WorldWideScience

Sample records for palladium membrane reactor

  1. Recovery of hydrogen from impurities using a palladium membrane reactor

    International Nuclear Information System (INIS)

    Willms, R.S.; Okuno, K.

    1993-01-01

    One of the important steps in processing the exhaust from a fusion reactor is recovering tritium which is incorporated into molecules such as water and methane. One device which may prove to be very effective for this purpose is a palladium membrane reactor. This is a reactor which incorporates a Pd/Ag membrane in the reactor geometry. Reactions such as water gas shift, steam reforming and methane cracking can be carried out over the reactor catalyst, and the product hydrogen can be simultaneously removed from the reacting mixture. Because product is removed, greater than usual conversions can be obtained. In addition ultrapure hydrogen is produced, eliminating the need for an additional processing step. A palladium membrane reactor has been built and tested with three different catalysts. Initial results with a Ni-based catalyst show that it is very effective at promoting all three reactions listed above. Under the proper conditions, hydrogen recoveries approaching 100% have been observed. This study serves to experimentally validate the palladium membrane reactor as potentially important tool for fusion fuel processing

  2. Adlayers of palladium particles and their aggregates on porous polypropylene hollow fiber membranes as hydrogenization contractors/reactors

    NARCIS (Netherlands)

    Volkov, V.V.; Lebedeva, V.I.; Petrova, I.V.; Bobyl, A.V.; Konnikov, S.G.; Roldughin, V.I.; Erkel, J. van; Tereshchenko, G.F.

    2011-01-01

    Principal approaches for the preparation of catalytic membrane reactors based on polymer membranes containing palladium nanoparticles and for the description of their characteristics are presented. The method for the development of adlayers composed of palladium nanoparticles and their aggregates on

  3. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Naruse, Yuji

    1981-10-01

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  4. Processing Tritiated Water at the Savannah River Site: A Production-Scale Demonstration of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Sessions, K

    2004-01-01

    The Palladium Membrane Reactor (PMR) process was installed in the Tritium Facilities at the Savannah River Site to perform a production-scale demonstration for the recovery of tritium from tritiated water adsorbed on molecular sieve (zeolite). Unlike the current recovery process that utilizes magnesium, the PMR offers a means to process tritiated water in a more cost effective and environmentally friendly manner. The design and installation of the large-scale PMR process was part of a collaborative effort between the Savannah River Site and Los Alamos National Laboratory. The PMR process operated at the Savannah River Site between May 2001 and April 2003. During the initial phase of operation the PMR processed thirty-four kilograms of tritiated water from the Princeton Plasma Physics Laboratory. The water was processed in fifteen separate batches to yield approximately 34,400 liters (STP) of hydrogen isotopes. Each batch consisted of round-the-clock operations for approximately nine days. In April 2003 the reactor's palladium-silver membrane ruptured resulting in the shutdown of the PMR process. Reactor performance, process performance and operating experiences have been evaluated and documented. A performance comparison between PMR and current magnesium process is also documented

  5. Testing of a 7-tube palladium membrane reactor for potential use in TEP

    International Nuclear Information System (INIS)

    Carlson, Bryan J.; Trujillo, Stephen; Willms, R. Scott

    2010-01-01

    A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO 2 ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m 2 and a catalyst volume to membrane area ratio of 4.63 cc/cm 2 (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m 2 ). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m 2 . The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm 2 . The total membrane area of the 7-tube PMR (0.0851 m 2 ) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m 2 ). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR

  6. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Willms, R.S.; Birdsell, S.A.; Wilhelm, R.C.

    1995-01-01

    The palladium membrane reactor (PMR) is proving to be a simple and effective means for recovering hydrogen isotopes from fusion fuel impurities such as methane and water. This device directly combines two techniques which have long been utilized for hydrogen processing, namely catalytic shift reactions and palladium/silver permeators. A proof-of-principle (PMR) has been constructed and tested at the Tritium Systems Test Assembly of Los Alamos National Laboratory. The first tests with this device showed that is was effective for the proposed purpose. Initial work concluded that a nickel catalyst was an appropriate choice for use in a PMR. More detailed testing of the PMR with such a catalyst was performed and reported in other works. It was shown that a nickel catalyst-packed PMR did, indeed, recover hydrogen from water and methane with efficiencies approaching 100% in a single processing pass. These experiments were conducted over an extended period of time and no failure or need for regeneration was encountered. These positive results have prompted further PMR development. Topics addressed include alternate PMR geometries and initial testing of the PMR with tritium. These are the subjects of this paper

  7. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Scott, W.R.; Birdsell, S.A.; Wilhelm, R.C.

    1995-01-01

    The palladium membrane reactor (PMR) is being investigated as a means for recovering hydrogen isotopes (including tritium) from compounds such as water and methane. Previous work with protiated water and methane showed that this device can be used to obtain high hydrogen recovery efficiencies using a single processing pass and with essentially no waste production. With these successful proof-of-principle results completed, recent work has focused on PMR development. This included studies of various geometries and testing with tritium. The results, which are reported here, have led to a better understanding of the PMR and will lead to the ultimate goal of building a production PMR and putting it into practical tritium processing service. 3 refs., 5 figs., 1 tab

  8. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ciora, Richard J [Media and Process Technology Inc., Pittsburgh, PA (United States); Liu, Paul KT [Media and Process Technology Inc., Pittsburgh, PA (United States)

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  9. Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation.

    Science.gov (United States)

    Yamada, Yoichi M A; Watanabe, Toshihiro; Ohno, Aya; Uozumi, Yasuhiro

    2012-02-13

    We have developed a variety of polymeric palladium-nanoparticle membrane-installed microflow devices. Three types of polymers were convoluted with palladium salts under laminar flow conditions in a microflow reactor to form polymeric palladium membranes at the laminar flow interface. These membranes were reduced with aqueous sodium formate or heat to create microflow devices that contain polymeric palladium-nanoparticle membranes. These microflow devices achieved instantaneous hydrodehalogenation of aryl chlorides, bromides, iodides, and triflates by 10-1000 ppm within a residence time of 2-8 s at 50-90 °C by using safe, nonexplosive, aqueous sodium formate to quantitatively afford the corresponding hydrodehalogenated products. Polychlorinated biphenyl (10-1000 ppm) and polybrominated biphenyl (1000 ppm) were completely decomposed under similar conditions, yielding biphenyl as a fungicidal compound. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of inlet conditions on the performance of a palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.; Arzu, P.; Costello, A.

    1997-10-01

    Palladium membrane reactors (PMR) will be used to remove tritium and other hydrogen isotopes from impurities, such as tritiated methane and tritiated water, in the exhaust of the International Thermonuclear Experimental Reactor. In addition to fusion-fuel processing, the PMR system can be used to recover tritium from tritiated waste water. This paper investigates the effect of inlet conditions on the performance of a PMR. A set of experiments were run to determine, independently, the effect of inlet compositions and residence time on performance. Also, the experiments were designed to determine if the injected form of hydrogen (CH 4 or H 2 O) effects performance. Results show that the PMR operates at optimal hydrogen recovery with a broad range of inlet compositions and performance is shown to increase with increased residence time. PMR performance is shown to be independent of whether hydrogen is injected in the form of CH 4 or H 2 O

  11. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    International Nuclear Information System (INIS)

    Willms, R.S.; Wilhelm, R.; Okuno, K.

    1994-01-01

    The palladium membrane reactor (PNM) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water-gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study was to systematically assess the performance of the PMR using a nickel catalyst over a range of temperatures, feed compositions and flowrates. Reactions which were studied are the water-gas shift reaction and steam reforming

  12. Palladium alloy membrane process for the treatment of hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee [KAERI, Daejeon (Korea, Republic of); Shim, Myunghwa [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2005-11-15

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  13. Palladium alloy membrane process for the treatment of hydrogen isotopes

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee; Shim, Myunghwa

    2005-01-01

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  14. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.

    1997-01-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information

  15. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, S.A.; Willms, R.S.

    1997-04-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information.

  16. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    KAUST Repository

    Cheng, Hong

    2015-01-01

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium nanoparticles. The membranes to be tested were embedded within a drip flow biofilm reactor, and Pseudomonas aeruginosa PAO1 was inoculated and allowed to establish biofilm on the tested membranes. It was found that 1,2,3-triazole and palladium nanoparticles can inhibit the bacterial growth in aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide and Pel polysaccharide within the biofilm matrix but not the protein content.

  17. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    KAUST Repository

    Cheng, Hong

    2015-08-01

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium nanoparticles. The membranes to be tested were embedded within a drip flow biofilm reactor, and Pseudomonas aeruginosa PAO1 was inoculated and allowed to establish biofilm on the tested membranes. It was found that 1,2,3-triazole and palladium nanoparticles can inhibit the bacterial growth in aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide and Pel polysaccharide within the biofilm matrix but not the protein content.

  18. ENHANCEMENT OF EQUILIBRIUMSHIFT IN DEHYDROGENATION REACTIONS USING A NOVEL MEMBRANE REACTOR; FINAL

    International Nuclear Information System (INIS)

    Shamsuddin Ilias, Ph.d., P.E.; Franklin G. King, D.Sc.

    2001-01-01

    With the advances in new inorganic materials and processing techniques, there has been renewed interest in exploiting the benefits of membranes in many industrial applications. Inorganic and composite membranes are being considered as potential candidates for use in membrane-reactor configuration for effectively increasing reaction rate, selectivity and yield of equilibrium limited reactions. To investigate the usefulness of a palladium-ceramic composite membrane in a membrane reactor-separator configuration, we investigated the dehydrogenation of cyclohexane by equilibrium shift. A two-dimensional pseudo-homogeneous reactor model was developed to study the dehydrogenation of cyclohexane by equilibrium shift in a tubular membrane reactor. Radial diffusion was considered to account for the concentration gradient in the radial direction due to permeation through the membrane. For a dehydrogenation reaction, the feed stream to the reaction side contained cyclohexane and argon, while the separation side used argon as the sweep gas. Equilibrium conversion for dehydrogenation of cyclohexane is 18.7%. The present study showed that 100% conversion could be achieved by equilibrium shift using Pd-ceramic membrane reactor. For a feed containing cyclohexane and argon of 1.64 x 10(sup -6) and 1.0 x 10(sup -3) mol/s, over 98% conversion could be readily achieved. The dehydrogenation of cyclohexane was also experimentally investigated in a palladium-ceramic membrane reactor. The Pd-ceramic membrane was fabricated by electroless deposition of palladium on ceramic substrate. The performance of Pd-ceramic membrane was compared with a commercially available hydrogen-selective ceramic membrane. From limited experimental data it was observed that by appropriate choice of feed flow rate and sweep gas rate, the conversion of cyclohexane to benzene and hydrogen can increased to 56% at atmospheric pressure and 200 C in a Pd-ceramic membrane reactor. In the commercial ceramic membrane

  19. Effects of impurities on hydrogen permeability through palladium alloy membrane at comparatively high pressure and temperature

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Konishi, Satoshi; Katsuta, Hiroji; Naruse, Yuji

    1982-02-01

    Palladium alloy membrane method is considered to be a useful technique for fusion reactor fuel purification process. To study the feasibility of this method, the effects of impurities on permeation characteristics of palladium alloy membrane were examined. Experiments were carried out at practical conditions: pressure; 120 - 1200 kPa, temperature; about 700 K. No poisoning effect on hydrogen permeability of commercial Pd-Ag (Au.Ru) alloy was observed for impurities such as NH 3 , CH 4 , CO, CO 2 , O 2 and N 2 , which were mixed with hyper-pure H 2 at low concentration level (10 - 10000 ppm). Deterioration occurred by contamination with oil vapor. However, regeneration of the membrane was easily performed by air baking followed by hydrogen reduction. Chemical reactions in the permeation cell were also examined. (author)

  20. Determination of palladium content in palladium-alumina/palladium-silica/palladium-tin oxide catalyst for nuclear reactor applications

    International Nuclear Information System (INIS)

    Sharma, P.K.; Bassan, M.K.T.; Avhad, D.K.; Singhal, R.K.

    2012-01-01

    Alumina and silica act as support for finely divided palladium metal powder in synthesis of catalyst. These catalyst (Pd-Al 2 O 3 , Pd-SiO 2 and Pd-SnO 2 ) used in nuclear power reactor (moderator cover gas system) for the conversion of hydrogen. In Indian nuclear power programme these catalyst are regularly used in Kaiga 1 and 2 and Rajasthan atomic power plant 3 and 4. The performance of the catalyst, solely depends on the concentration of palladium, which is the active component in this catalyst composition. Therefore it is highly desirable to have rouged analytical methodology for the accurate estimation of palladium. Leaching of Pd from the bulk matrix is tedious due to the less reactive nature of Pd therefore complete solubilization of the matrix is carried out by fusion method

  1. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    Watanuki, K.; Nakajima, H.; Hasegawa, N.; Kaneko, H.; Tamaura, Y.

    2006-01-01

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  2. Co-current and counter-current configurations for ethanol steam reforming in a dense Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; de Falco, M.; Tosti, S.; Marrelli, L; Basile, A.

    2008-01-01

    The ethanol steam-reforming reaction to produce pure hydrogen has been studied theoretically. A mathematical model has been formulated for a traditional system and a palladium membrane reactor packed with a Co-based catalyst and the simulation results related to the membrane reactor for both

  3. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  4. Pore surface fractal analysis of palladium-alumina ceramic membrane using Frenkel-Halsey-Hill (FHH) model.

    Science.gov (United States)

    Ahmad, A L; Mustafa, N N N

    2006-09-15

    The alumina ceramic membrane has been modified by the addition of palladium in order to improve the H(2) permeability and selectivity. Palladium-alumina ceramic membrane was prepared via a sol-gel method and subjected to thermal treatment in the temperature range 500-1100 degrees C. Fractal analysis from nitrogen adsorption isotherm is used to study the pore surface roughness of palladium-alumina ceramic membrane with different chemical composition (nitric acid, PVA and palladium) and calcinations process in terms of surface fractal dimension, D. Frenkel-Halsey-Hill (FHH) model was used to determine the D value of palladium-alumina membrane. Following FHH model, the D value of palladium-alumina membrane increased as the calcinations temperature increased from 500 to 700 degrees C but decreased after calcined at 900 and 1100 degrees C. With increasing palladium concentration from 0.5 g Pd/100 ml H(2)O to 2 g Pd/100 ml H(2)O, D value of membrane decreased, indicating to the smoother surface. Addition of higher amount of PVA and palladium reduced the surface fractal of the membrane due to the heterogeneous distribution of pores. However, the D value increased when nitric acid concentration was increased from 1 to 15 M. The effect of calcinations temperature, PVA ratio, palladium and acid concentration on membrane surface area, pore size and pore distribution also studied.

  5. Characterising palladium-silver and palladium-nickel alloy membranes using SEM, XRD and PIXE

    International Nuclear Information System (INIS)

    Keuler, J.N.; Lorenzen, L.; Sanderson, R.D.; Prozesky, V.; Przybylowicz, W.J.

    1999-01-01

    Palladium alloy membranes were prepared by successive electroless plating steps on an alumina-zirconia support membrane. Palladium, silver and nickel were deposited in layers and then the metal films were heat treated for 5 h in a hydrogen atmosphere at 650 deg. C. The topography of the metal coatings and cross-sections of the films (before and after heating) were characterised using scanning electron microscopy (SEM). XRD was used to determine the crystal phase of the alloy coatings. Both SEM and XRD provide only surface information and therefore micro-PIXE was used to extract depth information of the alloy coating. Concentration profiles across the thickness of the films were constructed to determine penetration of the coating into the support membrane pores during electroless plating and to investigate diffusion of coated layers during the heating step

  6. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    International Nuclear Information System (INIS)

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  7. Kinetic Characteristics of Hydrogen Transfer Through Palladium-Modified Membrane

    Science.gov (United States)

    Petriev, I. S.; Frolov, V. Yu.; Bolotin, S. N.; Baryshev, M. G.; Kopytov, G. F.

    2018-01-01

    The paper deals with hydrogen transfer through Pd-23%Ag alloy membrane, the surface of which is modified by the electrolytic deposition of highly dispersed palladium. The dependence between the density of hydrogen flow and its excess pressure on the input surface of membrane is well approximated by the first-order curve. This fact indicates that the process of hydrogen permeability is defined by its dissociation on the input surface. Activation energy of this process is 47.9 kJ/mol which considerably exceeds that of the process of hydrogen transfer through palladium (22-30 kJ/mol). This confirms the fact that the chemisorption is a rate-controlling step of the hydrogen transfer through membrane.

  8. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    KAUST Repository

    Cheng, Hong; Xie, Yihui; Villalobos, Luis Francisco; Song, Liyan; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira; Hong, Pei-Ying

    2016-01-01

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium (Pd) nanoparticles. The modified membranes were evaluated for antibacterial and antifouling efficacy in a monoculture species biofilm (i.e., drip flow biofilm reactor, DFR) and mixed species biofilm experiment (i.e., aerobic membrane reactor, AeMBR). 1,2,3-triazole and Pd nanoparticles inhibited growth of Pseudomonas aeruginosa in both aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide within the monoculture species biofilm matrix. When the modified membranes were connected to AeMBR, the increase in transmembrane pressure was lower than that of the non-modified membranes. This was accompanied by a decrease in protein and polysaccharide concentrations within the mixed species biofilm matrix. Biomass amount in the biofilm layer was also lower in the presence of modified membranes, and there was no detrimental effect on the performance of the reactor as evaluated from the nutrient removal rates. 16S rRNA analysis further attributed the delay in membrane fouling to the decrease in relative abundance of selected bacterial groups. These observations collectively point to a lower fouling occurrence achieved by the modified membranes.

  9. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    KAUST Repository

    Cheng, Hong

    2016-04-12

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium (Pd) nanoparticles. The modified membranes were evaluated for antibacterial and antifouling efficacy in a monoculture species biofilm (i.e., drip flow biofilm reactor, DFR) and mixed species biofilm experiment (i.e., aerobic membrane reactor, AeMBR). 1,2,3-triazole and Pd nanoparticles inhibited growth of Pseudomonas aeruginosa in both aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide within the monoculture species biofilm matrix. When the modified membranes were connected to AeMBR, the increase in transmembrane pressure was lower than that of the non-modified membranes. This was accompanied by a decrease in protein and polysaccharide concentrations within the mixed species biofilm matrix. Biomass amount in the biofilm layer was also lower in the presence of modified membranes, and there was no detrimental effect on the performance of the reactor as evaluated from the nutrient removal rates. 16S rRNA analysis further attributed the delay in membrane fouling to the decrease in relative abundance of selected bacterial groups. These observations collectively point to a lower fouling occurrence achieved by the modified membranes.

  10. Fabrication of Polybenzimidazole/Palladium Nanoparticles Hollow Fiber Membranes for Hydrogen Purification

    KAUST Repository

    Villalobos, Luis Francisco

    2017-09-13

    A novel scheme to fabricate polybenzimidazole (PBI) hollow fiber membranes with a thin skin loaded with fully dispersed palladium nanoparticles is proposed for the first time. Palladium is added to the membrane during the spinning process in the form of ions that coordinate to the imidazole groups of the polymer. This is attractive for membrane production because agglomeration of nanoparticles is minimized and the high-cost metal is incorporated in only the selective layer—where it is required. Pd-containing membranes achieve three orders of magnitude higher H2 permeances and a twofold improvement in H2/CO2 selectivity compared to pure PBI hollow fiber membranes.

  11. Sol-gel synthesized of nanocomposite palladium-alumina ceramic membrane for H{sub 2} permeability: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, A.L.; Mustafa, N.N.N. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang (Malaysia)

    2007-08-15

    Palladium-alumina membrane with mesopore and narrow pore size distribution was prepared by the sol-gel method. Effect of the finely dispersed metal on the microstructure and the characteristic properties of the palladium-alumina membrane were investigated. Observations were made on membrane weight loss, morphology, pore structure, pore size, surface area, pore surface fractal and membrane's crystal structure. Autosorb analysis, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) analysis were employed in the membrane characterization. Autosorb analysis found that, BET surface area decreased and pore size of the membrane increased with the increasing of calcinations temperature (500-1100{sup o}C) and with the increasing of palladium amount in the membrane. FTIR and TG/DTA analysis show that the suitable temperature for calcinations of palladium-alumina membrane is at 700{sup o}C. Palladium metals are highly dispersed at calcinations temperature of 700{sup o}C as observed by TEM analysis. The fine crystallinity of the palladium and {gamma}-alumina phase was obtained after calcined at 700{sup o}C. The SEM morphology shows a smooth and free crack layer of palladium-alumina membrane after repeating the process of dipping, drying and calcinations at temperature of 700{sup o}C. The membrane also successfully coated with a good adhesion on support. The thickness of the final membrane layer was estimated as 9{mu} m. (author)

  12. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    Science.gov (United States)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  13. Unsupported palladium alloy membranes and methods of making same

    Science.gov (United States)

    Way, J. Douglas; Thoen, Paul; Gade, Sabina K.

    2015-06-02

    The invention provides support-free palladium membranes and methods of making these membranes. Single-gas testing of the unsupported foils produced hydrogen permeabilities equivalent to thicker membranes produced by cold-rolling. Defect-free films as thin as 7.2 microns can be fabricated, with ideal H.sub.2/N.sub.2 selectivities as high as 40,000. Homogeneous membrane compositions may also be produced using these methods.

  14. Les réacteurs à membranes : possibilités d'application dans l'industrie pétrolière et pétrochimique Membrane Reactors: Possibilities of Application in the Petroleum and Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Guy C.

    2006-11-01

    Full Text Available Cet article fait le point sur l'état de la recherche dans le domaine des réacteurs chimiques avec séparation par membrane intégrée et de leur applications dans le domaine du raffinage et de la pétrochimie. Trois applications potentiellement intéressantes sont identifiées et, pour chacune, les avantages de l'utilisation d'un réacteur à membrane sont discutés. Ce sont : la déshydrogénation du propane en propylène, la déshydrogénation d'un naphtène cyclohexanique et le vaporéformage du gaz naturel. Pour ces réactions, les membranes à base de palladium apparaissent les plus performantes compte tenu de leur tenue en température, de leur sélectivité et de leur perméabilité à l'hydrogène. Quelques éléments relatifs à leur développement sont présentés en conclusion. Recently, the use of membrane in reaction engineering has been more and more advocated. The selective separation of the products from the reaction mixture allows to achieve higher conversion or better selectivity or to operate under less severe conditions or with smaller units. This paper presents an update on the recent advances in the field of chemical membrane reactors and on their applications in refining and petrochemistry. Previous work. Most of the possible applications of membrane reactors in petroleum and petrochemical industry concern gaseous catalytic reactions. For this reason, gas permeation membranes are the primary component of membrane reactors. Gas permeation membranes present different types of physical structure : dense, microporous or asymmetric which is a combination of the two. Separating properties of dense membranes are function of the solubility and diffusivity of each gaseous component in the membrane material. For microporous membranes, they follow four mechanisms : Knudsen diffusion, surface diffusion, capillary condensation or molecular sieving. Although organic polymers are the common constituent of gas permeation membrane, their

  15. Conversion of hydrophilic SiOC nanofibrous membrane to robust hydrophobic materials by introducing palladium

    Science.gov (United States)

    Wu, Nan; Wan, Lynn Yuqin; Wang, Yingde; Ko, Frank

    2017-12-01

    Hydrophobic ceramic nanofibrous membranes have wide applications in the fields of high-temperature filters, oil/water separators, catalyst supports and membrane reactors, for their water repellency property, self-cleaning capability, good environmental stability and long life span. In this work, we fabricated an inherently hydrophobic ceramic nanofiber membrane without any surface modification through pyrolysis of electrospun polycarbosilane nanofibers. The hydrophobicity was introduced by the hierarchical microstructure formed on the surface of the nanofibers and the special surface composition by the addition of trace amounts of palladium. Furthermore, the flexible ceramic mats demonstrated robust chemical resistance properties with consistent hydrophobicity over the entire pH value range and effective water-in-oil emulsion separation performance. Interestingly, a highly cohesive force was found between water droplet and the ceramic membranes, suggesting their great potentials in micro-liquid transportation. This work provides a new route for adjusting the composition of ceramic surface and flexible, recyclable and multifunctional ceramic fibrous membranes for utilization in harsh environments.

  16. Study on a multi-component palladium alloy membrane for the fusion fuel cycle

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Okuno, Kenji; Nagasaki, Takanori; Noda, Kenji; Ishii, Yoshinobu; Takeshita, Hidefumi.

    1985-11-01

    A feasibility study on the material integrity with respect to the hydride formation and helium damage of the palladium alloy membrane was performed for an application of the palladium diffuser to a fusion fuel cleanup process. This study was conducted under the Japan/US Fusion Cooperation Program. Experimental works on the crystallography, hydrogen solubility and 3 He release characteristics were carried out with a multi-component palladium alloy(Pd-25Ag.Au.Ru). The excellent hydrogen permeability and mechanical properties of the membrane made of this alloy had been confirmed by authors' previous study. Based on the present study, this alloy membrane has high resistivity to the hydrogen embrittlement, and swelling and fracture due to the helium bubble formation under the practical operating conditions of the diffuser. (author)

  17. A new combination of membranes and membrane reactors for improved tritium management in breeder blanket of fusion machines

    International Nuclear Information System (INIS)

    Demange, D.; Staemmler, S.; Kind, M.

    2011-01-01

    Tritium used as fuel in future fusion machines will be produced within the breeder blanket. The tritium extraction system recovers the tritium to be routed into the inner-fuel cycle of the machine. Accurate and precise tritium accountancy between both systems is mandatory to ensure a reliable operation. Handling in the blanket huge helium flow rates containing tritium as traces in molecular and oxide forms is challenging both for the process and the accountancy. Alternative tritium processes based on combinations of membranes and membrane reactors are proposed to facilitate the tritium management. The PERMCAT process is based on counter-current isotope swamping in a palladium membrane reactor. It allows recovering tritium efficiently from any chemical species. It produces a pure hydrogen stream enriched in tritium of advantage for integration upstream of the accountancy stage. A pre-separation and pre-concentration stage using new zeolite membranes has been studied to optimize the whole process. Such a combination could improve the tritium processes and facilitate accountancy in DEMO.

  18. Low Temperature Steam Methane Reforming Over Ni Based Catalytic Membrane Prepared by Electroless Palladium Plating.

    Science.gov (United States)

    Lee, Sang Moon; Hong, Sung Chang; Kim, Sung Su

    2018-09-01

    A Pd/Ni-YSZ porous membrane with different palladium loadings and hydrazine as a reducing reagent was prepared by electroless plating and evaluated for the steam methane reforming activity. The steam-reforming activity of a Ni-YSZ porous membrane was greatly increased by the deposition of 4 g/L palladium in the low-temperature range (600 °C). With an increasing amount of reducing reagent, the Pd clusters were well dispersed on the Ni-YSZ surface and were uniform in size (∼500 nm). The Pd/Ni-YSZ catalytic porous membrane prepared by 1 of Pd/hydrazine ratio possessed an abundant amount of metallic Pd. The optimal palladium loadings and Pd/hydrazine ratio increased the catalytic activity in both the steam-reforming reaction and the Pd dispersion.

  19. Theoretical Study of Palladium Membrane Reactor Performance During Propane Dehydrogenation Using CFD Method

    Directory of Open Access Journals (Sweden)

    Kamran Ghasemzadeh

    2017-04-01

    Full Text Available This study presents a 2D-axisymmetric computational fluid dynamic (CFD model to investigate the performance Pd membrane reactor (MR during propane dehydrogenation process for hydrogen production. The proposed CFD model provided the local information of temperature and component concentration for the driving force analysis. After investigation of mesh independency of CFD model, the validation of CFD model results was carried out by other modeling data and a good agreement between CFD model results and theoretical data was achieved. Indeed, in the present model, a tubular reactor with length of 150 mm was considered, in which the Pt-Sn-K/Al2O3 as catalyst were filled in reaction zone. Hence, the effects of the important operating parameter (reaction temperature on the performances of membrane reactor (MR were studied in terms of propane conversion and hydrogen yield. The CFD results showed that the suggested MR system during propane dehydrogenation reaction presents higher performance with respect to once obtained in the conventional reactor (CR. In particular, by applying Pd membrane, was found that propane conversion can be increased from 41% to 49%. Moreover, the highest value of propane conversion (X = 91% was reached in case of Pd-Ag MR. It was also established that the feed flow rate of the MR is to be the one of the most important factors defining efficiency of the propane dehydrogenation process.

  20. Low-cost method for fabricating palladium and palladium-alloy thin films on porous supports

    Science.gov (United States)

    Lee, Tae H; Park, Chan Young; Lu, Yunxiang; Dorris, Stephen E; Balachandran, Uthamalingham

    2013-11-19

    A process for forming a palladium or palladium alloy membrane on a ceramic surface by forming a pre-colloid mixture comprising a powder palladium source, carrier fluid, dispersant and a pore former and a binder. Ultrasonically agitating the precolloid mixture and applying to a substrate with an ultrasonic nozzle and heat curing the coating form a palladium-based membrane.

  1. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-02-03

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  2. A novel auto-thermal reforming membrane reactor for high purity H2

    International Nuclear Information System (INIS)

    Tony Boyd; Grace, J.R.; Lim, C.J.; Adris, A.M.

    2006-01-01

    A novel hydrogen reactor based on steam reforming of natural gas has been developed and tested. The reactor produces high purity hydrogen using in-situ perm-selective membranes installed in a fluidized catalyst bed, thus shifting the thermodynamic equilibrium of the SMR reaction and eliminating the need for downstream hydrogen purification. The reactor is particularly suited to auto-thermal reforming, where air is added to the reformer to provide the endothermic reaction heat, thus eliminating the need to indirectly heat the reactor. The gas flow pattern within the fluidized bed induces an internal circulation of catalyst particles between the central SMR reaction (permeation) zone and an outer annulus. The circulating hot catalyst particles from the oxidation zone carry the required endothermic heat of reaction for the reforming, while ensuring that the palladium membranes are not exposed to excessive temperatures or to oxygen. Another beneficial characteristic of the reactor is that very little of the nitrogen present in the oxidation air reaches the reaction zone, thus maintaining the hydrogen driving force for the perm-selective membranes. Pilot plant results carried out in a semi-industrial scale reactor will be presented. The reactor was operated up to 650 C and 14 bar. Pure hydrogen (99.999+%) was initially obtained from the reactor and an equilibrium shift was demonstrated. (authors)

  3. PALLADIUM-FACILITATED ELECTROLYTIC DECHLORINATION OF 2-CHLOROBIPHENYL USING A GRANULAR-GRAPHITE ELECTRODE.

    Science.gov (United States)

    Palladium-assisted electrocatalytic dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous solutions was conducted in a membrane-separated electrochemical reactor with granular-graphite packed electrodes. The dechlorination took place at a granular-graphite cathode while Pd was ...

  4. Preparation and characterization of a nickel/alumina composite membrane for high temperature hydrogen separation. Application in a membrane reactor for the dry reforming of methane; De la synthese d'une membrane composite nikel/ceramique permselective a l'hydrogene au reacteur membranaire. Application au reformage du methane

    Energy Technology Data Exchange (ETDEWEB)

    Haag, St.

    2003-11-01

    The objective of this work was to develop composite inorganic membranes based on nickel or palladium supported on a porous ceramic for high temperature hydrogen separation. These membranes were used in a membrane reactor for the dry reforming of methane in order to shift the chemical equilibrium towards the production of hydrogen and carbon monoxide. The metal layers were deposited on a tubular alumina support by electroless plating. The Ni and the Pd layers are 1 micron thick. The hydrogen permeation tests were done for high temperatures. The Pd/ceramic membrane is permselective to hydrogen and the H{sub 2}/N{sub 2} separation factor (single gas) is 60 at 400 deg C with a transmembrane pressure difference of 1 bar. With a gas mixture, the H{sub 2}/N{sub 2} separation factor is 13. This membrane is not completely dense and the transport mechanism of hydrogen through the Pd layer is mixed: solution-diffusion through the metal bulk and surface diffusion through the defects of the film. However, an embrittlement of the palladium layer under hydrogen atmosphere was observed at 500 deg C. The Ni/ceramic membrane is stable until 600 deg C, its permselectivity to hydrogen increases with the temperature. The use of a sweep gas can provide a H{sub 2}/N{sub 2} separation factor (mixture) of about 25. The main diffusion mechanism is surface diffusion through the pores. Both membranes are not catalytic. Thus, some catalysts composed of nickel and cobalt supported on MgO, SiO{sub 2} or Al{sub 2}O{sub 3} were prepared. These systems allow to reach theoretical limits of conversion calculated for a conventional fixed bed reactor. In the membrane reactor, an enhancement of the methane conversion (15-20%) is observed with both membranes due the selective removal of hydrogen during the reaction. The Ni/ceramic membrane more stable, more permeable and as selective as the palladium one is a brand new material for high temperature hydrogen separation. (author)

  5. Palladium based membranes and membrane reactors for hydrogen production and purification : An overview of research activities at Tecnalia and TU/e

    NARCIS (Netherlands)

    Fernandez, E.; Helmi Siasi Farimani, A.; Medrano Jimenez, J.A.; Coenen, K.T.; Arratibel Plazaola, A.; Melendez Rey, J.; de Nooijer, N.C.A.; Viviente, J.L.; Zuniga, J.; van Sint Annaland, M.; Gallucci, F.; Pacheco Tanaka, D.A.

    2017-01-01

    In this paper, the main achievements of several European research projects on Pd based membranes and Pd membrane reactors for hydrogen production are reported. Pd-based membranes have received an increasing interest for separation and purification of hydrogen. In addition, the integration of such

  6. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  7. Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yan; Chen, Rizhi [Nanjing Tech University, Nanjing (China)

    2015-09-15

    An efficient and reusable catalyst was developed by depositing palladium nanoparticles on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method. The as-prepared Pdloaded ceramic membrane support was characterized by XRD, SEM, EDS, TEM, XPS, ICP, and its catalytic properties were investigated in the liquid-phase p-nitrophenol hydrogenation. A comparative study was also made with the palladium nanoparticles deposited on an amine-functionalized ceramic membrane support by an impregnation-reduction method. The palladium nanoparticles could be homogeneously immobilized on the ceramic membrane support surface, and exhibited excellent catalytic performance in the p-nitrophenol hydrogenation. The catalytic activity of the Pdloaded ceramic membrane support prepared by the nanoparticulate colloidal impregnation method increased by 16.6% compared to that of impregnation-reduction method. In the nanoparticulate colloidal impregnation method, palladium nanoparticles were presynthesized, higher loading of Pd(0) could be obtained, resulting in better catalytic activity. The as-prepared Pd-loaded ceramic membrane support could be easily reused for several cycles without appreciable degradation of catalytic activity.

  8. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Masashi [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580 (Japan); Noda, Kei, E-mail: nodakei@elec.keio.ac.jp [Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522 (Japan)

    2015-12-01

    Graphical abstract: - Highlights: • A bilayer membrane composed of TiO{sub 2} nanotube array and palladium was fabricated. • The TiO{sub 2}/Pd bilayer membrane was prepared with an all-electrochemical process. • The membrane consists of pure Pd and anatase TiO{sub 2} nanotubes with no alloy formation. • Photocatalytic H{sub 2} production and concomitant separation were demonstrated. • High-purity H{sub 2} production rate and apparent quantum yield were evaluated. - Abstract: We developed an all-electrochemical technique for fabricating a bilayer structure of a titanium dioxide (TiO{sub 2}) nanotube array (TNA) and a palladium film (TNA/Pd membrane), which works for photocatalytic high-purity hydrogen production. Electroless plating was used for depositing the Pd film on the TNA surface prepared by anodizing a titanium foil. A 3-μm-thick TNA/Pd membrane without any pinholes in a 1.5-cm-diameter area was fabricated by transferring a 1-μm-thick TNA onto an electroless-plated 2-μm-thick Pd film with a mechanical peel-off process. This ultrathin membrane with sufficient mechanical robustness showed photocatalytic H{sub 2} production via methanol reforming under ultraviolet illumination on the TNA side, immediately followed by the purification of the generated H{sub 2} gas through the Pd layer. The hydrogen production rate and the apparent quantum yield for high-purity H{sub 2} production from methanol/water mixture with the TNA/Pd membrane were also examined. This work suggests that palladium electroless plating is more suitable and practical for preparing a well-organized TNA/Pd heterointerface than palladium sputter deposition.

  9. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  10. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  11. A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor

    International Nuclear Information System (INIS)

    Terrazas-Rodriguez, J.E.; Gutierrez-Granados, S.; Alatorre-Ordaz, M.A.; Ponce de Leon, C.; Walsh, F.C.

    2011-01-01

    The production of catalytic converters generates large amounts of waste water containing Pd 2+ , Rh 3+ and Nd 3+ ions. The electrochemical treatment of these solutions offers an economic and effective alternative to recover the precious metals in comparison with other traditional metal recovery technologies. The separation of palladium from this mixture of metal ions by catalytic deposition was carried out using a rotating cylinder electrode reactor (RCER) and a parallel plate reactor (FM01-LC) with the same cathode area (64 cm 2 ) and electrolyte volume (300 cm 3 ). The study was carried out at mean linear flow velocities of 1.27 -1 (120 e /v -1 (7390 2+ ions in the parallel plate electrode reactor was 35% while the recovery of 97% of Pd 2+ in the RCER was 62%. The volumetric energy consumption during the electrolysis was 0.56 kW h m -3 and 2.1 kW h m -3 for the RCER and the FM01-LC reactors, respectively. Using a three-dimensional stainless steel electrode in the FM01-LC laboratory reactor, 99% of palladium ions were recovered after 30 min of electrolysis while in the RCER, 120 min were necessary.

  12. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  13. Improving carbon tolerance of Ni-YSZ catalytic porous membrane by palladium addition for low temperature steam methane reforming

    Science.gov (United States)

    Lee, Sang Moon; Won, Jong Min; Kim, Geo Jong; Lee, Seung Hyun; Kim, Sung Su; Hong, Sung Chang

    2017-10-01

    Palladium was added on the Ni-YSZ catalytic porous membrane by wet impregnation and electroless plating methods. Its surface morphology characteristics and carbon deposition properties for the low temperature steam methane reforming were investigated. The addition of palladium could obviously be enhanced the catalytic activity as well as carbon tolerance of the Ni-YSZ porous membrane. The porous membranes were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), CH4 temperature-programmed reduction (CH4-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that the Pd-Ni-YSZ catalytic porous membrane showed the superior stability as well as the deposition of carbon on the surface during carbon dissociation adsorption at 650 °C was also suppressed.

  14. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  15. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor

    Directory of Open Access Journals (Sweden)

    Liberty N. Baloyi

    2016-12-01

    Full Text Available Hydrogen as an energy carrier has the potential to decarbonize the energy sector. This work presents the application of a palladium-silver (Pd–Ag membrane-based reactor. The membrane reactor which is made from Pd–Ag film supported by porous stainless steel (PSS is evaluated for the production of hydrogen and the potential replacement of the current two-stage Water-Gas Shift (WGS reaction by a single stage reaction. The permeability of a 20 μm Pd–Ag membrane reactor was examined at 320 °C, 380 °C and 430 °C. The effect of continuous hydrogen exposure on the Pd–Ag membrane at high temperature and low temperature was examined to investigate the thermal stability and durability of the membrane. During continuous operation to determine thermal stability, the membrane reactor exhibited stable hydrogen permeation at 320 °C for 120 h and unstable hydrogen permeation at 430 °C was observed. For the WGS reaction, the reactor was loaded with Ferrochrome catalyst. The membrane showed the ability to produce high purity hydrogen, with a CO conversion and an H2 recovery of 84% and 88%, respectively. The membrane suffered from hydrogen embrittlement due to desorption and adsorption of hydrogen on the membrane surface. SEM analysis revealed cracks that occurred on the surface of the membrane after hydrogen exposure. XRD analysis revealed lattice expansion after hydrogen loading which suggests the occurrence of phase change from α-phase to the more brittle β-phase.

  16. Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2006-03-10

    In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential

  17. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  18. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-01-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  19. System design study of a membrane reforming hydrogen production plant using a small sized sodium cooled reactor

    International Nuclear Information System (INIS)

    Chikazawa, Y.; Konomura, M.; Hori, T.; Sato, H.; Uchida, S.

    2004-01-01

    In this study, a membrane reforming hydrogen production plant using a small sized sodium cooled reactor was designed as one of promising concepts. In the membrane reformer, methane and steam are reformed into carbon dioxide and hydrogen with sodium heat at a temperature 500 deg-C. In the equilibrium condition, steam reforming proceeds with catalyst at a temperature more than 800 deg-C. Using membrane reformers, the steam reforming temperature can be decreased from 800 to 500 deg-C because the hydrogen separation membrane removes hydrogen selectively from catalyst area and the partial pressure of hydrogen is kept much lower than equilibrium condition. In this study, a hydrogen and electric co-production plant has been designed. The reactor thermal output is 375 MW and 25% of the thermal output is used for hydrogen production (70000 Nm 3 /h). The hydrogen production cost is estimated to 21 yen/Nm 3 but it is still higher than the economical goal (17 yen/Nm 3 ). The major reason of the high cost comes from the large size of hydrogen separation reformers because of the limit of hydrogen separation efficiency of palladium membrane. A new highly efficient hydrogen separation membrane is needed to reduce the cost of hydrogen production using membrane reformers. There is possibility of multi-tube failure in the membrane reformers. In future study, a design of measures against tube failure and elemental experiments of reaction between sodium and reforming gas will be needed. (authors)

  20. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  1. Innovative hybrid biological reactors using membranes; Reactores biologico hibrido innovadores utilizando membranas

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-07-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  2. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  3. MONTANA PALLADIUM RESEARCH INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    Peters, John; McCloskey, Jay; Douglas, Trevor; Young, Mark; Snyder, Stuart; Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4

  4. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  5. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  6. Method of making sulfur-resistant composite metal membranes

    Science.gov (United States)

    Way, J Douglas [Boulder, CO; Lusk, Mark [Golden, CO; Thoen, Paul [Littleton, CO

    2012-01-24

    The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200.degree. C. and about 1200.degree. C. to form a sulfur-resistant, composite PdAu alloy membrane.

  7. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  8. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  9. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  10. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  11. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  12. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  14. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  16. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Recovery of nonradioactive palladium and rhodium from high-level radioactive wastes

    International Nuclear Information System (INIS)

    McDuffie, H.F.

    1979-01-01

    A possible method for recovering significant quantities of nonradioactive palladium from fission-product wastes requires essentially complete separation of the fission-product (radioactive) palladium from fission-product ruthenium. After the decay of 106 Ru via 106 Rh to 106 Pd, this nonradioactive palladium is recovered for normal commercial use. The U.S. production of palladium has never been above 1000 kg per year vs consumption of about 46,000 kg per year. Most of the supply comes from Russia and South Africa. It has been estimated that a 400-GW(e) nuclear reactor economy will make available 2000 kg per year of 106 Ru at reactor fuel discharge. A substantial increase might be achieved if plutonium were recycled as fissionable material because of the higher yields of the 106 chain from plutonium. A literature search has uncovered support for three promising approaches to the required separation of palladium from ruthenium: (1) recrystallization from solution in bismuth or in zinc; (2) selective precipitation of a titanium--ruthenium intermetallic compound from bismuth, followed by precipitation of a zinc--palladium intermetallic compound; and (3) dissolution in molten magnesium followed by partitioning between molten magnesium and a molten uranium-5 wt % chromium eutectic at a temperature above 870 0 C. Liquid-liquid extraction appears to be the most promising method from a technological point of view, although intermetallic compound formation is much more interesting chemically. Recovery of some nonradioactive 103 Rh may be possible by liquid-liquid extraction of the fuel before the decay of the 39.8-d 103 Ru has gone substantially to completion. Demonstration of the practicality of these separations will contribute a positive factor to the evaluation of resumption in the United States of nuclear fuel reprocessing and plutonium recycle in light-water-moderated reactors

  18. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  19. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    Science.gov (United States)

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.

  20. Optimization of a membrane reactor for hydrogen production with genetic algorithms

    International Nuclear Information System (INIS)

    Raceanu, Mircea; Iordache, Ioan; Curuia, Marian; Rasoi, Gabriel; Patularu, Laurentiu; Enache, Adrian

    2009-01-01

    Full text: Hydrogen is produced via steam reforming of hydrocarbons such as natural gas or methane by using conventional systems. Unfortunately, these systems need at least four different stages, consisting of three reactors and a purification system. Moreover, the steam reforming reaction is an endothermic thermodynamically limited system, meaning that high temperature energy supply is needed for complete conversion. Among different technologies related to production, separation and purification of H 2 , membrane technologies seem to really play a fundamental role. The specific thermodynamic limits are overcome using the so-called membrane reactors, systems in which both reaction and separation occur simultaneously. The hydrogen is driven across the membrane by the pressure difference, depending on the temperature, pressure and reactor length the methane can be completely converted and consequently very pure hydrogen is produced. A membrane reactor has two components which can be optimized namely, the membrane and the reactor dimensions. This paper presents a study on optimization of membrane reactor for enhancing the overall production. A mathematical heterogeneous model of the reactor was used for optimization of reactor performance. Genetic algorithms were used as powerful methods for optimization of complex problems. (authors)

  1. Results of tritium experiments on ceramic electrolysis cells and palladium diffusers for application to fusion reactor fuel cleanup systems

    International Nuclear Information System (INIS)

    Carlson, R.V.; Binning, K.E.; Konishi, S.; Yoshida, H.; Naruse, Y.

    1987-01-01

    Tritium tests at the Tritium Systems Test Assembly have demonstrated that ceramic electrolysis cells and palladium alloy diffuser developed in Japan are possible components for a fusion reactor fuel cleanup system. Both components have been successfully operated with tritium for over a year. A failure of the first electrolysis cell was most likely the result of an over voltage on the ceramic. A simple circuit was developed to eliminate this mode of failure. The palladium diffusers tubes exhibited some degradation of mechanical properties as a result of the build up of helium from the tritium decay, after 450 days of operation with tritium, however the effects were not significant enough to affect the performance. New models of the diffuser and electrolysis cell, providing higher flow rates and more tritium compatible designs are currently being tested with tritium. 8 refs., 5 figs

  2. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  3. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  4. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  5. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  6. Advanced design of fast reactor-membrane reformer (FR-MR)

    International Nuclear Information System (INIS)

    Tashimo, M.; Hori, I.; Yasuda, I.; Shirasaki, Y.; Kobayashi, K.

    2004-01-01

    A new plant concept of nuclear-produced hydrogen is being studied using a Fast Reactor-Membrane Reformer (FR-MR). The conventional steam methane reforming (SMR) system is a three-stage process. The first stage includes the reforming, the second contains a shift reaction and the third is the separation process. The reforming process requires high temperatures of 800 ∼ 900 deg C. The shift process generates heat and is performed at around 200 deg C. The membrane reforming has only one process stage under a nonequilibrium condition by removing H2 selectively through a membrane tube. The steam reforming temperature can be decreased from 800 deg C to 550 deg C, which is a remarkable benefit offered by the non-equilibrium condition. With this new technology, the reactor type can be changed from a High Temperature Gas-cooled Reactor (HTGR) to a Fast Reactor (FR). A Fast Reactor-Membrane Reformer (FR-MR) is composed of a nuclear plant and a hydrogen plant. The nuclear plant is a sodium-cooled Fast Reactor with mixed oxide fuel and with a power of 240 MWt. The heat transport system contains two circuits, the primary circuit and the secondary circuit. The membrane reformer units are set in the secondary circuit. The heat, supplied by the sodium, can produce 200 000 Nm 3 /h by 2 units. There are two types of membranes. One is made of Pd another one (advanced) is made of, for example V, or Nb. The technology for the Pd membrane is already established in a small scale. The non-Pd type is expected to improve the performance. (author)

  7. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater.

    Science.gov (United States)

    Ng, Kok-Kwang; Lin, Cheng-Fang; Panchangam, Sri Chandana; Andy Hong, Pui-Kwan; Yang, Ping-Yi

    2011-08-01

    A novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant. The new reactor has a longer sludge retention time (SRT) and lower mixed liquor suspended solids (MLSS) content than does the conventional. Three different hydraulic retention times (HRTs) of 6, 9, and 12 h were studied. The results show faster rise of the transmembrane pressure (TMP) with decreasing hydraulic retention time (HRT) in both reactors, where most significant membrane fouling was associated with high SMP (consisting of carbohydrate and protein) contents that were prevalent at the shortest HRT of 6 h. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. Rapid membrane fouling was attributed to increased production of biomass and SMP, as in the conventional reactor. SMP of 10-100 kDa from both MBRs were predominant with more than 70% of the SMP <100 kDa. Protein was the major component of SMP rather than carbohydrate in both reactors. The new reactor sustained operation at constant permeate flux that required seven times less frequent chemical cleaning than did the conventional reactor. The new BEMR offers effective organics removal while reducing membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Factors affecting the corrosion of SiC layer by fission product palladium

    International Nuclear Information System (INIS)

    Dewita, E.

    2000-01-01

    HTR is one of the advanced nuclear reactors which has inherent safety system, graphite moderated and helium gas cooled. In general, these reactors are designed with the TRISO coated particle consist of four coating layers that are porous pyrolytic carbon (PyC). inner dense PyC (IPyC), silicon carbide (SiC), and outer dense PyC (OPyC). Among the four coating layers, the SiC plays an important role beside in retaining metallic fission products, it also provides mechanical strength to fuel particle. However, results of post irradiation examination indicate that fission product palladium can react with and corrode SiC layer, This assessment is conducted to get the comprehension about resistance of SiC layer on irradiation effects, especially in order to increase the fuel bum-up. The result of this shows that the corrosion of SiC layer by fission product palladium is beside depend on the material characteristics of SiC, and also there are other factors that affect on the SiC layer corrosion. Fuel enrichment, bum-up, and irradiation time effect on the palladium flux in fuel kernel. While, the fuel density, vapour pressure of palladium (the degree depend on the irradiation temperature and kernel composition) effect on palladium migration in fuel particle. (author)

  9. Steam reforming of heptane in a fluidized bed membrane reactor

    Science.gov (United States)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.

    n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.

  10. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  11. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Directory of Open Access Journals (Sweden)

    Bernardo Castro-Dominguez

    2016-09-01

    Full Text Available Palladium-based catalytic membrane reactors (CMRs effectively remove H2 to induce higher conversions in methane steam reforming (MSR and water-gas-shift reactions (WGS. Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i a conventional packed bed reactor packed (PBR for MSR, (ii a PBR with five layers of two catalysts in series and (iii a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

  12. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  13. Recent Advances on Carbon Molecular Sieve Membranes (CMSMs and Reactors

    Directory of Open Access Journals (Sweden)

    Margot A. Llosa Tanco

    2016-08-01

    Full Text Available Carbon molecular sieve membranes (CMSMs are an important alternative for gas separation because of their ease of manufacture, high selectivity due to molecular sieve separation, and high permeance. The integration of separation by membranes and reaction in only one unit lead to a high degree of process integration/intensification, with associated benefits of increased energy, production efficiencies and reduced reactor or catalyst volume. This review focuses on recent advances in carbon molecular sieve membranes and their applications in membrane reactors.

  14. Multienzyme Immobilized Polymeric Membrane Reactor for the Transformation of a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Rupam Sarma

    2018-04-01

    Full Text Available We have developed an integrated, multienzyme functionalized membrane reactor for bioconversion of a lignin model compound involving enzymatic catalysis. The membrane bioreactors were fabricated through the layer-by-layer assembly approach to immobilize three different enzymes (glucose oxidase, peroxidase and laccase into pH-responsive membranes. This novel membrane reactor couples the in situ generation of hydrogen peroxide (by glucose oxidase to oxidative conversion of a lignin model compound, guaiacylglycerol-β-guaiacyl ether (GGE. Preliminary investigation of the efficacy of these functional membranes towards GGE degradation is demonstrated under convective flow mode. Over 90% of the initial feed could be degraded with the multienzyme immobilized membranes at a residence time of approximately 22 s. GGE conversion product analysis revealed the formation of oligomeric oxidation products upon reaction with peroxidase, which may be a potential hazard to membrane bioreactors. These oxidation products could further be degraded by laccase enzymes in the multienzymatic membranes, explaining the potential of multi enzyme membrane reactors. The multienzyme incorporated membrane reactors were active for more than 30 days of storage time at 4 °C. During this time span, repetitive use of the membrane reactor was demonstrated involving 5–6 h of operation time for each cycle. The membrane reactor displayed encouraging performance, losing only 12% of its initial activity after multiple cycles of operation.

  15. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Mascarade, Jeremy

    2015-01-01

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q 2 O+H 2 ↔H 2 O+Q 2 (Q=H,D or T) and selective permeation of Q 2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  16. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  17. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  18. Comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2009-01-01

    In this work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, have been compared for the reforming of methane for the production of ultra-pure hydrogen. Using detailed theoretical models, the required membrane area to reach a given

  19. Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same

    Science.gov (United States)

    Way, J. Douglas; Hatlevik, Oyvind

    2014-07-15

    The invention relates to thin, hydrogen-permeable, sulfur-resistant membranes formed from multi-layers of palladium or palladium-alloy coatings on porous, ceramic or metal supports, methods of making these membranes, methods of repairing layers of these membranes and devices that incorporate these membranes.

  20. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  1. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  2. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

    Science.gov (United States)

    Nishizawa, K; Nakajima, M; Nabetani, H

    2000-04-05

    A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

  3. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  4. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Tom [Western Research Inst. (WRI), Laramie, WY (United States)

    2013-09-01

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  5. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  6. Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2010-01-01

    In this theoretical work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, has been compared for ultra-pure hydrogen production via methane reforming. Using detailed theoretical models, the required membrane area to reach a given conversion

  7. 3. International conference on catalysis in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The 3. International Conference on Catalysis in Membrane Reactors, Copenhagen, Denmark, is a continuation of the previous conferences held in Villeurbanne 1994 and Moscow 1996 and will deal with the rapid developments taking place within membranes with emphasis on membrane catalysis. The approx. 80 contributions in form of plenary lectures and posters discuss hydrogen production, methane reforming into syngas, selectivity and specificity of various membranes etc. The conference is organised by the Danish Catalytic Society under the Danish Society for Chemical Engineering. (EG)

  8. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne

    2013-01-01

    The remarkable oxygen transfer efficiencies attainable in membrane-aerated biofilm reactors (MABRs) are expected to favor their prompt industrial implementation. However, tests in clean water, currently used for the estimation of their oxygen transfer potential, lead to wrong estimates once biofilm...... is present, significantly complicating reactor modelling and control. This study shows for the first time the factors affecting oxygen mass transfer across membranes during clean water tests and reactor operation via undisturbed microelectrode inspection and bulk measurements. The mass transfer resistance...... of the liquid boundary layer developed at the membrane-liquid interface during clean water tests accounted for two thirds of the total mass transfer resistance, suggesting a strong underestimation of the oxygen transfer rates when it is absent (e.g. after biofilm growth). Reactor operation to attain partial...

  9. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans

    Energy Technology Data Exchange (ETDEWEB)

    Omajali, Jacob B., E-mail: JBO037@bham.ac.uk, E-mail: jbomajali@gmail.com; Mikheenko, Iryna P. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom); Merroun, Mohamed L. [University of Granada, Department of Microbiology, Faculty of Sciences (Spain); Wood, Joseph [University of Birmingham, School of Chemical Engineering (United Kingdom); Macaskie, Lynne E. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom)

    2015-06-15

    Early studies have focused on the synthesis of palladium nanoparticles within the periplasmic layer or on the outer membrane of Desulfovibrio desulfuricans and on the S-layer protein of Bacillus sphaericus. However, it has remained unclear whether the synthesis of palladium nanoparticles also takes place in the bacterial cell cytoplasm. This study reports the use of high-resolution scanning transmission electron microscopy with a high-angle annular dark field detector and energy dispersive X-ray spectrometry attachment to investigate the intracellular synthesis of palladium nanoparticles (Pd NPs). We show the intracellular synthesis of Pd NPs within cells of two anaerobic strains of D. desulfuricans and an aerobic strain of B. benzeovorans using hydrogen and formate as electron donors. The Pd nanoparticles were small and largely monodispersed, between 0.2 and 8 nm, occasionally from 9 to 12 nm with occasional larger nanoparticles. With D. desulfuricans NCIMB 8307 (but not D. desulfuricans NCIMB 8326) and with B. benzeovorans NCIMB 12555, the NPs were larger when made at the expense of formate, co-localizing with phosphate in the latter, and were crystalline, but were amorphous when made with H{sub 2,} with no phosphorus association. The intracellular Pd nanoparticles were mainly icosahedrons with surfaces comprising {111} facets and about 5 % distortion when compared with that of bulk palladium. The particles were more concentrated in the cell cytoplasm than the cell wall, outer membrane, or periplasm. We provide new evidence for synthesis of palladium nanoparticles within the cytoplasm of bacteria, which were confirmed to maintain cellular integrity during this synthesis.

  10. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  11. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    International Nuclear Information System (INIS)

    Liger, Karine; Mascarade, Jérémy; Joulia, Xavier; Meyer, Xuan-Mi; Troulay, Michèle; Perrais, Christophe

    2016-01-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q_2 form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  12. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  13. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  14. Biofilm formation on membranes used for membrane aerated biological reactors, under different stress conditions

    International Nuclear Information System (INIS)

    Andrade-Molinar, C.; Ballinas-Casarrubias, M. L.; Solis-Martinez, F. J.; Rivera-Chavira, B. E.; Cuevas-Rodirguez, G.; Nevarez-Moorillon, G. V.

    2009-01-01

    Bacterial biofilm play an important role in wastewater treatment processes, and have been optimized in the membrane aerated biofilm reactors (MABR). In MABR, a hydrophobic membrane is used as support for the formation of biofilm, and supplements enough aeration to assure an aerobic process. (Author)

  15. Investigation of a submerged membrane reactor for continuous biomass hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi; Stickel, Jonathan; Wickramasinghe, S. Ranil

    2015-10-01

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  16. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  17. A dataset for preparing pristine graphene-palladium nanocomposites using swollen liquid crystal templates

    Science.gov (United States)

    Vats, Tripti; Siril, Prem Felix

    2017-12-01

    Pristine graphene (G) has not received much attention as a catalyst support, presumably due to its relative inertness as compared to reduced graphene oxide (RGO). In the present work, we used swollen liquid crystals (SLCs) as nano-reactors for graphene-palladium nanocomposites synthesis. The 'soft' confinement of SLCs directs the growth of palladium (Pd) nanoparticles over the G sheets. In this dataset we include all the parameters and details of different techniques used for the characterization of G, SLCs and synthesized G-Pd nanocomposites. The synthesized G-palladium nanocomposites (Pd-G) exhibited improved catalytic activity compared with Pd-RGO and Pd nanoparticles, in the hydrogenation of nitrophenols and C-C coupling reactions.

  18. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  19. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  20. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production.

    Science.gov (United States)

    Alique, David; Martinez-Diaz, David; Sanz, Raul; Calles, Jose A

    2018-01-23

    In the last years, hydrogen has been considered as a promising energy vector for the oncoming modification of the current energy sector, mainly based on fossil fuels. Hydrogen can be produced from water with no significant pollutant emissions but in the nearest future its production from different hydrocarbon raw materials by thermochemical processes seems to be more feasible. In any case, a mixture of gaseous compounds containing hydrogen is produced, so a further purification step is needed to purify the hydrogen up to required levels accordingly to the final application, i.e., PEM fuel cells. In this mean, membrane technology is one of the available separation options, providing an efficient solution at reasonable cost. Particularly, dense palladium-based membranes have been proposed as an ideal chance in hydrogen purification due to the nearly complete hydrogen selectivity (ideally 100%), high thermal stability and mechanical resistance. Moreover, these membranes can be used in a membrane reactor, offering the possibility to combine both the chemical reaction for hydrogen production and the purification step in a unique device. There are many papers in the literature regarding the preparation of Pd-based membranes, trying to improve the properties of these materials in terms of permeability, thermal and mechanical resistance, poisoning and cost-efficiency. In this review, the most relevant advances in the preparation of supported Pd-based membranes for hydrogen production in recent years are presented. The work is mainly focused in the incorporation of the hydrogen selective layer (palladium or palladium-based alloy) by the electroless plating, since it is one of the most promising alternatives for a real industrial application of these membranes. The information is organized in different sections including: (i) a general introduction; (ii) raw commercial and modified membrane supports; (iii) metal deposition insights by electroless-plating; (iv) trends in

  1. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  2. Development of composite metallic membranes for hydrogen purification

    International Nuclear Information System (INIS)

    Gaillard, F.

    2003-12-01

    Fuel cells are able to convert chemical energy into electric power. There are different types of cells; the best for automotive applications are Proton Exchange Membrane Fuel Cells. But, these systems need hydrogen of high purity. However, fuel reforming generates a mixture of gases, from which hydrogen has to be extracted before supplying the electrochemical cell. The best way for the purification of hydrogen is the membrane separation technology. Palladium is selectively permeable to hydrogen and this is the reason why this metal is largely used for the membrane development. This work deals with the development of hydrogen-selective membranes by deposition of a thin film of palladium onto a porous mechanical support. For this, we have used the electroless plating technique: a palladium salt and a reducing agent are mixed and the deposition takes place onto the catalytic surface of the substrate. After bibliographic investigations, experimental studies have been performed first with a dense metallic substrate in order to better understand the different parameters controlling the deposition. First of all, potentiometric measurements have been carried out to follow the electrochemical reactions in the bath. Then, kinetic measurements of the coating thickness have been recorded to understand the effect of the bath conditions on the yield and the adhesion of the film. Finally, the electroless plating method has been applied to deposit palladium membranes onto porous stainless steel substrates. After optimisation, the resulting membranes were tested for their hydrogen permeation properties. (author)

  3. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  4. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    Science.gov (United States)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  5. Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector

    International Nuclear Information System (INIS)

    Sjardin, M.; Damen, K.J.; Faaij, A.P.C.

    2006-01-01

    The membrane reactor is a novel technology for the production of hydrogen from natural gas. It promises economic small-scale hydrogen production, e.g. at refuelling stations and has the potential of inexpensive CO 2 separation. Four configurations of the membrane reactor have been modelled with Aspen plus to determine its thermodynamic and economic prospects. Overall energy efficiency is 84% HHV without H 2 compression (78% with compression up to 482bar). The modelling results also indicate that by using a sweep gas, the membrane reactor can produce a reformer exit stream consisting mainly of CO 2 and H 2 O (>90% mol ) suited for CO 2 sequestration after water removal with an efficiency loss of only 1% pt . Reforming with a 2MW membrane reactor (250 unit production volume) costs 14$/GJ H 2 including compression, which is more expensive than conventional steam reforming+compression (12$/GJ). It does, however, promise a cheap method of CO 2 separation, 14$/t CO 2 captured, due to the high purity of the exit stream. The well-to-wheel chain of the membrane reactor has been compared to centralised steam reforming to assess the trade-off between production scale and the construction of a hydrogen and a CO 2 distribution infrastructure. If the scale of centralised hydrogen production is below 40MW, the trade-off could be favourable for the membrane reactor with small-scale CO 2 capture (18$/GJ including H 2 storage, dispensing and CO 2 sequestration for 40MW SMR versus 19$/GJ for MR). The membrane reactor might become competitive with conventional steam reforming provided that thin membranes can be combined with high stability and a cheap manufacturing method for the membrane tubes. Thin membranes, industrial utility prices and larger production volumes (i.e. technological learning) might reduce the levelised hydrogen cost of the membrane reactor at the refuelling station to less than 14$/GJ including CO 2 sequestration cost, below that of large-scale H 2 production with

  6. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  7. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  8. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  9. Membrane reforming in converting natural gas to hydrogen (part one)

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D; Giacobbe, F; De Cesaris, A [Faculty of Chemical Engineering and Materials, University of L' Aquila (Italy); Farace, A; Iaquaniello, G; Pipino, A [TECHNIP-KTI S.p.a., Rome (Italy)

    2008-07-15

    Membrane reforming reactors (MRR) could play a key role in converting natural gas into hydrogen. The major advantage of MRR architecture is the possibility to shift the chemical equilibrium toward the right-hand side of the reaction, improving hydrogen production and allowing, the same time high methane conversion at relatively low temperatures such as 650 C. Such a low operating temperature makes it possible to locate the MRR downstream of a gas turbine, achieving an efficient hybrid system (power+hydrogen) with a significant reduction in energy consumption (around 10%). This paper discusses the whole innovative architecture where conventional tubular reforming is integrated with hydrogen permeable palladium membrane separators. The fundamental concepts are analyzed and integrated into a process scheme; the structural effects of variables design such as reactor temperature outlet, S/C ratio and recycle ratio throughout pinch and sensitivity analysis are described, and a comparison of the process economics with conventional hydrogen technology is presented at the end of the second part of this paper. The production of highly reliable, defect-free and reproducible, Pd-alloy membranes for selective hydrogen separation is a key issue in the proposed hybrid architecture. (author)

  10. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  11. Pd-Ag membrane reactor for steam reforming reactions: a comparison between different fuels

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2008-01-01

    The simulation of a dense Pd-based membrane reactor for carrying out the methane, the methanol and the ethanol steam reforming (SR) reactions for pure hydrogen production is performed. The same simulation is also performed in a traditional reactor. This modelling work shows that the use of membrane

  12. Activation and deactivation of neutral palladium(II) phosphinesulfonato polymerization catalysts

    KAUST Repository

    Rünzi, Thomas

    2012-12-10

    13C-Labeled ethylene polymerization (pre)catalysts [κ2-(anisyl)2P,O]Pd(13CH3)(L) (1-13CH3-L) (L = pyridine, dmso) based on di(2-anisyl)phosphine benzenesulfonate were used to assess the degree of incorporation of 13CH3 groups into the formed polyethylenes. Polymerizations of variable reaction time reveal that ca. 60-85% of the 13C-label is found in the polymer after already 1 min polymerization time, which provides evidence that the pre-equilibration between the catalyst precursor 1-13CH3-L and the active species 1-13CH3-(ethylene) is fast with respect to chain growth. The fraction of 1-13CH3-L that initiates chain growth is likely higher than the 60-85% determined from the 13C-labeled polymer chain ends since (a) chain walking results in in-chain incorporation of the 13C-label, (b) irreversible catalyst deactivation by formation of saturated (and partially volatile) alkanes diminishes the amount of 13CH3 groups incorporated into the polymer, and (c) palladium-bound 13CH3 groups, and more general palladium-bound alkyl(polymeryl) chains, partially transfer to phosphorus by reductive elimination. NMR and ESI-MS analyses of thermolysis reactions of 1-13CH3-L provide evidence that a mixture of phosphonium salts (13CH3)xP+(aryl)4-x (2-7) is formed in the absence of ethylene. In addition, isolation and characterization of the mixed bis(chelate) palladium complex [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) (13CH3)P,O] (11) by NMR and X-ray diffraction analyses from these mixtures indicate that oxidative addition of phosphonium salts to palladium(0) species is also operative. The scrambling of palladium-bound carbyls and phosphorus-bound aryls is also relevant under NMR, as well as preparative reactor polymerization conditions exemplified by the X-ray diffraction analysis of [κ2-(anisyl)2P,O] Pd[κ2-(anisyl)(CH2CH3)P,O] (12) and [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) ((CH2)3CH3)P,O] (13) isolated from pressure reactor polymerization experiments. In addition, ESI-MS analyses of reactor

  13. Continuous hyperpolarization with parahydrogen in a membrane reactor

    Science.gov (United States)

    Lehmkuhl, Sören; Wiese, Martin; Schubert, Lukas; Held, Mathias; Küppers, Markus; Wessling, Matthias; Blümich, Bernhard

    2018-06-01

    Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.

  14. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    Djati Hoesen Salimy

    2010-01-01

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  15. Crystal size effect on the electrochemical oxidation of formate on carbon-supported palladium nanoparticles

    International Nuclear Information System (INIS)

    Santos, Rayana Marcela Izidoro da Silva; Nakazato, Roberto Zenhei; Ciapina, Eduardo Goncalves

    2016-01-01

    Full text: The electrochemical oxidation of formate in alkaline electrolytes has emerged an a promising anodic reaction in the Direct Formate Fuel Cells[1]. Although palladium is considered to be one of the best electro catalyst for the oxidation of formate, important structure-activity relationships are still not understood. In the present work, we investigated the effect of the size of the palladium crystals in the electrochemical oxidation of formate in 0.1 mol L -1 KOH. Carbon-supported palladium nanoparticles (Pd/C) were prepared by chemical reduction of palladium (II) chloride in aqueous media by sodium borohydride in the presence of varying quantities of sodium citrate in the reaction media to obtain metallic crystals with distinct sizes. Analysis of the X-ray diffraction profile revealed the presence of palladium crystals in the range of 6 to 19 nm. Potentiostatic oxidation of formate on the distinct Pd/C samples revealed a volcano-like dependence of the specific activity with the size of the palladium crystals, presenting the highest activity for crystals around 7.5 nm. Reference: [1] A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, J. Power Sources. 214 (2012) 68-74. (author)

  16. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Tosti, S.; Basile, A.; Borelli, R.; Borgognoni, F.; Castelli, S.; Fabbricino, M.; Gallucci, F.; Licusati, C.

    2009-01-01

    The ethanol steam reforming reaction carried out in a Pd-based tubular membrane reactor has been modelled via a finite element code. The model considers the membrane tube divided into finite volume elements where the mass balances for both lumen and shell sides are carried out accordingly to the

  17. Sewage disposal using anaerobic membrane reactor. Kenkiseimaku reactor ni yoru gesui shori

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y. (Dic-Degremont Co. Ltd., Tokyo (Japan))

    1991-11-01

    Discussions were given on a small-scale sewage disposal of about bod 200 mg/l, for which no many examples of use have been hitherto available, using a system combining an anaerobic reactor and membrane modules. Experiments had been carried out from 1988 through 1990 as a part of the Aqua-Renaissance Project. The test equipment wza installed in the premises of the Chigasaki Coastal Research Facilities operated by the Ministry of International Trade and Industry, which used sewage flowing from the adjoining sewage treatment plant for the southern area of the Fujisawa City. The test facility consisted of a system comprising a pretreatment facility, SS decomposing reactor, fluid-bed reactor, separation membrane modules, nitrogen removing facility and micro-organism activity measurement. The test facility was constucted assuming a treatment of 10 m{sup 3} a day. The system was divided into a composite system, A system and B system to operate the system in simplified flows. As a result of comparing the composite system, A system and B system, it was found that B system can deal with wider range of disposal for a small-scale sewage treatment of about 1000 m{sup 3} a day. 6 refs., 14 figs., 3 tabs.

  18. Some remarks on the neutron elastic- and enelastic-scattering cross sections of palladium

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Smith, A.B.

    1989-05-01

    The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV neutrons from elemental palladium were measured at forty scattering angles distributed between ∼15/degree/ and 160/degree/. The inelastic-scattering cross sections for the excitation of palladium levels at energies of 260 keV to 560 keV were measured with high resolution at the same energies, and at a scattering angle of 80/degree/. The experimental results were combined with lower-energy values previously obtained by this group to provide a comprehensive data base extending from near the inelastic-scattering threshold to 8 MeV. That data base was interpreted in terms of a coupled-channel model, including the inelastic excitation of one- and two-phonon vibrational levels of the even isotopes of palladium. It was concluded that the palladium inelastic-scattering cross section, at the low energies of interest in assessment of fast-fission-reactor performance, are large (∼50% greater than given in widely used evaluated fission-product data files). They primarily involve compound-nucleus processes, with only a small direct-reaction component attributable to the excitation of the one-phonon, 2 + , vibrational levels of the even isotopes of palladium. 24 refs., 6 figs

  19. The Enhancement of the Selectivity of Complex Reactions by a Catalytic Membrane Reactor -Ethylene Oxidation Over a Ag Catalyst Supported in a Ceramic Membrane-

    OpenAIRE

    馮, 臨; 小林, 正義; Lin, FENG; Masayoshi, KOBAYASHI

    1991-01-01

    This research demonstrated that, using a membrane reactor consisting of a tubular, microporous, glass-ceramic membrane, it is possible to achieve selective oxidation of ethylene to ethylene oxide with an Ag catalyst. In experiments which a reaction temperature range of 115 to 300℃ and a contact time of 1.5 to 5 seconds, resulting data illustrated the following characteristics of this membrane reactor : 1) compared with a classic tubular reactor, the selectivity of ethylene oxide is increased ...

  20. Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane

    NARCIS (Netherlands)

    Brunetti, A.; Caravella, A.; Fernandez Gesalaga, E.; Pacheco Tanaka, D. A.; Gallucci, F.; Drioli, E.; Curcio, E.; Viviente, J. L.; Barbieri, G.

    2015-01-01

    In hydrogen production, the syngas streams produced by reformers and/or coal gasification plants contain a large amount of H2 and CO in need of upgrading. To this purpose, reactors using Pd-based membranes have been widely studied as they allow separation and recovery of a pure hydrogen stream.

  1. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—II. Operation in presence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    This is the second communication of a series dealing with an experimental and modelling study on propane catalytic combustion in a membrane reactor with separate feed of reactants. In paper I the behaviour of the reactor in the absence of trans-membrane pressure gradients was presented and

  2. A novel water perm-selective membrane dual-type reactor concept for Fischer-Tropsch synthesis of GTL (gas to liquid) technology

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Mirvakili, A.; Paymooni, K.

    2011-01-01

    The present study proposes a novel configuration of Fischer-Tropsch synthesis (FTS) reactors in which a fixed-bed water perm-selective membrane reactor is followed by a fluidized-bed hydrogen perm-selective membrane reactor. This novel concept which has been named fixed-bed membrane reactor followed by fluidized-bed membrane reactor (FMFMDR) produces gasoline from synthesis gas. The walls of the tubes of a fixed-bed reactor (water-cooled reactor) of FMFMDR configuration are coated by a high water perm-selective membrane layer. In this new configuration, two membrane reactors instead of one membrane reactor are developed for FTS reactions. In other words, two different membrane layers are used. In order to investigate the performance of FMFMDR, a one-dimensional heterogeneous model is taken into consideration. The simulation results of three schemes named fluidized-bed membrane dual-type reactor (FMDR), FMFMDR and conventional fixed-bed reactor (CR) are presented. They have been compared in terms of temperature, gasoline and CO 2 yields, H 2 and CO conversions and the water permeation rate through the membrane layer. Results show that the gasoline yield in FMFMDR is higher than the one in FMDR. The FMFMDR configuration not only decreases the undesired product such as CO 2 but also produces more gasoline. -- Research highlights: → The application of H-SOD membrane layer in FTS reactors. → Approximate 7.5% and 37% increase in the gasoline yield in terms of [g/g feed x 100] in comparison with FMDR and CR, respectively. → A remarkable decrease in CO 2 emission to the environment. → A good configuration mainly due to reduction in catalysts sintering as a result of in situ water removal.

  3. Catalytic membrane reactor for tritium extraction system from He purge

    International Nuclear Information System (INIS)

    Santucci, Alessia; Incelli, Marco; Sansovini, Mirko; Tosti, Silvano

    2016-01-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm 3 /h and a H 2 /He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H 2 feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been measured by using

  4. Catalytic membrane reactor for tritium extraction system from He purge

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Incelli, Marco [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); DEIM, University of Tuscia, Via del Paradiso 47, 01100 Viterbo (Italy); Sansovini, Mirko; Tosti, Silvano [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2016-11-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm{sup 3}/h and a H{sub 2}/He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H{sub 2} feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been

  5. Improvement of Membrane Performances to Enhance the Yield of Vanillin in a Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Giovanni Camera-Roda

    2014-02-01

    Full Text Available In membrane reactors, the interaction of reaction and membrane separation can be exploited to achieve a “process intensification”, a key objective of sustainable development. In the present work, the properties that the membrane must have to obtain this result in a pervaporation reactor are analyzed and discussed. Then, the methods to enhance these properties are investigated for the photocatalytic synthesis of vanillin, which represents a case where the recovery from the reactor of vanillin by means of pervaporation while it is produced allows a substantial improvement of the yield, since its further oxidation is thus prevented. To this end, the phenomena that control the permeation of both vanillin and the reactant (ferulic acid are analyzed, since they ultimately affect the performances of the membrane reactor. The results show that diffusion of the aromatic compounds takes place in the presence of low concentration gradients, so that the process is controlled by other phenomena, in particular by the equilibrium with the vapor at the membrane-permeate interface. On this basis, it is demonstrated that the performances are enhanced by increasing the membrane thickness and/or the temperature, whereas the pH begins to limit the process only at values higher than 6.5.

  6. Test of the palladium diffuser in the JAERI Fuel Cleanup System in the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Hayashi, Takumi; O-hira, Shigeru

    1993-03-01

    The JAERI Fuel Cleanup System (JFCU) is a major subsystem of the TSTA simulated fusion fuel loop. The palladium diffuser, that accepts simulated plasma exhaust and purifies the hydrogen isotopes mixture for the feed to the Isotope Separation System, was tested with deuterium to investigate the characteristics of the components. Permeation flow rate is a linear function of the difference of the square root of the pressure across the palladium alloy membrane. However at the low pressure region, an impediment on the permeation was observed. It was suspected to be caused by the impurity adsorbed on the surface of the permeated side of the membrane and was reduced by oxidation treatment. (author)

  7. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  8. Feasibility study of a reverse flow catalytic membrane reactor with porous membranes for the production of syngas

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper a novel reverse flow catalytic membrane reactor (RFCMR) is proposed for the partial oxidation of CH4 to syngas. The feasibility of the RFCMR concept has been investigated for industrial conditions on basis of a simulation study employing a reactor model, which includes a detailed

  9. Laccases as palladium oxidases.

    Science.gov (United States)

    Mekmouche, Yasmina; Schneider, Ludovic; Rousselot-Pailley, Pierre; Faure, Bruno; Simaan, A Jalila; Bochot, Constance; Réglier, Marius; Tron, Thierry

    2015-02-01

    The first example of a coupled catalytic system involving an enzyme and a palladium(ii) catalyst competent for the aerobic oxidation of alcohol in mild conditions is described. In the absence of dioxygen, the fungal laccase LAC3 is reduced by a palladium(0) species as evidenced by the UV/VIS and ESR spectra of the enzyme. During the oxidation of veratryl alcohol performed in water, at room temperature and atmospheric pressure, LAC3 regenerates the palladium catalyst, is reduced and catalyzes the four-electron reduction of dioxygen into water with no loss of enzyme activity. The association of a laccase with a water-soluble palladium complex results in a 7-fold increase in the catalytic efficiency of the complex. This is the first step in the design of a family of renewable palladium catalysts for aerobic oxidation.

  10. Study on hydrogen production using the fast breeder reactors (FBR)

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2003-01-01

    As the fast breeder reactor (FBR) can effectively convert uranium-238 difficult to carry out nuclear fission at thermal neutron reactors to nuclear fissionable plutonium-239 to use it remarkable upgrading of application on uranium can be performed, to be expected for sustainable energy source. And, by reuse minor actinides of long half-life nuclides in reprocessed high level wasted solutions for fuels of nuclear reactors, reduction of radioactive poison based on high level radioactive wastes was enabled. As high temperature of about 800 centigrade was required on conventional hydrogen production, by new hydrogen production technique even at operation temperature of sodium-cooled FBR it can be enabled. Here were described for new hydrogen production methods applicable to FBR on palladium membrane hydrogen separation method carrying out natural gas/steam modification at reaction temperature of about 500 centigrade, low temperature thermo-chemical method expectable simultaneous simplification of production process, and electrolysis method expected on power load balancing. (G.K.)

  11. APPLICATION OF MEMBRANE SORPTION REACTOR TECHNOLOGY FOR LRW MANAGEMENT

    International Nuclear Information System (INIS)

    Glagolenko, Yuri; Dzekun, Evgeny; Myasoedovg, Boris; Gelis, Vladimir; Kozlitin, Evgeny; Milyutin, Vitaly; Trusov, Lev; Rengel, Mike; Mackay, Stewart M.; Johnson, Michael E.

    2003-01-01

    A new membrane-sorption technology has been recently developed and industrially implemented in Russia for the treatment of the Liquid (Low-Level) Radioactive Waste (LRW). The first step of the technology is a precipitation of the radionuclides and/or their adsorption onto sorbents of small particle size. The second step is filtration of the precipitate/sorbent through the metal-ceramic membrane, Trumem.. The unique feature of the technology is a Membrane-Sorption Reactor (MSR), in which the precipitation / sorption and the filtration of the radionuclides occur simultaneously, in one stage. This results in high efficiency, high productivity and compactness of the equipment, which are the obvious advantages of the developed technology. Two types of MSR based on Flat Membranes device and Centrifugal Membrane device were developed. The advantages and disadvantages of application of each type of the reactors are discussed. The MSR technology has been extensively tested and efficiently implemented at ''Mayak '' nuclear facility near Chelyabinsk, Russia as well as at other Russian sites. The results of this and other applications of the MSR technology at the different Russian nuclear facilities are discussed. The results of the first industrial applications of the MSR technology for radioactive waste treatment in Russia and analysis of the available information about LRW accumulated in other countries imply that this technology can be successfully used for the Low Level Radioactive Waste treatment in the USA and in other nuclear countries

  12. Polymer-immobilized liquid membrane transport of palladium (II) from nitric acid media using some thia extractants as novel receptors

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1996-01-01

    Carrier-facilitated co-transport of Pd (II) from dilute acidic nitrate solutions was examined across a polymer-immobilized liquid membrane (PILM) deploying S 6 -pentano-36 (S 6 -P-36), bis-(2-ethylhexyl) sulfoxide (BESO) and bis (2, 4, 4 trimethyl pentyl) monothio phosphinic acid (Cyanex 302) as the novel receptors. The study carried out to distinguish the driving force between H + and NO 3 - ion for the cation transport across PILM, indicated that NO 3 - ion not the H + ion seems to be the driving force for Pd (II) transport under the present conditions for both BESO-PILM and S 6 -P-36-PILM systems. Recovery of palladium from acidic process effluents generated in Purex reprocessing of spent fuels was successfully achieved. 39 refs., 8 figs., 7 tabs

  13. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  14. Ceramic membrane reactor with two reactant gases at different pressures

    Science.gov (United States)

    Balachandran, Uthamalingam; Mieville, Rodney L.

    2001-01-01

    The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

  15. On the potential of nickel catalysts for steam reforming in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, J.A.Z.; Boon, J.; Van Delft, Y.C.; Dijkstra, J.W.; Van den Brink, R.W. [Energy research Center of the Netherlands, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2010-10-15

    Hydrogen membrane reactors have been identified as a promising option for hydrogen production for power generation from natural gas with pre-combustion decarbonisation. While Pd or Pd-alloy membranes already provide good hydrogen permeances the most suitable catalyst design for steam reforming in membrane reactors (SRMR) is yet to be identified. This contribution aims to provide insight in the suitability of nickel based catalysts in SRMR. The use of nickel (Ni) catalysts would benefit the cost-effectiveness of membrane reactors and therefore its feasibility. For this, the activity of nickel catalysts in SRMR was assessed with kinetics reported in literature. A 1D model was composed in order to compare the hydrogen production rates derived from the kinetics with the rate of hydrogen withdrawal by permeation. Catalyst stability was studied by exposing the catalysts to reformate gas with two different H/C ratios to mimic the hydrogen lean reformate gas in the membrane reactor. For both the activity (modeling) and stability study the Ni-based catalysts were compared to relevant catalyst compositions based on rhodium (Rh). Using the high pressure kinetics reported for Al2O3 supported Rh and MgAl2O4 and Al2O3 supported Ni catalyst it showed that Ni and Rh catalysts may very well provide similar hydrogen production rates. Interestingly, the stability of Ni-based catalysts proved to be superior to precious metal based catalysts under exposure to simulated reformate feed gas with low H/C molar ratio. A commercial (pre-)reforming Ni-based catalyst was selected for further testing in an experimental membrane reactor for steam reforming at high pressure. During the test period 98% conversion at 873 K could be achieved. The conversion was adjusted to approximately 90% and stable conversion was obtained during the test period of another 3 weeks. Nonetheless, carbon quantification tests of the Ni catalyst indicated that a small amount of carbon had deposited onto the catalyst

  16. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology, Delft (Netherlands)

    2005-03-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branched ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. Model studies using C{sub 6} components are conducted. n-C{sub 6} separated from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  17. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Maloncy, M.L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology (Netherlands)

    2004-07-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branch ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. A model studies using C6 components are conduct. Separated n-C6 from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  18. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  19. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  20. A dense Pd/Ag membrane reactor for methanol steam reforming: Experimental study

    NARCIS (Netherlands)

    Basile, A.; Gallucci, F.; Paturzo, L.

    2005-01-01

    This paper focuses on an experimental study of the methanol steam reforming (MSR) reaction. A dense Pd/Ag membrane reactor (MR) has been used, and its behaviour has been compared to the performance of a traditional reactor (TR) packed with the same catalyst type and amount. The parameters

  1. Dry Reforming of Methane Using a Nickel Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Jonas M. Leimert

    2017-12-01

    Full Text Available Dry reforming is a very interesting process for synthesis gas generation from CH 4 and CO 2 but suffers from low hydrogen yields due to the reverse water–gas shift reaction (WGS. For this reason, membranes are often used for hydrogen separation, which in turn leads to coke formation at the process temperatures suitable for the membranes. To avoid these problems, this work shows the possibility of using nickel self-supported membranes for hydrogen separation at a temperature of 800 ∘ C. The higher temperature effectively suppresses coke formation. The paper features the analysis of the dry reforming reaction in a nickel membrane reactor without additional catalyst. The measurement campaign targeted coke formation and conversion of the methane feedstock. The nickel approximately 50% without hydrogen separation. The hydrogen removal led to an increase in methane conversion to 60–90%.

  2. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    Science.gov (United States)

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  3. Membrane support of accelerated fuel capsules for inertial fusion energy reactors

    International Nuclear Information System (INIS)

    Petzoldt, R.W.; Moir, R.W.

    1993-01-01

    The use of a thin membrane to suspend an (inertial fusion energy) fuel capsule in a holder for injection into a reactor chamber is investigated. Capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. This information is used to calculate maximum target accelerations. Membranes must be thin (perhaps of order one micron) to minimize their effect on capsule implosion symmetry. For example, a 5 μm thick cryogenic mylar membrane is calculated to allow 1,000 m/s 2 acceleration of a 3 mm radius, 100 mg capsule. Vibration analysis (for a single membrane support) shows that if membrane vibration is not deliberately minimized, allowed acceleration may be reduced by a factor of four. A two membrane alternative geometry would allow several times greater acceleration. Therefore, alternative membrane geometry's should be used to provide greater target acceleration potential and reduce capsule displacement within the holder (for a given membrane thickness)

  4. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters : The AMBROSIUS project

    NARCIS (Netherlands)

    Van Lier, J.B.; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor,

  5. Membrane assisted fluidized bed reactor: experimental demonstration for partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.

    2004-01-01

    In this thesis the reactor concept has been developed on the basis of an experimental study on the effect of fluidization conditions on the membrane permeation rate in a MAFBR, the extent of gas back mixing and the tube-to-bed heat transfer rates in the presence of membrane bundles with and without

  6. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  7. Coupling membrane pervaporation with a fixed-bed reactor for enhanced esterification of oleic acid with ethanol

    International Nuclear Information System (INIS)

    Han, Ying; Lv, Enmin; Ma, Lingling; Lu, Jie; Chen, Kexun; Ding, Jincheng

    2015-01-01

    Highlights: • The reactor coupling membrane pervaporation with a fixed-bed reactor was studied. • The factors effecting the esterification of oleic acid were investigated. • NaA zeolite membrane was used for dehydration in the coupled reactor. - Abstract: Process intensification through membrane pervaporation (PV) integrated with a fixed-bed reactor could be successfully applied to the esterification of oleic acid and ethanol, which is a crucial step in the biodiesel synthesis using waste oil and grease as resource. The properties of the NaA zeolite membrane such as structure, formulation and separation were investigated by scanning electronic microscopy–energy dispersive spectrometry (SEM–EDS), X-ray diffractometry (XRD) and PV dehydration. Results showed that the NaA zeolite membrane had good separating property for removing water from the organics mixture. The operating conditions were optimized as the ethanol to oleic acid molar ratio of 15:1, feedstock flow rate of 1.0 ml/min, reaction temperature of 80.0 °C and catalyst bed height of 132 mm. The final conversion of oleic acid increased from 84.23% to 87.18% by PV using the NaA zeolite membrane at 24.0 h of operation. The membrane showed good PV performance after used for eight successive runs in the PV-assisted esterification. The resin exhibited a much high catalytic activity and operation stability after used for 100 h in the consecutive single pass fixed-bed esterification.

  8. Ion transport membrane reactor systems and methods for producing synthesis gas

    Science.gov (United States)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  9. Sensitization to palladium in Europe

    DEFF Research Database (Denmark)

    Muris, Joris; Goossens, An; Gonçalo, Margarida

    2015-01-01

    BACKGROUND: Recently, sodium tetrachloropalladate (Na2 PdCl4 ) was found to be a more sensitive palladium patch test allergen than palladium dichloride (PdCl2 ). OBJECTIVES: To determine the optimal test concentration of Na2 PdCl4 , to evaluate the prevalence of palladium sensitization with Na2 P...... patch test concentration. Sensitization to palladium is almost as prevalent as sensitization to nickel. The sex distribution is different between nickel-sensitized and palladium-sensitized patients, suggesting different sources of exposure.......Cl4 and PdCl2 , and to compare the results with nickel sensitization in a European multicentre study. MATERIALS AND METHODS: In addition to the European or national baseline series including NiSO4 ·6H2 0 5% pet., consecutive patients were tested with PdCl2 and Na2 PdCl4 2%, 3% and 4% pet. in eight...... European dermatology clinics. The age and sex distributions were also evaluated in patients sensitized to nickel and palladium. RESULTS: In total, 1651 patients were tested. Relative to 3% Na2 PdCl4 , 4% Na2 PdCl4 did not add any information. Two per cent Na2 PdCl4 resulted in more doubtful reactions...

  10. Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Favuzza, Paolo; Tarquini, Pietro [ENEA, Dipartimento TER, C.R. ENEA Casaccia, Via Anguillarese 301, Roma (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy)

    2008-10-15

    A membrane reactor has been studied for separating the hydrogen produced by the dissociation of hydroiodic acid in the thermochemical-sulfur iodine process. A dense metal membrane tube of wall thickness 0.250 mm has been considered in this analysis for hosting a fixed-bed catalyst: the selective separation of hydrogen from an azeotropic H{sub 2}O-HI mixture has been studied in the temperature range of 700-800 K. The materials being considered for the construction of the membrane tube are niobium and tantalum; as a matter of fact, the most commonly used Pd-Ag membranes cannot withstand the corrosive environment generated by the hydroiodic acid. The Damkohler-Peclet analysis has been used for designing the membrane reactor, while a finite element method has simulated its behaviour: the effect of the temperature and pressure on the HI conversion and hydrogen yield has been evaluated. (author)

  11. Application of CO{sub 2} selective membrane reactors in pre-combustion decarbonisation systems for power production

    Energy Technology Data Exchange (ETDEWEB)

    Steven C.A. Kluiters; Virginie C. Feuillade; Jan Wilco Dijkstra; Daniel Jansen; Wim G. Haije [Energy research Centre of the Netherlands (ECN), Petten (Netherlands)

    2006-07-01

    For pre-combustion decarbonisation of fuels for large-scale power production or H{sub 2} generation both CO{sub 2} and H{sub 2} selective membranes are viable candidates for use in steam reforming and water gas shift membrane reactors. It will be shown that the choice between either option is not a matter of taste, but dictated by the fuel used and, to a lesser extent, the total system layout. Hydrotalcites, clay-like materials, are shown to be promising candidates as membrane material for low temperature, below 400{sup o}C, membrane shift reactors. 7 refs., 6 figs., 1 tab.

  12. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  13. Continuously renewed wall for a thermonuclear reactor

    International Nuclear Information System (INIS)

    Livshits, A.I.; Pustovojt, YU.M.; Samartsev, A.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-01-01

    The possibility of creating a continuously renewed first wall of a thermonuclear reactor is experimentally investigated. The following variants of the wall are considered: the wall is double, its part turned to plasma is made of comparatively thin material. The external part separated from it by a small gap appears to be protected from interaction with plasma and performs structural functions. The gap contains the mixture of light helium and hydrogen and carbon-containing gas. The light gas transfers heat from internal part of the wall to the external part. Carbon-containing gas provides continuous renewal of carbon coating of the operating surface. The experiment is performed with palladium membrane 20 μm thick. Carbon is introduced into the membrane by benzol pyrolysis on one of the surfaces at the membrane temperature of 900 K. Carbon removal from the operating side of the wall due to its spraying by fast particles is modelled by chemical itching with oxygen given to the operating membrane wall. Observation of the carbon release on the operating surface is performed mass-spectrometrically according to the observation over O 2 transformation into CO and CO 2 . It is shown that in cases of benzol pressure of 5x10 -7 torr, carbon current on the opposite surface is not less than 3x10 12 atoms/sm 2 s and corresponds to the expected wall spraying rate in CF thermonuclear reactors. It is also shown that under definite conditions the formation and maintaining of a through protective carbon coating in the form of a monolayer or volumetric phase is possible

  14. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  15. Mussel-inspired co-deposition to enhance bisphenol A removal in a bifacial enzymatic membrane reactor

    DEFF Research Database (Denmark)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John M.

    2018-01-01

    were used as the matrix to further exploit the potential of the biocatalytic membranes. such prepared biocatalytic membranes were enzymatically active on both sides, making it possible to construct a bifacial enzymatic membrane reactor (EMR) for highly efficient micro-pollutants removal (taking...

  16. Radiochemical neutron activation analysis of high pure palladium and platinum by ion exchange chromatography

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: The palladium and platinum are widely used for jewel manufacture because of their beautiful white color. However the most part of these metals are widely adopted in the world as catalysts. Many works on analytical chemistry of platinum group elements published during last years are devoted to determination of platinum and palladium in other materials. There are no articles on analysis technique of the palladium and platinum purity published during last 20 years. Available publications are very old and are published till 70th of the last century, and implement chemical and spectral methods. At the same time, the palladium and platinum are very suitable for NAA. Therefore the purpose of our research was development of high-sensitivity and multielement techniques of radiochemical neutron activation analysis of a high pure palladium and platinum. Research of nuclear characteristics of palladium and platinum has shown that radioactive nuclides with different yields are formed under the reactor neutrons. 109 , 111 , 111m Pd, 109m , 111 Ag, 191 , 197 , 199 Pt, 199 Au are the most important among them. 109Pd separation factor is equal to 1*10 5 at palladium analysis, whereas 197 Pt and 199 Au separation factor is equal to 1*10 4 at the platinum analysis every other day after irradiation. Palladium and platinum can be separated by precipitation, extraction and ion exchange methods. For separation of radioactive nuclide of the matrix elements from the impurity elements we used ion exchange chromatography system Dowex-1x8 - 1 M HNO 3 for palladium and Dowex-1x8 - 0.1 M HNO 3 for platinum. At the HNO 3 acid concentrations variation from 0,1 M to 1 M more then 25 elements have distribution factors less than 1 and 10 elements have distribution factors 5 while matrix elements have distribution factors higher than 100. It allows an effective separation of these elements from palladium and platinum. Optimum sizes of the chromatographic column and the column effluent

  17. Performance and membrane fouling of a step-fed submerged membrane sequencing batch reactor treating swine biogas digestion slurry.

    Science.gov (United States)

    Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao

    2018-01-02

    To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.

  18. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Asgari, A.

    2008-01-01

    In this work, the removal of ammonia from synthesis purge gas of an ammonia plant has been investigated. Since the ammonia decomposition is thermodynamically limited, a membrane reactor is used for complete decomposition. A double pipe catalytic membrane reactor is used to remove ammonia from purge gas. The purge gas is flowing in the reaction side and is converted to hydrogen and nitrogen over nickel-alumina catalyst. The hydrogen is transferred through the Pd-Ag membrane of tube side to the shell side. A mathematical model including conservation of mass in the tube and shell side of reactor is proposed. The proposed model was solved numerically and the effects of different parameters on the rector performance were investigated. The effects of pressure, temperature, flow rate (sweep ratio), membrane thickness and reactor diameter have been investigated in the present study. Increasing ammonia conversion was observed by raising the temperature, sweep ratio and reducing membrane thickness. When the pressure increases, the decomposition is gone toward completion but, at low pressure the ammonia conversion in the outset of reactor is higher than other pressures, but complete destruction of the ammonia cannot be achieved. The proposed model can be used for design of an industrial catalytic membrane reactor for removal of ammonia from ammonia plant and reducing NO x emissions

  19. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  20. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor

    DEFF Research Database (Denmark)

    Garcia-Robledo, Emilio; Ottosen, Lars Ditlev Mørck; Voigt, Niels Vinther

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activ......Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study...

  1. Determination of palladium in biological samples applying nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Q.; Sato, Ivone M.; Salvador, Vera L. R.; Saiki, Mitiko

    2008-01-01

    This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy. (author)

  2. Ethanol steam reforming kinetics of a Pd-Ag membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati (RM) I-00044 (Italy); Basile, Angelo [Institute on Membrane Technology, ITM-CNR, c/o Univ. of Calabria, via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Castelli, Stefano [ENEA, Dipartimento ACS, C.R. ENEA Casaccia, Via Anguillarese 301, Roma I-00123 (Italy); Fabbricino, Massimiliano; Licusati, Celeste [Dept. of Hydraulic and Environmental Engineering, Univ. of Naples Federico II, Via Claudio 21, Naples 80125 (Italy); Gallucci, Fausto [Fundamentals of Chemical Reaction Engineering Group, Faculty of Science and Technology, University of Twente, Enschede (Netherlands)

    2009-06-15

    The ethanol steam reforming reaction carried out in a Pd-based tubular membrane reactor has been modelled via a finite element code. The model considers the membrane tube divided into finite volume elements where the mass balances for both lumen and shell sides are carried out accordingly to the reaction and permeation kinetics. Especially, a simplified ''power law'' has been applied for the reaction kinetics: the comparison with experimental data obtained by using three different kinds of catalyst (Ru, Pt and Ni based) permitted defining the coefficients of the kinetics expression as well as to validate the model. Based on the Damkohler-Peclet analysis, the optimization of the membrane reformer has been also approached. (author)

  3. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Damodar, Rahul A.; Hou, Sheng-Chon

    2010-01-01

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO 2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  4. Oxygen transport membrane reactor based method and system for generating electric power

    Science.gov (United States)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  5. Studies on the preparation of 109Pd and 111Ag by (n,γ) reactions on natural palladium for possible applications in radionuclide therapy

    International Nuclear Information System (INIS)

    Vimalnath, K.V.; Chirayil, Viju; Saha, Sujata

    2007-01-01

    Natural palladium on neutron activation provided two radionuclides viz 111 Ag and 109 Pd with attractive nuclear properties for use in radionuclide therapy applications in nuclear medicine. 109 Pd (t 1/2 13.7h, E βmax 1.03MeV) was produced by neutron activation of 108 Pd, while in the same target 111 Ag (t 1/2 7.45d, E βmax 1.04MeV) is formed by the beta decay of co-produced radioactive 111 Pd. Measured samples of palladium foils were neutron irradiated in Dhruva reactor for 7d at a flux of 9 x 10 13 n.cm -2 .s -1 . Radioactive palladium and silver were separated by ion-exchange chromatography over Dowex 1x8, 200-400 mesh size anion exchanger column. Radiochemical mixture of palladium and silver loaded in 10M HCl acid medium showed retention of palladium, while silver eluted out freely. The separated radionuclidically pure fractions of 109 Pd and 111 Ag activity were reconstituted as chloride and nitrate solutions respectively. About 133 GBq 109 Pd and 930 MBq of 111 Ag activity were produced from 100mg palladium. (author)

  6. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential

  7. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav [East Setauket, NY; Huang, Tao [Manorville, NY

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  8. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  9. A catalytically membrane reactor for fast, highly exothermic, heterogeneous gas reactions : a pilot plant study

    NARCIS (Netherlands)

    Veldsink, J.W.; Veldsink, J.W.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1995-01-01

    Membrane reactors have been frequently studied because of their ability to combine chemical activity and separation properties into one device. Due to their thermal stability and mechanical strength, ceramic membranes are preferred over polymeric ones, but small transmembrane fluxes obstruct a

  10. Reductive dechlorination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells

    International Nuclear Information System (INIS)

    Venkatachalam, Karthik; Arzuaga, Xabier; Chopra, Nitin; Gavalas, Vasilis G.; Xu, Jian; Bhattacharyya, Dibakar; Hennig, Bernhard; Bachas, Leonidas G.

    2008-01-01

    Palladium-based nanoparticles immobilized in polymeric matrices were applied to the reductive dechlorination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) at room temperature. Two different dechlorination platforms were evaluated using (1) Pd nanoparticles within conductive polypyrrole films; or (2) immobilized Fe/Pd nanoparticles within polyvinylidene fluoride microfiltration membranes. For the first approach, the polypyrrole film was electrochemically formed in the presence of perchlorate ions that were incorporated into the film to counter-balance the positive charges of the polypyrrole chain. The film was then incubated in a solution containing tetrachloropalladate ions, which were exchanged with the perchlorate ions within the film. During this exchange, reduction of tetrachloropalladate by polypyrrole occurred, which led to the formation of palladium nanoparticles within the film. For the second approach, the membrane-supported Fe/Pd nanoparticles were prepared in three steps: polymerization of acrylic acid in polyvinylidene fluoride microfiltration membrane pores was followed by ion exchange of Fe 2+ , and then chemical reduction of the ferrous ions bound to the carboxylate groups. The membrane-supported iron nanoparticles were then soaked in a solution of tetrachloropalladate resulting in the deposition of Pd on the Fe surface. The nanoparticles prepared by both approaches were employed in the dechlorination of PCB77. The presence of hydrogen was required when the monometallic Pd nanoparticles were employed. The results indicate the removal of chlorine atoms from PCB77, which led to the formation of lower chlorinated intermediates and ultimately biphenyl. Toxicity associated with vascular dysfunction by PCB77 and biphenyl was compared using cultured endothelial cells. The data strongly suggest that the dechlorination system used in this study markedly reduced the proinflammatory activity of PCB77, a persistent organic pollutant

  11. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  12. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  13. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  14. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—I. Operation in absence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    A pilot plant study on propane catalytic combustion in a membrane reactor with separate reactant feeds is presented. The membrane consisted of a porous alumina tube activated by insertion into its pores of a Pt/γ-Al2O3 catalyst. The role of reactants concentration and of the feed flow rates were

  15. Palladium transport in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2012-01-01

    Highlights: ► We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. ► The high temperature mobility of palladium silicides within polycrystalline SiC was studied. ► Corrosion of SiC by Pd was seen in all cases. ► The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. ► The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd 2 Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  16. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  17. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  18. Oxygen distribution in packed-bed membrane reactors for partial oxidations: effect of the radial porosity profiles on the product selectivity

    NARCIS (Netherlands)

    Kurten, U.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    A two-dimensional, pseudohomogeneous reactor model was presented to describe the radial and axial concentration profiles in a packed-bed membrane reactor and the local velocity field while accounting for the influences due to the distributive membrane flow and the radial porosity profile. The effect

  19. The effect of gas permeation through vertical membranes on chemical switching reforming (CSR) reactor performance

    NARCIS (Netherlands)

    Wassie, S.A.; Gallucci, F.; Cloete, S.; Zaabout, A.; van Sint Annaland, M.; Amini, S.

    2016-01-01

    A novel membrane assisted fluidized bed reactor concept has been proposed for ultra-pure hydrogen production with integrated CO2 capture from steam methane reforming. The so-called Chemical Switching Reactor (CSR) concept combines the use of an oxygen carrier for supplying heat and catalysing the

  20. Enhancing the production of hydrogen via water-gas shift reaction using Pd-based membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Diogo; Chibante, Vania; Mendes, Adelio; Madeira, Luis M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Zheng, Ju-Meng [Dutch Separation Technology Institute (DSTI), 3800 AE Amersfoort (Netherlands); Tosti, Silvano; Borgognoni, Fabio [ENEA, Unita Tecnica Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati (RM) I-00044 (Italy)

    2010-11-15

    In this work, it is described an experimental study regarding the performance of a Pd-Ag membrane reactor recently proposed and suitable for the production of ultra-pure hydrogen. A dense metallic permeator tube was assembled by an innovative annealing and diffusion welding technique from a commercial flat sheet membrane of Pd-Ag. A ''finger-like'' configuration of the self-supported membrane has been designed and used as a packed-bed membrane reactor (MR) for producing ultra-pure hydrogen via water-gas shift reaction (WGS). A CuO/ZnO/Al{sub 2}O{sub 3} catalyst, from REB Research and Consulting, was used for packing the WGS membrane reactor. The performance of the reactor was evaluated in terms of CO conversion and H{sub 2} recovery in a wide range of conditions: temperature from 200 C to 300 C, feed pressure from 1.0 bar to 4.0 bar, vacuum and sweep-gas modes and with a simulated reformate feed (4.70% CO, 34.78% H{sub 2}O, 28.70% H{sub 2}, 10.16% CO{sub 2} balanced in N{sub 2}). Also, the effect of the reactants feed composition was investigated and discussed. CO conversions remained in most conditions above the thermodynamic equilibrium based on feed conditions. In particular, it is worth mentioning that around 100% of CO conversion and almost complete H{sub 2} recovery was achieved when operating the MR at 300 C with a GSHV = 1200 L{sub N} kg{sub cat}{sup -1} h{sup -1}, P{sub feed} = 4 bar, P{sub perm} = 3 bar and using 1000 mL{sub N} min{sup -1} of sweep-gas. (author)

  1. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  2. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    Science.gov (United States)

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Definition of validated membrane reactor model for 5 kW power output CHP system for different natural gas compositions

    NARCIS (Netherlands)

    Di Marcoberardino, Gioele; Gallucci, Fausto; Manzolini, Giampaolo; van Sint Annaland, Martin

    2016-01-01

    Over the last years, many studies focused on the development of membrane reactors for micro-cogeneration systems based on PEM fuel cells, thanks to its unique feature of separating pure hydrogen. This work deals with (i) the design of a fluidized bed membrane reactor flexible towards different

  4. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  5. Palladium transport in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. Black-Right-Pointing-Pointer The high temperature mobility of palladium silicides within polycrystalline SiC was studied. Black-Right-Pointing-Pointer Corrosion of SiC by Pd was seen in all cases. Black-Right-Pointing-Pointer The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. Black-Right-Pointing-Pointer The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd{sub 2}Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  6. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation.

    Science.gov (United States)

    Liguori, Simona; Iulianelli, Adolfo; Dalena, Francesco; Pinacci, Pietro; Drago, Francesca; Broglia, Maria; Huang, Yan; Basile, Angelo

    2014-03-06

    The present work is focused on the investigation of the performance and long-term stability of two composite palladium membranes under different operating conditions. One membrane (Pd/porous stainless steel (PSS)) is characterized by a ~10 µm-thick palladium layer on a porous stainless steel substrate, which is pretreated by means of surface modification and oxidation; the other membrane (Pd/Al2O3) is constituted by a ~7 µm-thick palladium layer on an asymmetric microporous Al2O3 substrate. The operating temperature and pressure ranges, used for studying the performance of these two kinds of membranes, are 350-450 °C and 200-800 kPa, respectively. The H2 permeances and the H2/N2 selectivities of both membranes were investigated and compared with literature data. At 400 °C and 200 kPa as pressure difference, Pd/PSS and Pd/Al2O3 membranes exhibited an H2/N2 ideal selectivity equal to 11700 and 6200, respectively, showing stability for 600 h. Thereafter, H2/N2 selectivity of both membranes progressively decreased and after around 2000 h, dropped dramatically to 55 and 310 for the Pd/PSS and Pd/Al2O3 membranes, respectively. As evidenced by Scanning Electron Microscope (SEM) analyses, the pinholes appear on the whole surface of the Pd/PSS membrane and this is probably due to release of sulphur from the graphite seal rings.

  7. Unexpectedly high uptake of palladium by bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J. [Research Lab. for Mining Chemistry, Hungarian Academy of Sciences, Miskolc-Egyetemvaros (Hungary); Brown, S.D.; Snape, C.E. [Univ. of Strathclyde, Dept. of Pure and Applied Chemistry, Glasgow (United Kingdom)

    1997-12-31

    The uptake of palladium as a conversion catalyst onto coals of different rank was investigated. Palladium fixation occurs by a different mode to that for alkaline earth and first row transition metals. Therefore, the dispersion of relatively high concentration of palladium by an ion sorption process is even possible for bituminous coals. (orig.)

  8. A Catalytically Active Membrane Reactor for Fast, Highly Exothermic, Heterogeneous Gas Reactions. A Pilot Plant Study

    NARCIS (Netherlands)

    Veldsink, Jan W.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    Membrane reactors have been frequently studied because of their ability to combine chemical activity and separation properties into one device. Due to their thermal stability and mechanical strength, ceramic membranes are preferred over polymeric ones, but small transmembrane fluxes obstruct a

  9. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  10. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis...

  11. Nuclear Track-Etched Pore Membrane Production Using OAEP's Research Reactor

    International Nuclear Information System (INIS)

    Chittrakarn, Thawat; Bhongsuwan, Tripob; Wanichapichart, Pikul; Nuanuin, Paiboon; Chongkum, Somporn; Khonduangkaew, Areerat; Bordeepong, Sunaree

    2003-10-01

    Result of this study shows that the OAEP's nuclear research reactor is a good source of both fast and thermal neutrons for pore piercing process on polycarbonate thin film. With our experimental design, the fast neutron provides better results in pore piercing comparing with thermal neutron bombardment. This can be explained that most of the latent tracks that occur by thermal neutron bombardment do not piercing through the thin film. Chemical etching process using NaOH solution with an appropriated time, concentration and temperature was employed to enlarge the latent tracks in the bombarded film by fast neutrons. Fast neutron bombardment with 5, 10 and 20 minutes bombarding time successfully produces the nuclear track membrane. Pore size and pore density of the produced membranes examined by SEM were 0.24-1.01 μm and 4.67 - 245 x 10 6 pore/cm 2 , respectively. Bubble point test showed the maximum pore diameter of the produced membrane ranged between 1.18 - 3.25 μm. Water permeability was studied and compared between the produced and commercial membranes

  12. Techno-economic assessment of membrane assisted fluidized bed reactors for pure H_2 production with CO_2 capture

    International Nuclear Information System (INIS)

    Spallina, V.; Pandolfo, D.; Battistella, A.; Romano, M.C.; Van Sint Annaland, M.; Gallucci, F.

    2016-01-01

    Highlights: • Membrane reactors improve the overall efficiency of H_2 production up to 20%. • Respect to conventional reforming, the H_2 yield increases from 12% to 20%. • The COH is reduced of at least 220% using membrane reactors. • FBMR capture 72% of CO_2 with a specific cost of 8 eur/tonn_C_O_2_. • MA-CLR can reach 90% of CO_2 avoided with same cost of FTR. - Abstract: This paper addresses the techno-economic assessment of two membrane-based technologies for H_2 production from natural gas, fully integrated with CO_2 capture. In the first configuration, a fluidized bed membrane reactor (FBMR) is integrated in the H_2 plant: the natural gas reacts with steam in the catalytic bed and H_2 is simultaneously separated using Pd-based membranes, and the heat of reaction is provided to the system by feeding air as reactive sweep gas in part of the membranes and by burning part of the permeated H_2 (in order to avoid CO_2 emissions for heat supply). In the second system, named membrane assisted chemical looping reforming (MA-CLR), natural gas is converted in the fuel rector by reaction with steam and an oxygen carrier (chemical looping reforming), and the produced H_2 permeates through the membranes. The oxygen carrier is re-oxidized in a separate air reactor with air, which also provides the heat required for the endothermic reactions in the fuel reactor. The plants are optimized by varying the operating conditions of the reactors such as temperature, pressures (both at feed and permeate side), steam-to-carbon ratio and the heat recovery configuration. The plant design is carried out using Aspen Simulation, while the novel reactor concepts have been designed and their performance have been studied with a dedicated phenomenological model in Matlab. Both configurations have been designed and compared with reference technologies for H_2 production based on conventional fired tubular reforming (FTR) with and without CO_2 capture. The results of the analysis show

  13. : Recyclable, ligand free palladium(II) catalyst for Heck reaction

    Indian Academy of Sciences (India)

    well as heterogeneous palladium catalysts, generated from either palladium(0) compounds or palladium(II) acetate or chloride salts.6 Several ligands such as phosphines, phoshites, carbenes, thioethers have been successfully employed for this reaction.7 However, homogeneous catalysis results in problems of recovery.

  14. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  15. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  16. Development and process optimization of an enzyme membrane reactor for lactose hydrolysis. Entwicklung und verfahrenstechnische Optimierung eines Enzym-Membranreaktors fuer die Hydrolyse von Laktose

    Energy Technology Data Exchange (ETDEWEB)

    Czermak, P

    1990-01-01

    The development and process optimization up to the production stage of a vapour sterilizable hollow-fiber membrane reactor for dialysis is illustrated by the example of enzymatic hydrolysis of lactose. The expected conversion efficiency of the membrane reactor is a function of the mass transfer resistance and by the deviations from the defined hydrodynamic status. The transport/reaction behaviour of membrane reactors is therefore described by a model for real reactors which takes account of the non-linear kinetics of the native enzyme, the real mixing conditions inside the reactor, and the mass transfer through the membrane. A coupled numerical solution is used for the calculations. The reaction kinetics, the mass transfer inside the membrane, the hydrodynamics and the conversion rate are determined experimentally. The model can calculate important design data from selected data of the reaction system. Measurements of conversion rates show that the results obtained with real substances, e.g. milk, are well compatible with the model calculations. (orig.) With 85 figs., 25 tabs.

  17. Development of alternate extractant systems for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev

    2007-01-01

    Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO 2 ) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

  18. Palladium allergy in relation to dentistry

    NARCIS (Netherlands)

    Muris, J.

    2015-01-01

    Palladium is a metal that is used as alloying metal for dental crowns and bridges. This thesis focusses on the possible impact of oral exposure to this metal on the immune system, and allergy in particular. An alternative skin test allergen for diagnosing palladium allergy is introduced: (di)sodium

  19. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents.

    Science.gov (United States)

    Arca-Ramos, A; Eibes, G; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    In this study, the removal of bisphenol A (BPA) by laccase in a continuous enzymatic membrane reactor (EMR) was investigated. The effects of key parameters, namely, type of laccase, pH, and enzyme activity, were initially evaluated. Once optimal conditions were determined, the continuous removal of the pollutant in an EMR was assessed in synthetic and real biologically treated wastewaters. The reactor configuration consisted of a stirred tank reactor coupled to a ceramic membrane, which prevented the sorption of the pollutant and allowed the recovery and recycling of laccase. Nearly complete removal of BPA was attained under both operation regimes with removal yields above 94.5 %. In experiments with real wastewater, the removal of BPA remained high while the presence of colloids and certain ions and the formation of precipitates on the membrane potentially affected enzyme stability and made necessary the periodic addition of laccase. Polymerization and degradation were observed as probable mechanisms of BPA transformation by laccase.

  20. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor

    International Nuclear Information System (INIS)

    Mozia, Sylwia; Toyoda, Masahiro; Inagaki, Michio; Tryba, Beata; Morawski, Antoni W.

    2007-01-01

    An application of carbon-coated TiO 2 for decomposition of methylene blue (MB) in a photocatalytic membrane reactor (PMR), coupling photocatalysis and direct contact membrane distillation (DCMD) was investigated. Moreover, photodegradation of a model pollutant in a batch reactor without membrane distillation (MD) was also examined. Carbon-modified TiO 2 catalysts containing different amount of carbon and commercially available TiO 2 (ST-01) were used in this study. The carbon-coated catalyst prepared from a mixture of ST-01 and polyvinyl alcohol in the mass ratio of 70/30 was the most effective in degradation of MB from all of the photocatalysts applied. Photodecomposition of MB on the recovered photocatalysts was lower than on the fresh ones. The photodegradation of MB in the PMR was slower than in the batch reactor, what probably resulted from shorter time of exposure of the catalyst particles to UV irradiation. The MD process could be successfully applied for separation of photocatalyst and by-products from the feed solution

  2. Performance of integrated bioelectrochemical membrane reactor: Energy recovery, pollutant removal and membrane fouling alleviation

    Science.gov (United States)

    Dong, Yue; He, Weihua; Li, Chao; Liang, Dandan; Qu, Youpeng; Han, Xiaoyu; Feng, Yujie

    2018-04-01

    A novel hybrid bioelectrochemical membrane reactor with integrated microfiltration membrane as the separator between electrodes is developed for domestic wastewater treatment. After accumulation of biofilm, the organic pollutants are mainly degraded in anodic compartment, and microfiltration membrane blocks the adverse leakage of dissolved oxygen from aerated cathodic compartment. The maximum system power output is restricted by gas-water ratio following a Monod-like relationship. Within the tested gas-water ratios ranging from 0.6 to 42.9, the half-saturation constant (KQ) is 5.9 ± 0.9 with a theoretic maximum power density of 20.4 ± 1.0 W m-3. Energy balance analysis indicates an appropriate gas-water ratio regulation (from 2.3 to 28.6) for cathodic compartment is necessary to obtain positive energy output for the system. A maximum net electricity output is 9.09 × 10-3 kWh m-3 with gas-water ratio of 17.1. Notably, the system achieves the chemical oxygen demand removal of 98.3 ± 0.3%, ammonia nitrogen removal of 99.6 ± 0.1%, and total nitrogen removal of 80.0 ± 0.9%. This work verifies an effective integration of microfiltration membrane into bioelectrochemical system as separator for high-quality effluent and provides an insight into the operation and regulation of biocathode system for effective electrical energy output.

  3. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Transport from the Membrane to the Packed Bed

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  4. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Transport from the membrane to the packed bed

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  5. Reverse-Bumpy-Ball-Type-Nanoreactor-Loaded Nylon Membranes as Peroxidase-Mimic Membrane Reactors for a Colorimetric Assay for H₂O₂.

    Science.gov (United States)

    Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji

    2016-04-01

    Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.

  6. Synthesis of palladium-doped silica nanofibers by sol-gel reaction and electrospinning process

    Energy Technology Data Exchange (ETDEWEB)

    San, Thiam Hui; Daud, Wan Ramli Wan; Kadhum, Abdul Amir Hassan; Mohamad, Abu Bakar; Kamarudin, Siti Kartom; Shyuan, Loh Kee; Majlan, Edy Herianto [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia and Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2012-06-29

    Nanofiber is drawing great attention nowadays with their high surface area per volume and flexibility in surface functionalities that make them favorable as a proton exchange membrane in fuel cell application. In this study, incorporation of palladium nanoparticles in silica nanofibers was prepared by combination of a tetraorthosilane (TEOS) sol-gel reaction with electrospinning process. This method can prevent the nanoparticles from aggregation by direct mixing of palladium nanoparticles in silica sol. The as-produced electrospun fibers were thermally treated to remove poly(vinyl pyrrolidone) (PVP) and condensation of silanol in silica framework. PVP is chosen as fiber shaping agent because of its insulting and capping properties for various metal nanoparticles. Scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the silica fibers and Pd nanoparticles on the fibers. Spun fibers with average diameter ranged from 100nm to 400nm were obtained at optimum operating condition and distribution of Pd nanoparticles on silica fibers was investigated.

  7. Directing filtration to narrow molecular weight distribution of oligodextran in an enzymatic membrane reactor

    DEFF Research Database (Denmark)

    Su, Ziran; Luo, Jianquan; Pinelo, Manuel

    2018-01-01

    ) should be minimized to reduce accumulation of large oligodextran molecules on the membrane surface, which might diffuse through the membrane and thus broaden the Mw distribution of the products in the permeate. Both dextranase and dextran caused membrane irreversible fouling. The fouling caused...... product, hypersaline wastewater discharge and potential safety hazards. In this work, a novel enzymatic membrane reactor (EMR) system to produce oligodextran is proposed, whereby in-situ product recovery can be manipulated to control the Mw distribution of the resulting products. Results showed...... that the membrane material played an important role in the permeate flux and transmission of oligodextran. Among the tested membranes, a 20kDa polyethersulfone (PES) membrane was found to be optimal for building up the EMR, as it successfully controlled the oligodextran Mw within the desired range with a relatively...

  8. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    Directory of Open Access Journals (Sweden)

    Vorleak Chea

    2014-10-01

    Full Text Available This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR. The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1, consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2, whereas at the highest substrate concentration (500 mg·L−1, it was shown that the reaction was limited by the oxygen content.

  9. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS; A

    International Nuclear Information System (INIS)

    Carl R.F. Lund

    2001-01-01

    This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO(sub 2). During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO(sub 2) partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO(sub 2) partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO(sub 2). Finally, the performance of sulfided CoMo/Al(sub 2)O(sub 3) catalysts under conditions of high CO(sub 2) partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H(sub 2)S that is required in the feed

  10. Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow-fiber membrane reactor

    NARCIS (Netherlands)

    Guit, R.P.M.; Kloosterman, M.; Meindersma, G.W.; Mayer, M.; Meijer, E.M.

    1991-01-01

    The aptitude of a hollow-fiber membrane reactor to det. lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from C. cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its

  11. Investigation of radiation-chemical behaviour of divalent palladium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kalinina, S.V.

    1988-01-01

    Gamma-radiolysis of divalent palladium in perchloric acid solutions is studied. Absorption spectra of intermediate palladium compounds formed in the irradiated solution are taken. The analysis of literature data as well as comparative analysis of the absorption spectra obtained under irradiation of palladium (2) perchloric acid solutions with absorption spectra of palladium chlorocomplexes allows to suppose that the mentioned compounds are chlorocomplexes of palladium (2) of different composition depending on HClO 4 concentration in the initial solution and absorbed radiation dose. Radiation-chemical reduction of palladium (2) up to metal is stated to take place in the whole studied range of initial concentrations of components of the system and dose rates. Kinetic dependences of metallic palladium formation are obtained. Values of radiation-chemical yields of metallic palladium formation depending on the initial concentrations of palladium (2) and perchloric acid are given. A mechanism of radiolytic reduction of palladium (2) in the investigated system is suggested based on the experimental data, and a theoretical value of the radiation-chemical yield of palladium (2) reduction being in a good agreement with experimentally found values is calculated

  12. Study on the determination of palladium in biological samples by the method of neutron activation analysis

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Queiroz

    2007-01-01

    Palladium is one of platinum group elements present in the nature at very low concentrations. However with the use of this element in the automobile catalyzers Pd became a new pollutant. Besides, Pd has been studied in the preparation of new antitumour drugs. Consequently, there is a need to determine Pd concentrations in biological and environmental samples. This study presents palladium results obtained in the analysis of biological samples and reference materials using instrumental thermal and epithermal neutron activation analysis (INAA and ENAA). The solvent extraction and solid phase extraction separation methods were also applied before ENAA. The samples analyzed in this study were, reference material BCR 723 - Palladium, Platinum and Rhodium in road dust, CCQM-P63 automotive catalyst material of the Proficiency Test and bovine tissue samples containing palladium prepared in the laboratory. Samples and palladium synthetic standard were irradiated at the IEA-R1 nuclear research reactor under thermal neutron flux of about 4 x 10 12 n cm-2 s-1, during a period of 4 and 16 h for INAA and ENAA, respectively. The induced gamma activity of 109 Pd to the sample and standard was measured using a hyper pure Ge detector coupled to a gamma ray spectrometer. The palladium concentration was calculated by comparative method. The gamma ray energy of 109 Pd radioisotope measured was of 88.0 keV, located in a spectrum region of low energy where occurs the interference of X rays, 'Bremsstrahlung' radiations, as well as Compton effect of 24 Na. The pre-separation of palladium from interfering elements by solvent extraction was performed using dimethylglyoxime complexant and chloroform as diluent. In the case of the pre separation procedure using solid reversed phase column, the palladium was retained using N,N-diethyl-N'-benzoyl thiourea complexant and eluted using ethanol. Aliquots of the resulting solutions from the pre-separations, free of interfering elements, were

  13. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  14. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2012-01-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity

  15. Chemical recovery of a palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets were irradiated by protons with the energy of 60-140 MeV to generate palladium-103. Other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver are also formed at the same time. Two methods of Pd-103 recovering from irradiated silver target are considered. The first one includes the dissolving of the irradiated silver target in nitric acid followed by adding of hydrochloric acid to the solution. Palladium with rhodium, ruthenium and technetium completely remained in solution while silver was precipitated in the form of silver chloride. Extraction of palladium from the obtained solution was provided by the formation of palladium complex with a chelate sorbent which is specific to palladium in acidic solutions. The sorbent makes it possible to separate palladium from admixtures of rhodium, ruthenium and technetium isotopes. The polymeric complex-forming sorbent of fibrous structure with the groups of 3 (5) - methylpyrazole (POLYORGS-15n) is used. An other possible method has been also studied. It includes again dissolving of metallic silver in nitric acid, but does not need silver chloride precipitation. Silver may be sorbed by the complex-forming sorbents, but its sorption is very sensitive to acid concentration. Chelate sorbents of fibrous structure with the groups of amidoxime and hydrazidine (POLYORGS-33n) have been successfully used in our experiments. A high efficiency of palladium extraction by POLYORGS-33n from 2-4 M nitric acid solutions was achieved. Concentrated hydrochloric acid (without heating) was used for palladium desorption with higher yield than in the first method. (authors)

  16. Palladium Nanoparticle Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    I. Pavlovsky

    2006-12-01

    Full Text Available An innovative hydrogen sensor based on palladium (Pd nanoparticle networks is described in the article. Made by Applied Nanotech Inc. sensor has a fast response time, in the range of seconds, which is increased at 80 °C due to higher hydrogen diffusion rates into the palladium lattice. The low detection limit of the sensor is 10 ppm of H2, and the high limit is 40,000 ppm. This is 100% of a lowest flammability level of hydrogen. This range of sensitivities complies with the requirements that one would expect for a reliable hydrogen sensor.

  17. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John P. [Univ. of Texas-Dallas, Richardson, TX (United States). Dept. of Chemistry

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H2/CO2 selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO2-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H2/CO2 selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux and selectivity at 300 °C, which is comparable to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  18. Atomistic simulation of helium bubble nucleation in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu, Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: sfxiao@yahoo.com.cn; Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Deng Huiqiu [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2009-09-15

    A palladium crystal has been constructed with 11808 atoms. 55 helium atoms occupied the octahedral position of palladium crystal are introduced and retained in a spherical region. Molecular dynamic simulations are performed in a constant temperature and constant volume ensemble (NVT) with temperature controlled by Nose-Hoover thermostat. The interactions between palladium atoms are described with modified analytic embedded atom method (MAEAM), the interactions between palladium atom and helium atom are in the form of Morse potential, and the interactions between helium atoms are in the form of L-J potential function. With the analysis of the radial distribution function (RDF) and microstructure, it reveals that some of helium atoms form a series of clusters with different size, and the nucleation core is random at low temperature, and which is the embryo of helium bubble. Increasing temperature can accelerate the process of bubble nucleation, and the clusters will aggregate and coalesce into a bigger one in which there are no palladium atoms, and it is considered as a helium bubble.

  19. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  20. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  1. A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; Basile, A.

    2007-01-01

    In this theoretical work the CO2 conversion into methanol in both a traditional reactor (TR) and a membrane reactor (MR) is considered. The purpose of this study was to investigate the possibility of increasing CO2 conversion into methanol with respect to a TR. A zeolite MR, able to combine

  2. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  3. Influence of geometrical and operational parameters on the performance of porous catalytic membrane reactors

    NARCIS (Netherlands)

    Aran, H.C.; Klooster, H.J.G.; Jani, J.M.; Wessling, Matthias; Lefferts, Leonardus; Lammertink, Rob G.H.

    2012-01-01

    In this study, porous membrane reactors with various characteristic length (inner diameter), controllable catalyst support thickness, active catalyst surface area and tunable wetting properties are described for heterogeneously catalyzed gas¿liquid¿solid (G¿L¿S) reactions. We developed porous

  4. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  5. High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor

    International Nuclear Information System (INIS)

    Cao Peigang; Dube, Marc A.; Tremblay, Andre Y.

    2008-01-01

    High-purity fatty acid methyl ester (FAME) was produced from different lipids, such as soybean oil, canola oil, a hydrogenated palm oil/palm oil blend, yellow grease, and brown grease, combined with methanol using a continuous membrane reactor. The membrane reactor combines reaction and separation in a single unit, provides continuous mixing of raw materials, and maintains a high molar ratio of methanol to lipid in the reaction loop while maintaining two phases during the reaction. It was demonstrated that the membrane reactor can be operated using a very broad range of feedstocks at highly similar operating conditions to produce FAME. The total glycerine and free glycerine contents of the FAME produced were below the ASTM D6751 standard after a single reaction step. Under essentially the same reaction conditions, a conventional batch reaction was not able to achieve the same degree of FAME purity. The effect of the fatty acid composition of the lipid feedstocks on the FAME purity was also shown. It was demonstrated that, due to the fatty acid composition, FAME from virgin soybean oil and virgin canola oil was produced in the membrane reactor within ASTM specifications even without a water washing step

  6. CFD modelling of a membrane reactor for hydrogen production from ammonia

    Science.gov (United States)

    Shwe Hla, San; Dolan, Michael D.

    2018-01-01

    Despite the growing use of hydrogen (H2) as a transport fuel, one of the major barriers still remaining is efficient and inexpensive fuel distribution and storage. Current approaches, such as compression, liquefaction or metal hydride formation, incur a significant energy penalty. Ammonia (NH3) has long been considered a prospective H2 medium, exhibiting a higher volumetric H2 density than liquid H2, through liquid-phase storage at mild pressure. Decomposition of NH3 into H2 and N2 can be achieved via use of catalytic reactors and fuel-cell-grade H2 can be produced using metal membranes at H2 distribution sites.In this study, a 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model has been developed to understand the performance of the H2 separation process in gas mixtures derived from an NH3-cracking reaction. The reactor consists of 19 tubular membrane tubes, each 470 mm long, inside a tubular shell with an inner diameter of 130 mm. Standard transport and energy equations governing a 3D, pressure-based, steady-state model were derived from the laws of conservation of mass, momentum and energy. The governing equations were solved using commercial CFD software ANSYS Fluent 18.0. Gas flow and mixing were modelled by the two-equation standard k-epsilon model for closure. Coupled solver was used for pressure-velocity coupling, enabling a pseudo-transient option with pseudo time steps of 0.01 s. To estimate H2 permeation through the metal membrane, a constant H2 permeability of 3.0E-07 mol.m-1 s-1 Pa-0.5 derived from series of experiments tested under a range of industrial conditions, was used. Model simulations were conducted for an adiabatic temperature of 300 °C, a feed-side pressure of 7.8 bara and a permeate side pressure of 0.1 bara. A parametric analysis was carried out to explore the effects of variation in total feed-gas flow and effects of changes in NH3-cracking efficiency on H2 production rates and H2 yields. The model estimated that 4.6-11.6 kg H2

  7. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    International Nuclear Information System (INIS)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-01-01

    Highlights: ► A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. ► Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). ► PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. ► The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 ± 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m −3 d −1 ) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m −3 d −1 (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  8. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China); Lee, Hyung-Sool [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 (Canada); Wang, Ai-Jie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. Black-Right-Pointing-Pointer Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). Black-Right-Pointing-Pointer PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. Black-Right-Pointing-Pointer The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 {+-} 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m{sup -3} d{sup -1}) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m{sup -3} d{sup -1} (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  9. Fabrication of palladium-based microelectronic devices by microcontact printing

    International Nuclear Information System (INIS)

    Wolfe, Daniel B.; Love, J. Christopher; Paul, Kateri E.; Chabinyc, Michael L.; Whitesides, George M.

    2002-01-01

    This letter demonstrates the patterning of thin films of metallic palladium by microcontact printing (μCP) of octadecanethiol, and the use of the patterned films in the fabrication of a functional sensor. This technique was also used to prepare templates of palladium for the electroless deposition of copper. The resistivity of the palladium and copper microstructures was 13.8 and 2.8 μΩ cm, respectively; these values are approximately 40% larger than the values for the pure bulk metals. Palladium patterned into serpentine wires using μCP functioned as a hydrogen sensor with sensitivity of 0.03 vol % H 2 in N 2 , and a response time of ∼10 s (at room temperature)

  10. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  11. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  12. Development of a membrane-assisted fluidized bed reactor - 2 - Experimental demonstration and modeling for the partial oxidation of methanol

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Laverman, J.A.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    A small laboratory-scale membrane-assisted fluidized bed reactor (MAFBR) was constructed in order to experimentally demonstrate the reactor concept for the partial oxidation of methanol to formaldehyde. Methanol conversion and product selectivities were measured at various overall fluidization

  13. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  14. The solubility of palladium(II) bis-dimethylglyoximate

    International Nuclear Information System (INIS)

    Maghzian, R.

    1978-01-01

    The solubility of palladium(II) bis-dimethylglyoximate in different solutions has been determined. Values obtained for the solubility of the palladium complex are tabulated. The solubility is the lowest in water, ammonium acetate and a 25% acetone-water mixture. It is highest in dilute HCl and acetone but precipitation from aqueous acetone should be satisfactory for most purposes if the acetone content of the solvent is roughly less than 50% by volume. The solubility in dilute HCl reflects the concern by previous workers for losses in precipitation from mineral acid. In general, however, the losses are unlikely to be significant unless the quantity of palladium to be precipitated and weighed is small. (T.G.)

  15. Determination of palladium by flame photometry

    International Nuclear Information System (INIS)

    Parellada Bellod, R.

    1964-01-01

    A study on the determination of palladium by lame photometry, fixing the most convent experimental conditions and using solvents to increase the emission of this elements is carried out. Among the organic solvents, acetone has been found the most efficient. The interferences produced by anions and cations have also been studied and an analytical method is related, in which lines of calibration of 0 to 100 ppm palladium re used. (Author) 7 refs

  16. Adsorption of palladium ions by modified carbons from rice husks

    International Nuclear Information System (INIS)

    Mostafa, M.R.

    1994-01-01

    Steam activated carbon of high surface area does not show palladium ions adsorption. Treatment of this carbon with HF acid increases to a great extent the gas adsorption capacity expressed as nitrogen surface area as well as the adsorption capacity of palladium ions from aqueous solution. HHB was loaded in different amounts on to these carbons. The acid sites represent the active fraction of the surface on which the adsorption palladium ions proceed. The uptake of palladium ions by HHB treated carbons is related to the total number of HHB molecules loaded on the carbon surface. (author)

  17. Development of Separation Materials Containing Palladium for Hydrogen Isotopes Separation

    International Nuclear Information System (INIS)

    Deng Xiaojun; Luo Deli; Qian Xiaojing

    2010-01-01

    Displacement chromatography (DC) is a ascendant technique for hydrogen isotopes separation. The performance of separation materials is a key factor to determine the separation effect of DC. At present,kinds of materials are researched, including palladium materials and non-palladium materials. It is hardly replaceable because of its excellent separation performance, although palladium is expensive. The theory of hydrogen isotopes separation using DC was introduced at a brief manner, while several palladium separation materials were expatiated in detail(Pd/K, Pd-Al 2 O 3 , Pd-Pt alloy). Development direction of separation materials for DC was forecasted elementarily. (authors)

  18. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp strain DCA1

    NARCIS (Netherlands)

    Hage, J.C.; Houten, R.T.; Tramper, J.; Hartmans, S.

    2004-01-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown

  19. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali

    2016-01-01

    reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor

  20. Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost

    Science.gov (United States)

    Olagunju, O. A.; Musonge, P.

    2017-07-01

    This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.

  1. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  2. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  3. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B; Huyghebaert, A

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  4. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Julin, Peng; Bursill, L.A.

    1990-01-01

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  5. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst

    NARCIS (Netherlands)

    Basile, A.; Parmaliana, A.; Tosti, S.; Iulianelli, A.; Gallucci, F.; Espro, C.; Spooren, J.

    2008-01-01

    The methanol steam reforming (MSR) reaction was studied by using both a dense Pd-Ag membrane reactor (MR) and a fixed bed reactor (FBR). Both the FBR and the MR were packed with a new catalyst based on CuOAl2O3ZnOMgO, having an upper temperature limit of around 350 °C. A constant sweep gas flow rate

  6. Fexofenadine Suppresses Delayed-Type Hypersensitivity in the Murine Model of Palladium Allergy

    Directory of Open Access Journals (Sweden)

    Ryota Matsubara

    2017-06-01

    Full Text Available Palladium is frequently used in dental materials, and sometimes causes metal allergy. It has been suggested that the immune response by palladium-specific T cells may be responsible for the pathogenesis of delayed-type hypersensitivity in study of palladium allergic model mice. In the clinical setting, glucocorticoids and antihistamine drugs are commonly used for treatment of contact dermatitis. However, the precise mechanism of immune suppression in palladium allergy remains unknown. We investigated inhibition of the immune response in palladium allergic mice by administration of prednisolone as a glucocorticoid and fexofenadine hydrochloride as an antihistamine. Compared with glucocorticoids, fexofenadine hydrochloride significantly suppressed the number of T cells by interfering with the development of antigen-presenting cells from the sensitization phase. Our results suggest that antihistamine has a beneficial effect on the treatment of palladium allergy compared to glucocorticoids.

  7. Application of Forward Osmosis Membrane in a Sequential Batch Reactor for Water Reuse

    KAUST Repository

    Li, Qingyu

    2011-07-01

    Forward osmosis (FO) is a novel membrane process that potentially can be used as an energy-saving alternative to conventional membrane processes. The objective of this study is to investigate the performance of a FO membrane to draw water from wastewater using seawater as draw solution. A study on a novel osmotic sequential batch reactor (OsSBR) was explored. In this system, a plate and frame FO cell including two flat-sheet FO membranes was submerged in a bioreactor treating the wastewater. We found it feasible to treat the wastewater by the OsSBR process. The DOC removal rate was 98.55%. Total nitrogen removal was 62.4% with nitrate, nitrite and ammonium removals of 58.4%, 96.2% and 88.4% respectively. Phosphate removal was almost 100%. In this OsSBR system, the 15-hour average flux for a virgin membrane with air scouring is 3.103 LMH. After operation of 3 months, the average flux of a fouled membrane is 2.390 LMH with air scouring (23% flux decline). Air scouring can help to remove the loose foulants on the active layer, thus helping to maintain the flux. Cleaning of the FO membrane fouled in the active layer was probably not effective under the conditions of immersing the membrane in the bioreactor. LC-OCD results show that the FO membrane has a very good performance in rejecting biopolymers, humics and building blocks, but a limited ability in rejecting low molecular weight neutrals.

  8. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  9. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  10. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    and users to generate and test models systematically, efficiently and reliably. In this way, development of products and processes can be faster, cheaper and very efficient. In this contribution, as part of the framework a generic modeling template for the systematic derivation of problem specific catalytic...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  11. Performance and economics of a Pd-based planar WGS membrane reactor for coal gasification

    International Nuclear Information System (INIS)

    Dolan, M.D.; Donelson, R.; Dave, N.C.

    2010-01-01

    Conceptual 300 tonne per day (tpd) H 2 -from-coal plants have been the subject of several major costing exercises in the past decade. Incorporating conventional high- and low-temperature water-gas-shift (WGS) reactors, amine-based CO 2 removal and PSA-based H 2 purification systems, these studies provide a benchmark against which alternative H 2 -from-coal technologies can be compared. The catalytic membrane reactor (CMR), combining a WGS catalyst and hydrogen-selective metal membrane, can potentially replace the multiple shift and separation stages of a plant based on conventional technology. CMR-based shift and separation offers several major advantages over the conventional approach, including greater-than-equilibrium WGS conversion, the containment of the CO 2 at high-pressure and a reduction in the number of unit processes. To determine capital costs of a WGS CMR-based H 2 -from-coal plant, a prototype planar CMR was constructed and tested with varying catalyst bed depth, residence time and membrane type (commercially-sourced 50 μm Pd or 40 μm Pd-25Ag wt%). Experiments to measure CO conversion, and H 2 flux and yield were conducted at 400 C with a feed pressure of 20 bar H 2 O:C ratio of 3 and a H 2 product pressure of 1 bar. Under the optimum conditions examined (with a 40 μm-thick Pd-25Ag membrane and 2 would be required to provide a throughput of 300 tpd with 85% H 2 yield. The capital cost of the CMR component of the plant would be around $US 180 million (based on current metal prices), of which 73% can be attributed to the cost of the Pd-Ag alloy membranes. Incorporation of a membrane that meets the 2015 US DOE cost and flux targets would offer cost parity, with a plant cost of $US 44 million and a total membrane area of ∝13,000 m 2 . Meeting these performance and cost targets would likely require a shift to very thin Pd-alloy membranes or highly-permeable Group IV, V body-centred-cubic alloys. (author)

  12. ALTERNATIVE MATERIALS TO PD MEMBRANES FOR HYDROGEN PURIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; T. Adams

    2008-09-12

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate two different classes of materials for potential replacement of conventional Pd-alloy purification/diffuser membranes. Crystalline V-Ni-Ti and Amorphous Fe- and Co-based metallic glass alloys have been evaluated using gaseous hydrogen permeation testing techniques.

  13. Elaboration by tape-casting and co-sintering of multilayer catalytic membrane reactor- performances

    International Nuclear Information System (INIS)

    Julian, A.

    2008-12-01

    This research deals with the increasing interest of the conversion of natural gas into liquid fuels (diesel, kerosene) using the Gas To Liquid (GTL) process. Within this context, Catalytic Membrane-based Reactors (CMR) would allow an improvement of the process efficiency and a reduction of investment and production costs with respect to the present technologies. They allow performing the separation of oxygen from air, and the conversion of natural gas into synthesis gas within a single step. After having highlighted the economical and technological advantages of using a ceramic membrane for the production of syngas (H 2 + CO 2 ), the author describes the protocols of synthesis of powders selected for the dense membrane and the porous support, and their physical characteristics. The obtained powders are then adapted to the tape-casting forming process. Graded-composition multilayer structures and microstructure are then elaborated by co-sintering. Performances in terms of membrane oxygen flows are presented. Mechanisms limiting the oxygen flow are discussed in order to propose ways of improving membrane performances. The limits of the studied system are defined in terms of elastic properties, and optimization ways are proposed for the dense membrane material composition in terms of mechanical properties and performance in oxygen semi-permeation

  14. Double-side active TiO{sub 2}-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, G.Em., E-mail: groman@chem.demokritos.gr [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Likodimos, V.; Falaras, P. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel CVD reactor for the developments of double side active TiO{sub 2} membranes. Black-Right-Pointing-Pointer Double side active TiO{sub 2} membranes efficiently photodegrade organic pollutants. Black-Right-Pointing-Pointer A photocatalytic membrane purification device for continuous flow water treatment. - Abstract: A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO{sub 2} photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO{sub 2} nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of {gamma}-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO{sub 2} deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.

  15. Waste Water treatment by membrane bioreactors; Tratamiento de aguas residuales urbanas mediante reactores biologicos de membranas

    Energy Technology Data Exchange (ETDEWEB)

    Malfeito, J. J.; Palacios, E.

    2001-07-01

    Wastewater reuse plants can be simplified to a single step process with a membrane bioreactor developed by PRIDESA. The process consists on a biological reactor integrated with immersed membranes that combines clarification and filtration of an activated sludge process into a simplified single step process. Because of the design of the membranes and plate and frame module, the hydrostatic pressure difference is enough to ensure the design permeate flowrate. That means low energy requirements and reduced fouling, as contaminants are not forced into the membrane pores. A 90-days pilot scale operation for reclamation of urban wastewater was studied and the performance of the system was investigated with a sludge retention time (SRT) of 25 days and membrane flux between 50.90 l/h. with different membranes. Averaged 98% of BODS, a 95% of COD and a 99.49% of SS were removed. (Author) 5 refs.

  16. Fission products silver, palladium, and cadmium identification in neutron-irradiated SiC TRISO particles using a Cs-Corrected HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: isabella.vanrooyen@inl.gov [Fuel Design and Development Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Olivier, E.J.; Neethling, J.H. [Centre for High Resolution Electron Microscopy, Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2016-08-01

    Electron microscopy investigations of selected coated particles from the first advanced gas reactor experiment at Idaho National Laboratory provided important information on fission product distribution and chemical composition in the silicon-carbide (SiC) layer. Silver precipitates were nano-sized, and therefore high-resolution transmission electron microscopy (HRTEM) was used to provide more information at the atomic level. Based on gamma-ray analysis, this particle which was irradiated to an average burnup of 19.38% fissions per initial metal atom, may have released as much as 10% of its available Ag-110 m inventory during irradiation. The HRTEM investigation focused on silver, palladium, and cadmium due to interest in silver transport mechanisms and possible correlation with palladium and silver previously found. Palladium, silver, and cadmium were found to co-exist in some of the SiC grain boundaries and triple junctions. This study confirmed palladium both at inter and intragranular sites. Phosphor was identified in SiC grain boundaries and triple points. - Highlights: • First high resolution electron microscopy fission product nano-structural locations of irradiated TRISO coated particles. • Pd observed inside SiC grains in proximity to planar defects e.g. stacking faults. • Ag co-exists with Pd and Cd only may suggest a Pd-assisted transport mechanism. • First finding of neutron transmutation product P, in SiC layer of TRISO coated particles. No direct link to Ag transport. • No significant Pd corrosion of SiC observed even at this high resolution images.

  17. Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts.

    Science.gov (United States)

    Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M

    2017-08-01

    Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Facile synthesis of bacitracin-templated palladium nanoparticles with superior electrocatalytic activity

    Science.gov (United States)

    Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei

    2017-02-01

    Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.

  19. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    Science.gov (United States)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  20. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuwen; Li, Qian; Shen, Peijun; Liu, Yong; Yang, Zhibin; Ding, Weizhong; Lu, Xionggang [School of Material Science and Engineering, Shanghai University, No. 275 Mail Box, 149 Yanchang Road, Shanghai 200072 (China)

    2008-07-15

    To maximize hydrogen production from coke oven gas (COG), partial oxidation of methane in COG was studied thermodynamically and experimentally. Thermodynamic analysis indicates that an optimal hydrogen yield of 1.04-1.10 mole per mole of the consumed COG can be achieved when the initial ratio of O{sub 2} and CH{sub 4} is 0.57-0.46 in a temperature range of 800-900 C, and the corresponding amplification of original hydrogen in COG reaches 1.8-1.9 times. The amplification of original hydrogen was carried out in a BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-{delta}} (BCFNO) membrane reactor, and the hydrogen yield in the lab scale was about 80% more than that of original H{sub 2} in model COG. In a large hydrogen content in COG, the ceramic membrane reactors made from perovskite mixed-conducting oxygen-permeable materials must have higher stability to withstand the harsh reduction condition. (author)

  1. Study on treating of low-level radioactive reactor wastewater by combined membrane process (UF-RO)

    International Nuclear Information System (INIS)

    Lu Yunyun; Cao Qiru; Chen Yunming; Huang Lijuan; Bai Xiaofeng; Li Bing; Feng Liang

    2013-01-01

    According to the characteristics of radionuclide exists in the low-level radioactive reactor waste water from HFETR, we use a new combined membrane process separation technology to study the efficient treating of low-lever radioactive reactor wastewater. First, the prepared the simulated wastewater contained Cs + , Sr 2+ , CO 2+ , Ni 2+ , and Fe 3+ . Then, we sequentially investigated the pressure, ion concentration, pH value and EDTA, which have effects on the desalination rate of membrane processing metal ions in wastewater. The results show that: in the condition of pH = 7, and added 0.15 mol/L EDTA, the simulated wastewater separated by UF-RO, desalination rates of Cs + , Sr 2+ , CO 2+ , Ni 2+ and Fe 3+ are all above 95%; In the subsequent trials, adding 0.15 mol/L EDTA into the radioactive residuary solution, and then treating by UF-RO-RO, the decontamination efficiency can reach 95.7%. (authors)

  2. Ratio of dialytic coefficients of hydrogen and tritium in permeation through palladium alloy film

    International Nuclear Information System (INIS)

    Fujita, Haruyuki; Fujita, Kunio; Sakamoto, Hiroshi; Higashi, Kunio; Okada, Sakae.

    1982-01-01

    The dialytic coefficient for hydrogen is especially large in palladium and its alloys. Recently, with the research on fusion reactors, the dialytic coefficient of tritium permeating through solids and its isotopic effect have been the object of interest. The ratio of the dialytic coefficients of tritium and hydrogen has been usually assumed to be 3. The measurement of the dialytic coefficient in solids using pure tritium is practically difficult. Therefore, the authors carried out the experiment to determine the ratio of the dialytic coefficients of pure T 2 and pure H 2 by permeating the mixed gas of T and H through Pd-Au-Ag alloy. The mixed hydrogen gas was filled in a separation cell containing a palladium alloy tube, and the separation factor of tritium and hydrogen was measured by changing pressure, flow rate and temperature. The separation factor depends mainly on the relative dialytic coefficients of tritium and hydrogen, therefore, the ratio of dialytic coefficients can be determined by the simple analysis of the experimental results. This experimental method is suitable to determine the relative value of dialytic coefficients, and the obtained ratio was about 2.1. (Kako, I.)

  3. Membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

    Science.gov (United States)

    Rivero, M J; Parsons, S A; Jeffrey, P; Pidou, M; Jefferson, B

    2006-01-01

    Urban water recycling is now becoming an important issue where water resources are becoming scarce. This paper looks at reusing grey water; the preference is treatment processes based on biological systems to remove the dissolved organic content. Here, an alternative process, photocatalysis is discussed as it is an attractive technology that could be well-suited for treating the recalcitrant organic compounds found in grey water. The photocatalytic process oxidises organic reactants at a catalyst surface in the presence of ultraviolet light. Given enough exposure time, organic compounds will be oxidized into CO2 and water. The best contact is achieved in a slurry reactor but a second step to separate and recover the catalyst is need. This paper discusses a new membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

  4. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  5. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  6. Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade

    Directory of Open Access Journals (Sweden)

    Ling Fei

    2012-01-01

    Full Text Available We report the preparation of two hydrocracking catalysts Pd/CoMoO4/silica and Pd/CNTs/CoMoO4/silica (CNTs, carbon nanotubes. The structure, morphologies, composition, and thermal stability of catalysts were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, transmission electron microscopy (TEM, energy-dispersive X-ray (EDX, and thermogravimetric analysis (TGA. The catalyst activity was measured in a Parr reactor with camelina fatty acid methyl esters (FAMEs as the feed. The analysis shows that the palladium nanoparticles have been incorporated onto mesoporous silica in Pd/CoMoO4/silica or on the CNTs surface in Pd/CNTs/CoMoO4/silica catalysts. The different combinations of metals and supports have selective control cracking on heavy hydrocarbons.

  7. Absorption of hydrogen by vanadium-palladium alloys

    International Nuclear Information System (INIS)

    Artman, D.; Lynch, J.F.; Flanagan, T.B.

    1976-01-01

    Pressure composition isotherms (273-373 K) have been determined for the absorption of hydrogen by a series of six palladium alloys (f.c.c) in the composition range from 1 to 8 at.% vanadium. At a given hydrogen content, the equilibrium hydrogen pressure progressively increases with vanadium content. Thermodynamic parameters for the absorption of hydrogen are reported at infinite dilution of hydrogen and for the formation of the nonstoichiometric hydride from the hydrogen-saturated alloy. The relative, partial molar enthalpy of solution of hydrogen at infinite dilution increases slightly with vanadium content. The presence of vanadium, which absorbs hydrogen itself in its normal b.c.c. structure, greatly inhibits the ability of palladium to absorb hydrogen. For example, the isobaric solubility of hydrogen (1 atm, 298K) decreases from H/Pd=0.7 (palladium) to 0.024 (V(6%)-Pd). The lattice expansion due to the presence of interstitial hydrogen has been determined by X-ray diffraction. From these data it can be concluded that the formation of two non-stoichiometric hydride phases does not occur at vanadium contents greater that 5 at.% (298 K). Electrical resistance has been measured as a function of the hydrogen content of the alloys. The electrical resistance increases more markedly with hydrogen content for these alloys than for any of the palladium alloys previously examined. (Auth.)

  8. Chemical recovery of palladium-103 from irradiated silver target

    International Nuclear Information System (INIS)

    Lapshina, E.V.; Kokhanyuk, V.M.; Zhuikov, B.L.; Myasoedova, G.V.; Zakhartchenko, E.A.; Phillips, D.R.; Jamriska, D.J.

    2003-01-01

    The goal of this work is to develop an extraction method of no-carrier-added palladium-103 from silver. Metallic silver targets may be irradiated by protons with energy of 60-200 MeV or more to generate palladium-103 simultaneously with other radioactive isotopes of rhodium, ruthenium, technetium, palladium and silver. According to the dependence experimental production yield of Pd-103 and isotopes of other elements in thick silver target vs. Proton energy the most suitable energy for maximum yield of Pd-103 and minimum yield of other elements is from about 100 to about 140 MeV. Activity of radionuclides produced in silver target depends from many factors (target thickness, irradiation time, etc.). Two methods of Pd-103 recovering from irradiated silver target are considered in this work: (1) Silver target is dissolved in nitric acid followed by silver precipitation in the form of silver chloride by addition of HCl. The solution containing Pd, Rh and other radionuclides is passed through the layer of fibrous sorbent POLYORGS-15n. Then the sorbent is washed and Pd is desorbed by hot 12 M hydrochloric acid; (2) Silver target is dissolved in nitric acid followed by passing of the obtained solution (2 M HNO 3 ) through a disk set of complex forming sorbent POLYORGS-33n. Under these conditions palladium is sorbed by the sorbent while silver, rhodium, ruthenium and technetium are passed through the sorbent. Then the sorbent is washed with 2M nitric acid, and Pd is desorbed by 12 M hydrochloric acid. Extraction of palladium is occurred during the formation of palladium complex with a chelate sorbent specific to palladium in acidic solutions. Such a sorbent makes possible separation of palladium from accompanying radionuclides such as rhodium, ruthenium and technetium. The polymeric complex-forming sorbent of fibrous structure with the groups of 3(5)-methylpyrazole (POLYORGS-15) is used. The distinctive feature of the sorbents in the form of fibrous 'filled' material is

  9. Preliminary study on application of Pd composite membrane in helium purification system of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Cai Jianhua; Yang Xiaoyong; Wang Jie; Yu Suyuan

    2008-01-01

    Helium purification system (HPS) is the main part of the helium auxiliary system of high-temperature gas-cooled reactors (HTGR), also in fusion reactors. Some exploratory work was carried out on the application of Pd composite membrane in the separation of He and H 2 . A typical single stripper permeator with recycle (SSP) system was designed, based on the design parameters of a small scale He purification test system CIGNE in CADARACHE, CEA, France, and finite element analysis method was used to solve the model. The total length of membrane module is fixed to 0.5 m. The results show that the concentration of H 2 is found to reduce from 1 000 μL/L in feed gas to 5 μL/L in the product He (the upper limitation of HPS in HTGR). And the molar ratio of product He to feed gas is 96.18% with the optimized ratio of sweep gas to retentive gas 0. 3970. It's an exponential distribution of H 2 concentration along the membrane module. The results were also compared with the other two popular designs, two stripper in series permeator (TSSP) and continuous membrane column (CMC). (authors)

  10. Nano-palladium is a cellular catalyst for in vivo chemistry

    Science.gov (United States)

    Miller, Miles A.; Askevold, Bjorn; Mikula, Hannes; Kohler, Rainer H.; Pirovich, David; Weissleder, Ralph

    2017-07-01

    Palladium catalysts have been widely adopted for organic synthesis and diverse industrial applications given their efficacy and safety, yet their biological in vivo use has been limited to date. Here we show that nanoencapsulated palladium is an effective means to target and treat disease through in vivo catalysis. Palladium nanoparticles (Pd-NPs) were created by screening different Pd compounds and then encapsulating bis[tri(2-furyl)phosphine]palladium(II) dichloride in a biocompatible poly(lactic-co-glycolic acid)-b-polyethyleneglycol platform. Using mouse models of cancer, the NPs efficiently accumulated in tumours, where the Pd-NP activated different model prodrugs. Longitudinal studies confirmed that prodrug activation by Pd-NP inhibits tumour growth, extends survival in tumour-bearing mice and mitigates toxicity compared to standard doxorubicin formulations. Thus, here we demonstrate safe and efficacious in vivo catalytic activity of a Pd compound in mammals.

  11. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 1: Influence of operating conditions

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  12. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    OpenAIRE

    Lushi Kong; Guanchun Rui; Guangyu Wang; Rundong Huang; Ran Li; Jiajie Yu; Shengli Qi; Dezhen Wu

    2017-01-01

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for u...

  13. A comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane dual-type FTS reactor in GTL technology

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, M.R.; Forghani, A.A.; Mostafazadeh, A. Khosravanipour; Shariati, A. [Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran)

    2010-01-15

    In this work, a comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane reactor for Fischer-Tropsch Synthesis (FTS) has been carried out. In both modes of operations, a system with two-catalyst bed instead of one single catalyst bed is developed for FTS reactions. In the first catalytic reactor, the synthesis gas is partly converted to products in a conventional water-cooled fixed-bed reactor, while in the second reactor which is a membrane fixed-bed reactor, the FTS reactions are completed and heat of reaction is used to preheat the feed synthesis gas to the first reactor. In the co-current mode, feed gas is entered into the tubes of the second reactor in the same direction with the reacting gas stream in shell side while in the counter-current mode the gas streams are in the opposite direction. Simulation results for both co-current and counter-current modes have been compared in terms of temperature, gasoline and CO{sub 2} yields, H{sub 2} and CO conversion, selectivity of components as well as permeation rate of hydrogen through the membrane. The results showed that the reactor in the co-current configuration operates with lower conversion and lower permeation rate of hydrogen, but it has more favorable profile of temperature. The counter-current mode of operation decreases undesired products such as CO{sub 2} and CH{sub 4} and also produces more gasoline. (author)

  14. Palladium configuration dependence of hydrogen detection sensitivity based on graphene FET for breath analysis

    Science.gov (United States)

    Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-04-01

    We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.

  15. CO-free hydrogen production by ethanol steam reforming in a Pd-Ag membrane reactor

    NARCIS (Netherlands)

    Basile, A.; Gallucci, F.; Iulianelli, A.; Tosti, S.

    2008-01-01

    In this work, the ethanol steam reforming (ESR) reaction has been studied by using a dense Pd-Ag membrane reactor (MR) by varying the water/ethanol molar ratio between 3:1 and 9:1 in a temperature range of 300-400°C and at 1.3 bar as reaction pressure. The MR was packed with a commercial Ru-based

  16. Surface topography of a palladium cathode after electrolysis in heavy water

    International Nuclear Information System (INIS)

    Silver, D.S.; Dash, J.; Keefe, P.S.

    1993-01-01

    Electrolysis was performed with a palladium cathode and an electrolyte containing both hydrogen and deuterium ions. The cathode bends toward the anode during this process. Examination of both the concave and the convex surfaces with the scanning electron microscope, scanning tunneling microscope, and atomic force microscope shows unusual surface characteristics. Rimmed craters with faceted crystals inside and multitextural surfaces were observed on an electrolyzed palladium cathode but not on palladium that has not been electrolyzed. 9 refs., 9 figs

  17. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  18. Performance and economics of a Pd-based planar WGS membrane reactor for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, M.D. [CSIRO Energy Technology, Pullenvale QLD 4069 (Australia); Donelson, R. [CSIRO Process Science and Engineering, Clayton VIC 3168 (Australia); Dave, N.C. [CSIRO Energy Technology, North Ryde NSW 2113 (Australia)

    2010-10-15

    Conceptual 300 tonne per day (tpd) H{sub 2}-from-coal plants have been the subject of several major costing exercises in the past decade. Incorporating conventional high- and low-temperature water-gas-shift (WGS) reactors, amine-based CO{sub 2} removal and PSA-based H{sub 2} purification systems, these studies provide a benchmark against which alternative H{sub 2}-from-coal technologies can be compared. The catalytic membrane reactor (CMR), combining a WGS catalyst and hydrogen-selective metal membrane, can potentially replace the multiple shift and separation stages of a plant based on conventional technology. CMR-based shift and separation offers several major advantages over the conventional approach, including greater-than-equilibrium WGS conversion, the containment of the CO{sub 2} at high-pressure and a reduction in the number of unit processes. To determine capital costs of a WGS CMR-based H{sub 2}-from-coal plant, a prototype planar CMR was constructed and tested with varying catalyst bed depth, residence time and membrane type (commercially-sourced 50 {mu}m Pd or 40 {mu}m Pd-25Ag wt%). Experiments to measure CO conversion, and H{sub 2} flux and yield were conducted at 400 C with a feed pressure of 20 bar H{sub 2}O:C ratio of 3 and a H{sub 2} product pressure of 1 bar. Under the optimum conditions examined (with a 40 {mu}m-thick Pd-25Ag membrane and <3 mm-thick catalyst bed), a membrane surface area of {proportional_to}25,000 m{sup 2} would be required to provide a throughput of 300 tpd with 85% H{sub 2} yield. The capital cost of the CMR component of the plant would be around $US 180 million (based on current metal prices), of which 73% can be attributed to the cost of the Pd-Ag alloy membranes. Incorporation of a membrane that meets the 2015 US DOE cost and flux targets would offer

  19. Carbon-coated ceramic membrane reactor for production of hydrogen via aqueous phase reforming of sorbitol

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2014-01-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of

  20. Membrane reactor for water detritiation: a parametric study on operating parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, J.; Liger, K.; Troulay, M.; Perrais, C. [CEA, DEN, DTN/STPA/LIPC, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X.; Meyer, X.M. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.

  1. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.

    Science.gov (United States)

    Li, Jian; Ge, Zheng; He, Zhen

    2014-09-01

    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Palladium-Catalysed Coupling Reactions

    NARCIS (Netherlands)

    de Vries, Johannes G.; Beller, M; Blaser, HU

    2012-01-01

    Palladium-catalysed coupling reactions have gained importance as a tool for the production of pharmaceutical intermediates and to a lesser extent also for the production of agrochemicals, flavours and fragrances, and monomers for polymers. In this review only these cases are discussed where it seems

  3. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    Science.gov (United States)

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  5. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Doorn, Stephen [Los Alamos National Laboratory; Atwater, Mark [UNM MECH.ENG.; Leseman, Zayd [UNM MECH.ENG.; Luhrs, Claudia C [UNM ENG.MECH; Diez, Yolanda F [SPAIN; Diaz, Angel M [SPAIN

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  6. Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project

    Directory of Open Access Journals (Sweden)

    José Luis Viviente

    2016-10-01

    Full Text Available This paper reports the findings of a FP7/FCH JU project (ReforCELL that developed materials (catalysts and membranes and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC. In this project, an active, stable and selective catalyst was developed for the reactions of interest and its production was scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed. In particular, dense supported thin palladium-based membranes were developed for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in lab-scale reactors for fluidized bed steam methane reforming (SMR and autothermal reforming (ATR and in a prototype reactor for ATR. Suitable sealing techniques able to integrate the different membranes in lab-scale and prototype reactors were also developed. The project also addressed the design and optimization of the subcomponents (BoP for the integration of the membrane reformer to the fuel cell system.

  7. Mechanistic study of the isotopic-exchange reaction between gaseous hydrogen and palladium hydride powder

    International Nuclear Information System (INIS)

    Outka, D.A.; Foltz, G.W.

    1991-01-01

    A detailed mechanism for the isotopic-exchange reaction between gaseous hydrogen and solid palladium hydride is developed which extends previous model for this reaction by specifically including surface reactions. The modeling indicates that there are two surface-related processes that contribute to the overall rate of exchange: the desorption of hydrogen from the surface and the exchange between surface hydrogen and bulk hydrogen. This conclusion is based upon measurements examining the effect of small concentrations of carbon monoxide were helpful in elucidating the mechanism. Carbon monoxide reversibly inhibits certain steps in the exchange; this slows the overall rate of exchange and changes the distribution of products from the reactor

  8. Membrane bio-reactor - Research, pilot installation and measurement campaign; Membranbioreaktor (MBR) - Forschung, Pilotanlage und Messkampagne - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hersener, J -L [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U [Meritec GmbH, Guntershausen (Switzerland)

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE), takes a look at a project involving a fermenter installation in Eastern Switzerland. Research work is noted, the pilot installation is described and the results of a measurement campaign are presented and commented on. The plant is able to handle about 20,000-25,000 tonnes of slurry and organic waste. The plant is built as a membrane bio-reactor and allows the separation of the digested biomass into fractions of solid and liquid fertilisers and useful water. Furthermore, a part of the separated and digested liquid is returned to the fermenter in order to improve the digestion process. For the production of electricity a 1.1 MW generator is installed. The adaptations made during the measurement period are noted and commented on. According to the authors, the results - although difficult to interpret - show that the concept of a membrane bio-reactor can work successfully.

  9. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    Science.gov (United States)

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles

    NARCIS (Netherlands)

    Griessen, R.P.; Strohfeldt, N.; Giessen, H.

    2015-01-01

    Palladium-hydrogen is a prototypical metal-hydrogen system. It is therefore not at all surprising that a lot of attention has been devoted to the absorption and desorption of hydrogen in nanosized palladium particles. Several seminal articles on the interaction of H with Pd nanocubes and

  11. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  12. Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility

    Science.gov (United States)

    Li, Jian-Hua; Ni, Xing-Xing; Zhang, De-Bin; Zheng, Hui; Wang, Jia-Bin; Zhang, Qi-Qing

    2018-06-01

    A facile and versatile approach for the preparation of super-hydrophilic, excellent antifouling and hemocompatibility membranes had been developed through the generation in situ of bio-inspired polydopamine (PDA) microspheres on PVDF membranes. SEM images showed that the PDA microspheres were uniformly dispersed on the upper surface and the lower surface of the modified membranes. And there were a great number of PDA microspheres immobilized on the cross-section, but the interconnected pores structure was not destroyed. These facts indicated the existence of membrane micro-reactor effect for the whole membrane structure. Considering the remarkable improvement of hydrophilicity, antifouling properties, and permeation fluxes, we also proposed the cluster phenolic hydroxyl effect for the PVDF/PDA hybrid membranes. And the cluster phenolic hydroxyl effect can be ascribed to the all directions distributed phenolic hydroxyl groups on the whole membrane structure. Besides, the self-driven filtration experiments showed the great wetting ability and permeability of the PVDF/PDA hybrid membranes in filtration process without any external pressure. This implied the existence of accelerating self-driven force after the water flow flowed into the internal of membranes, which contributed to the increase of water flow velocity. All the three aspects were in favor of the enhancement of hydrophilicity, antifouling properties and permeability of the modified membranes. Moreover, the conventional filtration tests, oil/water emulsion filtration tests and protein adsorption tests were also carried out to discuss the practical applications of PVDF/PDA hybrid membranes. And the hemocompatibility of the modified membranes was also proved to enhance greatly through the hemolysis tests and platelet adhesion tests, indicating that the membranes were greatly promising in biomedical applications. The strategy of material modification reported here is substrate-independent and can be extended

  13. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  14. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  15. Electrophysical properties of silicon doped by palladium-103 isotope

    International Nuclear Information System (INIS)

    Makhkamov, Sh.; Tursunov, N.A.; Sattiev, A.R.; Normurodov, A.B.

    2007-01-01

    The work is devoted to study of radiation physical processes taking place in Si under nuclear transmutation, Identification and determination of defects microstructure and homogeneities and their distribution, study of interactions of nuclear-transformed phosphorus isotopes with palladium atoms, and its effect on crystal properties. For examination monocrystalline silicon of n- and p-type conductivity with specific resistance from 1 to 40 Ω·cm, dislocation density ∼10 4 cm -2 and oxygen content ∼10 17 cm -3 has been applied. Doping of silicon plates by examined admixture has been carried out by thermal diffusion method within temperature range 1000-1250 deg. C for 0.5- 5 h. Irradiation of doped silicon was conducted by reactor neutron fluences 5·10 18 - 5·10 19 cm -2 with subsequent annealing at 1000 deg. C for 30 min. Efficiency of mixture centers formation in silicon, effect of concentration of formed mixture-defect centers on electro-physical, photoelectric and recombination parameters of doped silicon and revealing of type and state of generated defects have been controlled by electric, volume and X-ray fluorescent methods. On the base of spectroscopic researches it is shown, that in silicon forbidden zone after Pd diffusion in DLTS spectra peaks related with acceptor (E c -0.18 and E v +0.34 eV) levels, and peak responsible for level E v +0.32 eV of donor character caused by palladium impurity. It is shown, that irradiation of doped silicon samples by neutrons lead to nuclear transmutation of 102 Pd, 104 Pd in 103 Pd isotopes in the crystal volume with following electron capture in stable isotope 103m Rh

  16. Ageing of palladium tritide: mechanical characterization, helium state and modelling

    International Nuclear Information System (INIS)

    Segard, M.

    2010-01-01

    Palladium is commonly used for the storage of tritium (the hydrogen radioactive isotope), since it forms a low-equilibrium-pressure and reversible tritide. Tritium decay into helium-3 is responsible for the ageing of the tritide, leading to the apparition of helium-3 bubbles for instance. Both experimental and theoretical aspects of this phenomenon are studied here.Previous works on ageing modelling led to two main models, dealing with:- Helium-3 bubbles nucleation (using a cellular automaton), - Bubbles growth (using continuum mechanics).These models were quite efficient, but their use was limited by the lack of input data and fitting experimental parameters.To get through these limitations, this work has consisted in studying the most relevant experimental data to improve the modelling of the palladium tritide ageing.The first part of this work was focused on the assessment of the mechanical properties of the palladium tritide (yield strength, ultimate strength, mechanical behaviour). They were deduced from the in situ tensile tests performed on palladium hydride and deuteride. In the second part, ageing characterization was undertaken, mainly focusing on: - Bubbles observations in palladium tritide using transmission electron microscopy, - Internal bubble pressure measurements using nuclear magnetic resonance, - Macroscopic swelling measurements using pycno-metry.The present work has led to significant progress in ageing understanding and has brought very valuable improvements to the modelling of such a phenomenon. (author) [fr

  17. Palladium nanoparticle anchored polyphosphazene nanotubes ...

    Indian Academy of Sciences (India)

    607–610. c Indian Academy of Sciences. Palladium ... 2Department of Chemistry, APA College of Arts and Culture, Palani, Tamil Nadu 624 601, India. 3Department of .... K Dinakaran acknowledges the financial support from. Department of ...

  18. Mechanism of the palladium-catalyzed hydrothiolation of alkynes to thioethers: a DFT study.

    Science.gov (United States)

    Zhang, Xing-hui; Geng, Zhi-yuan; Wang, Ke-tai; Li, Shan-shan

    2014-09-01

    The mechanisms of the palladium-catalyzed hydrothiolation of alkynes with thiols were investigated using density functional theory at the B3LYP/6-31G(d, p) (SDD for Pd) level. Solvent effects on these reactions were explored using the polarizable continuum model (PCM) for the solvent tetrahydrofuran (THF). Markovnikov-type vinyl sulfides or cis-configured anti-Markovnikov-type products were formed by three possible pathways. Our calculation results suggested the following: (1) the first step of the cycle is a proton-transfer process from thiols onto the palladium atom to form a palladium-thiolate intermediate. The palladium-thiolate species is attacked on alkynes to obtain an elimination product, liberating the catalyst. (2) The higher activation energies for the alkyne into the palladium-thiolate bond indicate that this step is the rate-determining step. The Markovnikov-type vinyl sulfide product is favored. However, for the aromatic alkyne, the cis-configured anti-Markovnikov-type product is favored. (3) The activation energy would reduce when thiols are substituted with an aromatic group. Our calculated results are consistent with the experimental observations of Frech and colleagues for the palladium-catalyzed hydrothiolation of alkynes to thiols.

  19. Carbon nanotubes decorated with palladium nanoparticles : Synthesis, characterization, and catalytic activity

    NARCIS (Netherlands)

    Karousis, Nikolaos; Tsotsou, Georgia-Eleni; Evangelista, Fabrizio; Rudolf, Petra; Ragoussis, Nikitas; Tagmatarchis, Nikos

    2008-01-01

    In this article, the in situ preparation of palladium nanoparticles, as mediated by the self-regulated reduction of palladium acetate with the aid of sodium dodecyl sulfate (SDS), followed by subsequent deposition onto single-walled carbon nanotubes and multimalled carbon nanotubes (MWCNTs), is

  20. Microwave-assisted synthesis of palladium nanocubes and nanobars

    International Nuclear Information System (INIS)

    Yu, Yanchun; Zhao, Yanxi; Huang, Tao; Liu, Hanfan

    2010-01-01

    Microwave was employed in the shape-controlled synthesis of palladium nanoparticles. Palladium nanocubes and nanobars with a mean size of about 23.8 nm were readily synthesized with H 2 PdCl 4 as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent in the presence of PVP and CTAB in 80 s under microwave irradiation. The structures of the as-prepared palladium nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-vis) absorption spectroscopy. The formation of PdBr 4 2- due to the coordination replacement of the ligand Cl - ions in PdCl 4 2- ions by Br - ions in the presence of bromide was responsible for the synthesis of Pd nanocubes and nanobars. In addition, a milder reducing power, a higher viscosity and a stronger affinity of TEG were beneficial to the larger sizes of Pd nanocubes and nanobars.

  1. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  2. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  3. Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross-Coupling of Organolithium Reagents

    NARCIS (Netherlands)

    Heijnen, Dorus; Tosi, Filippo; Vila, Carlos; Stuart, Marc C. A.; Elsinga, Philip H.; Szymanski, Wiktor; Feringa, Ben L.

    2017-01-01

    The discovery of an ultrafast cross-coupling of alkyland aryllithium reagents with a range of aryl bromides is presented. The essential role of molecular oxygen to form the active palladium catalyst was established; palladium nanoparticles that are highly active in cross-coupling reactions with

  4. Palladium sulphide (PdS) films as a new thermoelectric sulphide compound

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Diaz-Chao, P.; Clamagirand, J.; Macia, M.D.; Ferrer, I.J.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Palladium sulphide (PdS) films have been prepared by direct sulphuration of 20 nm thick palladium films at different temperatures (200 C < T < 450 C). Sulphurated films exhibit an unique crystalline phase: PdS. Seebeck coefficient and electrical resistivity of these films are between -110 and -150 {mu}V/K and {proportional_to} 0.08 to 0.8 {omega}cm depending on the sulphuration temperature. Negative sign of Seebeck coefficient indicates an n type conduction in all films. Discussion is focused on the influence of atomic ratio between sulphur and palladium as well as impurities arising from the substrate on transport properties. (orig.)

  5. Mixed reforming of simulated gasoline to hydrogen in a BSCFO membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenliang; Han, Wei; Xiong, Guoxing; Yang, Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, P.O. Box 110, Dalian 116023 (China)

    2006-10-30

    Currently, fuel cells are receiving more and more attention as the most promising new power generation technology, and fuel processing by the mixed reforming of liquid hydrocarbons (MRL) with water and oxygen is regarded as a desirable way for fuel cells. In this paper, we developed a new mixed reforming method for hydrogen production by combining a dense ceramic membrane Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}(BSCFO) with a catalyst LiLaNiO/{gamma}-Al{sub 2}O{sub 3} in a membrane reactor and reforming a simulated gasoline. During a 500-h long-term test at optimized reaction conditions, all the components in the simulated gasoline converted completely, and around 90% selectivity of CO, around 95% selectivity of H{sub 2} and around 8.0mLcm{sup -2}min{sup -1} oxygen permeation flux were achieved. This provides a new optional way of hydrogen production for fuel cells. (author)

  6. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    Science.gov (United States)

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  7. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick; Apo, Daniel J.; Hunt, Anton; Ghoniem, Ahmed F.

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating

  8. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    International Nuclear Information System (INIS)

    Ren Xiulian; Wei Qifeng; Hu Surong; Wei Sijie

    2010-01-01

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with ω 1/2 (ω: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH 4 Cl concentration was 53.46 g L -1 and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min -1 . Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  9. Development of anodic stripping voltametry for the determination of palladium in high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, T. K. [North Carolina State University, Raleigh (United States); Sharma, H. S.; Affarwal, S. K. [Bhabha Atomic Research Centre, Mumbai (India); Jain, P. C. [Meerut College, Meerut (India)

    2012-12-15

    Deposition potential, deposition time, square wave frequency, rotation speed of the rotating disc electrode, and palladium concentration were studied on a Glassy Carbon Electrode (GCE) in 0.01M HCl for the determination of palladium in High Level Nuclear Waste (HLNW) by anodic stripping voltammetry. Experimental conditions were optimized for the determination of palladium at two different, 10-8 and 10-7 M, levels. Error and standard deviation of this method were under 1% for all palladium standard solutions. The developed technique was successfully applied as a subsidiary method for the determination of palladium in simulated high level nuclear waste with very good precision and high accuracy (under 1 % error and standard deviation).

  10. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  11. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  12. Palladium alloys for hydrogen diffusion

    International Nuclear Information System (INIS)

    1977-01-01

    A palladium-base alloy with tin and/or a silicon addition and its use in the production of hydrogen from water via a cycle of chemical reactions, of which the decomposition of HI into H 2 and I 2 is the most important, is described

  13. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.

    Science.gov (United States)

    Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O

    2017-07-01

    The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.

  14. Metal allergen of the 21st century--a review on exposure, epidemiology and clinical manifestations of palladium allergy

    DEFF Research Database (Denmark)

    Faurschou, Annesofie; Menné, Torkil; Johansen, Jeanne D

    2011-01-01

    Consumers are mainly exposed to palladium from jewellery and dental restorations. Palladium contact allergy is nearly always seen together with nickel allergy, as palladium and nickel tend to cross-react. We aimed to analyse the available palladium patch test data and case reports to determine...

  15. Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas

    NARCIS (Netherlands)

    Psara, N.; Van Sint Annaland, M.; Gallucci, F.

    2015-01-01

    The scope of this paper is the development and implementation of a safety risk assessment methodology to highlight hazards potentially prevailing during autothermal reforming of natural gas for hydrogen production in a membrane reactor, as well as to reveal potential accidents related to hydrogen

  16. Optimization of a Pd-based membrane reactor for hydrogen production from methane steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Assis, A.J.; Hori, C.E.; Silva, L.C.; Murata, V.V. [Universidade Federal de Uberlandia (UFU), MG (Brazil). School of Chemical Engineering]. E-mail: adilsonjassis@gmail.com

    2008-07-01

    In this work, it is proposed a phenomenological model in steady state to describe the performance of a membrane reactor for hydrogen production through methane steam reform as well as it is performed an optimization of operating conditions. The model is composed by a set of ordinary differential equations from mass, energy and momentum balances and constitutive relations. They were used two different intrinsic kinetic expressions from literature. The results predicted by the model were validated using experimental data. They were investigated the effect of five important process parameters, inlet reactor pressure (PR0), methane feed flow rate (FCH40), sweep gas flow rate (FI), external reactor temperature (TW) and steam to methane feed flow ratio (M), both on methane conversion (XCH{sub 4} ) and hydrogen recovery (YH{sub 2}). The best operating conditions were obtained through simple parametric optimization and by a method based on gradient, which uses the computer code DIRCOL in FORTRAN. It is shown that high methane conversion (96%) as well as hydrogen recovery (91%) can be obtained, using the optimized conditions. (author)

  17. Thin film platinum–palladium thermocouples for gas turbine engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Tougas, Ian M.; Gregory, Otto J., E-mail: gregory@egr.uri.edu

    2013-07-31

    Thin film platinum:palladium thermocouples were fabricated on alumina and mullite surfaces using radio frequency sputtering and characterized after high temperature exposure to oxidizing environments. The thermoelectric output, hysteresis, and drift of these sensors were measured at temperatures up to 1100 °C. Auger electron spectroscopy was used to follow the extent of oxidation in each thermocouple leg and interdiffusion at the metallurgical junction. Minimal oxidation of the platinum and palladium thermoelements was observed after high temperature exposure, but considerable dewetting and faceting of the films were observed in scanning electron microscopy. An Arrhenius temperature dependence on the drift rate was observed and later attributed to microstructural changes during thermal cycling. The thin film thermocouples, however, did exhibit excellent stability at 1000 °C with drift rates comparable to commercial type-K wire thermocouples. Based on these results, platinum:palladium thin film thermocouples have considerable potential for use in the hot sections of gas turbine engines. - Highlights: • Stable thin film platinum:palladium thermocouples for gas turbine engines • Little oxidation but significant microstructural changes from thermal cycling • Minimal hysteresis during repeated thermal cycling • Drift comparable to commercial wire thermocouples.

  18. Micro-scale H2-CO2 dynamics in a hydrogenotrophic methanogenic membrane reactor

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-08-01

    Full Text Available Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m3 H2 m-3 day-1 developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9.

  19. Oxygen isotope exchange on palladium catalysts

    International Nuclear Information System (INIS)

    Kravchuk, L.S.; Beschetvertnaya, T.I.; Novorodskij, V.G.; Novikova, M.G.; Zaretskij, M.V.; Valieva, S.V.

    1983-01-01

    Oxygen heteromolecular isotope exchange on unreduced palladium catalysts, distingushing by metal content is studied. Content of 18 O in gaseous phase is eoual to 46%. Calculations of heteroexchange rates are conducted with decrease of the 18 O in the gaseous phase over solid sample. Method of oxygen thermodesorption has been used to establish that palladium, deposited on γ-Al 2 O 3 during exchange process is in oxidized state; in this case strength of Pd-O bond is determined by content dispersity) of the metal. It is shown that significant increase of exchange rate on the samples with Pd >> 0.5 mass.% content can be induced as by side decomposition reaction of its oxide and corresponding dilution of gaseous mixture by ''light'' oxygen so by possibility of exchange with oxygen of PdO phase

  20. Influence of air scouring on the performance of a Self Forming Dynamic Membrane BioReactor (SFD MBR) for municipal wastewater treatment.

    Science.gov (United States)

    Salerno, Carlo; Vergine, Pompilio; Berardi, Giovanni; Pollice, Alfieri

    2017-01-01

    The Membrane BioReactor (MBR) is a well-established filtration-based technology for wastewater treatment. Despite the high quality of the effluent produced, one of the main drawbacks of the MBR is membrane fouling. In this context, a possible evolution towards systems having potentially lower installation and operating costs is the Self Forming Dynamic Membrane BioReactor (SFD MBR). Key of this technology is the self-formation of a biological filtering layer on a support of inert material. In this work, a lab-scale aerobic SFD MBR equipped with a nylon mesh was operated at approximately 95Lm -2 h -1 . Two mesh pore sizes (20 and 50μm) and three air scouring flow rates (150, 250, and 500mL air min -1 ) were tested at steady state. Under all the tested conditions, the SFD MBR effectively treated real municipal wastewater. The quality of the produced effluent increased for lower mesh size and lower air scouring intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  2. Synthesis of a catalytic reactor membrane for synthesis gas production; Elaboration d'une membrane de reacteur catalytique pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Juste, E.; Julian, A.; Chartier, T. [Limoges Univ., Lab. Science des Procedes Ceramiques et de Traitements de Surface (SPCTS, UMR 6638 CNRS), 87 (France); Juste, E.; Julian, A.; Del Gallo, P.; Richet, N. [Centre de Recherche Claude-Delorme, Air Liquide, 78 - Jouy en Josas (France)

    2007-07-01

    The conversion of natural gas to synthesis gas (mixture of H{sub 2} and CO) is a main challenge for the hydrogen and clean fuels production. Mixed (ionic O{sup 2-} and electronic) conducing ceramics membrane reactors seem particularly promising. The design considered for the membrane is a tri-layer system integrating a reforming catalyst and a dense membrane laying on a porous support. Among the materials considered for the dense membrane, perovskites La{sub 1-x}Sr{sub x}Fe{sub 1-y}Ga{sub y}O{sub 3-{delta}} seem to be interesting for their performances and stability. The oxygen flux through the membrane is measured in terms of temperature under different oxygen partial pressure gradients. In the industrial experimental conditions, the membrane is submitted to a strong oxygen (air/methane) partial pressure gradient of about 900 C which induces mechanical stresses, on account of the material expansion difference, in terms of p{sub O2}. In this framework, the evolutions of the performances and of the expansion coefficient have been followed in terms of the substitutions rates in La{sub (1-x)}Sr{sub x}Fe{sub (1-y)}Ga{sub y}O{sub 3-{delta}} with x{<=}0.5 and y{<=}0.5. (O.M.)

  3. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    KAUST Repository

    Werner, Craig M.

    2015-12-22

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  4. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    KAUST Repository

    Werner, Craig M.; Katuri, Krishna; Rao, Hari Ananda; Chen, Wei; Lai, Zhiping; Logan, Bruce E.; Amy, Gary L.; Saikaly, Pascal

    2015-01-01

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  5. In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method

    International Nuclear Information System (INIS)

    Bera, Debasis; Kuiry, Suresh C.; McCutchen, Matthew; Seal, Sudipta; Heinrich, Helge; Slane, Grady C.

    2004-01-01

    A unique, simple, inexpensive, and one-step synthesis route to produce carbon nanotubes (CNTs) decorated with palladium nanoparticles using a simplified dc arc-discharge in solution is reported. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. Such palladium nanoparticles form during the reduction of palladium tetra-chloro-square-planar complex. The deconvoluted x-ray photoelectron spectroscopy envelope shows the presence of palladium on the decorated CNTs. The energy dispersive spectroscopy suggests no functionalization of atomic chlorine to the sidewall of the CNTs. The presence of dislodged graphene sheets with wavy morphology supports the formation of CNTs through the 'scroll mechanism'

  6. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  7. Electrochemical behavior of fission palladium in 1-butyl-3-methylimidazolium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A.; Srinivasan, T.G. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2007-08-01

    Electrochemical behavior of palladium (II) chloride in 1-butyl-3-methylimidazolium chloride has been investigated by various electrochemical transient techniques using glassy carbon working electrode at different temperatures (343-373 K). Cyclic voltammogram consisted of a prominent reduction wave at -0.61 V (vs. Pd) due to the reduction of Pd(II) to Pd, and two oxidation waves at -0.26 and 0.31 V. A nucleation loop is observed at -0.53 V. The diffusion coefficient of palladium (II) in bmimCl ({proportional_to}10{sup -7} cm{sup 2}/s) was determined and the energy of activation (63 kJ/mol) was deduced from the cyclic voltammograms at various temperatures. Nucleation and growth of palladium on glassy carbon working electrode has been investigated by chronoamperometry and chronopotentiometry. The growth and decay of chronocurrents measured for palladium deposition has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei. The surface morphology of the deposit obtained at various applied potentials revealed the formation of dendrites immediately after nucleation and spread in all the directions with time. (author)

  8. Electrodeless, multi-megawatt reactor for room-temperature, lithium-6/deuterium nuclear reactions

    International Nuclear Information System (INIS)

    Drexler, J.

    1993-01-01

    This paper describes a reactor design to facilitate a room-temperature nuclear fusion/fission reaction to generate heat without generating unwanted neutrons, gamma rays, tritium, or other radioactive products. The room-temperature fusion/fission reaction involves the sequential triggering of billions of single-molecule, 6 LiD 'fusion energy pellets' distributed in lattices of a palladium ion accumulator that also acts as a catalyst to produce the molecules of 6 LiD from a solution comprising D 2 O, 6 LiOD with D 2 gas bubbling through it. The D 2 gas is the source of the negative deuterium ions in the 6 LiD molecules. The next step is to trigger a first nuclear fusion/fission reaction of some of the 6 LiD molecules, according to the well-known nuclear reaction: 6 Li + D → 2 4 He + 22.4 MeV. The highly energetic alpha particles ( 4 He nuclei) generated by this nuclear reaction within the palladium will cause shock and vibrations in the palladium lattices, leading to compression of other 6 LiD molecules and thereby triggering a second series of similar fusion/fission reactions, leading to a third series, and so on. The absorption of the kinetic energy in the palladium will, in turn, generate a continuous flow of heat into the heavy water carrier, which would be removed with a heat exchanger. (author)

  9. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers.

    Science.gov (United States)

    Kong, Lushi; Rui, Guanchun; Wang, Guangyu; Huang, Rundong; Li, Ran; Yu, Jiajie; Qi, Shengli; Wu, Dezhen

    2017-11-02

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  10. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    Directory of Open Access Journals (Sweden)

    Lushi Kong

    2017-11-01

    Full Text Available A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  11. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment.

    Science.gov (United States)

    Chu, Huaqiang; Cao, Dawen; Dong, Bingzhi; Qiang, Zhimin

    2010-03-01

    This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its high concentrations of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS). The removal of pollutants was mainly ascribed to microbial degradation in BDDMR because the dynamic membrane alone was much less effective in pollutant removal. Though the diatomite particles (5-20microm) were much smaller in size than the aperture of the stainless steel support mesh (74microm), microorganisms and their extracellular polymer substances could bind these particles tightly to form bio-diatomite particles which were completely retained by the support mesh. The analysis of molecular weight (MW) distribution by gel permeation chromatography (GPC) shows that the BDDMR could effectively remove the hydrophilic fraction of dissolved organic materials present in the raw water. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Mechanical design of a PERMCAT reactor module

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, S. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy)], E-mail: tosti@frascati.enea.it; Bettinali, L. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Borgognoni, F. [Tesi Sas, Via Bolzano 28, Rome (Italy); Murdoch, D.K. [EFDA CSU, Boltzmannstr. 2, D-85748 Garching bei Munchen (Germany)

    2007-02-15

    The PERMCAT is a membrane reactor proposed for processing fusion reactor plasma exhaust gas: tritium removal is obtained by isotopic swamping operating in counter-current mode. In this work, a membrane reactor using a permeator tube of length about 500 mm produced via diffusion welding of Pd-Ag thin foils is described. An appropriate mechanical design of the membrane module has been developed in order to avoid any significant compressive and bending stresses on the very long and thin wall permeator tube: two expanded bellows have been applied to the Pd-Ag tube, so that it has been pre-tensioned before operating. The elongation of the metal permeator under hydrogenation has been theoretically estimated and experimentally verified for properly designing the membrane reactor.

  13. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xiulian [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wei Qifeng, E-mail: weiqifeng163@163.com [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Hu Surong; Wei Sijie [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with {omega}{sup 1/2} ({omega}: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH{sub 4}Cl concentration was 53.46 g L{sup -1} and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min{sup -1}. Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  14. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    Science.gov (United States)

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  15. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng; Chen, Tao; He, Lipeng; Pinnau, Ingo; Lai, Zhiping; Huang, Kuo-Wei

    2012-01-01

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters

  16. Preparation technology of 103Pd-110Agm composite alloy membranes

    International Nuclear Information System (INIS)

    Liu Zhuo; Chen Daming; Jin Xiaohai; Li Zhongyong; Guo Feihu; Qin Hongbin

    2012-01-01

    The preparation of 103 Pd- 110 Ag m alloy membranes was the basis for the production of 103 Pd- 125 I composite sources. Taking 103 Pd and 110 Ag m as trace elements, the method of non-electrolytical plating was chosen to prepare the alloy membrane. A γ-detector and electron microscope (SEM) were used for quantitative and qualitative analysis, respectively. The pre-treatment of the support before the preparation of Palladium-silver composite membranes was discussed in detail. It was found that when the concentration of PdCl 2 was between 0.5 and 2.0 mmol/L the result was good. The effects of various factors were investigated, including the proportion of Pd and Ag, the concentrations of the total metal, ammonium hydroxide hydrazine and ethylenediaminetetraacetic acid, temperature, the time, and the rotation speed. By improving the reaction conditions the alloy membrane with metallic luster was obtained. Besides, the presence of Pd and Ag was observed in the alloy membranes by qualitative analysis. (authors)

  17. Silver-palladium catalysts for the direct synthesis of hydrogen peroxide

    Science.gov (United States)

    Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.

    2017-11-01

    A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  18. Membrane reforming in converting natural gas to hydrogen: Production costs, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Iaquaniello, G; Cosenza, S [Technip-KTI S.p.A., via Castello della Magliana 75, Rome (Italy); Giacobbe, F; Morico, B; Farace, A [Processi Innovativi s.r.l., L' Aquila (Italy)

    2008-11-15

    This paper evaluates the production costs of a hybrid system based on a new membrane reforming MRR concept to convert natural gas to hydrogen and electricity. Membrane reforming with hydrogen-selective, palladium-silver membranes pushes the chemical equilibrium and allows higher methane conversions at lower temperature such as 650 C. The new MRR concept formed of a series of modules is put forward herein. Each module is made up of a reforming step and an external membrane separation unit. The estimates, based on utilities costs of a typical Italian refinery (end of 2006), show that the production costs for the hybrid system are 30% less than conventional tubular steam reforming technology, and 13% less than a gas-fired cogeneration plant coupled with a conventional H{sub 2} plant. (author)

  19. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...

  20. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Shi Qiaofang; Diao Guowang

    2011-01-01

    Highlights: ► The deposition of palladium on a GC electrode was performed by cyclic voltammetry. ► SEM images showed palladium nanoparticles deposited on a glassy carbon (GC) electrode. ► The Pd/GC electrode can effectively catalyze m-nitrophenol in aqueous media. ► The reduction of m-nitrophenol on the Pd/GC electrode depended on potential and pH. ► XPS spectra of the Pd/GC electrodes demonstrated the presence of palladium. - Abstract: Palladium nanoparticles modified glassy carbon electrodes (Pd/GC) were prepared via the electrodeposition of palladium on a glassy carbon (GC) electrode using cyclic voltammetry in different sweeping potential ranges. The scanning electron microscope images of palladium particles on the GC electrodes indicate that palladium particles with diameters of 20–50 nm were homogeneously dispersed on the GC electrode at the optimal deposition conditions, which can effectively catalyze the reduction of m-nitrophenol in aqueous solutions, but their catalytic activities are strongly related to the deposition conditions of Pd. The X-ray photoelectron spectroscopy spectra of the Pd/GC electrode confirmed that 37.1% Pd was contained in the surface composition of the Pd/GC electrode. The cyclic voltammograms of the Pd/GC electrode in the solution of m-nitrophenol show that the reduction peak of m-nitrophenol shifts towards the more positive potentials, accompanied with an increase in the peak current compared to the bare GC electrode. The electrocatalytic activity of the Pd/GC electrode is affected by pH values of the solution. In addition, the electrolysis of m-nitrophenol under a constant potential indicates that the reduction current of m-nitrophenol on the Pd/GC electrode is approximately 20 times larger than that on the bare GC electrode.

  1. Palladium(II)-Stabilized Pyridine-2-Diazotates: Synthesis, Structural Characterization, and Cytotoxicity Studies.

    Science.gov (United States)

    Tskhovrebov, Alexander G; Vasileva, Anna A; Goddard, Richard; Riedel, Tina; Dyson, Paul J; Mikhaylov, Vladimir N; Serebryanskaya, Tatiyana V; Sorokoumov, Viktor N; Haukka, Matti

    2018-02-05

    Well-defined diazotates are scarce. Here we report the synthesis of unprecedented homoleptic palladium(II) diazotate complexes. The palladium(II)-mediated nitrosylation of 2-aminopyridines with NaNO 2 results in the formation of metal-stabilized diazotates, which were found to be cytotoxic to human ovarian cancer cells.

  2. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  3. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ

  4. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei

    2014-01-01

    degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen...... feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...

  5. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  6. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  7. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  8. Nanostructured palladium tailored via carbonyl chemical route towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Luo, Y.; Mora-Hernández, J.M.; Estudillo-Wong, L.A.; Arce-Estrada, E.M.; Alonso-Vante, N.

    2015-01-01

    Graphical Abstract: Mass-depending morphologies of nanostructured Palladium obtained via the carbonyl chemical route. Display Omitted -- Highlights: •Mass-depending morphology was observed in nanostructured palladium supported on carbon prepared by the carbonyl chemical route. •The Morphological effect of carbon supported Pd was investigated towards ORR. -- Abstract: Carbon supported palladium nanostructures were synthesized via the carbonyl chemical route. Compared with nanostructured platinum, prepared via carbonyl chemical route, Pd nanomaterials showed mass-loading morphology, whereas particle size and morphology of Pt nanostructures was constant. The oxygen reduction reaction (ORR) on nanostructured Pd, with different morphology in both acid and alkaline medium was investigated. A relationship, based on X-ray diffraction structural analysis pattern, transmission electron microscope, with the Pd morphological effect on ORR activity was identified

  9. Shaping surface of palladium nanospheres through the control of reaction parameters

    International Nuclear Information System (INIS)

    Wang Lianmeng; Tan Enzhong; Guo Lin; Wang Lihua; Han Xiaodong

    2011-01-01

    Solid, cracked, and flower-shaped surfaces of palladium nanospheres with high yields and good uniformity were successfully prepared by a wet chemical method. On the basis of the experimental data, the same size of palladium nanosphere with different surface morphologies can be regulated only by changing the amount of ammonium hydroxide and reductant in one experimental system. The as-prepared products were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). In addition, surface-enhanced Raman scattering (SERS) spectra on the as-prepared different surface of palladium nanospheres exhibit high activity towards p-aminothiophenol (PATP) detection, and the result further reveals that the predominance of the a1 vibration mode in the SERS spectra via an electromagnetic (EM) mechanism is significant.

  10. Substoichiometric extraction of traces of gold and palladium

    International Nuclear Information System (INIS)

    Colonat, J.-F.

    1975-01-01

    Several systems for extracting palladium at concentrations ranging from 10 -4 to 10 -6 M/l were studied. Extraction by dithizone is limited by the transformation of the primary complex into a secondary complex which takes place at concentrations around 10 -6 M. This transformation has been demonstrated kinetically. Dimethylglyoxime is an interesting reagent in substoichiometry, in spite of its comparatively low extraction constant. Various complexes which are formed in a highly chlorinated medium have been proposed. Use of copper diethyldithiocarbamate is limited principally by its stability in presence of chlorine ions. The kinetic formation of palladium diethyldithiocarbamate has been studied with greater precision. A direct determination of 100μg of palladium in a copper matrix without preliminary separation has given results comparable in every way with those of other methods. In the case of gold (III) the constants of formation with the diethyldithiocarbamate ion have been determined by an iterative method of calculation, using the influence curves of interfering metals. Finally conditions for an automatization of the substoichiometric extraction, as well as its possibilities for gold determination in the range 200-20ppm, were proposed [fr

  11. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xia Siqing, E-mail: siqingxia@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li Haixiang; Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang Yanhao [College of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101 (China); Yang Xin; Jia Renyong; Xie Kang; Xu Xiaotian [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2011-08-30

    Highlights: {yields} We designed a novel hollow fiber membrane biofilm reactor for p-CNB removal. {yields} Biotransformation pathway of p-CNB in the reactor was investigated in this study. {yields} Nitrate and sulfate competed more strongly for hydrogen than p-CNB. {yields} This reactor achieved high removal efficiency and hydrogen utilization efficiency. - Abstract: para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H{sub 2} as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2 mg/L and a hydraulic residence time of 4.8 h, which corresponded to a p-CNB flux of 0.058 g/m{sup 2} d. The H{sub 2} availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.

  12. Nuclear power plant laundry drain treatment using membrane bio reactor

    International Nuclear Information System (INIS)

    Tsukamoto, Masaaki; Kohanawa, Osamu; Kinugasa, Atsushi; Ogawa, Naoki; Murogaki, Kenta

    2012-01-01

    In nuclear power plant, the radioactive effluent generated by washing the clothes worn in controlled area and the hand and shower water used at the controlled area are treated in laundry drain treatment system. Although various systems which treat such liquid waste preexist, the traditional treatment system has disadvantages such as high running cost and a large amount of secondary waste generation. To solve these matters, we have considered application of an activated sludge system, membrane bio reactor, which has been practically used in general industry. For nuclear power plant, the activated sludge system has been developed, tested in its adaptability and the adequacy has been proved. Some preexisting treatment systems have been replaced with this activated sludge system for the first time in a domestic nuclear power plant, and the renewal system is now in operation. The result is reported. (author)

  13. Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel

    International Nuclear Information System (INIS)

    Tokalioglu, Serife; Oymak, Tuelay; Kartal, Senol

    2004-01-01

    A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG) 2 complex was eluted with 1 mol l -1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml -1 Na + , K + , Mg 2+ , Al 3+ and Fe 3+ ; 5000 μg ml -1 Ca 2+ ; 500 μg ml -1 Pb 2+ ; 125 μg ml -1 Zn 2+ ; 50 μg ml -1 Cu 2+ and 25 μg ml -1 Ni 2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l -1 , respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg -1 and 4.06 mg g -1 , respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples

  14. Preparation of Palladium-Impregnated Ceria by Metal Complex Decomposition for Methane Steam Reforming Catalysis

    Directory of Open Access Journals (Sweden)

    Worawat Wattanathana

    2017-01-01

    Full Text Available Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2 powders were synthesized by thermal decomposition of cerium(III complexes prepared by using cerium(III nitrate or cerium(III chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2 species than the materials prepared from cerium(III-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.

  15. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor

    International Nuclear Information System (INIS)

    Hedayati, Ali; Le Corre, Olivier; Lacarrière, Bruno; Llorca, Jordi

    2016-01-01

    Ethanol steam reforming (ESR) was performed over Pd-Rh/CeO 2 catalyst in a catalytic membrane reactor (CMR) as a reformer unit for production of fuel cell grade pure hydrogen. Experiments were performed at 923 K, 6–10 bar, and fuel flow rates of 50–200 μl/min using a mixture of ethanol and distilled water with steam to carbon ratio of 3. A static model for the catalytic zone was derived from the Arrhenius law to calculate the total molar production rates of ESR products, i.e. CO, CO 2 , CH 4 , H 2 , and H 2 O in the catalytic zone of the CMR (coefficient of determination R 2  = 0.993). The pure hydrogen production rate at steady state conditions was modeled by means of a static model based on the Sieverts' law. Finally, a dynamic model was developed under ideal gas law assumptions to simulate the dynamics of pure hydrogen production rate in the case of the fuel flow rate or the operating pressure set point adjustment (transient state) at isothermal conditions. The simulation of fuel flow rate change dynamics was more essential compared to the pressure change one, as the system responded much faster to such an adjustment. The results of the dynamic simulation fitted very well to the experimental values at P = 7–10 bar, which proved the robustness of the simulation based on the Sieverts' law. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, when fed online by the pure hydrogen generating reformer studied. - Highlights: • Ethanol steam reforming (ESR) experiments were performed in a Pd-Ag membrane reactor. • The model of the catalytic zone of the reactor was derived from the Arrhenius law. • The permeation zone (membrane) was modeled based on the Sieverts' law. • The Sieverts' law model showed good results for the range of P = 7–10 bar. • Pressure and fuel flow rate adjustments were considered for dynamic simulation.

  16. Palladium emissions in the environment: analytical methods, environmental assessment and health effects

    National Research Council Canada - National Science Library

    Alt, Friedrich; Zereini, Fathi

    2006-01-01

    ... (Eds)). But there is a clear lack of information concerning palladium. It is very important to condense the present state of research findings from emission to potential health risks for the environment and humans. Very important is the chapter about analytical determination of palladium, which shows clearly the problems of several analytic...

  17. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  18. Evidence for hydrogen-assisted recovery of cold-worked palladium: hydrogen solubility and mechanical properties studies

    Directory of Open Access Journals (Sweden)

    Maria Ferrer

    2017-07-01

    Full Text Available The influence of hydrogen as an agent to accelerate the thermal recovery of cold-worked palladium has been investigated. The techniques used to characterize the effects of hydrogen on the thermal recovery of palladium were hydrogen solubility and mechanical property measurements. Results show that the presence of modest amounts of hydrogen during annealing of cold-worked palladium does enhance the degree of thermal recovery, with a direct correlation between the amount of hydrogen during annealing and the degree of recovery. The results indicate that the damage resulting from cold-working palladium can be more effectively and efficiently reversed by suitable heat treatments in the presence of appropriate amounts of hydrogen, as compared to heat treatment in vacuum. The somewhat novel technique of using changes in the hydrogen solubility of palladium as an indicator of thermal recovery has been validated and complements the more traditional technique of mechanical property measurements.

  19. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-01

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

  20. Drinking water treatment using a submerged internal-circulation membrane coagulation reactor coupled with permanganate oxidation.

    Science.gov (United States)

    Zhang, Zhongguo; Liu, Dan; Qian, Yu; Wu, Yue; He, Peiran; Liang, Shuang; Fu, Xiaozheng; Li, Jiding; Ye, Changqing

    2017-06-01

    A submerged internal circulating membrane coagulation reactor (MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride (PACl) was used as coagulant, and a hydrophilic polyvinylidene fluoride (PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure (TMP), zeta potential (ZP) of the suspended particles in raw water, and KMnO 4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China (GB 5749-2006), as evaluated by turbidity (<1 NTU) and total organic carbon (TOC) (<5mg/L) measurements. Besides water flux, the removal of turbidity, TOC and dissolved organic carbon (DOC) in the raw water also increased with increasing TMP in the range of 0.01-0.05MPa. High ZP induced by PACl, such as 5-9mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity. However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1-2mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO 4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes. Copyright © 2016. Published by Elsevier B.V.

  1. Arsenic (III Adsorption Using Palladium Nanoparticles from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Farzaneh Arsiya

    2017-07-01

    Full Text Available The presence of Arsenic in drinking water is the greatest threat to health effects especially in water. The purpose of this study is application of green palladium nanoparticles for removal of trivalent Arsenic from aqueous solutions and also the impact of some factors such as retention time, pH, concentration of palladium nanoparticles and Arsenic concentrations was studied. The values for Arsenic removal from aqueous solutions were measured by furnace atomic adsorption spectrometry (Conter AA700. In the study, Langmuir and Freundlich isotherm models and pseudo-second order kinetic model were studied. The results of  optimization is shown that 0.5 g of nanoparticles can removed %99.8 of Arsenic with initial concentration of  0.5 g/l, in 5 minutes at pH=4. Langmuir model, Freundlich model (R2=0.94 and pseudo-second order kinetic model (R2=0.99 shown high correlation for removing of Arsenic from aqueous solutions. It was found, palladium nanoparticles can be used as an efficient method to remove Arsenic from aqueous solutions in a short time.

  2. γ-Diimine palladium(II based complexes mediated polymerization of methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Mahmoud Sunjuk

    2017-02-01

    Full Text Available The synthesis of new palladium(II complexes of the type [Pd(A–NC–ph–CN–ACl2] (4a–e (A = cyclohexyl (a, 2-isoprpropyl (b, pyrenyl (c, naphthyl (d, and 2,6-diisopropyl (e is described. The isolated γ-diimine ligands and their corresponding palladium(II complexes were characterized by their physical properties, elemental analysis, 1H NMR-, 13C NMR, and infrared spectroscopy. The palladium(II complexes (4a–e were employed successfully as catalysts for atom transfer radical polymerization (ATRP of methyl methacrylate (MMA in the presence of ethyl-2-bromoisobutyrate (EBIB as initiator at 90 °C. Polymerization with these catalyst systems afforded polymers with low molecular weight distribution (Mw/Mn and syndio-rich atactic poly (MMA with relatively higher [rr] diads.

  3. Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene

    Directory of Open Access Journals (Sweden)

    Emil Kowalewski

    2017-12-01

    Full Text Available This work investigates the catalytic properties of turbostratic carbon supported Pd catalyst in hydrodechlorination of trichloroethylene (TCE HDC in aqueous phase. 1.57 wt% Pd/C was thoroughly characterized by BET, TPHD, CO chemisorption, PXRD, STEM, XPS and used as the catalyst in removal of trichloroethylene from drinking water in batch and continuous-flow reactors. The studies showed that catalytic performance of Pd/C depended on the hydrophobicity and textural properties of carbon support, which influenced noble metal dispersion and increased catalyst tolerance against deactivation by chlorination. Palladium in the form of uniformly dispersed small (~3.5 nm nanoparticles was found to be very active and stable in purification of water from TCE both in batch and continuous-flow operation.

  4. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-03-30

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  5. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    International Nuclear Information System (INIS)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-01-01

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  6. Impact of the fouling mechanism on enzymatic depolymerization of xylan in different configurations of membrane reactors

    DEFF Research Database (Denmark)

    Mohd Sueb, Mohd Shafiq Bin; Luo, Jianquan; Meyer, Anne S.

    2017-01-01

    In order to maximize enzymatic xylan depolymerization while simultaneously purifying the resulting monosaccharide (xylose), different ultrafiltration (UF) membrane reactor configurations were evaluated. Initial results showed that the two hydrolytic enzymes required for complete depolymerization...... which hindered enzymatic attack in addition to fouling. Reaction with both enzymes followed by UF was found to be the optimal configuration, providing at least 40% higher xylan hydrolysis than the cascade configuration (involving sequential reaction with each of the enzymes separately......) and the simultaneous reaction-filtration with both enzymes, respectively. This study thus confirmed that the reactor configuration has a crucial impact on the performance of both the reaction and the separation process of xylose during enzymatic xylan degradation, and that the type of fouling mechanism varies...

  7. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  8. Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Alessandro Abbà

    2017-01-01

    Full Text Available A thermophilic aerobic membrane reactor (TAMR treating high-strength COD liquid wastes was submitted to an integrated investigation, with the aim of characterizing the biomass and its rheological behaviour. These processes are still scarcely adopted, also because the knowledge of their biology as well as of the physical-chemical properties of the sludge needs to be improved. In this paper, samples of mixed liquor were taken from a TAMR and submitted to fluorescent in situ hybridization for the identification and quantification of main bacterial groups. Measurements were also targeted at flocs features, filamentous bacteria, and microfauna, in order to characterize the sludge. The studied rheological properties were selected as they influence significantly the performances of membrane bioreactors (MBR and, in particular, of the TAMR systems that operate under thermophilic conditions (i.e., around 50°C with high MLSS concentrations (up to 200 gTS L−1. The proper description of the rheological behaviour of sludge represents a useful and fundamental aspect that allows characterizing the hydrodynamics of sludge suspension devoted to the optimization of the related processes. Therefore, in this study, the effects on the sludge rheology produced by the biomass concentration, pH, temperature, and aeration were analysed.

  9. Palladium-catalysed arylation of sulfonamide stabilised enolates

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2005-03-07

    Full Text Available Alpha-Arylation of inethanesulfonamides using palladium catalysis is described. For example, treatment of N-benzyl-Nmethylmethanesulfonamide with catalytic Pd (OAc) (2) in the presence of sodium tert-butoxide, triphenylphosphine and toluene afforded...

  10. Membrane-aerated biofilm reactor for the removal of 1,2-dichloroethane by Pseudomonas sp. strain DCA1.

    Science.gov (United States)

    Hage, J C; Van Houten, R T; Tramper, J; Hartmans, S

    2004-06-01

    A membrane-aerated biofilm reactor (MBR) with a biofilm of Pseudomonas sp. strain DCA1 was studied for the removal of 1,2-dichloroethane (DCA) from water. A hydrophobic membrane was used to create a barrier between the liquid and the gas phase. Inoculation of the MBR with cells of strain DCA1 grown in a continuous culture resulted in the formation of a stable and active DCA-degrading biofilm on the membrane. The maximum removal rate of the MBR was reached at a DCA concentration of approximately 80 micro M. Simulation of the DCA fluxes into the biofilm showed that the MBR performance at lower concentrations was limited by the DCA diffusion rate rather than by kinetic constraints of strain DCA1. Aerobic biodegradation of DCA present in anoxic water could be achieved by supplying oxygen solely from the gas phase to the biofilm grown on the liquid side of the membrane. As a result, direct aeration of the water, which leads to undesired coagulation of iron oxides, could be avoided.

  11. HE3 outgassing from four working palladium and uranium beds

    International Nuclear Information System (INIS)

    Souers, P. C.; Coronado, P. R.; Fearon, F. M.; Garza, R. G.; Shaw , J. F.; Stump, R. K.; Tsugawa, R. T.

    1988-01-01

    The He 3 output from two palladium and two uranium beds storing T 2 and D-T was studied as a function of time. Three of the beds were started new and watched for a year; the fourth bed was twelve years old. All four were beds used in routine tritium handling. Initial stoichiometries were PdT/sub 0.3/ and UT/sub 0.7/ so that both operated at similar 1 to 130 kPa pressures. The He 3 from palladium ranged from the 0.002 mo1% lower level of sensitivity to 0.01% for PdT 2 at one year of age. The UT system showed 0.1% He 3 at 4 to 62 days and 0.1 to 10% at longer times, with the first cuts being high in He 3 . The palladium bed with 95 to 97% pure T 2 enriches the output to as high as 97 to 99%. 9 refs., 1 fig., 2 tabs

  12. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  13. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.

    Science.gov (United States)

    Kumar, Amit; Vercruyssen, Aline; Dewulf, Jo; Lens, Piet; Van Langenhove, Herman

    2012-01-01

    A membrane biofilm reactor (MBfR) was investigated for the degradation of trichloroethylene (TCE) vapors inoculated by Burkholderia vietnamiensis G4. Toluene (TOL) was used as the primary substrate. The MBfR was loaded sequentially with TOL, TCE (or both) during 110 days. In this study, a maximum steady-state TCE removal efficiency of 23% and a maximum volumetric elimination capacity (EC) of 2.1 g m(-3) h(-1) was achieved. A surface area based maximum elimination capacity (EC(m)) of 4.2 × 10(-3) g m(-2) h(-1) was observed, which is 2-10 times higher than reported in other gas phase biological treatment studies. However, further research is needed to optimize the TCE feeding cycle and to evaluate the inhibiting effects of TCE and its intermediates on TOL biodegradation.

  14. Noise temperature measurements for the determination of the thermodynamic temperature of the melting point of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Edler, F.; Kuhne, M.; Tegeler, E. [Bundesanstalt Physikalisch-Technische, Berlin (Germany)

    2004-02-01

    The thermodynamic temperature of the melting point of palladium in air was measured by noise thermometric methods. The temperature measurement was based on noise comparison using a two-channel arrangement to eliminate parasitic noises of electronic components by cross correlation. Three miniature fixed points filled with pure palladium (purity: {approx}99.99%, mass: {approx}90 g) were used to realize the melts of the fixed point metal. The measured melting temperature of palladium in air amounted to 1552.95 deg C {+-} 0.21 K (k = 2). This temperature is 0.45 K lower than the temperature of the melting point of palladium measured by radiation thermometry. (authors)

  15. Preparation of palladium impregnated alumina adsorbents: Thermal and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Sumanta; Gupta, N.K.; Roy, S.P.; Dash, S.; Kumar, A.; Bamankar, Y.R.; Rao, T.V. Vittal [Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, N. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Naik, Y., E-mail: ynaik@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-02-10

    Highlights: • Pd/Al{sub 2}O{sub 3} composite microspheres particles with high surface area were prepared sol–gel process. • Scanning electron microscopy (SEM) studies on silver coated particle. • Content of the palladium was determined using Neutron Activation Analysis (NAA). • Decomposition study has been done by quadrupole mass analyser. - Abstract: Pd/Al{sub 2}O{sub 3} composite microspheres particles with high surface area were prepared sol–gel process. The decomposition of dried gel-particles was studied by TGA/DTA and FT-IR technique. TGA studies indicated that formation of palladium is marked by a broad exothermic peak with a loss of water and oxidation of trapped HMTA/Urea nitrate mixture. The main decomposition reaction took place in the temperature range of 660–1250 K in helium and relatively lower temperature of 400 K to 1250 K in oxygen. Optical microscopy indicated that the distribution of palladium is uniform. SEM studies on silver coated particle indicated that there was surface erosion of some gel spheres while in few of them micro cracks were seen at high resolution. Content of the palladium was determined using Neutron Activation Analysis (NAA). Decomposition at various temperatures was studied using Residual gas analyser and decomposition species were identified using quadrupole mass analyser.

  16. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    Science.gov (United States)

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  17. Palladium-Catalyzed Asymmetric Quaternary Stereocenter Formation

    NARCIS (Netherlands)

    Gottumukkala, Aditya L.; Matcha, Kiran; Lutz, Martin; de Vries, Johannes G.; Minnaard, Adriaan J.

    2012-01-01

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of beta,beta-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl2, PhBOX, and AgSbF6, and

  18. Palladium-catalyzed asymmetric quaternary stereocenter formation

    NARCIS (Netherlands)

    Gottumukkala, A.L.; Matcha, K.; Lutz, M.; de Vries, J.G.; Minnaard, A.J.

    2012-01-01

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of β,β-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl2, PhBOX, and AgSbF6, and provides

  19. Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens

    KAUST Repository

    Yates, Matthew D.

    2013-09-03

    Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell reuse. The DMRB Geobacter sulfurreducens was shown here to reduce soluble Pd(II) to Pd(0) nanoparticles primarily outside the cell, reducing the toxicity of metal ions, and allowing nanoparticle recovery without cell destruction that has previously been observed using other microorganisms. Cultures reduced 50 ± 3 mg/L Pd(II) with 1% hydrogen gas (v/v headspace) in 6 h incubation tests [100 mg/L Pd(II) initially], compared to 8 ± 3 mg/L (10 mM acetate) without H2. Acetate was ineffective as an electron donor for palladium removal in the presence or absence of fumarate as an electron acceptor. TEM imaging verified that Pd(0) nanoparticles were predominantly in the EPS surrounding cells in H2-fed cultures, with only a small number of particles visible inside the cell. Separation of the cells and EPS by centrifugation allowed reuse of the cell suspensions and effective nanoparticle recovery. These results demonstrate effective palladium recovery and nanoparticle production using G. sulfurreducens cell suspensions and renewable substrates such as H2 gas. © 2013 American Chemical Society.

  20. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    Directory of Open Access Journals (Sweden)

    Jakub Saadi

    2016-06-01

    Full Text Available Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II back to palladium(0 which is apparently achieved by the present triethylamine.

  1. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  2. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor.

    Science.gov (United States)

    Xia, Siqing; Liang, Jun; Xu, Xiaoyin; Shen, Shuang

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.

  3. Anionic Palladium(0) and Palladium(II) Ate Complexes.

    Science.gov (United States)

    Kolter, Marlene; Böck, Katharina; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2017-10-16

    Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L 3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br - ions to afford the anionic, zero-valent ate complex [L 3 PdBr] - . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L 3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the Pd II ate complex [L 2 Pd(Ar)I 2 ] - . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  5. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    International Nuclear Information System (INIS)

    Salcedo, K L; Rodriguez, C A; Perez, F A; Riascos, H

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al 2 O 3 ) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  6. Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions.

    Directory of Open Access Journals (Sweden)

    Helen L Parker

    Full Text Available The metal accumulating ability of plants has previously been used to capture metal contaminants from the environment; however, the full potential of this process is yet to be realized. Herein, the first use of living plants to recover palladium and produce catalytically active palladium nanoparticles is reported. This process eliminates the necessity for nanoparticle extraction from the plant and reduces the number of production steps compared to traditional catalyst palladium on carbon. These heterogeneous plant catalysts have demonstrated high catalytic activity in Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo-, bromo- and chloro- moieties.

  7. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor

    CSIR Research Space (South Africa)

    Baloyi, Liberty N

    2016-12-01

    Full Text Available stainless steel (PSS) is evaluated for the production of hydrogen and the potential replacement of the current two-stage Water-Gas Shift (WGS) reaction by a single stage reaction. The permeability of a 20 µm Pd–Ag membrane reactor was examined at 320 °C, 380...

  8. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Intraparticle mass transport

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  9. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Intraparticle Mass Transport

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  10. Superconductivity and the structural phase transitions in palladium hydride and palladium deuteride

    International Nuclear Information System (INIS)

    Standley, R.W.

    1980-01-01

    The results of two experimental studies of the superconducting transition temperature, T/sub c/, of palladium hydride, PdH/sub x/, and palladium deuteride, PdD/sub x/, are presented. In the first study, the superconducting transition temperature of PdH/sub x/(D/sub x/) is studied as a function of H(D) concentration, x, in the temperature range from 0.2 K to 4K. The data join smoothly with those reported previously by Miller and Satterthwaite at higher temperatures, and the composite data are described by the empirical relation T/sub c/ = 150.8 (x-x/sub o/) 2 244 , where x/sub o/ = 0.715 for hydride samples and 0.668 for deuteride samples. The results, when compared with the theoretical predictions of Klein and Papaconstantopoulos, et al., raise questions about the validity of their explanation of the reverse isotope effect, which is based solely on a difference in force constants. In the second study, the effect of the order-disorder structural transition associated with the 50 K anomaly on the superconductivity of PdH/sub x/(D/sub x/) is investigated. Samples were quenched to low temperatures in the disordered state, and their transition temperatures measured. The samples were then annealed just below the anomaly temperature, and the ordering process followed by monitoring the change in sample resistance. The transition temperatures in the ordered state were then measured

  11. Camphyl-based α-diimine palladium complexes: highly efficient precatalysts for direct arylation of thiazoles in open-air.

    Science.gov (United States)

    Chen, Fu-Min; Lu, Dong-Dong; Hu, Li-Qun; Huang, Ju; Liu, Feng-Shou

    2017-07-21

    Based on the strategy of the development of phosphine-free palladium-catalyzed direct C-H arylation, a series of camphyl-based α-diimine palladium complexes bearing sterically bulky substituents were synthesized and characterized. The palladium complexes were applied for the cross-coupling of thiazole derivatives with aryl bromides. The effect of the sterically bulky substituent on the N-aryl moiety as well as the reaction conditions was screened. Under the optimal protocols, a wide range of aryl bromides can be smoothly coupled with thiazoles in good to excellent yields in the presence of a low palladium loading of 0.2 mol% under open-air conditions.

  12. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao

    2016-05-31

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  13. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao; Zeng, Gaofeng; Lai, Zhiping; Huang, Kuo-Wei

    2016-01-01

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  14. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng

    2012-11-07

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In-situ observation of deuteride formation in palladium electrochemical cathode by X-ray diffraction method

    International Nuclear Information System (INIS)

    Yamamoto, Takao; Oka, Takashi; Taniguchi, Ryoichi

    1990-01-01

    In-situ X-ray diffraction observation of palladium foil cathode (10 μm) was carried out during electrolysis of 0.1N-LiOD heavy water solution in order to estimate the deuterium content in palladium during the detection of charged particles in our previous work. A complete transformation into β-palladium deuteride phase was observed, and its maximum lattice constant 4.06 A was evaluated as corresponding to D/Pd = 0.73. The deuterium concentration in the previous work was estimated as higher than this considering the difference in cell conditions. (author)

  16. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  17. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  18. Fabrication of Polybenzimidazole/Palladium Nanoparticles Hollow Fiber Membranes for Hydrogen Purification

    KAUST Repository

    Villalobos, Luis Francisco; Hilke, Roland; Akhtar, Faheem Hassan; Peinemann, Klaus-Viktor

    2017-01-01

    in the form of ions that coordinate to the imidazole groups of the polymer. This is attractive for membrane production because agglomeration of nanoparticles is minimized and the high-cost metal is incorporated in only the selective layer—where it is required

  19. Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Wu, Ranran; Tian, Xiaochun; Xiao, Yong

    2018-01-01

    of formate with 200 mV less over-potential. Notably they show unique selective activity toward electrochemical oxidation of formate, whereas no electrochemical catalysis was found for oxidation of ethanol, methanol and acetate. This work demonstrates a sustainable and low-cost method for producing efficient......Production of molecular scale palladium (Pd) nanoparticles (NPs) is important due to their catalytic function in electrochemical oxidation of a number of core fuel molecules in fuel cells. Biogenic methods offer an economic and environmentally friendly synthesis route. In this work...... membrane surface. Mapping by conductive atomic force microscopy shows that the presence of these PdNPs promotes electron transfer and enhances the electric conductivity of the cells. Compared to electrodeposited PdNPs, PdNPs generated by S. oneidensis MR-1 catalyze electrochemically the oxidation...

  20. Controlled immobilization of palladium nanoparticles in two different fluorinated polymeric aggregate cores and their application in catalysis

    DEFF Research Database (Denmark)

    Kijima, Tetsushi; Javakhishvili, Irakli; Jankova Atanasova, Katja

    2012-01-01

    Fluoroalkyl end-capped betaine-type cooligomeric nanocomposites-immobilized palladium nanoparticles were prepared by the reactions of palladium chloride with sodium acetate in the presence of sodium chloride and the corresponding fluorinated cooligomers. Outer blocks of poly(2,3,4,5,6-pentafluoro....... These fluorinated nanocomposites-immobilized palladium nanoparticles were also applied to the catalysts for Suzuki-Miyaura cross-coupling reaction, and the different reactivity between these nanocomposites was observed....

  1. Analysis of the anomalous hydrogen solubilities in deformed palladiums

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choong Nyeon; Lee, Ho Jong

    1987-02-01

    The anomalous hydrogen solubilities in the deformed palladiums were analyzed by empolying modified Kirchheim's model with considering the partially coherent strain energy which would induced during hydride precipitation around edge dislocations. The dislocation densities, obtained by this model, of the various cold worked and/or reversible US transformed palladium samples were the order of 10/sup 11/cm/sup -2/. The partially coherent strain energies were about 3 kJ/molH and nearly same in the various samples. This value could be compared with the incoherent strain energy, 0.4kJ/molH, which was obtained from the hysteresis on P-C isotherm, and the coherent strain energy calulated, 9.6kJ/molH.

  2. Tetradentate N2O2 Chelated Palladium(II Complexes: Synthesis, Characterization, and Catalytic Activity towards Mizoroki-Heck Reaction of Aryl Bromides

    Directory of Open Access Journals (Sweden)

    Siti Kamilah Che Soh

    2013-01-01

    Full Text Available Four air and moisture-stable palladium(II-Schiff base complexes, N,N′-bis(α-methylsalicylidenepropane-1,3-diamine palladium(II (2a, N,N′-bis(4-methyl-α-methylsalicylidenepropane-1,3-diamine palladium(II (2b, N,N′-bis(3,5-di-tert-butylsalicylidenepropane-1,3-diamine palladium(II (2c, and N,N′-bis(4-methoxy-salicylidenepropane-1,3-diamine palladium(II (2d, have been successfully synthesised and characterised by CHN elemental analyses and conventional spectroscopic methods. These complexes were investigated as catalysts in the phosphine-free Mizoroki-Heck cross-coupling reactions of aryl bromides with methyl acrylate.

  3. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  4. Green synthesis of palladium nanoparticles with carboxymethyl cellulose for degradation of azo-dyes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Li, Yun; Wang, Zhengdong; Liu, Huihong, E-mail: huihongliu@126.com

    2017-02-01

    Palladium nanoparticles (PdNPs) were synthesized through friendly environmental method using PdCl{sub 2} and carboxymethyl cellulose (CMC) in an aqueous solution (pH 6) at controlled water bath (80 °C) for 30 min. CMC functioned as both reducing and stabilizing agent. The characterization through high resolution-transmission electron microscopic (HRTEM) and X-ray Fluorescence Spectrometry (XRF) inferred that the as-synthesized PdNPs were spherical in shape with a face cubic crystal (FCC) structure. The results from dynamic light scattering (DLS) suggested the PdNPs had the narrow size distribution with an average size of 2.5 nm. The negative zeta potential (−52.6 mV) kept the as-synthesized PdNPs stable more than one year. The PdNPs showed the excellent catalytic activity by reducing degradation of azo-dyes, such as p-Aminoazobenzene, acid red 66, acid orange 7, scarlet 3G and reactive yellow 179, in the present of sodium borohydride. - Highlights: • Green synthesis of palladium nanoparticles using carboxymethyl cellulose. • The synthesis of palladium nanoparticles were performed easily. • Carboxymethyl cellulose acts as both reducing and stabilization agents. • The as-synthesized palladium nanoparticles show excellent catalytic activity.

  5. Optimization of the biological process using flat membrane bioreactors. Maximum treatment performance with minimum reactor volume; Optimizacion del proceso biologico con BRM de membrana plana. Maximo rendimiento de depuracion con minimo volumen de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lluch Vallmithana, S.; Lopez Gavin, A.

    2006-07-01

    In a conventional activated sludge process, the membranes are inside the biological reactor where they drain the water through suction or a water column. This system can be operated with heavy loads and sludge of 12-14 g/l or more, and is not affected by problems of bulking or foaming. This makes it suitable for treating difficult industrial waste waters, providing treated water that is free of bacteria and viruses. Micro filtration membranes are flat without any rubbing between them. The membranes require infrequent chemical cleaning and do not need back washing. As no final sedimented is needed, the waste water treatment plant occupies less space. (Author)

  6. Reactor vessel using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  7. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  8. Control rod for nuclear reactor

    International Nuclear Information System (INIS)

    Tada, Kaoru; Kawano, Shohei

    1998-01-01

    A guide roller is prepared by forming an oxide membrane on the surface of a molded roller product comprising, as a material, a deposition-reinforced type nickel-based alloy reinforced by deposition of fine particles by applying a heat treatment to a nickel-based alloy. When the guide roller is used in reactor water, since the roller has an oxide membrane on the surface, leaching of nickel to reactor water is reduced, and radioactive corrosive products including cobalt 58 are reduced to decrease an operator's exposure dose upon periodical inspections of a plant. The oxide membrane is formed by applying heat treatment under an oxidative atmosphere. Then, the amount of abrasion of pins and rollers in association with start-up or shut down of a reactor and control of the power can be reduced thereby enabling to suppress increase of radiation dose due to cobalt 60 and cobalt 58. (N.H.)

  9. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  10. Sulphur containing novel extractants for extraction-separation of palladium (II)

    International Nuclear Information System (INIS)

    Shukla, J.P.; Sawant, S.R.; Anil Kumar; Singh, R.K.

    1995-01-01

    Extraction performance of palladium (II) by sulphur containing extragents has unequivocally established their strong extraction ability toward this thiophilic soft metal. Hence a comprehensive investigative study was initiated by us to examine selective reversible extraction-separation of trace and macro amounts of palladium (II) from both aqueous nitric acid as well as hydrochloric acid media into 1,2-dichloroethane by 1,10-dithia-18 crown-6 (1,10-DT18C6), S 6 -pentano-36 (S 6 -P-36) and bis (2-ethylhexyl) sulphoxide (BESO) dissolved in toluene. From the study of aqueous phase acidity, reagent concentration, period of equilibration, diluent, strippant and diverse ions, conditions are established from its quantitative and reversible extraction. Recovery of Pd(II) from loaded thiacrown and sulphoxide phase is easily accomplished by using sodium thiocyanate, ammonium thiocyanate, thiourea, sodium thiosulphate and mixture of (2M Na 2 CO 3 + 0.5 NH 4 OH) (only for BESO) as the strippants. The lack of interference from even appreciable amounts of contaminants like 137 Cs, 106 Ru, 233 U and 239 Pu may be considered as one of the outstanding advantages of the method. Application of these extractants has been successfully tested for the recovery of palladium from high active waste matrix. The extracted complex from both the thiacrowns has been characterized by elemental analyses and UV-Visible spectra, confirmed to be PdA 2 .T (A = NO - 3 , Cl - ) from dilute (pH ∼ 2) acid solutions while composition of organic species with palladium for the sulphoxide, has also been confirmed to be disolvate of the type Pd(NO 3 ) 2 .2BESO. (author). 52 refs., 6 tabs., 6 figs

  11. Exergy analysis of a hydrogen fired combined cycle with natural gas reforming and membrane assisted shift reactors for CO2 capture

    International Nuclear Information System (INIS)

    Atsonios, K.; Panopoulos, K.D.; Doukelis, A.; Koumanakos, A.; Kakaras, Em.

    2012-01-01

    Highlights: ► Exergy analysis of NGCC with CCS. ► WGS-MR: exergetically efficient technology for CCS, less than 2% total exergy losses. ► 10% of total exergy dissipation in the ATR. ► Optimization of ATR operation and CO 2 stream treatment. - Abstract: Hydrogen production from fossil fuels together with carbon capture has been suggested as a means of providing a carbon free power. The paper presents a comparative exergetic analysis performed on the hydrogen production from natural gas with several combinations of reactor systems: (a) oxy or air fired autothermal reforming with subsequent water gas shift reactor and (b) membrane reactor assisted with shift catalysts. The influence of reactor temperature and pressure as well as operating parameter steam-to-carbon ratio, is also studied exergetically. The results indicate optimal power plant configurations with CO 2 capture, or hydrogen delivery for industrial applications.

  12. Insight into effects of antibiotics on reactor performance and evolutions of antibiotic resistance genes and microbial community in a membrane reactor.

    Science.gov (United States)

    Wen, Qinxue; Yang, Lian; Zhao, Yaqi; Huang, Long; Chen, Zhiqiang

    2018-04-01

    A lab-scale anoxic/oxic-membrane bioreactor was designed to treat antibiotics containing wastewater at different antibiotics concentrations (0.5 mg/L, 1 mg/L and 3 mg/L of each antibiotic). Overall COD and NH 4 + N removal (more than 90%) were not affected during the exposure to antibiotics and good TN removal was also achieved, while TP removal was significantly affected. The maximum removal efficiency of penicillin and chlorotetracycline reached 97.15% and 96.10% respectively due to strong hydrolysis, and sulfamethoxazole reached 90.07% by biodegradation. However, 63.87% of norfloxacin maximum removal efficiency was achieved mainly by sorption. The system had good ability to reduce ARGs, peaking to more than 4 orders of magnitude, which mainly depended on the biomass retaining of the membrane module. Antibiotics concentration influenced the evolution of ARGs and bacterial communities in the reactor. This research provides great implication to reduce ARGs and antibiotics in antibiotics containing wastewater using A/O-MBR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Impurities determination in precious metals like rhodium, palladium and platinum by neutron activation without separation

    International Nuclear Information System (INIS)

    May, S.; Piccot, D.; Pinte, G.

    1978-01-01

    The possibilities of the method explored using an installation of gamma or X ray spectrometry of good performance. The irradiations were realized in the reactors EL.3 (flux approximately 6.10 12 n.cm -2 .s -1 ) and Osiris (flux > 10 14 n.cm -2 .s -1 ) of the CEN Saclay. In rhodium the presence of iridium limits the analysis possibilities. However gold, silver and platinum are easily determined, just as the other elements (As, Br, Cl, Co, Mn, Na, Sb). In platinum it is possible to determine the elements of long period, especially antimony, silver, cobalt, iridium, tantalum and zinc. As for palladium the principal impurities are gold, silver and ruthenium for what is of precious metals and particularly zinc among the other metals. For the three matrices considered the detection limits of a certain number of elements are indicated [fr

  14. Investigation of high temperature reactions on solid substrates with Rutherford backscattering spectrometry: interaction of palladium with selenium on heated graphite surfaces

    International Nuclear Information System (INIS)

    Majidi, V.; Robertson, J.D.

    1991-01-01

    Selenium and palladium interactions on heated pyrolytically coated graphite substrates were investigated using Rutherford backscattering spectrometry. The studies were performed using selenium alone, palladium alone, and a combination of selenium and palladium deposited on the graphite substrates. The results indicate that palladium instantaneously stabilizes selenium at ambient temperatures and prevents the diffusion of selenium into the graphite. As the substrate is heated, temperature dependent diffusion of all analytes into the graphite is observed. Furthermore, it appears that the stabilization of selenium is due to the formation of a stoichiometric compound with palladium and oxygen. This compound decomposes at a temperature between 1070 and 1770 K. (author)

  15. Investigation of high temperature reactions on solid substrates with Rutherford backscattering spectrometry: interaction of palladium with selenium on heated graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, V.; Robertson, J.D. (Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry)

    1991-01-01

    Selenium and palladium interactions on heated pyrolytically coated graphite substrates were investigated using Rutherford backscattering spectrometry. The studies were performed using selenium alone, palladium alone, and a combination of selenium and palladium deposited on the graphite substrates. The results indicate that palladium instantaneously stabilizes selenium at ambient temperatures and prevents the diffusion of selenium into the graphite. As the substrate is heated, temperature dependent diffusion of all analytes into the graphite is observed. Furthermore, it appears that the stabilization of selenium is due to the formation of a stoichiometric compound with palladium and oxygen. This compound decomposes at a temperature between 1070 and 1770 K. (author).

  16. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  17. In vitro permeation of palladium powders through intact and damaged human skin.

    Science.gov (United States)

    Crosera, Matteo; Mauro, Marcella; Bovenzi, Massimo; Adami, Gianpiero; Baracchini, Elena; Maina, Giovanni; Larese Filon, Francesca

    2018-05-01

    The use of palladium (Pd) has grown in the last decades, commonly used in automotive catalytic converters, jewellery and dental restorations sectors. Both general and working population can be exposed to this metal, which may act as skin sensitizer. This study investigated in vitro palladium powders permeation through excised intact and damaged human skin using the Franz diffusion cell method and the effect of rapid skin decontamination using sodium laureth-sulphate. 1 mL of a 10 min sonicated suspension made of 2.5 g of Pd powder in 50 mL synthetic sweat at pH 4.5 and room temperature was applied to the outer surface of the skin membranes for 24 h. Pd permeation, assessed by ICP-MS, was higher when damaged skin was used (p = 0.03). Final flux permeation values and lag times were 0.02 ± 0.01 μg cm -2  h -1 and 6.00 ± 3.95 h for intact, and 0.10 ± 0.02 μg cm -2  h -1 and 2.05 ± 1.49 h for damaged skin samples, respectively. Damaged skin protocol enhances Pd skin penetration inside dermal layer (p = 0.04), thus making the metal available for systemic uptake. Pd penetration (p = 0.02) and permeation (p = 0.012) through intact skin decreased significantly when a cleaning procedure was applied. This study demonstrates that after skin exposure to Pd powders a small permeation of the metal happen both through intact and damaged skin and that an early decontamination with a common cleanser can significantly decrease the final amount of metal available forsystemic uptake. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  19. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    Science.gov (United States)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this

  20. The Membrane Gradostat Reactor: Secondary metabolite production ...

    African Journals Online (AJOL)

    This manuscript focuses on the aspect of a membrane gradostat as an entirely different concept compared to submerged hollow fibre modules. The use of membrane bioreactor (MBR) technology is rapidly advancing in the wastewater treatment industries. However, this is not the case in the biopharmaceutical ...

  1. A review of investigations on wastewater treatment with MSOBR (membrane supported and oxygenated biofilm reactors); Una revision de las investigaciones sobre el tratamiento de aguas residuales con RBSOM (reactores de biopelicula que emplean membranas con material soporte y medio de oxigenacion)

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Garcia, A. L.; Tejero Monzon, I.

    2007-07-01

    MSOBR (membrane supported and oxygenated biofilm reactors) are biological reactors for wastewater treatment in which biofilm support and oxygenation functions are carried out by gas permeable membranes. In these conditions, with oxygen and substratum (carbonaceous, nitroge neous) diffusing into the biofilm from opposite sides, different environments are developed inside the biofilm, allowing simultaneous nitrification, denitrification and carbon removal. Other added advantages, such us the possibility of a high oxygen transfer efficiency or those derived from the absence of bubbles in aeration (minimizing foaming and VOC emissions), have lead numerous research groups to work in the development of different MSOBR systems, with promising results that make possible to consider their practical applicability in the near future. (Author) 69 refs.

  2. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis

    2011-01-01

    was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) with a working volume of ∼190 μL. The prototype also contained the necessary sensors and actuators, i.e., pressure transducer, mixing via magnetic stirrer bar and a temperature controller. The functionality of the prototype...... was demonstrated by performing a continuous enzymatic degradation of pectin experiment for a range of reactor conditions: different membrane molecular weight cutoff (MWCO) values, enzyme-to-substrate ratios (E/S), and substrate feeding rates (F) were assessed. Based on the experimental data, it was found...

  3. Processing test of an upgraded mechanical design for PERMCAT reactor

    International Nuclear Information System (INIS)

    Borgognoni, Fabio; Demange, David; Doerr, Lothar; Tosti, Silvano; Welte, Stefan

    2010-01-01

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H 2 O and D 2 .

  4. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  5. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Directory of Open Access Journals (Sweden)

    Yao Weilin

    2016-01-01

    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  6. Development of Hydrogen Separation Module with Structured Catalyst for Use in Membrane Reformer

    International Nuclear Information System (INIS)

    Isamu Yasuda; Tatsuya Tsuneki; Yoshinori Shirasaki; Toru Shimamori; Hidekazu Shigaki; Hiroyuki Tanaka

    2006-01-01

    A new type of hydrogen separation module for use in a membrane reformer was proposed and developed. The new module, what we call MOC (Membrane On Catalyst), was designed to have a membrane of palladium-based alloy prepared on the surface of the tubular structured catalyst that has catalytic activity for steam reforming reaction, thermal expansion matching with the membrane material, proper porosity, mechanical strength and thermal conductivity. The best composition of the structured catalyst was identified in the composites of metallic Ni and YSZ (Yttria-Stabilized Zirconia). A hydrogen separation module was manufactured by electroless plating of Pd with thickness of 7 to 15 microns on the surface of porous sintered tube of Ni-YSZ with an approximate size of 9 mm in diameter and 100 mm in length. The hydrogen permeability measurements have shown hydrogen flux of 25 to 35 cc/min at 550 to 600 C, which is higher than the permeability of the conventional modules using rolled Pd film. (authors)

  7. Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Douglas M. Davenport

    2016-01-01

    Full Text Available Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading of adsorptive and catalytic materials. By applying surface modification techniques, synthetic membranes with different functionality (carboxyl, amine, and nanoparticle-based were obtained. These functionalities provide an opportunity to fine-tune the membrane surface properties such as charge and reactivity. The incorporation of stimuli-responsive acrylic polymers (polyacrylic acid or sodium polyacrylate in membrane pores also results in tunable pore size and ion-exchange capacity. This provides the added benefits of adjustable membrane permeability and metal capture efficiency. The equilibrium and dynamic binding capacity of these functionalized spongy membranes were studied via calcium ion-exchange. Iron/palladium catalytic nanoparticles were immobilized in the polymer matrix in order to perform the challenging degradation of the environmental pollutant trichloroethylene (TCE.

  8. Hydrogenation of carbon monoxide over supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Hashimoto, H.; Kunugi, T.

    1978-03-01

    An alumina-supported 2% palladium catalyst had higher activity for carbon monoxide hydrogenation than a silica-supported 2% palladium catalyst, at 250/sup 0/-400/sup 0/C and 1 atm. The addition of lanthanum oxide or thorium oxide, but not of potassium oxide, to the silica-supported catalyst increased the conversion at 350/sup 0/C from 1.1% to 81.0% with a selectivity of 56.1% for methane, 1.4% for C/sub 2/ compounds, 0.1% for C/sub 3/ compounds, and 42.5% for carbon dioxide. Temperature-programed desorption of carbon monoxide in a hydrogen stream showed that of two desorption peaks observed for carbon monoxide, the one at higher temperature corresponded to the carbon monoxide species which hydrogenates to methane and that the area of this peak increased with increasing thorium content of the catalyst. Graphs, tables, and 12 references.

  9. Method for palladium activating molybdenum metallized features on a ceramic substrate

    International Nuclear Information System (INIS)

    Kumar, A.H.; Schwartz, B.

    1985-01-01

    A molybdenum or tungsten metallurgical pattern is formed on or in a dielectric green sheet. Palladium, nickel, platinum or rhodium is coated on a layer of polyvinyl butyral which is carried on a polyester film. The metal layer of this assembly is laminated to a dielectric green sheet which carries the molybdenum or tungsten metallurgy. The polyester film is stripped off. The resulting assembly is sintered to a fired structure, whereby the polyvinyl butyral is volatilized off and the palladium, nickel, platinum or rhodium is alloyed with the molybdenum or tungsten metallurgy to provide a densified metallurgy whose surface is free of glass

  10. Determination of palladium by flame photometry; Determinacion de paladio por fotometria de llama

    Energy Technology Data Exchange (ETDEWEB)

    Parallada Bellod, R

    1964-07-01

    A study on the determination of palladium by lame photometry, fixing the most convent experimental conditions and using solvents to increase the emission of this elements is carried out. Among the organic solvents, acetone has been found the most efficient. The interferences produced by anions and cations have also been studied and an analytical method is related, in which lines of calibration of 0 to 100 ppm palladium re used. (Author) 7 refs.

  11. Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers

    Energy Technology Data Exchange (ETDEWEB)

    Kracker, Michael, E-mail: Michael.Kracker@uni-jena.de; Worsch, Christian; Ruessel, Christian [Otto-Schott-Institut, Jena University (Germany)

    2013-04-15

    Thin layers of palladium with a thickness of 5 nm were sputtered on fused silica substrates. Subsequently, the coated glasses were annealed at a temperature of 900 Degree-Sign C for 1 h. This resulted in the formation of small and well-separated palladium nanoparticles with diameters in the range from 20 to 200 nm on the glass surface. The existence of a palladium oxide layer can be detected using optical absorption spectroscopy. Purging with hydrogen leads to an irreversible change in the optical spectra due to the reduction of PdO to metallic palladium. Changing the gas atmosphere from hydrogen to argon leads to significant reversible changes in the optical properties of the particle layer. Based on Mie theory and the respective dielectric functions, the spectra were calculated using the real particle size distribution, weighted dispersions relation to adapt the geometrical conditions and complex dielectric functions of palladium and palladium hydride. A good agreement with measured spectra was found and the dependency of the surrounding media can be explained.Graphical Abstract.

  12. Membrane modification to avoid wettability changes due to protein adsorption in an emulsion/membrane bioreactor.

    NARCIS (Netherlands)

    Schroen, C.G.P.H.; Wijers, M.C.; Cohen Stuart, M.A.; Padt, van der A.; Riet, van 't K.

    1993-01-01

    This study addresses problems encountered with an emulsion/membrane bioreactor. In this reactor, enzyme- (lipase) catalyzed hydrolysis in an emulsion was combined with two in-line separation steps. One is carried out with a hydrophilic membrane, to separate the water phase, the other with a

  13. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  14. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  15. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  16. Behavior of palladium and its impact on intermetallic growth in palladium-coated Cu wire bonding

    International Nuclear Information System (INIS)

    Xu Hui; Qin, Ivy; Clauberg, Horst; Chylak, Bob; Acoff, Viola L.

    2013-01-01

    This paper describes the behavior of palladium in palladium-coated Cu (PdCu) wire bonding and its impact on bond reliability by utilizing transmission electron microscopy (TEM). A Pd layer approximately 80 nm thick, which is coated on the surface of Cu wire, dissolves into the Cu matrix during ball formation (under N 2 gas protection) when the wire tip is melted to form a ball. As a result of dissolving the very thin Pd layer into the ball, Pd is almost undetectable along the entire bond interface between the ball and the Al pad. The behavior of Pd during thermal aging in air, however, is different for central and peripheral interfaces. At the central interface, less than 5 at.% Pd is present after 168 h aging at 175 °C. At the periphery, however, Pd diffuses back and congregates, reaching a level of ∼12 at.% after 24 h, and a Pd-rich (Cu,Pd) 9 Al 4 layer (>40 at.% Pd) forms after 168 h. Pd acts substitutionally in Cu 9 Al 4 but cannot penetrate into the CuAl 2 or CuAl. By comparison of intermetallic thickness and interfacial morphology between PdCu and bare Cu wire bonds, it is concluded that the presence of Pd reduces intermetallic growth rate, and is associated with numerous nanovoids in PdCu bonds.

  17. Tritium evolution from various morphologies of palladium

    International Nuclear Information System (INIS)

    Tuggle, D.G.; Claytor, T.N.; Taylor, S.F.

    1994-01-01

    The authors have been able to extend the tritium production techniques to various novel morphologies of palladium. These include small solid wires of various diameters and a type of pressed powder wire and a plasma cell. In most successful experiments, the amount of palladium required, for an equivalent tritium output, has been reduced by a factor of 100 over the older powder methods. In addition, they have observed rates of tritium production (>5 nCi/h) that far exceed most of the previous results. Unfortunately, the methods that they currently use to obtain the tritium are poorly understood and consequently there are numerous variables that need to be investigated before the new methods are as reliable and repeatable as the previous techniques. For instance, it seems that surface and/or bulk impurities play a major role in the successful generation of any tritium. In those samples with total impurity concentrations of >400 ppM essentially no tritium has been generated by the gas loading and electrical simulation methods

  18. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  19. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  20. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  1. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate

    Czech Academy of Sciences Publication Activity Database

    Polívková, M.; Válová, M.; Siegel, J.; Rimpelová, S.; Hubáček, Tomáš; Lyutakov, O.; Švorčík, V.

    2015-01-01

    Roč. 5, č. 90 (2015), s. 73767-73774 ISSN 2046-2069 Institutional support: RVO:60077344 Keywords : polymer * palladium sputtering * annealing * nanostructure * antibacterial effect Subject RIV: JJ - Other Materials Impact factor: 3.289, year: 2015

  2. QuadraPure-Supported Palladium Nanocatalysts for Microwave-Promoted Suzuki Cross-Coupling Reaction under Aerobic Condition

    Directory of Open Access Journals (Sweden)

    Kin Hong Liew

    2014-01-01

    Full Text Available Cross-linked resin-captured palladium (XL-QPPd was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4–10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.

  3. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl4]2− Ions

    Directory of Open Access Journals (Sweden)

    Loredana Schiavo

    2016-01-01

    Full Text Available Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2− ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone (PVP as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis has been performed in order to evaluate the structure and oxidation state of nanopalladium.

  4. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...... into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...... content was only 51.7% without desorption of CO2, while it increased when the liquid of UASB was recycled through the DU. The CH4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63L/h, respectively. The loss of methane due to dissolution...

  5. Neutron activation determination of gold and palladium using extraction by organic sulfides

    International Nuclear Information System (INIS)

    Gil'berg, Eh.N.; Torgov, V.G.; Verevkin, G.V.; AN SSSR, Novosibirsk. Inst. Neorganicheskoj Khimii)

    1978-01-01

    Compared are methods of gold determination in standard rock samples of the USA National Geological Service: a) extraction by solutions of dioctylsulfide and oil sulfides from irradiated samples; b) preliminary extraction by the above solfides with the following extract radiation; c) the method of isotope dilution with substoichiometry extraction. A possibility is studied to determine palladium in the sulfide extract with gold using the NaI(Tl) thin crystal scintillators. It is established that joint palladium and gold extraction permits to determine them in many natural products simultaneously

  6. Palladium-catalysed arylation of acetoacetate esters to yield 2-arylacetic acid esters

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2004-05-24

    Full Text Available , was developed simultaneously by Hart- wig and Buchwald.5 Typically the tert-butyl ester of propionic acid is treated with an aryl halide (bromide or chloride) in the presence of a strong base, palladium and a bulky phosphine ligand or a bulky imidazolinium CO2t... novel palladium- catalysed conditions for the arylation of acetoacetate esters resulting in the formation of 2-arylacetic acid esters. When we attempted the arylation of tert-butyl aceto- acetate 1a with bromobenzene 2a using mild reaction conditions (K3...

  7. Processing test of an upgraded mechanical design for PERMCAT reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borgognoni, Fabio, E-mail: fabio.borgognoni@enea.i [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Demange, David; Doerr, Lothar [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany); Tosti, Silvano [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Welte, Stefan [Forschungszentrum Karlsruhe GmbH, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany)

    2010-12-15

    The PERMCAT membrane reactor is a coaxial combination of a Pd/Ag permeator membrane and a catalyst bed. This device has been proposed for processing fusion reactor plasma exhaust gas. A stream containing tritium (up to 1% of tritium in different chemical forms such as water, methane or molecular hydrogen) is decontaminated in the PERMCAT by counter-current isotopic swamping with protium. Different mechanical designs of the membrane reactor have been proposed to improve robustness and lifetime. The ENEA membrane reactor uses a permeator tube with a length of about 500 mm produced via cold-rolling and diffusion welding of Pd/Ag thin foils: two stainless steel pre-tensioned bellows have been applied to the Pd/Ag tube in order to avoid any significant compressive and bending stresses due to the permeator tube elongation consequent to the hydrogen uptake. An experimental test campaign has been performed using this reactor in order to assess the influence of different operating parameters and to evaluate the overall performance (decontamination factor). Tests have been carried out on two reactor prototypes: a defect-free membrane with complete (infinite) hydrogen selectivity and not perm-selective membrane. In this last case, the study has been aimed at verifying the behaviour of the PERMCAT devices under non-normal (accidental) conditions in the view of providing information for future safety analysis. The paper will present the specific mechanical design and the experimental results of tests based on isotopic exchange between H{sub 2}O and D{sub 2}.

  8. Exposure to nickel and palladium from dental appliances

    NARCIS (Netherlands)

    Ventura Da Cruz Rodrigues Milheiro, A.M.

    2015-01-01

    The application of a dental material into the oral cavity is not free of biological implications, as deterioration of the material will undoubtedly occur. The adverse health effects of palladium and nickel are well known and their immunologic cross-reactivity is well established. The aim of this

  9. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    Biofouling can cause many undesirable effects in industrial and medical settings. In this study, a new biofouling inhibiting Ag-Pd surface was designed to form an inhibiting effect by itself. This design was based on silver combined with nobler palladium, both with catalytic properties. Owing to ...

  10. Density functional theory metadynamics of silver, caesium and palladium diffusion at β-SiC grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Rabone, Jeremy, E-mail: jeremy.rabone@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, D-76125 Karlsruhe (Germany); López-Honorato, Eddie [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila (Mexico)

    2015-03-15

    Highlights: • DFT metadynamics of diffusion of Pd, Ag and Cs on grain boundaries in β-SiC. • The calculated diffusion rates for Pd and Ag tally with experimental release rates. • A mechanism of release other than grain boundary diffusion seems likely for Cs. - Abstract: The use of silicon carbide in coated nuclear fuel particles relies on this materials impermeability towards fission products under normal operating conditions. Determining the underlying factors that control the rate at which radionuclides such as Silver-110m and Caesium-137 can cross the silicon carbide barrier layers, and at which fission products such as palladium could compromise or otherwise alter the nature of this layer, are of paramount importance for the safety of this fuel. To this end, DFT-based metadynamics simulations are applied to the atomic diffusion of silver, caesium and palladium along a Σ5 grain boundary and to palladium along a carbon-rich Σ3 grain boundary in cubic silicon carbide at 1500 K. For silver, the calculated diffusion coefficients lie in a similar range (7.04 × 10{sup −19}–3.69 × 10{sup −17} m{sup 2} s{sup −1}) as determined experimentally. For caesium, the calculated diffusion rates are very much slower (3.91 × 10{sup −23}–2.15 × 10{sup −21} m{sup 2} s{sup −1}) than found experimentally, suggesting a different mechanism to the simulation. Conversely, the calculated atomic diffusion of palladium is very much faster (7.96 × 10{sup −11}–7.26 × 10{sup −9} m{sup 2} s{sup −1}) than the observed penetration rate of palladium nodules. This points to the slow dissolution and rapid regrowth of palladium nodules as a possible ingress mechanism in addition to the previously suggested migration of entire nodules along grain boundaries. The diffusion rate of palladium along the Σ3 grain boundary was calculated to be slightly slower (2.38 × 10{sup −11}–8.24 × 10{sup −10} m{sup 2} s{sup −1}) than along the Σ5 grain boundary. Rather

  11. Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Silau, Harald; Pinelo, Manuel

    2018-01-01

    activated by lithiation followed by functionalization with acid chlorides at 0 °C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface...... initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support...

  12. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1989-01-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D 2 O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed

  13. Recent advances in liquid membranes and their applications in nuclear waste processing: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, J P; Iyer, R H [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Membrane extraction, combining the processes of extraction, scrubbing and stripping in a single step, demonstrates the inherent capability of solvent extraction under non-equilibrium conditions. Permeant transport across various liquid membrane (LM) configurations, viz. bulk liquid, emulsion liquid and supported liquid membranes has great potential for applications in the nuclear field particularly in the decontamination of low and medium level radioactive wastes. Potential practical applications of such membranes have also been envisaged in the recovery of metals from hydrometallurgical leach solutions and in plutonium and americium removal from nitric acid waste streams generated by plutonium recovery operations in the PUREX process. Studies carried out have established that minor actinides like uranium, plutonium and americium from process effluents can easily be transported across polymeric and liquid type membranes through the use of specific ionophores dissolved in an appropriate liquid membrane phase. The possibility of the membrane extraction of fission palladium from acidic wastes has also been demonstrated by the use of some soft bases. An overview of these results and also some of the recent radiochemical applications of energy - efficient LM processes including directions for future research are outlined in this paper. (author). 19 refs., 1 fig., 2 tabs.

  14. Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application

    Science.gov (United States)

    Lakshmipathy, R.; Palakshi Reddy, B.; Sarada, N. C.; Chidambaram, K.; Khadeer Pasha, Sk.

    2015-02-01

    The present study reports the feasibility of synthesis of palladium nanoparticles (Pd NPs) by watermelon rind. The aqueous extract prepared from watermelon rind, an agro waste, was evaluated as capping and reducing agent for biosynthesis of palladium nanoparticles. The formation of Pd NPs was visually monitored with change in color from pale yellow to dark brown and later monitored with UV-Vis spectroscopy. The synthesized Pd NPs were further characterized by XRD, FTIR, DLS, AFM and TEM techniques. The synthesized Pd NPs were employed in Suzuki coupling reaction as catalyst. The results reveal that watermelon rind, an agro waste, is capable of synthesizing spherical-shaped Pd NPs with catalytic activity.

  15. Insertion of molecular oxygen into a palladium(II) methyl bond: a radical chain mechanism involving palladium(III) intermediates.

    Science.gov (United States)

    Boisvert, Luc; Denney, Melanie C; Hanson, Susan Kloek; Goldberg, Karen I

    2009-11-04

    The reaction of (bipy)PdMe(2) (1) (bipy = 2,2'-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen insertion reaction into a palladium alkyl bond support the involvement of a radical chain mechanism. Reproducible rates, attained in the presence of the radical initiator 2,2'-azobis(2-methylpropionitrile) (AIBN), reveal that the reaction is overall first-order (one-half-order in both [1] and [AIBN], and zero-order in [O(2)]). The unusual rate law (half-order in [1]) implies that the reaction proceeds by a mechanism that differs significantly from those for organic autoxidations and for the recently reported examples of insertion of O(2) into Pd(II) hydride bonds. The mechanism for the autoxidation of 1 is more closely related to that found for the autoxidation of main group and early transition metal alkyl complexes. Notably, the chain propagation is proposed to proceed via a stepwise associative homolytic substitution at the Pd center of 1 with formation of a pentacoordinate Pd(III) intermediate.

  16. Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites

    Science.gov (United States)

    Pal, Hemant; Sharma, Vimal

    2014-11-01

    The mechanical, electrical, and thermal expansion properties of carbon nanotube (CNT)-based silver and silver-palladium (10:1, w/w) alloy nanocomposites are reported. To tailor the properties of silver, CNTs were incorporated into a silver matrix by a modified molecular level-mixing process. CNTs interact weakly with silver because of their non-reactive nature and lack of mutual solubility. Therefore, palladium was utilized as an alloying element to improve interfacial adhesion. Comparative microstructural characterizations and property evaluations of the nanocomposites were performed. The structural characterizations revealed that decorated type-CNTs were dispersed, embedded, and anchored into the silver matrix. The experimental results indicated that the modification of the silver and silver-palladium nanocomposite with CNT resulted in increases in the hardness and Young's modulus along with concomitant decreases in the electrical conductivity and the coefficient of thermal expansion (CTE). The hardness and Young's modulus of the nanocomposites were increased by 30%-40% whereas the CTE was decreased to 50%-60% of the CTE of silver. The significantly improved CTE and the mechanical properties of the CNT-reinforced silver and silver-palladium nanocomposites are correlated with the intriguing properties of CNTs and with good interfacial adhesion between the CNTs and silver as a result of the fabrication process and the contact action of palladium as an alloying element.

  17. Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography.

    Science.gov (United States)

    Lim, Su Hui; Radha, Boya; Chan, Jie Yong; Saifullah, Mohammad S M; Kulkarni, Giridhar U; Ho, Ghim Wei

    2013-08-14

    Flexible palladium-based H2 sensors have a great potential in advanced sensing applications, as they offer advantages such as light weight, space conservation, and mechanical durability. Despite these advantages, the paucity of such sensors is due to the fact that they are difficult to fabricate while maintaining excellent sensing performance. Here, we demonstrate, using direct nanoimprint lithography of palladium, the fabrication of a flexible, durable, and fast responsive H2 sensor that is capable of detecting H2 gas concentration as low as 50 ppm. High resolution and high throughput patterning of palladium gratings over a 2 cm × 1 cm area on a rigid substrate was achieved by heat-treating nanoimprinted palladium benzyl mercaptide at 250 °C for 1 h. The flexible and robust H2 sensing device was fabricated by subsequent transfer nanoimprinting of these gratings into a polycarbonate film at its glass transition temperature. This technique produces flexible H2 sensors with improved durability, sensitivity, and response time in comparison to palladium thin films. At ambient pressure and temperature, the device showed a fast response time of 18 s at a H2 concentration of 3500 ppm. At 50 ppm concentration, the response time was found to be 57 s. The flexibility of the sensor does not appear to compromise its performance.

  18. Hydrogen uptake causes molecular "avalanches" in palladium | Argonne

    Science.gov (United States)

    air cylinders for storing the gas. Palladium, a precious metal closely related to platinum, is that storage or purification, and this research gets us closer to making that a reality. In this study take up hydrogen from the environment. "The ultimate goal is hydrogen storage or purification, and

  19. Degradation of organic pollutants by an integrated photo-Fenton-like catalysis/immersed membrane separation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan, E-mail: jiedeng05@sina.com [School of Environment, Guang Xi University, Nanning 530004 (China); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang, Yankui; Wang, Yinghui [School of Environment, Guang Xi University, Nanning 530004 (China)

    2013-01-15

    Highlights: ► The photo-Fenton-like reaction and membrane separation was coupled. ► FeVO{sub 4} was used as catalyst in the PFM reactor. ► Dynamics simulation would direct the actual application of the reactor. -- Abstract: To resolve the continuously reuse problem of fine catalysts, a new reactor was investigated by coupling the heterogeneous photo-Fenton-like oxidation with membrane separation. The reactor consisted of a Xe lamp, a submerged membrane module and FeVO{sub 4} as catalyst with high activity. Results showed that the catalyst was successfully left in the reactor. It was proved by the kinetics study of membrane fouling that the avoidless membrane fouling was brought mainly by surface cake, at catalyst concentration of 4 g/L, it accounted for more than 90% of the total resistance. The kinetics study of catalytic degradation of AO II under sub-critical flux showed the optimal concentration of catalyst was 0.5 g/L and under this concentration the membrane fouling was negligible. For a residence time of 60 min, the degradation efficiency of AO II reached more than 99% and the chemical oxygen demand (COD) removal efficiency was as high as 91%. The model of continuous stirred tank reactor could predict well for the degradation which was consistent with hydrodynamics study. Moreover, the PFM reactor shows a long-term behavior with both membrane and catalyst in it and merits consideration for scaled-up trials.

  20. Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina

    2014-01-01

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the result......High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case...

  1. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor.

    Science.gov (United States)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-11-15

    Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8±1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 gm(-3) d(-1)) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 gm(-3) d(-1) (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Adhesion enhancement between electroless nickel and polyester fabric by a palladium-free process

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yinxiang, E-mail: yxlu@fudan.edu.cn [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Xue Longlong; Li Feng [Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2011-01-15

    A new, efficient, palladium- and etchant-free process for the electroless nickel plating of poly(ethylene terephthalate) (PET) fabric has been developed. PET electroless plating can be prepared in three steps, namely: (i) the grafting of thiol group onto PET, (ii) the silver Ag{sup 0} seeding of the PET surface, and (iii) the nickel metallization using electroless plating bath. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectrometer, X-ray diffraction (XRD), and thermogravimetric analysis (TG) were used to characterize the samples in the process, and the nickel loading was quantified by weighing. This process successfully compares with the traditional one based on KMnO{sub 4}/H{sub 2}SO{sub 4} etching and palladium-based seed layer. The nickel coating obtained in this palladium-free process can pass through ultrasonic washing challenge, and shows excellent adhesion with the PET substrate. However, the sample with Pd catalyst via traditional process was damaged during the testing experiment.

  3. Co-deposition of palladium with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dash, J.; Ambadkar, A.

    2006-01-01

    Palladium was co-deposited with hydrogen isotopes on a Pd cathode. This resulted in enhanced production of excess thermal power. After electrolysis the Pd Lβ/ Lα ratio was found to be increased in characteristic X-ray spectra from localized, microscopic areas on the surface of the Pd cathode. This suggests the possibility that appreciable amounts of silver are present in these areas. (authors)

  4. Preparation of palladium nanoparticles on alumina surface by chemical co-precipitation method and catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avvaru Praveen; Kumar, B. Prem; Kumar, A.B.V. Kiran; Huy, Bui The [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Facile synthesis of palladium nanoparticles on alumina surface. Black-Right-Pointing-Pointer The surface morphology and properties of the nanocrystalline powders were characterized. Black-Right-Pointing-Pointer The catalytic activities of palladium nanoparticles were investigated. - Abstract: The present work reports a chemical co-precipitation process to synthesize palladium (Pd) nanoparticles using alumina as a supporting material. The optimized temperature for the formation of nanocrystalline palladium was found to be 600 Degree-Sign C. The X-ray diffraction (XRD) and Raman spectroscopy were used to study the chemical nature of the Pd in alumina matrix. The surface morphology and properties of the nanocrystalline powders were examined using thermogravimetric analysis (TG-DTA), XRD, Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The calcinations in different atmospheres including in the inert medium forms the pure nano Pd{sup 0} while in the atmospheric air indicates the existence pure Pd{sup 0} along with PdO nanoparticles. The catalytic activities of the as-synthesized nanocrystalline Pd nanoparticles in the alumina matrix were investigated in Suzuki coupling, Hiyama cross-coupling, alkene and alkyne hydrogenation, and aerobic oxidation reactions.

  5. Influence of residual catalyst on the properties of conjugated polyphenylenevinylene materials: Palladium nanoparticles and poor electrical performance

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Nyberg, R.B.; Jørgensen, M.

    2004-01-01

    polymer material prepared by two different routes: the palladium route and the condensation route. The performance in a device application of the two polymer materials was, however, very different, and the palladium route was demonstrated to give poor films with low breakdown voltages and short circuits....

  6. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium (II) complexes

    KAUST Repository

    Jian, Zhongbao; Falivene, Laura; Wucher, Philipp; Roesle, Philipp; Caporaso, Lucia; Cavallo, Luigi; Gç ttker-Schnetmann, Inigo; Mecking, Stefan

    2014-01-01

    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6H4)2PC6H4SO2NHC6H3(2,6-R1,R2)]PdMe}2[A]2 (X1+-A: R1=R2=H: H1+-A; R1=R2=CH(CH3)2: DIPP1+-A; R1=H, R2=CF3: CF31+-A; A=BF4 or SbF6) and neutral palladium(II) methyl complexes {[(2-MeOC6H4

  7. Hydrogen production in membrane reactors using Rh catalysts on binary supports

    Energy Technology Data Exchange (ETDEWEB)

    Carrara, Carlos; Roa, Alejandro; Cornaglia, Laura; Lombardo, Eduardo A. [Instituto de Investigaciones en Catalisis y Petroquimica (FIQ, UNL-CONICET), Sgo del Estero 2829-3000 Santa Fe (Argentina); Mateos-Pedrero, Cecilia; Ruiz, Patricio [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Place Croix du Sud 2/17, 1348 Louvain-la Neuve (Belgium)

    2008-04-15

    The binary supports employed in this work were prepared by different methods. The Ti(7%)-MgO and the Ti(13%)-SiO{sub 2} were obtained using the grafting technique. The La(27%)-SiO{sub 2} was obtained through the incipient wetness impregnation with La(NO{sub 3}){sub 3} of Aerosil 300, previously calcined at 1173 K. The Rh was incorporated to these supports by wet impregnation. The catalysts were first evaluated for the CH{sub 4} + CO{sub 2} reaction in a fixed-bed reactor. They were found to be active and stable as to justify their use in the membrane reactor, which was operated at 823 K achieving methane conversions up to twice as much as the equilibrium values. In all cases, the activity of the Rh solids remained constant after 120 h on stream with very little formation of carbonaceous residues only detected through LRS. The catalysts were characterized through either hydrogen or carbon monoxide chemisorption, TPR, XRD, LRS and XPS. The Rh(0.6)/La-SiO{sub 2} catalyst showed a high metal dispersion that remained constant after use and the highest capacity to restore the CH{sub 4} + CO{sub 2} equilibrium when H{sub 2} was permeated out of the reaction section. The Rh(0.8)/Ti-MgO showed the highest Rh/oxide interaction associated with the lowest capacity to restore the reaction equilibrium. The Rh(0.8)/Ti-SiO{sub 2} exhibited an intermediate activity due in part to the partial segregation of the TiO{sub 2} upon calcinations and the subsequent appearance of small Rh crystallites in the used catalysts. (author)

  8. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction

    International Nuclear Information System (INIS)

    Wang, Ai-Jie; Cui, Dan; Cheng, Hao-Yi; Guo, Yu-Qi; Kong, Fan-Ying; Ren, Nan-Qi; Wu, Wei-Min

    2012-01-01

    Highlights: ► A novel membrane-free up-flow biocatalyzed electrolysis reactor (UBER) was developed. ► Nitrobenzene as the mode of nitroaromatics was efficiently converted to aniline. ► The impact of phosphate buffer and acetate concentrations and power supplied were investigated. ► The prospects of UBER for the recalcitrant compound removal were discussed. - Abstract: A new bioelectrochemical system (BES), a membrane-free, continuous feeding up-flow biocatalyzed electrolysis reactor (UBER) was developed to reduce oxidative toxic chemicals to less- or non-toxic reduced form in cathode zone with oxidation of electron donor in anode zone. Influent was fed from the bottom of UBER and passed through cathode zone and then anode zone. External power source (0.5 V) was provided between anode and cathode to enhance electrochemical reactions. Granular graphite and carbon brush were used as cathode and anode, respectively. This system was tested for the reduction of nitrobenzene (NB) using acetate as electron donor and carbon source. The influent contained NB (50–200 mg L −1 ) and acetate (1000 mg L −1 ). NB was removed by up to 98% mainly in cathode zone. The anode potential maintained under −480 mV. The maximum NB removal rate was up to 3.5 mol m −3 TV d −1 (TV = total empty volume) and the maximum aniline (AN) formation rate was 3.06 mol m −3 TV d −1 . Additional energy required was less than 0.075 kWh mol −1 NB. The molar ratio of NB removed vs acetate consumed varied from 4.3 ± 0.4 to 2.3 ± 0.1 mol mol −1 . Higher influent phosphate or acetate concentration helped NB removal rate. NB could be efficiently reduced to AN as the power supplied of 0.3 V.

  9. Site preference of rare earth doping in palladium-iron-arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzer, Christine; Schulz, Anne; Johrendt, Dirk [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2014-12-15

    The solid solutions (Ca{sub 1-y}RE{sub y}Fe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8} with RE = La, Ce, and Pr were synthesized by solid state methods and characterized by X-ray powder diffraction with subsequent Rietveld refinements [(CaFeAs){sub 10}Pt{sub 3}As{sub 8}-type structure (''1038 type''), P anti 1, Z = 1]. Substitution levels (Ca/RE, Fe/Pd, and Pd/□) obtained from Rietveld refinements coincide well with the nominal values according to EDS and the linear courses of the lattice parameters as expected from the ionic radii. The RE atoms favor the one out of five calcium sites, which is eightfold coordinated by arsenic. This leads to significant stabilization of the structure, and especially prevents palladium over-doping in the iron-arsenide layers as observed in the pristine compound (CaFe{sub 1-x}Pd{sub x}As){sub 10}Pd{sub z}As{sub 8}. While the stabilization energy is estimated to about 40 kJ.mol{sup -1} by electronic structure calculations, the reason for the diminished Fe/Pd substitution through RE doping is still not yet understood. We suggest that the electrons transferred from RE{sup 3+} to the (Fe{sub 1-x}Pd{sub x})As layer makes higher palladium concentrations unfavorable. Anyway the reduced palladium doping enables superconductivity with critical temperatures up to 20 K (onset) in the RE doped Pd1038 samples, which could not be obtained earlier due to palladium over-doping in the active iron-arsenide layers. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. In-line quantification and characterization of membrane fouling

    KAUST Repository

    Bucs, Szilard

    2016-06-16

    Methods of detecting, quantifying and/or characterizing the fouling of a device from a combination of pressure and spectroscopic data are provided. The device can be any device containing components susceptible to fouling. Components can include membranes, pipes, or reactors. Suitable devices include membrane devices, heat exchangers, and chemical or bio-reactors. Membrane devices can include, for example, microfiltration devices, ultrafiltration devices, nanofiltration devices, reverse osmosis, forward osmosis, osmosis, reverse electrodialysis, electro- deionisation or membrane distillation devices. The methods can be applied to any type of membrane, including tubular, spiral, hollow fiber, flat sheet, and capillary membranes. The spectroscopic characterization can include measuring one or more of the absorption, fluorescence, or raman spectroscopic data of one or more foulants. The methods can allow for the early detection and/or characterization of fouling. The characterization can include determining the specific foulant(s) or type of foulant(s) present. The characterization of fouling can allow for the selection of an appropriate de-fouling method and timing.

  11. REMOVAL OF NICKEL(II) AND PALLADIUM(II) FROM SURFACE ...

    African Journals Online (AJOL)

    Preferred Customer

    Nickel is widely used in electroplating, in the manufacture of Ni-Cd batteries, in rods for arc welding, in pigments for ... Palladium has an extensive use in electrical industry as grids for ... It is also used as catalytic converter in motor vehicles.

  12. Palladium-based nanocatalysts for alcohol electrooxidation in alkaline media

    CSIR Research Space (South Africa)

    Modibedi, RM

    2013-01-01

    Full Text Available in the electrocatalytic oxidation of alcohols in alkaline media compared to platinum catalysts. Recent efforts have focused on the discovery of palladium-based electrocatalysts with little or no platinum for oxygen reduction reaction (ORR). This chapter is an overview...

  13. Palladium-catalyzed hydrodehalogenation of 1,2,4,5-tetrachlorobenzene in water-ethanol mixtures

    International Nuclear Information System (INIS)

    Wee, Hun-Young; Cunningham, Jeffrey A.

    2008-01-01

    Palladium-catalyzed hydrodehalogenation (HDH) was applied for destroying 1,2,4,5-tetrachlorobenzene (TeCB) in mixtures of water and ethanol. This investigation was performed as a critical step in the development of a new technology for clean-up of soil contaminated by halogenated hydrophobic organic contaminants. The main goals of the investigation were to demonstrate the feasibility of the technology, to determine the effect of the solvent composition (water:ethanol ratio), and to develop a model for the kinetics of the dehalogenation process. All experiments were conducted in a batch reactor at ambient temperature under mild hydrogen pressure. The experimental results are all consistent with a Langmuir-Hinshelwood model for heterogeneous catalysis. Major findings that can be interpreted within the Langmuir-Hinshelwood framework include: (1) the rate of hydrodehalogenation depends strongly on the solvent composition, increasing as the water fraction of the solvent increases; (2) the HDH rate increases as the catalyst concentration in the reactor increases; (3) when enough catalyst is present, the HDH reaction appears to follow first-order kinetics, but the kinetics appear to be zero-order at low catalyst concentrations. TeCB is converted rapidly and quantitatively to benzene, with only trace concentrations of 1,2,4-trichlorobenzene appearing as a reactive intermediate. The results obtained here have important implications for the further development of the proposed soil remediation technology, and may also be important for the treatment of other hazardous waste streams

  14. Palladium-catalyzed hydrodehalogenation of 1,2,4,5-tetrachlorobenzene in water-ethanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Hun-Young [Department of Civil Engineering, Texas A and M University, College Station, TX 77843 (United States); Cunningham, Jeffrey A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States)], E-mail: cunning@eng.usf.edu

    2008-06-30

    Palladium-catalyzed hydrodehalogenation (HDH) was applied for destroying 1,2,4,5-tetrachlorobenzene (TeCB) in mixtures of water and ethanol. This investigation was performed as a critical step in the development of a new technology for clean-up of soil contaminated by halogenated hydrophobic organic contaminants. The main goals of the investigation were to demonstrate the feasibility of the technology, to determine the effect of the solvent composition (water:ethanol ratio), and to develop a model for the kinetics of the dehalogenation process. All experiments were conducted in a batch reactor at ambient temperature under mild hydrogen pressure. The experimental results are all consistent with a Langmuir-Hinshelwood model for heterogeneous catalysis. Major findings that can be interpreted within the Langmuir-Hinshelwood framework include: (1) the rate of hydrodehalogenation depends strongly on the solvent composition, increasing as the water fraction of the solvent increases; (2) the HDH rate increases as the catalyst concentration in the reactor increases; (3) when enough catalyst is present, the HDH reaction appears to follow first-order kinetics, but the kinetics appear to be zero-order at low catalyst concentrations. TeCB is converted rapidly and quantitatively to benzene, with only trace concentrations of 1,2,4-trichlorobenzene appearing as a reactive intermediate. The results obtained here have important implications for the further development of the proposed soil remediation technology, and may also be important for the treatment of other hazardous waste streams.

  15. The denitration of simulated fast reactor highly active liquor waste

    International Nuclear Information System (INIS)

    Saum, C.J.; Ford, L.H.; Blatts, N.

    1981-01-01

    A short series of tests have been made with simulated HAL containing representative concentrations of palladium and phosphate ion. The information obtained has been confirmed in a small scale continuous denitration plant. These cases of four stirred pot reactors arranged in cascade. One possible advantage of this plant would be the low mean acidity in the first stage compared to the feed material which would limit to some extent the violence of the reaction. This would lead to a lower rate of gas evolution and may permit operation even with liquors where foaming is a problem. (DG)

  16. Microscopic observations of palladium used for cold fusion

    International Nuclear Information System (INIS)

    Matsumoto, T.

    1991-01-01

    This paper examines the microscopic structures of palladium metals used for cold fusion experiments. Tiny spot defects suggesting cold fusion have been observed in grain boundaries as the Nattoh model predicts. The relationship between these defects and a series of neutron busts and an indirect loop of hydrogen chain reactions are discussed

  17. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.

    Science.gov (United States)

    Deb, Arghya; Bag, Sukdev; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-01

    Palladium-catalyzed coupling between aryl halides and alkenes (Mizoroki-Heck reaction) is one of the most popular reactions for synthesizing complex organic molecules. The limited availability, problematic synthesis, and higher cost of aryl halide precursors (or their equivalents) have encouraged exploration of direct olefination of aryl carbon-hydrogen (C-H) bonds (Fujiwara-Moritani reaction). Despite significant progress, the restricted substrate scope, in particular noncompliance of unactivated aliphatic olefins, has discouraged the use of this greener alternative. Overcoming this serious limitation, we report here a palladium-catalyzed chelation-assisted ortho C-H bond olefination of phenylacetic acid derivatives with unactivated, aliphatic alkenes in good to excellent yields with high regio- and stereoselectivities. The versatility of this operationally simple method has been demonstrated through drug diversification and sequential C-H olefination for synthesizing divinylbenzene derivatives.

  18. Progress in excess of power experiments with electrochemical loading of deuterium in palladium

    International Nuclear Information System (INIS)

    Violante, V.; Moretti, S.; Bertolotti, M.

    2006-01-01

    A research activity has been carried out, during the last 3 years, in the field of triggering anomalous heat effects in palladium deuteride. An enhancement of the excess of power reproducibility in deuterated palladium was obtained by using He-Ne Laser irradiation during electrochemical loading. A preliminary correlation between excess of energy and 4 He concentration increasing above the background was found. The continuation of the experimental program confirmed that Laser triggering produce an interesting gain of reproducibility. An upgrade of the experimental set-up has been realized. (author)

  19. Ceramic membranes with mixed conductivity and their application

    International Nuclear Information System (INIS)

    Kozhevnikov, V L; Leonidov, I A; Patrakeev, M V

    2013-01-01

    Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references

  20. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    International Nuclear Information System (INIS)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    Highlights: • A new UASB configuration was developed by coupling with degassing membrane. • In-situ biogas upgrading was achieved with high methane content (>90%). • Decrease of dissolved methane in the anaerobic effluent was achieved. - Abstract: A new technology for in-situ biogas upgrading and recovery of CH 4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO 2 from the liquid phase of a biogas reactor. The degassing membrane was submerged into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO 2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH 4 content was only 51.7% without desorption of CO 2 , while it increased when the liquid of UASB was recycled through the DU. The CH 4 content increased to 71.6%, 90%, and 94% with liquid recirculation rate through the DU of 0.21, 0.42 and 0.63 L/h, respectively. The loss of methane due to dissolution in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH 4 concentration in the effluent decreased from higher than 0.94 mM to around 0.13 mM, and thus efficient recovery of CH 4 from the anaerobic effluent was achieved. In the whole operational period, the COD removal efficiency and CH 4 yield were not obviously affected by the gas desorption