WorldWideScience

Sample records for pall life sciences

  1. Situational and Demographic Factors in the Sudden Growth of Pall Mall, 2002-2014.

    Science.gov (United States)

    Sharma, Anushree; Fix, Brian V; Delnevo, Cristine D; Cummings, K Michael; O'Connor, Richard J

    2018-05-03

    Pall Mall gained significant brand share in the cigarette market between 2002 and 2013. We sought to determine whether demographic shifts occurred among the participants reporting Pall Mall as their usual brand during this time span. We examined National Survey of Drug Use and Health (NSDUH) data from 2002-2014. Demographic characteristics included age, education, ethnicity, income, and cigarette use (cigarettes per day, daily/non-daily smoking, and nicotine dependence). We also examined RJ Reynolds investor reports and shareholder documents to determine the impact of tobacco marketing on the growth of Pall Mall. Over 2002-2014, Pall Mall has gained among smokers 26 to 34 years of age. More Pall Mall smokers in 2014 report higher incomes (over $75000), and also report lower scores on measures of cigarette dependence, compared to 2002. Pall Mall smokers over time seem to share characteristics of premium cigarette brands smokers. The profile of the typical Pall Mall smoker has changed as the brand has gained market share. An association exists between brand positioning and economic forces, which has contributed to an increase in the market share for Pall Mall. It is well known that cigarette marketing drives the sale of tobacco products. The growth in the market share of Pall Mall serves as an excellent example to demonstrate how economic uncertainty paired with brand positioning and advertising worked together to serve as a catalyst for the rapid growth observed for this brand. This paper also looked at various demographic changes that occurred among Pall Mall smokers over a 12 year period and compared them to smokers of all other cigarette brands. The results of this analysis demonstrate the importance of monitoring trends over time among cigarette smokers.

  2. Effect of elevated natural radioactivity on the bone marrow morphology of Microtus oeconomus Pall

    Energy Technology Data Exchange (ETDEWEB)

    Materii, L D; Maslova, K I

    1984-03-01

    Distinctive aspects of the bone marrow morphology of the rodent Microtus oeconomus Pall are studied with respect to a level of natural alpha, beta, and gamma background radiation which is higher than normal. Microtus oeconomus Pall is found to exhibit focal myeloid and erythroid elements, and an increased number of caryocytes due to increased mitotic activity. It is suggested that the action of Microtus oeconomus Pall's hemopoesis is an evolutionary adaptation to the higher level of background radiation in the animal's environment. 10 references.

  3. A Museum for Palle Nielsen

    DEFF Research Database (Denmark)

    Thorborg, Christoffer

    2016-01-01

    The present project attempts to articulate architecturally the psychic content in the danish graphic artist and draftsman Palle Nielsen's oeuvre. The museum inscribes itself within the city of Copenhagen as a part of it, but simultaneously establishes a taut vacuum between the city's buildings......, thereby setting these existing, surrounding monumental buildings in relief. The interior of the museum manifests itself as a dramatic, labyrinthine course of empty spaces, within which the visitor is deprived of contact with the city, and potentially loses his or her sense of place....

  4. Anti-depressant effect of Paeonia lactiflora Pall extract in rats

    African Journals Online (AJOL)

    Anti-depressant effect of Paeonia lactiflora Pall extract in rats. Xiao-hui ... PLPE, at a dose ≥ 150 mg/kg significantly inhibited MAO A activity in rat whole brain in a dose-dependent manner .... (pH 7.4) upto a final volume of 1 ml. The reaction.

  5. Alkaloids from Mongolian species Berberis sibirica Pall

    International Nuclear Information System (INIS)

    Istatkova, R.; Philipov, S.; Tuleva, P.; Amgalan, A.; Samdan, J.; Dangaa, S.

    2007-01-01

    From the aerial parts of Berberis sibirica Pall. 6 isoquinoline alkaloids of protoberberine, protopine, benzphenanthridine and proaporphine type were isolated. The known alkaloids (-)-tetrahydropseudocoptisine, pseudoprotopine, (+)-chelidonine and (+)-glaziovine are new for the family Berberidaceae. From the roots of B. sibirica 10 isoquinoline alkaloids of protoberberine, benzylisoquinoline, bisbenzylisoquinoline, aporphine-benzylisoquinoline and proaporphine-benzylisoquinoline type were isolated. 1,10-Di-O-methylpakistanine has been reported for the first time as a natural alkaloid. The known alkaloids (-)-isothalidezine and (+)-armepavine have been found for the first time in the family Berberidaceae. All structures were determined by physical and spectral data. (authors)

  6. The hair of the common hare (Lepus europaeus Pall.) and of the common vole (Microtus arvalis Pall.) as indicator of the environmental pollution

    International Nuclear Information System (INIS)

    Paukert, J.

    1986-01-01

    Hairs of common hare (Lepus europaeus Pall.) and of common vole (Microtus arvalis Pall.) living in immission zones were investigated by INAA. Both the hare and the vole are almost exclusively herbivores; they consume relatively large amounts of contaminated food and reflect reliably the contamination degree of the respective ecosystem. The use of free-living animals for assessing environmental quality may complete effectively the information obtained by the examination of population. Though free-living animals lead a rather different way of existence it has been found that analyses of their hairs correlate very well with analyses of human hair. It may be expected that the changes in concentrations of heavy metals will manifest themselves earlier in animals than in men because the animals are strictly tied to local food sources. The hair samples of hares contained increased concentrations of Sm, La, Au, As, Se, Cr, Sc, Fe, Ce, Th and Co. The hairs of voles showed increased concentrations of Sm, La, Zn, As, Se, Cr, Sc, Fe, Sb, Ce, Cs and Co. A marked trend towards cumulation in hair was observed for the following elements: As, Se, Sc and Fe. The increase of their concentrations in the hairs of animals from the immission regions amounted to as much as 10 3 %. (author)

  7. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER - PALL CORPORATION MICROZA. MICROFILTRATION SYSTEM

    Science.gov (United States)

    Verification testing of the Pall Corporation Microza. Microfiltration System for arsenic removal was conducted at the Oakland County Drain Commissioner (OCDC) Plum Creek Development well station located in Oakland County, Michigan from August 19 through October 8, 2004. The sourc...

  8. Comparison of the anti-inflammatory and analgesic effects of Gentiana macrophylla Pall. and Gentiana straminea Maxim., and identification of their active constituents.

    Science.gov (United States)

    Jia, Na; Li, Yuwen; Wu, Yin; Xi, Miaomiao; Hur, Gangmin; Zhang, Xinxin; Cui, Jia; Sun, Wenji; Wen, Aidong

    2012-12-18

    Tibetan medicine get used to use the flowers of Gentiana straminea Maxim. to cure inflammation of stomach and intestines, hepatitis, cholecystitis, etc. The flowers of Gentiana macrophylla Pall. have been traditionally treated as an anti-inflammatory agent to clear heat in Mongolian medicine. In traditional Chinese medicine, Gentiana macrophylla Pall. and Gentiana straminea Maxim. have also been used under the name "Gentianae Macrophyllae Radix" and prescribed for the treatment of pain and inflammatory conditions. The present study evaluated the pharmacological effects of two species of "Radix Gentianae Macrophyllae" in experimental inflammation and pain models, and determined the chemical compounds that may correlate with their pharmacological activities. The comparison is needed to identify whether the two related plants can be used interchangeably. We evaluated the pharmacological effects of the flowers of Gentiana macrophylla Pall. and Gentiana straminea Maxim. in experimental inflammation and pain models. An HPLC-MS method was developed to analyze the chemical composition. The effects of Gentiana macrophylla Pall. and Gentiana straminea Maxim. on the p65 and p50 phosphorylation were examined by immunblotting. NF-κB transcriptional activity was measured using the luciferase assay, in vitro kinase assay and Griess reaction. The extracts of Gentiana macrophylla Pall. and Gentiana straminea Maxim. possessed significant antinociceptive and anti-inflammatory activities. Flavonoids, secoiridoid glycosides and triterpines were determined in the extracts and may be the basis of the observed pharmacological effects. Nuclear translocation of p65, p50 and NF-κB transcriptional activity induced by LPS were suppressed by Gentiana macrophylla Pall. and Gentiana straminea Maxim. The results clearly demonstrated that the chemical composition and pharmacological activities of the two herbs were similar, which support the interchangeability among the two herbs when using them

  9. Päike ja pall : [luuletused] / Ott Arder

    Index Scriptorium Estoniae

    Arder, Ott

    2001-01-01

    Sisu: Päike ja pall ; Õuna ja lõuna ; Kõige ilusam asi ; Emajõgi ; Väikemehe probleem ; Küünal ; Kapten ; Kaksteist kilu ja kaks teist kilu ; Suur ja seisev, ripub seinal ; Laul tagumisest vagunist ; Ultimaatum ; Ilus algus ; Pliiat(siga) ; Mure ja Amour ; kodust ja loomadest ; Eesli jõulupuu ; Aja saapad ; Lendav järv ; Unenäolaul ; Tere hommikust ja õhtust ; Kõik, mis juhtub ja ei juhtu ; Kas panna päkka või visata varvast ; Lihtne mees ; Väljaütlev ; Külm sõda ; Ohkav kruvi ; Metsa all ; Lauluke ; Unemetsades ; Suur rõõm ja väike mure ; Hea muusika ; Koer poiss ja plika ; Kes mängida veel ei oska ; Raske lumi ; Mere kaldal ; Unenäoukse taga

  10. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    Science.gov (United States)

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  11. Phytochemical study on Berberis sibirica Pall.

    Directory of Open Access Journals (Sweden)

    A Solongo

    2014-09-01

    Full Text Available From the aerial parts (700g of berberis sibirica pall. 6 isoquinoline alkaloids of protoberberine, protopine, benzophenantridine and proaporphine type were isolated. The known alkaloids (--tetrahydropseudocoptisine, pseudoprotopine, (+-chelidonine and (+-glaziovine are new for the family berberidaceae. from the aerial part ii (3.9 kg 14 isoquinoline alkaloids of aporphine, proaporphine, protoberberine, protopine, benzylisoquinoline, bisbenzylisoquinoline,proaporphine-benzylisoquinoline and simple isoquinolin type were isolated and identified. The aporphine alkaloid 1-o-methylisotebaidine and simple isoquinoline dehydrocorypalline have been found for the first time in the family of berberidaceae. From the roots of b. sibirica 10 isoquinoline alkaloids of protoberberine, benzylisoquinoline, bisbenzylisoquinoline, aporphine-benzylisoquinoline and proaporphine-benzylisoquinoline type were isolated. 1,10-di-omethylpakistanine has been reported for the first time as a natural alkaloid. The known alkaloids (- -isothalidezine and (+-armepavine have been found for the first time in the family berberidaceae. All structures were determined by physical and spectral data.DOI: http://dx.doi.org/10.5564/mjc.v12i0.185 Mongolian Journal of Chemistry Vol.12 2011: 117-122

  12. Haematological studies on micropopulations of Clethrionomys rutilus Pall under different radioecological conditions

    International Nuclear Information System (INIS)

    Borodkin, P.A.; Testov, B.V.

    1980-01-01

    The effect of low dose ionizing radiation on living organisms is studied. The blood of Clethrionomys rutilus Pall which habitates under various radioecological conditions is studied. It is taken into account that hematologic indices reflex the general state of the organism and prove to be a sensitive test of physiological alterations in the organism. The animals were taken on the territory with the increased amount of uranium and thorium in the underlying original rock. Average radiation doses from external gamma radiation on experimental and control territories constitute 0.86 and 0.1 rem/year, respectively. Radiation from thoron, radon and products of their decay condition the dose of 2 rem/year on the experimental territory and 0.1 rem/year on the control territory. Blood for investigation is taken with the method of decapitation. A 5% level of importance of differences is taken for the statistic processing of results obtained. The investigation has revealed no considerable differences between micropopulations of Clethrionomys rutilus Pall habitating different radioecological conditions over all indices of the red blood studied. As considers the composition of white blood, statistically considerable excess of the general amount of leukocytes in wintered males from the radioactive territory is found. An insignificant excess of this index has been noted in other groups of animals, as well

  13. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  14. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  15. Antihyperlipidemic Activities of Common Garden Peony ( Paeonia lactifl ora Pall.

    Directory of Open Access Journals (Sweden)

    Tserenlkham Tserendejid

    2013-12-01

    Full Text Available We studied different extracts of aboveground and underground parts of Paeonia lactifl ora Pall.in experiment. For doing so this research needs to start up with total cholesterol. Total cholesterol is a direct cholesterol measurement that measures all cholesterol molecules in the blood, including low density lipoproteins (LDL, high density lipoproteins (HDL, and very low density lipoproteins (VLDL. The serum total cholesterol (TC and low density lipoproteins (LDL levels were signifi cantly different in the experimentally-induced hypercholesterolemia rats. Effect on serum triglyceride (TG level compared to control group, simvastatin and hypercholesterolemia diet (HD, but almost all were similar with simvastatin. Effect on serum high density lipoproteins (HDL level compared between those. Extracts (PL1, PL2 were lower, almost the same with hypercholesterolemia diet (HD.

  16. Work flows in life science

    NARCIS (Netherlands)

    Wassink, I.

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  17. Space life sciences: A status report

    Science.gov (United States)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  18. Life sciences recruitment objectives

    Science.gov (United States)

    Keefe, J. Richard

    1992-01-01

    The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995

  19. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  20. Space life sciences strategic plan

    Science.gov (United States)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  1. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  2. Effect of increased natural radiation background on glycogen content of peripheral blood leukocytes of microtus oeconomus Pall

    International Nuclear Information System (INIS)

    Materij, L.D.; Maslova, K.I.

    1984-01-01

    In experiments on Microtus oeconomus Pall, living in natural conditions with normal (0.72-1.08 pA/kg) and increased (3.6-1440 pA/kg) levels of external gamma-radiation and affected by numerous incorporated radionuclides, the differences were detected, by the cytochemical method, both in the total glycogen content of eucocytes and in the type of grouping of cells depending on the cegre of their saturation with polysaccharide

  3. Life Sciences Data Archive (LSDA)

    Science.gov (United States)

    Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.

    2008-01-01

    In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.

  4. Spacelab Life Sciences Research Panel

    Science.gov (United States)

    Sulzman, Frank; Young, Laurence R.; Seddon, Rhea; Ross, Muriel; Baldwin, Kenneth; Frey, Mary Anne; Hughes, Rod

    2000-01-01

    This document describes some of the life sciences research that was conducted on Spacelab missions. Dr. Larry Young, Director of the National Space Biomedical Research Institute, provides an overview of the Life Sciences Spacelabs.

  5. Bioinformatics: future of life sciences

    International Nuclear Information System (INIS)

    Arif, R.; Ghafoor, M.; Saleem, M.; Baig, S.J.; Hassan, S.W.

    2004-01-01

    The vital part of our life or the basic unit of life is the cell. The cellular biomolecules function in a conjugate manner and this system provide us with the necessary elements of life, and the sciences that deals with nature function of the cell and it's molecular components are defined as life sciences. Vital subjects involved in maintaining the identity and functioning of cells are genomics and proteomics. (author)

  6. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  7. The Next Generation Science Standards and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Using the life sciences, this article first reviews essential features of the "NRC Framework for K-12 Science Education" that provided a foundation for the new standards. Second, the article describes the important features of life science standards for elementary, middle, and high school levels. Special attention is paid to the teaching…

  8. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  9. Life Sciences Accomplishments 1994

    Science.gov (United States)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting

  10. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  11. Life science students’ attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Directory of Open Access Journals (Sweden)

    Catherine H. Crouch

    2018-03-01

    Full Text Available In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students’ attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students’ skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students’ attitudes toward and their interest in physics. Whereas the same students’ attitudes declined during the standard first semester course, we found that students’ attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students’ interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  12. Life Sciences Program Tasks and Bibliography

    Science.gov (United States)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  13. Life Science Students' Attitudes, Interest, and Performance in Introductory Physics for Life Sciences: An Exploratory Study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-01-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…

  14. USSR report: life sciences. Biomedical and behavioral sciences

    International Nuclear Information System (INIS)

    1982-09-01

    Studies in life sciences, biomedical sciences, and behavioral sciences are reported. The following fields of interest were studied: agricultural biology, biochemistry, biotechnology, environment effects, medical demography, medicine, microbiology, physiology, radiation biology, and human factors engineering. For individual titles, see N82-33989 through N82-33994

  15. Spacelab Life Sciences-1

    Science.gov (United States)

    Dalton, Bonnie P.; Jahns, Gary; Meylor, John; Hawes, Nikki; Fast, Tom N.; Zarow, Greg

    1995-01-01

    This report provides an historical overview of the Spacelab Life Sciences-1 (SLS-1) mission along with the resultant biomaintenance data and investigators' findings. Only the nonhuman elements, developed by Ames Research Center (ARC) researchers, are addressed herein. The STS-40 flight of SLS-1, in June 1991, was the first spacelab flown after 'return to orbit', it was also the first spacelab mission specifically designated as a Life Sciences Spacelab. The experiments performed provided baseline data for both hardware and rodents used in succeeding missions.

  16. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  17. Life of Science

    DEFF Research Database (Denmark)

    Engelhardt, Robin; Margot Ricard, Lykke

    Learning Lab Denmark, København. 2003 Short description: In connection to the conference Changes and Challenges the White Book "Life of Science" was published. Member states of the European Union as well as applying countries were invited to contribute to the book with texts in order to present...... inspiring cases of concrete educational strategies for improving learning, teaching and recruitment in the fields of science and technology. Abstract: The aim of this white book is to present some of the most inspiring examples of Science and Technology Education in Europe. In creating the white book, we...

  18. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    Science.gov (United States)

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  19. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    Science.gov (United States)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  20. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  1. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  2. A Life in Science - Book release programme invite

    Indian Academy of Sciences (India)

    MY OF. CE EDUCA. ВРЕМЕ. STION AND. SCIENCE. OF SCIEN. CES. RESEARC,. AN INSTIT она не. A LIFE IN SCIENCE. Penguin Books India. Indian Academy of Sciences and. Indian Institute of Science Education and Research, Bhopal cordially invite you for the release of book. A LIFE IN SCIENCE by C.N.R. Rao.

  3. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  4. Life sciences and Mars exploration

    Science.gov (United States)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  5. Opportunities and Challenges for the Life Sciences Community

    Science.gov (United States)

    Stewart, Elizabeth; Ozdemir, Vural

    2012-01-01

    Abstract Twenty-first century life sciences have transformed into data-enabled (also called data-intensive, data-driven, or big data) sciences. They principally depend on data-, computation-, and instrumentation-intensive approaches to seek comprehensive understanding of complex biological processes and systems (e.g., ecosystems, complex diseases, environmental, and health challenges). Federal agencies including the National Science Foundation (NSF) have played and continue to play an exceptional leadership role by innovatively addressing the challenges of data-enabled life sciences. Yet even more is required not only to keep up with the current developments, but also to pro-actively enable future research needs. Straightforward access to data, computing, and analysis resources will enable true democratization of research competitions; thus investigators will compete based on the merits and broader impact of their ideas and approaches rather than on the scale of their institutional resources. This is the Final Report for Data-Intensive Science Workshops DISW1 and DISW2. The first NSF-funded Data Intensive Science Workshop (DISW1, Seattle, WA, September 19–20, 2010) overviewed the status of the data-enabled life sciences and identified their challenges and opportunities. This served as a baseline for the second NSF-funded DIS workshop (DISW2, Washington, DC, May 16–17, 2011). Based on the findings of DISW2 the following overarching recommendation to the NSF was proposed: establish a community alliance to be the voice and framework of the data-enabled life sciences. After this Final Report was finished, Data-Enabled Life Sciences Alliance (DELSA, www.delsall.org) was formed to become a Digital Commons for the life sciences community. PMID:22401659

  6. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  7. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  8. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  9. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  10. Chemical Constituents and Antioxidant, Anti-Inflammatory and Anti-Tumor Activities of Melilotus officinalis (Linn. Pall

    Directory of Open Access Journals (Sweden)

    Yu-Ting Liu

    2018-01-01

    Full Text Available Two new p-hydroxybenzoic acid glycosides, namely p-hydroxybenzoic acid-4-O-α-d-manopyranosyl-(1 → 3-α-l-rhamnopyranoside (compound 1 and 4-O-α-l-rhamnopyran-osyl-(1 → 6-α-d-manopyranosyl-(1 → 3-α-l-rhamnopyranoside (compound 2, and seven known compounds, compound 3, 6, 7 (acid components, compound 8, 9 (flavonoids, compound 4 (a coumarin and compound 5 (an alkaloid, were isolated from the 70% ethanol aqueous extract of the aerial parts of Melilotus officinalis (Linn. Pall. The structures of all compounds were elucidated by use of extensive spectroscopic methods Infrared Spectroscopy (IR, High resolution electrospray ionization mass spectrometry (HR-ESI-MS, and 1H and 13C-NMR. Sugar residues obtained after acid hydrolysis were identified by high-performance liquid chromatography (HPLC. The antioxidant activity of all the compounds was evaluated by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+ and 1,1-diphenyl-2-picrylhydrazyl (DPPH. The anti-inflammatory effects of the compounds were also evaluated in lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages. All compounds were shown to inhibit LPS-induced nitric oxide (NO and prostaglandin E 2 (PGE 2 production by suppressing the expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2, respectively, in LPS-stimulated RAW 264.7 cells. The inhibitory effect of all the compounds on MCF-7 cells was determined by Cell Counting Kit-8 (CCK-8 method. The results showed that compounds 1, 2, 7, 8, 9 exhibited better antioxidant activity compared to the other compounds. compounds 1–9 had different inhibitory effects on the release of NO, TNF-α and IL-6 in LPS-stimulated RAW264.7 cells by LPS, of which compound 7 was the most effective against inflammatory factors. compounds 1 and 2 have better antitumor activity compared to other compounds. Further research to elucidate the chemical composition and pharmacological effects of Melilotus officinalis (Linn. Pall is

  11. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  12. Japan's patent issues relating to life science therapeutic inventions.

    Science.gov (United States)

    Tessensohn, John A

    2014-09-01

    Japan has made 'innovation in science and technology' as one of its central pillars to ensure high growth in its next stage of economic development and its life sciences market which hosts regenerative medicine was proclaimed to be 'the best market in the world right now.' Although life science therapeutic inventions are patentable subject matter under Japanese patent law, there are nuanced obviousness and enablement challenges under Japanese patent law that can be surmounted in view of some encouraging Japanese court developments in fostering a pro-patent applicant environment in the life sciences therapeutic patent field. Nevertheless, great care must be taken when drafting and prosecuting such patent applications in the world's second most important life sciences therapeutic market.

  13. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  14. Approaches to gene pool conservation of medicinal plant Oxytropis lanata (Pall. DC. (Fabaceae

    Directory of Open Access Journals (Sweden)

    A. B. Kholina

    2015-05-01

    Full Text Available In order to preserve the gene pool of medicinal plant Oxytropis lanata (Pall. DC. we analyzed allozyme polymorphism and identified reliable and informative marker enzyme systems of this species; also we studied the response of seeds to deep freezing in liquid nitrogen (–196 ºС. Population has an average level of polymorphism (P95 = 41,2 %, P99 = 52,9 %, A = 1,58, Ho = 0,158, He = 0,171 in general typical for herbaceous legumes, and can serve as a source of material for gene pool conservation of the species. Deep freezing has not led to the death of the seeds; it was marked stimulatory effect of ultralow temperatures, expressed as an acceleration of germination and sharp increase of germinability (98,6 ± 2,3 % compared to the control (12,0 ± 3,5 % that is associated with overcoming physical dormancy. There were no abnormalities in the development of seedlings from seeds passed cryopreservation.

  15. Life Sciences Program Tasks and Bibliography for FY 1997

    Science.gov (United States)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  16. Life Sciences Program Tasks and Bibliography for FY 1996

    Science.gov (United States)

    Nelson, John C. (Editor)

    1997-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.

  17. Future opportunities and future trends for e-infrastructures and life sciences: going beyond grid to enable life science data analysis

    Directory of Open Access Journals (Sweden)

    Fotis ePsomopoulos

    2015-06-01

    Full Text Available With the increasingly rapid growth of data in Life Sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. In the context of the European Grid Infrastructure Community Forum 2014 (Helsinki, 19–23 May 2014, a workshop was held aimed at understanding the state of the art of Grid/Cloud computing in EU research as viewed from within the field of Life Sciences. The workshop brought together Life Science researchers and infrastructure providers from around Europe and facilitated networking between them within the context of EGI. The first part of the workshop included talks from key infrastructures and projects within the Life Sciences community. This was complemented by technical talks that established the key aspects present in major research approaches. Finally, the discussion phase provided significant insights into the road ahead with proposals for possible collaborations and suggestions for future actions.

  18. NASA Life Sciences Program

    Science.gov (United States)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  19. 77 FR 35353 - Biotech Life Sciences Trade Mission to Australia

    Science.gov (United States)

    2012-06-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Biotech Life Sciences Trade Mission to... Commercial Service (CS) is organizing a Biotech Life Sciences trade mission to Australia, October 29-November.... biotechnology and life science firms. The goals of the trade mission to Australia are to (1) increase U.S...

  20. 76 FR 17621 - Biotech Life Science Trade Mission to China

    Science.gov (United States)

    2011-03-30

    ... DEPARTMENT OF COMMERCE International Trade Administration Biotech Life Science Trade Mission to... Commercial Service (CS) is organizing a Biotechnology Life Sciences trade mission to China on October 17-20... representatives from a variety of U.S. biotechnology and life science firms and trade organizations. The mission...

  1. A comparison in vivo dacron wool (Swank) and polyester mesh (Pall) micropore blood transfusion filters in the prevention of pulmonary microembolism associated with massive transfusion.

    Science.gov (United States)

    Barrett, J; Dhurandhar, H N; Miller, E; Litwin, M S

    1975-01-01

    Experiments were performed to compare the effectiveness in vivo of the two most widely used micropore blood transfusion filters in preventing detrimental physiologic changes associated with transfusion of microaggregate-containing blood. Exchange transfusion with stored blood having an elevated screen filtration pressure (SFP) through polyester mesh (Pall) filters (Group PM) was followed by decreases in arterial blood pH and O2 consumption, increases in arterial blood pyruvate and lactate concentrations, and a decrease in pulmonary DO2. The lungs of 5 of 6 animals revealed emboli far out in the pulmonary microcirculation. These changes did not occur in animals transfused through dacron wool (Swank) filters (Group DW). Even though an increase after transfusion in pulmonary Qs/Qt in Group PM did not achieve statistical significance when compared to pretransfusion Qs/Qt, it was significantly higher than that in animals in Group DW. Both filters removed considerable quantities of microaggregates; however, the polyester mesh (Pall) filters permitted passage of small microaggregates and development of ditrimental physiologic changes. Dacron wool (Swank) filters completely removed measurable microaggregates and detrimental changes did not occur. Images Fig. 1. Fig. 2. Fig. 3. PMID:242282

  2. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  3. Life Sciences Division annual report, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marrone, B.L.; Cram, L.S. (comps.)

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  4. Life Sciences Division annual report, 1988

    International Nuclear Information System (INIS)

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information

  5. LIVIVO - the Vertical Search Engine for Life Sciences.

    Science.gov (United States)

    Müller, Bernd; Poley, Christoph; Pössel, Jana; Hagelstein, Alexandra; Gübitz, Thomas

    2017-01-01

    The explosive growth of literature and data in the life sciences challenges researchers to keep track of current advancements in their disciplines. Novel approaches in the life science like the One Health paradigm require integrated methodologies in order to link and connect heterogeneous information from databases and literature resources. Current publications in the life sciences are increasingly characterized by the employment of trans-disciplinary methodologies comprising molecular and cell biology, genetics, genomic, epigenomic, transcriptional and proteomic high throughput technologies with data from humans, plants, and animals. The literature search engine LIVIVO empowers retrieval functionality by incorporating various literature resources from medicine, health, environment, agriculture and nutrition. LIVIVO is developed in-house by ZB MED - Information Centre for Life Sciences. It provides a user-friendly and usability-tested search interface with a corpus of 55 Million citations derived from 50 databases. Standardized application programming interfaces are available for data export and high throughput retrieval. The search functions allow for semantic retrieval with filtering options based on life science entities. The service oriented architecture of LIVIVO uses four different implementation layers to deliver search services. A Knowledge Environment is developed by ZB MED to deal with the heterogeneity of data as an integrative approach to model, store, and link semantic concepts within literature resources and databases. Future work will focus on the exploitation of life science ontologies and on the employment of NLP technologies in order to improve query expansion, filters in faceted search, and concept based relevancy rankings in LIVIVO.

  6. USSR Space Life Sciences Digest, issue 13

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  7. Evaluation of Life Sciences and Social Sciences Course Books in Term of Societal Sexuality

    Science.gov (United States)

    Aykac, Necdet

    2012-01-01

    This study aims to evaluate primary school Life Sciences (1st, 2nd, and 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books in terms of gender discrimination. This study is a descriptive study aiming to evaluate the primary school Life Sciences (1st, 2nd, 3rd grades) and Social Sciences (4th, 5th, and 6th grades) course books…

  8. Semantic Web technologies for the big data in life sciences.

    Science.gov (United States)

    Wu, Hongyan; Yamaguchi, Atsuko

    2014-08-01

    The life sciences field is entering an era of big data with the breakthroughs of science and technology. More and more big data-related projects and activities are being performed in the world. Life sciences data generated by new technologies are continuing to grow in not only size but also variety and complexity, with great speed. To ensure that big data has a major influence in the life sciences, comprehensive data analysis across multiple data sources and even across disciplines is indispensable. The increasing volume of data and the heterogeneous, complex varieties of data are two principal issues mainly discussed in life science informatics. The ever-evolving next-generation Web, characterized as the Semantic Web, is an extension of the current Web, aiming to provide information for not only humans but also computers to semantically process large-scale data. The paper presents a survey of big data in life sciences, big data related projects and Semantic Web technologies. The paper introduces the main Semantic Web technologies and their current situation, and provides a detailed analysis of how Semantic Web technologies address the heterogeneous variety of life sciences big data. The paper helps to understand the role of Semantic Web technologies in the big data era and how they provide a promising solution for the big data in life sciences.

  9. Life sciences - On the critical path for missions of exploration

    Science.gov (United States)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  10. Space life sciences strategic plan, 1991

    Science.gov (United States)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  11. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  12. Physical and Life Sciences 2008 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Correll, D L; Hazi, A U

    2009-05-06

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  13. Future opportunities and trends for e-infrastructures and life sciences: going beyond the grid to enable life science data analysis.

    Science.gov (United States)

    Duarte, Afonso M S; Psomopoulos, Fotis E; Blanchet, Christophe; Bonvin, Alexandre M J J; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C; de Lucas, Jesus M; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B

    2015-01-01

    With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community.

  14. Breathing Life into Engineering: A Lesson Study Life Science Lesson

    Science.gov (United States)

    Lawrence, Maria; Yang, Li-Ling; Briggs, May; Hession, Alicia; Koussa, Anita; Wagoner, Lisa

    2016-01-01

    A fifth grade life science lesson was implemented through a lesson study approach in two fifth grade classrooms. The research lesson was designed by a team of four elementary school teachers with the goal of emphasizing engineering practices consistent with the "Next Generation Science Standards" (NGSS) (Achieve Inc. 2013). The fifth…

  15. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  16. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  17. Home | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ple Search Original Site Database Center for Life Science Kousaku Okubo organ human The dictionary-type data...-SA Detail Taxonomy Icon Taxonomy Icon Download | Simple Search Original Site National Bioscience Database Center Kousaku Okubo...enter for Life Science Kousaku Okubo Dictionary 9 species (human, mouse, rat, zeb

  18. Accommodating life sciences on the Space Station

    Science.gov (United States)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  19. Student teachers' views: what is an interesting life sciences curriculum?

    OpenAIRE

    Rian de Villiers

    2011-01-01

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET) phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university...

  20. Life Sciences Data Archive (LSDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Life Sciences Data Archive (LSDA) is an active archive that provides information and data from 1961 (Mercury Project) through current flight and flight analog...

  1. Open life science research, open software and the open century

    Directory of Open Access Journals (Sweden)

    Youhua Chen

    2015-05-01

    Full Text Available At the age of knowledge explosion and mass scientific information, I highlighted the importance of conducting open science in life and medical researches through the extensive usage of open software and documents. The proposal of conducting open science is to reduce the limited repeatability of researches in life science. I outlined the essential steps for conducting open life science and the necessary standards for creating, reusing and reproducing open materials. Different Creative Commons licenses were presented and compared of their usage scope and restriction. As a conclusion, I argued that open materials should be widely adopted in doing life and medical researches.

  2. Space life sciences perspectives for Space Station Freedom

    Science.gov (United States)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  3. Open Genetic Code : On open source in the life sciences

    NARCIS (Netherlands)

    Deibel, E.

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life

  4. Politics and the life sciences: an unfinished revolution.

    Science.gov (United States)

    Johnson, Gary R

    2011-01-01

    Politics and the life sciences--also referred to as biopolitics--is a field of study that seeks to advance knowledge of politics and promote better policymaking through multidisciplinary analysis that draws on the life sciences. While the intellectual origins of the field may be traced at least into the 1960s, a broadly organized movement appeared only with the founding of the Association for Politics and the Life Sciences (APLS) in 1980 and the establishment of its journal, Politics and the Life Sciences ( PLS ), in 1982. This essay--contributed by a past journal editor and association executive director--concludes a celebration of the association's thirtieth anniversary. It reviews the founding of the field and the association, as well as the contributions of the founders. It also discusses the nature of the empirical work that will advance the field, makes recommendations regarding the identity and future of the association, and assesses the status of the revolution of which the association is a part. It argues that there is progress to celebrate, but that this revolution--the last of three great scientific revolutions--is still in its early stages. The revolution is well-started, but remains unfinished.

  5. The International Space Life Sciences Strategic Planning Working Group

    Science.gov (United States)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  6. Open Genetic Code: on open source in the life sciences

    OpenAIRE

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first ...

  7. Equity and career-life balance in marine mammal science?

    OpenAIRE

    Hooker, Sascha K.; Simmons, Samantha E.; Stimpert, Alison K.; McDonald, Birgitte I.

    2017-01-01

    It is widely acknowledged that family and care-giving responsibilities are driving women away from Science, Technology, Engineering, and Mathematics (STEM) fields. Marine mammal science often incurs heavy fieldwork and travel obligations, which make it a challenging career in which to find work-life balance. This opinion piece explores gender equality, equity (the principles of fairness that lead to equality), and work-life balance in science generally and in this field in particular. We aim ...

  8. The Root Extract of Gentiana macrophylla Pall. Alleviates Cardiac Apoptosis in Lupus Prone Mice.

    Directory of Open Access Journals (Sweden)

    Chih-Yang Huang

    Full Text Available The roots of the perennial herb Gentiana macrophylla Pall. (GM are known as Qinjiao, which has been used for centuries to treat systemic lupus erythematosus (SLE. However, little is known about the effects of GM on cholesterol-aggravated cardiac abnormalities in SLE, and the mechanisms thereof. This study investigates whether GM exhibits anti-apoptotic effects, focusing on the left ventricle (LV of NZB/W F1 mice fed with high-cholesterol diet. The morphology and apoptotic status of ventricular tissues were determined by microscopy and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay. Levels of apoptotic biomarkers were determined by immunoblotting. The results thus obtained revealed that GM significantly reduced the cholesterol-aggravated apoptosis of LV in NZB/W F1 mice by suppressing both intrinsic and extrinsic apoptotic pathways. Additionally, GM significantly increased the cardiac insulin-like growth factors (IGF-1 survival signaling and anti-apoptotic proteins in LV tissues. Accordingly, GM is considered to be beneficial in alleviating cholesterol-aggravated cardiac damage in SLE, and therefore constitute an alternative treatment for SLE patients with cardiac abnormalities.

  9. Total glucosides of Paeonia lactiflora Pall inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Deng, Hui; Yan, Chunlin; Xiao, Tian; Yuan, Dingfen; Xu, Jinhua

    2010-02-17

    To evaluate the anti-angiogenesis effect of total glucosides of Paeonia lactiflora Pall. In this study, we determined the effect of TGP on the proliferation of human vascular endothelial cells through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting analysis. A migration assay and a tube formation assay were used to investigate the migration properties and tube formation abilities of human vascular endothelial cells after being treated with TGP. Furthermore, the in vivo anti-angiogenic ability of TGP was determined through a chick chorioallantoic membrane assay. TGP (12.5, 62.5, and 312.5 microg/ml) resulted in a dose-dependent reduction in the proliferation of endothelial cells. This inhibition effect began 6h after treatment and lasted at least 24h. Fluorescence-activated cell sorting analysis data showed an accumulation of cells in the G0/G1 phase of the cell cycle, which exhibited apoptotic features indicative of cell death. The migration properties and tube forming abilities of endothelial cells were dramatically inhibited by the TGP extract. Our results show that TGP can inhibit angiogenesis in vitro and in vivo. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Photons in Natural and Life Sciences An Interdisciplinary Approach

    CERN Document Server

    Lewerenz, Hans-Joachim

    2012-01-01

    The book describes first the principle photon generation processes from nuclear reactions, electron motion and from discrete quantum transitions. It then focuses on the use of photons in various selected fields of modern natural and life sciences. It bridges disciplines such as physics, chemistry, earth- and materials science, proteomics, information technology, photoelectrochemistry, photosynthesis and spintronics. Advanced light sources and their use in natural and life sciences are emphasized and the effects related to the quantum nature of photons (quantum computing, teleportation) are described. The content encompasses among many other examples the role of photons on the origin of life and on homochirality in biology, femtosecond laser slicing, photothermal cancer therapy, the use of gamma rays in materials science, photoelectrochemical surface conditioning, quantum information aspects and photo-spintronics. The book is written for scientists and graduate students from all related disciplines who are int...

  11. 76 FR 42682 - China Biotech Life Sciences Trade Mission-Clarification and Amendment

    Science.gov (United States)

    2011-07-19

    ... DEPARTMENT OF COMMERCE International Trade Administration China Biotech Life Sciences Trade... Life Science Trade Mission to China, 76 FR 17,621, Mar. 30, 2011, to clarify eligibility and amend the... representatives from a variety of U.S. biotechnology and life science firms and trade organizations. In response...

  12. Ayurveda: Science of life, genetics, and epigenetics.

    Science.gov (United States)

    Sharma, Hari

    2016-01-01

    Ayurveda is a traditional system of medicine originated in the ancient Vedic times of India. This body of knowledge is found in well-documented texts such as the Charaka Samhita and Sushruta Samhita , and describes physiology and interrelated systems of the body, variations in human constitution, surgery, herbal use, and health-promoting recommendations. Ayurveda is translated as the "Science of Life;" Ayus = Life, and Veda = knowledge/science. The principles and treatment modalities have endured over time. For Ayurveda to be appreciated by Western medical researchers, this traditional system of medicine needs to be understood in terms of modern science. The current theories of physiology that support Ayurvedic approaches need to be explored. Herein, one approach of how the realm of epigenetics can help elucidate the mechanisms of Ayurveda has been described.

  13. New microfluidic platform for life sciences in South Africa

    CSIR Research Space (South Africa)

    Hugo, S

    2012-10-01

    Full Text Available is also offered as numerous devices can be implemented on one disc. A variety of components from sample preparation through to detection can be implemented simply and effectively into an integrated microfluidic solution for life sciences. The lab... in the field of centrifugal microfluidics. New microfluidic platform for life sciences in South Africa S. HUGO, K. LAND CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidic...

  14. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    Science.gov (United States)

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.

  15. Silkworm: A Promising Model Organism in Life Science.

    Science.gov (United States)

    Meng, Xu; Zhu, Feifei; Chen, Keping

    2017-09-01

    As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Open Genetic Code: on open source in the life sciences.

    Science.gov (United States)

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first section discusses the greater flexibly in regard of patenting and the relationship to the introduction of open source in the life sciences. The main argument is that the ownership of knowledge in the life sciences should be reconsidered in the context of the centrality of DNA in informatic formats. This is illustrated by discussing a range of examples of open source models. The second part focuses on open source in synthetic biology as exemplary for the re-materialization of information into food, energy, medicine and so forth. The paper ends by raising the question whether another kind of alternative might be possible: one that looks at open source as a model for an alternative to the commodification of life that is understood as an attempt to comprehensively remove the restrictions from the usage of DNA in any of its formats.

  17. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  18. Kant on anatomy and the status of the life sciences.

    Science.gov (United States)

    Olson, Michael J

    2016-08-01

    This paper contributes to recent interest in Kant's engagement with the life sciences by focusing on one corner of those sciences that has received comparatively little attention: physical and comparative anatomy. By attending to remarks spread across Kant's writings, we gain some insight into Kant's understanding of the disciplinary limitations but also the methodological sophistication of the study of anatomy and physiology. Insofar as Kant highlights anatomy as a paradigmatic science guided by the principle of teleology in the Critique of the Power of Judgment, a more careful study of Kant's discussions of anatomy promises to illuminate some of the obscurities of that text and of his understanding of the life sciences more generally. In the end, it is argued, Kant's ambivalence with regard to anatomy gives way to a pessimistic conclusion about the possibility that anatomy, natural history, and, by extension, the life sciences more generally might one day become true natural sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. USSR Space Life Sciences Digest, issue 14

    Science.gov (United States)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  20. USSR Space Life Sciences Digest, issue 2

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  1. USSR Space Life Sciences Digest, issue 3

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  2. PSI life sciences newsletter 1988

    International Nuclear Information System (INIS)

    Schubiger, P.A.

    1989-10-01

    Even as separate institutes, the EIR (Eidg. Institut fuer Reaktorforschung and the SIN (Schweiz. Institut fuer Nuklearforschung) made use of ionizing radiation and radioactivity in medical diagnosis and therapy. After their fusion into a national laboratory, the Paul Scherrer Institute (PSI), these projects were combined with those of the Radiation Protection Group and the Life Sciences Department was formed. In equality with the departments of Nuclear and Particle Physics, Condensed Matter and Materials Sciences, and Energy Research and Engineering Sciences, the department of Life Sciences is one of the major pillars of the new center. The activities are divided into three areas: radiation medicine, radiopharmacy, and radiation protection. The goal of the first two is to develop social and economic uses of radioactivity and elementary particles. The Division of Radiation Medicine proposes to achieve this through the development of original, dynamic and conformal tumor therapy with charged particles and the Division of Radiopharmacy through the investigation into, and the production of, highly specific diagnostic systems for SPECT, PET and MRI and the investigation of the use of radionuclides in therapy. The third division, Radiation Protection, evaluates the risks of ionizing radiation in biology and the ecosphere and proposes adequate protection measures. The present report describes, in the first section, the outstanding scientific results of the past year and, in the second section, gives a progress report on the on-going programs. It is the first report in this style, but it can be considered as a continuation of the earlier Medical Newsletter of SIN. (author) 59 figs., 19 tabs., 61 refs

  3. Nonautonomous dynamical systems in the life sciences

    CERN Document Server

    Pötzsche, Christian

    2013-01-01

    Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.

  4. The LAILAPS Search Engine: Relevance Ranking in Life Science Databases

    Directory of Open Access Journals (Sweden)

    Lange Matthias

    2010-06-01

    Full Text Available Search engines and retrieval systems are popular tools at a life science desktop. The manual inspection of hundreds of database entries, that reflect a life science concept or fact, is a time intensive daily work. Hereby, not the number of query results matters, but the relevance does. In this paper, we present the LAILAPS search engine for life science databases. The concept is to combine a novel feature model for relevance ranking, a machine learning approach to model user relevance profiles, ranking improvement by user feedback tracking and an intuitive and slim web user interface, that estimates relevance rank by tracking user interactions. Queries are formulated as simple keyword lists and will be expanded by synonyms. Supporting a flexible text index and a simple data import format, LAILAPS can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases.

  5. Database Description - AT Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available 1-8540, JAPAN Platform for Drug Discovery, Informatics, and Structural Life Science Research Organization...m for Drug Discovery, Informatics, and Structural Life Science Research Organization of Information and Syst

  6. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  7. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    Science.gov (United States)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  8. More Life-Science Experiments For Spacelab

    Science.gov (United States)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  9. NUCOR Institute for Life Sciences

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article discusses the Nucor Institute for Life Sciences. The institute was previously part of Nucor, but is now an autonomous institute of the University of Pretoria. The task of the institute is to promote the application of radioisotopes and radiation techniques in medicine and biology. Research projects of the institute are shortly discussed

  10. Educational challenges of molecular life science: Characteristics and implications for education and research.

    Science.gov (United States)

    Tibell, Lena A E; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.

  11. Fullness of life as minimal unit: Science, technology, engineering, and mathematics (STEM) learning across the life span.

    NARCIS (Netherlands)

    Roth, W.-M.; Eijck, van M.W.

    2011-01-01

    Challenged by a National Science Foundation–funded conference, 2020 Vision: The Next Generation of STEM Learning Research, in which participants were asked to recognize science, technology, engineering, and mathematics (STEM) learning as lifelong, life-wide, and life-deep, we draw upon 20 years of

  12. Exploring the living universe: A strategy for space life sciences

    Science.gov (United States)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  13. USSR Space Life Sciences Digest

    Science.gov (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  14. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  15. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  16. Life Science Start-up Activities at the Universities of Applied Sciences (UAS).

    Science.gov (United States)

    Huber, Gerda

    2014-12-01

    The universities of applied sciences (UAS) provide several values for the society and economy of a country. Besides education of high level professionals, transfer of knowledge from research to applications in industry or as new start-up companies is an important task. This is done in different ways in the various disciplines. In Life Sciences, a key industry branch in Switzerland, innovation is a competitive success factor and research findings from UAS/Life Sciences contribute to the valorization of new technologies to products, services and to business performance. In order to foster awareness for the innovation need of industry, UAS install processes and support for transfer of research and technology results to marketable applications. Furthermore they may facilitate contacts of researchers and students with entrepreneurs in order to animate start-up founding as a true alternative to being employed. Access to coaching and entrepreneurial training completes the essential basis.

  17. USSR Space Life Sciences Digest, issue 11

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  18. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  19. Biographical Sources in the Sciences--Life, Earth and Physical Sciences (1989-2006). LC Science Tracer Bullet. TB 06-4

    Science.gov (United States)

    Freitag, Ruth, Comp.; Bradley, Michelle Cadoree, Comp.

    2006-01-01

    This guide offers a systematic approach to the wide variety of published biographical information on men and women of science in the life, earth and physical sciences, primarily from 1989 to 2006, and complements Library of Congress Science Tracer Bullet "TB88-3" ("Biographical Sources in the Sciences," compiled 1988 [ED306074]) and "TB06-7"…

  20. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  1. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  2. Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary

    Science.gov (United States)

    1975-01-01

    Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.

  3. [Preclinical study of immunocorrection action of the sum of active substances of Coluria geoides (Pall.) Ledeb. (Rosaceae)].

    Science.gov (United States)

    Dutova, S V; Karpova, M R; Myadelets, M A; Myasnaya, N V; Sherstoboev, E Yu

    2015-01-01

    A preclinical study of the immunocorrection action of the sum of active substances isolated from ethereal-oil plants Coluria geoides (Pall.) Ledeb. (Rosaceae family) with respect to experimental immunodeficiency showed that preparations relieve symptoms of immunodeficiency caused by the administration of cyclophosphan: suppressed synthesis of anti-erythrocyte antibodies (agglutinine) and proliferative processes in the spleen. Under the influence of C. geoides preparations, the absolute numbers of cariocytes and antibody forming cells in spleen significantly increased (compared to the group of animals with experimental immunodeficiency) and in some cases reached the background level. The drugs studied produced a more pronounced stimulating effect on the synthesis of specific immunoglobulins and proliferation of antibody forming cells of spleen as compared to the effect of Echinacea tincture. Preparation C-2 (extract from underground organs and grass of C. geoides obtained by percolation method with 70% ethanol) is most promising for in-depth research and the development of new effective drugs with immunocorrecting properties.

  4. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  5. Social Cognitive Predictors of Interest in Research Among Life Sciences Academics

    Science.gov (United States)

    Sawitri, Dian R.; Nurtjahjanti, Harlina; Prasetyo, Anggun R.

    2018-02-01

    Research interest is the degree to which an individual is interested in conducting research-related activities. Nowadays, Indonesian higher education academics are expected to be research productive, especially those in life sciences. However, what predicts interest in research among life sciences academics is rarely known. We surveyed 240 life sciences academics (64.6% female, mean age = 31.91 years) from several higher degree institutions in Indonesia, using interest in research, research self-efficacy, and research outcome expectations questionnaires. We used social cognitive career theory which proposes that individual’s interests are the results of the interaction between one’s self-efficacy beliefs and outcome expectations overtime. Structural equation modelling demonstrated that research self-efficacy was directly and indirectly associated with interest in research via research outcome expectations. Understanding the social cognitive predictors of interest in research contributes to an understanding of the associations between research self-efficacy, outcome expectations, and interest in research. Recommendations for life sciences academics, faculties, and higher education institutions are discussed.

  6. The oblique perspective: philosophical diagnostics of contemporary life sciences research.

    Science.gov (United States)

    Zwart, Hub

    2017-12-01

    This paper indicates how continental philosophy may contribute to a diagnostics of contemporary life sciences research, as part of a "diagnostics of the present" (envisioned by continental thinkers, from Hegel up to Foucault). First, I describe (as a "practicing" philosopher) various options for an oblique (or symptomatic) reading of emerging scientific discourse, bent on uncovering the basic "philosophemes" of science (i.e. the guiding ideas, the basic conceptions of nature, life and technology at work in contemporary life sciences research practices). Subsequently, I outline a number of radical transformations occurring both at the object-pole and at the subject-pole of the current knowledge relationship, namely the technification of the object and the anonymisation or collectivisation of the subject, under the sway of automation, ICT and big machines. Finally, I further elaborate the specificity of the oblique perspective with the help of Lacan's theorem of the four discourses. Philosophical reflections on contemporary life sciences concur neither with a Master's discourse (which aims to strengthen the legitimacy and credibility of canonical sources), nor with university discourse (which aims to establish professional expertise), nor with what Lacan refers to as hysterical discourse (which aims to challenge representatives of the power establishment), but rather with the discourse of the analyst, listening with evenly-poised attention to the scientific files in order to bring to the fore the cupido sciendi (i.e. the will to know, but also to optimise and to control) which both inspires and disrupts contemporary life sciences discourse.

  7. Enhancing Life Sciences Teachers' Biodiversity Knowledge

    African Journals Online (AJOL)

    This paper provides insights into how Life Sciences teachers in the Eastern Cape ..... Even simulations, in most cases they are quite artificial in the sense that the ... explain the concept of human impacts on biodiversity; and field activities were .... integrated and applied knowledge required for quality teaching (disciplinary, ...

  8. Social science in a stem cell laboratory: what happened when social and life sciences met.

    Science.gov (United States)

    Stacey, Glyn; Stephens, Neil

    2012-01-01

    We describe the experience of conducting intensive social science research at the UK Stem Cell Bank from the viewpoint of both the person conducting the social science research and the Director of the Bank. We detail the initial misunderstandings and concerns held by both and the problems these caused. Then we describe how the relationship developed as the project progressed and shared benefits became apparent. Finally, while acknowledging potential areas of tension between the life and social sciences, we suggest further interaction between the disciplines would prove beneficial for both and speculate as to how this may be achieved. In the discussion we identify a set of learning points from our experience and definitions of social science terminology that may help to inform future engagements between life and social scientists.

  9. USSR Space Life Sciences Digest, issue 9

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  10. Content Analysis of Life Exhibitions in Japanese Science Museums and Centres

    Science.gov (United States)

    Kazama, Tomoko; Ogawa, Masakata

    2015-01-01

    Life exhibitions in Japanese science museums (SMs) face difficulties in coping with rapid progress in the life sciences owing to certain constraints around the frequency of exhibit renovations, and the Japanese indigenous understanding of the natural world (Shizen) that Japanese visitors unconsciously bring with them. To what extent do current…

  11. A Strategy for Reorientation of Post-Graduate Courses in Life Sciences

    Science.gov (United States)

    Jayaraman, J.

    1975-01-01

    The Binational Conference on Life Sciences in Bangalore in 1971 made recommendations for reorganization of teaching and research in life sciences (e.g. integration of botany and zoology departments). The author notes administrative reasons why changes have not been implemented and outlines notes administrative reasons why changes have not been…

  12. Of Responsible Research--Exploring the Science-Society Dialogue in Undergraduate Training within the Life Sciences

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-01

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in…

  13. Analogical reflection as a source for the science of life: Kant and the possibility of the biological sciences.

    Science.gov (United States)

    Nassar, Dalia

    2016-08-01

    In contrast to the previously widespread view that Kant's work was largely in dialogue with the physical sciences, recent scholarship has highlighted Kant's interest in and contributions to the life sciences. Scholars are now investigating the extent to which Kant appealed to and incorporated insights from the life sciences and considering the ways he may have contributed to a new conception of living beings. The scholarship remains, however, divided in its interest: historians of science are concerned with the content of Kant's claims, and the ways in which they may or may not have contributed to the emerging science of life, while historians of philosophy focus on the systematic justifications for Kant's claims, e.g., the methodological and theoretical underpinnings of Kant's statement that living beings are mechanically inexplicable. My aim in this paper is to bring together these two strands of scholarship into dialogue by showing how Kant's methodological concerns (specifically, his notion of reflective judgment) contributed to his conception of living beings and to the ontological concern with life as a distinctive object of study. I argue that although Kant's explicit statement was that biology could not be a science, his implicit and more fundamental claim was that the study of living beings necessitates a distinctive mode of thought, a mode that is essentially analogical. I consider the implications of this view, and argue that it is by developing a new methodology for grasping organized beings that Kant makes his most important contribution to the new science of life. Copyright © 2016. Published by Elsevier Ltd.

  14. Quantum Man: Richard Feynman's Life in Science

    CERN Document Server

    CERN. Geneva

    2011-01-01

    It took a man who was willing to break all the rules to tame a theory that breaks all the rules. This talk will be based on my new book Quantum Man: Richard Feynman's life in science. I will try and present a scientific overview of the contributions of Richard Feynman, as seen through the arc of his fascinating life. From Quantum Mechanics to Antiparticles, from Rio de Janeiro to Los Alamos, a whirlwind tour will provide insights into the character, life and accomplishments of one of the 20th centuries most important scientists, and provide an object lesson in scientific integrity.

  15. The Technology in the Programs of Life Sciences in Turkey and Sachunterricht in Germany

    Science.gov (United States)

    Keskin, Tuba

    2017-01-01

    The purpose of this study is to compare the gains of the Life Sciences program in Turkey and the Life sciences program (Sachunterricht) used in the state of Niedersachsen in Germany. The study aiming to compare the technology-related acquisitions in Life sciences program in Turkey and Germany is a comparative education research that used…

  16. Secondary school students' perceptions of working life skills in science-related careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-07-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were 144 Finnish 7th graders (aged 13-14 years). Using a questionnaire and qualitative content analysis, we examined their perceptions of working life skills in 'careers in science' and 'careers with science'. Results reveal that although students have a great deal of knowledge about working life skills, it is often just stereotyped. Sector-specific knowledge and skills were highlighted in particular but skills related to society, organisation, time and higher order thinking, were often omitted. Results also indicate that students do not associate 'careers in science' with creativity, innovation, collaboration or technology and ICT skills. Conversely, according to the students, these careers demand more sector-specific knowledge and responsibility than 'careers with science'. We conclude that students need more wide-ranging information about scientific careers and the competencies demanded; such information can be acquired by e.g. interacting with professionals and their real working life problems.

  17. USSR Space Life Sciences Digest, issue 4

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  18. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  19. Coffee, Black Holes, Editors, and Beer: The Science-Writing Life

    Science.gov (United States)

    Francis, Matthew R.

    2016-01-01

    What does a science writer do all day? In a tough job market and the pressures of the publish-or-perish life, careers outside academia are enticing. But it's not just a matter of swapping research papers for news stories, or adapting course lectures to magazine articles. I am a former academic scientist (with a PhD in physics and astronomy, as well as six years of university teaching) who now works as a freelance science journalist. In this talk, I'll share my experiences, along with a brief guide to the science-writing life. Along the way, we'll touch on misconceptions ("I love teaching, so science writing should be easy!"), bad attitudes ("dumbing down" is a concept that should be nuked from orbit), and the joys of sharing science with others. There are some hard truths: don't choose science writing because you think it's an easy option compared with academic research. Nevertheless, it's a rewarding profession, and one that allows you to remember the love of science — and share that love with large numbers of other people.

  20. Ethical challenges for the life sciences

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2004-01-01

    In this book we will first discuss broader issues of ethics of the life sciences, which enable us later on to focus on the more specific issues. Therefore, we begin with two contributions on the ethical issues of working in organizations. A fruitful side effect of this start is that it gives a good

  1. Nuclear analytical methods in the life sciences

    NARCIS (Netherlands)

    de Goeij, J.J.M.

    1994-01-01

    A survey is given of various nuclear analytical methods. The type of analytical information obtainable and advantageous features for application in the life sciences are briefly indicated. These features are: physically different basis of the analytical method, isotopic rather than elemental

  2. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology ...

  3. Science in the city region: establishing Liverpool’s life science ecology

    Directory of Open Access Journals (Sweden)

    Dane Anderton

    2016-01-01

    Full Text Available This article focuses on the development of soft and hard infrastructures to support a life science ecology in a peripheral European city region. Liverpool City Region has received almost £1.7bn in capital investment through the EU Cohesion Policy to redevelop the city region and reinvigorate its economy towards knowledge based industries. The analysis of the city regions life science ecology highlights the uneven development of hard and soft infrastructures. Due to the diversity of firms within the region it has proven difficult to establish soft infrastructure related to scientific knowledge. The outcome has led to soft infrastructures being more business support orientated rather than scientific knowledge based, reducing inter-firm connections on a product or service basis. The evidence shows that not all types of soft infrastructure emerge as an outcome of investment. Hence, policy makers need to provide a clearer narrative on their investments, focusing on fewer core competencies rather than breadth of activities.

  4. Inspiring the Next Generation in Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  5. Challenges and Opportunities for Education about Dual Use Issues in the Life Sciences

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    The Challenges and Opportunities for Education About Dual Use Issues in the Life Sciences workshop was held to engage the life sciences community on the particular security issues related to research with dual use potential. More than 60 participants from almost 30 countries took part and included practicing life scientists, bioethics and…

  6. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.

  7. From darwin to the census of marine life: marine biology as big science.

    Science.gov (United States)

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  8. From darwin to the census of marine life: marine biology as big science.

    Directory of Open Access Journals (Sweden)

    Niki Vermeulen

    Full Text Available With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  9. Life sciences payload definition and integration study. Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.

  10. 75 Easy Life Science Demonstrations. Teacher Book.

    Science.gov (United States)

    Kardos, Thomas

    This book is a collection of life science classroom demonstrations. Explanations that review key concepts are included. Topics are: stimulus and response; gravitropism; phototropism; living organisms; carbon dioxide; gases emitted by plants; greenhouse effect; stomata; transpiration; leaf skeletons; seed growth; water evaporation in plants; carbon…

  11. AECL research programs in life sciences

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-04-01

    The present report summarizes the current research activities in life sciences in the Atomic Energy of Canada Limited-Research Company. The research is carried out at its two main research sites: the Chalk River Nuclear Laboratories and the Whiteshell Nuclear Research Establishment. The summaries cover the following areas of research: radiation biology, medical biophysics, epidemiology, environmental research and dosimetry. (author)

  12. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  13. Bringing Climate Change into the Life Science Classroom: Essentials, Impacts on Life, and Addressing Misconceptions

    Science.gov (United States)

    Hawkins, Amy J.; Stark, Louisa A.

    2016-01-01

    Climate change is at the forefront of our cultural conversation about science, influencing everything from presidential debates to Leonardo DiCaprio's 2016 Oscar acceptance speech. The topic is becoming increasingly socially and scientifically relevant but is no closer to being resolved. Most high school students take a life science course but…

  14. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  15. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  16. Data life cycle: a perspective from the Information Science

    Directory of Open Access Journals (Sweden)

    Ricardo César Gonçalves Sant’Ana

    2016-08-01

    Full Text Available Introduction: Access and use of data as a key factor has been extended to several areas of knowledge of today's society. It’s necessary to develop a new perspective that presents phases and factors involved in these processes, providing an initial analysis structure, allowing the efforts, skills and actions organization related to the data life cycle. Purpose: This article is a proposal for a new look at the data life cycle, that assumes, as a central element, the data itself, supporting itself on the concepts and contributions that Information Science can provide, without giving up the reflections on the role of other key areas such as Computer Science. Methodology: The methodological procedures consisted of bibliographic research and content analysis to describe the phases and factors related to the Data Life Cycle, developing reflections and considerations from context already consolidated in the development of systems that can corroborate the idea of centrality of data. Results: The results describe the phases of: collect, storage, recovery and discard, permeated by transverse factors: privacy, integration, quality, copyright, dissemination and preservation, composing a Data Life Cycle. Conclusions: The current context of the availability of large volumes of data, with great variety and at speeds that provide access in real time, setting the so-called Big Data that requires new concerns about access and use processes of data. The Information Science may offer a new approach, now centered in the data, and contribute to the optimization of Data Life Cycle as a whole, extending bridges between users and the data they need.

  17. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  18. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  19. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  20. Advancing palliative and end-of-life science in cardiorespiratory populations: The contributions of nursing science.

    Science.gov (United States)

    Grady, Patricia A

    Nursing science has a critical role to inform practice, promote health, and improve the lives of individuals across the lifespan who face the challenges of advanced cardiorespiratory disease. Since 1997, the National Institute of Nursing Research (NINR) has focused attention on the importance of palliative and end-of-life care for advanced heart failure and advanced pulmonary disease through the publication of multiple funding opportunity announcements and by supporting a cadre of nurse scientists that will continue to address new priorities and future directions for advancing palliative and end-of-life science in cardiorespiratory populations. Published by Elsevier Inc.

  1. Mobile Robot for Life Science Automation

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2013-07-01

    Full Text Available The paper presents a control system for mobile robots in distributed life science laboratories. The system covers all technical aspects of laboratory mobile robotics. In this system: (a to get an accurate and low-cost robot localization, a method using a StarGazer module with a number of ceiling landmarks is utilized; (b to have an expansible communication network, a standard IEEE 802.11g wireless network is adopted and a XML-based command protocol is designed for the communication between the remote side and the robot board side; (c to realize a function of dynamic obstacle measurement and collision avoidance, an artificial potential field method based on a Microsoft Kinect sensor is used; and (d to determine the shortest paths for transportation tasks, a hybrid planning strategy based on a Floyd algorithm and a Genetic Algorithm (GA is proposed. Additionally, to make the traditional GA method suitable for the laboratory robot's routing, a series of optimized works are also provided in detail. Two experiments show that the proposed system and its control strategy are effective for a complex life science laboratory.

  2. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  3. 76 FR 35221 - Proposed Collection; Comment Request; NINR End-of-Life and Palliative Care Science Needs...

    Science.gov (United States)

    2011-06-16

    ... Request; NINR End-of-Life and Palliative Care Science Needs Assessment: Funding Source Questionnaire... Collection: Title: NINR End-of-Life and Palliative Care Science Needs Assessment: Funding Source... Collection: The NINR End-of-Life Science Palliative Care (EOL PC) Needs Assessment: Funding Source...

  4. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    Science.gov (United States)

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.

  5. 78 FR 12369 - United States Government Policy for Institutional Oversight of Life Sciences Dual Use Research of...

    Science.gov (United States)

    2013-02-22

    ... Oversight of Life Sciences Dual Use Research of Concern AGENCY: Office of Science and Technology Policy... comments on the proposed United States Government Policy for Institutional Oversight of Life Sciences Dual... requirements for certain categories of life sciences research at institutions that accept Federal funding for...

  6. Life Sciences Data Archive (LSDA) in the Post-Shuttle Era

    Science.gov (United States)

    Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre

    2009-01-01

    Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management, the systematic use and reuse of information/experience/expertise to achieve a specific goal, are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries from the science communities.

  7. Bringing Science to Life for Students, Teachers and the Community

    Science.gov (United States)

    Pratt, K.

    2012-04-01

    Bringing Science to Life for Students, Teachers and the Community Prior to 2008, 5th grade students at two schools of the New Haven Unified School District consistently scored in the bottom 20% of the California State Standards Test for science. Teachers in the upper grades reported not spending enough time teaching science, which is attributed to lack of time, resources or knowledge of science. A proposal was written to the National Oceanic and Atmospheric Administration's Bay Watershed Education Grant program and funding was received for Bringing Science to Life for Students, Teachers and the Community to address these concerns and instill a sense of stewardship in our students. This program engages and energizes students in learning science and the protection of the SF Bay Watershed, provides staff development for teachers, and educates the community about conservation of our local watershed. The project includes a preparation phase, outdoor phase, an analysis and reporting phase, and teacher training and consists of two complete units: 1) The San Francisco Bay Watershed Unit and 2) the Marine Environment Unit. At the end of year 5, our teachers were teaching more science, the community was engaged in conservation of the San Francisco Bay Watershed and most importantly, student scores increased on the California Science Test at one site by over 121% and another site by 152%.

  8. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  9. Broadening Participation in the Life Sciences with Social-Psychological Interventions

    Science.gov (United States)

    Tibbetts, Yoi; Harackiewicz, Judith M.; Priniski, Stacy J.; Canning, Elizabeth A.

    2016-01-01

    Randomized controlled trials (RCTs) have recently documented the positive effects of social-psychological interventions on the performance and retention of underrepresented students in the life sciences. We review two types of social-psychological interventions that address either students' well-being in college science courses or students'…

  10. Selfies. Symmetry_Encoding_Life_Fakes_Insight_Encoding_Science

    Directory of Open Access Journals (Sweden)

    Paolo Amodio

    2014-12-01

    Full Text Available By observing through the microscope a biological structure at the different scale levels, it is possible to live an astonishing experience which leads the explorer to travel across hierarchically structured geometrical worlds where spaces and paths are established by forms of unexpected strictness and symmetrical constructions conceal nested architectures which create self-similar universes evoking Koch's fractals or three-dimensional versions of Mandelbrot sets. The finding – surprising and consolatory at the same time – that living matter can somehow exhibit symmetries and levels of order one generally (and only associates to inorganic crystals, de facto undermines the foundations of some dichotomous categories on which both Science and Philosophy are based, consequently making fluid the boundaries between organic and inorganic, artificial and natural and – at the end – between life and death. The Life – at the macro- and micro-scopic eye – is available. It is geometrical disposition, conformal symmetry, solution and result. But Life, where that eye (and its extents is slotted, is meta-order, at most World as energy and kinematic laps, anyway para-logical priority, logical noise, paradox of the tangible and of the material. So, Science and Philosophy become comment and/or protest of the human mind in front of a “There Is”, and in this blame game between meta-bio-logical prius and historical preemption, any result of the human mind is also a result of the Life, of physical and chemical auto-organization which allows the Life itself. Not only methodological explosion of dichotomies as Natural/Artificial, Organic/Inorganic – the practice or the break of the dichotomy is however an existential demand of the Logos – rather secret horizon required by human livings, mass-produced mirrors of self-references and semantic codes. Symmetries and violations of symmetries in piles of Selfies to post on social networks of Science and

  11. Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines.

    Science.gov (United States)

    Ryuk, Jin Ah; Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Lee, Yong Hyen; Park, Sunmin

    2017-03-01

    JGTT groups were associated with enhanced β-cell proliferation and suppressed apoptosis, which was related to the decreased TNF-α and interleukin-1β expressions. In conclusion, JGTT did not improve menopausal symptoms better than TTK itself. TTK itself prevented the OVX-induced impairments in energy, lipid, and glucose metabolism, similar to the positive control, without changing serum 17β-estradiol levels and potentiating insulin signaling and decreasing proinflammatory cytokines. TTK may be a useful intervention to alleviate some menopausal symptoms similar to selective estrogen receptor modulators and should be investigated with further human study. Impact statement Menopause decreases the quality of life in middle-aged women and herbal remedies are sometimes used as alternatives for hormone replacement therapy, which may have detrimental side effects. Although several herbal extracts have been studied, no remedies improve all the menopausal symptoms. In this study, the 70% ethanol extract of Tetragonia tetragonioides (Pall.) Kuntze (TTK) reduced the symptoms of hot flushes and improved energy, glucose, and lipid metabolism in estrogen-deficient animals without increasing serum 17β-estradiol levels. This extract acts like a selective estrogen receptor modulator and it may be a useful intervention for alleviating menopausal symptoms. This is the first study to show that the 70% ethanol extract of TTK has the potential to treat menopause-associated symptoms and metabolic disturbances. It may be a useful intervention for alleviating the symptoms of menopause in women if its efficacy can be confirmed in human studies.

  12. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  13. Improving life sciences information retrieval using semantic web technology.

    Science.gov (United States)

    Quan, Dennis

    2007-05-01

    The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.

  14. Breathing new life into cognitive science

    Directory of Open Access Journals (Sweden)

    Tom Froese

    2011-08-01

    Full Text Available In this article I take an unusual starting point from which to argue for a unified cognitive science, namely a position defined by what is sometimes called the ‘life-mind continuity thesis’. Accordingly, rather than taking a widely accepted starting point for granted and using it in order to propose answers to some well defined questions, I must first establish that the idea of life-mind continuity can amount to a proper starting point at all. To begin with, I therefore assess the conceptual tools which are available to construct a theory of mind on this basis. By drawing on insights from a variety of disciplines, especially from a combination of existential phenomenology and organism-centered biology, I argue that mind can indeed be conceived as rooted in life, but only if we accept at the same time that social interaction plays a constitutive role for our cognitive capacities.

  15. Intersections of life histories and science identities: the stories of three preservice elementary teachers

    Science.gov (United States)

    Avraamidou, Lucy

    2016-03-01

    Grounded within Connelly and Clandinin's conceptualization of teachers' professional identity in terms of 'stories to live by' and through a life-history lens, this multiple case study aimed to respond to the following questions: (a) How do three preservice elementary teachers view themselves as future science teachers? (b) How have the participants' life histories shaped their science identity trajectories? In order to characterize the participants' formation of science identities over time, various data regarding their life histories in relation to science were collected: science biographies, self-portraits, interviews, reflective journals, lesson plans, and classroom observations. The analysis of the data illustrated how the three participants' identities have been in formation from the early years of their lives and how various events, experiences, and interactions had shaped their identities through time and across contexts. These findings are discussed alongside implications for theory, specifically, identity and life-history intersections, for teacher preparation, and for research related to explorations of beginning elementary teachers' identity trajectories.

  16. USSR Space Life Sciences Digest, issue 28

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  17. Arnold Sommerfeld science, life and turbulent times : 1868-1951

    CERN Document Server

    Eckert, Michael

    2013-01-01

    Arnold Sommerfeld (1868-1951) belongs with Max Planck (1858-1947), Albert Einstein (1879-1955) and Niels Bohr (1885-1962) among the founders of modern theoretical physics, a science that developed into a budding discipline during his lifetime. Sommerfeld witnessed many of the most dramatic scientific, cultural and political events of this era. His correspondence with his family offers a vivid testament to the challenges and joys of a life in science. This biography attempts to reconstruct Sommerfeld’s life and work not only from the perspective of his achievements in theoretical physics but also with the goal of portraying the career of a scientist within the social and political environment in which it evolved. It is based to a large extent on Sommerfeld’s voluminous correspondence, which sheds light both on his private and scientific life. Furthermore, it provides an authentic view on the circumstances that shaped Sommerfeld’s career in different places – Königsberg, Göttingen, Clausthal, Aachen, ...

  18. Science, culture and the search for life on other worlds

    CERN Document Server

    Traphagan, John W

    2016-01-01

    This book explores humanity’s thoughts and ideas about extraterrestrial life, paying close attention to the ways science and culture interact with one another to create a context of imagination and discovery related to life on other worlds. Despite the recent explosion in our knowledge of other planets and the seeming era of discovery in which we live, to date we have found no concrete evidence that we are not alone. Our thinking about life on other worlds has been and remains the product of a combination of scientific investigation and human imagination shaped by cultural values--particularly values of exploration and discovery connected to American society. The rapid growth in our awareness of other worlds makes this a crucial moment to think about and assess the influence of cultural values on the scientific search for extraterrestrial life. Here the author considers the junction of science and culture with a focus on two main themes: (1) the underlying assumptions, many of which are tacitly based upon c...

  19. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  20. Scientific Collaboration and Coauthors in Life Science Journal Articles

    Directory of Open Access Journals (Sweden)

    Ya-hsiu Fu

    2002-12-01

    Full Text Available It is common to conduct collaborative research in science and technology. In particular, the development of big science, Internet, and globalization facilitated the scientific collaboration. This study used two databases, Web of Science and Journal Citation Reports as data sources. From the analysis of 320 papers in 16 journals in life sciences, the results showed that there is no significant correlation between the impact factor of journals and the number of authors. Moreover, there is no correlation of authors and the cited times, either. The number of authors and cited times in most papers are under 10 persons and 25 times, respectively.[Article content in Chinese

  1. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  2. Nuclear and chemical data for life sciences

    International Nuclear Information System (INIS)

    Moumita Maiti; Indian Institute of Technology Roorkee, Roorkee, Uttarakhand

    2013-01-01

    Use of reactor produced radionuclides is popular in life sciences. However, cyclotron production of proton rich radionuclides are being more focused in recent times. These radionuclides have already gained attention in various fields, including life sciences, provided they are obtained in pure form. This article is a representative brief of our contributions in generating nuclear data for the production of proton rich radionuclides of terbium, astatine, technetium, ruthenium, cadmium, niobium, zirconium, rhenium, etc., which may have application in clinical, biological, agriculture studies or in basic research. The chemical data required to separate the product isotopes from the corresponding target matrix have been presented along with a few propositions of radiopharmaceuticals. It also emphasizes on the development of simple empirical technique, based on the nuclear reaction model analysis, to generate reliable nuclear data for the estimation of yield and angular distribution of emitted neutrons and light charged particles from light as well as heavy ion induced reactions on thick stopping targets. These data bear utmost important in radiation dosimetry. (author)

  3. Relationships between academic institutions and industry in the life sciences--an industry survey.

    Science.gov (United States)

    Blumenthal, D; Causino, N; Campbell, E; Louis, K S

    1996-02-08

    Despite growing acceptance of relationships between academia and industry in the life sciences, systematic, up-to-date information about their extent and the consequences for the parties involved remains scarce. We attempted to collect information about the prevalence, magnitude, commercial benefits, and potential risks of such relationships by surveying a representative sample of life-science companies in the United States to determine their relationships with academic institutions. We collected data by telephone from May through September 1994 from senior executives of 210 life-science companies (of 306 companies surveyed; response rate, 69 percent). The sample contained all Fortune 500 companies in the fields of agriculture, chemicals, and pharmaceuticals; all international pharmaceutical companies with sales volumes similar to those of the Fortune 500 companies; and a random sample of non-Fortune 500 companies in the life sciences drawn from multiple commercial and noncommercial directories. Both the survey instrument and the survey methods resembled those of our 1984 study of 106 biotechnology companies, allowing us to assess the evolution of relationships between academia and industry over the past decade. Ninety percent of companies conducting life-science research in the United States had relationships involving the life sciences with an academic institution in 1994. Fifty-nine percent supported research in such institutions, providing an estimated $1.5 billion, or approximately 11.7 percent of all research-and-development funding received that year. The agreements with universities tended to be short-term and to involve small amounts, implying that most such relationships supported applied research or development. Over 60 percent of companies providing support for life-science research in universities had received patents, products, and sales as a result of those relationships. At the same time, the companies reported that their relationships with

  4. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  5. Nuclear applications in life sciences

    International Nuclear Information System (INIS)

    Uenak, P.

    2009-01-01

    Radioactivity has revolutionized life sciences during the last century, and it is still an indispensable tool. Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics, Nutrition and Environmental Problems Relevant Health are significant application fields of Nuclear Sciences. Nuclear medicine today is a well established branch of medicine. Radionuclides and radiopharmaceuticals play a key role both in diagnostic investigations and therapy-Both cyclotron and reactor produced radionuclides find application, the former more in diagnostic studies and the latter in therapy. New therapy applications such as bor neutron therapy are increasing by time together with the technological improvements in imaging systems such as PET and SPECT. Radionuclides and radiopharmaceuticals play important role in both therapy and imaging. However cyclotron produced radionuclides have been using generally in imaging purposes while reactor produced radionuclides have also therapeutic applications. With the advent of emission tomography, new vistas for probing biochemistry in vivo have been opened. The radio chemist faces an ever-increasing challenge of designing new tracers for diagnostic and therapeutic applications. Rapid, efficient and automated methods of radionuclide and precursor production, labeling of biomolecules, and quality control need to be developed. The purpose of this article is a short interface from Nuclear Medicine, Radiation Biology and Radiotherapy, Dosimetry and Medical Radiation Physics Applications of Nuclear Sciences.

  6. International conference on nuclear analytical methods in the life sciences (NAMLS) (abstracts)

    International Nuclear Information System (INIS)

    1999-01-01

    The International Conference on Nuclear Analytical Methods in the Life Sciences (NAMLS) was hold on October 26-30, 1998 in Beijing, China, which was organized by China Institute of Atomic Energy in Cooperation with IAEA, National Science Foundation of China, China National Nuclear Cooperation, Chinese Academy of Sciences, Institute of High Energy Physics, Shanghai Institute for Nuclear Research, Chinese Nuclear Society, Nuclear Physics Society of China and Nuclear Chemistry Society of China. the contents of this Conference include: 1. QA-QC and CRM studies; 2. Elemental speciation and localization; 3. Health-related environmental studies; 4. Recent development in nuclear and related analytical techniques; 5. Trace elements in health and diseases; 6. Miscellaneous applications of NAT in the life sciences

  7. Mass spectrometry in life science research.

    Science.gov (United States)

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  8. Valuation in life sciences: a practical guide

    National Research Council Canada - National Science Library

    Bogdan, Boris; Villiger, Ralph

    2010-01-01

    ... apply valuation methodologies in life sciences. One of the complicating factors is that, compared to other industries, valuation of biotech innovation is much more demanding. The long 10-15-year development and clinical trials process still represents the main risks faced by any biotech company. Added to that is the fact that getting a drug across the regulato...

  9. Venture Capital Investment in the Life Sciences in Switzerland.

    Science.gov (United States)

    Hosang, Markus

    2014-12-01

    Innovation is one of the main driving factors for continuous and healthy economic growth and welfare. Switzerland as a resource-poor country is particularly dependent on innovation, and the life sciences, which comprise biotechnologies, (bio)pharmaceuticals, medical technologies and diagnostics, are one of the key areas of innovative strength of Switzerland. Venture capital financing and venture capitalists (frequently called 'VCs') and investors in public equities have played and still play a pivotal role in financing the Swiss biotechnology industry. In the following some general features of venture capital investment in life sciences as well as some opportunities and challenges which venture capital investors in Switzerland are facing are highlighted. In addition certain means to counteract these challenges including the 'Zukunftsfonds Schweiz' are discussed.

  10. Life sciences. 1990-2001. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2001-09-01

    This catalogue lists all sales publications of the IAEA dealing with life sciences: nuclear medicine, medical physics and radiation biology and issued during the period 1 January 1990 - 30 September 2001

  11. Life Skills from the Perspectives of Classroom and Science Teachers

    Science.gov (United States)

    Kurtdede-Fidan, Nuray; Aydogdu, Bülent

    2018-01-01

    The aim of this study is to determine classroom and science teachers' views about life skills. The study employed phenomenological method. The participants of the study were 24 teachers; twelve of them were classroom teachers and the remaining were science teachers. They were working at public schools in Turkey. The participants were selected…

  12. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  13. KNIME for reproducible cross-domain analysis of life science data.

    Science.gov (United States)

    Fillbrunn, Alexander; Dietz, Christian; Pfeuffer, Julianus; Rahn, René; Landrum, Gregory A; Berthold, Michael R

    2017-11-10

    Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. A Comparative Analysis of South African Life Sciences and Biology Textbooks for Inclusion of the Nature of Science

    Science.gov (United States)

    Ramnarain, Umesh; Padayachee, Keshni

    2015-01-01

    This study reports on the analysis of South African Life Sciences and Biology textbooks for the inclusion of the nature of science using a conceptual framework developed by Chiappetta, Fillman and Sethna (1991). In particular, we investigated the differences between the representation of the nature of science in Biology textbooks that were written…

  15. Student Teachers' Views: What Is an Interesting Life Sciences Curriculum?

    Science.gov (United States)

    de Villiers, Rian

    2011-01-01

    In South Africa, the Grade 12 "classes of 2008 and 2009" were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10-12 Life Sciences…

  16. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  17. Life histories of female elementary teachers and their science/teacher role construction

    Science.gov (United States)

    Ramseur, Aletha Johnson

    The research conducted in this study focuses on life histories of female elementary teachers and their science/teacher role construction. Identity theorists argue that the self consists of a collection of identities founded on occupying a particular role. Who we are depends on the roles we occupy. These roles are often referred to as "role identities". In the case of these participants, many role identities (mother, wife, sibling, and teacher) exist. This study focuses primarily on their (science) teacher role identity. Literature on women's lives, as learners and teachers, suggest that women's experiences, currently and throughout history influenced their teacher role construction. There is however, little knowledge of women's lives as elementary teachers of science and the affect of their experiences, currently and throughout history, on their (science) teacher identity construction. Schools delineated by race, class, and gender relations, are similar to other sectors of society's, social and cultural spheres within which race, class, and gender identities are constructed. Using in-depth-interviews female elementary teachers were encouraged to actively reconstruct their life and work-life experiences focusing on family, school and science interactions. They addressed the intellectual and emotional connections between their life and work experiences by focusing on details of their past and present experiences and examining the meaning of those experiences. It was the scrutiny of these connections between their life and work experiences, the meaning derived from them and historical events, and the constraints imposed on their personal choices by broader power relations, such as those of class, race, and gender that informed why we teach, how we teach, and what we teach.

  18. Kant and the nature of matter: Mechanics, chemistry, and the life sciences.

    Science.gov (United States)

    Gaukroger, Stephen

    2016-08-01

    Kant believed that the ultimate processes that regulate the behavior of material bodies can be characterized exclusively in terms of mechanics. In 1790, turning his attention to the life sciences, he raised a potential problem for his mechanically-based account, namely that many of the operations described in the life sciences seemed to operate teleologically. He argued that the life sciences do indeed require us to think in teleological terms, but that this is a fact about us, not about the processes themselves. Nevertheless, even were we to concede his account of the life sciences, this would not secure the credentials of mechanics as a general theory of matter. Hardly any material properties studied in the second half of the eighteenth century were, or could have been, conceived in mechanical terms. Kant's concern with teleology is tangential to the problems facing a general matter theory grounded in mechanics, for the most pressing issues have nothing to do with teleology. They derive rather from a lack of any connection between mechanical forces and material properties. This is evident in chemistry, which Kant dismisses as being unscientific on the grounds that it cannot be formulated in mechanical terms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Introductory Life Science Mathematics and Quantitative Neuroscience Courses

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an…

  20. Problem-Based Learning in the Life Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  1. Knowledge-Based Systems in Biomedicine and Computational Life Science

    CERN Document Server

    Jain, Lakhmi

    2013-01-01

    This book presents a sample of research on knowledge-based systems in biomedicine and computational life science. The contributions include: ·         personalized stress diagnosis system ·         image analysis system for breast cancer diagnosis ·         analysis of neuronal cell images ·         structure prediction of protein ·         relationship between two mental disorders ·         detection of cardiac abnormalities ·         holistic medicine based treatment ·         analysis of life-science data  

  2. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  3. Life Science Professional Societies Expand Undergraduate Education Efforts

    Science.gov (United States)

    Matyas, Marsha Lakes; Ruedi, Elizabeth A.; Engen, Katie; Chang, Amy L.

    2017-01-01

    The "Vision and Change in Undergraduate Biology Education" reports cite the critical role of professional societies in undergraduate life science education and, since 2008, have called for the increased involvement of professional societies in support of undergraduate education. Our study explored the level of support being provided by…

  4. Alien To Me? Science in Search for Life Beyond Earth and Perceptions of Alien Life in Popular Culture

    Science.gov (United States)

    Capova, K. A.

    2013-09-01

    The paper will introduce an original piece of research that is devoted to the socio-cultural aspects of scientifi c search for life in outer space and it draws from doctoral research in anthropology of science. In this piece of research the extraterrestrial life hypothesis is conceptualized as a significant part of the general world-view, constantly shaped by the work and discoveries of science. The paper presents data from qualitative ethnographic fieldwork conducted in the UK as well as uses quantitative data from public from the USA, UK and other countries.

  5. Life sciences on the moon

    Science.gov (United States)

    Horneck, G.

    Despite of the fact that the lunar environment lacks essential prerequisites for supporting life, lunar missions offer new and promising opportunities to the life sciences community. Among the disciplines of interest are exobiology, radiation biology, ecology and human physiology. In exobiology, the Moon offers an ideal platform for studies related to the understanding of the principles, leading to the origin, evolution and distribution of life. These include the analysis of lunar samples and meteorites in relatively pristine conditions, radioastronomical search for other planetary systems or Search for Extra-Terrestrial Intelligence (SETI), and studies on the role of radiation in evolutionary processes and on the environmental limits for life. For radiation biology, the Moon provides an unique laboratory with built-in sources for optical as well as ionising radiation to investigate the biological importance of the various components of cosmic and solar radiation. Before establishing a lunar base, precursor missions will provide a characterisation of the radiation field, determination of depth dose distributions in different absorbers, the installation of a solar flare alert system, and a qualification of the biological efficiency of the mixed radiation environment. One of the most challenging projects falls into the domain of ecology with the establishment for the first time of an artificial ecosystem on a celestial body beyond the Earth. From this venture, a better understanding of the dynamics regulating our terrestrial biosphere is expected. It will also serve as a precursor of bioregenerative life support systems for a lunar base. The establishment of a lunar base with eventually long-term human presence will raise various problems in the fields of human physiology and health care, psychology and sociology. Protection guidelines for living in this hostile environment have to be established.

  6. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  7. Wired to freedom: Life science, public politics, and the case of Cochlear Implantation.

    Science.gov (United States)

    Jepsen, Kim Sune; Bertilsson, T Margareta

    2017-02-01

    Cochlear Implantation is now regarded as the most successful medical technology. It carries promises to provide deaf/hearing impaired individuals with a technological sense of hearing and an access to participate on a more equal level in social life. In this article, we explore the adoption of cochlear implantations among Danish users in order to shed more light on their social and political implications. We situate cochlear implantation in a framework of new life science advances, politics, and user experiences. Analytically, we draw upon the notion of social imaginary and explore the social dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being "wired to freedom" that involves new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as "wired to freedom," we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear Implantation. As our empirical observations are largely based in the Scandinavian countries (notably Denmark), we also provide some reflections on the character of the technology-friendly Scandinavian welfare states and the unintended consequences that may follow in the wake of rapid technology implementation of life science in society.

  8. Conference Report: The 2016 Olten Meeting at the Basel Life Science Week.

    Science.gov (United States)

    Heinzelmann, Elsbeth

    2016-12-21

    "This 'telephone' has too many shortcomings to be seriously considered as a means of communication. The device is inherently of no value to us." This was an internal memo written by Western Union in 1876. That's right. Without efficient knowledge sharing and technology transfer, even the best scientific development may prove to be a damp squib for a long time. The Basel Life Science Week was created in order to promote scientific and economic exchange and pave the way for innovative ideas. That's why NTN Swiss Biotech has moved its traditional 'Olten Meeting' to the Basel Life Science Week. It is the ideal setting for NTN Swiss Biotech and the School of Life Sciences FHNW to present innovative developments within its network of academic and industrial partners in the future-oriented disciplines of Molecular Diagnostics and Medicinal Chemistry. Short summaries of the key lectures are reported below.

  9. Sustainable Infrastructures for Life Science Communication: Workshop Summary

    Science.gov (United States)

    Brown, Elizabeth Stallman; Yeung, Laurence; Sawyer, Keegan

    2014-01-01

    Advances in the life sciences--from the human genome to biotechnology to personalized medicine and sustainable communities--have profound implications for the well-being of society and the natural world. Improved public understanding of such scientific advances has the potential to benefit both individuals and society through enhanced quality of…

  10. USSR Space Life Sciences Digest, issue 25

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  11. Computer Literacy for Life Sciences: Helping the Digital-Era Biology Undergraduates Face Today's Research

    Science.gov (United States)

    Smolinski, Tomasz G.

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of…

  12. Bioinformatics and the Politics of Innovation in the Life Sciences

    Science.gov (United States)

    Zhou, Yinhua; Datta, Saheli; Salter, Charlotte

    2016-01-01

    The governments of China, India, and the United Kingdom are unanimous in their belief that bioinformatics should supply the link between basic life sciences research and its translation into health benefits for the population and the economy. Yet at the same time, as ambitious states vying for position in the future global bioeconomy they differ considerably in the strategies adopted in pursuit of this goal. At the heart of these differences lies the interaction between epistemic change within the scientific community itself and the apparatus of the state. Drawing on desk-based research and thirty-two interviews with scientists and policy makers in the three countries, this article analyzes the politics that shape this interaction. From this analysis emerges an understanding of the variable capacities of different kinds of states and political systems to work with science in harnessing the potential of new epistemic territories in global life sciences innovation. PMID:27546935

  13. Preventing biological weapon development through the governance of life science research.

    Science.gov (United States)

    Epstein, Gerald L

    2012-03-01

    The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.

  14. Life science payloads planning study. [for space shuttle orbiters and spacelab

    Science.gov (United States)

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  15. Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine

    Directory of Open Access Journals (Sweden)

    Dong-Yi eHe

    2011-02-01

    Full Text Available In China, Korea and Japan, a decoction of the dried root without bark of Paeonia lactiflora Pall. has been used in the treatment of rheumatoid arthritis, systemic lupus erythematosus, hepatitis, dysmenorrhea, muscle cramping and spasms, and fever for more than 1200 years. A water/ethanol extract of the root is now known as total glucosides of paeony (TGP, which contains more than 15 components. Paeoniflorin is the most abundant ingredient and accounts for the pharmacological effects observed with TGP in both in vitro and in vivo studies. The analgesic effect of TGP was confirmed in various animal models of pain, which may be mediated partly by adenosine A1 receptor. The direct anti-inflammatory effects of TGP were observed in animal models of both acute and subacute inflammation, by inhibiting the production of prostaglandin E2, leukotrience B4, and nitric oxide, and by suppressing the increase of intracellular calcium ion concentration. TGP was also reported to have protective effects of cells against oxidative stress. In vitro, dual effects of TGP were noted on the proliferation of lymphocytes, differentiation of Th/Ts lymphocytes, and the production of pro-inflammatory cytokines and antibodies. In vivo, TGP inhibited the delayed-type hypersensitivity in immuno-activated mice, and enhanced the delayed-type hypersensitivity in immuno-suppressed mice. In adjuvant arthritis rats, paeoniflorin exerted immunosuppressive effects. The beneficial effects of TGP in treating rheumatoid arthritis were verified by randomized controlled trials. The adverse events of TGP were mainly gastrointestinal tract disturbances, mostly mild diarrhea.

  16. Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine.

    Science.gov (United States)

    He, Dong-Yi; Dai, Sheng-Ming

    2011-01-01

    In China, Korea, and Japan, a decoction of the dried root without bark of Paeonia lactiflora Pall. has been used in the treatment of rheumatoid arthritis, systemic lupus erythematosus, hepatitis, dysmenorrhea, muscle cramping and spasms, and fever for more than 1200 years. A water/ethanol extract of the root is now known as total glucosides of peony (TGP), which contains more than 15 components. Paeoniflorin is the most abundant ingredient and accounts for the pharmacological effects observed with TGP in both in vitro and in vivo studies. The analgesic effect of TGP was confirmed in various animal models of pain, which may be mediated partly by adenosine A1 receptor. The direct anti-inflammatory effects of TGP were observed in animal models of both acute and subacute inflammation, by inhibiting the production of prostaglandin E2, leukotriene B4, and nitric oxide, and by suppressing the increase of intracellular calcium ion concentration. TGP was also reported to have protective effects of cells against oxidative stress. In vitro, dual effects of TGP were noted on the proliferation of lymphocytes, differentiation of Th/Ts lymphocytes, and the production of proinflammatory cytokines and antibodies. In vivo, TGP inhibited the delayed-type hypersensitivity in immuno-activated mice, and enhanced the delayed-type hypersensitivity in immuno-suppressed mice. In adjuvant arthritis rats, paeoniflorin exerted immunosuppressive effects. The beneficial effects of TGP in treating rheumatoid arthritis were verified by randomized controlled trials. The adverse events of TGP were mainly gastrointestinal tract disturbances, mostly mild diarrhea.

  17. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors’ Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students’ emotional satisfaction with math. We then compared life science and non–life science majors and found that major had a small to moderate relationship with students’ responses. Gender also had a small relationship with students’ responses, while students’ race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups—students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates’ emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors’ attitudes toward math. PMID:28798211

  18. Assessing the Life Science Knowledge of Students and Teachers Represented by the K-8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Cook Smith, Nancy; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test…

  19. TÜV - Zertifizierungen in der Life Science Branche

    Science.gov (United States)

    Schaff, Peter; Gerbl-Rieger, Susanne; Kloth, Sabine; Schübel, Christian; Daxenberger, Andreas; Engler, Claus

    Life Sciences [1] (Lebenswissenschaften) sind ein globales Innovationsfeld mit Anwendungen der Bio- und Medizinwissenschaften, der Pharma-, Chemie-, Kosmetik- und Lebensmittelindustrie. Diese Branche zeichnet sich durch eine stark interdisziplinäre Ausrichtung aus, mit Anwendung wissenschaftlicher Erkenntnisse und Einsatz von Ausgangsstoffen aus der modernen Biologie, Chemie und Humanmedizin sowie gezielter marktwirtschaftlich orientierter Arbeit.

  20. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  1. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    Science.gov (United States)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  3. 76 FR 59145 - Submission for OMB Review; Comment Request; NINR End-of-Life and Palliative Care Science Needs...

    Science.gov (United States)

    2011-09-23

    ...; Comment Request; NINR End-of-Life and Palliative Care Science Needs Assessment: Funding Source (Survey of... End-of-Life and Palliative Care Science Needs Assessment: Funding Source (Survey of Authors). Type of Information Collection Request: NEW. Need and Use of Information Collection: The NINR End-of-Life Science...

  4. The LAILAPS search engine: a feature model for relevance ranking in life science databases.

    Science.gov (United States)

    Lange, Matthias; Spies, Karl; Colmsee, Christian; Flemming, Steffen; Klapperstück, Matthias; Scholz, Uwe

    2010-03-25

    Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  5. Demonstrating Inquiry-Based Teaching Competencies in the Life Sciences--Part 2

    Science.gov (United States)

    Thompson, Stephen

    2007-01-01

    This set of botany demonstrations is a continuation of the inquiry-based lecture activities that provide realistic connections to the history and nature of science and employ technology in data collection. The demonstrations also provide examples of inquiry-based teaching practices in the life sciences. (Contains 5 figures.) [For Part 1, see…

  6. Visualization in medicine and life sciences III towards making an impact

    CERN Document Server

    Hamann, Bernd; Hege, Hans-Christian

    2016-01-01

    The book discusses novel visualization techniques driven by the needs in medicine and life sciences as well as new application areas and challenges for visualization within these fields. It presents ideas and concepts for visual analysis of data from scientific studies of living organs or to the delivery of healthcare. Target scientific domains include the entire field of biology at all scales - from genes and proteins to organs and populations - as well as interdisciplinary research based on technological advances such as bioinformatics, biomedicine, biochemistry, or biophysics. Moreover, they comprise the field of medicine and the application of science and technology to healthcare problems. This book does not only present basic research pushing the state of the art in the field of visualization, but it also documents the impact in the fields of medicine and life sciences.

  7. Application of radiation and radioisotopes in life science

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2005-01-01

    Radiation and Radioisotopes have been played an important role in the wide range of life science, from the field study, such as fertilizer or pesticide development or production of new species, to gene engineering researches. Many mutants through radiation have been provided to the market and the usage of radioactive tracers was an effective tool to study plant physiology. It has been granted that the contribution of radioisotopes has been accelerated the development of the gene engineering technology, which is now overwhelming all the other usages of radiation or radioisotopes. However, because of the difficulty to get social acceptance for gene modified plants, the orientation of the life science is now changing towards, so called ''post genome era''. Therefore, from the point of radiation or radioisotope usage, new application methods are needed to develop new type of researches. We present how (1) neutron activation analysis, (2) neutron radiography and (3) positron emission tomography are promising to study living plant physiology. Some of these techniques are not necessarily new methods but with a little modification, they show new aspects of plant activity. (author)

  8. James Clerk Maxwell: Life and science

    International Nuclear Information System (INIS)

    Marston, Philip L.

    2016-01-01

    Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted. - Highlights: • Maxwell’s 1865 “Dynamical theory of the electromagnetic field” is examined. • Maxwell affirmed confidence in his electromagnetic wave theory in his 1873 Treatise. • Discussion includes views and unpublished correspondence of Maxwell's contemporaries. • His contemporaries noticed the depth and breadth of Maxwell’s thought. • Maxwell’s contemporaries noticed his theistic perspective concerning science.

  9. Influence of an Intensive, Field-Based Life Science Course on Preservice Teachers' Self-Efficacy for Environmental Science Teaching

    Science.gov (United States)

    Trauth-Nare, Amy

    2015-01-01

    Personal and professional experiences influence teachers' perceptions of their ability to implement environmental science curricula and to positively impact students' learning. The purpose of this study was twofold: to determine what influence, if any, an intensive field-based life science course and service learning had on preservice teachers'…

  10. Life Sciences Data Archives (LSDA) in the Post-Shuttle Era

    Science.gov (United States)

    Fitts, Mary A.; Johnson-Throop, Kathy; Havelka, Jacque; Thomas, Diedre

    2010-01-01

    Now, more than ever before, NASA is realizing the value and importance of their intellectual assets. Principles of knowledge management-the systematic use and reuse of information, experience, and expertise to achieve a specific goal-are being applied throughout the agency. LSDA is also applying these solutions, which rely on a combination of content and collaboration technologies, to enable research teams to create, capture, share, and harness knowledge to do the things they do well, even better. In the early days of spaceflight, space life sciences data were collected and stored in numerous databases, formats, media-types and geographical locations. These data were largely unknown/unavailable to the research community. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This project constitutes a formal system for the acquisition, archival and distribution of data for HRP-related experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data and be responsive to inquiries for the science communities. Information about experiments and data, as well as non-attributable human data and data from other species' are available on our public Web site http://lsda.jsc.nasa.gov. The Web site also includes a repository for biospecimens, and a utilization process. NASA has undertaken an initiative to develop a Shuttle Data Archive repository. The Shuttle program is nearing its end in 2010 and it is critical that the medical and research data related to the Shuttle program be captured, retained, and usable for research, lessons learned, and future mission planning. Communities of practice are groups of people who share a concern or a passion

  11. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  12. Activities, productivity, and compensation of men and women in the life sciences.

    Science.gov (United States)

    DesRoches, Catherine M; Zinner, Darren E; Rao, Sowmya R; Iezzoni, Lisa I; Campbell, Eric G

    2010-04-01

    To determine whether professional activities, professional productivity, and salaries of life sciences faculty differ by gender. The authors undertook this study because previous studies found differences in the academic experiences of women and men. In 2007, the authors conducted a mailed survey of 3,080 life sciences faculty at the 50 universities whose medical schools received the greatest amount of National Institutes of Health funding in 2004. The response rate was 74% (n = 2,168). The main outcome measures were a faculty member's total number of publications; number of publications in the past three years; average impact score of the journals in which he or she had published; professional activities; work hours per week; the numbers of hours spent specifically in teaching, patient care, research, professional activities, and administrative activities; and annual income. Among professors, the women reported greater numbers of hours worked per week and greater numbers of administrative and professional activities than did the men. Female faculty members reported fewer publications across all ranks. After control for professional characteristics and productivity, female researchers in the life sciences earned, on average, approximately $13,226 less annually than did their male counterparts. Men and women in the academic life sciences take on different roles as they advance through their careers. A substantial salary gap still exists between men and women that cannot be explained by productivity or other professional factors. Compensation and advancement policies should recognize the full scope of the roles that female researchers play.

  13. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  14. Addressing the Misuse Potential of Life Science Research-Perspectives From a Bottom-Up Initiative in Switzerland.

    Science.gov (United States)

    Oeschger, Franziska M; Jenal, Ursula

    2018-01-01

    Codes of conduct have received wide attention as a bottom-up approach to foster responsibility for dual use aspects of life science research within the scientific community. In Switzerland, a series of discussion sessions led by the Swiss Academy of Sciences with over 40 representatives of most Swiss academic life science research institutions has revealed that while a formal code of conduct was considered too restrictive, a bottom-up approach toward awareness raising and education and demonstrating scientists' responsibility toward society was highly welcomed. Consequently, an informational brochure on "Misuse potential and biosecurity in life sciences research" was developed to provide material for further discussions and education.

  15. Deliberations on the Life Science: Pitfalls, Challenges and Solutions

    NARCIS (Netherlands)

    Korthals, M.J.J.A.A.

    2011-01-01

    In this article I sketch several versions of the deliberative approach and then discuss five problems which confront a deliberative ethicist of contemporary problems of the life sciences, in particular about food, nature and agriculture. I begin by discussing problems of unequal participation in

  16. The use of Second Life as an effective means of providing informal science education to secondary school students

    Science.gov (United States)

    Amous, Haytham

    This research study evaluated the use of Second Life and its virtual museums as a means of providing effective informal science education for both junior high and high school students. This study investigated whether the attitudes of students toward science change as a result of scholastic exposure to the science museums in Second Life. The dependence between attitudes and learning styles was also investigated. The data gathered from the experiences and the perceptions of students using Second Life in informal science education were analyzed to address the questions of the study. The researcher used qualitative and quantitative research methodologies to investigate the research questions. The first and second research questions were quantitative and used TOSRA2 research instrument to assess attitude and perceptions and learning style questionnaire scores. The attitudes toward science before and after visiting the Second Life museums showed no significant change. A weak relationship between the attitudes toward science and the participants learning styles was found. The researcher therefore concluded that no relationship existed between the average of the TOSRA scores and the learning styles questionnaire scores. To address questions research three and four, a collective qualitative case study approach (Creswell, 2007), as well as a structured interviews focusing on the students' perspectives about using Second Life for informal science education was used. The students did not prefer informal science education using second life over formal education. This was in part attributed to the poor usability and/or familiarity with the program. Despite the students' technical difficulties confronted in visiting Second Life the perception of student about their learning experiences and the use of Second Life on informal science environment were positive.

  17. A comparative analysis of South African Life Sciences and Biology ...

    African Journals Online (AJOL)

    Hennie

    curriculum and the new Life Sciences textbooks that are in accord with the National Curriculum Statement. The analysis .... lems and generate new ideas for improvement. (Castells, 2005). ... Accordingly, the following research questions were.

  18. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    Science.gov (United States)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  19. Emerging Tensions at the Interface of Artificial Intelligence, IPRs & Competition Law in the Health & Life Sciences

    DEFF Research Database (Denmark)

    Minssen, Timo

    This presentation: • describes the interface between Big Data, IPRs & competition law in the life sciences. • highlights selected life-science areas, where tensions and potential clashes are crystallizing. • discusses how these tensions could be addressed...

  20. Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Directory of Open Access Journals (Sweden)

    Juan Manuel Maqueira Marín

    2007-06-01

    Full Text Available Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.

  1. Stimulating translational research: several European life science institutions put their heads together.

    Science.gov (United States)

    Bentires-Alj, Mohamed; Rajan, Abinaya; van Harten, Wim; van Luenen, Henri G A M; Kubicek, Stefan; Andersen, Jesper B; Saarela, Janna; Cook, Simon J; Van Minnebruggen, Geert; Roman-Roman, Sergio; Maurer, Cornelia; Erler, Janine T; Bertero, Michela G

    2015-09-01

    Translational research leaves no-one indifferent and everyone expects a particular benefit. We as EU-LIFE (www.eu-life.eu), an alliance of 13 research institutes in European life sciences, would like to share our experience in an attempt to identify measures to promote translational research without undermining basic exploratory research and academic freedom. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  3. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  4. Recent developments in life sciences research: Role of bioinformatics

    African Journals Online (AJOL)

    Life sciences research and development has opened up new challenges and opportunities for bioinformatics. The contribution of bioinformatics advances made possible the mapping of the entire human genome and genomes of many other organisms in just over a decade. These discoveries, along with current efforts to ...

  5. Improving Reuse in Software Development for the Life Sciences

    Science.gov (United States)

    Iannotti, Nicholas V.

    2013-01-01

    The last several years have seen unprecedented advancements in the application of technology to the life sciences, particularly in the area of data generation. Novel scientific insights are now often driven primarily by software development supporting new multidisciplinary and increasingly multifaceted data analysis. However, despite the…

  6. USSR Space Life Sciences Digest, issue 21

    Science.gov (United States)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  7. Georges Lema\\^itre: Life, Science and Legacy

    OpenAIRE

    Mitton, Simon

    2016-01-01

    This paper celebrates the remarkable life, science and legacy of Abb\\'e Georges Lema\\^itre, the Belgian cleric and professor of physics; he was the architect of the fireworks model for the origin of the universe. He died half a century ago, three days after learning that Arno Penzias and Robert Wilson had discovered the cosmic microwave background. Despite being gravely ill from leukaemia, Lema\\^itre lucidly praised this news, which confirmed the explosive genesis of our universe.

  8. Herbaceous Peony (Paeonia lactiflora Pall. as an Alternative Source of Oleanolic and Ursolic Acids

    Directory of Open Access Journals (Sweden)

    Jun Tao

    2011-01-01

    Full Text Available Oleanolic acid (OA and ursolic acid (UA have been proven to possess many biological activities, and much attention is focused on the search for plants which are rich in OA and UA. In this report, the OA and UA accumulation characteristics were investigated in 47 cultivars of Chinese herbaceous peony (Paeonia lactiflora Pall. and were followed in three cultivars over different developmental stages as measured by high performance liquid chromatography (HPLC. OA and UA levels in leaves and stems demonstrated an overall upward trend from May 1 to September 15 except for UA in the leaves of “Hong Feng”. The maximum values of OA and UA in leaves of “Yangfei Chu Yu”, “Fen Zhu Pan” and “Hong Feng” were 852.98, 575.60, 290.48 μg/g FW and 924.94, 827.36, 432.67 μg/g FW, respectively. The maximum values of OA and UA in stems of “Yangfei Chu Yu”, “Fen Zhu Pan” and “Hong Feng” were 359.28, 90.49, 43.90 μg/g FW and 326.86, 82.25, 56.63 μg/g FW, respectively. OA and UA contents in leaves of 47 different herbaceous peony cultivars ranged from 66.73–618.12 and 36.23–665.14 μg/g FW, respectively, with average values of 171.62 and 227.57 μg/g FW, respectively. The results suggested that the aboveground parts of herbaceous peony may be used as an alternative source of OA and UA for medicinal purposes in addition to its ornamental purposes.

  9. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  10. Engineering for Life Sciences: A Fruitful Collaboration Enabled by Chemistry.

    Science.gov (United States)

    Niemeyer, Christof M

    2017-02-13

    "… The interaction of engineering and life sciences has a long history that is characterized by a mutual dependency. The role of chemistry in these developments is to connect the engineers' instrumentation with the life scientists' specimens. This very successful partnership will further continue to produce essential and innovative solutions for future challenges …" Read more in the Guest Editorial by Christof M. Niemeyer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  12. Assessment of a Bioinformatics across Life Science Curricula Initiative

    Science.gov (United States)

    Howard, David R.; Miskowski, Jennifer A.; Grunwald, Sandra K.; Abler, Michael L.

    2007-01-01

    At the University of Wisconsin-La Crosse, we have undertaken a program to integrate the study of bioinformatics across the undergraduate life science curricula. Our efforts have included incorporating bioinformatics exercises into courses in the biology, microbiology, and chemistry departments, as well as coordinating the efforts of faculty within…

  13. Crude Life: The Art-Science Engagement Work of Brandon Ballengee

    Science.gov (United States)

    Ballengee, B.; Kirn, M.

    2017-12-01

    Crude Life is an interdisciplinary art, science and outreach project focused on raising public awareness of Gulf of Mexico species, ecosystems, and regional environmental challenges through community "citizen science" surveys and a portable art-science museum of Gulf coastal biodiversity. A primary research focus is gathering data on endemic fishes affected by the 2010 Gulf of Mexico Oil Spill and attempting to locate 14 species that have been `missing' following the spill. Programming emphasis has been given to rural coastal communities that due to changing climate and alteration of geophysical systems (mostly from the oil and gas industry) are populations particularly at risk to tidal inundation. In addition these communities generally lack access to science literacy (as Louisiana ranks as among the worst in the nation for science education) and have little access to contemporary art.

  14. The Dutch Techcentre for Life Sciences: Enabling data-intensive life science research in the Netherlands [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Lars Eijssen

    2016-01-01

    Full Text Available We describe the Data programme of the Dutch Techcentre for Life Sciences (DTL, www.dtls.nl. DTL is a new national organisation in scientific research that facilitates life scientists with technologies and technological expertise in an era where new projects often are data-intensive, multi-disciplinary, and multi-site. It is run as a lean not-for-profit organisation with research organisations (both academic and industrial as paying members. The small staff of the organisation undertakes a variety of tasks that are necessary to perform or support modern academic research, but that are not easily undertaken in a purely academic setting. DTL Data takes care of such tasks related to data stewardship, facilitating exchange of knowledge and expertise, and brokering access to e-infrastructure. DTL also represents the Netherlands in ELIXIR, the European infrastructure for life science data. The organisation is still being fine-tuned and this will continue over time, as it is crucial for this kind of organisation to adapt to a constantly changing environment. However, already being underway for several years, our experiences can benefit researchers in other fields or other countries setting up similar initiatives.

  15. Spacelab Life Science-1 Mission Onboard Photograph

    Science.gov (United States)

    1995-01-01

    Spacelab Life Science -1 (SLS-1) was the first Spacelab mission dedicated solely to life sciences. The main purpose of the SLS-1 mission was to study the mechanisms, magnitudes, and time courses of certain physiological changes that occur during space flight, to investigate the consequences of the body's adaptation to microgravity and readjustment to Earth's gravity, and bring the benefits back home to Earth. The mission was designed to explore the responses of the heart, lungs, blood vessels, kidneys, and hormone-secreting glands to microgravity and related body fluid shifts; examine the causes of space motion sickness; and study changes in the muscles, bones, and cells. This photograph shows astronaut Rhea Seddon conducting an inflight study of the Cardiovascular Deconditioning experiment by breathing into the cardiovascular rebreathing unit. This experiment focused on the deconditioning of the heart and lungs and changes in cardiopulmonary function that occur upon return to Earth. By using noninvasive techniques of prolonged expiration and rebreathing, investigators can determine the amount of blood pumped out of the heart (cardiac output), the ease with which blood flows through all the vessels (total peripheral resistance), oxygen used and carbon dioxide released by the body, and lung function and volume changes. SLS-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-40) on June 5, 1995.

  16. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  17. Life science, agriculture and forestry and fishery and health and medical treatment

    International Nuclear Information System (INIS)

    1999-11-01

    This book gives descriptions of future technology in Korea, by field : Life science, agriculture and forestry and fishery and health and medical treatment. It indicates the purpose of survey, survey system survey outline, characteristic of this survey, how to read the prediction of survey result, the result of survey with the tasks of survey object, field on important survey and development period of realizable prediction, obstacle of realization, propel ways for survey and development, policy tasks, important future technology chronological table, characteristic of respondent, the result of survey : Life science, agriculture and forestry and fishery and health and medical treatment.

  18. "Physics and Life" for Europe's Science Teachers

    Science.gov (United States)

    2003-04-01

    interest in science and current scientific research. The goals of "Physics On Stage 3" [EWST Logo] "Physics on Stage 3" also aims to facilitate the exchange of good practice and innovative ideas among Europe's science teachers and to provide a forum for a broad debate among educators, administrators and policy-makers about the key problems in science education today. Moreover, it will make available the considerable, combined expertise of the EIROforum organisations to the European scientific teaching community, in order to promote the introduction of "fresh" science into the curricula and thus to convey a more realistic image of modern science to the pupils. "Physics on Stage 3" is concerned with basic science and also with the cross-over between different science disciplines - a trend becoming more and more important in today's science, which is not normally reflected in school curricula. A key element of the programme is to give teachers an up-to-date "insiders'" view of what is happening in science and to tell them about new, highly-diverse and interesting career opportunities for their pupils. Theme of the activities The theme of "Physics on Stage" this year is "Physics and Life" , reflecting the decision to broaden the Physics on Stage activities to encompass all the natural sciences. Including other sciences will augment the already successful concept, introducing a mixture of cross-over projects that highlight the multidisciplinary aspects of modern science. Among the many subjects to be presented are radiation, physics and the environment, astrobiology (the search for life beyond earth), complex systems, self-organising systems, sports science, the medical applications of physics, mathematics and epidemiology, etc. The main elements National activities "Physics on Stage 3" has already started and National Steering Committees in 22 countries, composed of eminent science teachers, scientists, administrators and others involved in setting school curricula, are now

  19. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…

  20. Controversies on the beginning of human life - science and religions closer and closer.

    Science.gov (United States)

    Kurjak, Asim

    2017-04-01

    One of the most controversial topics in modern bioethics, science, and philosophy is the beginning of individual human life. In the seemingly endless debate, strongly stimulated by recent technologic advances in human reproduction, a synthesis between scientific data and hypothesis, philosophical thought, and issues of humanities has become a necessity to deal with ethical, juridical, and social problems. Furthermore, in this field there is a temptation to ask science to choose between opinions and beliefs, which neutralize one another. The question of when human life begins requires the essential aid of different forms of knowledge. Here we become involved in the juncture between science and religion, which needs to be carefully explored.

  1. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    Science.gov (United States)

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  2. Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life

    Science.gov (United States)

    Emrahoglu, Nuri

    2017-01-01

    In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…

  3. Kierkegaard and psychology as the science of the "multifarious life".

    Science.gov (United States)

    Klempe, Sven Hroar

    2013-09-01

    The aim of this paper is to demonstrate the actuality of some considerations around psychology made by the Danish philosopher Søren Kierkegaard (1813-1855). According to him psychology is about the "multifarious" life, which is a term that pinpoints the challenges psychology still have when it comes to including changes and genetic perspectives on its understanding of actual living. Yet Kierkegaard discusses psychology in relationship to metaphysics, which is an almost forgotten perspective. His understanding opens up for narrowing the definition of psychology down to the science of subjectivity, which at the same time elevates psychology to being the only science that focuses on the actual human life. Yet Kierkegaard's most important contribution to psychology is to maintain a radical distinction between subjectivity and objectivity, and in this respect the psychology of today is challenged.

  4. Life sciences laboratory breadboard simulations for shuttle

    Science.gov (United States)

    Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.

    1975-01-01

    Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.

  5. USSR Space Life Sciences Digest, issue 6

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  6. USSR Space Life Sciences Digest, issue 16

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  7. USSR Space Life Sciences Digest, Issue 18

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  8. Ames life science telescience testbed evaluation

    Science.gov (United States)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  9. Secondary School Students' Perceptions of Working Life Skills in Science-Related Careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-01-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were…

  10. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  11. Introduction to Life Science (Introduccion a la Ciencia Biologica).

    Science.gov (United States)

    Barnhard, Diana; And Others

    These materials were developed to meet an expressed need for bilingual materials for a secondary school Life Science Course. Eight units were prepared. These include the following topics: (1) Introduction to the Scientific Method; (2) The Microscope; (3) The Cell; (4) Single-celled Protists, Plants, and Animals; (5) Multicellular Living Things;…

  12. Student teachers' views: what is an interesting Life Sciences ...

    African Journals Online (AJOL)

    In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology) curriculum which focuses on outcomes-based education (OBE). This paper presents an exploration of what students (as learners) considered to be difficult and interesting in Grades 10–12 ...

  13. Life beyond the limits of knowledge: crystalline life in the popular science of Desiderius Papp (1895-1993).

    Science.gov (United States)

    Brandstetter, Thomas

    2012-10-01

    The aim of this article is to show how, and in which context, astrobiological reasoning was employed before the establishment of astrobiology as a scientific discipline. By way of an example, I will discuss a popular science book published in 1931 by the Hungarian journalist Desiderius Papp. The author claims that this book represents an innovation in astrobiological reasoning, as it draws on contemporary biological research to conduct thought experiments, thereby coming up with concrete forms of possible extraterrestrial life. One of the most interesting of these forms was crystalline life. After a short overview on the history of this concept, this article will show how Papp drew on recent research by Otto Lehmann on liquid crystals to convey the idea that life may be based on other elements than carbon. The author concludes by arguing that popular science did not only make specialist knowledge accessible to a general public but also served to probe the limits of knowledge and point toward the situatedness of established categories and definitions.

  14. Changing Lives: The Baltimore City Community College Life Sciences Partnership with the University of Maryland, Baltimore

    Science.gov (United States)

    Carroll, Vanessa G.; Harris-Bondima, Michelle; Norris, Kathleen Kennedy; Williams, Carolane

    2010-01-01

    Baltimore City Community College (BCCC) leveraged heightened student interest and enrollment in the sciences and allied health with Maryland's world-leading biotechnology industry to build a community college life sciences learning and research center right on the University of Maryland, Baltimore's downtown BioPark campus. The BCCC Life Sciences…

  15. The Planning of New Japanese Facilities for Life Science in ISS

    Science.gov (United States)

    Ohnishi, Takeo; Hoson, Takayuki

    Though basic rules and mechanisms of life have been rapidly advanced, in recent years, the most sciences are limited under earth environment. To clarify the universality and the real nature of life, it is necessary to perform the space experiments. We, Japanese Society for Biological Sciences in Space, schedule new five types of up-to-date facilities required for the forefront research in the Kibo Module for utilization during 2015-2020. The project was proposed to the Council of Japan and the utilization Committee of Space Environment Science. We aim (1) further high quality science, (2) widely utilization for various requirements among Japan and foreign scientists. The schedules are 2015-2016, manufacture of them and suitability for space experiments and safety tests; 2016-2018, settlement of the new facilities to ISS; 2018-2023, space experiments. At now stage, we are unable to use space shuttles any more. It is difficult to get the biological samples to the spot of launch. Tests of vibration and shock during launch and landing are required. We recommend the down-road of experimental results from ISS. Now, we schedule new facilities: (1) Plant culture system; culture of various kinds of plants for the cell cycle and the next generation, and space agriculture for long stay in space. (2) Whole-body animal culture system; fertilization, growth, development, movement, life keeping in closed environment and health life in space by many kinds of analysis. (3) Localization and movement of cellular components; gene expression, proteins, chromosome and organelles in the cell with a real time analysis. (4) Collection of biological samples from space and total analysis system; (a) settlement of samples in ISS, space experiments and analysis in space, (b) the collection the samples after space experiments. (5) Exposure area at ISS platform; biological effect and fine physical dosimetry of solar radiations and space radiations under various filters among different radiation

  16. Application of micro-PIXE and imaging technology to life science (Joint research)

    International Nuclear Information System (INIS)

    Satoh, Takahiro; Ishii, Keizo

    2011-03-01

    The joint research on 'Application of micro-PIXE and imaging technology to life science' supported by the Inter-organizational Atomic Energy Research Program, had been performed for three years, from 2006FY to 2009FY. Aiming to apply in-air micro-PIXE analytical system to life science, the research was consisting of 7 collaborative themes related to beam engineering for micro-PIXE and applied technology of element mapping in biological/medical fields. The system, so-called micro-PIXE camera, to acquire spatial element mapping in living cells was originally developed by collaborative research between the JAEA and the department of engineering of Tohoku University. This review covers these research results. (author)

  17. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  18. International symposium on clusters and nanomaterials (energy and life-sciences applications)

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Purusottam [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-02-09

    The International Symposium on Clusters and Nanomaterials was held in Richmond, Virginia during October 26-29, 2015. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy and life sciences applications; two of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, and engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in life sciences included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered. The symposium attracted 132 participants from 24 countries in the world. It featured 39 invited speakers in 14 plenary sessions, in addition to one key-note session. Eighty-five contributed papers were presented in two poster sessions and 14 papers from this list were selected to be presented orally at the end of each session to highlight hot topics. Papers presented at the symposium were reviewed and published in SPIE so that these can reach a wide audience. The symposium was highly interactive with ample time allotted for discussions and making new collaborations. The participants’ response

  19. A precautionary principle for dual use research in the life sciences.

    Science.gov (United States)

    Kuhlau, Frida; Höglund, Anna T; Evers, Kathinka; Eriksson, Stefan

    2011-01-01

    Most life science research entails dual-use complexity and may be misused for harmful purposes, e.g. biological weapons. The Precautionary Principle applies to special problems characterized by complexity in the relationship between human activities and their consequences. This article examines whether the principle, so far mainly used in environmental and public health issues, is applicable and suitable to the field of dual-use life science research. Four central elements of the principle are examined: threat, uncertainty, prescription and action. Although charges against the principle exist - for example that it stifles scientific development, lacks practical applicability and is poorly defined and vague - the analysis concludes that a Precautionary Principle is applicable to the field. Certain factors such as credibility of the threat, availability of information, clear prescriptive demands on responsibility and directives on how to act, determine the suitability and success of a Precautionary Principle. Moreover, policy-makers and researchers share a responsibility for providing and seeking information about potential sources of harm. A central conclusion is that the principle is meaningful and useful if applied as a context-dependent moral principle and allowed flexibility in its practical use. The principle may then inspire awareness-raising and the establishment of practical routines which appropriately reflect the fact that life science research may be misused for harmful purposes. © 2009 Blackwell Publishing Ltd.

  20. 76 FR 47596 - Notice of Scientific Summit; The Science of Compassion-Future Directions in End-of-Life and...

    Science.gov (United States)

    2011-08-05

    ...; The Science of Compassion--Future Directions in End-of-Life and Palliative Care SUMMARY: Notice is... science at the end-of-life. On August 11-12, the summit will feature keynote presentations, three plenary...), Department of Health and Human Services, will convene a scientific summit titled ``The Science of Compassion...

  1. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  2. Collaborating in Life Science Research Groups: The Question of Authorship

    Science.gov (United States)

    Muller, Ruth

    2012-01-01

    This qualitative study explores how life science postdocs' perceptions of contemporary academic career rationales influence how they relate to collaboration within research groups. One consequential dimension of these perceptions is the high value assigned to publications. For career progress, postdocs consider producing publications and…

  3. USSR Space Life Sciences Digest, issue 19

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  4. USSR Space Life Sciences Digest, Issue 10

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  5. Life sciences payload definition and integration study, task C and D. Volume 1: Management summary

    Science.gov (United States)

    1973-01-01

    The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.

  6. Spacelab life sciences 2 post mission report

    Science.gov (United States)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  7. BioFed: federated query processing over life sciences linked open data.

    Science.gov (United States)

    Hasnain, Ali; Mehmood, Qaiser; Sana E Zainab, Syeda; Saleem, Muhammad; Warren, Claude; Zehra, Durre; Decker, Stefan; Rebholz-Schuhmann, Dietrich

    2017-03-15

    Biomedical data, e.g. from knowledge bases and ontologies, is increasingly made available following open linked data principles, at best as RDF triple data. This is a necessary step towards unified access to biological data sets, but this still requires solutions to query multiple endpoints for their heterogeneous data to eventually retrieve all the meaningful information. Suggested solutions are based on query federation approaches, which require the submission of SPARQL queries to endpoints. Due to the size and complexity of available data, these solutions have to be optimised for efficient retrieval times and for users in life sciences research. Last but not least, over time, the reliability of data resources in terms of access and quality have to be monitored. Our solution (BioFed) federates data over 130 SPARQL endpoints in life sciences and tailors query submission according to the provenance information. BioFed has been evaluated against the state of the art solution FedX and forms an important benchmark for the life science domain. The efficient cataloguing approach of the federated query processing system 'BioFed', the triple pattern wise source selection and the semantic source normalisation forms the core to our solution. It gathers and integrates data from newly identified public endpoints for federated access. Basic provenance information is linked to the retrieved data. Last but not least, BioFed makes use of the latest SPARQL standard (i.e., 1.1) to leverage the full benefits for query federation. The evaluation is based on 10 simple and 10 complex queries, which address data in 10 major and very popular data sources (e.g., Dugbank, Sider). BioFed is a solution for a single-point-of-access for a large number of SPARQL endpoints providing life science data. It facilitates efficient query generation for data access and provides basic provenance information in combination with the retrieved data. BioFed fully supports SPARQL 1.1 and gives access to the

  8. The use of high pressure in basic, materials, and life sciences

    International Nuclear Information System (INIS)

    Schilling, James S.

    2000-01-01

    Four of the most important applications of the high pressure technique in today's science are: (1) to help identify the materials which reside deep within our earth or other heavenly bodies and determine their properties, (2) to uncover underlying systematics and critically test theoretical models, (3) to synthesize novel and useful materials not readily available by other means, and (4) to determine the effect of pressure on living organisms and explore the conditions favorable for the origin of life itself. High pressure studies currently enjoy an increasing popularity which is fueled by recent advances in the notably difficult experimental techniques. In this paper I will attempt to capture some of the current excitement in this field by offering brief synopses of selected experiments in the basic, materials, and life sciences

  9. The Life Science Exchange: a case study of a sectoral and sub-sectoral knowledge exchange programme.

    Science.gov (United States)

    Perkins, Brian Lee; Garlick, Rob; Wren, Jodie; Smart, Jon; Kennedy, Julie; Stephens, Phil; Tudor, Gwyn; Bisson, Jonathan; Ford, David V

    2016-04-27

    Local and national governments have implemented sector-specific policies to support economic development through innovation, entrepreneurship and knowledge exchange. Supported by the Welsh Government through the European Regional Development Fund, The Life Science Exchange® project was created with the aim to increase interaction between stakeholders, to develop more effective knowledge exchange mechanisms, and to stimulate the formation and maintenance of long-term collaborative relationships within the Welsh life sciences ecosystem. The Life Science Exchange allowed participants to interact with other stakeholder communities (clinical, academic, business, governmental), exchange perspectives and discover new opportunities. Six sub-sector focus groups comprising over 200 senior stakeholders from academia, industry, the Welsh Government and National Health Service were established. Over 18 months, each focus group provided input to inform healthcare innovation policy and knowledge mapping exercises of their respective sub-sectors. Collaborative projects identified during the focus groups and stakeholder engagement were further developed through sandpit events and bespoke support. Each sub-sector focus group produced a report outlining the significant strengths and opportunities in their respective areas of focus, made recommendations to overcome any 'system failures', and identified the stakeholder groups which needed to take action. A second outcome was a stakeholder-driven knowledge mapping exercise for each area of focus. Finally, the sandpit events and bespoke support resulted in participants generating more than £1.66 million in grant funding and inward investment. This article outlines four separate outcomes from the Life Science Exchange programme. The Life Science Exchange process has resulted in a multitude of collaborations, projects, inward investment opportunities and special interest group formations, in addition to securing over ten times its own

  10. Convergence facilitating transdisciplinary integration of life sciences, physical sciences, engineering, and beyond

    CERN Document Server

    2014-01-01

    Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and imple...

  11. Life, Science, And Meaning Some Logical Considerations

    Directory of Open Access Journals (Sweden)

    Louis Caruana

    2015-01-01

    Full Text Available Both science and theology involve philosophy. They both involve reasoned argument, evaluation of possible explanations, clarification of concepts, ways of interpreting experience, understanding the present significance of what has gone before us, and other such eminently philosophical tasks. They both involve philosophy especially when they enter into dialogue with each other. In fact, they involve philosophical thinking even when they may not be aware of it. In this paper I will explore a specific area of philosophy that is particularly important as a bridge between theology and science. I am referring to the area of meaning. Questions regarding meaning are fundamental because whatever is said about the nature of life, by scientists, by theologians, or by anyone else, must be expressed in meaningful words. Meaning is like the ground we walk on. It constitutes what we need so as to proceed with our activity. Without solid ground under our feet, we cannot go anywhere.

  12. Career-Life Balance for Women of Color: Experiences in Science and Engineering Academia

    Science.gov (United States)

    Kachchaf, Rachel; Ko, Lily; Hodari, Apriel; Ong, Maria

    2015-01-01

    The National Science Foundation recently recognized that career-life balance in science, technology, engineering, and mathematics (STEM) may present some unique challenges for women of color compared with their White and/or male counterparts, thus negatively impacting retention and advancement for a minority demographic that has long been…

  13. Deuterium- and tritium-labelled compounds. Applications in the life sciences

    International Nuclear Information System (INIS)

    Atzrodt, Jens; Derdau, Volker; Kerr, William J.; Reid, Marc

    2018-01-01

    Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium ( 3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this review, advances in the application of hydrogen isotopes in the life sciences are described. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Increasing student learning through space life sciences education

    Science.gov (United States)

    Moreno, Nancy P.; Kyle Roberts, J.; Tharp, Barbara Z.; Denk, James P.; Cutler, Paula H.; Thomson, William A.

    2005-05-01

    Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.

  15. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-01-01

    fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative

  16. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Science.gov (United States)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  17. Life Sciences and employability

    Directory of Open Access Journals (Sweden)

    Wynand J. Boshoff

    2012-03-01

    Full Text Available This article addresses unemployment in rural areas. South Africa is also characterised by skills shortage and high unemployment figures, especially in rural areas as compared to urban areas. The institutional reality of education is that every rural village hosts a high school which is primarily engaged in preparing learners for further studies, whilst the Further Training Colleges (previously known as technical colleges are mainly located in the larger centres. It is with this scenario as a backdrop that the possible role of high schools to alleviate the problem is being argued. It is clear that rural employers do not expect from school leavers to be in possession of applicable knowledge, but rather to be in possession of the ability as well as certain personal characteristics that would make them employable. Unfortunately, however, this is not always found in young persons who have completed their schooling successfully. Life Sciences educators can render a valuable service should certain nontraditional approaches be incorporated into the teaching practice. This will enable them to contribute to solving one of South Africa’s serious problems.

  18. Premenstrual syndrome and life quality in Turkish health science students.

    Science.gov (United States)

    İşik, Hatice; Ergöl, Şule; Aynioğlu, Öner; Şahbaz, Ahmet; Kuzu, Ayşe; Uzun, Müge

    2016-04-19

    The purpose of the present study was to investigate the incidence of PMS, risk factors affecting PMS symptoms, and life quality in health science students. A total of 608 volunteer female students studying at the health campus of a state university in Turkey were included in the study. The participants were asked to fill out questionnaires on sociodemographic data, PMS symptoms, and SF-36 life quality tests. The overall frequency of PMS among participants was 84.5%. The average PMS and general health SF scores were 118.34 ± 37.3 and 20.03 ± 3.72, respectively. Students who had irregular breakfast, drank ≥2 cups of coffee/day, and consumed alcohol or fast food had higher PMS scores. Irregular menstruation and family history increased PMS scores and decreased life quality (P life quality of the students significantly decreased as the severity of PMS increased (P life quality, students should be informed about the symptoms, risk factors, and management options of PMS.

  19. Homo Politicus meets Homo Ludens: Public participation in serious life science games.

    Science.gov (United States)

    Radchuk, Olga; Kerbe, Wolfgang; Schmidt, Markus

    2017-07-01

    Public participation in science and gamification of science are two strong contemporary trends, especially in the area of emerging techno-sciences. Involvement of the public in research-related activities is an integral part of public engagement with science and technologies, which can be successfully achieved through a participatory game design. Focusing on the participatory dimension of educational games, we have reviewed a number of existing participation heuristics in light of their suitability to characterize available mobile and browser science games. We analyzed 87 games with respect to their participatory and motivational elements and demonstrated that the majority of mobile games have only basic participative features. This review of the landscape of participative science games in the domain of life sciences highlights a number of major challenges present in the design of such applications. At the same time, it reveals a number of opportunities to enhance public engagement using science games.

  20. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    Science.gov (United States)

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  1. USSR Space Life Sciences Digest, issue 7

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  2. USSR Space Life Sciences Digest, issue 8

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  3. USSR Space Life Sciences Digest, issue 29

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  4. Life — As a Matter of Fat The Emerging Science of Lipidomics

    CERN Document Server

    Mouritsen, Ole G

    2005-01-01

    LIFE - as a Matter of Fat Lipidomics is the science of the fats called lipids. Lipids are as important for life as proteins, sugars, and genes. The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids and the lipid-bilayer component of cell membranes. The book is aimed at undergraduate students and young research workers within physics, chemistry, biochemistry, molecular biology, nutrition, as well as pharmaceutical and biomedical sciences. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assem...

  5. The next phase of life-sciences spaceflight research

    Science.gov (United States)

    Etheridge, Timothy; Nemoto, Kanako; Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Higashitani, Atsushi

    2011-01-01

    Recently we demonstrated that the effectiveness of RNAi interference (RNAi) for inhibiting gene expression is maintained during spaceflight in the worm Caenorhabditis elegans and argued for the biomedical importance of this finding. We also successfully utilized green fluorescent protein (GFP)-tagged proteins to monitor changes in GPF localization during flight. Here we discuss potential applications of RNAi and GFP in spaceflight studies and the ramifications of these experiments for the future of space life-sciences research. PMID:22446523

  6. Introductory life science mathematics and quantitative neuroscience courses.

    Science.gov (United States)

    Duffus, Dwight; Olifer, Andrei

    2010-01-01

    We describe two sets of courses designed to enhance the mathematical, statistical, and computational training of life science undergraduates at Emory College. The first course is an introductory sequence in differential and integral calculus, modeling with differential equations, probability, and inferential statistics. The second is an upper-division course in computational neuroscience. We provide a description of each course, detailed syllabi, examples of content, and a brief discussion of the main issues encountered in developing and offering the courses.

  7. Digest of Russian Space Life Sciences, issue 33

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  8. Assessing the Life Science Knowledge of Students and Teachers Represented by the K–8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Smith, Nancy Cook; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K–8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test takers hold either a misconception or an accepted scientific view. Tested nationally with 30,594 students, following their study of life science, and their 353 teachers, these items reveal a range of interesting results, particularly student difficulties in mastering the NRC standards. Teachers also answered test items and demonstrated a high level of subject matter knowledge reflecting the standards of the grade level at which they teach, but exhibiting few misconceptions of their own. In addition, teachers predicted the difficulty of each item for their students and which of the wrong answers would be the most popular. Teachers were found to generally overestimate their own students’ performance and to have a high level of awareness of the particular misconceptions that their students hold on the K–4 standards, but a low level of awareness of misconceptions related to the 5–8 standards. PMID:24006402

  9. Assessing the life science knowledge of students and teachers represented by the K-8 national science standards.

    Science.gov (United States)

    Sadler, Philip M; Coyle, Harold; Smith, Nancy Cook; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test takers hold either a misconception or an accepted scientific view. Tested nationally with 30,594 students, following their study of life science, and their 353 teachers, these items reveal a range of interesting results, particularly student difficulties in mastering the NRC standards. Teachers also answered test items and demonstrated a high level of subject matter knowledge reflecting the standards of the grade level at which they teach, but exhibiting few misconceptions of their own. In addition, teachers predicted the difficulty of each item for their students and which of the wrong answers would be the most popular. Teachers were found to generally overestimate their own students' performance and to have a high level of awareness of the particular misconceptions that their students hold on the K-4 standards, but a low level of awareness of misconceptions related to the 5-8 standards.

  10. Life sciences today and tomorrow: emerging biotechnologies.

    Science.gov (United States)

    Williamson, E Diane

    2017-08-01

    The purpose of this review is to survey current, emerging and predicted future biotechnologies which are impacting, or are likely to impact in the future on the life sciences, with a projection for the coming 20 years. This review is intended to discuss current and future technical strategies, and to explore areas of potential growth during the foreseeable future. Information technology approaches have been employed to gather and collate data. Twelve broad categories of biotechnology have been identified which are currently impacting the life sciences and will continue to do so. In some cases, technology areas are being pushed forward by the requirement to deal with contemporary questions such as the need to address the emergence of anti-microbial resistance. In other cases, the biotechnology application is made feasible by advances in allied fields in biophysics (e.g. biosensing) and biochemistry (e.g. bio-imaging). In all cases, the biotechnologies are underpinned by the rapidly advancing fields of information systems, electronic communications and the World Wide Web together with developments in computing power and the capacity to handle extensive biological data. A rationale and narrative is given for the identification of each technology as a growth area. These technologies have been categorized by major applications, and are discussed further. This review highlights: Biotechnology has far-reaching applications which impinge on every aspect of human existence. The applications of biotechnology are currently wide ranging and will become even more diverse in the future. Access to supercomputing facilities and the ability to manipulate large, complex biological datasets, will significantly enhance knowledge and biotechnological development.

  11. Educational Challenges of Molecular Life Science: Characteristics and Implications for Education and Research

    Science.gov (United States)

    Tibell, Lena A. E.; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life--often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure…

  12. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  13. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  14. Moving Life Science Ethics Debates Beyond National Borders: Some Empirical Observations

    OpenAIRE

    Bezuidenhout, Louise

    2013-01-01

    The life sciences are increasingly being called on to produce “socially robust” knowledge that honors the social contract between science and society. This has resulted in the emergence of a number of “broad social issues” that reflect the ethical tensions in these social contracts. These issues are framed in a variety of ways around the world, evidenced by differences in regulations addressing them. It is important to question whether these variations are simply regulatory variations or in f...

  15. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  16. Engaging Life-Sciences Students with Mathematical Models: Does Authenticity Help?

    Science.gov (United States)

    Poladian, Leon

    2013-01-01

    Compulsory mathematics service units for the life sciences present unique challenges: even students who learn some specific skills maintain a negative attitude to mathematics and do not see the relevance of the unit towards their degree. The focus on authentic content and the presentation and teaching of global or qualitative methods before…

  17. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  18. Consideration of Learning Orientations as an Application of Achievement Goals in Evaluating Life Science Majors in Introductory Physics

    Science.gov (United States)

    Mason, Andrew J.; Bertram, Charles A.

    2018-01-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics…

  19. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  20. Counterfactuals and history: Contingency and convergence in histories of science and life.

    Science.gov (United States)

    Hesketh, Ian

    2016-08-01

    This article examines a series of recent histories of science that have attempted to consider how science may have developed in slightly altered historical realities. These works have, moreover, been influenced by debates in evolutionary science about the opposing forces of contingency and convergence in regard to Stephen Jay Gould's notion of "replaying life's tape." The article argues that while the historians under analysis seem to embrace contingency in order to present their counterfactual narratives, for the sake of historical plausibility they are forced to accept a fairly weak role for contingency in shaping the development of science. It is therefore argued that Simon Conway Morris's theory of evolutionary convergence comes closer to describing the restrained counterfactual worlds imagined by these historians of science than does contingency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Deuterium- and tritium-labelled compounds. Applications in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Atzrodt, Jens; Derdau, Volker [Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Frankfurt (Germany); Kerr, William J.; Reid, Marc [Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow (United Kingdom)

    2018-02-12

    Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium ({sup 3}H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this review, advances in the application of hydrogen isotopes in the life sciences are described. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effects of total glucosides from paeony (Paeonia lactiflora Pall) roots on experimental atherosclerosis in rats.

    Science.gov (United States)

    Li, Jing; Chen, Chang Xun; Shen, Yun Hui

    2011-05-17

    Total glucosides of paeony (TGP), compounds extracted from the roots of Paeonia lactiflora Pall, have been used as an anti-inflammatory drug for the treatment of rheumatoid arthritis (RA) in China. Inflammation plays a critical role in the development of atherosclerotic vascular disease. Risk of cardiovascular diseases is significantly higher in patients with RA than in normal population. It has a great significance to study the effects of TGP on atherosclerosis. To investigate the effects of TGP on atherosclerosis induced by excessive administration of vitamin D and cholesterol in rats and study the mechanisms involved. Atherosclerosis was induced by excessive administration of vitamin D and cholesterol in rats. TGP was intragastrically administered for 15 weeks. The serum concentrations of total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C) were measured by automatic biochemistry analyzer. Apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB) were determined by immunoturbidimetry method, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and C-reactive protein (CRP) were measured by enzyme-linked immunosorbent assay (ELISA) method. The morphological changes of aorta were observed with optical microscopy. Compared to controls, TGP significantly lowered the serum level of TC, TG, LDL-C, ApoB, TNF-alpha, IL-6 and CRP, increased the ratios of HDL-C/LDL-C and ApoA1/ApoB, decreased the intima-media thickness (IMT) of abdominal aortal wall and improved the morphological change of the aorta. TGP may attenuate the development of atherosclerotic disease. The beneficial effects are associated with its lowering blood lipids and inhibiting the expression of inflammatory cytokines. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. 76 FR 2889 - Notice of Intent To Grant Exclusive and Co-Exclusive Patent License; NanoDynamics Life Sciences...

    Science.gov (United States)

    2011-01-18

    ... Patent License; NanoDynamics Life Sciences, Inc. AGENCY: Department of the Navy, DOD. ACTION: Notice. SUMMARY: The Department of the Navy hereby gives notice of its intent to grant to NanoDynamics Life Sciences, Inc. a revocable, nonassignable, exclusive license to practice the Government-owned inventions...

  4. Big Data and Intellectual Property Rights in the Health and Life Sciences

    DEFF Research Database (Denmark)

    Minssen, Timo; Pierce, Justin

    2018-01-01

    , especially in the life science sectors where competitive innovation and research and development (R&D) resources are persistent considerations. For private actors, the like of pharmaceutical companies, health care providers, laboratories and insurance companies, it is becoming common practice to accumulate R......Undeniably “Big Data” plays a crucial role in the ongoing evolution of health care and life science sector innovations. In recent years U.S. and European authorities have developed public platforms and infrastructures providing access to vast stores of health-care knowledge, including data from......&D data making it searchable through medical databases. This trend is advanced and supported by recent initiatives and legislation that are increasing the transparency of various forms of data, such as clinical trials data. As a result, researchers, companies, patients and health care providers gain...

  5. The Science of a Life - Career Path of an African American Geoscientist

    Science.gov (United States)

    Stephenson Hawk, D.

    2002-12-01

    A career in the field of geophysical fluid dynamics is not an apparent choice for an African American woman from rural North Carolina. It was, however, the choice made. As a first generation college graduate, the catalyst to pursue such a career path was provided by those external to family; however, internally, the pursuit of education was valued, expected and required. It is this, the expectation and requirement, which serves as the foundation for the discussion of the balance of life in terms of family, education, and career. There are no scales in existence on which to measure the balance of life. The selected educational institutions, Spelman College, The George Washington University, and Princeton University; nor career positions, National Aeronautics and Space Administration, AT&T Bell Laboratories, institutions of higher education, consulting opportunities, discuss, promote or encourage such a balance. Defining this balance, however, is a science that can only be advanced and achieved by the individual in relationship and partnership with community. The science and balance of a life is the focus of this discussion.

  6. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  7. Philosophical Approaches towards Sciences of Life in Early Cybernetics

    Science.gov (United States)

    Montagnini, Leone

    2008-07-01

    The article focuses on the different conceptual and philosophical approaches towards the sciences of life operating in the backstage of Early Cybernetics. After a short reconstruction of the main steps characterizing the origins of Cybernetics, from 1940 until 1948, the paper examines the complementary conceptual views between Norbert Wiener and John von Neumann, as a "fuzzy thinking" versus a "logical thinking", and the marked difference between the "methodological individualism" shared by both of them versus the "methodological collectivism" of most of the numerous scientists of life and society attending the Macy Conferences on Cybernetics. The main thesis sustained here is that these different approaches, quite invisible to the participants, were different, maybe even opposite, but they could provoke clashes, as well as cooperate in a synergic way.

  8. Large-scale networks in engineering and life sciences

    CERN Document Server

    Findeisen, Rolf; Flockerzi, Dietrich; Reichl, Udo; Sundmacher, Kai

    2014-01-01

    This edited volume provides insights into and tools for the modeling, analysis, optimization, and control of large-scale networks in the life sciences and in engineering. Large-scale systems are often the result of networked interactions between a large number of subsystems, and their analysis and control are becoming increasingly important. The chapters of this book present the basic concepts and theoretical foundations of network theory and discuss its applications in different scientific areas such as biochemical reactions, chemical production processes, systems biology, electrical circuits, and mobile agents. The aim is to identify common concepts, to understand the underlying mathematical ideas, and to inspire discussions across the borders of the various disciplines.  The book originates from the interdisciplinary summer school “Large Scale Networks in Engineering and Life Sciences” hosted by the International Max Planck Research School Magdeburg, September 26-30, 2011, and will therefore be of int...

  9. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall. by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Daqiu Zhao

    2015-09-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall., one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA libraries from two B. cinerea-infected P. lactiflora cultivars (“Zifengyu” and “Dafugui” with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from “Zifengyu” and “Dafugui”, respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora.

  10. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  11. Science fiction and human enhancement: radical life-extension in the movie 'In Time' (2011).

    Science.gov (United States)

    Roduit, Johann A R; Eichinger, Tobias; Glannon, Walter

    2018-03-20

    The ethics of human enhancement has been a hotly debated topic in the last 15 years. In this debate, some advocate examining science fiction stories to elucidate the ethical issues regarding the current phenomenon of human enhancement. Stories from science fiction seem well suited to analyze biomedical advances, providing some possible case studies. Of particular interest is the work of screenwriter Andrew Niccol (Gattaca, S1m0ne, In Time, and Good Kill), which often focuses on ethical questions raised by the use of new technologies. Examining the movie In Time (2011), the aim of this paper is to show how science fiction can contribute to the ethical debate of human enhancement. In Time provides an interesting case study to explore what could be some of the consequences of radical life-extension technologies. In this paper, we will show how arguments regarding radical life-extension portrayed in this particular movie differ from what is found in the scientific literature. We will see how In Time gives flesh to arguments defending or rejecting radical life-extension. It articulates feelings of unease, alienation and boredom associated with this possibility. Finally, this article will conclude that science fiction movies in general, and In Time in particular, are a valuable resource for a broad and comprehensive debate about our coming future.

  12. Perspectives on the Origins of Life in Science Textbooks from a Christian Publisher: Implications for Teaching Science

    Science.gov (United States)

    Santos Baptista, Geilsa Costa; da Silva Santos, Rodrigo; Cobern, William W.

    2016-01-01

    This paper presents the results of research regarding approaches to the origin of life featured in science textbooks produced by an Evangelical publisher. The research nature was qualitative with document analysis and an interpretive framework based on Epistemological Pluralism. Overall, the results indicate that there are four perspectives on the…

  13. Motivation and career outcomes of a precollege life science experience for underrepresented minorities

    Science.gov (United States)

    Ortega, Robbie Ray

    Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were

  14. Life Sciences Teachers Negotiating Professional Development Agency in Changing Curriculum Times

    Science.gov (United States)

    Singh-Pillay, Asheena; Samuel, Michael Anthony

    2017-01-01

    This article probes teacher responses to three curricular reform initiatives from a South African situated contextual perspective. It focuses on Life Sciences teachers who have initially reported feeling overwhelmed by this rapidly changing curriculum environment: adopting and re-adapting to the many expected shifts. The research question posed…

  15. Database Description - TP Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available tform for Drug Discovery, Informatics, and Structural Life Science Research Organization of Information and ...3(3):145-54. External Links: Original website information Database maintenance site National Institute of Genetics, Research Organiza...tion of Information and Systems (ROIS) URL of the original website http://www.tanpa

  16. Taiwanese Science and Life Technology Curriculum Standards and Earth Systems Education

    Science.gov (United States)

    Chang, Chun-Yen

    2005-01-01

    In the past several years, curriculum reform has received increasing attention from educators in many countries around the world. Recently, Taiwan has developed new Science and Life Technology Curriculum Standards (SaLTS) for grades 1-9. SaLTS features a systematic way for developing students' understanding and appreciation of…

  17. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    Science.gov (United States)

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials. © 2015 Society for Laboratory Automation and Screening.

  18. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  19. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    Undergraduate life sciences education needs an overhaul, as clearly described in the National Research Council of the National Academies publication BIO 2010: Transforming Undergraduate Education for Future Research Biologists. Among BIO 2010's top recommendations is the need to involve students in working with real data and tools that reflect the nature of life sciences research in the 21st century. Education research studies support the importance of utilizing primary literature, designing and implementing experiments, and analyzing results in the context of a bona fide scientific question in cultivating the analytical skills necessary to become a scientist. Incorporating these basic scientific methodologies in undergraduate education leads to increased undergraduate and post-graduate retention in the sciences. Toward this end, many undergraduate teaching organizations offer training and suggestions for faculty to update and improve their teaching approaches to help students learn as scientists, through design and discovery (e.g., Council of Undergraduate Research [www.cur.org] and Project Kaleidoscope [www.pkal.org]). With the advent of genome sequencing and bioinformatics, many scientists now formulate biological questions and interpret research results in the context of genomic information. Just as the use of bioinformatic tools and databases changed the way scientists investigate problems, it must change how scientists teach to create new opportunities for students to gain experiences reflecting the influence of genomics, proteomics, and bioinformatics on modern life sciences research. Educators have responded by incorporating bioinformatics into diverse life science curricula. While these published exercises in, and guidelines for, bioinformatics curricula are helpful and inspirational, faculty new to the area of bioinformatics inevitably need training in the theoretical underpinnings of the algorithms. Moreover, effectively integrating bioinformatics

  20. submitter BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences

    CERN Document Server

    McQuilton, Peter; Rocca-Serra, Philippe; Thurston, Milo; Lister, Allyson; Maguire, Eamonn; Sansone, Susanna-Assunta

    2016-01-01

    BioSharing (http://www.biosharing.org) is a manually curated, searchable portal of three linked registries. These resources cover standards (terminologies, formats and models, and reporting guidelines), databases, and data policies in the life sciences, broadly encompassing the biological, environmental and biomedical sciences. Launched in 2011 and built by the same core team as the successful MIBBI portal, BioSharing harnesses community curation to collate and cross-reference resources across the life sciences from around the world. BioSharing makes these resources findable and accessible (the core of the FAIR principle). Every record is designed to be interlinked, providing a detailed description not only on the resource itself, but also on its relations with other life science infrastructures. Serving a variety of stakeholders, BioSharing cultivates a growing community, to which it offers diverse benefits. It is a resource for funding bodies and journal publishers to navigate the metadata landscape of the ...

  1. Meghnad Saha his life in science and politics

    CERN Document Server

    Naik, Pramod V

    2017-01-01

    This biography is a short yet comprehensive overview of the life of Meghnad Saha, the mastermind behind the frequently used Saha equations and a strong contributor to the foundation of science in India. The author explores the lesser known details behind the man who played a major role in building scientific institutions in India, developed the breakthrough theory of thermal ionization, and whose fervor about India’s rapid progress in science and technology, along with concern for uplifting his countrymen and optimizing resources, led him to eventually enter politics and identify the mismanagement of many programs of national importance to Parliament. This book is free of most academic technicalities, so that the reader with general scientific knowledge can read and understand it easily. One interested only in Saha’s contribution to physics can pick up just that part and read it. Conversely, the average reader may skip the technical chapters, and read the book without loss of continuity or generality to s...

  2. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Paeonia lactiflora Pall. protects against ANIT-induced cholestasis by activating Nrf2 via PI3K/Akt signaling pathway

    Directory of Open Access Journals (Sweden)

    Ma X

    2015-09-01

    Full Text Available Xiao Ma,1,2 Yan-ling Zhao,2 Yun Zhu,3 Zhe Chen,1,2 Jia-bo Wang,4 Rui-yu Li,1,4 Chang Chen,1,2 Shi-zhang Wei,1,2 Jian-yu Li,3 Bing Liu,5 Rui-lin Wang,3 Yong-gang Li,3 Li-fu Wang,3 Xiao-he Xiao4 1Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China; 2Department of Pharmacy, 302 Military Hospital of People’s Liberation Army, Beijing, People’s Republic of China; 3Department of Integrative Medical Center, 302 Military Hospital of People’s Liberation Army, Beijing, People’s Republic of China; 4China Military Institute of Chinese Medicine, 302 Military Hospital of People’s Liberation Army, Beijing, People’s Republic of China; 5School of Chinese Medicine, The University of Hong Kong, Hong Kong Background: Paeonia lactiflora Pall. (PLP, a traditional Chinese herbal medicine, has been used for hepatic disease treatment over thousands of years. In our previous study, PLP was shown to demonstrate therapeutic effect on hepatitis with severe cholestasis. The aim of this study was to evaluate the antioxidative effect of PLP on alpha-naphthylisothiocyanate (ANIT-induced cholestasis by activating NF-E2-related factor 2 (Nrf2 via phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway. Materials and methods: Liquid chromatography-mass spectrometry (LC-MS was performed to identify the main compounds present in PLP. The mechanism of action of PLP and its therapeutic effect on cholestasis, induced by ANIT, were further investigated. Serum indices such as total bilirubin (TBIL, direct bilirubin (DBIL, aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP, γ-glutamyl transpeptidase (γ-GT, and total bile acid (TBA were measured, and histopathology of liver was also performed to determine the efficacy of treatment with PLP. Moreover, in order to illustrate the underlying signaling pathway, liver glutathione (GSH content and mRNA or protein levels of glutamate

  4. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    Science.gov (United States)

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  5. Teaching Introductory Life Science Courses in Colleges of Agriculture: Faculty Experiences

    Science.gov (United States)

    Balschweid, Mark; Knobloch, Neil A.; Hains, Bryan J.

    2014-01-01

    Insignificant numbers of college students declaring STEM majors creates concern for the future of the U.S. economy within the global marketplace. This study highlights the educational development and teaching strategies employed by STEM faculty in teaching first-year students in contextualized life science courses, such as animal, plant, and food…

  6. Faculty Perceptions of Students in Life and Physical Science Research Labs

    Science.gov (United States)

    Gonyo, Claire P.; Cantwell, Brendan

    2015-01-01

    This qualitative study involved interviews of 32 faculty principle investigators at three research institutions and explored how they view the role of students within physical and life science labs. We used socialization theory and student engagement literature to analyze faculty views, which can contribute to student investment in STEM fields.…

  7. The choices, choosing model of quality of life: linkages to a science base.

    Science.gov (United States)

    Gurland, Barry J; Gurland, Roni V

    2009-01-01

    A previous paper began with a critical review of current models and measures of quality of life and then proposed criteria for judging the relative merits of alternative models: preference was given to finding a model with explicit mechanisms, linkages to a science base, a means of identifying deficits amenable to rational restorative interventions, and with embedded values of the whole person. A conjectured model, based on the processes of accessing choices and choosing among them, matched the proposed criteria. The choices and choosing (c-c) process is an evolved adaptive mechanism dedicated to the pursuit of quality of life, driven by specific biological and psychological systems, and influenced also by social and environmental forces. In this paper the c-c model is examined for its potential to strengthen the science base for the field of quality of life and thus to unify many approaches to concept and measurement. A third paper in this set will lay out a guide to applying the c-c model in evaluating impairments of quality of life and will tie this evaluation to corresponding interventions aimed at relieving restrictions or distortions of the c-c process; thus helping people to preserve and improve their quality of life. The fourth paper will demonstrate empirical analyses of the relationship between health imposed restrictions of options for living and conventional indicators of diminished quality of life. (c) 2008 John Wiley & Sons, Ltd.

  8. Tasting the Tree of Life: Development of a Collaborative, Cross-Campus, Science Outreach Meal Event.

    Science.gov (United States)

    Clement, Wendy L; Elliott, Kathryn T; Cordova-Hoyos, Okxana; Distefano, Isabel; Kearns, Kate; Kumar, Raagni; Leto, Ashley; Tumaliuan, Janis; Franchetti, Lauren; Kulesza, Evelyn; Tineo, Nicole; Mendes, Patrice; Roth, Karen; Osborn, Jeffrey M

    2018-01-01

    Communicating about science with the public can present a number of challenges, from participation to engagement to impact. In an effort to broadly communicate messages regarding biodiversity, evolution, and tree-thinking with the campus community at The College of New Jersey (TCNJ), a public, primarily undergraduate institution, we created a campus-wide, science-themed meal, "Tasting the Tree of Life: Exploring Biodiversity through Cuisine." We created nine meals that incorporated 149 species/ingredients across the Tree of Life. Each meal illustrated a scientific message communicated through interactions with undergraduate biology students, informational signs, and an interactive website. To promote tree-thinking, we reconstructed a phylogeny of all 149 ingredients. In total, 3,262 people attended the meal, and evaluations indicated that participants left with greater appreciation for the biodiversity and evolutionary relatedness of their food. A keynote lecture and a coordinated social media campaign enhanced the scientific messages, and media coverage extended the reach of this event. "Tasting the Tree of Life" highlights the potential of cuisine as a valuable science communication tool.

  9. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    Science.gov (United States)

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  10. Of Sheep's Pluck and Science Exhibitions: The Professional Life of Mother Bernard Towers RSM (1883-1963)

    Science.gov (United States)

    Collins, Jenny

    2009-01-01

    An examination of the professional lives of women science teachers presents an opportunity to consider ways in which women became "knowledge purveyors" and to reflect on the extent to which they challenged contemporary boundaries about what science women should know. An analysis of the life of a woman science teacher who was also a…

  11. Legal dimensions of Big Data in the Health and Life Sciences

    DEFF Research Database (Denmark)

    Minssen, Timo

    2016-01-01

    Please find below my welcome speech at last-weeks mini-symposium on “Legal dimensions of Big Data in the Health and Life Sciences – From Intellectual Property Rights and Global Pandemics to Privacy and Ethics at the University of Copenhagen (UCPH). The event was organized by our Global Genes –Local...

  12. AREAL low energy electron beam applications in life and materials sciences

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Yerevan State University, 0025 Yerevan (Armenia); Aroutiounian, R.M. [Yerevan State University, 0025 Yerevan (Armenia); Amatuni, G.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Aloyan, L.R.; Aslanyan, L.G. [Yerevan State University, 0025 Yerevan (Armenia); Avagyan, V.Sh. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Babayan, N.S. [Yerevan State University, 0025 Yerevan (Armenia); Institute of Molecular Biology NAS, 0014 Yerevan (Armenia); Buniatyan, V.V. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Dalyan, Y.B.; Davtyan, H.D. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Derdzyan, M.V. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Grigoryan, B.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Grigoryan, N.E. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutyunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Harutiunyan, V.V. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hovhannesyan, K.L. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Khachatryan, V.G. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Martirosyan, N.W. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); State Engineering University of Armenia, 0009 Yerevan (Armenia); Melikyan, G.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); and others

    2016-09-01

    The AREAL laser-driven RF gun provides 2–5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  13. Optical Measurement Techniques Innovations for Industry and the Life Sciences

    CERN Document Server

    Peiponen, Kai-Erik; Priezzhev, Alexander V

    2009-01-01

    Devoted to novel optical measurement techniques that are applied both in industry and life sciences, this book contributes a fresh perspective on the development of modern optical sensors. These sensors are often essential in detecting and controlling parameters that are important for both industrial and biomedical applications. The book provides easy access for beginners wishing to gain familiarity with the innovations of modern optics.

  14. The Third Man: comparative analysis of a science autobiography and a cinema classic as windows into post-war life sciences research.

    Science.gov (United States)

    Zwart, Hub

    2015-12-01

    In 2003, biophysicist and Nobel Laureate Maurice Wilkins published his autobiography entitled The Third Man. In the preface, he diffidently points out that the title (which presents him as the 'third' man credited with the co-discovery of the structure of DNA, besides Watson and Crick) was chosen by his publisher, as a reference to the famous 1949 movie no doubt, featuring Orson Welles in his classical role as penicillin racketeer Harry Lime. In this paper I intend to show that there is much more to this title than merely its familiar ring. If subjected to a (psychoanalytically inspired) comparative analysis, multiple correspondences between movie and memoirs can be brought to the fore. Taken together, these documents shed an intriguing light on the vicissitudes of budding life sciences research during the post-war era. I will focus my comparative analysis on issues still relevant today, such as dual use, the handling of sensitive scientific information (in a moral setting defined by the tension between collaboration and competition) and, finally, on the interwovenness of science and warfare (i.e. the 'militarisation' of research and the relationship between beauty and destruction). Thus, I will explain how science autobiographies on the one hand and genres of the imagination (such as novels and movies) on the other may deepen our comprehension of tensions and dilemmas of life sciences research then and now. For that reason, science autobiographies can provide valuable input (case material) for teaching philosophy and history of science to science students.

  15. The Societal Impact of Extraterrestrial Life: The Relevance of History and the Social Sciences

    Science.gov (United States)

    Dick, Steven J.

    This chapter reviews past studies on the societal impact of extraterrestrial life and offers four related ways in which history is relevant to the subject: the history of impact thus far, analogical reasoning, impact studies in other areas of science and technology, and studies on the nature of discovery and exploration. We focus particularly on the promise and peril of analogical arguments, since they are by necessity widespread in the field. This chapter also summarizes the relevance of the social sciences, particularly anthropology and sociology, and concludes by taking a closer look at the possible impact of the discovery of extraterrestrial life on theology and philosophy. In undertaking this study we emphasize three bedrock principles: (1) we cannot predict the future; (2) society is not monolithic, implying many impacts depending on religion, culture and worldview; (3) the impact of any discovery of extraterrestrial life is scenario-dependent.

  16. Big Data and Intellectual Property Rights in the Health and Life Sciences

    DEFF Research Database (Denmark)

    Minssen, Timo

    The vast prospects of Big Data and the shift to more “personalized”, “open” and “transparent” innovation models highlight the importance of an effective governance, regulation and stimulation of high-quality data-uses in the health and life sciences. Intellectual Property Rights (IPRs) and related...... rights come into play when research is translated into safe and efficient “real world” uses. While the need of recalibrating IPRs to fully support Big Data advances is being intensely debated among multiple stakeholders, there seems to be much confusion about the availability of IPRs and their legal...... effects. In this very brief presentation I intend to provide a very brief overview on the most relevant IPRs for data-based life science research. Realizing that the choice of how to address, use and interact with IPRs differs among various areas of applications, I also intend to sketch out and discuss...

  17. Colil: a database and search service for citation contexts in the life sciences domain.

    Science.gov (United States)

    Fujiwara, Toyofumi; Yamamoto, Yasunori

    2015-01-01

    To promote research activities in a particular research area, it is important to efficiently identify current research trends, advances, and issues in that area. Although review papers in the research area can suffice for this purpose in general, researchers are not necessarily able to obtain these papers from research aspects of their interests at the time they are required. Therefore, the utilization of the citation contexts of papers in a research area has been considered as another approach. However, there are few search services to retrieve citation contexts in the life sciences domain; furthermore, efficiently obtaining citation contexts is becoming difficult due to the large volume and rapid growth of life sciences papers. Here, we introduce the Colil (Comments on Literature in Literature) database to store citation contexts in the life sciences domain. By using the Resource Description Framework (RDF) and a newly compiled vocabulary, we built the Colil database and made it available through the SPARQL endpoint. In addition, we developed a web-based search service called Colil that searches for a cited paper in the Colil database and then returns a list of citation contexts for it along with papers relevant to it based on co-citations. The citation contexts in the Colil database were extracted from full-text papers of the PubMed Central Open Access Subset (PMC-OAS), which includes 545,147 papers indexed in PubMed. These papers are distributed across 3,171 journals and cite 5,136,741 unique papers that correspond to approximately 25 % of total PubMed entries. By utilizing Colil, researchers can easily refer to a set of citation contexts and relevant papers based on co-citations for a target paper. Colil helps researchers to comprehend life sciences papers in a research area more efficiently and makes their biological research more efficient.

  18. European Bioinformatics Institute: Research Infrastructure needed for Life Science

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The life science community is an ever increasing source of data from increasing diverse range of instruments and sources. EMBL-EBI has a remit to store and exploit this data, collected and made available openly across the world, for the benefit of the whole research community. The research infrastructure needed to support the big data analysis around this mission encompasses high performance networks, high-throughput computing, and a range of cloud and storage solutions - and will be described in the presentation.

  19. 23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

  20. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  1. Hiroshima University Research and Technology Guide 2012 Version : Life Science

    OpenAIRE

    Center for Collaborative Research & Community Cooperation,

    2012-01-01

    I Life ScienceDevelopment of Treatment Strategy for Hepatocellular Carcinoma to Improve the Long Term Prognosis / Hiroshi AIKATA...2Development of Revolutional Apatite-implant Complex with Simultaneous Bone Augmentation and Osseointegration / Yasumasa AKAGAWA...3How Do Patients with Alzheimer’s Disease Experience Memory Impairments? / Sawako ARAI...4Development of New Therapies for Chronic Viral Hepatitis Using Human Hepatocyte Chimeric Mice / Kazuaki CHAYAMA...5Identification of High Risk Pa...

  2. Shelf life of pasteurized microfiltered milk containing 2% fat.

    Science.gov (United States)

    Caplan, Z; Barbano, D M

    2013-01-01

    The goal of this research was to produce homogenized milk containing 2% fat with a refrigerated shelf life of 60 to 90 d using minimum high temperature, short time (HTST) pasteurization in combination with other nonthermal processes. Raw skim milk was microfiltered (MF) using a Tetra Alcross MFS-7 pilot plant (Tetra Pak International SA, Pully, Switzerland) equipped with Membralox ceramic membranes (1.4 μm and surface area of 2.31 m(2); Pall Corp., East Hills, NY). The unpasteurized MF skim permeate and each of 3 different cream sources were blended together to achieve three 2% fat milks. Each milk was homogenized (first stage: 17 MPa, second stage: 3 MPa) and HTST pasteurized (73.8°C for 15s). The pasteurized MF skim permeate and the 3 pasteurized homogenized 2% fat milks (made from different fat sources) were stored at 1.7 and 5.7°C and the standard plate count for each milk was determined weekly over 90 d. When the standard plate count was >20,000 cfu/mL, it was considered the end of shelf life for the purpose of this study. Across 4 replicates, a 4.13 log reduction in bacteria was achieved by MF, and a further 0.53 log reduction was achieved by the combination of MF with HTST pasteurization (73.8°C for 15s), resulting in a 4.66 log reduction in bacteria for the combined process. No containers of MF skim milk that was pasteurized after MF exceeded 20,000 cfu/mL bacteria count during 90 d of storage at 5.7°C. The 3 different approaches used to reduce the initial bacteria and spore count of each cream source used to make the 2% fat milks did not produce any shelf-life advantage over using cold separated raw cream when starting with excellent quality raw whole milk (i.e., low bacteria count). The combination of MF with HTST pasteurization (73.8°C for 15s), combined with filling and packaging that was protected from microbial contamination, achieved a refrigerated shelf life of 60 to 90 d at both 1.7 and 5.7°C for 2% fat milks. Copyright © 2013 American

  3. Empowering pharmacoinformatics by linked life science data.

    Science.gov (United States)

    Goldmann, Daria; Zdrazil, Barbara; Digles, Daniela; Ecker, Gerhard F

    2017-03-01

    With the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for several targets. Data can then directly be used as input to various ligand- and structure-based studies. In this contribution, using in-house projects on P-gp inhibition, transporter selectivity, and TRPV1 modulation we outline how the incorporation of linked life science data in the daily execution of projects allowed to expand our approaches from conventional Hansch analysis to complex, integrated multilayer models.

  4. Psychosocial Pathways to STEM Engagement among Graduate Students in the Life Sciences

    Science.gov (United States)

    Clark, Sheri L.; Dyar, Christina; Maung, Nina; London, Bonita

    2016-01-01

    Despite growing diversity among life sciences professionals, members of historically underrepresented groups (e.g., women) continue to encounter barriers to academic and career advancement, such as subtle messages and stereotypes that signal low value for women, and fewer opportunities for quality mentoring relationships. These barriers reinforce…

  5. Implementation of science process skills using ICT-based approach to facilitate student life skills

    Science.gov (United States)

    Rahayu, Y. S.; Yuliani; Wijaya, B. R.

    2018-01-01

    The purpose of this study is to describe the results of the implementation of a teaching-learning package in Plant Physiology courses to improve the student’s life skills using the science process skills-based approach ICT. This research used 15 students of Biology Education of Undergraduate International Class who are in the Plant Physiology course. This study consists of two phases items, namely the development phase and implementation phase by using a one-shot case study design. Research parameters were the feasibility of lesson plans, student achievement, Including academic skills, thinking skills, and social skills. Data were descriptively Analyzed According to the characteristics of the existing data. The result shows that the feasibility of a lesson plan is very satisfied and can be improvements in student’s life skills, especially with regards to student’s thinking skills and scientific thinking skills. The results indicate that the science process skills using ICT-based approach can be effective methods to improve student’s life skills.

  6. Profile Septa cut out condensate crud

    International Nuclear Information System (INIS)

    Poschmann, T.

    1991-01-01

    Secondary side corrosion is a major factor leading to steam generator tube plugging. Large quantities of steam generator sludge can harden, prolonging system maintenance during an outage. However, eliminating the ingress of solids to the PWR steam generators can reduce the need for sludge lancing and increase the life of the steam generator tubes. The Pall Corporation has developed an improved filter demineralizer septum for retrofitting traditional yarn-wound elements without having to modify hardware. In November 1990, operators at Turkey Point installed 496 2in x 70in Pall's Profile Septa in one of the four filter demineralizer vessels on unit 3. After installation of the Profile Septa, samples of filter influent and effluent were taken and analyzed over a one-month period - these showed a particulate removal rate of 96-99%. Contaminant analysis by Pall Corporation identified the vast majority of particulates to be iron oxides. This is as was expected, since Turkey Point has titanium condenser tubes which reduce the source of copper oxides. The success of Profile Septa at Turkey Point has encouraged the other utilities to look at using the septa at their own plants. The cost for these retrofits would be recouped through savings in maintenance costs, due to faster steam generator lancing (fewer solids), reduced radiation exposure and, ultimately, longer steam generator life. (author)

  7. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  8. Trips and the Life Sciences - Perspectives on Limitations to Patentability

    DEFF Research Database (Denmark)

    Wested, Jakob; Minssen, Timo

    2017-01-01

    This report is based on the material and input that was presented and discussed at the webinar with the title: “Perspectives on limitations to patentability”. The Webinar and the theme where introduced by Prof. Timo Minssen. Then Prof. Nari Lee gave a presentation introducing some of the context ...... and Minssen, Timo, Trips and the Life Sciences - Perspectives on Limitations to Patentability (June 15, 2017). Available at SSRN: https://ssrn.com/abstract=2986751...

  9. Professional Networks in the Life Sciences: Linking the Linked

    Directory of Open Access Journals (Sweden)

    Thomas S. Deisboeck

    2010-08-01

    Full Text Available The world wide web has furthered the emergence of a multitude of online expert communities. Continued progress on many of the remaining complex scientific questions requires a wide ranging expertise spectrum with access to a variety of distinct data types. Moving beyond peer-to-peer to community-to-community interaction is therefore one of the biggest challenges for global interdisciplinary Life Sciences research, including that of cancer. Cross-domain data query, access, and retrieval will be important innovation areas to enable and facilitate this interaction in the coming years.

  10. Introduction to statistical data analysis for the life sciences

    CERN Document Server

    Ekstrom, Claus Thorn

    2014-01-01

    This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.

  11. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    Science.gov (United States)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  12. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    Science.gov (United States)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  13. Visualization in medicine and life sciences

    International Nuclear Information System (INIS)

    Linsen, L.; Hamann, B.

    2008-01-01

    Visualization technology is becoming increasingly important for medical and biomedical data processing and analysis. This technology complements traditional image processing methods as it allows scientists to visually interact with large, high-resolution three-dimensional image data, for example. Furthermore, an ever increasing number of new data acquisition methods are being used in medicine and the life sciences, in particular in genomics and proteomics. This book discusses some of the latest visualization techniques and systems for effective analysis of such diverse, large, complex, and multi-source data. Experts from all over the world were invited to participate in a workshop held in July 2006 on the island Ruegen in Germany. About 40 participants presented state-of-the-art research on the topic. Research and survey papers have been solicited and carefully refereed, resulting in this collection. The topics covered include Segmentation and Feature Detection, Surface Extraction, Volume Visualization, Graph and Network Visualization, Visual Data Exploration, Multivariate and Multidimensional Data Visualization, Large Data Visualization. (orig.)

  14. Life Sciences and Allied Fields: Indexes and Abstracts, Book Review Indexes, Serials Bibliographies, Translations. Bibliographic Series No. 32.

    Science.gov (United States)

    Colpitts, D. Corinne

    The information sources for the life sciences and allied fields listed were selected from the holdings of the Arkansas University library. Citations include indexes and abstracts dealing with national and international literature in medicine, the biological sciences, environmental science, veterinary medicine, agriculture, botany, and zoology, as…

  15. Venture capital on a shoestring: Bioventures' pioneering life sciences fund in South Africa.

    Science.gov (United States)

    Masum, Hassan; Singer, Peter A

    2010-12-13

    Since 2000, R&D financing for global health has increased significantly, with innovative proposals for further increases. However, although venture capital (VC) funding has fostered life sciences businesses across the developed world, its application in the developing world and particularly in Africa is relatively new. Is VC feasible in the African context, to foster the development and application of local health innovation?As the most industrially advanced African nation, South Africa serves as a test case for life sciences venture funding. This paper analyzes Bioventures, the first VC company focused on life sciences investment in sub-Saharan Africa. The case study method was used to analyze the formation, operation, and investment support of Bioventures, and to suggest lessons for future health venture funds in Africa that aim to develop health-oriented innovations. The modest financial success of Bioventures in challenging circumstances has demonstrated a proof of concept that life sciences VC can work in the region. Beyond providing funds, support given to investees included board participation, contacts, and strategic services. Bioventures had to be proactive in finding and supporting good health R&D.Due to the fund's small size, overhead and management expenses were tightly constrained. Bioventures was at times unable to make follow-on investments, being forced instead to give up equity to raise additional capital, and to sell health investments earlier than might have been optimal. With the benefit of hindsight, the CFO of Bioventures felt that partnering with a larger fund might benefit similar future funds. Being better linked to market intelligence and other entrepreneurial investors was also seen as an unmet need. BioVentures has learned lessons about how the traditional VC model might evolve to tackle health challenges facing Africa, including how to raise funds and educate investors; how to select, value, and support investments; and how to

  16. Venture capital on a shoestring: Bioventures’ pioneering life sciences fund in South Africa

    Directory of Open Access Journals (Sweden)

    Singer Peter A

    2010-12-01

    Full Text Available Abstract Background Since 2000, R&D financing for global health has increased significantly, with innovative proposals for further increases. However, although venture capital (VC funding has fostered life sciences businesses across the developed world, its application in the developing world and particularly in Africa is relatively new. Is VC feasible in the African context, to foster the development and application of local health innovation? As the most industrially advanced African nation, South Africa serves as a test case for life sciences venture funding. This paper analyzes Bioventures, the first VC company focused on life sciences investment in sub-Saharan Africa. The case study method was used to analyze the formation, operation, and investment support of Bioventures, and to suggest lessons for future health venture funds in Africa that aim to develop health-oriented innovations. Discussion The modest financial success of Bioventures in challenging circumstances has demonstrated a proof of concept that life sciences VC can work in the region. Beyond providing funds, support given to investees included board participation, contacts, and strategic services. Bioventures had to be proactive in finding and supporting good health R&D. Due to the fund’s small size, overhead and management expenses were tightly constrained. Bioventures was at times unable to make follow-on investments, being forced instead to give up equity to raise additional capital, and to sell health investments earlier than might have been optimal. With the benefit of hindsight, the CFO of Bioventures felt that partnering with a larger fund might benefit similar future funds. Being better linked to market intelligence and other entrepreneurial investors was also seen as an unmet need. Summary BioVentures has learned lessons about how the traditional VC model might evolve to tackle health challenges facing Africa, including how to raise funds and educate investors; how

  17. Venture capital on a shoestring: Bioventures’ pioneering life sciences fund in South Africa

    Science.gov (United States)

    2010-01-01

    Background Since 2000, R&D financing for global health has increased significantly, with innovative proposals for further increases. However, although venture capital (VC) funding has fostered life sciences businesses across the developed world, its application in the developing world and particularly in Africa is relatively new. Is VC feasible in the African context, to foster the development and application of local health innovation? As the most industrially advanced African nation, South Africa serves as a test case for life sciences venture funding. This paper analyzes Bioventures, the first VC company focused on life sciences investment in sub-Saharan Africa. The case study method was used to analyze the formation, operation, and investment support of Bioventures, and to suggest lessons for future health venture funds in Africa that aim to develop health-oriented innovations. Discussion The modest financial success of Bioventures in challenging circumstances has demonstrated a proof of concept that life sciences VC can work in the region. Beyond providing funds, support given to investees included board participation, contacts, and strategic services. Bioventures had to be proactive in finding and supporting good health R&D. Due to the fund’s small size, overhead and management expenses were tightly constrained. Bioventures was at times unable to make follow-on investments, being forced instead to give up equity to raise additional capital, and to sell health investments earlier than might have been optimal. With the benefit of hindsight, the CFO of Bioventures felt that partnering with a larger fund might benefit similar future funds. Being better linked to market intelligence and other entrepreneurial investors was also seen as an unmet need. Summary BioVentures has learned lessons about how the traditional VC model might evolve to tackle health challenges facing Africa, including how to raise funds and educate investors; how to select, value, and support

  18. Using XML technology for the ontology-based semantic integration of life science databases.

    Science.gov (United States)

    Philippi, Stephan; Köhler, Jacob

    2004-06-01

    Several hundred internet accessible life science databases with constantly growing contents and varying areas of specialization are publicly available via the internet. Database integration, consequently, is a fundamental prerequisite to be able to answer complex biological questions. Due to the presence of syntactic, schematic, and semantic heterogeneities, large scale database integration at present takes considerable efforts. As there is a growing apprehension of extensible markup language (XML) as a means for data exchange in the life sciences, this article focuses on the impact of XML technology on database integration in this area. In detail, a general architecture for ontology-driven data integration based on XML technology is introduced, which overcomes some of the traditional problems in this area. As a proof of concept, a prototypical implementation of this architecture based on a native XML database and an expert system shell is described for the realization of a real world integration scenario.

  19. Suicidal Ideation, Depression, Anxiety, Stress, And Life Satisfaction Of Medical, Engineering, And Social Sciences Students.

    Science.gov (United States)

    Naseem, Sabahat; Munaf, Seema

    2017-01-01

    Pursuing higher education is not an easy task as it requires hard work, dedication, and motivation. Although there are many rewards involved in growing up academically, nevertheless, it contains a few hazards too. For instance, suicidal ideation is associated with presence of depression, anxiety, and stress with low level of satisfaction with life in students finding difficulty in handling educational demands of higher education. Therefore, the present study focused on the query that whether there is any difference or not among medical, engineering, and social sciences students of city of Karachi, Pakistan in the level of suicidal ideation, depression, anxiety, stress, and life satisfaction. Using comparative group design, total 300 students (150 males and 150 females) with age range of 19-26 were selected from faculties of medical, engineering, and social sciences of different universities of Karachi, Pakistan, through purposive sampling. Respondent Profile Form, The Suicide Behaviours Questionnaire-Revised, Depression Anxiety Stress Scale-21, and Satisfaction with Life Scale were administered to assess suicidal ideation; depression, anxiety, stress; and life satisfaction, respectively, of the students. Scores were analysed through ANOVA and Post Hoc (Tukey's HSD) test using SPSS. Social sciences and engineering students were significantly higher on depression, anxiety, and stress than medical students [F (2, 297) =8.701, p=.000] whereas insignificant differences in the level of suicidal ideation [F (2, 297) =1.914, p=.149] and life satisfaction [F (2, 297) = .726, p = .485] among these students were found. With the help of these findings, it would be easier to counsel students of different disciplines in time on the lines of suggested preventive measures.

  20. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    Science.gov (United States)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  1. Proceedings of the DAE-BRNS life sciences symposium on current trends in biology and medicine

    International Nuclear Information System (INIS)

    2010-01-01

    This year's Life Sciences Symposium is focused on Health Sciences. It will provide an interactive platform for deliberations on current developments in basic research on cancer, diabetes, infectious diseases, reproduction, stem cells and degenerative diseases. Several aspects like metabolism, use of biophysical techniques, detection methods, micro RNA based regulation, assisted reproductive technologies etc. are covered. Papers relevant to INIS are indexed separately

  2. Physical Sciences Preservice Teachers' Religious and Scientific Views Regarding the Origin of the Universe and Life

    Science.gov (United States)

    Govender, Nadaraj

    2017-01-01

    This paper explores final-year physical sciences preservice teachers' religious and scientific views regarding the origin of the universe and life. Data was obtained from 10 preservice teachers from individual in-depth interviews conducted at the end of the Science Method module. Their viewpoints were analyzed using coding, sorting, and…

  3. Petrography and Geochemistry (Trace, Ree and Pge of Pedda Cherlo Palle Gabbro-Diorite Pluton, Prakasam Igneous Province, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Subramanyam K.S.V.

    2015-09-01

    Full Text Available Prakasam Igneous Province (PIP is an important geological domain in the Eastern Dharwar Craton (EDC, found in the junction zone between the EDC and Eastern Ghat Mobile Belt (EGMB. The Pedda Cherlo Palle (PCP gabbros are massive, leucocratic-mesocractic, and show cumulus textures with minerals plagioclase, cpx, and amphiboles. Compositionally, plagioclase is a labradorite-bytownite, cpx is diopside to augite, olivines are hyalosiderites and amphiboles are magnesiohornblendes. PCP gabbros have normal SiO2, high Al2O3, moderate to high TiO2, Na2O and medium Fe2O3, so, classified as subalkaline tholeiitic gabbros. Fractionated rare earth element (REE patterns, high abundance of large ion lithofile elements (LILE and transitional metals coupled with light REE (LREE relative enrichment over heavy REE (HREE and Nb are characteristics of partial melting of depleted mantle and melts that have undergone fractional crystalisation. These partial melts are enriched in LREE and LILE, due to the addition of slab derived sediment and fluids. PCP gabbros contain low abundance (5.1 to 24.6 ng/g of platinum group elements (PGE, and show an increase in the order Ir>Os>Pt>Ru»Pd>Rh. We propose that the subduction related intraoceanic island arc might have accreted to the southeastern margin of India to the east of Cuddapah basin in a collisional regime that took place during Ur to Rodinia amalgamations.

  4. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  5. Hybrid cloud and cluster computing paradigms for life science applications.

    Science.gov (United States)

    Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey

    2010-12-21

    Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.

  6. The Body as a Substrate of Differentiation. Shifting the Focus from Race Science to Life Scientists' Research on Human Variation

    OpenAIRE

    Lipphardt, Veronika

    2017-01-01

    Abstract This article suggests to focus on the history of human variation instead of focussing on the history of race science. It views the latter as a subset of the former, hence views race science as embedded into the larger field of life scientists' investigations into human variation. This paper explores why human variation is such an attractive and productive object particularly for the life sciences. It proposes that knowledge about human variation is incomplete in a promising way, and ...

  7. The uses of radiotracers in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Thomas J [TRIUMF, Vancouver (Canada)

    2009-01-15

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  8. The uses of radiotracers in the life sciences

    Science.gov (United States)

    Ruth, Thomas J.

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  9. The uses of radiotracers in the life sciences

    International Nuclear Information System (INIS)

    Ruth, Thomas J

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination

  10. BioCatalogue: a universal catalogue of web services for the life sciences.

    Science.gov (United States)

    Bhagat, Jiten; Tanoh, Franck; Nzuobontane, Eric; Laurent, Thomas; Orlowski, Jerzy; Roos, Marco; Wolstencroft, Katy; Aleksejevs, Sergejs; Stevens, Robert; Pettifer, Steve; Lopez, Rodrigo; Goble, Carole A

    2010-07-01

    The use of Web Services to enable programmatic access to on-line bioinformatics is becoming increasingly important in the Life Sciences. However, their number, distribution and the variable quality of their documentation can make their discovery and subsequent use difficult. A Web Services registry with information on available services will help to bring together service providers and their users. The BioCatalogue (http://www.biocatalogue.org/) provides a common interface for registering, browsing and annotating Web Services to the Life Science community. Services in the BioCatalogue can be described and searched in multiple ways based upon their technical types, bioinformatics categories, user tags, service providers or data inputs and outputs. They are also subject to constant monitoring, allowing the identification of service problems and changes and the filtering-out of unavailable or unreliable resources. The system is accessible via a human-readable 'Web 2.0'-style interface and a programmatic Web Service interface. The BioCatalogue follows a community approach in which all services can be registered, browsed and incrementally documented with annotations by any member of the scientific community.

  11. Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions

    Science.gov (United States)

    Cabrol, N. A.a; Wettergreen, D. S.; Whittaker, R.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Dohm, J. M.; Fisher, G.

    2005-01-01

    The Life In The Atacama (LITA) project develops and field tests a long-range, solarpowered, automated rover platform (Zo ) and a science payload assembled to search for microbial life in the Atacama desert. Life is barely detectable over most of the driest desert on Earth. Its unique geological, climatic, and biological evolution have created a unique training site for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars.

  12. Teaching Life Sciences to English Second Language Learners: What Do Teachers Do?

    Science.gov (United States)

    Ferreira, Johanna G.

    2011-01-01

    South Africa has eleven official languages and legally learners receive tuition in their mother tongue until the end of Grade 3. From then on teachers are required to teach through the medium of English or Afrikaans. The implication is that the majority of learners in the senior secondary school phase study Life Sciences in their second language,…

  13. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences

    Science.gov (United States)

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...

  14. The NASA Ames Life Sciences Data Archive: Biobanking for the Final Frontier

    Science.gov (United States)

    Rask, Jon; Chakravarty, Kaushik; French, Alison J.; Choi, Sungshin; Stewart, Helen J.

    2017-01-01

    The NASA Ames Institutional Scientific Collection involves the Ames Life Sciences Data Archive (ALSDA) and a biospecimen repository, which are responsible for archiving information and non-human biospecimens collected from spaceflight and matching ground control experiments. The ALSDA also manages a biospecimen sharing program, performs curation and long-term storage operations, and facilitates distribution of biospecimens for research purposes via a public website (https:lsda.jsc.nasa.gov). As part of our best practices, a tissue viability testing plan has been developed for the repository, which will assess the quality of samples subjected to long-term storage. We expect that the test results will confirm usability of the samples, enable broader science community interest, and verify operational efficiency of the archives. This work will also support NASA open science initiatives and guides development of NASA directives and policy for curation of biological collections.

  15. Darwin and the origin of life: public versus private science.

    Science.gov (United States)

    Strick, James E

    2009-12-01

    In the first twenty years after the publication of Darwin's On the Origin of Species, an intense debate took place within the ranks of Darwin's supporters over exactly what his theory implied about the means by which the original living organism formed on Earth. Many supporters of evolutionary science also supported the doctrine of spontaneous generation: life forming from nonliving material not just once but many times up to the present day. Darwin was ambivalent on this topic. He feared its explosive potential to drive away liberal-minded Christians who might otherwise be supporters. His ambivalent wording created still more confusion, both among friends and foes, about what Darwin actually believed about the origin of life. A famous lecture by Thomas H. Huxley in 1870 set forth what later became the 'party line' Darwinian position on the subject.

  16. Assessment of primary school students’ level of understanding the concepts of 2nd grade life sciences course based on different variables

    Directory of Open Access Journals (Sweden)

    Altıntaş Gülşen

    2016-01-01

    Full Text Available The course of Life Sciences is one of the pivot courses taught in the first three years of primary school. Ensuring children get to know their environment and gain correct information related to their problems by making them investigate their natural and socio-cultural environment as well as providing them with necessary information, skills and behaviors for environmental adaptation are among the main purposes of Life Sciences course. The concepts to be instilled in students in line with these purposes are important. Since concepts are mostly intellectual and non-physical, they can only exist tangibly through examples. This study aims to assess Primary School Students’ Level of Understanding the Concepts of 2nd Grade Life Sciences Course Based on Different Variables. 17 concepts included in the 2nd Grade Life Sciences course within the subject of School Excitement were addressed within the study, and students were requested to define and exemplify these concepts. A total of 102 students from five different primary schools of upper-middle and lower socioeconomic classes located in Manisa and Istanbul were included in the study in line with the intentional maximum diversity sample selection. The answers given by students for each concept were categorized and analyzed in terms of liking or disliking home, school, technology and the course of Life Sciences.

  17. Integrating scientific data for drug discovery and development using the Life Sciences Grid.

    Science.gov (United States)

    Dow, Ernst R; Hughes, James B; Stephens, Susie M; Narayan, Vaibhav A; Bishop, Richard W

    2009-06-01

    There are many daunting challenges for companies who wish to bring novel drugs to market. The information complexity around potential drug targets has increased greatly with the introduction of microarrays, high-throughput screening and other technological advances over the past decade, but has not yet fundamentally increased our understanding of how to modify a disease with pharmaceuticals. Further, the bar has been raised in getting a successful drug to market as just being new is no longer enough: the drug must demonstrate improved performance compared with the ever increasing generic pharmacopeia to gain support from payers and government authorities. In addition, partly as a consequence of a climate of concern regarding the safety of drugs, regulatory authorities have approved fewer new molecular entities compared to historical norms over the past few years. To overcome these challenges, the pharmaceutical industry must fully embrace information technology to bring better understood compounds to market. An important first step in addressing an unmet medical need is in understanding the disease and identifying the physiological target(s) to be modulated by the drug. Deciding which targets to pursue for a given disease requires a multidisciplinary effort that integrates heterogeneous data from many sources, including genetic variations of populations, changes in gene expression and biochemical assays. The Life Science Grid was developed to provide a flexible framework to integrate such diverse biological, chemical and disease information to help scientists make better-informed decisions. The Life Science Grid has been used to rapidly and effectively integrate scientific information in the pharmaceutical industry and has been placed in the open source community to foster collaboration in the life sciences community.

  18. Student-Life Stress Level and its Related Factors among Medical Students of Hamadan University of Medical Sciences in 2015

    OpenAIRE

    Roya Nikanjam; Majid Barati; Saeed Bashirian*; Mohammad Babamiri; Ali Fattahi; Alireza Soltanian

    2016-01-01

    Background and Objectives: Student-life stress can lead to various negative consequences such as physical illness, mental disorders or exhaustion. The present study was conducted to evaluate the level of student life stress and its related factors among medical students of Hamadan University of Medical Sciences. Materials and Methods: This cross-sectional study applied multistage random sampling to select 500university students at Hamadan University of Medical Sciences during 2015. The dat...

  19. Workshop on Life sciences and radiation

    CERN Document Server

    Life Sciences and Radiation : Accomplishments and Future Directions

    2004-01-01

    Scope and ideas of the workshop The workshop which took place at the University of Giessen from Oct. 3 to Oct. 7, 2002 and whose proceedings are collected in this volume started from the idea to convene a number of scientists with the aim to outline their ”visions” for the future of radiation research on the basis of their expertise. As radiation research is a very wide field restrictions were unavoidable. It was decided to concentrate this time mainly on molecular and cellular biology because it was felt that here action is par-ticularly needed. This did not exclude contributions from neighbouring fields as may be seen from the table of contents. It was clearly not planned to have a c- prehensive account of the present scientif fic achievements but the results presented should only serve as a starting point for the discussion of future lines of research, with the emphasis on the ”outreach” to other parts of life sciences. If you are interested in the future ask the young – we attempted, therefore, ...

  20. The why of things: causality in science, medicine, and life

    CERN Document Server

    Rabins, Peter V.

    2013-01-01

    Why was there a meltdown at the Fukushima power plant? Why do some people get cancer and not others? Why is global warming happening? Why does one person get depressed in the face of life's vicissitudes while another finds resilience? Questions like these -- questions of causality -- form the basis of modern scientific inquiry, posing profound intellectual and methodological challenges for researchers in the physical, natural, biomedical, and social sciences. In this groundbreaking book, noted psychiatrist and author Peter Rabins offers a conceptual framework for analyzing daunting questions of causality. Navigating a lively intellectual voyage between the shoals of strict reductionism and relativism, Rabins maps a three-facet model of causality and applies it to a variety of questions in science, medicine, economics, and more. Throughout this book, Rabins situates his argument within relevant scientific contexts, such as quantum mechanics, cybernetics, chaos theory, and epigenetics. A renowned communicator o...

  1. 76 FR 52377 - Colorado Wyoming Reserve Co., Grant Life Sciences, Inc., NOXSO Corp., Omni Medical Holdings, Inc...

    Science.gov (United States)

    2011-08-22

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Colorado Wyoming Reserve Co., Grant Life Sciences, Inc., NOXSO Corp., Omni Medical Holdings, Inc., and TSI, Inc., Order of Suspension of Trading... Commission that there is a lack of current and accurate information concerning the securities of Grant Life...

  2. A home for science: The life and times of Tropical and Polar field stations.

    Science.gov (United States)

    Geissler, P Wenzel; Kelly, Ann H

    2016-12-01

    A 'halfway house' between the generic, purified space of the laboratory and the varied and particular spaces of the field, the field station is a controlled yet uncontained setting from which nature can be accessed and anchored. As living quarters for visiting scientists, field stations are also enmeshed in the routine and rhythms of everyday domestic life, and in longer cycles of habitation, wear, and repair. This introduction considers the empirical and conceptual significance of Polar and Tropical field stations as homes for scientific work and scientific lives. The field station's extra-territorial yet intimate character affects the credibility and circulation of knowledge along science's frontiers. The challenge of making a home in the (non-temperate) field and the mundane experiences of expatriation and appropriation establish particular political dynamics of knowledge-making in these locations. They bring into focus the imaginaries of nature and science that drive transnational research and put into relief the aesthetic and affective dimensions of work and life in these distant homes for science. All these themes are pursued and amplified in a different medium by the artists who contributed to our research and are also featured in this special issue.

  3. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    Science.gov (United States)

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these…

  4. Federal Life Sciences Funding and University R&D. NBER Working Paper No. 15146

    Science.gov (United States)

    Blume-Kohout, Margaret E.; Kumar, Krishna B.; Sood, Neeraj

    2009-01-01

    This paper investigates the impact of federal extramural research funding on total expenditures for life sciences research and development (R&D) at U.S. universities, to determine whether federal R&D funding spurs funding from non-federal (private and state/local government) sources. We use a fixed effects instrumental variable approach…

  5. CSIR ScienceScope: Life sciences

    CSIR Research Space (South Africa)

    CSIR

    2007-04-01

    Full Text Available modern science . . . . . . . . . . . . . . 13 Fight against diseases of developing world . . . . . . . . . . . . . 16 Aptamers: a new approach . . . . . . . . . . . . . . . . . . . . . . . . 18 Medicinal chemistry – the missing link... the impact of biofuels on hydrology, food security, poverty relief and biodiversity conservation. A combination of process-based field measurements and modelling exercises are being undertaken. Tree genetics The reality of an ever-growing demand...

  6. mORCA: ubiquitous access to life science web services.

    Science.gov (United States)

    Diaz-Del-Pino, Sergio; Trelles, Oswaldo; Falgueras, Juan

    2018-01-16

    Technical advances in mobile devices such as smartphones and tablets have produced an extraordinary increase in their use around the world and have become part of our daily lives. The possibility of carrying these devices in a pocket, particularly mobile phones, has enabled ubiquitous access to Internet resources. Furthermore, in the life sciences world there has been a vast proliferation of data types and services that finish as Web Services. This suggests the need for research into mobile clients to deal with life sciences applications for effective usage and exploitation. Analysing the current features in existing bioinformatics applications managing Web Services, we have devised, implemented, and deployed an easy-to-use web-based lightweight mobile client. This client is able to browse, select, compose parameters, invoke, and monitor the execution of Web Services stored in catalogues or central repositories. The client is also able to deal with huge amounts of data between external storage mounts. In addition, we also present a validation use case, which illustrates the usage of the application while executing, monitoring, and exploring the results of a registered workflow. The software its available in the Apple Store and Android Market and the source code is publicly available in Github. Mobile devices are becoming increasingly important in the scientific world due to their strong potential impact on scientific applications. Bioinformatics should not fall behind this trend. We present an original software client that deals with the intrinsic limitations of such devices and propose different guidelines to provide location-independent access to computational resources in bioinformatics and biomedicine. Its modular design makes it easily expandable with the inclusion of new repositories, tools, types of visualization, etc.

  7. The "Next Generation Science Standards" and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  8. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  9. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  10. [The development of European Union common research and development policy and programs with special regard to life sciences].

    Science.gov (United States)

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of

  11. Life Sciences Division progress report for CYs 1997-1998[Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Mann, Reinhold C.

    1999-01-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R and D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R and D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  12. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The

  13. Modifying ``Six Ideas that Shaped Physics'' for a Life-Science major audience at Hope College

    Science.gov (United States)

    Mader, Catherine

    2005-04-01

    The ``Six Ideas That Shaped Physics'' textbook has been adapted and used for use in the algebra-based introductory physics course for non-physics science majors at Hope College. The results of the first use will be presented. Comparison of FCI for pre and post test scores will be compared with results from 8 years of results from both the algebra-based course and the calculus-based course (when we first adopted ``Six Ideas that Shaped Physcs" for the Calculus-based course). In addition, comparison on quantitative tests and homework problems with prior student groups will also be made. Because a large fraction of the audience in the algebra-based course is life-science majors, a goal of this project is to make the material relevant for these students. Supplemental materials that emphasize the connection between the life sciences and the fundamental physics concepts are being be developed to accompany the new textbook. Samples of these materials and how they were used (and received) during class testing will be presented.

  14. Effectiveness of integrated science instructional material on pressure in daily life theme to improve digital age literacy of students

    Science.gov (United States)

    Asrizal; Amran, A.; Ananda, A.; Festiyed; Khairani, S.

    2018-04-01

    Integrated science learning and literacy skills are relevant issues in Indonesian’s education. However, the use of the integrated science learning and the integration of literacy in learning cannot be implemented well. An alternative solution of this problem is to develop integrated science instructional material on pressure in daily life theme by integrating digital age literacy. Purpose of research is to investigate the effectiveness of the use of integrated science instructional material on pressure in daily life theme to improve knowledge competence, attitudes competence and literacy skills of students. This research was a part of development research which has been conducted. In the product testing stage of this research and development was used before and after design of treatment for one sample group. Instruments to collect the data consist of learning outcomes test sheet, attitude observation sheet, and performance assessment sheet of students. Data analysis techniques include descriptive statistics analysis, normality test, homogeneity test, and paired comparison test. Therefore, the important result of research is the use of integrated science instructional material on pressure in daily life theme is effective in scientific approach to improve knowledge competence, attitudes competence, and digital age literacy skills of grade VIII students at 95% confidence level.

  15. The comeback of hand drawing in modern life sciences.

    Science.gov (United States)

    Chabrier, Renaud; Janke, Carsten

    2018-03-01

    Scientific manuscripts are full of images. Since the birth of the life sciences, these images were in a form of hand drawings, with great examples from da Vinci, Hooke, van Leeuwenhoek, Remak, Buffon, Bovery, Darwin, Huxley, Haeckel and Gray's Anatomy to name a few. However, in the course of the past century, photographs and simplified schematics have gradually taken over as a way of illustrating scientific data and concepts, assuming that these are 'accurate' representations of the truth. Here, we argue for the importance of reviving the art of scientific drawings as a way of effectively communicating complex scientific ideas to both specialists and the general public.

  16. The development of socially responsible life-sciences teachers through community service learning.

    Directory of Open Access Journals (Sweden)

    J.J. Rian de Villiers

    2012-03-01

    Full Text Available In South Africa, polices in higher education are urging tertiary institutions to produce graduates who are socially responsible citizens. One method of achieving this is through service-learning initiatives. Zoos as community partners can provide exciting educational opportunities for students to do animal behaviour studies and to develop their social responsibility. A sample of 58 preservice life-sciences teachers from a South African university completed a questionnaire on their animal behaviour studies. This study sought to determine how animal behaviour studies could successfully be incorporated as a community service-learning project in a zoo setting, what the educational value of these studies was and what the benefits were of incorporating this community service-learning component in the life-sciences course. The incorporation of the service-learning component into the zoology course led to the students’ personal and professional development, knowledge about themselves, sensitivity to cultural diversity, civic responsibility and insights into the ways in which communities operate. For a successful service-learning project, lectures, students and community partners should all have a sense of engagement. A number of suggestions are made to improve the incorporation of this service-learning component into the existing zoology course.

  17. Academic Performance and Pass Rates: Comparison of Three First-Year Life Science Courses

    Science.gov (United States)

    Downs, C. T.

    2009-01-01

    First year students' academic performance in three Life Science courses (Botany, Zoology and Bioscience) was compared. Pass rates, as well as the means and distributions of final marks were analysed. Of the three components (coursework, practical and theory examinations) contributing to the final mark of each course, students performed best in the…

  18. A Trip from a Tube to a Chip Applied Micro and Nanotechnology in Biotechnology, Veterinary and Life Sciences

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Dhumpa, Raghuram; Cao, Cuong

    2010-01-01

    of such pathogens. Microchipfabrication has had a major impact on electronics and is expected to have an equally pronounced effect on life sciences. By combining micro-fluidics with micromechanics, micro-optics, and microelectronics, systems can be realized to perform complete chemical or biochemical analyses......-nanotechnology in life sciences will be given. In addition, examples of DNA micro arrays, micro fabricated integrated PCR chips and total integrated lab-on-chip systems from different National and EU research projects being carried out at the Laboratory of Applied Micro-Nanotechnology (LAMINATE) group at the National...

  19. Critical review of Ames Life Science participation in Spacelab Mission Development Test 3: The SMD 3 management study

    Science.gov (United States)

    Helmreich, R.; Wilhelm, J.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S.

    1978-01-01

    A management study was conducted to specify activities and problems encountered during the development of procedures for documentation and crew training on experiments, as well as during the design, integration, and delivery of a life sciences experiment payload to Johnson Space Center for a 7 day simulation of a Spacelab mission. Conclusions and recommendations to project management for current and future Ames' life sciences projects are included. Broader issues relevant to the conduct of future scientific missions under the constraints imposed by the environment of space are also addressed.

  20. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    Directory of Open Access Journals (Sweden)

    Ludo Waltman

    Full Text Available We investigate the extent to which advances in the health and life sciences (HLS are dependent on research in the engineering and physical sciences (EPS, particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  1. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    Science.gov (United States)

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  2. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  3. Sociology of scientific knowledge and science education part 2: Laboratory life under the microscope

    Science.gov (United States)

    Slezak, Peter

    1994-10-01

    This article is the second of two that examine some of the claims of contemporary sociology of scientific knowledge (SSK) and the bearing of these claims upon the rationale and practice of science teaching. In the present article the celebrated work Laboratory Life of Latour and Woolgar is critically examined. Its radical, iconoclastic view of science is shown to be not merely without foundation but an extravagant deconstructionist nihilism according to which all science is fiction and the world is said to be socially constructed by negotiation. On this view, the success of a theory is not due to its intellectual merits or explanatory plausibility but to the capacity of its proponents to “extract compliance” from others. If warranted, such views pose a revolutionary challenge to the entire Western tradition of science and the goals of science education which must be misguided and unrealizable in principle. Fortunately, there is little reason to take these views seriously, though their widespread popularity is cause for concern among science educators.

  4. The Presentation of Science in Everyday Life: The Science Show

    Science.gov (United States)

    Watermeyer, Richard

    2013-01-01

    This paper constitutes a case-study of the "science show" model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest…

  5. Targeting Future Customers: An Introductory Biobanking Course for Undergraduate Students of Life Sciences.

    Science.gov (United States)

    Abdelhafiz, Ahmed Samir; Fouda, Merhan Ahmed; El-Jaafary, Shaimaa Ibrahim; Farghly, Maysa Ibrahim; Salem, Mazen; Tammam, Ahmed; Gabr, Hala

    2017-08-01

    Biobanking is a relatively new concept in the Arab region. Targeting different stakeholders to introduce the concept of biobanking and develop an acceptance of it among them is important for the growth of biobanking in the region. Undergraduate students of life sciences represent an important segment of stakeholders, since they constitute potential future biobank customers. Limited funding, lack of awareness of the existence of the term "biobanking" itself among these students, and questions regarding best marketing strategies presented challenges to planning for the most effective message delivery to this target group. A specific course was designed for undergraduate students of life sciences, which was conducted at the Faculty of Medicine, Cairo University, Egypt. The course was conducted twice in 2016 and included lectures covering biobanking, quality, ethics, information technology, and translational research. Facebook and word-of-mouth were used for marketing and advertising. A total number of 125 participants attended both courses cumulatively. Facebook appeared to have been an effective marketing outlet, especially when paid advertisements were used. Evaluation of knowledge, measured using a pretest and posttest, demonstrated some improvement in knowledge of participants. Evaluation forms filled after the course showed positive attitude toward content and message delivery by a majority of participants. Facebook was also used as an evaluation method through analysis of engagement with posts created after course completion. Biobanking education can be carried out effectively with limited resources. Understanding the needs of the target group and using appropriate methods of communication are essential prerequisites to a well-tailored curriculum and effective message delivery. Using Facebook appears to be an effective and affordable method of communication and advertising. Targeting undergraduate students of life sciences interested in research is a good

  6. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  7. A pocket guide to electronic laboratory notebooks in the academic life sciences.

    Science.gov (United States)

    Dirnagl, Ulrich; Przesdzing, Ingo

    2016-01-01

    Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN) in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  8. Responsible Code of Conduct for the Life Science and Dual-Use Research

    International Nuclear Information System (INIS)

    Bokan, S.

    2007-01-01

    The potential threat from misuse of current and future Dual-Use research in the field of NBC Defense is challenge to which scientific community must respond. The rapid advances in the life sciences and the worldwide growth of biotechnology industry only add urgency of this task. Code of conduct is formal statement of values and professional practices of a group of individuals with a common focus, either an occupation, academic field, or social doctrine. Codes of conduct can help to reduce the risk that scientific research will be misused. 'Dual-use' is a term often used in politics and diplomacy to refer to technology which can be used for both peaceful and military aims, usually in regard to the proliferation of nuclear weapons. Dual-use information and 'know-how' in the field of NBC defense are covered under the Export control regimes. Nearly all WMD production equipment is 'dual-use' and only very large capacity equipment is export controlled. Research in the life sciences, including NBC defense research must be conducted safely, securely, and ethically. Development of an international harmonized regime for control of biological and chemical warfare agents within and between laboratories and facilities is very important. This paper will present very important consideration of the content, promulgation and adoption of codes of conduct for scientists in the field of NBC research, for inducing of discussion between scientists into group of CBMTS members with aim how improve protection of sensitive research results and information in the field of NBC Defense sciences. (author)

  9. Preservice Science Teachers’ Levels of Associating The Concept of Gas Pressure with Everyday Life

    Directory of Open Access Journals (Sweden)

    Aybüke Pabuçcu

    2016-10-01

    Full Text Available Through this research, it was aimed to investigate how pre-service science teachers’ use their knowledge about the concept of gas pressure in explaining some examples from everyday life. The research was carried out with 33 freshmen pre-service science teachers. The data in the research were collected through five formative assessment probes. The students were asked to work in small groups to complete the questions. Groups’ discussions were recorded. Groups’ written responses were classified in five different categories: sound understanding, partial understanding, specific misconception, no understanding, and no response. Data under these categories were given as percentages in a table. The sum of students’ responses in sound understanding and partial understanding are in the range of 37.5% and 62.5%. Results revealed that students had difficulty in understanding the gases concepts and associating these concepts with everyday life events. Moreover, many misconceptions and misuse of the ideal gas equation were determined in the students’ explanations.

  10. Life sciences: Nuclear medicine, radiation biology, medical physics, 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1994-11-01

    The catalogue lists all sales publications of the IAEA dealing with Life Sciences issued during the period 1980-1994. The publications are grouped in the following chapters: Nuclear Medicine (including Radiopharmaceuticals), Radiation Biology and Medical Physics (including Dosimetry)

  11. Ames Life Science Data Archive: Translational Rodent Research at Ames

    Science.gov (United States)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  12. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  13. Developing Deep Learning Applications for Life Science and Pharma Industry.

    Science.gov (United States)

    Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan

    2018-06-01

    Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    Science.gov (United States)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet

  15. Proceedings of the symposium on 'radiation research in life science'

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1993-06-01

    This report is the collection of the papers presented at the title symposium on radiation research in life science. The themes included in this report are as follows: (1) cellular aging process, (2) senescence gene and cellular immortalization, (3) molecular mechanism of replicative senescence, (4) programmed cell death during differentiation, (5) thymocyte apoptosis, (6) neuronal death, (7) apoptosis by HIV infection, (8) apoptosis and immunology, (9) radiation induced apoptosis, and so on. Separate abstract was prepared for 1 of the papers in this report. The remaining 10 papers were considered outside the subject scope of INIS. (J.P.N.)

  16. Codifying collegiality: recent developments in data sharing policy in the life sciences.

    Directory of Open Access Journals (Sweden)

    Genevieve Pham-Kanter

    Full Text Available Over the last decade, there have been significant changes in data sharing policies and in the data sharing environment faced by life science researchers. Using data from a 2013 survey of over 1600 life science researchers, we analyze the effects of sharing policies of funding agencies and journals. We also examine the effects of new sharing infrastructure and tools (i.e., third party repositories and online supplements. We find that recently enacted data sharing policies and new sharing infrastructure and tools have had a sizable effect on encouraging data sharing. In particular, third party repositories and online supplements as well as data sharing requirements of funding agencies, particularly the NIH and the National Human Genome Research Institute, were perceived by scientists to have had a large effect on facilitating data sharing. In addition, we found a high degree of compliance with these new policies, although noncompliance resulted in few formal or informal sanctions. Despite the overall effectiveness of data sharing policies, some significant gaps remain: about one third of grant reviewers placed no weight on data sharing plans in their reviews, and a similar percentage ignored the requirements of material transfer agreements. These patterns suggest that although most of these new policies have been effective, there is still room for policy improvement.

  17. Intersections of Life Histories and Science Identities: The Stories of Three Preservice Elementary Teachers

    Science.gov (United States)

    Avraamidou, Lucy

    2016-01-01

    Grounded within Connelly and Clandinin's conceptualization of teachers' professional identity in terms of "stories to live by" and through a life-history lens, this multiple case study aimed to respond to the following questions: (a) How do three preservice elementary teachers view themselves as future science teachers? (b) How have the…

  18. Gold Medal Award for Life Achievement in the Science of Psychology: Marcia K. Johnson

    Science.gov (United States)

    American Psychologist, 2011

    2011-01-01

    The American Psychological Foundation (APF) Gold Medal Awards recognize distinguished and enduring records of accomplishment in four areas of psychology: the application of psychology, the practice of psychology, psychology in the public interest, and the science of psychology. The 2011 recipient of the Gold Medal Award for Life Achievement in the…

  19. Annual report: AEC Institute for Life Sciences, 1986

    International Nuclear Information System (INIS)

    1987-08-01

    The AEC-Institute for life sciences research programme can be divided into four divisions: experimental nuclear medicine, radiobiology, radiopharmacy and hormone receptor studies. The experimental nuclear medicine division investigates and undertakes new developments in nuclear diagnostics with a view to clinical application, especially developments in dataprocessing techniques and radiopharmaceuticals. Physiological, biochemical and pharmacological problems are also investigated by using tracers and nuclear diagnostic techniques. The radiobiology division is concerned with the development of biochemical techniques for determining radiosensitivity amongst radiation workers as well as clinical-biochemical, diagnostic procedures for identifying exposure to ionizing types of radiation (X- or gamma radiation). The hormone receptor division is concerned with the study of the role of steroid hormone receptors, steroids and carcinogenes in the etiology of breast cancer. Research projects as well as completed and ongoing research are listed in this report

  20. Database Description - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us FANTOM5 Database Description General information of database Database name FANTOM5 Alternati...me: Rattus norvegicus Taxonomy ID: 10116 Taxonomy Name: Macaca mulatta Taxonomy ID: 9544 Database descriptio...l Links: Original website information Database maintenance site RIKEN Center for Life Science Technologies, ...ilable Web services Not available URL of Web services - Need for user registration Not available About This Database Database... Description Download License Update History of This Database Site Policy | Contact Us Database Description - FANTOM5 | LSDB Archive ...

  1. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  2. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  3. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  4. Science as Content, Science as Context: Working in the Science Department

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    2004-01-01

    In this study we explored how the science department shaped the relationship between a science department head, Mr Greg, and a teacher, Ms Horton, as they grappled with their expectations of, and responsibilities for, teaching and leadership in the daily life in the department. We found that, from their life histories and their positions in the…

  5. The Biome Project: Developing a Legitimate Parallel Curriculum for Physical Education and Life Sciences

    Science.gov (United States)

    Hastie, Peter Andrew

    2013-01-01

    The purpose of this article is to describe the outcomes of a parallel curriculum project between life sciences and physical education. Throughout a 6-week period, students in grades two through five became members of teams that represented different animal species and biomes, and concurrently participated in a season of gymnastics skills and…

  6. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    Science.gov (United States)

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  7. John Greenleaf's life of science.

    Science.gov (United States)

    Watenpaugh, Donald E

    2012-12-01

    This article summarizes the life and career of John E. Greenleaf, PhD. It complements an interview of Dr. Greenleaf sponsored by the American Physiological Society Living History Project found on the American Physiological Society website. Dr. Greenleaf is a "thought leader" and internationally renowned physiologist, with extensive contributions in human systems-level environmental physiology. He avoided self-aggrandizement and believed that deeds rather than words define one's legacy. Viewed another way, however, Greenleaf's words define his deeds: 48% of his 185 articles are first author works, which is an unusually high proportion for a scientist of his stature. He found that writing a thorough and thoughtful discussion section often led to novel ideas that drove future research. Beyond Greenleaf's words are the many students, postdocs, and collaborators lucky enough to have worked with him and thus learn and carry on his ways of science. His core principles included the following: avoid research "fads," embrace diversity, be the first subject in your own research, adhere to rules of fiscal responsibility, and respect administrative forces-but never back down from them when you know you are right. Greenleaf's integrity ensured he was usually right. He thrived on the axiom of many successful scientists: avoid falling in love with hypotheses, so that when unexpected findings appear, they arouse curiosity instead of fear. Dr. Greenleaf's legacy will include the John and Carol Greenleaf Award for prolific environmental and exercise-related publication in the Journal of Applied Physiology.

  8. Medicine and science in the life of Luigi Galvani (1737-1798).

    Science.gov (United States)

    Bresadola, M

    1998-07-15

    Together with its companion paper, dealing with the contribution of Luigi Galvani to the history of electrophysiology, this article provides a biographical sketch of the scientist of Bologna in the occasion of the bicentenary of his death. Studies on Galvani have focused mainly on his "discovery" of animal electricity, and on the controversy with Alessandro Volta. Much less is known about Galvani's life and activity as a teacher, physician, and researcher in the fields of comparative anatomy, physiology, and chemistry of life. Yet, a balanced assessment of the significance and the role of Galvani's research in the history of science will be possible only after a historical reconstruction of his entire activity. This should take into account aspects of Galvani's life that have been little studied up to now: Galvani's scientific background, the scientific context in which his interest for muscular physiology arose, the interplay between his activity as a researcher and as a physician, the origin and characteristics of his experimental approach to biological studies, and the development of his experimental research in the crucial period culminating in his electrophysiological explanation of muscular motion. The present article aims at offering a contribution in this direction.

  9. Unlocking the full potential of Open Innovation in the Life Sciences through a classification system

    DEFF Research Database (Denmark)

    Nilsson, Niclas; Minssen, Timo

    2018-01-01

    Open Innovation (OI) holds much promise as a new business model for collaborative value creation in life science. From a corporate perspective, benefits include faster access to new relevant technology; the opportunity for Biotechs and Small to Medium-sized Enterprises (SMEs) to explore new marke...

  10. Dear Professor Dyson twenty years of correspondence between Freeman Dyson and undergraduate students on science, technology, society and life

    CERN Document Server

    Neuenschwander, Dwight E

    2016-01-01

    Freeman Dyson has designed nuclear reactors and bomb-powered spacecraft; he has studied the origins of life and the possibilities for the long-term future; he showed quantum mechanics to be consistent with electrodynamics and started cosmological eschatology; he has won international recognition for his work in science and for his work in reconciling science to religion; he has advised generals and congressional committees. An STS (Science, Technology, Society) curriculum or discussion group that engages topics such as nuclear policies, genetic technologies, environmental sustainability, the role of religion in a scientific society, and a hard look towards the future, would count itself privileged to include Professor Dyson as a class participant and mentor. In this book, STS topics are not discussed as objectified abstractions, but through personal stories. The reader is invited to observe Dyson's influence on a generation of young people as they wrestle with issues of science, technology, society, life in g...

  11. Life sciences research in space: The requirement for animal models

    Science.gov (United States)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  12. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  13. Life: Here? There? Elsewhere? The Search for Life on Venus and Mars. Life in the Universe Series.

    Science.gov (United States)

    1996

    This classroom kit, designed by curriculum developers working with teachers and scientists from the SETI (Search for Extraterrestrial Intelligence) Institute, helps teachers guide students in the exploration of life through the multidisciplinary sciences of paleontology and exobiology. It reflects the real-life methods of science: making…

  14. Real life narratives enhance learning about the 'art and science' of midwifery practice.

    Science.gov (United States)

    Gilkison, Andrea; Giddings, Lynne; Smythe, Liz

    2016-03-01

    Health professional educators have long grappled with how to teach the more elusive art of practice alongside the science (a term that encompasses the sort of professional knowledge that can be directly passed on). A competent practitioner is one who knows when, how and for whom to apply knowledge and skills, thereby making the links between theory and practice. They combine art and science in such a way that integrates knowledge with insight. This participatory hermeneutic study explored the experience of teachers and students of implementing a narrative-centred curriculum in undergraduate midwifery education. It revealed that when real life narratives were central to the learning environment, students' learning about the art of midwifery practice was enhanced as they learned about midwifery decisions, reflected on their own values and beliefs and felt an emotional connection with the narrator. Further, art and science became melded together in the context specific wisdom of practice (phronesis).

  15. The caBIG® Life Science Business Architecture Model.

    Science.gov (United States)

    Boyd, Lauren Becnel; Hunicke-Smith, Scott P; Stafford, Grace A; Freund, Elaine T; Ehlman, Michele; Chandran, Uma; Dennis, Robert; Fernandez, Anna T; Goldstein, Stephen; Steffen, David; Tycko, Benjamin; Klemm, Juli D

    2011-05-15

    Business Architecture Models (BAMs) describe what a business does, who performs the activities, where and when activities are performed, how activities are accomplished and which data are present. The purpose of a BAM is to provide a common resource for understanding business functions and requirements and to guide software development. The cancer Biomedical Informatics Grid (caBIG®) Life Science BAM (LS BAM) provides a shared understanding of the vocabulary, goals and processes that are common in the business of LS research. LS BAM 1.1 includes 90 goals and 61 people and groups within Use Case and Activity Unified Modeling Language (UML) Diagrams. Here we report on the model's current release, LS BAM 1.1, its utility and usage, and plans for future use and continuing development for future releases. The LS BAM is freely available as UML, PDF and HTML (https://wiki.nci.nih.gov/x/OFNyAQ).

  16. Oceanography in Second Life: Use of a Virtual Reality to Enhance Undergraduate Education in Marine Science

    Science.gov (United States)

    Villareal, T. A.; Jarmon, L.; Triggs, R.

    2009-12-01

    Shipboard research is a fundamental part of oceanography, but has numerous legal and practical constraints virtually eliminate it as a regular part of large-enrollment programs in marine science. The cost of a properly equipped research vessel alone can prevent student access. While much can be learned by active exploration of archived data by students, the limitations placed on real oceanographic programs by distance, vessel speed, and time are difficult to reproduce in exercises. Pre-cruise planning and collaboration between investigators are likewise a challenge to incorporate. We have used design students in the College of Liberal Arts to construct a oceanographic expedition in Second Life for use in a marine science course (Fall 2009). Second Life is a highly collaborative environment with a variety of tools that allow users to create their own environment and interact with it. Second LIfe is free, highly portable, and inherently amenable to distance or remote teaching. In our application, the research vessel exists as an moving platform with sampling abilities. Software code queries an external MySQL database that contains information from the World Ocean Atlas for the entire ocean, and returns strings of data from standard depths. Students must plan the cruise track to test hypothesis about the ocean, collaborate with other teams to develop the big picture and use standard oceanographic software (Ocean Data Viewer; ODV) to analyze the data. Access to the entire database in ODV then allows comparison to the actual properties and distributions. The effectiveness of this approach is being evaluated by a pre- and post-class surveys and post semester focus group interviews. Similar surveys of the design students that created the environment noted that use of Second Life created a learning experience that was both more immersive and process oriented than traditional college courses. Initial impressions in the marine science class indicate that the strong social

  17. Consideration of learning orientations as an application of achievement goals in evaluating life science majors in introductory physics

    Science.gov (United States)

    Mason, Andrew J.; Bertram, Charles A.

    2018-06-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.

  18. Incidence of Data Duplications in a Randomly Selected Pool of Life Science Publications.

    Science.gov (United States)

    Oksvold, Morten P

    2016-04-01

    Since the solution to many public health problems depends on research, it is critical for the progress and well-being for the patients that we can trust the scientific literature. Misconduct and poor laboratory practice in science threatens the scientific progress, leads to loss of productivity and increased healthcare costs, and endangers lives of patients. Data duplication may represent one of challenges related to these problems. In order to estimate the frequency of data duplication in life science literature, a systematic screen through 120 original scientific articles published in three different cancer related journals [journal impact factor (IF) 20] was completed. The study revealed a surprisingly high proportion of articles containing data duplication. For the IF 20 journals, 25% of the articles were found to contain data duplications. The IF 5-10 journal showed a comparable proportion (22.5%). The proportion of articles containing duplicated data was comparable between the three journals and no significant correlation to journal IF was found. The editorial offices representing the journals included in this study and the individual authors of the detected articles were contacted to clarify the individual cases. The editorial offices did not reply and only 1 out of 29 cases were apparently clarified by the authors, although no supporting data was supplied. This study questions the reliability of life science literature, it illustrates that data duplications are widespread and independent of journal impact factor and call for a reform of the current peer review and retraction process of scientific publishing.

  19. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  20. Applications of pharmacogenomics in regulatory science: a product life cycle review.

    Science.gov (United States)

    Tan-Koi, W C; Leow, P C; Teo, Y Y

    2018-05-22

    With rapid developments of pharmacogenomics (PGx) and regulatory science, it is important to understand the current PGx integration in product life cycle, impact on clinical practice thus far and opportunities ahead. We conducted a cross-sectional review on PGx-related regulatory documents and implementation guidelines in the United States and Europe. Our review found that although PGx-related guidance in both markets span across the entire product life cycle, the scope of implementation guidelines varies across two continents. Approximately one-third of Food and Drug Administration (FDA)-approved drugs with PGx information in drug labels and half of the European labels posted on PharmGKB website contain recommendations on genetic testing. The drugs affected 19 and 15 World Health Organization Anatomical Therapeutic Chemical drug classes (fourth level) in the United States and Europe, respectively, with protein kinase inhibitors (13 drugs in the United States and 16 drugs in Europe) being most prevalent. Topics of emerging interest were novel technologies, adaptive design in clinical trial and sample collection.

  1. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  2. Targeting change: Assessing a faculty learning community focused on increasing statistics content in life science curricula.

    Science.gov (United States)

    Parker, Loran Carleton; Gleichsner, Alyssa M; Adedokun, Omolola A; Forney, James

    2016-11-12

    Transformation of research in all biological fields necessitates the design, analysis and, interpretation of large data sets. Preparing students with the requisite skills in experimental design, statistical analysis, and interpretation, and mathematical reasoning will require both curricular reform and faculty who are willing and able to integrate mathematical and statistical concepts into their life science courses. A new Faculty Learning Community (FLC) was constituted each year for four years to assist in the transformation of the life sciences curriculum and faculty at a large, Midwestern research university. Participants were interviewed after participation and surveyed before and after participation to assess the impact of the FLC on their attitudes toward teaching, perceived pedagogical skills, and planned teaching practice. Overall, the FLC had a meaningful positive impact on participants' attitudes toward teaching, knowledge about teaching, and perceived pedagogical skills. Interestingly, confidence for viewing the classroom as a site for research about teaching declined. Implications for the creation and development of FLCs for science faculty are discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):517-525, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. Design and Evaluation of a One-Semester General Chemistry Course for Undergraduate Life Science Majors

    Science.gov (United States)

    Schnoebelen, Carly; Towns, Marcy H.; Chmielewski, Jean; Hrycyna, Christine A.

    2018-01-01

    The chemistry curriculum for undergraduate life science majors at Purdue University has been transformed to better meet the needs of this student population and prepare them for future success. The curriculum, called the 1-2-1 curriculum, includes four consecutive and integrated semesters of instruction in general chemistry, organic chemistry, and…

  4. The life and contribution of Dr. Ronald Gitelman: a pioneer of modern chiropractic science.

    Science.gov (United States)

    Vernon, Howard

    2013-03-01

    The life and contribution to chiropractic science of Dr. Ronald Gitelman is reviewed. Sources for this article included review of the notes prepared by Dr. Joseph Keating in his "biography" of the Canadian Memorial Chiropractic College (CMCC); review of the important articles published by Dr. Gitelman; review of the important projects undertaken by him along with various colleagues; notes from reminiscences obtained from many of these colleagues and discussions with his family. Dr. Gitelman's academic career spanned from 1963 to the late 1980's. During that time, he made foundational contributions to the development of chiropractic science including: developing the Archives (1974), the first collection of scientific articles supporting chiropractic science (which was subsequently published as the Chiropractic Archives Research Collection (CRAC)); delivering one of the few chiropractic papers at the seminal NINCDS conference (1975) and, developing the collaboration between CMCC and Dr. Kirkaldy-Willis at the University of Saskatoon (1976). He practiced in Toronto from 1961 to 2007. Dr. Gitelman was a pioneer in the development of chiropractic science. He died on October 7, 2012.

  5. Life sciences research at JINR, Dubna, Russia

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.

    2007-01-01

    Within the broad spectrum of activities in the Life Sciences at JINR such as nuclear medicine and pharmacy, radiation biology, radioecology, radioisotope production radioanalytical investigations play a special role due to the long-term experience in multi-element instrumental neutron activation analysis (INAA) at the reactor IBR-2 of FLNP, JINR. INAA is presently being used in several projects on air pollution studies using bio monitors (moss, lichens, tree bark). The results for some selected areas of Central Russia, South Urals, and countries of Europe (Bulgaria, Poland, Romania, Bosnia and Herzegovina, Serbia and Montenegro, Macedonia, Slovakia, Western Ukraine) are reported to the European Atlas of Heavy Metal Atmospheric Deposition edited under the auspices of the Environmental Commission of the United Nations. Battering-ram studies using NAA were initiated also in Turkey, China and South Korea. Applied to the analysis of air filters, INAA is successfully used in assessing quality of London underground air, Sahara desert impact on the Greater Cairo Area. Epithermal activation analysis in combination with atomic absorption spectrometry and energy-disperse X-ray fluorescence allowed source evaluation of metals in soil from some industrial and metropolitan areas of Russia (South Urals, Cola Peninsula) and the USA (Minneapolis). The analytical possibilities of NAA are favorably used in biotechnology, (i) for investigation of bacterial leaching of metals, including uranium and thorium from low-grade ores, rocks and industrial wastes; (i i) in the development of new pharmaceuticals based on the blue-green alga Spirulina platensis. Occupational health studies are carried out at several fertilizer plants in Russia, Uzbekistan, Poland, Romania, Denmark and the Netherlands in the framework of the 5th Programme Copernicus. The quality of foodstuffs grown in some contaminated areas of Russia is investigated in the framework of IAEA Coordinated Research Programme. In

  6. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  7. Paul Scherrer Institute Scientific Report 1998. Volume II: Life Sciences

    International Nuclear Information System (INIS)

    Gschwend, Beatrice; Jaussi, Rolf

    1999-01-01

    The Department of Life Sciences, is aiming to perform high quality research in biosciences focused primarily on oncology and in close interaction with the technical facilities at PSI e.g. proton therapy, SINQ, SLS, and the national and international bioscience community. Within this department, the Division of Radiation Protection and Radioactive Waste Treatment is responsible for the radiological safety of the personnel, the installations and the environment at PSI, and it is charged with dismantling obsolete nuclear installations at PSI. The principal research and development activities of this division concern novel methods for neutron dosimetry, and the study of presence and pathways of natural and man made radioactivity in humans and in the environment. (author)

  8. Paul Scherrer Institute Scientific Report 1998. Volume II: Life Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Gschwend, Beatrice; Jaussi, Rolf [eds.

    1999-09-01

    The Department of Life Sciences, is aiming to perform high quality research in biosciences focused primarily on oncology and in close interaction with the technical facilities at PSI e.g. proton therapy, SINQ, SLS, and the national and international bioscience community. Within this department, the Division of Radiation Protection and Radioactive Waste Treatment is responsible for the radiological safety of the personnel, the installations and the environment at PSI, and it is charged with dismantling obsolete nuclear installations at PSI. The principal research and development activities of this division concern novel methods for neutron dosimetry, and the study of presence and pathways of natural and man made radioactivity in humans and in the environment. (author) figs., tabs., refs.

  9. Life sciences at CEA

    International Nuclear Information System (INIS)

    2000-01-01

    This paper presents briefly the organization of the - Direction des Sciences du Vivant - of french atomic energy commission (Commissariat a l'Energie Atomique (CEA)) and their main axes of research (F.M)

  10. The relationship between quality of work life and job satisfaction of faculty members in Zahedan University of Medical Sciences.

    Science.gov (United States)

    Kermansaravi, Fatihe; Navidian, Ali; Navabi Rigi, Shahindokht; Yaghoubinia, Fariba

    2014-10-29

    Quality of work life is one of the most important factors for human motivating and improving of job satisfaction. The current study was carried out aimed to determine the relationship between quality of work life and job satisfaction in faculty members of Zahedan University of Medical Sciences. In this descriptive-analytic study, 202 faculty members of Zahedan University of Medical Sciences in 2012 were entered the study through census. The job satisfaction questionnaire of Smith and Kendall and Walton Quality of Work Life questionnaire were used for data collection. Validity and reliability of questionnaires were confirmed in previous studies. Data analysis was done using SPSS 18. The Pearson correlation coefficient and multiple regression tests were used for data analysis. The mean score of quality of work life was 121/30±37/08 and job satisfaction was 135/98 ±33/78. There was a significant and positive correlation between job satisfaction of faculty members and their quality of work life (P=0.003). In addition, two components of quality of work life "adequate and fair compensation" (β=0.3) and "Social Integration" (β=0.4) can predict job satisfaction of faculty members. According to correlation between job satisfaction and quality of work life in faculty members, job satisfaction can be improved through the changing and manipulating the components of quality of work life and in this way; the suitable environment for organization development should be provided.

  11. State of the Science White Paper: Effects of Plastics Pollution on Aquatic Life and Aquatic-Dependent Wildlife

    Science.gov (United States)

    This document is a state-of-the-science review – one that summarizes available scientific information on the effects of chemicals associated with plastic pollution and their potential impacts on aquatic life and aquatic-dependent wildlife.

  12. [Rationalities of knowledge production: on transformations of objects, technologies and information in biomedicine and the life sciences].

    Science.gov (United States)

    Paul, Norbert W

    2009-09-01

    Since decades, scientific change has been interpreted in the light of paradigm shifts and scientific revolutions. The Kuhnian interpretation of scientific change however is now more and more confronted with non-disciplinary thinking in both, science and studies on science. This paper explores how research in biomedicine and the life sciences can be characterized by different rationalities, sometimes converging, sometimes contradictory, all present at the same time with varying ways of influence, impact, and visibility. In general, the rationality of objects is generated by fitting new objects and findings into a new experimental context. The rationality of hypotheses is a move towards the construction of novel explanatory tools and models. This is often inseparable meshing with the third, the technological rationality, in which a technology-driven, self-supporting and sometimes self-referential refinement of methods and technologies comes along with an extension into other fields. During the second and the third phase, the new and emerging fields tend to expand their explanatory reach not only across disciplinary boundaries but also into the social sphere, creating what has been characterized as "exceptionalism" (e.g. genetic exceptionalism or neuro-exceptionalism). Finally, recent biomedicine and life-sciences reach a level in which experimental work becomes more and more data-driven because the technologically constructed experimental systems generate a plethora of findings (data) which at some point start to blur the original hypotheses. For the rationality of information the materiality of research practices becomes secondary and research objects are more and more getting out of sight. Finally, the credibility of science as a practice becomes more and more dependent on consensus about the applicability and relevance of its results. The rationality of interest (and accountability) has become more and more characteristic for a research process which is no longer

  13. The Baccalaureate Origins of Chicana and Chicano Doctorates in the Physical, Life, and Engineering Sciences: 1980-1990.

    Science.gov (United States)

    Solorzano, Daniel G.

    1994-01-01

    Presents a national examination of the doctorate production and baccalaureate origins of Chicana and Chicano doctorates in the physical, life, and engineering sciences. Reports some gender differences in doctorate production and baccalaureate origins. Contains 78 references. (DDR)

  14. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  15. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  16. KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences.

    Science.gov (United States)

    Ernst, Patrick; Siu, Amy; Weikum, Gerhard

    2015-05-14

    Biomedical knowledge bases (KB's) have become important assets in life sciences. Prior work on KB construction has three major limitations. First, most biomedical KBs are manually built and curated, and cannot keep up with the rate at which new findings are published. Second, for automatic information extraction (IE), the text genre of choice has been scientific publications, neglecting sources like health portals and online communities. Third, most prior work on IE has focused on the molecular level or chemogenomics only, like protein-protein interactions or gene-drug relationships, or solely address highly specific topics such as drug effects. We address these three limitations by a versatile and scalable approach to automatic KB construction. Using a small number of seed facts for distant supervision of pattern-based extraction, we harvest a huge number of facts in an automated manner without requiring any explicit training. We extend previous techniques for pattern-based IE with confidence statistics, and we combine this recall-oriented stage with logical reasoning for consistency constraint checking to achieve high precision. To our knowledge, this is the first method that uses consistency checking for biomedical relations. Our approach can be easily extended to incorporate additional relations and constraints. We ran extensive experiments not only for scientific publications, but also for encyclopedic health portals and online communities, creating different KB's based on different configurations. We assess the size and quality of each KB, in terms of number of facts and precision. The best configured KB, KnowLife, contains more than 500,000 facts at a precision of 93% for 13 relations covering genes, organs, diseases, symptoms, treatments, as well as environmental and lifestyle risk factors. KnowLife is a large knowledge base for health and life sciences, automatically constructed from different Web sources. As a unique feature, KnowLife is harvested from

  17. A Qualitative Study of Technology-Based Training in Organizations that Hire Agriculture and Life Sciences Students

    Science.gov (United States)

    Bedgood, Leslie; Murphrey, Theresa Pesl; Dooley, Kim E.

    2008-01-01

    Technological advances have created unlimited opportunities in education. Training and technology have merged to create new methods referred to as technology-based training. The purpose of this study was to identify organizations that hire agriculture and life sciences students for positions involving technology-based training and identify…

  18. 5th International Conference on Optics Within Life Sciences

    CERN Document Server

    Papazoglou, Theodore; Kalpouzos, Costas

    2000-01-01

    Following to previous OWLS conferences devoted to widespread applications of optics in life sciences, this 5th OWLS Conference focuses on recent achievements in applying lasers and optics in biomedicine and the preservation of our cultural heritage. Particular attention is paid to laser diagnostics in medicine, interaction of laser radiation with biological tissue, aspects of the preservation of cultural heritage, and the development of new systems for these studies. The contributors to this volume cover international research activities in the following areas: Laser-tissue interactions and tissue optics - photon migration in tissue; Medical sensors - fiber optics; Clinical use of lasers (dermatology, ENT, cardiology, etc.); Laser-based techniques in art conservation (cleaning, diagnostics, analytical applications); Imaging techniques and lasers in archaeology; Laser technologies in contemporary art (holography, marking, etc.); and New laser and opto-electronic systems for biomedical and art-related studies.

  19. Development of a software interface for optical disk archival storage for a new life sciences flight experiments computer

    Science.gov (United States)

    Bartram, Peter N.

    1989-01-01

    The current Life Sciences Laboratory Equipment (LSLE) microcomputer for life sciences experiment data acquisition is now obsolete. Among the weaknesses of the current microcomputer are small memory size, relatively slow analog data sampling rates, and the lack of a bulk data storage device. While life science investigators normally prefer data to be transmitted to Earth as it is taken, this is not always possible. No down-link exists for experiments performed in the Shuttle middeck region. One important aspect of a replacement microcomputer is provision for in-flight storage of experimental data. The Write Once, Read Many (WORM) optical disk was studied because of its high storage density, data integrity, and the availability of a space-qualified unit. In keeping with the goals for a replacement microcomputer based upon commercially available components and standard interfaces, the system studied includes a Small Computer System Interface (SCSI) for interfacing the WORM drive. The system itself is designed around the STD bus, using readily available boards. Configurations examined were: (1) master processor board and slave processor board with the SCSI interface; (2) master processor with SCSI interface; (3) master processor with SCSI and Direct Memory Access (DMA); (4) master processor controlling a separate STD bus SCSI board; and (5) master processor controlling a separate STD bus SCSI board with DMA.

  20. Data Linkage Graph: computation, querying and knowledge discovery of life science database networks

    Directory of Open Access Journals (Sweden)

    Lange Matthias

    2007-12-01

    Full Text Available To support the interpretation of measured molecular facts, like gene expression experiments or EST sequencing, the functional or the system biological context has to be considered. Doing so, the relationship to existing biological knowledge has to be discovered. In general, biological knowledge is worldwide represented in a network of databases. In this paper we present a method for knowledge extraction in life science databases, which prevents the scientists from screen scraping and web clicking approaches.

  1. Gender in Science without Numbers: From academia to work-life balance. Main Results of Case Studies

    OpenAIRE

    Maria Thanopoulou; Joanna Tsiganou

    2016-01-01

    The present volume titled «Gender in Science without Numbers: from academia to work-life balance» refers to the qualitative research undertaken by the National Centre for Social Research, in the context of a project on «Work-life balance in the context of changing families and labour market in Greece». This project has been part of the European Area’s Financial Mechanism WORLBAL, with code EEA GR07/3939. The volume includes short reviews of the main results of case studies focusing on the w...

  2. New COSPAR space life sciences journal

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Hei, T.; Stoop, J.

    2013-01-01

    Roč. 52, č. 11 (2013), s. 1859 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : COSPAR journal Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117713006753

  3. Space Science Outreach in the Virtual World of Second Life

    Science.gov (United States)

    Crider, Anthony W.; International Spaceflight Museum

    2006-12-01

    The on-line "game" of Second Life allows users to construct a highly detailed and customized environment. Users often pool talents and resources to construct virtual islands that focus on their common interest. One such group has built the International Spaceflight Museum, committed to constructing and displaying accurate models of rockets, spacecraft, telescopes, and planetariums. Current exhibits include a Saturn V rocket, a Viking lander on Mars, Spaceship One, the New Horizons mission to the Kuiper Belt, and a prototype of the Orion crew exploration vehicle. This museum also hosts public lectures, shuttle launch viewings, and university astronomy class projects. In this presentation, I will focus on how space science researchers and educators may take advantage of this new resource as a means to engage the public.

  4. When do scientists become entrepreneurs? The social structural antecedents of commercial activity in the academic life sciences.

    Science.gov (United States)

    Stuart, Toby E; Ding, Waverly W

    2006-07-01

    The authors examine the conditions prompting university-employed life scientists to become entrepreneurs, defined to occur when a scientist (1) founds a biotechnology company, or (2) joins the scientific advisory board of a new biotechnology firm. This study draws on theories of social influence, socialization, and status dynamics to examine how proximity to colleagues in commercial science influences individuals' propensity to transition to entrepreneurship. To expose the mechanisms at work, this study also assesses how proximity effects change over time as for-profit science diffuses through the academy. Using adjusted proportional hazards models to analyze case-cohort data, the authors find evidence that the orientation toward commercial science of individuals' colleagues and coauthors, as well as a number of other workplace attributes, significantly influences scientists' hazards of transitioning to for-profit science.

  5. Life science-based neuroscience education at large Western Public Universities.

    Science.gov (United States)

    Coskun, Volkan; Carpenter, Ellen M

    2016-12-01

    The last 40 years have seen a remarkable increase in the teaching of neuroscience at the undergraduate level. From its origins as a component of anatomy or physiology departments to its current status as an independent interdisciplinary field, neuroscience has become the chosen field of study for many undergraduate students, particularly for those interested in medical school or graduate school in neuroscience or related fields. We examined how life science-based neuroscience education is offered at large public universities in the Western United States. By examining publicly available materials posted online, we found that neuroscience education may be offered as an independent program, or as a component of biological or physiological sciences at many institutions. Neuroscience programs offer a course of study involving a core series of courses and a collection of topical electives. Many programs provide the opportunity for independent research, or for laboratory-based training in neuroscience. Features of neuroscience programs at Western universities closely matched those seen at the top 25 public universities, as identified by U.S. News & World Report. While neuroscience programs were identified in many Western states, there were several states in which public universities appeared not to provide opportunities to major in neuroscience. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  7. JPRS Report, Science & Technology USSR: Life Sciences.

    Science.gov (United States)

    1988-07-01

    intestinal and renal colic and peritonitis) and 4 diseases closely simulating these (acute gastritis , food poisoning, myocardial infarction...Scientific Research Institute of Experimental Medicine, USSR Academy of Medical Sciences, Leningrad] [Abstract] Histological and histochemical studies...the histological impression of rccip- functional integration. Figures 4; references 25: 5 Rus- rocal connections. A continuum was evident

  8. Between Scylla and Charybdis: reconciling competing data management demands in the life sciences.

    Science.gov (United States)

    Bezuidenhout, Louise M; Morrison, Michael

    2016-05-17

    The widespread sharing of biologicaConcluding Comments: Teaching Responsible Datal and biomedical data is recognised as a key element in facilitating translation of scientific discoveries into novel clinical applications and services. At the same time, twenty-first century states are increasingly concerned that this data could also be used for purposes of bioterrorism. There is thus a tension between the desire to promote the sharing of data, as encapsulated by the Open Data movement, and the desire to prevent this data from 'falling into the wrong hands' as represented by 'dual use' policies. Both frameworks posit a moral duty for life sciences researchers with respect to how they should make their data available. However, Open data and dual use concerns are rarely discussed in concert and their implementation can present scientists with potentially conflicting ethical requirements. Both dual use and Open data policies frame scientific data and data dissemination in particular, though different, ways. As such they contain implicit models for how data is translated. Both approaches are limited by a focus on abstract conceptions of data and data sharing. This works to impede consensus-building between the two ethical frameworks. As an alternative, this paper proposes that an ethics of responsible management of scientific data should be based on a more nuanced understanding of the everyday data practices of life scientists. Responsibility for these 'micromovements' of data must consider the needs and duties of scientists as individuals and as collectively-organised groups. Researchers in the life sciences are faced with conflicting ethical responsibilities to share data as widely as possible, but prevent it being used for bioterrorist purposes. In order to reconcile the responsibilities posed by the Open Data and dual use frameworks, approaches should focus more on the everyday practices of laboratory scientists and less on abstract conceptions of data.

  9. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall. Infected by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Saijie Gong

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE. Thousands of differentially expressed genes (DEGs were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO and Kyoto encyclopedia of genes and genomes (KEGG database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold.

  10. Trade Secrets in Life Science and Pharmaceutical Companies

    Science.gov (United States)

    Nealey, Tara; Daignault, Ronald M.; Cai, Yu

    2015-01-01

    Trade secret protection arises under state common law and state statutes. In general, a trade secret is information that is not generally known to the public and is maintained as a secret, and it provides a competitive advantage or economic benefit to the trade secret holder. Trade secrets can be worth tens or hundreds of millions of dollars, and damage awards in trade secret litigation have been high; often, there is a lot at stake. Obtaining a trade secret through “improper means” is misappropriation. If the alleged trade secret, however, was developed independently, known publicly, or not maintained as a secret, then those defenses may successfully overcome a claim for trade secret misappropriation. With today’s interconnectedness in the biotechnology and pharmaceutical fields, more collaborations, joint ventures, and outsourcing arrangements among firms, and increased mobility of employees’ careers, life science companies need to not only understand how to protect their trade secrets, but also know how to defend against a claim for trade secret theft. PMID:25414378

  11. Trade secrets in life science and pharmaceutical companies.

    Science.gov (United States)

    Nealey, Tara; Daignault, Ronald M; Cai, Yu

    2014-11-20

    Trade secret protection arises under state common law and state statutes. In general, a trade secret is information that is not generally known to the public and is maintained as a secret, and it provides a competitive advantage or economic benefit to the trade secret holder. Trade secrets can be worth tens or hundreds of millions of dollars, and damage awards in trade secret litigation have been high; often, there is a lot at stake. Obtaining a trade secret through "improper means" is misappropriation. If the alleged trade secret, however, was developed independently, known publicly, or not maintained as a secret, then those defenses may successfully overcome a claim for trade secret misappropriation. With today's interconnectedness in the biotechnology and pharmaceutical fields, more collaborations, joint ventures, and outsourcing arrangements among firms, and increased mobility of employees' careers, life science companies need to not only understand how to protect their trade secrets, but also know how to defend against a claim for trade secret theft. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Developing the science of end-of-life and palliative care research: National Institute of Nursing Research summit.

    Science.gov (United States)

    Csikai, Ellen L

    2011-01-01

    A rare opportunity to examine accomplishments and identify ways to advance research in end-of-life and palliative care was offered by the National Institute of Nursing Research (NINR) through a summit meeting held in August 2011. The Science of Compassion: Future Directions in End-of-Life and Palliative Care brought together nationally recognized leaders in end-of-life and palliative care research, including grantees of NINR, as well as more than 700 attendees from all disciplines. It was an exciting affirmation of the importance of moving forward in the field. Presented in this article is a summary of the summit and a call to action for end-of-life and palliative care social workers to engage in seeking funding to conduct needed research and to ensure our unique perspective is represented.

  13. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences.

    Science.gov (United States)

    Kobeissy, Firas H; Gulbakan, Basri; Alawieh, Ali; Karam, Pierre; Zhang, Zhiqun; Guingab-Cagmat, Joy D; Mondello, Stefania; Tan, Weihong; Anagli, John; Wang, Kevin

    2014-02-01

    The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.

  14. Adapting Practices of Science Journalism to Foster Science Literacy

    Science.gov (United States)

    Polman, Joseph L.; Newman, Alan; Saul, Ellen Wendy; Farrar, Cathy

    2014-01-01

    In this paper, the authors describe how the practices of expert science journalists enable them to act as "competent outsiders" to science. We assert that selected science journalism practices can be used to design reform-based science instruction; these practices not only foster science literacy that is useful in daily life, but also…

  15. Development of life sciences equipment for microgravity and hypergravity simulation

    Science.gov (United States)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  16. Overview of Japan Proton Accelerator Research Complex (J-PARC) project and Materials and Life Science Experimental Facility (MLF)

    International Nuclear Information System (INIS)

    Ikeda, Yujiro

    2008-01-01

    The J-PARC project has been conducted jointly by JAERI and KEK since 2001. This paper reports an overview and current status of the project. The high intensity proton accelerator consists of a 400 MeV Linac, a 3 GeV synchrotron and 50 GeV synchrotron to deliver MW level pulsed proton beam to experimental facilities. The MW proton power will provide an advanced scientific experimental research complex aiming at making breakthroughs in materials and life science with neutron and muon, nuclear and elementary physics, etc. Regarding the project being close to its completion in 2008, this paper describes the overview of J-PARC project with emphasis of the Materials and Life Science Experimental Facility, in which the MW pulsed neutron and muon sources, are placed to provide high quality neutron and muon beams to the world wide users. (author)

  17. NATO Advanced Research Workshop on Brilliant Light Facilities and Research in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili; Brilliant Light in Life and Material Sciences

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  18. The epigenetic landscape in the course of time: Conrad Hal Waddington's methodological impact on the life sciences.

    Science.gov (United States)

    Baedke, Jan

    2013-12-01

    It seems that the reception of Conrad Hal Waddington's work never really gathered speed in mainstream biology. This paper, offering a transdisciplinary survey of approaches using his epigenetic landscape images, argues that (i) Waddington's legacy is much broader than is usually recognized--it is widespread across the life sciences (e.g. stem cell biology, developmental psychology and cultural anthropology). In addition, I will show that (ii) there exist as yet unrecognized heuristic roles, especially in model building and theory formation, which Waddington's images play within his work. These different methodological facets envisioned by Waddington are used as a natural framework to analyze and classify the manners of usage of epigenetic landscape images in post-Waddingtonian 'landscape approaches'. This evaluation of Waddington's pictorial legacy reveals that there are highly diverse lines of traditions in the life sciences, which are deeply rooted in Waddington's methodological work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Occupation embedded in a real life: interweaving occupational science and occupational therapy. 1993 Eleanor Clarke Slagle Lecture.

    Science.gov (United States)

    Clark, F

    1993-12-01

    This lecture presents an example of research in the genre of interpretive occupational science and demonstrates how occupational science can inform clinical practice. The innovative qualitative methodology used blended elements of the anthropological tradition of life history ethnography, ethnomethodology, the naturalistic methods used by Mattingly and Schön to study practice, and especially narrative analysis as described by Polkinghorne. The bulk of the paper is presented in the form of a narrative analysis that provides an account of a stroke survivor's personal struggle for recovery, a story that emerged from transcription, coding, and analysis of transcripts from approximately 20 hours of interview time. First, this narrative analysis provides an example of how the occupational science framework can evoke a particular kind of storytelling in which childhood occupation can be related to adult character. Storytelling of this kind is later shown to be therapeutic for the stroke survivor. Next, the narrative illustrates how rehabilitation can be experienced by the survivor as a rite of passage in which a person is moved to disability status and then abandoned. Finally, a picture is given of how occupational story making and occupational storytelling embedded in real life can nurture the human spirit to act and can become the core of clinical practice.

  20. Excel 2013 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2015-01-01

    This is the first book to show the capabilities of Microsoft Excel to teach biological and life sciences statistics effectively.  It is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical science problems.  If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you.  Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand science problems.  Practice problems are provided at the end of each chapter with their solutions in an appendix.  Separately, there is a full Practice Test (with answers in an Appendix) that allows readers to test what they have learned.  Includes 164 illustrations in color Suitable for undergraduates or graduate student Prof. Tom Quirk is currently a Professor of Marketing at The Walker School of Business and Technology at Webster University in St....