.D.

    1982-01-01

    A method that involves measurement by atomic-absorption spectrophotometry using electrothermal atomization has been developed for the determination of trace quantities of platinum, palladium, rhodium, ruthenium, and iridium in mineralogical samples. The elements are separated and concentrated by fusion, nickel sulphide being used as the collector, and the analyte elements are measured in the resulting acid solution. An organic extraction procedure was found to offer no advantages over the proposed method. Mutual interferences between the five platinum-group metals examined, as well as interferences from gold, silver, and nickel were determined. The accuracy of the measurement was established by the analysis of a platinum-ore reference material. The lower limits of determination of each of the analyte elements in a sample material are as follows: platinum 1,6μg/l, palladium 0,2μg/1, rhodium 0,5μg/l, ruthenium 3μg/l, and iridium 2,5μg/l. The relative standard deviations range from 0,05 for rhodium to 0.08 for iridium. The method, which is described in detail in the Appendix, is applicable to the determination of these elements in ores, tailings, and geological materials in which the total concentration of the noble metals is less than 1g/t

  15. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Masashi [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580 (Japan); Noda, Kei, E-mail: nodakei@elec.keio.ac.jp [Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522 (Japan)

    2015-12-01

    Graphical abstract: - Highlights: • A bilayer membrane composed of TiO{sub 2} nanotube array and palladium was fabricated. • The TiO{sub 2}/Pd bilayer membrane was prepared with an all-electrochemical process. • The membrane consists of pure Pd and anatase TiO{sub 2} nanotubes with no alloy formation. • Photocatalytic H{sub 2} production and concomitant separation were demonstrated. • High-purity H{sub 2} production rate and apparent quantum yield were evaluated. - Abstract: We developed an all-electrochemical technique for fabricating a bilayer structure of a titanium dioxide (TiO{sub 2}) nanotube array (TNA) and a palladium film (TNA/Pd membrane), which works for photocatalytic high-purity hydrogen production. Electroless plating was used for depositing the Pd film on the TNA surface prepared by anodizing a titanium foil. A 3-μm-thick TNA/Pd membrane without any pinholes in a 1.5-cm-diameter area was fabricated by transferring a 1-μm-thick TNA onto an electroless-plated 2-μm-thick Pd film with a mechanical peel-off process. This ultrathin membrane with sufficient mechanical robustness showed photocatalytic H{sub 2} production via methanol reforming under ultraviolet illumination on the TNA side, immediately followed by the purification of the generated H{sub 2} gas through the Pd layer. The hydrogen production rate and the apparent quantum yield for high-purity H{sub 2} production from methanol/water mixture with the TNA/Pd membrane were also examined. This work suggests that palladium electroless plating is more suitable and practical for preparing a well-organized TNA/Pd heterointerface than palladium sputter deposition.

  16. Palladium-based electrocatalysts for ethanol oxidation reaction in DEFC; Eletrocatalisadores de paladio para reacao de oxidacao do etanol em DEFC

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, L.P.R. de; Elsheikh, A.; Silva, E. L. da; Radtke, C.; Amico, S.C.; Malfatti, C.F., E-mail: leticiaprm@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2014-07-01

    Direct ethanol fuel cells require the use of electrocatalysts to promote bond cleavage of the ethanol molecule in an efficient way. Currently, most electrocatalysts contain platinum, which enables improved catalytic activity and stability in acidic media. However platinum presents high cost and low availability. Based on that, novel catalysts have been developed, such as those based on palladium and its alloys, which have attained excellent results in the oxidation of ethanol in alkaline media. In this work, Pd, PdSn and PdNiSn catalysts supported on Vulcan XC72R carbon were synthesized via impregnation/reduction. The electrocatalysts were characterized by RBS, XRD and cyclic voltammetry. The X-ray diffraction results showed the formation of an alloy and not the deposition of isolated elements. The synthesized catalysts displayed good catalytic activity, as observed by cyclic voltammetry, being the best electrochemical performance achieved by the ternary alloy. (author)

  17. Sputtering of two-phase AgxCuγ alloys

    International Nuclear Information System (INIS)

    Bibic, N.; Milosavljevic, M.; Perusko, D.; Wilson, I.H.

    1992-01-01

    Elemental sputtering yields from two phase AgCu alloys were measured for 20, 40 and 50 at % Ag. Argon ion bombardment energies were in the range 35-55 keV and the ion dose was 1 x 10 19 ions cm -2 . The sputtering yield for silver was found to be considerably below what was expected by simple selective sputtering of a two component alloy. Analysis by electron probe X-ray microanalysis and scanning electron microscopy of the eroded surface indicated that surface diffusion of copper from copper rich grains and geometrical constraints in the dense cone forest on Cu/Ag eutectic regions combine to reduce the sputtering yield for silver. (author)

  18. The solubility of palladium(II) bis-dimethylglyoximate

    International Nuclear Information System (INIS)

    Maghzian, R.

    1978-01-01

    The solubility of palladium(II) bis-dimethylglyoximate in different solutions has been determined. Values obtained for the solubility of the palladium complex are tabulated. The solubility is the lowest in water, ammonium acetate and a 25% acetone-water mixture. It is highest in dilute HCl and acetone but precipitation from aqueous acetone should be satisfactory for most purposes if the acetone content of the solvent is roughly less than 50% by volume. The solubility in dilute HCl reflects the concern by previous workers for losses in precipitation from mineral acid. In general, however, the losses are unlikely to be significant unless the quantity of palladium to be precipitated and weighed is small. (T.G.)

  19. Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles

    NARCIS (Netherlands)

    Cruz, N.; Rodrigues, S.M.; Tavares, D.; Monteiro, R.J.R.; Carvalho, L.; Trindade, T.; Duarte, A.C.; Pereira, E.; Romkens, Paul

    2015-01-01

    To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8mgAgkg-1

  20. Fatigue and creep deformed microstructures of aged alloys based on Al-4% Cu-0.3% Mg

    International Nuclear Information System (INIS)

    Reddy, A. Somi

    2008-01-01

    The addition of 0.4 wt.% of silver or cadmium to the alloy Al-4% Cu-0.3% Mg which has a high Cu:Mg ratio, changes the nature, morphology and dispersion of the precipitates that forms on age hardening at medium temperatures such as 150-200 o C. Fatigue and creep tests were carried out on alloys aged to peak strength at 170 o C. The tensile properties of the alloys aged at 170 o C increased in the order Al-4% Cu, Al-4% Cu-0.3% Mg, Al-4% Cu-0.3% Mg-0.4% Cd, and Al-4% Cu-0.3% Mg-0.4% Ag. Despite differences in their microstructures and tensile properties, the fatigue performance of the alloys was relatively unaffected. Fatigue behaviour was similar in each case and the alloys showed identical fatigue limits. Major differences were observed in the creep performance of the alloys creep tested at 150 o C in the peak strength condition age hardened at 170 o C. Creep performance of the alloys increased in the order of their tensile properties. The purpose of the present work was to discuss the fatigue and creep deformed microstructure of these alloys

  1. Determination of palladium by flame photometry

    International Nuclear Information System (INIS)

    Parellada Bellod, R.

    1964-01-01

    A study on the determination of palladium by lame photometry, fixing the most convent experimental conditions and using solvents to increase the emission of this elements is carried out. Among the organic solvents, acetone has been found the most efficient. The interferences produced by anions and cations have also been studied and an analytical method is related, in which lines of calibration of 0 to 100 ppm palladium re used. (Author) 7 refs

  2. Adsorption of palladium ions by modified carbons from rice husks

    International Nuclear Information System (INIS)

    Mostafa, M.R.

    1994-01-01

    Steam activated carbon of high surface area does not show palladium ions adsorption. Treatment of this carbon with HF acid increases to a great extent the gas adsorption capacity expressed as nitrogen surface area as well as the adsorption capacity of palladium ions from aqueous solution. HHB was loaded in different amounts on to these carbons. The acid sites represent the active fraction of the surface on which the adsorption palladium ions proceed. The uptake of palladium ions by HHB treated carbons is related to the total number of HHB molecules loaded on the carbon surface. (author)

  3. Toughness testing and high-temperature oxidation evaluations of advanced alloys for core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [ORNL; Pint, Bruce A [ORNL; Chen, Xiang [ORNL

    2016-09-16

    Alloy X-750 was procured from Carpenter Technology and Bodycote in this year. An appropriate TMT was developed on Alloy 439 to obtain materials with refined grain size for property screening tests. Charpy V-notch impact tests were completed for the three ferritic steels Grade 92, Alloy 439, and 14YWT. Fracture toughness tests at elevated temperatures were completed for 14YWT. The tests will be completed for the other alloys in next fiscal year. Steam oxidation tests of the three ferritic steels, 316L, and Zr–2.5Nb have been completed. The steam tests of the Ni-based superalloys and the other austenitic stainless steels will be continued and finished in next fiscal year. Performance ranking in terms of steam oxidation resistance and impact/fracture toughness of the alloys will be deduced.

  4. Graphene coatings for chemotherapy: avoiding silver-mediated degradation

    International Nuclear Information System (INIS)

    Mazzola, Federico; Cooil, Simon; Skjønsfjell, Eirik Torbjørn Bakken; Breiby, Dag W; Wells, Justin W; Trinh, Thuat; Kjelstrup, Signe; Østli, Elise Ramleth; Høydalsvik, Kristin; Preobrajenski, Alexei; Cafolla, Attilio A; Evans, D Andrew

    2015-01-01

    Chemotherapy treatment usually involves the delivery of fluorouracil (5-Fu) together with other drugs through central venous catheters. Catheters and their connectors are increasingly treated with silver or argentic alloys/compounds. Complications arising from broken catheters are common, leading to additional suffering for patients and increased medical costs. Here, we uncover a likely cause of such failure through a study of the surface chemistry relevant to chemotherapy drug delivery, i.e. between 5-Fu and silver. We show that silver catalytically decomposes 5-Fu, compromising the efficacy of the chemotherapy treatment. Furthermore, HF is released as a product, which will be damaging to both patient and catheter. We demonstrate that graphene surfaces inhibit this undesirable reaction and would offer superior performance as nanoscale coatings in cancer treatment applications. (paper)

  5. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  6. Long-life fatigue test results for two nickel-base structural alloys

    International Nuclear Information System (INIS)

    Mowbray, D.F.; Giaquinto, E.V.; Mehringer, F.J.

    1978-11-01

    The results are reported of fatigue tests on two nickel--base alloys, hot-cold-worked and stress-relieved nickel--chrome--iron Alloy 600 and mill-annealed nickel--chrome--moly--iron Alloy 625 in which S-N data were obtained in the life range of 10 6 to 10 10 cycles. The tests were conducted in air at 600 0 F, in the reversed membrane loading mode, at a frequency of approx. 1850 Hz. An electromagnetic, closed loop servo-controlled machine was built to perform the tests. A description of the machine is given

  7. Chemical vapour generation of silver: reduced palladium as permanent reaction modifier for enhanced performance

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Tomáš; Sturgeon, R. E.

    2004-01-01

    Roč. 19, č. 8 (2004), s. 1014-1017 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : chemical vapour generation * chemical modification * silver Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2004

  8. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Julin, Peng; Bursill, L.A.

    1990-01-01

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  9. Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium-platinum-rhodium alloys

    International Nuclear Information System (INIS)

    Lukaszewski, M.; Grden, M.; Czerwinski, A.

    2004-01-01

    Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO 2 (reduced CO 2 ) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO 2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO 2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions

  10. Fexofenadine Suppresses Delayed-Type Hypersensitivity in the Murine Model of Palladium Allergy

    Directory of Open Access Journals (Sweden)

    Ryota Matsubara

    2017-06-01

    Full Text Available Palladium is frequently used in dental materials, and sometimes causes metal allergy. It has been suggested that the immune response by palladium-specific T cells may be responsible for the pathogenesis of delayed-type hypersensitivity in study of palladium allergic model mice. In the clinical setting, glucocorticoids and antihistamine drugs are commonly used for treatment of contact dermatitis. However, the precise mechanism of immune suppression in palladium allergy remains unknown. We investigated inhibition of the immune response in palladium allergic mice by administration of prednisolone as a glucocorticoid and fexofenadine hydrochloride as an antihistamine. Compared with glucocorticoids, fexofenadine hydrochloride significantly suppressed the number of T cells by interfering with the development of antigen-presenting cells from the sensitization phase. Our results suggest that antihistamine has a beneficial effect on the treatment of palladium allergy compared to glucocorticoids.

  11. Autoclave Testing on Zirconium Alloy Materials

    International Nuclear Information System (INIS)

    Hoffmann, Petra-Britt; Sell, Hans-Juergen; Garzarolli, Friedrich

    2012-09-01

    The corrosion of Zirconium components like fuel rod claddings and spacer grids is limiting lifetime and duty of these components. In Pressurized and Boiling Water Reactors (PWR and BWR), different corrosion phenomena are of interest. Although in-pile experience is the final proof for a material development, significant experience was gained by autoclave tests, trying to simulate in-pile conditions but reducing time for return of experience by increased temperatures. For PWR application, the uniform corrosion is studied in water at up to 370 deg. C and in high pressure steam at 400 deg. C, and for BWR, the nodular corrosion is studied in high pressure steam at 500-520 deg. C. Particular attention has to be given to the corrosion media, because oxidative traces in the water can significantly affect the corrosion response. An extensive air removal is thus important for all corrosion tests. This links to the different water chemistry conditions that have been investigated as separate effects otherwise difficult to separate under in-pile conditions. Uniform corrosion in 350 deg. C water is usually a cyclic process with repeated rate transitions. In addition, at high exposure times an acceleration of corrosion can occur, e.g. for Zr-Sn alloys with a high Sn content. In 400 deg. C steam, corrosion rate decreases somewhat with increasing time. Uniform corrosion rate of Zr alloys depends on their Sn- and Fe+Cr contents as well as on their annealing parameters with a similar trend as in PWR and on their yield strength, however with an opposite trend compared to BWR conditions. Nodular corrosion of BWR alloys depends on the annealing parameter with a similar trend as in PWR and out-of-reactor also significantly on the Fe+Cr content. The hydrogen pickup fraction (HPUF) depends largely on details of the water chemistry and can particularly depend on autoclave degassing and probably also on autoclave contaminations. Thus any HPUF value from out-of- pile corrosion tests is only

  12. Palladium assisted silver transport in polycrystalline SiC

    Energy Technology Data Exchange (ETDEWEB)

    Neethling, J.H., E-mail: Jan.Neethling@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); O' Connell, J.H.; Olivier, E.J. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-10-15

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd-Ag compound at temperatures of 800 and 1000 Degree-Sign C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC-SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag-Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag-Pd compound if present at the IPyC-SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  13. Palladium assisted silver transport in polycrystalline SiC

    International Nuclear Information System (INIS)

    Neethling, J.H.; O’Connell, J.H.; Olivier, E.J.

    2012-01-01

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd–Ag compound at temperatures of 800 and 1000 °C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC–SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag–Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag–Pd compound if present at the IPyC–SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  14. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  15. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  16. Elaboration and characterisation of Pd-Cr alloys for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Souleymane, B.; Fouda-Onana, F.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Palladium (Pd) alloys have been considered as alternative catalyst cathodes for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, particularly in liquid fuel cells. The purpose of this study was to investigate the ORR on various Pd-Cr alloys. Pd-Cr alloys were deposited on glassy carbon support and the electrocatalytic parameters for the ORR were determined in acid medium. The effect of the Pd-Cr alloy deposition parameters on its composition and electrocatalytic behaviour were determined. The study showed that there is a relationship between the composition of the alloy and the power of the Pd and Cr cathode. The parameters of the ORR were correlated to the alloy chemical and physical properties. EDS and XPS analysis revealed a segregation of Cr in the alloy.The variation of the work function (W) of the alloy with the alloy composition has shown a minimum value of W of 0.287 for a composition of the alloy of 70 per cent of Pd and 30 per cent of Cr. The electrochemically active surface area and the exchange current density of the ORR indicated that the mechanism of the ORR on Pd-Cr is similar to that on platinum. 9 refs., 2 figs.

  17. Experimental constraints on gold and silver solubility in iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Pal' yanova, Galina [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Mikhlin, Yuri [Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Kokh, Konstantin, E-mail: k.a.kokh@gmail.com [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Siberian Physical–Technical Institute of Tomsk State University, 1, Novosobornaya, Tomsk, 634050 (Russian Federation); Karmanov, Nick [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Seryotkin, Yurii [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation)

    2015-11-15

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au){sub wt} ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag{sub 2}S) to uytenbogaardtite (Ag{sub 3}AuS{sub 2}) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with

  18. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  19. Preparation and characterization of nanodiamond cores coated with a thin Ni-Zn-P alloy film

    International Nuclear Information System (INIS)

    Wang Rui; Ye Weichun; Ma Chuanli; Wang Chunming

    2008-01-01

    Nanodiamond cores coated with a thin Ni-Zn-P alloy film were prepared by an electroless deposition method under the conditions of tin chloride sensitization and palladium chloride activation. The prepared materials were analyzed by Fourier transform infrared (FTIR) spectrometry and X-ray diffraction (XRD). The nanostructure of the materials was then characterized by transmission electron microscopy (TEM). The alloy film composition was characterized by Energy Dispersive X-ray (EDX) analysis. The results indicated the approximate composition 49.84%Ni-37.29%Zn-12.88%P was obtained

  20. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-01-01

    Previous work in our laboratory and elsewhere has suggested that MIC of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possibly a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. Similar test procedures are applicable to other environments of interest to this symposium

  1. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  2. Sulphur containing novel extractants for extraction-separation of palladium (II)

    International Nuclear Information System (INIS)

    Shukla, J.P.; Sawant, S.R.; Anil Kumar; Singh, R.K.

    1995-01-01

    Extraction performance of palladium (II) by sulphur containing extragents has unequivocally established their strong extraction ability toward this thiophilic soft metal. Hence a comprehensive investigative study was initiated by us to examine selective reversible extraction-separation of trace and macro amounts of palladium (II) from both aqueous nitric acid as well as hydrochloric acid media into 1,2-dichloroethane by 1,10-dithia-18 crown-6 (1,10-DT18C6), S 6 -pentano-36 (S 6 -P-36) and bis (2-ethylhexyl) sulphoxide (BESO) dissolved in toluene. From the study of aqueous phase acidity, reagent concentration, period of equilibration, diluent, strippant and diverse ions, conditions are established from its quantitative and reversible extraction. Recovery of Pd(II) from loaded thiacrown and sulphoxide phase is easily accomplished by using sodium thiocyanate, ammonium thiocyanate, thiourea, sodium thiosulphate and mixture of (2M Na 2 CO 3 + 0.5 NH 4 OH) (only for BESO) as the strippants. The lack of interference from even appreciable amounts of contaminants like 137 Cs, 106 Ru, 233 U and 239 Pu may be considered as one of the outstanding advantages of the method. Application of these extractants has been successfully tested for the recovery of palladium from high active waste matrix. The extracted complex from both the thiacrowns has been characterized by elemental analyses and UV-Visible spectra, confirmed to be PdA 2 .T (A = NO - 3 , Cl - ) from dilute (pH ∼ 2) acid solutions while composition of organic species with palladium for the sulphoxide, has also been confirmed to be disolvate of the type Pd(NO 3 ) 2 .2BESO. (author). 52 refs., 6 tabs., 6 figs

  3. SDT: The Brazilian Standardization of the Silver Drawing Test of Cognition and Emotion.

    Science.gov (United States)

    Allessandrini, Cristina Dias; Duarte, Jose Luclano Miranda; Bianco, Marisa Fernandes; Dupas, Margarida Azevedo

    1998-01-01

    The Silver Drawing Test of Cognition and Emotion was standardized for Brazilian children (N=2,000). ANOVA results are presented for age and education groups from early grades on, including distinguishing adult education levels; results are compared for U.S. and Brazilian populations. Growth in test scores, emotional content responses, and…

  4. Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys

    Science.gov (United States)

    Gable, B. M.; Shiflet, G. J.; Starke, E. A.

    2006-04-01

    The coarsening resistance and thermal stability of several Ω plate-dominated microstructures were controlled through altering the chemistry and thermomechanical processing of various Al-Cu-Mg-Ag alloys. Quantitative comparisons of Ω nucleation density, particle size, and thermal stability were used to illustrate the effects of alloy composition and processing conditions. The long-term stability of Ω plates was found to coincide with relatively high levels of silver and moderate magnesium additions, with the latter limiting the competition for solute with S-phase precipitation. This analysis revealed that certain microstructures initially dominated by Ω precipitation were found to remain stable through long-term isothermal and double-aging heat treatments, which represents significant improvement over the previous generation of Al-Cu-Mg-Ag alloys, in which Ω plates dissolved sacrificially after long aging times. The quantitative precipitate data, in conjunction with a thermodynamic database for the aluminum-rich corner of the Al-Cu-Mg-Ag quaternary system, were used to estimate the chemistry of the α/Ω-interphase boundary. These calculations suggest that silver is the limiting species at the α/Ω interfacial layer and that Ω plates form with varying interfacial chemistries during the early stages of artificial aging, which is directly related to the overall stability of certain plates.

  5. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts.

    Science.gov (United States)

    Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M

    2017-08-01

    Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Facile synthesis of bacitracin-templated palladium nanoparticles with superior electrocatalytic activity

    Science.gov (United States)

    Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei

    2017-02-01

    Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.

  7. Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions.

    Science.gov (United States)

    Baran, Talat

    2017-06-15

    In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Rhodium segregation in dilute silver-rhodium alloys

    International Nuclear Information System (INIS)

    Krolas, K.; Sternik, M.

    1995-01-01

    Segregation of Rh in Ag-based alloys has been studied using the perturbed angular correlation of γ-rays emitted in the nuclear decay of radioactive 111 In. The formation of impurity complexes, consisting of an 111 In probe atom and one or more Rh atoms, was observed as a function of annealing time and temperature. Rhodium atom aggregation starts at about 600 K. From the fraction of 111 In bound to isolated Rh atoms the solute rhodium atom concentration was determined. It increases with the nominal alloy concentration up to about 0.04 at.% and then it is essentially constant for the nominal Rh concentration varying between 0.1 and 0.5 at.%. The solute rhodium atom concentration is 3 times larger at the melting point than at 750 K

  9. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  10. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  11. TTC- Based Test as an Efficient Method to Determine Antibiofilm Activity of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chojniak Joanna

    2017-01-01

    Full Text Available Among metal nanoparticles, silver nanoparticles are a widely used in various life sectors such as in biomedical applications, air and water purification, food production, cosmetics, garments and in various household products. There are several methods for production of silver nanoparticles. Generally, silver nanoparticles can be prepared by chemical methods such as chemical reduction and electrochemical techniques, physical methods, and biological methods such as the use of microorganisms. The biological route of synthesis provides a great diversity in choice for its raw materials such as bacteria, algae, fungi and plants. The aim of the study was to evaluate the tetrazolium/formazan test as a method to determine antibiofilm activity of biological synthetized silver nanoparticles. In this study Bacillus subtilis grown on brewery effluent and produced biosurfactant was used for silver nanoparticles (Ag-NPs synthesis. The culture supernatants were used in synthesis of Ag-NPs. The formation of nanoparticles accompanied by colour changes of the used reaction system was confirmed by UV-vis spectroscopy. The bacteria isolated from the biofilm of water supply system were used in the evaluation of the antibiofilm activity of biologically synthetized Ag-NPs. To compare the results the commonly used crystal violet assay (CV for biofilm analysis was applied.

  12. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    Science.gov (United States)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  13. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  14. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    KAUST Repository

    Cheng, Hong

    2015-01-01

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium nanoparticles. The membranes to be tested were embedded within a drip flow biofilm reactor, and Pseudomonas aeruginosa PAO1 was inoculated and allowed to establish biofilm on the tested membranes. It was found that 1,2,3-triazole and palladium nanoparticles can inhibit the bacterial growth in aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide and Pel polysaccharide within the biofilm matrix but not the protein content.

  15. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    KAUST Repository

    Cheng, Hong

    2015-08-01

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium nanoparticles. The membranes to be tested were embedded within a drip flow biofilm reactor, and Pseudomonas aeruginosa PAO1 was inoculated and allowed to establish biofilm on the tested membranes. It was found that 1,2,3-triazole and palladium nanoparticles can inhibit the bacterial growth in aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide and Pel polysaccharide within the biofilm matrix but not the protein content.

  16. New results on long term aging tests for rad-waste container alloy selection

    Energy Technology Data Exchange (ETDEWEB)

    Alves, H.; Wahl, V.; Ibas, O.; Stenner, F. [ThyssenKrupp VDM GmbH, Altena (Germany)

    2004-07-01

    The current design of containers for high level nuclear waste proceeds on using an outer barrier of corrosion resistant Ni-based super alloy. The current alloy of choice is alloy 22 (UNS N06022). It is a quaternary Ni-Cr- Mo-W alloy system. The new but well established alloy 59 (UNS N06059) is an excellent equal or even a superior alternative to alloy 22 for the 10,000 years reliability being sought. Alloy 59 is a pure ternary alloy in the Ni-Cr-Mo alloy system. Objective of this paper is to present data comparing these two alloys. Therefore the behaviour of alloy 59 and alloy 22 was characterised after aging in air for 10,000 h and 20,000 h at different temperatures (200, 300 and 427 deg. C). Since the performance of weldments is of great concern, both welded and unwelded specimens were studied. Mechanical properties of the air aged alloys were measured at room temperature by tensile and notch impact-bending test. Thermal stability and aqueous corrosion are considered to be the key issues in the long-term performance of container materials proposed for the geological disposal of high level nuclear waste. The long-term thermal stability and corrosion resistance of the alloy 59 compared to alloy 22 is discussed. Corrosion resistance was evaluated in ASTM G28 A and 'green death' solution laboratory tests; hereby corrosion rates and depth of attack were determined. Metallo-graphical studies were performed in mill annealed and air aged conditions. The results of the aging tests at 10,000 h and 20,000 h show that alloy 59 is an equal or better candidate material due to its superior localised corrosion resistance behaviour (pitting and crevice corrosion resistance) and better thermal stability needed especially in multi-pass welding of thick sections. Therefore alloy 59 seems to be the most promising alternative to alloy 22. (authors)

  17. New results on long term aging tests for rad-waste container alloy selection

    International Nuclear Information System (INIS)

    Alves, H.; Wahl, V.; Ibas, O.; Stenner, F.

    2004-01-01

    The current design of containers for high level nuclear waste proceeds on using an outer barrier of corrosion resistant Ni-based super alloy. The current alloy of choice is alloy 22 (UNS N06022). It is a quaternary Ni-Cr- Mo-W alloy system. The new but well established alloy 59 (UNS N06059) is an excellent equal or even a superior alternative to alloy 22 for the 10,000 years reliability being sought. Alloy 59 is a pure ternary alloy in the Ni-Cr-Mo alloy system. Objective of this paper is to present data comparing these two alloys. Therefore the behaviour of alloy 59 and alloy 22 was characterised after aging in air for 10,000 h and 20,000 h at different temperatures (200, 300 and 427 deg. C). Since the performance of weldments is of great concern, both welded and unwelded specimens were studied. Mechanical properties of the air aged alloys were measured at room temperature by tensile and notch impact-bending test. Thermal stability and aqueous corrosion are considered to be the key issues in the long-term performance of container materials proposed for the geological disposal of high level nuclear waste. The long-term thermal stability and corrosion resistance of the alloy 59 compared to alloy 22 is discussed. Corrosion resistance was evaluated in ASTM G28 A and 'green death' solution laboratory tests; hereby corrosion rates and depth of attack were determined. Metallo-graphical studies were performed in mill annealed and air aged conditions. The results of the aging tests at 10,000 h and 20,000 h show that alloy 59 is an equal or better candidate material due to its superior localised corrosion resistance behaviour (pitting and crevice corrosion resistance) and better thermal stability needed especially in multi-pass welding of thick sections. Therefore alloy 59 seems to be the most promising alternative to alloy 22. (authors)

  18. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  19. Novel palladium-lead (Pd-Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Nguyen, Truong Son; Wang, Xin [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Xuewei [School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-05-01

    Carbon-supported bimetallic palladium-lead (Pd-Pb/C) catalysts with different amounts of lead are prepared using a co-reduction method. The catalysts are characterized by various techniques, which reveal the formation of an alloy nanoparticle structure. The electrochemical activities of the catalysts towards ethanol oxidation in alkaline media are examined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry methods. The results show that the Pd-Pb(4:1)/C catalyst exhibits a better catalytic activity than the Pd/C catalyst. From carbon monoxide (CO) stripping results, the addition of lead also facilitates the oxidative removal of adsorbed CO. The promoting effect of lead is explained by a bi-functional mechanism and d-band theory. (author)

  20. Analysis of incoloy 800ht alloy tested in thermal transient conditions

    International Nuclear Information System (INIS)

    Velciu, L.; Meleg, T.; Nitu, A.; Popa, L.

    2015-01-01

    This paper investigated Incoloy 800 HT alloy after following thermal transient tests: fast heating rates (50° and 90°C/minute) up to 1,000°C, maintaining this temperature level (0 and 60 minutes), furnace-cooling until 220°C, and then air-cooling. This alloy is one of the candidate materials for construction of the steam generators of the future NPP reactors. The analysis consisted in metallographic examination and traction tests. The samples were investigated using the Olympus GX 71 optical microscope, the OPL microdurometer with automatic cycle and WALTER BAI traction device. The average grain size was determined by linear interception method. The micro hardness was calculated by the relationship from the device technical book. On the traction diagrams were obtained: strength resistance (Rm), elongation at rupture (A) and elastic modulus (E). The tested alloy was compared with the ''as received'' material, and the results showed a good behavior of this alloy in the presented conditions. (authors)

  1. Thermophysical Properties of Matter - the TPRC Data Series. Volume 12. Thermal Expansion Metallic Elements and Alloys

    Science.gov (United States)

    1975-01-01

    the thermal expansion of metallic elements, alloys, and intermetallic compounds. We believe there is also much food for reflection by the specialist...24 39 Plutonium Pu ........ ............... 260 40’ t Polonium Po ..... ............... 270 41* Potassium K ..... ............... 271 42...923 209 NIckel-Palladium NI-Pd..................926 210 * Nickel-Pitaum Ni-Pt.................90 211 Nickel-Silicon NI-SI.................932 212

  2. Nano-palladium is a cellular catalyst for in vivo chemistry

    Science.gov (United States)

    Miller, Miles A.; Askevold, Bjorn; Mikula, Hannes; Kohler, Rainer H.; Pirovich, David; Weissleder, Ralph

    2017-07-01

    Palladium catalysts have been widely adopted for organic synthesis and diverse industrial applications given their efficacy and safety, yet their biological in vivo use has been limited to date. Here we show that nanoencapsulated palladium is an effective means to target and treat disease through in vivo catalysis. Palladium nanoparticles (Pd-NPs) were created by screening different Pd compounds and then encapsulating bis[tri(2-furyl)phosphine]palladium(II) dichloride in a biocompatible poly(lactic-co-glycolic acid)-b-polyethyleneglycol platform. Using mouse models of cancer, the NPs efficiently accumulated in tumours, where the Pd-NP activated different model prodrugs. Longitudinal studies confirmed that prodrug activation by Pd-NP inhibits tumour growth, extends survival in tumour-bearing mice and mitigates toxicity compared to standard doxorubicin formulations. Thus, here we demonstrate safe and efficacious in vivo catalytic activity of a Pd compound in mammals.

  3. Evaluation of colloidal Pd and Pd-alloys as anode electrocatalysts for direct borohydride fuel cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, M.H. [General Motors R and D Technical Center, Warren, MI (United States); Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Northwood, D.O. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2010-07-01

    An evaluation was conducted to assess the use of colloidal palladium (Pd) and Pd alloys as anode electrocatalysts for direct borohydride fuel cell applications. A modified Bonneman method was used to investigate borohydride oxidation on supported Pd and Pd-alloy nano-electrocatalysts. Cyclic voltammetry (CV), rotating disk electrode (RDE) voltammetry, and single fuel cell test stations were used to determine Tafel slopes, exchange current densities, oxidation peak potentials, and fuel cell performance. The study also investigated the influence of temperature and oxidant flow and fuel flow rates on fuel cell performance. The study showed that the current density of the fuel cell increased with increases in temperature for all the investigated Pd electrocatalysts. However, the increase in current density was not as high as expected when fuel flow rates were increased. A current density of 50 mA cm{sup -2} was observed at 298 K with a Pd-Ir anode catalyst operating at a cell voltage of 0.5 V. 28 refs., 1 tab., 15 figs.

  4. Measurement of in-vivo dosage increase due to dental alloys during therapeutic irradiation of the mouth cavity

    International Nuclear Information System (INIS)

    Thilmann, C.; Mose, S.; Saran, F.; Schopohl, B.; Boettcher, H.D.

    1995-01-01

    The degree of dosage increase in the immediate surrounding of metallic dental materials was measured in an in-vivo study during therapeutic irradiation with 60 Co gamma rays in the area of mouth cavity of 11 patients. Measurements were carried out by thermoluminescent dosimetry at permamently fixed golden teeth and alloy specimens containing gold and palladium and amalgam. The following relative dodage values according to a simultanelusly measured reference value were measured at the surface of the different dental materials: 161% near fixed golden caps, 168% near the specimen containing gold in a high percentage, 133% near the specimen of palladium and 161% near the specimen of amalgam. The in vivo measured dosage increases due to metallic dental prosthesis are less than values obtained using back scatter arramgements for irradiating phantoms. Despite this, they could be of clinical relevance. Thus the usage of a mucous membrane protection during irradiation with 60 Co, as a means of preventing local lesions of the oral mucosa, due to dental alloys within the treatment volume remains inevitable. (orig.) [de

  5. Palladium configuration dependence of hydrogen detection sensitivity based on graphene FET for breath analysis

    Science.gov (United States)

    Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-04-01

    We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.

  6. Surface topography of a palladium cathode after electrolysis in heavy water

    International Nuclear Information System (INIS)

    Silver, D.S.; Dash, J.; Keefe, P.S.

    1993-01-01

    Electrolysis was performed with a palladium cathode and an electrolyte containing both hydrogen and deuterium ions. The cathode bends toward the anode during this process. Examination of both the concave and the convex surfaces with the scanning electron microscope, scanning tunneling microscope, and atomic force microscope shows unusual surface characteristics. Rimmed craters with faceted crystals inside and multitextural surfaces were observed on an electrolyzed palladium cathode but not on palladium that has not been electrolyzed. 9 refs., 9 figs

  7. Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, Stefan [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Grunwaldt, Jan-Dierk [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland)]. E-mail: grunwaldt@chem.ethz.ch; Krumeich, Frank [Laboratory of Inorganic Chemistry, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland); Kappen, Peter [Department of Physics, La Trobe University, Victoria 3086 (Australia); Baiker, Alfons [Institute of Chemical and Bioengineering, Swiss Federal Institute of Technology, ETH Hoenggerberg, CH-8093 Zurich (Switzerland)

    2006-09-15

    Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO{sub 2}, TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity.

  8. Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Hannemann, Stefan; Grunwaldt, Jan-Dierk; Krumeich, Frank; Kappen, Peter; Baiker, Alfons

    2006-01-01

    Gold and gold-silver nanoparticles prepared by flame spray pyrolysis (FSP) were characterized by electron microscopy, in situ X-ray absorption spectroscopy (XANES and EXAFS), X-ray diffraction (XRD) and their catalytic activity in CO oxidation. Within this one-step flame-synthesis procedure, precursor solutions of dimethyl gold(III) acetylacetonate and silver(I) benzoate together with the corresponding precursor of the silica, iron oxide or titania support, were sprayed and combusted. In order to prepare small metal particles, a low noble metal loading was required. A loading of 0.1-1 wt.% of Au and Ag resulted in 1-6 nm particles. The size of the noble metal particles increased with higher loadings of gold and particularly silver. Both scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDXS) and X-ray absorption spectroscopy (XAS) studies proved the formation of mixed Au-Ag particles. In case of 1% Au-1% Ag/SiO 2 , TEM combined with electron spectroscopic imaging (ESI) using an imaging filter could be used in addition to prove the presence of silver and gold in the same noble metal particle. CO oxidation in the presence of hydrogen was chosen as a test reaction sensitive to small gold particles. Both the influence of the particle size and the alloying of gold and silver were reflected in the CO oxidation activity

  9. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  10. Detection and characterization of silver nanoparticles and dissolved species of silver in culture medium and cells by AsFlFFF-UV-Vis-ICPMS: application to nanotoxicity tests.

    Science.gov (United States)

    Bolea, E; Jiménez-Lamana, J; Laborda, F; Abad-Álvaro, I; Bladé, C; Arola, L; Castillo, J R

    2014-03-07

    A methodology based on Asymmetric Flow Field-Flow Fractionation (AsFlFFF) coupled with UV-Vis absorption spectrometry and ICP mass spectrometry (ICPMS) has been developed and applied to the study of silver nanoparticles (AgNPs) and dissolved species of silver in culture media and cells used in cytotoxicity tests. The effect of a nano-silver based product (protein stabilized silver nanoparticles ca. 15 nm average diameter) on human hepatoma (HepG2) cell viability has been studied. UV-Vis absorption spectrometry provided information about the nature (organic vs. nanoparticle) of the eluted species, whereas the silver was monitored by ICPMS. A shift towards larger hydrodynamic diameters was observed in the AgNPs after a 24 hour incubation period in the culture medium, which suggests a "protein corona" effect. Silver(I) associated with proteins present in the culture medium has also been detected, as a consequence of the oxidation process experimented by the AgNPs. However, the Ag(I) released into the culture medium did not justify the toxicity levels observed. AgNPs associated with the cultured HepG2 cells were also identified by AsFlFFF, after applying a solubilisation process based on the use of tetramethylammonium hydroxide (TMAH) and Triton X-100. These results have been confirmed by transmission electronic microscopy (TEM) analysis of the fractions collected from the AsFlFFF. The effect of AgNPs on HepG2 cells has been compared to that caused by silver(I) as AgNO3 under the same conditions. The determination of the total content of silver in the cells confirms that a much larger mass of silver as AgNPs with respect to AgNO3 (16 to 1) is needed to observe a similar toxicity.

  11. Palladium-Catalysed Coupling Reactions

    NARCIS (Netherlands)

    de Vries, Johannes G.; Beller, M; Blaser, HU

    2012-01-01

    Palladium-catalysed coupling reactions have gained importance as a tool for the production of pharmaceutical intermediates and to a lesser extent also for the production of agrochemicals, flavours and fragrances, and monomers for polymers. In this review only these cases are discussed where it seems

  12. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    International Nuclear Information System (INIS)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-01-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO 3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi

  13. Stability enhancement of Cu2S against Cu vacancy formation by Ag alloying

    Science.gov (United States)

    Barman, Sajib K.; Huda, Muhammad N.

    2018-04-01

    As a potential solar absorber material, Cu2S has proved its importance in the field of renewable energy. However, almost all the known minerals of Cu2S suffer from spontaneous Cu vacancy formation in the structure. The Cu vacancy formation causes the structure to possess very high p-type doping that leads the material to behave as a degenerate semiconductor. This vacancy formation tendency is a major obstacle for this material in this regard. A relatively new predicted phase of Cu2S which has an acanthite-like structure was found to be preferable than the well-known low chalcocite Cu2S. However, the Cu-vacancy formation tendency in this phase remained similar. We have found that alloying silver with this structure can help to reduce Cu vacancy formation tendency without altering its electronic property. The band gap of silver alloyed structure is higher than pristine acanthite Cu2S. In addition, Cu diffusion in the structure can be reduced with Ag doped in Cu sites. In this study, a systematic approach is presented within the density functional theory framework to study Cu vacancy formation tendency and diffusion in silver alloyed acanthite Cu2S, and proposed a possible route to stabilize Cu2S against Cu vacancy formations by alloying it with Ag.

  14. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  15. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  16. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  17. Synthesis and characterization of supported Pt and Pt alloys nanoparticles used for the catalytic oxidation of sulfur dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Eriksen, Kim Michael; Fehrmann, Rasmus

    2006-01-01

    pressure in the temperature range of 250–700 °C. The effect of doping the active metal with rhodium and palladium was also studied. The catalytic activities of the supported catalysts were found to follow the order Pt–Pd/CPG > Pt–Rh/CPG > Pt/CPG. A significant synergistic effect of the Pt–Pd alloy...

  18. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  19. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst

    Directory of Open Access Journals (Sweden)

    Zhengyu Bai

    2015-04-01

    Full Text Available In this paper, a catalyst of hollow PdCu alloy nanocubes supported on nitrogen-doped graphene support (H-PdCu/ppy-NG is successfully synthesized using a simple one-pot template-free method. Two other catalyst materials such as solid PdCu alloy particles supported on this same nitrogen-doped graphene support (PdCu/ppy-NG and hollow PdCu alloy nanocubes supported on the reduced graphene oxide support (H-PdCu/RGO are also prepared using the similar synthesis conditions for comparison. It is found that, among these three catalyst materials, H-PdCu/ppy-NG gives the highest electrochemical active area and both the most uniformity and dispersibility of H-PdCu particles. Electrochemical tests show that the H-PdCu/ppy-NG catalyst can give the best electrocatalytic activity and stability towards the ethanol electrooxidation when compared to other two catalysts. Therefore, H-PdCu/ppy-NG should be a promising catalyst candidate for anodic ethanol oxidation in direct ethanol fuel cells.

  20. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    Science.gov (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles

    NARCIS (Netherlands)

    Griessen, R.P.; Strohfeldt, N.; Giessen, H.

    2015-01-01

    Palladium-hydrogen is a prototypical metal-hydrogen system. It is therefore not at all surprising that a lot of attention has been devoted to the absorption and desorption of hydrogen in nanosized palladium particles. Several seminal articles on the interaction of H with Pd nanocubes and

  2. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    Science.gov (United States)

    Stevenson, Amadeus PZ; Blanco Bea, Duani; Civit, Sergi; Antoranz Contera, Sonia; Iglesias Cerveto, Alberto; Trigueros, Sonia

    2012-02-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd.

  3. A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study.

    Science.gov (United States)

    Čapek, Jaroslav; Msallamová, Šárka; Jablonská, Eva; Lipov, Jan; Vojtěch, Dalibor

    2017-10-01

    Recently, iron-based materials have been considered as candidates for the fabrication of biodegradable load-bearing implants. Alloying with palladium has been found to be a suitable approach to enhance the insufficient corrosion rate of iron-based alloys. In this work, we have extensively compared the microstructure, the mechanical and corrosion properties, and the cytotoxicity of an FePd2 (wt%) alloy prepared by three different routes - casting, mechanical alloying and spark plasma sintering (SPS), and mechanical alloying and the space holder technique (SHT). The properties of the FePd2 (wt%) were compared with pure Fe prepared in the same processes. The preparation route significantly influenced the material properties. Materials prepared by SPS possessed the highest values of mechanical properties (CYS~750-850MPa) and higher corrosion rates than the casted materials. Materials prepared by SHT contained approximately 60% porosity; therefore, their mechanical properties reached the lowest values, and they had the highest corrosion rates, approximately 0.7-1.2mm/a. Highly porous FePd2 was tested in vitro according to the ISO 10993-5 standard using L929 cells, and two-fold diluted extracts showed acceptable cytocompatibility. In general, alloying with Pd enhanced both mechanical properties and corrosion rates and did not decrease the cytocompatibility of the studied materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  5. Some metallurgical aspects of ancient silver coins discovered in romania (original and imitations) - provenance, destination and commercial networks

    International Nuclear Information System (INIS)

    Constantinescu, Bogdan; Cojocaru, Viorel; Bugoi, Roxana

    2007-01-01

    The analyses of source materials combined with analyses of archaeological objects could distinguish from pieces produced in different regions and periods. For coins, chemical differences that occur during preparation of alloys will affect the elemental composition and could be used for the identification of technologies and workshops and also to distinguish between originals and counterfeits. We illustrate with the case of Geto-Dacian coins (Thassos and Macedonian - Phillip II, Alexander the Greek and Phillip III 'barbarized' tetradrachms) and with Greek Apollonia and Dyrrhachium silver drachms emitted by these old cities for Pompejus during the First Roman Civil War between Julius Caesar and Pompejus, coins found on the actual territory of Romania (ancient Dacia), probably used as bursaries to pay the Dacian mercenaries allied with Pompejus. To analyze the chemical composition of these coins, we used two methods: Am-241 and Pu-238 gamma sources based X-Ray Fluorescence (XRF) and in vacuum 3 MeV protons Particle Induced X-ray Emission (PIXE). Some special measurements on the edge of some coins (to identify plated exemplaires) were done using the ATOMKI Debrecen Van de Graaf 2 MeV protons microprobe, in the frame of European Action COST G1. Concerning the Geto-Dacian coins, we observed: - There is a reduction of the fineness in time that is specific to almost every coin issue. - Tin concentration in coins increased in time; at the beginning of the coinage (250 - 150 B.C.) this was more or less proportionally to copper. This could suggest that bronze was used in alloying silver coins instead of copper. A very high correlation is not expected because the ratio Sn/Cu in ancient bronzes is far to be a constant. A value of the Cu/Sn ratio close to 1 is not surprising because such objects were common in antiquity. In the last issues (150-50 B.C.) seems that Sn replaced partially Cu. - It seems that tin alloying appeared first time in Transylvania around 150 BC and then

  6. Silver-indium-cadmium control rod behavior and aerosol formation in severe reactor accidents

    International Nuclear Information System (INIS)

    Petti, D.A.

    1987-04-01

    Silver-indium-cadmium (Ag-In-Cd) control rod behavior and aerosol formation in severe reactor accidents are examined in an attempt to improve the methodology used to estimate reactor accident source terms. Control rod behavior in both in-pile and out-of-pile experiments is reviewed. A mechanistic model named VAPOR is developed that calculates the downward relocation and simultaneous vaporization behavior of the Ag-In-Cd alloy expected after control rod failure in a severe reactor accident. VAPOR is used to predict the release of silver, indium, and cadmium vapors expected in the Power Burst Facility (PBF) Severe Fuel Damage (SFD) 1-4 experiment. In addition, a sensitivity study is performed. Although cadmium is found to be the most volatile constituent of the alloy, all of the calculations predict that the rapid relocation of the alloy down to cooler portions of the core results in a small release for all three control rod alloy vapors. Potential aerosol formation mechanisms in a severe reactor accident are reviewed. Specifically, models for homogeneous, ion-induced, and heterogeneous nucleation are investigated. These models are applied to silver, cadmium, and CsI to examine the nucleation behavior of these three potential aerosol sources in a severe reactor accident and to illustrate the competition among these mechanisms for vapor depletion. The results indicate that aerosol formation in a severe reactor accident occurs in three stages. In the first stage, ion-induced nucleation causes aerosol generation. During the second stage, ion-induced and heterogeneous nucleation operates as competing pathways for gas-to-particle conversion until sufficient aerosol surface area is generated. In the third stage, ion-induced nucleation ceases; and heterogeneous nucleation becomes the dominant mechanism of gas-to-particle conversion until equilibrium is reached

  7. Corrosion of titanium and titanium alloys in spent fuel repository conditions - literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haenninen, H.; Aaltonen, P.; Taehtinen, S.

    1985-03-01

    The spent nuclear fuel is planned to be disposed in Finnish bedrock. The canister of spent fuel in waste repository is one barrier to the release of radionuclides. It is possible to choose a canister material with a known, measurable corrosion rate and to make it with thickness allowing corrosion to occur. The other possibility is to use a material which is nearly immune to general corrosion. In this second category there are titanium and titanium alloys which exhibit a very high degree of resistance to general corrosion. In this literature study the corrosion properties of unalloyed titanium, titanium alloyed with palladium and titanium alloyed with molybdenum and nickel are reviewed. The two titanium alloys own in addition to the excellent general corrosion properties outstanding properties against localized corrosion like pitting or crevice corrosion. Stress corrosion cracking and corrosion fatique of titanium seem not to be a problem in the repository conditions, but the possibilities of delayed cracking caused by hydrogen should be carefully appreciated. (author)

  8. Development and testing ov danadium alloys for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1996-10-01

    V base alloys have advantages for fusion reactor first-wall and blanket structure. To screen candidate alloys and optimize a V-base alloy, physical and mechanical properties of V-Ti, V-Cr-Ti, and V-Ti- Si alloys were studied before and after irradiation in Li environment in fast fission reactors. V-4Cr-4Ti containing 500-1000 wppM Si and <1000 wppM O+N+C was investigated as the most promising alloy, and more testing is being done. Major results of the work are presented in this paper. The reference V-4Cr-4Ti had the most attractive combination of the mechanical and physical properties that are prerequisite for first-wall and blanket structures: good thermal creep, good tensile strength/ductility, high impact energy, excellent resistance to swelling, and very low ductile-brittle transition temperature before and after irradiation. The alloy was highly resistant to irradiation-induced embrittlement in Li at 420-600 C, and the effects of dynamically charged He on swelling and mechanical properties were insignificant. However, several important issues remain unresolved: welding, low-temperature irradiation, He effect at high dose and high He concentration, irradiation creep, and irradiation performance in air or He. Initial results of investigation of some of these issues are also given.

  9. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel-Halsey-Hill (FHH) model.

    Science.gov (United States)

    Ahmad, A L; Mustafa, N N N

    2006-09-15

    The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.

  10. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  11. Effect of preconditioning on silver leaching and bromide removal properties of silver-impregnated activated carbon (SIAC).

    Science.gov (United States)

    Rajaeian, Babak; Allard, Sébastien; Joll, Cynthia; Heitz, Anna

    2018-07-01

    Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Study on the determination of palladium in biological samples by the method of neutron activation analysis

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Queiroz

    2007-01-01

    Palladium is one of platinum group elements present in the nature at very low concentrations. However with the use of this element in the automobile catalyzers Pd became a new pollutant. Besides, Pd has been studied in the preparation of new antitumour drugs. Consequently, there is a need to determine Pd concentrations in biological and environmental samples. This study presents palladium results obtained in the analysis of biological samples and reference materials using instrumental thermal and epithermal neutron activation analysis (INAA and ENAA). The solvent extraction and solid phase extraction separation methods were also applied before ENAA. The samples analyzed in this study were, reference material BCR 723 - Palladium, Platinum and Rhodium in road dust, CCQM-P63 automotive catalyst material of the Proficiency Test and bovine tissue samples containing palladium prepared in the laboratory. Samples and palladium synthetic standard were irradiated at the IEA-R1 nuclear research reactor under thermal neutron flux of about 4 x 10 12 n cm-2 s-1, during a period of 4 and 16 h for INAA and ENAA, respectively. The induced gamma activity of 109 Pd to the sample and standard was measured using a hyper pure Ge detector coupled to a gamma ray spectrometer. The palladium concentration was calculated by comparative method. The gamma ray energy of 109 Pd radioisotope measured was of 88.0 keV, located in a spectrum region of low energy where occurs the interference of X rays, 'Bremsstrahlung' radiations, as well as Compton effect of 24 Na. The pre-separation of palladium from interfering elements by solvent extraction was performed using dimethylglyoxime complexant and chloroform as diluent. In the case of the pre separation procedure using solid reversed phase column, the palladium was retained using N,N-diethyl-N'-benzoyl thiourea complexant and eluted using ethanol. Aliquots of the resulting solutions from the pre-separations, free of interfering elements, were

  13. Role of aluminum in silver paste contact to boron-doped silicon emitters

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern′s line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  14. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    Science.gov (United States)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies

  15. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  16. Palladium nanoparticle anchored polyphosphazene nanotubes ...

    Indian Academy of Sciences (India)

    607–610. c Indian Academy of Sciences. Palladium ... 2Department of Chemistry, APA College of Arts and Culture, Palani, Tamil Nadu 624 601, India. 3Department of .... K Dinakaran acknowledges the financial support from. Department of ...

  17. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  18. Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support

    International Nuclear Information System (INIS)

    Escandon, Lara S.; Ordonez, Salvador; Vega, Aurelio; Diez, Fernando V.

    2008-01-01

    Four different supported palladium catalysts (using alumina, silica, zirconia and titania as supports), prepared by incipient wetness impregnation, were tested as catalysts for methane oxidation in presence of sulphur dioxide. The catalyst supported on zirconia showed the best performance, whereas the silica-supported one showed the fastest deactivation. Temperature-programmed desorption experiments of the poisoned catalysts suggest that SO 2 adsorption capacity of the support plays a key role in the catalyst poisoning. In order to study the effect of promoters, expected to improve the thermal stability and thioresistance of the catalyst, commercial zirconia modified by yttrium and lantane was tested as supports. It was found that the presence of these promoters does not improve the performance of the zirconia-supported catalyst. A deactivation model - considering two different active sites (fresh and poisoning), pseudo-first order dependence on methane concentration and poisoning rate depending on sulphur concentration and fraction of non-poisoned palladium - was used for modelling the deactivation behaviour

  19. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  20. Clinical Acceptability of the Internal Gap of CAD/CAM PD-AG Crowns Using Intraoral Digital Impressions

    Science.gov (United States)

    Kim, Tae-Gyung; Kim, Sungtae; Lee, Jae-Hoon

    2016-01-01

    The purpose of this study was to compare the internal gap between CAD/CAM palladium-silver crowns and cast gold crowns generated from intraoral digital versus conventional impressions and to determine the clinical acceptability. Nickel-chrome master dies were made from the prepared resin tooth with the conventional impression method (n = 40). For ICC (Intraoral, CAD/CAM) group, 10 intraoral digital impressions were made, and 10 CAD/CAM crowns of a PD-AG (palladium-silver) machinable alloy were generated. For IC (Intraoral, Cast) group, 10 gold crowns were cast from ten intraoral digital impressions. For CCC (Conventional, CAD/CAM) group, 10 CAD/CAM PD-AG crowns were made using the conventional impression method. For CC (Conventional, Cast) group, 10 gold crowns were fabricated from 10 conventional impressions. One hundred magnifications of the internal gaps of each crown were measured at 50 points with an optical microscope and these values were statistically analyzed using a two-way analysis of variance (α = 0.05). The internal gap of the intraoral digital impression group was significantly larger than in the conventional impression group (P 0.05). Within the limitations of this in vitro study, crowns from intraoral digital impressions showed larger internal gap values than crowns from conventional impressions. PMID:28018914

  1. Clinical Acceptability of the Internal Gap of CAD/CAM PD-AG Crowns Using Intraoral Digital Impressions

    Directory of Open Access Journals (Sweden)

    Tae-Gyung Kim

    2016-01-01

    Full Text Available The purpose of this study was to compare the internal gap between CAD/CAM palladium-silver crowns and cast gold crowns generated from intraoral digital versus conventional impressions and to determine the clinical acceptability. Nickel-chrome master dies were made from the prepared resin tooth with the conventional impression method (n=40. For ICC (Intraoral, CAD/CAM group, 10 intraoral digital impressions were made, and 10 CAD/CAM crowns of a PD-AG (palladium-silver machinable alloy were generated. For IC (Intraoral, Cast group, 10 gold crowns were cast from ten intraoral digital impressions. For CCC (Conventional, CAD/CAM group, 10 CAD/CAM PD-AG crowns were made using the conventional impression method. For CC (Conventional, Cast group, 10 gold crowns were fabricated from 10 conventional impressions. One hundred magnifications of the internal gaps of each crown were measured at 50 points with an optical microscope and these values were statistically analyzed using a two-way analysis of variance (α=0.05. The internal gap of the intraoral digital impression group was significantly larger than in the conventional impression group (P0.05. Within the limitations of this in vitro study, crowns from intraoral digital impressions showed larger internal gap values than crowns from conventional impressions.

  2. Mechanism of the palladium-catalyzed hydrothiolation of alkynes to thioethers: a DFT study.

    Science.gov (United States)

    Zhang, Xing-hui; Geng, Zhi-yuan; Wang, Ke-tai; Li, Shan-shan

    2014-09-01

    The mechanisms of the palladium-catalyzed hydrothiolation of alkynes with thiols were investigated using density functional theory at the B3LYP/6-31G(d, p) (SDD for Pd) level. Solvent effects on these reactions were explored using the polarizable continuum model (PCM) for the solvent tetrahydrofuran (THF). Markovnikov-type vinyl sulfides or cis-configured anti-Markovnikov-type products were formed by three possible pathways. Our calculation results suggested the following: (1) the first step of the cycle is a proton-transfer process from thiols onto the palladium atom to form a palladium-thiolate intermediate. The palladium-thiolate species is attacked on alkynes to obtain an elimination product, liberating the catalyst. (2) The higher activation energies for the alkyne into the palladium-thiolate bond indicate that this step is the rate-determining step. The Markovnikov-type vinyl sulfide product is favored. However, for the aromatic alkyne, the cis-configured anti-Markovnikov-type product is favored. (3) The activation energy would reduce when thiols are substituted with an aromatic group. Our calculated results are consistent with the experimental observations of Frech and colleagues for the palladium-catalyzed hydrothiolation of alkynes to thiols.

  3. Carbon nanotubes decorated with palladium nanoparticles : Synthesis, characterization, and catalytic activity

    NARCIS (Netherlands)

    Karousis, Nikolaos; Tsotsou, Georgia-Eleni; Evangelista, Fabrizio; Rudolf, Petra; Ragoussis, Nikitas; Tagmatarchis, Nikos

    2008-01-01

    In this article, the in situ preparation of palladium nanoparticles, as mediated by the self-regulated reduction of palladium acetate with the aid of sodium dodecyl sulfate (SDS), followed by subsequent deposition onto single-walled carbon nanotubes and multimalled carbon nanotubes (MWCNTs), is

  4. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  5. Microwave-assisted synthesis of palladium nanocubes and nanobars

    International Nuclear Information System (INIS)

    Yu, Yanchun; Zhao, Yanxi; Huang, Tao; Liu, Hanfan

    2010-01-01

    Microwave was employed in the shape-controlled synthesis of palladium nanoparticles. Palladium nanocubes and nanobars with a mean size of about 23.8 nm were readily synthesized with H 2 PdCl 4 as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent in the presence of PVP and CTAB in 80 s under microwave irradiation. The structures of the as-prepared palladium nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-vis) absorption spectroscopy. The formation of PdBr 4 2- due to the coordination replacement of the ligand Cl - ions in PdCl 4 2- ions by Br - ions in the presence of bromide was responsible for the synthesis of Pd nanocubes and nanobars. In addition, a milder reducing power, a higher viscosity and a stronger affinity of TEG were beneficial to the larger sizes of Pd nanocubes and nanobars.

  6. Electronic influences in the diffusion of hydrogen in the alloy series of palladium

    International Nuclear Information System (INIS)

    Buchold, H.; Sicking, G.; Wicke, E.

    1976-01-01

    The mobility of tritium in Pd-alloys with Ag, V and Ni has been investigated by time-lag measurements, where the β-radiation of the tritium decay was taken as measuring signal; this method allows the determination of internal concentration shifts without disturbance by inhibiting effects of interface transfer. It has been found, that small additions of the alloying components do not change the activation energy of tritium diffusion; higher concentrations of Ag and V, however, lead to steep rises of the activation energy, whereas the isoelectronic Ni as alloying partner does not influence the activation energy within the limits of experimental error. For interpretation of the results the activation energy of diffusion is divided into a basic contribution of the Pd host lattice and an additional electronic term. This term is closely connected with the VEC, and can be calculated from the screening potential of the impurity atoms. The basic part of the activation energy can approximately be identified with the energy of elastic strain of the Pd lattice brought about by the diffusion jump. (orig.) [de

  7. Influences of the coating on silver nanoparticle toxicity in a chronic test with Daphnia magna

    DEFF Research Database (Denmark)

    Sakka, Y.; Mackevica, Aiga; Skjolding, Lars Michael

    2015-01-01

    coated AgNP in a chronic Daphnia test. One type of AgNP was coated with citrate (cAgNP), the other AgNP were generally uncoated (pAgNP; p= pure), but sterically stabilized by an organic dispersant. Particles with a similar shape and diameter were chosen. The focus of the study was to relate observed......Sources for differences in silver nanoparticle toxicity at standardized conditions can be numerous. They range from particle properties and their actual concentrations to differences in uptake or depuration by the test organisms. In the present study we compared the toxicity of two differently...... differences in toxicity to characteristics of the AgNP, like size or surface potential, or to their corresponding behaviour during the test, like dissolution or uptake. The characteristics and the behaviour of the AgNP were investigated for changes in stability and especially the release of silver ions...

  8. High-performance electrically conductive silver paste prepared by silver-containing precursor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo; Cao, Yu; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Wuhan (China)

    2010-09-15

    A high-performance electrically conductive silver paste with no solid particles before drying and/or sintering is developed, in which silver-containing precursor is employed as conductive functional phase. Thermogravimetry analysis, volume electrical resistivity tests and sintering experiments show that the paste with about 14 wt.% silver pristine content is able to achieve the volume electrical resistivity of (2-3) x 10{sup -5} {omega} cm after it is sintered at 220 C. A micro-pen direct-writing process indicates that it is very suitable for the fabrication of high-resolution (25 {mu}m) and high-integration devices and apparatus. (orig.)

  9. Development of new positive-grid alloy and its application to long-life batteries for automotive industry

    Science.gov (United States)

    Furukawa, Jun; Nehyo, Y.; Shiga, S.

    Positive-grid corrosion and its resulting creep or growth is one of the major causes of the failure of automotive lead-acid batteries. The importance of grid corrosion and growth is increasing given the tendency for rising temperatures in the engine compartments of modern vehicles. In order to cope with this situation, a new lead alloy has been developed for positive-grids by utilizing an optimized combination of lead-calcium-tin and barium. In addition to enhanced mechanical strength at high temperature, the corrosion-resistance of the grid is improved by as much as two-fold so that the high temperature durability of batteries using such grids has been demonstrated in both hot SAE J240 tests and in field trials in Japan and Thailand. A further advantage of the alloy is its recycleability compared with alloys containing silver. The new alloy gives superior performance in both 12-V flooded and 36-V valve-regulated lead-acid (VRLA) batteries.

  10. Irradiation enhanced diffusion and irradiation creep tests in stainless steel alloys

    International Nuclear Information System (INIS)

    Loelgen, R.H.; Cundy, M.R.; Schuele, W.

    1977-01-01

    A review is given of investigations on the rate of phase changes during neutron and electron irradiation in many different fcc alloys showing either precipitation or ordering. The diffusion rate was determined as a function of the irradiation flux, the irradiation temperature and the irradiation dose. It was found that the radiation enhanced diffusion in all the investigated alloys is nearly temperature independent and linearly dependent on the flux. From these results conclusions were drawn concerning the properties of point defects and diffusion mechanisms rate determining during irradiation, which appears to be of a common nature for fcc alloys having a similar structure to those investigated. It has been recognized that the same dependencies which are found for the diffusion rate were also observed for the irradiation creep rate in stainless steels, as reported in literature. On the basis of this obervation a combination of measurements is suggested, of radiation enhanced diffusion and radiation enhanced creep in stainless steel alloys. Measurements of radiation enhanced diffusion are less time consuming and expensive than irradiation creep tests and information on this property can be obtained rather quickly, prior to the selection of stainless steel alloys for creep tests. In order to investigate irradiation creep on many samples at a time two special rigs were developed which are distinguished only by the mode of stress applied to the steel specimens. Finally, a few uniaxial tensile creep tests will be performed in fully instrumented rigs. (Auth.)

  11. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    Science.gov (United States)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  12. Microstructural evolution during dry wear test in magnesium and Mg-Y alloy

    Energy Technology Data Exchange (ETDEWEB)

    Somekawa, Hidetoshi, E-mail: SOMEKAWA.Hidetoshi@nims.go.jp [Research Center for Strategic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Maeda, Shunsuke; Hirayama, Tomoko; Matsuoka, Takashi [Department of Mechanical Engineering, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe 610-0321 (Japan); Inoue, Tadanobu [Research Center for Strategic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Mukai, Toshiji [Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 (Japan)

    2013-01-20

    The friction and wear properties of pure magnesium and the Mg-Y alloy were investigated using the pin-on-disk configuration. The friction and wear resistance of the Mg-Y alloy was superior to those of pure magnesium. The wear mechanism was abrasion under all the conditions. The deformed microstructural evolutions near the surface region were observed by transmission electron microscopy and electron backscatter diffraction. The stress and strain states were also evaluated by finite element analysis (FEA). The deformed microstructures of both alloys consisted of the {l_brace}10-12{r_brace} twinning formation and the FEA results showed the occurrence of plastic deformation even at the beginning of the test. The formation of low angle grain boundaries was also confirmed with an increase in the applied load in the Mg-Y alloy. On the other hand, grain refinement due to dynamic recrystallization was observed in pure magnesium as the wear test progressed. The different microstructures resulted from difference in the surface temperature during the wear test, which was estimated to be around 393 K and 363 K for pure magnesium and the Mg-Y alloy, respectively. The high increment temperature in the fine-grained alloys brought about the occurrence of grain boundary sliding, i.e., material softening, which led to a decrease in the friction and wear properties. The present results indicated that one of the methods for enhancing the friction and wear properties is to increase the dynamic recrystallization temperature.

  13. Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross-Coupling of Organolithium Reagents

    NARCIS (Netherlands)

    Heijnen, Dorus; Tosi, Filippo; Vila, Carlos; Stuart, Marc C. A.; Elsinga, Philip H.; Szymanski, Wiktor; Feringa, Ben L.

    2017-01-01

    The discovery of an ultrafast cross-coupling of alkyland aryllithium reagents with a range of aryl bromides is presented. The essential role of molecular oxygen to form the active palladium catalyst was established; palladium nanoparticles that are highly active in cross-coupling reactions with

  14. Palladium sulphide (PdS) films as a new thermoelectric sulphide compound

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Diaz-Chao, P.; Clamagirand, J.; Macia, M.D.; Ferrer, I.J.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Palladium sulphide (PdS) films have been prepared by direct sulphuration of 20 nm thick palladium films at different temperatures (200 C < T < 450 C). Sulphurated films exhibit an unique crystalline phase: PdS. Seebeck coefficient and electrical resistivity of these films are between -110 and -150 {mu}V/K and {proportional_to} 0.08 to 0.8 {omega}cm depending on the sulphuration temperature. Negative sign of Seebeck coefficient indicates an n type conduction in all films. Discussion is focused on the influence of atomic ratio between sulphur and palladium as well as impurities arising from the substrate on transport properties. (orig.)

  15. Prenatal molecular testing for Beckwith-Wiedemann and Silver-Russell syndromes

    DEFF Research Database (Denmark)

    Eggermann, Thomas; Brioude, Frédéric; Russo, Silvia

    2016-01-01

    Beckwith-Wiedemann and Silver-Russell syndromes (BWS/SRS) are two imprinting disorders (IDs) associated with disturbances of the 11p15.5 chromosomal region. In BWS, epimutations and genomic alterations within 11p15.5 are observed in >70% of patients, whereas in SRS they are observed in about 60% ......, the consequences for prenatal genetic testing and counseling and our cumulative experience in dealing with these disorders.European Journal of Human Genetics advance online publication, 28 October 2015; doi:10.1038/ejhg.2015.224....

  16. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  17. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    Science.gov (United States)

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  18. PVP-Stabilized Palladium Nanoparticles in Silica as Effective Catalysts for Hydrogenation Reactions

    Directory of Open Access Journals (Sweden)

    Caroline Pires Ruas

    2013-01-01

    Full Text Available Palladium nanoparticles stabilized by poly (N-vinyl-2-pyrrolidone (PVP can be synthesized by corresponding Pd(acac2 (acac = acetylacetonate as precursor in methanol at 80°C for 2 h followed by reduction with NaBH4 and immobilized onto SiO2 prepared by sol-gel process under acidic conditions (HF or HCl. The PVP/Pd molar ratio is set to 6. The effect of the sol-gel catalyst on the silica morphology and texture and on Pd(0 content was investigated. The catalysts prepared (ca. 2% Pd(0/SiO2/HF and ca. 0,3% Pd(0/SiO2/HCl were characterized by TEM, FAAS, and SEM-EDS. Palladium nanoparticles supported in silica with a size 6.6 ± 1.4 nm were obtained. The catalytic activity was tested in hydrogenation of alkenes.

  19. Development of anodic stripping voltametry for the determination of palladium in high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, T. K. [North Carolina State University, Raleigh (United States); Sharma, H. S.; Affarwal, S. K. [Bhabha Atomic Research Centre, Mumbai (India); Jain, P. C. [Meerut College, Meerut (India)

    2012-12-15

    Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, 10-8 and 10-7 M, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).

  20. Low-silver radiographic detectors

    International Nuclear Information System (INIS)

    Troitskii, V.A.; Novikov, I.A.; Nikitin, V.F.; Krasnyi-Admoni, L.V.; Valevich, M.I.; Belyi, N.G.; Grom, V.S.

    1988-01-01

    X-ray films and screens with low silver content for use in weld radiography are reviewed and tested. Properties examined include image graininess, brightness, and sensitivity to x radiation. Results are given for radiography of steel 08Kh18N10T, St20, AMG-6, copper, and titanium welds. Processing techniques for low-silver films are discussed. It is established that films and screens containing little silver can replace many x-ray films containing much more silver. Monitoring methods were developed for the new materials to cover items in classes 3-7 on GOST 23075-78 when used with equipment of RUP-150/300-10 type or classes 4-7 with pulsed x-ray equipment

  1. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    Science.gov (United States)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  2. Large silver-cadmium technology program

    Science.gov (United States)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  3. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); El Hassan, A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale Firenze (Italy); Harith, M.A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Diaz Pace, D. [Institute of Physics ' Arroyo Seco' , Faculty of Science, Tandil (Argentina); Anabitarte Garcia, F. [Photonics Engineering Group, University of Cantabria, Santander (Spain); Scuotto, M. [Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy)

    2012-08-15

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: Black-Right-Pointing-Pointer We studied a large collection of Roman republican silver denarii. Black-Right-Pointing-Pointer XRF and LIBS allowed to determine the precious metal content of the coins. Black-Right-Pointing-Pointer A correlation of the 'quality' of the alloy with some contemporary events was found. Black-Right-Pointing-Pointer The study allowed to controvert a recent theory on the so called 'serrated' denarii.

  4. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms.

    Science.gov (United States)

    Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes

    2017-06-01

    In order to reduce the level of transmission of diseases caused by bacteria and fungi, the development of antimicrobial additives for use in personal care, hygiene products, clothing and others has increased. Many of these additives are based on metals such as silver and titanium. The disposal of these products in the environment has raised concerns pertaining to their potential harmfulness for beneficial organisms. The objective of this study was to evaluate the influence of the shape, surface chemistry, size and carrier of three additives containing silver and one with titanium dioxide (TiO 2 ) on microcrustacean survival. Daphnia magna was used as a bioindicator for acute exposure test in suspensions from 0.0001 to 10,000ppm. Ceriodaphnia dubia was used for chronic test in TiO 2 suspensions from 0.001 to 100ppm. D. magna populations presented high susceptibility to all silver based additives, with 100% mortality after 24hr of exposure. A different result was found in the acute experiments containing TiO 2 suspensions, with mortality rates only after 48hr of incubation. Even on acute and chronic tests, TiO 2 did not reach a linear concentration-response versus mortality, with 1ppm being more toxic than 10,000ppm on acute test and 0.001 more toxic than 0.01ppm on chronic assay. Silver based material toxicity was attributed to silver itself, and had no relation to either form (nano or ion) or carrier (silica, phosphate glass or bentonite). TiO 2 demonstrated to have a low acute toxicity against D. magna. Copyright © 2016. Published by Elsevier B.V.

  5. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  6. Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.

    Science.gov (United States)

    Lou, Yali; Darvell, Brain W; Botelho, Michael G

    2018-05-01

    To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.

  7. Silver-doped layers of implants prepared by pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Jelínek, Miroslav; Mikšovský, Jan; Jurek, Karel; Čejka, Z.; Kopeček, Jaromír

    2013-01-01

    Roč. 1, č. 7 (2013), s. 59-61 ISSN 2327-5219 R&D Projects: GA AV ČR KAN300100801 Institutional support: RVO:68378271 Keywords : thin layer * silver * titanium alloy * steel * pulsed laser deposition * adhesion * implant Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scirp.org/journal/PaperInformation.aspx?paperID=40308#.UvECAfu5dHA

  8. Formability of a wrought Mg alloy evaluated by impression testing

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Walid; Gollapudi, Srikant; Charit, Indrajit; Murty, K. Linga

    2018-01-17

    This study is focused on furthering our understanding of the different factors that influence the formability of Magnesium alloys. Towards this end, formability studies were undertaken on a wrought Mg-2Zn-1Mn (ZM21) alloy. In contrast to conventional formability studies, the impression testing method was adopted here to evaluate the formability parameter, B, at temperatures ranging from 298 to 473 K. The variation of B of ZM21 with temperature and its rather limited values were discussed in the light of different deformation mechanisms such as activation of twinning, slip, grain boundary sliding (GBS) and dynamic recrystallization (DRX). It was found that the material characteristics such as grain size, texture and testing conditions such as temperature and strain rate, were key determinants of the mechanism of plastic deformation. A by-product of this analysis was the observation of an interesting correlation between the Zener-Hollomon parameter, Z, and the ability of Mg alloys to undergo DRX.

  9. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.

  10. Fracture testing and performance of beryllium copper alloy C 17510

    International Nuclear Information System (INIS)

    Murray, H.A.; Zatz, I.J.

    1992-01-01

    A series of test programs was undertaken on copper beryllium alloy C 17510 for several variations in material process and chemistry. These variations in C 17510 were primarily optimized for combinations of strength and conductivity. While originally intended for use as cyclically loaded high-field, high-strength conductors in fusion energy research, material testing of C 17510 has indicated that it is an attractive and economical alternative for a host of other structural, mechanical and electrical applications. ASTM tests performed on three variations of C 17510 alloys included both J-integral and plane strain fracture toughness testing (E813, E399) and fatigue crack growth rate tests (E647), as well as verifying tensile, hardness, Charpy, and other well defined mechanical properties. Fracture testing was performed at both room and liquid nitrogen temperatures, which bound the thermal environment anticipated for the fusion components being designed. Fatigue crack propagation stress ratios ranged from nominal zero to minus one at each temperature

  11. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  12. Characterization of the silver coins of the Hoard of Beçin by X-ray based methods

    International Nuclear Information System (INIS)

    Rodrigues, M.; Schreiner, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.

    2011-01-01

    Four hundred sixteen silver coins stemming from the Ottoman Empire (16th and 17th centuries) were analyzed in order to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. As most of the coins showed the typical green patina on their surfaces due to corrosion processes which have led to the depletion of copper in the near-surface domains of the silver coins in comparison to their core composition, small samples by cutting splinters from the coins had to be taken, embedded in synthetic resin and cross-sectioned in order to investigate the true-heart metal composition. The type of the alloy was investigated as well as if coins minted in different locations demonstrated homogeneous traits concerning the predominant impurities which could suggest a common ore. Several X-ray based techniques (μ-XRF, μ-SRXRF and μ-PIXE) could be applied in order to determine the silver contents as well as the minor and trace elements. Finally, SEM/EDX was applied in order to study the homogeneity/heterogeneity of the coins and the presence of surface enrichments. In general, the silver content of the analyzed specimen varies between 90% and 95%. These outcomes have not supported the historical interpretations, which predict that during the period studied a debasement of approximately 44% of the silver content of the coins should have occurred.

  13. Characterization of the silver coins of the Hoard of Beçin by X-ray based methods

    Science.gov (United States)

    Rodrigues, M.; Schreiner, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.

    2011-12-01

    Four hundred sixteen silver coins stemming from the Ottoman Empire (16th and 17th centuries) were analyzed in order to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. As most of the coins showed the typical green patina on their surfaces due to corrosion processes which have led to the depletion of copper in the near-surface domains of the silver coins in comparison to their core composition, small samples by cutting splinters from the coins had to be taken, embedded in synthetic resin and cross-sectioned in order to investigate the true-heart metal composition. The type of the alloy was investigated as well as if coins minted in different locations demonstrated homogeneous traits concerning the predominant impurities which could suggest a common ore. Several X-ray based techniques (μ-XRF, μ-SRXRF and μ-PIXE) could be applied in order to determine the silver contents as well as the minor and trace elements. Finally, SEM/EDX was applied in order to study the homogeneity/heterogeneity of the coins and the presence of surface enrichments. In general, the silver content of the analyzed specimen varies between 90% and 95%. These outcomes have not supported the historical interpretations, which predict that during the period studied a debasement of approximately 44% of the silver content of the coins should have occurred.

  14. From mineral industry to industrial waste recycling: the Valme Company in Falaise

    Energy Technology Data Exchange (ETDEWEB)

    Delubac, G

    1993-07-01

    Computers reach their final destination in the Calvados town of Falaise. There, the Valme Company recovers the gold, silver and palladium contained in computer parts. On average, Valme thus recovers between 500 and 600 kg of gold, 4.5 tons of silver, and 100 to 150 kg of palladium per year. The Falaise plant also handles refining of the Rouez-en-Champagne gold mining products. (Author). 4 figs.

  15. Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films.

    Science.gov (United States)

    Kang, Minhee; Ahn, Myeong-Su; Lee, Youngseop; Jeong, Ki-Hun

    2017-10-25

    Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.

  16. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  17. Thin film platinum–palladium thermocouples for gas turbine engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Tougas, Ian M.; Gregory, Otto J., E-mail: gregory@egr.uri.edu

    2013-07-31

    Thin film platinum:palladium thermocouples were fabricated on alumina and mullite surfaces using radio frequency sputtering and characterized after high temperature exposure to oxidizing environments. The thermoelectric output, hysteresis, and drift of these sensors were measured at temperatures up to 1100 °C. Auger electron spectroscopy was used to follow the extent of oxidation in each thermocouple leg and interdiffusion at the metallurgical junction. Minimal oxidation of the platinum and palladium thermoelements was observed after high temperature exposure, but considerable dewetting and faceting of the films were observed in scanning electron microscopy. An Arrhenius temperature dependence on the drift rate was observed and later attributed to microstructural changes during thermal cycling. The thin film thermocouples, however, did exhibit excellent stability at 1000 °C with drift rates comparable to commercial type-K wire thermocouples. Based on these results, platinum:palladium thin film thermocouples have considerable potential for use in the hot sections of gas turbine engines. - Highlights: • Stable thin film platinum:palladium thermocouples for gas turbine engines • Little oxidation but significant microstructural changes from thermal cycling • Minimal hysteresis during repeated thermal cycling • Drift comparable to commercial wire thermocouples.

  18. Oxygen isotope exchange on palladium catalysts

    International Nuclear Information System (INIS)

    Kravchuk, L.S.; Beschetvertnaya, T.I.; Novorodskij, V.G.; Novikova, M.G.; Zaretskij, M.V.; Valieva, S.V.

    1983-01-01

    Oxygen heteromolecular isotope exchange on unreduced palladium catalysts, distingushing by metal content is studied. Content of 18 O in gaseous phase is eoual to 46%. Calculations of heteroexchange rates are conducted with decrease of the 18 O in the gaseous phase over solid sample. Method of oxygen thermodesorption has been used to establish that palladium, deposited on γ-Al 2 O 3 during exchange process is in oxidized state; in this case strength of Pd-O bond is determined by content dispersity) of the metal. It is shown that significant increase of exchange rate on the samples with Pd >> 0.5 mass.% content can be induced as by side decomposition reaction of its oxide and corresponding dilution of gaseous mixture by ''light'' oxygen so by possibility of exchange with oxygen of PdO phase

  19. An improved stress corrosion test medium for aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  20. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated a basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.

  1. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  2. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    Science.gov (United States)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  3. "Life-like" assessment of antimicrobial surfaces by a new touch transfer assay displays strong superiority of a copper alloy compared to silver containing surfaces.

    Directory of Open Access Journals (Sweden)

    Johannes Karl-Mark Knobloch

    Full Text Available Transmission of bacteria from inanimate surfaces in healthcare associated environments is an important source of hospital acquired infections. A number of commercially available medical devices promise to fulfill antibacterial activity to reduce environmental contamination. In this study we developed a touch transfer assay modeling fingerprint transmission to investigate the antibacterial activity of surfaces, with confirmed antibacterial activity by a modified ISO 22196 (JIS Z 2801 assay to test such surfaces under more realistic conditions. Bacteria were taken up from a dry standardized primary contaminated surface (PCS with disinfected fingers or fingers covered with sterile and moistened cotton gloves. Subsequently, bacteria were transferred by pressing on secondary contaminated surfaces (SCS with or without potential antibacterial activity and the relative reduction rate was determined after 24 h. A stable transmission rate between PCS and SCS was observed using moistened sterile gloves. A copper containing alloy displayed at least a tenfold reduction of the bacterial load consistently reaching less than 2.5 cfu/cm2. In contrast, no significant reduction of bacterial contamination by silver containing surfaces and matured pure silver was observed in the touch transfer assay. With the touch transfer assay we successfully established a new reproducible method modeling cross contamination. Using the new method we were able to demonstrate that several surfaces with confirmed antimicrobial activity in a modified ISO 22196 (JIS Z 2801 assay lacked effectiveness under defined ambient conditions. This data indicate that liquid based assays like the ISO 22196 should be critically reviewed before claiming antibacterial activity for surfaces in the setting of contamination of dry surfaces by contact to the human skin. We suggest the newly developed touch transfer assay as a new additional tool for the assessment of potential antimicrobial surfaces

  4. Palladium-based on-wafer electroluminescence studies of GaN-based LED structures

    Energy Technology Data Exchange (ETDEWEB)

    Salcianu, C.O.; Thrush, E.J.; Humphreys, C.J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Plumb, R.G. [Centre for Photonic Systems, Department of Engineering, University of Cambridge, Cambridge CB3 0FD (United Kingdom); Boyd, A.R.; Rockenfeller, O.; Schmitz, D.; Heuken, M. [AIXTRON AG, Kackertstr. 15-17, 52072 Aachen (Germany)

    2008-07-01

    Electroluminescence (EL) testing of Light Emitting Diode (LED) structures is usually done at the chip level. Assessing the optical and electrical properties of LED structures at the wafer scale prior to their processing would improve the cost effectiveness of producing LED-lamps. A non-destructive method for studying the luminescence properties of the structure at the wafer-scale is photoluminescence (PL). However, the relationship between the on-wafer PL data and the final device EL can be less than straightforward (Y. H Aliyu et al., Meas. Sci. Technol. 8, 437 (1997)) as the two techniques employ different carrier injection mechanisms. This paper provides an overview of some different techniques in which palladium is used as a contact in order to obtain on-wafer electroluminescence information which could be used to screen wafers prior to processing into final devices. Quick mapping of the electrical and optical characteristics was performed using either palladium needle electrodes directly, or using the latter in conjunction with evaporated palladium contacts to inject both electrons and holes into the active region via the p-type capping layer of the structure. For comparison, indium was also used to make contact to the n-layer so that electrons could be directly injected into that layer. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  6. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    Directory of Open Access Journals (Sweden)

    Kuppan Gokulan

    2017-04-01

    Full Text Available Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1 the presence of silver resistance genes in tested bacteria; or 2 lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]. This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella.

  7. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data.

    Science.gov (United States)

    Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta

    2017-04-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .

  8. Study of Incoloy 800HT alloy tested by heat-cycling

    International Nuclear Information System (INIS)

    Velciu, L.; Meleg, T.; Pantiru, M.; Petrescu, D.; Voicu, F.

    2016-01-01

    This paper investigated Incoloy 800HT (UNS N08811) alloy after some heat-cycling tests. The study continues prior tests realized in INR Pitesti concerning utilization of some nickel-based alloys in the heat exchangers and steam generators construction. The thermal-cycling consist in a successive series of heating and cooling with some rates in a range temperature. Technical parameters of thermal cycling: 50 & 200 cycles, 25 °C/minute heating-cooling rate, temperature range 450-1000°C, and argon working medium. The analysis consisted in metallographic examination (microstructure), Vickers microhardness, and traction tests. The average grain size was determined by linear interception method (ASTM E-112). The micro hardness was calculated by the relationship of the device technical book. On the Strength-Deformation diagrams were obtained: tensile strength and elongation. The tested samples were compared with the ''as received'' material. The results showed a good metallographic and mechanical behaviour of Incoloy 800HT at these thermal-cycling tests. (authors)

  9. Recovery of nonradioactive palladium and rhodium from high-level radioactive wastes

    International Nuclear Information System (INIS)

    McDuffie, H.F.

    1979-01-01

    A possible method for recovering significant quantities of nonradioactive palladium from fission-product wastes requires essentially complete separation of the fission-product (radioactive) palladium from fission-product ruthenium. After the decay of 106 Ru via 106 Rh to 106 Pd, this nonradioactive palladium is recovered for normal commercial use. The U.S. production of palladium has never been above 1000 kg per year vs consumption of about 46,000 kg per year. Most of the supply comes from Russia and South Africa. It has been estimated that a 400-GW(e) nuclear reactor economy will make available 2000 kg per year of 106 Ru at reactor fuel discharge. A substantial increase might be achieved if plutonium were recycled as fissionable material because of the higher yields of the 106 chain from plutonium. A literature search has uncovered support for three promising approaches to the required separation of palladium from ruthenium: (1) recrystallization from solution in bismuth or in zinc; (2) selective precipitation of a titanium--ruthenium intermetallic compound from bismuth, followed by precipitation of a zinc--palladium intermetallic compound; and (3) dissolution in molten magnesium followed by partitioning between molten magnesium and a molten uranium-5 wt % chromium eutectic at a temperature above 870 0 C. Liquid-liquid extraction appears to be the most promising method from a technological point of view, although intermetallic compound formation is much more interesting chemically. Recovery of some nonradioactive 103 Rh may be possible by liquid-liquid extraction of the fuel before the decay of the 39.8-d 103 Ru has gone substantially to completion. Demonstration of the practicality of these separations will contribute a positive factor to the evaluation of resumption in the United States of nuclear fuel reprocessing and plutonium recycle in light-water-moderated reactors

  10. Surface-Enhanced Raman Spectroscopy of Dye and Thiol Molecules Adsorbed on Triangular Silver Nano structures: A Study of Near-Field Enhancement, Localization of Hot-Spots, and Passivation of Adsorbed Carbonaceous Species

    International Nuclear Information System (INIS)

    Goncalves, M.R.; Marti, O.; Fabian Enderle, F.

    2012-01-01

    Surface-enhanced Raman spectroscopy (SERS) of thiols and dye molecules adsorbed on triangular silver nanostructures was investigated. The SERS hot-spots are localized at the edges and corners of the silver triangular particles. AFM and SEM measurements permit to observe many small clusters formed at the edges of triangular particles fabricated by nanosphere lithography. Finite-element calculations show that near-field enhancements can reach values of more than 200 at visible wavelengths, in the gaps between small spherical particles and large triangular particles, although for the later no plasmon resonance was found at the wavelengths investigated. The regions near the particles showing strong near-field enhancement are well correlated with spatial localization of SERS hot-spots done by confocal microscopy. Silver nanostructures fabricated by thermal evaporation present strong and fast fluctuating SERS activity, due to amorphous carbon contamination. Thiols and dye molecules seem to be able to passivate the undesired SERS activity on fresh evaporated silver. excitation: by far-field illumination of metal nanostructures or rough metal Raman scattering cross-section of gold-palladium target Temporal Fluctuation in SERS Temporal and spectral fluctuations.

  11. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  12. In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method

    International Nuclear Information System (INIS)

    Bera, Debasis; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Slane, Grady C.

    2004-01-01

    A unique, simple, inexpensive, and one-step synthesis route to produce carbon nanotubes (CNTs) decorated with palladium nanoparticles using a simplified dc arc-discharge in solution is reported. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. Such palladium nanoparticles form during the reduction of palladium tetra-chloro-square-planar complex. The deconvoluted x-ray photoelectron spectroscopy envelope shows the presence of palladium on the decorated CNTs. The energy dispersive spectroscopy suggests no functionalization of atomic chlorine to the sidewall of the CNTs. The presence of dislodged graphene sheets with wavy morphology supports the formation of CNTs through the 'scroll mechanism'

  13. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    OpenAIRE

    Kuppan Gokulan; Katherine Williams; Sangeeta Khare

    2017-01-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysi...

  14. Electrochemical behavior of fission palladium in 1-butyl-3-methylimidazolium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A.; Srinivasan, T.G. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2007-08-01

    Electrochemical behavior of palladium (II) chloride in 1-butyl-3-methylimidazolium chloride has been investigated by various electrochemical transient techniques using glassy carbon working electrode at different temperatures (343-373 K). Cyclic voltammogram consisted of a prominent reduction wave at -0.61 V (vs. Pd) due to the reduction of Pd(II) to Pd, and two oxidation waves at -0.26 and 0.31 V. A nucleation loop is observed at -0.53 V. The diffusion coefficient of palladium (II) in bmimCl ({proportional_to}10{sup -7} cm{sup 2}/s) was determined and the energy of activation (63 kJ/mol) was deduced from the cyclic voltammograms at various temperatures. Nucleation and growth of palladium on glassy carbon working electrode has been investigated by chronoamperometry and chronopotentiometry. The growth and decay of chronocurrents measured for palladium deposition has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei. The surface morphology of the deposit obtained at various applied potentials revealed the formation of dendrites immediately after nucleation and spread in all the directions with time. (author)

  15. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  16. Shakedown Tests for Refurbished and Upgraded Frames and Initiation of Alloy 709 Creep Rupture Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moser, Jeremy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Charles S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This report describes the shakedown tests conducted on the upgraded frames, and initiation of creep rupture tests on refurbished frames. SS316H, a reference material for Alloy 709, was used in shakedown tests, and the tests were conducted at 816 degree C under three stress levels to accumulate 1% creep strain. 1/4” gage diameter specimen design was used. The creep rupture tests on Alloy 709 were initiated at 600 degree C under 330 MPa to target 1,500 h rupture time. 12 specimens with 3/8” gage diameter were prepared from the materials with 6 heat treatment conditions, 2 from each. The required mechanical load under 330MPa was calculated to be 5,286 lb for the 3/8” gage diameter specimen. Among the ART frames, 7 frames are equipped with 10,000 lb load cell including #5 to 8 and #88 to 90, and can be used. 7 tests were thus started in this stage of project, and remaining 5 will be continued whenever any of the 7 tests is completed.

  17. Radiochemical neutron activation analysis of high pure palladium and platinum by ion exchange chromatography

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: The palladium and platinum are widely used for jewel manufacture because of their beautiful white color. However the most part of these metals are widely adopted in the world as catalysts. Many works on analytical chemistry of platinum group elements published during last years are devoted to determination of platinum and palladium in other materials. There are no articles on analysis technique of the palladium and platinum purity published during last 20 years. Available publications are very old and are published till 70th of the last century, and implement chemical and spectral methods. At the same time, the palladium and platinum are very suitable for NAA. Therefore the purpose of our research was development of high-sensitivity and multielement techniques of radiochemical neutron activation analysis of a high pure palladium and platinum. Research of nuclear characteristics of palladium and platinum has shown that radioactive nuclides with different yields are formed under the reactor neutrons. 109 , 111 , 111m Pd, 109m , 111 Ag, 191 , 197 , 199 Pt, 199 Au are the most important among them. 109Pd separation factor is equal to 1*10 5 at palladium analysis, whereas 197 Pt and 199 Au separation factor is equal to 1*10 4 at the platinum analysis every other day after irradiation. Palladium and platinum can be separated by precipitation, extraction and ion exchange methods. For separation of radioactive nuclide of the matrix elements from the impurity elements we used ion exchange chromatography system Dowex-1x8 - 1 M HNO 3 for palladium and Dowex-1x8 - 0.1 M HNO 3 for platinum. At the HNO 3 acid concentrations variation from 0,1 M to 1 M more then 25 elements have distribution factors less than 1 and 10 elements have distribution factors 5 while matrix elements have distribution factors higher than 100. It allows an effective separation of these elements from palladium and platinum. Optimum sizes of the chromatographic column and the column effluent

  18. Factors affecting the corrosion of SiC layer by fission product palladium

    International Nuclear Information System (INIS)

    Dewita, E.

    2000-01-01

    HTR is one of the advanced nuclear reactors which has inherent safety system, graphite moderated and helium gas cooled. In general, these reactors are designed with the TRISO coated particle consist of four coating layers that are porous pyrolytic carbon (PyC). inner dense PyC (IPyC), silicon carbide (SiC), and outer dense PyC (OPyC). Among the four coating layers, the SiC plays an important role beside in retaining metallic fission products, it also provides mechanical strength to fuel particle. However, results of post irradiation examination indicate that fission product palladium can react with and corrode SiC layer, This assessment is conducted to get the comprehension about resistance of SiC layer on irradiation effects, especially in order to increase the fuel bum-up. The result of this shows that the corrosion of SiC layer by fission product palladium is beside depend on the material characteristics of SiC, and also there are other factors that affect on the SiC layer corrosion. Fuel enrichment, bum-up, and irradiation time effect on the palladium flux in fuel kernel. While, the fuel density, vapour pressure of palladium (the degree depend on the irradiation temperature and kernel composition) effect on palladium migration in fuel particle. (author)

  19. Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais

    Directory of Open Access Journals (Sweden)

    William Leonardo da Silva

    2013-01-01

    Full Text Available Titanium dioxide nanostructured catalysts (nanotubes doped with different metals (silver, gold, copper, palladium and zinc were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.

  20. Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais Synthesis, characterization and photocatalytic activity of nanostructured TiO2 catalysts doped with metals

    Directory of Open Access Journals (Sweden)

    William Leonardo da Silva

    2013-01-01

    Full Text Available Titanium dioxide nanostructured catalysts (nanotubes doped with different metals (silver, gold, copper, palladium and zinc were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.

  1. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-11-01

    Previous work in our laboratory and elsewhere has suggested that microbially influenced corrosion (MIC) of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate-reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possible a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. This report discusses the adaption of these procedures to study corrosion of nuclear waste containers. (author). 20 refs., 2 tabs., 7 figs

  2. Crystal size effect on the electrochemical oxidation of formate on carbon-supported palladium nanoparticles

    International Nuclear Information System (INIS)

    Santos, Rayana Marcela Izidoro da Silva; Nakazato, Roberto Zenhei; Ciapina, Eduardo Goncalves

    2016-01-01

    Full text: The electrochemical oxidation of formate in alkaline electrolytes has emerged an a promising anodic reaction in the Direct Formate Fuel Cells[1]. Although palladium is considered to be one of the best electro catalyst for the oxidation of formate, important structure-activity relationships are still not understood. In the present work, we investigated the effect of the size of the palladium crystals in the electrochemical oxidation of formate in 0.1 mol L -1 KOH. Carbon-supported palladium nanoparticles (Pd/C) were prepared by chemical reduction of palladium (II) chloride in aqueous media by sodium borohydride in the presence of varying quantities of sodium citrate in the reaction media to obtain metallic crystals with distinct sizes. Analysis of the X-ray diffraction profile revealed the presence of palladium crystals in the range of 6 to 19 nm. Potentiostatic oxidation of formate on the distinct Pd/C samples revealed a volcano-like dependence of the specific activity with the size of the palladium crystals, presenting the highest activity for crystals around 7.5 nm. Reference: [1] A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, J. Power Sources. 214 (2012) 68-74. (author)

  3. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    Science.gov (United States)

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Shi Qiaofang; Diao Guowang

    2011-01-01

    Highlights: ► The deposition of palladium on a GC electrode was performed by cyclic voltammetry. ► SEM images showed palladium nanoparticles deposited on a glassy carbon (GC) electrode. ► The Pd/GC electrode can effectively catalyze m-nitrophenol in aqueous media. ► The reduction of m-nitrophenol on the Pd/GC electrode depended on potential and pH. ► XPS spectra of the Pd/GC electrodes demonstrated the presence of palladium. - Abstract: Palladium nanoparticles modified glassy carbon electrodes (Pd/GC) were prepared via the electrodeposition of palladium on a glassy carbon (GC) electrode using cyclic voltammetry in different sweeping potential ranges. The scanning electron microscope images of palladium particles on the GC electrodes indicate that palladium particles with diameters of 20–50 nm were homogeneously dispersed on the GC electrode at the optimal deposition conditions, which can effectively catalyze the reduction of m-nitrophenol in aqueous solutions, but their catalytic activities are strongly related to the deposition conditions of Pd. The X-ray photoelectron spectroscopy spectra of the Pd/GC electrode confirmed that 37.1% Pd was contained in the surface composition of the Pd/GC electrode. The cyclic voltammograms of the Pd/GC electrode in the solution of m-nitrophenol show that the reduction peak of m-nitrophenol shifts towards the more positive potentials, accompanied with an increase in the peak current compared to the bare GC electrode. The electrocatalytic activity of the Pd/GC electrode is affected by pH values of the solution. In addition, the electrolysis of m-nitrophenol under a constant potential indicates that the reduction current of m-nitrophenol on the Pd/GC electrode is approximately 20 times larger than that on the bare GC electrode.

  5. Dechlorination of Environmental Contaminants Using a Hybrid Nanocatalyst: Palladium Nanoparticles Supported on Hierarchical Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Hema Vijwani

    2012-01-01

    Full Text Available This paper demonstrates the effectiveness of a new type of hybrid nanocatalyst material that combines the high surface area of nanoparticles and nanotubes with the structural robustness and ease of handling larger supports. The hybrid material is made by fabricating palladium nanoparticles on two types of carbon supports: as-received microcellular foam (Foam and foam with carbon nanotubes anchored on the pore walls (CNT/Foam. Catalytic reductive dechlorination of carbon tetrachloride with these materials has been investigated using gas chromatography. It is seen that while both palladium-functionalized carbon supports are highly effective in the degradation of carbon tetrachloride, the rate of degradation is significantly increased with palladium on CNT/Foam. However, there is scope to increase this rate further if the wettability of these structures can be enhanced in the future. Microstructural and spectroscopic analyses of the fresh and used catalysts have been compared which indicates that there is no change in density or surface chemical states of the catalyst after prolonged use in dechlorination test. This implies that these materials can be used repeatedly and hence provide a simple, powerful, and cost-effective approach for dechlorination of water.

  6. Palladium(II)-Stabilized Pyridine-2-Diazotates: Synthesis, Structural Characterization, and Cytotoxicity Studies.

    Science.gov (United States)

    Tskhovrebov, Alexander G; Vasileva, Anna A; Goddard, Richard; Riedel, Tina; Dyson, Paul J; Mikhaylov, Vladimir N; Serebryanskaya, Tatiyana V; Sorokoumov, Viktor N; Haukka, Matti

    2018-02-05

    Well-defined diazotates are scarce. Here we report the synthesis of unprecedented homoleptic palladium(II) diazotate complexes. The palladium(II)-mediated nitrosylation of 2-aminopyridines with NaNO 2 results in the formation of metal-stabilized diazotates, which were found to be cytotoxic to human ovarian cancer cells.

  7. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    Science.gov (United States)

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  8. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei

    2014-01-01

    degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen...... feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...

  9. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  10. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  11. Nanostructured palladium tailored via carbonyl chemical route towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Luo, Y.; Mora-Hernández, J.M.; Estudillo-Wong, L.A.; Arce-Estrada, E.M.; Alonso-Vante, N.

    2015-01-01

    Graphical Abstract: Mass-depending morphologies of nanostructured Palladium obtained via the carbonyl chemical route. Display Omitted -- Highlights: •Mass-depending morphology was observed in nanostructured palladium supported on carbon prepared by the carbonyl chemical route. •The Morphological effect of carbon supported Pd was investigated towards ORR. -- Abstract: Carbon supported palladium nanostructures were synthesized via the carbonyl chemical route. Compared with nanostructured platinum, prepared via carbonyl chemical route, Pd nanomaterials showed mass-loading morphology, whereas particle size and morphology of Pt nanostructures was constant. The oxygen reduction reaction (ORR) on nanostructured Pd, with different morphology in both acid and alkaline medium was investigated. A relationship, based on X-ray diffraction structural analysis pattern, transmission electron microscope, with the Pd morphological effect on ORR activity was identified

  12. Shaping surface of palladium nanospheres through the control of reaction parameters

    International Nuclear Information System (INIS)

    Wang Lianmeng; Tan Enzhong; Guo Lin; Wang Lihua; Han Xiaodong

    2011-01-01

    Solid, cracked, and flower-shaped surfaces of palladium nanospheres with high yields and good uniformity were successfully prepared by a wet chemical method. On the basis of the experimental data, the same size of palladium nanosphere with different surface morphologies can be regulated only by changing the amount of ammonium hydroxide and reductant in one experimental system. The as-prepared products were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). In addition, surface-enhanced Raman scattering (SERS) spectra on the as-prepared different surface of palladium nanospheres exhibit high activity towards p-aminothiophenol (PATP) detection, and the result further reveals that the predominance of the a1 vibration mode in the SERS spectra via an electromagnetic (EM) mechanism is significant.

  13. Substoichiometric extraction of traces of gold and palladium

    International Nuclear Information System (INIS)

    Colonat, J.-F.

    1975-01-01

    Several systems for extracting palladium at concentrations ranging from 10 -4 to 10 -6 M/l were studied. Extraction by dithizone is limited by the transformation of the primary complex into a secondary complex which takes place at concentrations around 10 -6 M. This transformation has been demonstrated kinetically. Dimethylglyoxime is an interesting reagent in substoichiometry, in spite of its comparatively low extraction constant. Various complexes which are formed in a highly chlorinated medium have been proposed. Use of copper diethyldithiocarbamate is limited principally by its stability in presence of chlorine ions. The kinetic formation of palladium diethyldithiocarbamate has been studied with greater precision. A direct determination of 100μg of palladium in a copper matrix without preliminary separation has given results comparable in every way with those of other methods. In the case of gold (III) the constants of formation with the diethyldithiocarbamate ion have been determined by an iterative method of calculation, using the influence curves of interfering metals. Finally conditions for an automatization of the substoichiometric extraction, as well as its possibilities for gold determination in the range 200-20ppm, were proposed [fr

  14. Archaeometrical studies of Greek and Roman silver coins

    International Nuclear Information System (INIS)

    Bugoi, R.; Constantinescu, B.; Constantin, F.; Catana, D.; Plostinaru, D.

    1999-01-01

    Quantitative analyses of various silver coins from the firs century BC, found on current Romanian territory (Thasian tetradrachmae, Apollonia and Dyrrachium drachmae, Roman republican denarii) were performed using PIXE (3 MeV external proton beam) and XRF (1.1 GBq 241 Am source). The elemental analysis provided evidence of a great variety of monetary alloys and helped Romanian archaeologists to classify the coins, in terms of their provenance, as originals, copies or imitations minted in different areas of the Balkan-Carpathian region. (author)

  15. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    Energy Technology Data Exchange (ETDEWEB)

    Cura D’Ars de Figueiredo, João, E-mail: joaoc@ufmg.br; Asevedo, Samara Santos, E-mail: samaranix@hotmail.com; Barbosa, João Henrique Ribeiro, E-mail: joaohrb@yahoo.com.br

    2014-10-30

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  16. Removal of brownish-black tarnish on silver–copper alloy objects with sodium glycinate

    International Nuclear Information System (INIS)

    Cura D’Ars de Figueiredo, João; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-01-01

    Highlights: • The use of glycinate to remove brownish-black tarnish on silver–copper alloy objects is studied. • The method is easy to use and harmless. It is based in the coordination of Ag and Cu in tarnish with glycinate. • The surface of corroded silver objects and products of reaction were studied and glycinate showed to be very selective for Ag(I) and Cu(II). The selectivity for Ag(I) was studied by means of quantum chemical calculations. - Abstract: This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver–copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver–copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver–copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver–copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver–copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver–copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish

  17. Components made of corrosion-resistent zirconium alloy and method for its production

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Urquhart, A.W.; Vermilyea, D.A.

    1977-01-01

    The invention deals with a method to increase the resistance of zirconium alloys to blister corrosion which mainly occurs in boiling-water nuclear reactors. According to the method described, the surface of the alloy body is coated with a thin film of a suitable electronically conducting material. Gold, silver, platinum, nickel, chromium, iron and niobium are suitable as coating materials. The invention is more closely explained by means of examples. (GSC) [de

  18. Crystal field symmetry and magnetic interactions in rare earth-silver amorphous alloys

    International Nuclear Information System (INIS)

    Pappa, Catherine.

    1979-01-01

    A study has been made of the following rare earth based amorphous alloys: Ndsub(x)Agsub(100-x), Prsub(x)Agsub(100-x), Gdsub(x)Agsub(100-x), Tlsub(x)Agsub(100-x). In rare earth based amorphous alloys, the symmetrical distribution of the crystal field is very wide and hence not very sensitive to the content of the alloys. The existence of preponderant negative magnetic interactions leads to an upset magnetic order, the magnetization of a small volume not being nil. The magnetic behaviour of alloys with a small concentration of rare earths is governed by the existence of clusters of statistical origin, within which a rare earth ion has at least one other rare earth ion in the position of first neighbour. The presence of a high anisotropy at low temperatures make the magnetic interactions between clusters inoperative [fr

  19. Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel

    International Nuclear Information System (INIS)

    Tokalioglu, Serife; Oymak, Tuelay; Kartal, Senol

    2004-01-01

    A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG) 2 complex was eluted with 1 mol l -1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml -1 Na + , K + , Mg 2+ , Al 3+ and Fe 3+ ; 5000 μg ml -1 Ca 2+ ; 500 μg ml -1 Pb 2+ ; 125 μg ml -1 Zn 2+ ; 50 μg ml -1 Cu 2+ and 25 μg ml -1 Ni 2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l -1 , respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg -1 and 4.06 mg g -1 , respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples

  20. Determination of palladium in biological samples applying nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Q.; Sato, Ivone M.; Salvador, Vera L. R.; Saiki, Mitiko

    2008-01-01

    This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy. (author)

  1. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    Science.gov (United States)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  2. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  3. Technologies for forgeries of greek silver drachmas analysed by xrf and pixe

    International Nuclear Information System (INIS)

    Constantinescu, B.

    2002-01-01

    The analyses of source materials combined with analyses of archaeological objects could distinguish from pieces produced in different regions and periods. For coins, chemical differences that occur during preparation of alloys will affect the elemental composition and could be used for the identification of technologies and workshops and also to distinguish between originals and counterfeits. We illustrate with the case of Greek Apollonia and Dyrrhachium silver drachmas emitted by these old cities for Pompejus during the First Roman Civil War between Julius Caesar and Pompejus, coins found on the actual territory of Romania (ancient Dacia), probably used as bursaries to pay the Dacian mercenaries allied with Pompejus. To analyze the chemical composition of these coins, we used two methods: Am-241 gamma source based X-Ray Fluorescence (XRF) and in vacuum 3 MeV protons Particle Induced X-ray Emission (PIXE). XRF measurements were done with a spectrometer consisting of a 30 mCi Am-241 annular source, a vertical Si(Li) detector and a conventional electronic chain. For PIXE, we used 3 MeV protons (15-20 nA intensity on the sample using a pile-up rejector system) accelerated at Bucharest 8 MV High Voltage Tandem, a horizontal HPGE detector placed perpendicularly on the beam direction and a conventional electronic chain. Some special measurements on the edge of some coins (to identify plated exemplaires) were done using the ATOMKI Debrecen Van de Graaf 2 MeV protons microprobe, in the frame of European Action COST G1. We analysed approx. 300 drachmas. Five main categories were found: - original coins (similar to drachms emitted before the Civil War) with 97-99 percent silver, low (1-2 percent) copper content, -debased coins with silver content down to 70 percent and copper content from 5 to 25 percent, probably emitted due to inflation problem, normal phenomenon for an economy in war, -official (original dies) counterfeits from bronze (70 percent copper and 30 percent tin

  4. Preparation of Palladium-Impregnated Ceria by Metal Complex Decomposition for Methane Steam Reforming Catalysis

    Directory of Open Access Journals (Sweden)

    Worawat Wattanathana

    2017-01-01

    Full Text Available Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2 powders were synthesized by thermal decomposition of cerium(III complexes prepared by using cerium(III nitrate or cerium(III chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2 species than the materials prepared from cerium(III-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.

  5. The determination of sulphur in copper, nickel and aluminium alloys by proton activation analysis

    International Nuclear Information System (INIS)

    Vandecasteele, C.; Dewaele, J.; Esprit, M.; Goethals, P.

    1981-01-01

    The 34 S(p,n) 34 sup(m)Cl reaction, induced by 13 MeV protons is used for the determination of sulphur in copper, nickel and aluminium alloys. The 34 sup(m)Cl is separated by repeated precipitation as silver chloride. The results obtained were resp. 3.08 +- 0.47, 1.47 +- 0.17 and -1 for copper, nickel and aluminium alloys. (orig.)

  6. Irradiation enhanced diffusion and irradiation creep tests in stainless steel alloys

    International Nuclear Information System (INIS)

    Loelgen, R.H.; Cundy, M.R.; Schuele, W.

    1977-01-01

    A review is given of investigations on the rate of phase changes during neutron and electron irradiation in many different fcc alloys showing either precipitation or ordering. The diffusion rate was determined as a function of the irradiation flux, the irradiation temperature and the irradiation dose. It was found that the radiation enhanced diffusion in all the investigated alloys is nearly temperature independent and linearly dependent on the flux. From these results conclusions were drawn concerning the properties of point defects and diffusion mechanisms rate determining during irradiation, which appears to be of a common nature for fcc alloys having a similar structure to those investigated. It has been recognized that the same dependencies which are found for the diffusion rate were also observed for the irradiation creep rate in stainless steels, as reported in literature. On the basis of this observation a combination of measurements is suggested, of radiation enhanced diffusion and radiation enhanced creep in stainless steel alloys. The diffusion tests will be performed at the Euratom Joint Research Centre in Ispra, Italy, and the irradiation creep tests will be carried out in the High Flux Reactor /9/ of the Euratom Joint Research Centre in Petten, The Netherlands. In order to investigate irradiation creep on many samples at a time two special rigs were developed which are distinguished only by the mode of stress applied to the steel specimens. In the first type of rig about 50 samples can be tested uniaxially under tension with various combinations of irradiation temperature and stress. The second type of rig holds up to 70 samples which are tested in bending, again with various combinations of irradiation temperature and stress

  7. Palladium emissions in the environment: analytical methods, environmental assessment and health effects

    National Research Council Canada - National Science Library

    Alt, Friedrich; Zereini, Fathi

    2006-01-01

    ... (Eds)). But there is a clear lack of information concerning palladium. It is very important to condense the present state of research findings from emission to potential health risks for the environment and humans. Very important is the chapter about analytical determination of palladium, which shows clearly the problems of several analytic...

  8. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  9. Stress corrosion test of Al- Zn- Mg alloys with and without Nb

    International Nuclear Information System (INIS)

    Pereira, E.C.; Garlipp, W.

    1982-01-01

    Two aluminium alloys 1 and 2 with the respectives compositions 6,10 wt% Zn; 1,58 wt% Mg; 0,24 wt% Cu and 6,25 wt% Zn; 2,03 wt% Mg; 0,24 wt% Cu; 0,078 wt% Nb, was cast, annealed, extruded and cold rolled to 10% of the initial area. Samples was made for tensile testing and stress corrosion cracking in accord with the recommended standard test. After quench from 460 0 C they was preaged at 100 0 C, 6 hours and aged again at 160 0 C in different times. The tests revealed better properties for the alloys 2. (Author) [pt

  10. Evidence for hydrogen-assisted recovery of cold-worked palladium: hydrogen solubility and mechanical properties studies

    Directory of Open Access Journals (Sweden)

    Maria Ferrer

    2017-07-01

    Full Text Available The influence of hydrogen as an agent to accelerate the thermal recovery of cold-worked palladium has been investigated. The techniques used to characterize the effects of hydrogen on the thermal recovery of palladium were hydrogen solubility and mechanical property measurements. Results show that the presence of modest amounts of hydrogen during annealing of cold-worked palladium does enhance the degree of thermal recovery, with a direct correlation between the amount of hydrogen during annealing and the degree of recovery. The results indicate that the damage resulting from cold-working palladium can be more effectively and efficiently reversed by suitable heat treatments in the presence of appropriate amounts of hydrogen, as compared to heat treatment in vacuum. The somewhat novel technique of using changes in the hydrogen solubility of palladium as an indicator of thermal recovery has been validated and complements the more traditional technique of mechanical property measurements.

  11. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    International Nuclear Information System (INIS)

    Ribeiro, Fabianne; Gallego-Urrea, Julián Alberto; Jurkschat, Kerstin; Crossley, Alison; Hassellöv, Martin; Taylor, Cameron; Soares, Amadeu M.V.M.; Loureiro, Susana

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO 3 by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO 3 and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO 3 differ in toxicity according to the test species and endpoint. •AgNP and AgNO 3 induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity

  12. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabianne, E-mail: ribeiro.f@ua.pt [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal); Gallego-Urrea, Julián Alberto [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Jurkschat, Kerstin; Crossley, Alison [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Hassellöv, Martin [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Taylor, Cameron [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Soares, Amadeu M.V.M.; Loureiro, Susana [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal)

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO{sub 3} by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO{sub 3} and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO{sub 3} differ in toxicity according to the test species and endpoint. •AgNP and AgNO{sub 3} induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity.

  13. Controlling silver nanoparticle exposure in algal toxicity testing - A matter of timing

    DEFF Research Database (Denmark)

    Sørensen, Sara Nørgaard; Baun, Anders

    2015-01-01

    ) in a standard algal growth inhibition test (ISO 8692:2004) for 48 h and a short-term (2 h) 14C-assimilation test. For AgNO3, similar responses were obtained in the two tests, whereas freshly prepared suspensions of citrate stabilized AgNPs were less toxic in the 2-h tests compared to the 48-h tests. The 2-h...... test was found applicable for dissolved silver, but yielded non-monotonous concentration–response relationships and poor reproducibility for freshly prepared AgNP suspensions. However, when aging AgNPs in algal medium 24 h prior to testing, clear concentration–response patterns emerged...... and reproducibility increased. Prolonged aging to 48 h increased toxicity in the 2-h tests whereas aging beyond 48 h reduced toxicity. Our results demonstrate that the outcome of algal toxicity testing of AgNPs is highly influenced not only by the test duration, but also by the time passed from the moment Ag...

  14. Postirradiation notch ductility tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1984-01-01

    During this period, irradiation exposures at 300 0 C and 150 0 C to approx. 8 x 10 19 n/cm 2 , E > 0.1 MeV, were completed for the Alloy HT-9 plate and the modified Alloy 9Cr-1Mo plates, respectively. Postirradiation tests of Charpy-V (C/sub v/) specimens were completed for both alloys; other specimen types included in the reactor assemblies were fatigue precracked Charpy-V (PCC/sub v/), half-size Charpy-V, and in the case of the modified 9Cr-1Mo, 2.54 mm thick compact tension specimens

  15. Arsenic (III Adsorption Using Palladium Nanoparticles from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Farzaneh Arsiya

    2017-07-01

    Full Text Available The presence of Arsenic in drinking water is the greatest threat to health effects especially in water. The purpose of this study is application of green palladium nanoparticles for removal of trivalent Arsenic from aqueous solutions and also the impact of some factors such as retention time, pH, concentration of palladium nanoparticles and Arsenic concentrations was studied. The values for Arsenic removal from aqueous solutions were measured by furnace atomic adsorption spectrometry (Conter AA700. In the study, Langmuir and Freundlich isotherm models and pseudo-second order kinetic model were studied. The results of  optimization is shown that 0.5 g of nanoparticles can removed %99.8 of Arsenic with initial concentration of  0.5 g/l, in 5 minutes at pH=4. Langmuir model, Freundlich model (R2=0.94 and pseudo-second order kinetic model (R2=0.99 shown high correlation for removing of Arsenic from aqueous solutions. It was found, palladium nanoparticles can be used as an efficient method to remove Arsenic from aqueous solutions in a short time.

  16. Oxidation of aluminum alloy cladding for research and test reactor fuel

    Science.gov (United States)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Snelgrove, J. L.; Hanan, N.

    2008-08-01

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  17. Oxidation of aluminum alloy cladding for research and test reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: yskim@anl.gov; Hofman, G.L. [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Snelgrove, J.L.; Hanan, N. [Argonne National Laboratory, Nuclear Engineering, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-08-31

    The oxide thicknesses on aluminum alloy cladding were measured for the test plates from irradiation tests RERTR-6 and 7A in the ATR (advanced test reactor). The measured thicknesses were substantially lower than those of test plates with similar power from other reactors available in the literature. The main reason is believed to be due to the lower pH (pH 5.1-5.3) of the primary coolant water in the ATR than in the other reactors (pH 5.9-6.5) for which we have data. An empirical model for oxide film thickness predictions on aluminum alloy used as fuel cladding in the test reactors was developed as a function of irradiation time, temperature, surface heat flux, pH, and coolant flow rate. The applicable ranges of pH and coolant flow rates cover most research and test reactors. The predictions by the new model are in good agreement with the in-pile test data available in the literature as well as with the RERTR test data measured in the ATR.

  18. Structured materials for catalytic and sensing applications

    Science.gov (United States)

    Hokenek, Selma

    The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have

  19. γ-Diimine palladium(II based complexes mediated polymerization of methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Mahmoud Sunjuk

    2017-02-01

    Full Text Available The synthesis of new palladium(II complexes of the type [Pd(A–NC–ph–CN–ACl2] (4a–e (A = cyclohexyl (a, 2-isoprpropyl (b, pyrenyl (c, naphthyl (d, and 2,6-diisopropyl (e is described. The isolated γ-diimine ligands and their corresponding palladium(II complexes were characterized by their physical properties, elemental analysis, 1H NMR-, 13C NMR, and infrared spectroscopy. The palladium(II complexes (4a–e were employed successfully as catalysts for atom transfer radical polymerization (ATRP of methyl methacrylate (MMA in the presence of ethyl-2-bromoisobutyrate (EBIB as initiator at 90 °C. Polymerization with these catalyst systems afforded polymers with low molecular weight distribution (Mw/Mn and syndio-rich atactic poly (MMA with relatively higher [rr] diads.

  20. Some remarks on the neutron elastic- and enelastic-scattering cross sections of palladium

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Smith, A.B.

    1989-05-01

    The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV neutrons from elemental palladium were measured at forty scattering angles distributed between ∼15/degree/ and 160/degree/. The inelastic-scattering cross sections for the excitation of palladium levels at energies of 260 keV to 560 keV were measured with high resolution at the same energies, and at a scattering angle of 80/degree/. The experimental results were combined with lower-energy values previously obtained by this group to provide a comprehensive data base extending from near the inelastic-scattering threshold to 8 MeV. That data base was interpreted in terms of a coupled-channel model, including the inelastic excitation of one- and two-phonon vibrational levels of the even isotopes of palladium. It was concluded that the palladium inelastic-scattering cross section, at the low energies of interest in assessment of fast-fission-reactor performance, are large (∼50% greater than given in widely used evaluated fission-product data files). They primarily involve compound-nucleus processes, with only a small direct-reaction component attributable to the excitation of the one-phonon, 2 + , vibrational levels of the even isotopes of palladium. 24 refs., 6 figs

  1. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Coddet, Pierre, E-mail: pierre-laurent.coddet@univ-orleans.fr [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France); Verdy, Christophe; Coddet, Christian [UTBM, Site de Sévenans, 90010 Belfort Cedex (France); Debray, François [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France)

    2016-04-26

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  2. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    International Nuclear Information System (INIS)

    Coddet, Pierre; Verdy, Christophe; Coddet, Christian; Debray, François

    2016-01-01

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  3. Assessing antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp

    Directory of Open Access Journals (Sweden)

    Mahmood Nafisi Bahabadi

    2016-04-01

    Full Text Available Background: Nanotechnology is a field of applied science and technology covering a broad range of topics. Use of nanotechnology and especially silver nanoparticles in control of bacterial diseases and infections has been studied in the recent years. The aim of the present study was to investigate the in vitro antibacterial effect of filter media coated with silver nanoparticles against Bacillus spp. Materials and methods: In this research, first, the antibacterial effects of silver nanoparticles against mentioned bacteria were evaluated by microdilution method in Broth medium. After confidence of inhibitory effect of colloidal silver nanoparticles, antibacterial effect of filter media coated with silver nanoparticles was evaluated via in vitro microbiology tests (zone of inhibition test and test tube test. Results: Present study showed that colloidal silver nanoparticles have good antimicrobial effects against tested bacteria, so that MIC and MBC of silver nanoparticles for Bacillus spp. were calculated 3.9 and 31.25 mg/L, respectively. Also significant decrease was observed in bacterial growth after exposure to filter media coated with silver nanoparticles in test tube test and  zone of inhibition test (P≤ 5%. Conclusion: The results of this research indicate that filter media coated with silver nanoparticles have considerable antimicrobial effects; therefore they could possibly be used as excellent antibacterial water filters and would have several applications in other sectors.

  4. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  5. Thermoelectric Mixed Thick-/Thin Film Microgenerators Based on Constantan/Silver

    Directory of Open Access Journals (Sweden)

    Mirosław Gierczak

    2018-01-01

    Full Text Available This paper describes the design, manufacturing and characterization of newly developed mixed thick-/thin film thermoelectric microgenerators based on magnetron sputtered constantan (copper-nickel alloy and screen-printed silver layers. The thermoelectric microgenerator consists of sixteen thermocouples made on a 34.2 × 27.5 × 0.25 mm3 alumina substrate. One of thermocouple arms was made of magnetron-sputtered constantan (Cu-Ni alloy, the second was a Ag-based screen-printed film. The length of each thermocouple arm was equal to 27 mm, and their width 0.3 mm. The distance between the arms was equal to 0.3 mm. In the first step, a pattern mask with thermocouples was designed and fabricated. Then, a constantan layer was magnetron sputtered over the whole substrate, and a photolithography process was used to prepare the first thermocouple arms. The second arms were screen-printed onto the substrate using a low-temperature silver paste (Heraeus C8829A or ElectroScience Laboratories ESL 599-E. To avoid oxidation of constantan, they were fired in a belt furnace in a nitrogen atmosphere at 550/450 °C peak firing temperature. Thermoelectric and electrical measurements were performed using the self-made measuring system. Two pyrometers included into the system were used for temperature measurement of hot and cold junctions. The estimated Seebeck coefficient, α was from the range 35 − 41 µV/K, whereas the total internal resistances R were between 250 and 3200 ohms, depending on magnetron sputtering time and kind of silver ink (the resistance of a single thermocouple was between 15.5 and 200 ohms.

  6. A Colorimetric Chemodosimeter for Pd(II): A Method for Detecting Residual Palladium in Cross-Coupling Reactions

    Science.gov (United States)

    Houk, Ronald J. T.; Wallace, Karl J.; Hewage, Himali S.; Anslyn, Eric V.

    2008-01-01

    A colorimetric chemodosimeter (SQ1) for the detection of trace palladium salts in cross-coupling reactions mediated by palladium is described. Decolorization of SQ1 is affected by nucleophilic attack of ethanethiol in basic DMSO solutions. Thiol addition is determined to have an equilibrium constant (Keq) of 2.9 × 106 M-1, with a large entropic and modest enthalpic driving force. This unusual result is attributed to solvent effects arising from a strong coordinative interaction between DMSO and the parent squaraine. Palladium detection is achieved through thiol scavenging from the SQ1-ethanethiol complex leading to a color “turn-on” of the parent squaraine. It was found that untreated samples obtained directly from Suzuki couplings showed no response to the assay. However, treatment of the samples with aqueous nitric acid generates a uniform Pd(NO3)2 species, which gives an appropriate response. “Naked-eye” detection of Pd(NO3)2 was estimated to be as low as 0.5 ppm in solution, and instrument-based detection was tested as low as 100 ppb. The average error over the working range of the assay was determined to be 7%. PMID:19122841

  7. Palladium-catalysed arylation of sulfonamide stabilised enolates

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2005-03-07

    Full Text Available Alpha-Arylation of inethanesulfonamides using palladium catalysis is described. For example, treatment of N-benzyl-Nmethylmethanesulfonamide with catalytic Pd (OAc) (2) in the presence of sodium tert-butoxide, triphenylphosphine and toluene afforded...

  8. HE3 outgassing from four working palladium and uranium beds

    International Nuclear Information System (INIS)

    Souers, P. C.; Coronado, P. R.; Fearon, F. M.; Garza, R. G.; Shaw , J. F.; Stump, R. K.; Tsugawa, R. T.

    1988-01-01

    The He 3 output from two palladium and two uranium beds storing T 2 and D-T was studied as a function of time. Three of the beds were started new and watched for a year; the fourth bed was twelve years old. All four were beds used in routine tritium handling. Initial stoichiometries were PdT/sub 0.3/ and UT/sub 0.7/ so that both operated at similar 1 to 130 kPa pressures. The He 3 from palladium ranged from the 0.002 mo1% lower level of sensitivity to 0.01% for PdT 2 at one year of age. The UT system showed 0.1% He 3 at 4 to 62 days and 0.1 to 10% at longer times, with the first cuts being high in He 3 . The palladium bed with 95 to 97% pure T 2 enriches the output to as high as 97 to 99%. 9 refs., 1 fig., 2 tabs

  9. Rotating speed effect on electronic transport behaviors of Ni–Nb–Zr–H glassy alloys

    International Nuclear Information System (INIS)

    Fukuhara, Mikio

    2012-01-01

    Highlights: ► The electronic transport behaviors of (Ni 0.39 Nb 0.25 Zr 0.35 ) 100−y H y (0 ≤ y ≤ 15) glassy alloys, which produced by rotating (or quenching) speeds of 3000 and 10,000 rpm, have been studied as a function of hydrogen content. ► The resistivity for (Ni 0.39 Nb 0.25 Zr 0.35 ) 97.8 H 2.2 alloy, produced by rotating speed of 10,000 rpm, displayed 0.1 nΩ cm, which is 0.01% of silver (1.62 μΩ cm) at room temperature, between 40 and 252 K. ► Supercooling of the molten alloy induces a superior ballistic conductor and a room-temperature Coulomb oscillation. - Abstract: The electronic transport behaviors of (Ni 0.39 Nb 0.25 Zr 0.35 ) 100−y H y (0 ≤ y ≤ 15) glassy alloys, produced by rotating (or quenching) speeds of 3000 and 10,000 rpm, have been studied as a function of hydrogen content. These alloys show semiconducting, superior ballistic transport, superconducting and electric current-induced Coulomb oscillation, as hydrogen content increases. The resistivity for (Ni 0.39 Nb 0.25 Zr 0.35 ) 97.8 H 2.2 alloy, produced by rotating speed of 10,000 rpm, displayed 0.1 nΩ cm, which is 0.01% of silver (1.62 μΩ cm) at room temperature, between 40 and 252 K. The Coulomb oscillation of the 10,000 rpm-(Ni 0.39 Nb 0.25 Zr 0.35 ) 95.2 H 4.8 alloy is about 4-fold larger than that of the 3000 rpm-(Ni 0.39 Nb 0.25 Zr 0.35 ) 91.1 H 8.9 alloy. Supercooling of the molten alloy induces a superior ballistic conductor and a room-temperature Coulomb oscillation at lower and higher hydrogen contents, respectively.

  10. Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions

    International Nuclear Information System (INIS)

    Yoon, Jonghun; Park, Sunghyuk

    2014-01-01

    Highlights: • We compared forgeability of new developed TAZ alloys with conventional AZ alloys. • Forgeability was evaluated with a T-shape forging under hot forming condition. • TAZ alloys show the best performance in forgeability under hot forging condition. • Microstructures of the forged part were investigated with EBSD experiments. • YS and UTS of forged part with TAZ alloy are enhanced compared with AZ alloy. - Abstract: Magnesium (Mg) alloys have been thoroughly researched to replace steel or aluminum parts in automotives for reducing weight without sacrificing their strength. The widespread use of Mg alloys has been limited by its insufficient formability, which results from a lack of active slip systems at room temperature. It leads to a hot forming process for Mg alloys to enhance the formability and plastic workability. In addition, forged or formed parts of Mg alloys should have the reliable initial yield and ultimate tensile strength after hot working processes since its material properties should be compatible with other parts thereby guaranteeing structural safety against external load and crash. In this research, an optimal warm forming condition for applying extruded Mg–Sn–Al–Zn (TAZ) Mg alloys into automotive parts is proposed based on T-shape forging tests and the feasibility of forged parts is evaluated by measuring the initial yield strength and investigating the grain size in orientation imaging microscopy (OIM) maps

  11. Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation.

    Science.gov (United States)

    Yamada, Yoichi M A; Watanabe, Toshihiro; Ohno, Aya; Uozumi, Yasuhiro

    2012-02-13

    We have developed a variety of polymeric palladium-nanoparticle membrane-installed microflow devices. Three types of polymers were convoluted with palladium salts under laminar flow conditions in a microflow reactor to form polymeric palladium membranes at the laminar flow interface. These membranes were reduced with aqueous sodium formate or heat to create microflow devices that contain polymeric palladium-nanoparticle membranes. These microflow devices achieved instantaneous hydrodehalogenation of aryl chlorides, bromides, iodides, and triflates by 10-1000 ppm within a residence time of 2-8 s at 50-90 °C by using safe, nonexplosive, aqueous sodium formate to quantitatively afford the corresponding hydrodehalogenated products. Polychlorinated biphenyl (10-1000 ppm) and polybrominated biphenyl (1000 ppm) were completely decomposed under similar conditions, yielding biphenyl as a fungicidal compound. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Noise temperature measurements for the determination of the thermodynamic temperature of the melting point of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Edler, F.; Kuhne, M.; Tegeler, E. [Bundesanstalt Physikalisch-Technische, Berlin (Germany)

    2004-02-01

    The thermodynamic temperature of the melting point of palladium in air was measured by noise thermometric methods. The temperature measurement was based on noise comparison using a two-channel arrangement to eliminate parasitic noises of electronic components by cross correlation. Three miniature fixed points filled with pure palladium (purity: {approx}99.99%, mass: {approx}90 g) were used to realize the melts of the fixed point metal. The measured melting temperature of palladium in air amounted to 1552.95 deg C {+-} 0.21 K (k = 2). This temperature is 0.45 K lower than the temperature of the melting point of palladium measured by radiation thermometry. (authors)

  13. Development of silver coating process and facilities for ITER thermal shield

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D.K. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, R.G. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Nam, K., E-mail: kwnam@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Noh, C.H.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Yoon, D.C. [COTEC Corp., Changwon 641-846 (Korea, Republic of); Lim, K.; Baek, J.P. [SFA Engineering Corp., Asan 336-873 (Korea, Republic of)

    2016-11-01

    This paper describes both the test results of the bath type silver coating and the design of the bath to construct the silver coating plant for ITER thermal shield. The tests of small specimens made of SS304L and SS304LN were carried out to investigate the effect of the nitrogen content in SS304LN on the silver coating quality. The effect of different degreasing agents was also investigated to improve silver coating process. Small mock-up was tested to find a proper dipping direction during the electroplating process. Finally, noble bath design was conceived and structurally validated. Overall layout of silver coating plant is also shown in this paper.

  14. Standard Test Method for Stress-Corrosion of Titanium Alloys by Aircraft Engine Cleaning Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method establishes a test procedure for determining the propensity of aircraft turbine engine cleaning and maintenance materials for causing stress corrosion cracking of titanium alloy parts. 1.2 The evaluation is conducted on representative titanium alloys by determining the effect of contact with cleaning and maintenance materials on tendency of prestressed titanium alloys to crack when subsequently heated to elevated temperatures. 1.3 Test conditions are based upon manufacturer's maximum recommended operating solution concentration. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see and .

  15. Effects of Ar or O2 Gas Bubbling for Shape, Size, and Composition Changes in Silver-Gold Alloy Nanoparticles Prepared from Galvanic Replacement Reaction

    Directory of Open Access Journals (Sweden)

    Md. Jahangir Alam

    2013-01-01

    Full Text Available The galvanic replacement reaction between silver nanostructures and AuCl4- solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Effects of Ar or O2 gas bubbling for the formation of Ag-Au alloy nanoparticles by the galvanic replacement between spherical Ag nanoparticles and AuCl4- especially were studied in ethylene glycol (EG at 150°C. The shape, size, and composition changes occur rapidly under O2 bubbling in comparison with those under Ar bubbling. The major product after 60 min heating under Ar gas bubbling was perforated Ag-Au alloy particles formed by the replacement reaction and the minor product was ribbon-type particles produced from splitting off some perforated particles. On the other hand, the major product after 60 min heating under O2 gas bubbling was ribbon-type particles. In addition, small spherical Ag particles are produced. They are formed through rereduction of Ag+ ions released from the replacement reaction and oxidative etching of Ag nanoparticles by O2/Cl− in EG.

  16. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    Science.gov (United States)

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers

  17. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    Science.gov (United States)

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  18. Performance of palladium nanoparticle–graphene composite as an efficient electrode material for electrochemical double layer capacitors

    International Nuclear Information System (INIS)

    Dar, Riyaz A.; Giri, Lily; Karna, Shashi P.; Srivastava, Ashwini K.

    2016-01-01

    Highlights: • Single step synthesis of palladium nanoparticles decorated-graphene nanocomposite. • Improved electron transfer kinetics and superior capacitive performance. • High specific capacitance of 637 F g −1 at a current density of 1.25 A g −1 . • Retention of 91.4% of its initial capacitance after 10000 cycles of testing. - Abstract: Palladium nanoparticle–graphene nanosheet composite (PdNP–GN) is demonstrated as an efficient electrode material in energy storage applications in supercapacitors. Palladium nanoparticle (PdNP) decorated graphene nanosheet (GN) composite was synthesized via a chemical approach in a single step by the simultaneous reduction of graphene oxide (GO) and palladium chloride from the aqueous phase using ascorbic acid as reducing agent. The materials were characterized by scanning and high resolution transmission electron microscopy, Raman, X-ray diffraction and energy dispersive X-ray spectroscopy which demonstrate that the metal nanoparticles have been uniformly deposited on the surface of graphene nanosheets. The synthesized material has been analyzed by cyclic voltammetry, electrochemical impedance spectrometry and chronopotentiometry using 1 M KCl as the supporting electrolyte for its application in electrochemical double layer supercapacitors. PdNPs-GN composite showed improved electron transfer kinetics and superior capacitive performance with large specific capacitance of 637 F g −1 , excellent cyclic performance and maximum energy and power densities of 56 Wh kg −1 and 1166 W kg −1 , respectively at a current density of 1.25 A g −1 . This highlights the importance of the synergetic effects of electrochemically efficient Pd nanoparticles and graphene for energy storage applications in supercapacitors.

  19. Sodium citrate assisted facile synthesis of AuPd alloy networks for ethanol electrooxidation with high activity and durability

    Science.gov (United States)

    Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan

    2016-10-01

    The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.

  20. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  1. Palladium-Catalyzed Asymmetric Quaternary Stereocenter Formation

    NARCIS (Netherlands)

    Gottumukkala, Aditya L.; Matcha, Kiran; Lutz, Martin; de Vries, Johannes G.; Minnaard, Adriaan J.

    2012-01-01

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of beta,beta-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl2, PhBOX, and AgSbF6, and

  2. Palladium-catalyzed asymmetric quaternary stereocenter formation

    NARCIS (Netherlands)

    Gottumukkala, A.L.; Matcha, K.; Lutz, M.; de Vries, J.G.; Minnaard, A.J.

    2012-01-01

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of β,β-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl2, PhBOX, and AgSbF6, and provides

  3. High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yang, E-mail: lei.y@outlook.com; Liu, Xiaopeng; Li, Shuo; Jiang, Lijun; Zhang, Chao; Li, Shuai; He, Di; Wang, Shumao

    2016-12-15

    Highlights: • Pd/K composites with as high as 57 wt.% of Pd have been successfully prepared. • Palladium particles can be effectively packed into the pores of kieselguhr substrates. • Variation of heat-treatment temperatures hardly affect hydrogen absorption capacity and hydrogen saturation time of the Pd/K. • Anti-pulverization property of Pd/K can be improved by packing palladium into the kieselguhr internal pores and heating at 1300 °C. - Abstract: Palladium/kieselguhr (Pd/K) composites with 57 wt.% of Pd were prepared by an improved dipping and thermal decomposition method and heated at elevated temperature to reduce breakdown during hydrogenation-dehydrogenation cycles. The hydrogen absorption kinetic properties of the samples heated at different temperatures were tested under the condition of 20 °C with 100 kPa hydrogen pressure. The 1300 °C heated Pd/K composites were repeated up to 4010 absorption and desorption cycles at temperature ranges between −40 °C and 200 °C. The results show that the phase structure, hydrogen absorption capacity and hydrogen saturation time of the Pd/K were not affected by the change of heat-treated temperatures. And after heat treatment at 1300 °C, the Pd/K particles were strengthened and fraction of larger than 80 mesh were as high as 93.4%.

  4. Postirradiation fracture toughness tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Reed, J.R.; Sprague, J.A.

    1984-01-01

    Alloy HT-9 and Modified 9Cr-1Mo are being evaluated for potential applications as first wall materials in magnetic fusion reactors. Objectives of the current research task were to test fatigue-precracked Charpy-V (PCC/sub v/) specimens from representative plates irradiated in the UBR reactor at 149 0 C or 300 0 C, and, to compare the results against postirradiation notch ductility data developed previously for the materials. Both plates represent electroslag refined (ESR) melt processing. PCC/sub v/ specimens of Alloy HT-9 and Modified 9Cr-1Mo alloy were irradiated at 300 0 C and 149 0 C, respectively, to approx.0.8 X 10 20 n/cm 2 , E > 0.1 MeV. During this period, postirradiation tests for fracture toughness were completed and results compared to notch ductility determinations from standard Charpy-V (C/sub v/) specimens irradiated in the same reactor experiments. Fracture surface examinations by SEM are also reported

  5. Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baird, Seth T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-22

    For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use of Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the

  6. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    Science.gov (United States)

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An evaluation of corrosion resistant alloys by field corrosion test in Japanese refuse incineration plants

    International Nuclear Information System (INIS)

    Kawahara, Yuuzou; Nakamura, Masanori; Shibuya, Eiichi; Yukawa, Kenichi

    1995-01-01

    As the first step for development of the corrosion resistant superheater tube materials of 500 C, 100 ata used in high efficient waste-to-energy plants, field corrosion tests of six conventional alloys were carried out at metal temperatures of 450 C and 550 C for 700 and 3,000 hours in four typical Japanese waste incineration plants. The test results indicate that austenitic alloys containing approximately 80 wt% [Cr+Ni] show excellent corrosion resistance. When the corrosive environment is severe, intergranular corrosion of 40∼200 microm depth occurs in stainless steel and high alloyed materials. It is confirmed quantitatively that corrosion behavior is influenced by environmental corrosion factors such as Cl concentration and thickness of deposits on tube surface, metal temperature, and flue gas temperature. The excellent corrosion resistance of high [Cr+Ni+Mo] alloys such as Alloy 625 is explained by the stability of its protective oxide, such that the time dependence of corrosion nearly obeys the parabolic rate law

  8. Synthesis and Bactericidal Properties of Hyaluronic Acid Doped with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Galo Cárdenas-Triviño

    2017-01-01

    Full Text Available A study on the nanoparticles size and the antibacterial properties of hyaluronic acid (HA doped with nanoparticles is reported. Nanoparticles from gold, silver, copper, and silver palladium with HA support were performed. The solvated metal atom dispersion (SMAD method with 2-propanol and HA was used. High-resolution transmission electron microscopy (HRTEM, infrared spectroscopy (FT-IR, and thermogravimetric analysis (TGA were conducted. The average sizes of nanoclusters were as follows: HA-Au = 17.88 nm; HA-Ag = 50.41 nm; HA-Cu = 13.33 nm; and HA-AgPd = 33.22 nm. The antibacterial activity of solutions and films containing nanoparticles against American Type Culture Collection (ATCC bacterial strains Escherichia coli (EC, Staphylococcus aureus (SA, Staphylococcus epidermidis (SE, and Pseudomonas aeruginosa (PA was determined. Inhibition was observed for HA-Ag, HA-Cu, and HA-AgPd. Toxicological tests were performed in rats that were injected intraperitoneally with two concentrations of gold, copper, silver, and silver-palladium nanoparticles. No alterations in hepatic parameters, including ALT (alanine aminotransferase, GGT (gamma-glutamyl transpeptidase bilirubin, and albumin, were observed after 14 days. These films could be used as promoters of skin recovery and Grades I and II cutaneous burns and as scaffolds.

  9. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    Science.gov (United States)

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  10. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.; Catalini, David; Lavender, Curt A.; Rohatgi, Aashish

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated by limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.

  11. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    Directory of Open Access Journals (Sweden)

    Jakub Saadi

    2016-06-01

    Full Text Available Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II back to palladium(0 which is apparently achieved by the present triethylamine.

  12. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    Science.gov (United States)

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  13. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans

    Energy Technology Data Exchange (ETDEWEB)

    Omajali, Jacob B., E-mail: JBO037@bham.ac.uk, E-mail: jbomajali@gmail.com; Mikheenko, Iryna P. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom); Merroun, Mohamed L. [University of Granada, Department of Microbiology, Faculty of Sciences (Spain); Wood, Joseph [University of Birmingham, School of Chemical Engineering (United Kingdom); Macaskie, Lynne E. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom)

    2015-06-15

    Early studies have focused on the synthesis of palladium nanoparticles within the periplasmic layer or on the outer membrane of Desulfovibrio desulfuricans and on the S-layer protein of Bacillus sphaericus. However, it has remained unclear whether the synthesis of palladium nanoparticles also takes place in the bacterial cell cytoplasm. This study reports the use of high-resolution scanning transmission electron microscopy with a high-angle annular dark field detector and energy dispersive X-ray spectrometry attachment to investigate the intracellular synthesis of palladium nanoparticles (Pd NPs). We show the intracellular synthesis of Pd NPs within cells of two anaerobic strains of D. desulfuricans and an aerobic strain of B. benzeovorans using hydrogen and formate as electron donors. The Pd nanoparticles were small and largely monodispersed, between 0.2 and 8 nm, occasionally from 9 to 12 nm with occasional larger nanoparticles. With D. desulfuricans NCIMB 8307 (but not D. desulfuricans NCIMB 8326) and with B. benzeovorans NCIMB 12555, the NPs were larger when made at the expense of formate, co-localizing with phosphate in the latter, and were crystalline, but were amorphous when made with H{sub 2,} with no phosphorus association. The intracellular Pd nanoparticles were mainly icosahedrons with surfaces comprising {111} facets and about 5 % distortion when compared with that of bulk palladium. The particles were more concentrated in the cell cytoplasm than the cell wall, outer membrane, or periplasm. We provide new evidence for synthesis of palladium nanoparticles within the cytoplasm of bacteria, which were confirmed to maintain cellular integrity during this synthesis.

  14. Silver nanoparticles in X-ray biomedical applications

    International Nuclear Information System (INIS)

    Mattea, Facundo; Vedelago, José; Malano, Francisco; Gomez, Cesar; Strumia, Miriam C.

    2017-01-01

    The fluorescence of silver nanoparticles or ions can be used for detection and dose enhancement purposes in X-ray irradiation applications. This study is focused on the full integration of the chemical synthesis of silver nanoparticles suitable for dosimetric and radiological purposes with characteristics that can be exploited in radiotherapy and radiodiagnostic. A narrow size distribution and a compatible stabilizing agent is often desired in order to obtain homogeneous behaviors in nanoparticle suspension. With the method proposed in this study, nanoparticles ranging from 5 to 20 nm were obtained. The fluorescence of aqueous suspensions of silver nanoparticles has been measured experimentally and simulated with the Monte Carlo PENELOPE code for different silver concentrations and geometrical configurations. Finally, the feasibility of using these nanoparticles for the elaboration of Fricke gel dosimeters has been tested obtaining a dose enhancement when compared with the same material irradiated below the silver K-edge. - Highlights: • A method to compare NP's fluorescence in simulations and experiments was developed. • Silver nanoparticles suitable for typical dosimetry systems were synthesized. • Concentration and depth of a Ag doped volume was measured with X-ray fluorescence. • A feasibility test of Ag NPs in Fricke gel dosimetry was performed. • Good agreement between Monte Carlo simulations and experiments was obtained.

  15. Anionic Palladium(0) and Palladium(II) Ate Complexes.

    Science.gov (United States)

    Kolter, Marlene; Böck, Katharina; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2017-10-16

    Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L 3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br - ions to afford the anionic, zero-valent ate complex [L 3 PdBr] - . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L 3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the Pd II ate complex [L 2 Pd(Ar)I 2 ] - . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use

    Science.gov (United States)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian

    2013-01-01

    Following the 1976 Toxic Substances Control Act ban on their manufacture, PCBs remain an environmental threat. PCBs are known to bio-accumulate and concentrate in fatty tissues. Further complications arise from the potential for contamination of commercial mixtures with other more toxic chlorinated compounds such as polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Until recently, only one option was available for the treatment of PCB-contaminated materials: incineration. This may prove to be more detrimental to the environment than the PCBs themselves due to the potential for formation of PCDDs. Metals have been used for the past ten years for the remediation of halogenated solvents and other contaminants in the environment; however, zero-valent metals alone do not possess the activity required to dehalogenate PCBs. Palladium has been shown to act as an excellent catalyst for the dechlorination of PCBs with active metals. This invention is a method for the production of a palladium/magnesium bimetal capable of dechlorinating PCBs using mechanical milling/mechanical alloying. Other base metals and catalysts may also be alloyed together (e.g., nickel or zinc) to create a similarly functioning catalyst system. Several bimetal catalyst systems currently can be used for processes such as hydrogen peroxide synthesis, oxidation of ethane, selective oxidation, hydrogenation, and production of syngas for further conversion to clean fuels. The processes for making these bimetal catalysts often involve vapor deposition. This technology provides an alternative to vapor deposition that may provide equally active catalysts. A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. The mechanical milling technique is

  17. Hard alloys testing-machine for values of PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Campan, J.L.; Sauze, A.

    1980-01-01

    Testing of valve parts or material used in valve fabrication and particularly seizing conditions in friction of plane surfaces coated with hard alloys of the type stellite. The testing equipment called Marguerite is composed of a hot pressurized water loop in conditions similar to PWR primary coolant circuits (320 0 C, 150 bars) and a testing-machine with measuring instruments. Testing conditions and samples are described [fr

  18. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  19. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    International Nuclear Information System (INIS)

    Salcedo, K L; Rodriguez, C A; Perez, F A; Riascos, H

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al 2 O 3 ) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  20. Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions.

    Directory of Open Access Journals (Sweden)

    Helen L Parker

    Full Text Available The metal accumulating ability of plants has previously been used to capture metal contaminants from the environment; however, the full potential of this process is yet to be realized. Herein, the first use of living plants to recover palladium and produce catalytically active palladium nanoparticles is reported. This process eliminates the necessity for nanoparticle extraction from the plant and reduces the number of production steps compared to traditional catalyst palladium on carbon. These heterogeneous plant catalysts have demonstrated high catalytic activity in Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo-, bromo- and chloro- moieties.

  1. Performance test of silver ion-exchanged zeolite for the removal of gaseous radioactive methyl iodide at high temperature condition

    International Nuclear Information System (INIS)

    Byung-Seon Choi; Geun-Il Park; Jung-Won Lee; Ho-Yeon Yang; Seung-Kon Ryu

    2003-01-01

    Performance tests of silver ion-exchanged zeolite (AgX) adsorbent for the control of radioiodine gas generated from a high-temperature process were carried out using both non-radioactive and a radioactive methyl iodide tracers. From the identification of SEM-EDAX analysis, an experimental result of silver ion-exchanged ratio containing 10∼30 wt% of Ag was fit to that calculated by the weight increment, and it was confirmed that the silver was uniformly distributed inside the pores of the adsorbent. Demonstration test of AgX-10 adsorbent using radioactive methyl iodide tracer was performed. The removal efficiency of radioiodine with AgX-10 in the temperature ranges of 150 to 300 deg C was in the ranges of 99.9% to 99.99%, except for 300 deg C. The influence of the long-term weathering and the poisoning with NO 2 gas (200 ppm) on adsorption capacity of AgX-10 was also analyzed. The removal efficiency of radioactive methyl iodide by AgX-10 weathered for 14 weeks was 99.95%. Long-term poisoning test showed that the adsorption efficiency of methyl iodide started to decrease after 10 weeks, and the removal efficiency of radioiodine by AgX-10, poisoned for 16 weeks, was 99% (DF=100). (author)

  2. Superconductivity and the structural phase transitions in palladium hydride and palladium deuteride

    International Nuclear Information System (INIS)

    Standley, R.W.

    1980-01-01

    The results of two experimental studies of the superconducting transition temperature, T/sub c/, of palladium hydride, PdH/sub x/, and palladium deuteride, PdD/sub x/, are presented. In the first study, the superconducting transition temperature of PdH/sub x/(D/sub x/) is studied as a function of H(D) concentration, x, in the temperature range from 0.2 K to 4K. The data join smoothly with those reported previously by Miller and Satterthwaite at higher temperatures, and the composite data are described by the empirical relation T/sub c/ = 150.8 (x-x/sub o/) 2 244 , where x/sub o/ = 0.715 for hydride samples and 0.668 for deuteride samples. The results, when compared with the theoretical predictions of Klein and Papaconstantopoulos, et al., raise questions about the validity of their explanation of the reverse isotope effect, which is based solely on a difference in force constants. In the second study, the effect of the order-disorder structural transition associated with the 50 K anomaly on the superconductivity of PdH/sub x/(D/sub x/) is investigated. Samples were quenched to low temperatures in the disordered state, and their transition temperatures measured. The samples were then annealed just below the anomaly temperature, and the ordering process followed by monitoring the change in sample resistance. The transition temperatures in the ordered state were then measured

  3. A dataset for preparing pristine graphene-palladium nanocomposites using swollen liquid crystal templates

    Science.gov (United States)

    Vats, Tripti; Siril, Prem Felix

    2017-12-01

    Pristine graphene (G) has not received much attention as a catalyst support, presumably due to its relative inertness as compared to reduced graphene oxide (RGO). In the present work, we used swollen liquid crystals (SLCs) as nano-reactors for graphene-palladium nanocomposites synthesis. The 'soft' confinement of SLCs directs the growth of palladium (Pd) nanoparticles over the G sheets. In this dataset we include all the parameters and details of different techniques used for the characterization of G, SLCs and synthesized G-Pd nanocomposites. The synthesized G-palladium nanocomposites (Pd-G) exhibited improved catalytic activity compared with Pd-RGO and Pd nanoparticles, in the hydrogenation of nitrophenols and C-C coupling reactions.

  4. Morphology controlled graphene-alloy nanoparticle hybrids with tunable carbon monoxide conversion to carbon dioxide.

    Science.gov (United States)

    Devi, M Manolata; Dolai, N; Sreehala, S; Jaques, Y M; Mishra, R S Kumar; Galvao, Douglas S; Tiwary, C S; Sharma, Sudhanshu; Biswas, Krishanu

    2018-05-10

    Selective oxidation of CO to CO2 using metallic or alloy nanoparticles as catalysts can solve two major problems of energy requirements and environmental pollution. Achieving 100% conversion efficiency at a lower temperature is a very important goal. This requires sustained efforts to design and develop novel supported catalysts containing alloy nanoparticles. In this regard, the decoration of nanoalloys with graphene, as a support for the catalyst, can provide a novel structure due to the synergic effect of the nanoalloys and graphene. Here, we demonstrate the effect of nano-PdPt (Palladium-Platinum) alloys having different morphologies on the catalytic efficiency for the selective oxidation of CO. Efforts were made to prepare different morphologies of PdPt alloy nanoparticles with the advantage of tuning the capping agent (PVP - polyvinyl pyrollidone) and decorating them on graphene sheets via the wet-chemical route. The catalytic activity of the G-PdPt hybrids with an urchin-like morphology has been found to be superior (higher % conversion at 135 °C lower) to that with a nanoflower morphology. The above experimental observations are further supported by molecular dynamics (MD) simulations.

  5. Subchronic oral toxicity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Kim Yong

    2010-08-01

    Full Text Available Abstract Background The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. Results This study tested the oral toxicity of silver nanoparticles (56 nm over a period of 13 weeks (90 days in F344 rats following Organization for Economic Cooperation and Development (OECD test guideline 408 and Good Laboratory Practices (GLP. Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group: vehicle control, low-dose (30 mg/kg, middle-dose (125 mg/kg, and high-dose (500 mg/kg. After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P Conclusions The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level of 30 mg/kg and LOAEL (lowest observable adverse effect level of 125 mg/kg are suggested from the present study.

  6. Preconcentration of silver as silver xanthate on activated carbon

    International Nuclear Information System (INIS)

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  7. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties

    DEFF Research Database (Denmark)

    Johansen, K.; Dahl, S.; Mogensen, G.

    2007-01-01

    A novel alternative base metal/palladium coat has been developed that has limited NO2 formation and which even removes NO2 in a wide temperature range.Soot combustion, HC conversion and CO conversion properties are comparable to current platinum based solutions but the coating has a more attracti...... solutions. Furthermore, durability results from base metal/Pd coated DPFs installed on operating taxis and related tests cycle data is given....

  8. Electrochemical behaviour of aluminum alloy containing various stanum concentration tested in tropical seawater

    International Nuclear Information System (INIS)

    Siti Radiah Mohd Kamarudin; Muhamad Daud; Mohd Shariff Satar

    2004-01-01

    A study has been carried out to investigate the electrochemical behaviour of sacrificial anodes with different Sh concentration in tropical seawater environment. In this work, samples of Aluminum alloy with the addition of Sn in a range of 1. 0% - 1. 7% were tested in tropical seawater at room temperature. Tafel technique was used to produce a graph of the measured current versus potential for each different Sh concentration of aluminum alloy. The results show that the variation in alloy compositions affected the values of corrosion rate, corrosion current density and potential compared to alloy without Sn content. Furthermore, it was found that small addition of Sn successfully increased aluminum ion dissolution into seawater by producing a higher value of corrosion current density and corrosion rate. (Author)

  9. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation

    Science.gov (United States)

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-01

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  10. Camphyl-based α-diimine palladium complexes: highly efficient precatalysts for direct arylation of thiazoles in open-air.

    Science.gov (United States)

    Chen, Fu-Min; Lu, Dong-Dong; Hu, Li-Qun; Huang, Ju; Liu, Feng-Shou

    2017-07-21

    Based on the strategy of the development of phosphine-free palladium-catalyzed direct C-H arylation, a series of camphyl-based α-diimine palladium complexes bearing sterically bulky substituents were synthesized and characterized. The palladium complexes were applied for the cross-coupling of thiazole derivatives with aryl bromides. The effect of the sterically bulky substituent on the N-aryl moiety as well as the reaction conditions was screened. Under the optimal protocols, a wide range of aryl bromides can be smoothly coupled with thiazoles in good to excellent yields in the presence of a low palladium loading of 0.2 mol% under open-air conditions.

  11. Characterization Of Flow Stress Of Different AA6082 Alloys By Means Of Hot Torsion Test

    International Nuclear Information System (INIS)

    Donati, Lorenzo; El Mehtedi, Mohamad

    2011-01-01

    FEM simulations are become the most powerful tools in order to optimize the different aspects of the extrusion process and an accurate flow stress definition of the alloy is a prerequisite for a reliable effectiveness of the simulation. In the paper the determination of flow stress by means of hot torsion test is initially presented and discussed: the several approximations that are usually introduced in flow stress computation are described and computed for an AA6082 alloy in order to evidence the final effect on curves shapes. The procedure for regressing the parameters of the sinhyperbolic flow stress definition is described in detailed and applied to the described results. Then four different alloys, extracted by different casting batches but all namely belonging to the 6082 class, were hot torsion tested in comparable levels of temperature and strain rate up to specimen failure. The results are analyzed and discussed in order to understand if a mean flow stress behavior can be identified for the whole material class at the different tested conditions or if specific testing conditions (chemical composition of the alloy, specimen shape, etc) influence the materials properties to a higher degree.

  12. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  13. Influence of shape and finishing on the corrosion of palladium-based dental alloys

    NARCIS (Netherlands)

    Milheiro, A.; Muris, J.; Kleverlaan, C.J.; Feilzer, A.J.

    2015-01-01

    PURPOSE: The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS: Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were

  14. Temperature, pressure, and density of electron, atom and ion, in the breaking arc of silver-cadmium contacts used in medium current region

    International Nuclear Information System (INIS)

    Aida, Teizo

    1979-01-01

    Wear of silver-cadmium contacts at the time of breaking was studied. The materials of the contacts were silver-cadmium alloy and silver-cadmium oxide sinter. The spectra of arc discharge generated at the time of breaking contact were analyzed with a monochromator photo multiplier. The ratio of the densities of cadmium and silver atoms in the arc can be estimated from the observed intensities of spectrum lines. The electron density is obtained from the arc current density. The proportion of the cadmium atoms in the arc was about 30 percent. The densities of silver atoms and cadmium atoms can be estimated by the principle of thermal ionization equilibrium. The ion densities were also estimated. The partial pressures of silver and cadmium atoms in the arc can be obtained from the Boyle-Charles' law. A formula which gives the number of atoms liberated from the surfaces of contacts at the time of breaking was given by Boddy et al. (Kato, T.)

  15. In-situ observation of deuteride formation in palladium electrochemical cathode by X-ray diffraction method

    International Nuclear Information System (INIS)

    Yamamoto, Takao; Oka, Takashi; Taniguchi, Ryoichi

    1990-01-01

    In-situ X-ray diffraction observation of palladium foil cathode (10 μm) was carried out during electrolysis of 0.1N-LiOD heavy water solution in order to estimate the deuterium content in palladium during the detection of charged particles in our previous work. A complete transformation into β-palladium deuteride phase was observed, and its maximum lattice constant 4.06 A was evaluated as corresponding to D/Pd = 0.73. The deuterium concentration in the previous work was estimated as higher than this considering the difference in cell conditions. (author)

  16. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  17. Sol-gel synthesized of nanocomposite palladium-alumina ceramic membrane for H{sub 2} permeability: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, A.L.; Mustafa, N.N.N. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2007-08-15

    Palladium-alumina membrane with mesopore and narrow pore size distribution was prepared by the sol-gel method. Effect of the finely dispersed metal on the microstructure and the characteristic properties of the palladium-alumina membrane were investigated. Observations were made on membrane weight loss, morphology, pore structure, pore size, surface area, pore surface fractal and membrane's crystal structure. Autosorb analysis, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) analysis were employed in the membrane characterization. Autosorb analysis found that, BET surface area decreased and pore size of the membrane increased with the increasing of calcinations temperature (500-1100{sup o}C) and with the increasing of palladium amount in the membrane. FTIR and TG/DTA analysis show that the suitable temperature for calcinations of palladium-alumina membrane is at 700{sup o}C. Palladium metals are highly dispersed at calcinations temperature of 700{sup o}C as observed by TEM analysis. The fine crystallinity of the palladium and {gamma}-alumina phase was obtained after calcined at 700{sup o}C. The SEM morphology shows a smooth and free crack layer of palladium-alumina membrane after repeating the process of dipping, drying and calcinations at temperature of 700{sup o}C. The membrane also successfully coated with a good adhesion on support. The thickness of the final membrane layer was estimated as 9{mu} m. (author)

  18. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  19. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  20. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid

    International Nuclear Information System (INIS)

    Ngo Vo Ke Thanh; Nguyen Thi Phuong Phong

    2009-01-01

    In this work, silver nanoparticles were prepared by polyol process with microwave heating and incorporated on cotton fabric surfaces. The antibacterial performance of the antibacterial cotton fabric was tested for different concentration of nano-sized silver colloid, contact time germs, and washing times. It was found that antibacterial activity increased with the increasing concentration of nano-sized silver colloid. The antibacterial fabric with 758 mg/kg of silver nanoparticles on surface cotton was highly effective in killing test bacteria and had excellent water resisting property.