Sample records for paleoproterozoic tanami orogenic

  1. Aeromagnetic study of the Hengshan-Wutai-Fuping region: Unraveling a crustal profile of the Paleoproterozoic Trans-North China Orogen (United States)

    Zhang, Jian; Zhao, Guochun; Shen, Wenlue; Li, Sanzhong; Sun, Min


    An integrated crustal profile of the intervening Trans-North China Orogen (TNCO) is one of the key issues to understanding the tectonic evolution of the North China Craton. However, the existing geological studies focus only on the surface-mapping based petrological, geochemical and structural analysis, but lack subsurface geophysical evidence and thus make the crustal profile interpretations ambiguous. In contrast, the current geophysical data covers a very large-scale lithospheric mantle and fails to image the detailed structural pattern of the orogenic crust. To achieve this goal, we present high-resolution aeromagnetic data for the Hengshan-Wutai-Fuping region, the largest exposure of the central TNCO. The reduced-to-pole magnetic anomaly map firstly verifies the regional tectonic subdivision that the high-grade metamorphic terranes (i.e. Hengshan and Fuping Complexes) are consistent with high-magnetic responses and long-wavelength anomalies, intervened by a low-grade terrane (Wutai Complex) characterized by low-magnetic responses and short-wavelength anomalies. 3D Euler deconvolution reveals that the tendencies of the clustered solutions show large consistence with the major structural pattern of the region which is characterized by a fan-shaped doubly-vergent orogenic wedge. Upward continuation further shows that the northwest part of the orogen yields a thicker crust and is most likely located closer to the paleosubduction zone. The new aeromagnetic data, combined with structural, petrological and metamorphic data indicate that an eastward-dipping subduction zone was most possibly active before the collision of the Western and Eastern Blocks, leading to the formation of the TNCO and the final amalgamation of the North China Craton.

  2. U-Pb SHRIMP and {sup 40}Ar/{sup 39}Ar constraints on the timing of mineralization in the Paleoproterozoic Caxias orogenic gold deposit, Sao Luis cratonic fragment, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Evandro Luiz, E-mail: [Servico Geologico do Brasil (CPRM), Belem, PA (Brazil); Tassinari, Colombo Celso Gaeta, E-mail: [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Geociencias. Centro de Pesquisas Geocronologicas; Vasconcelos, Paulo Marcos, E-mail: [University of Queensland, School of Earth Sciences, Brisbane (Australia)


    Caxias is an orogenic gold deposit in the Sao Luis cratonic fragment, which is correlated with the Rhyacian terranes of the West-African Craton. The deposit postdates peak metamorphism (estimated at 2100 ± 15 Ma) and is hosted in a shear zone that cuts across schists of the Aurizona Group (2240 ± 5 Ma) and the Caxias Microtonalite. The emplacement age of the microtonalite, as determined in this work by SHRIMP U-Pb zircon dating, is 2009 ± 11 Ma and represents a latest age magmatic event in the Sao Luis cratonic fragment. Older zircon age of 2139 ± 10 Ma is interpreted as due to inheritance from the older granitoid or volcanic suites (magmatic sources?) or to contamination during emplacement. Lead isotope compositions indicate that the Pb incorporated in ore-related pyrite was probably sourced from regional, orogenic calc-alkaline granitoids of ca. 2160 Ma. Hydrothermal sericite from Caxias yielded a {sup 40}Ar/{sup 39}Ar plateau age of 1990 ± 30 Ma, which combined with the emplacement age of the Caxias Microtonalite brackets the age of gold mineralization between 2009 ± 11 and 1990 ± 30 Ma. (author)

  3. Hydrothermal flake graphite mineralisation in Paleoproterozoic rocks of south-east Greenland

    DEFF Research Database (Denmark)

    Rosing-Schow, Nanna; Bagas, Leon; Kolb, Jochen


    Flake graphite mineralisation is hosted in the Kuummiut Terrane of the Paleoproterozoic Nagssugtoqidian Orogen, south-east Greenland. Eclogite-facies peak-metamorphic assemblages record temperatures of 640–830 °C and pressures of 22–25 kbar, and are retrogressed in the high-pressure amphibolite-f...

  4. TANAMI: Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry. II. Additional sources (United States)

    Müller, C.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Ros, E.; Carpenter, B.; Angioni, R.; Blanchard, J.; Böck, M.; Burd, P. R.; Dörr, M.; Dutka, M. S.; Eberl, T.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Katz, U.; Krauß, F.; Lovell, J. E. J.; Natusch, T.; Nesci, R.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J. F. H.; Stevens, J.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.


    Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of - 30° declination including high-resolution very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch8.4 GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (> 100 TeV) neutrino events have been found. Aims: We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Methods: TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile, New Zealand, and South Africa. Results: Our observations yield the first images of many jets below - 30° declination at milliarcsecond resolution. We find that γ-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the > 100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in

  5. Search for neutrinos from TANAMI observed AGN using Fermi lightcurves wit ANTARES

    International Nuclear Information System (INIS)

    Fehn, Kerstin


    Active galactic nuclei (AGN) are promising candidates for hadronic acceleration. The combination of radio, gamma ray and neutrino data should give information on their properties, especially concerning the sources of the high-energetic cosmic rays. Assuming a temporal correlation of gamma and neutrino emission in AGN the background of neutrino telescopes can be reduced using gamma ray lightcurves. Thereby the sensitivity for discovering cosmic neutrino sources is enhanced. In the present work a stacked search for a group of AGN with the ANTARES neutrino telescope in the Mediterranean is presented. The selection of AGN is based on the source sample of TANAMI, a multiwavelength observation program (radio to gamma rays) of extragalactic jets southerly of -30 declination. In the analysis lightcurves of the gamma satellite Fermi are used. In an unbinned maximum likelihood approach the test statistic in the background only case and in the signal and background case is determined. For the investigated 10% of data of ANTARES within the measurement time between 01.09.2008 and 30.07.2012 no significant excess is observed. So on the total flux of the AGN of the stacked search an upper limit can be set.

  6. A PIXE/PIGE study of gold mineralisation in lateritic terrain, Tanami Desert, Australia

    International Nuclear Information System (INIS)

    Van Moort, J.C.; Li, X.


    Proton induced X-ray and γ-ray emission (PIXE/PIGE) have been used to analyze major and trace elements in a suite of 140 core samples from around of the Jim's Find South gold anomaly in the Tanami desert, located in heavily weathered terrain. Simultaneous analyses were obtained for 30 elements, ranging in atomic number from 3 Li to 90 Th. The method was chosen because of its speed and the wide range of determination, its flexibility, precision and low detection limits. The regolith powder samples were treated by hot aqua regia before making them into pills. The PIXE/PIGE data of the acid insoluble residue give three factor analysis clusters. The first cluster comprises the elements F, Al, K, V, Mn, Fe, Ga, Rb, W and Au and is essentially related to sericitic wallrock alteration. The second cluster consists of Ti, As, Y, Zr, and Nb and is largely related to resistant minerals. The third cluster consists of Na, Ca and Sr and is interpreted to comprise elements in weatherable minerals such as feldspar and thus represents weathering intensity. While the Rb/K ratio and the product of As x Cu x Ni provide the best surface expression of the gold mineralisation, the Rb/AI ratio provides the best expression of the sericitic alteration around the ore body

  7. Petrological and geochemical characteristics of Paleoproterozoic ...

    Indian Academy of Sciences (India)

    Centre of Advanced Study, Department of Geology, Banaras Hindu University, Varanasi 221 005, India ... A number of ENE–WSW trending Paleoproterozoic dykes and plugs of mafic, ultramafic, alkaline and ...... 2005 Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: Rational and implications;.

  8. U-Pb geochronologic constraints on Paleoproterozoic orogenesis in the northwestern Makkovik Province, Labrador, Canada

    International Nuclear Information System (INIS)

    Ketchum, J.W.F.; Dunning, G.R.; Dunning, G.R.


    A 45 km wide, shear-zone-bounded segment of the northwestern Makkovik Province, Labrador, is underlain by Archean gneisses derived from the adjacent Nain craton. This lithotectonic block (Kaipokok domain) was reworked at high metamorphic grade, overthrust by supracrustal sequences (Lower Aillik and Moran Lake groups), and intruded by granitoid plutons during the Paleoproterozoic. Initial amphibolite-facies reworking of the Kaipokok domain at 1896 ± 6 Ma is indicated by U-Pb ages of metamorphic zircon from a foliated Kikkertavak metadiabase dyke. This is one of the oldest Paleoproterozoic tectonic events dated thus far in northeast Laurentia and may be linked with ca. 1890 Ma plutonism documented elsewhere in the Kaipokok domain. Intrusion of granitoid plutons at 1882 -6 +10 , 1877 ± 5, and 1871 -3 +4 Ma in the Kaipokok Bay area postdates early thick- and thin-skinned thrusting (possibly east to northeast directed) that involved Lower Aillik Group strata. U-Pb titanite ages of 1866 - 1847 Ma in part record a metamorphic event that followed this plutonic-tectonic activity. These early events are temporally and kinematically difficult to reconcile with accretion of juvenile Makkovikian terranes in the southeast and may instead be related to early stages of the ca. 1.91 - 1.72 Ga Torngat orogeny along the western margin of the Nain craton. In contrast, high-grade metamorphism, dextral shearing, and northwestward thrusting between 1841 and 1784 Ma, including crystallization of an Iggiuk granitic vein at 1811 ± 8 Ma, are in accord with accretion of Makkovikian terranes in a dextral transpressional regime (Makkovikian orogeny sensu stricto). Coeval sinistral transpression in the Torngat orogen suggests that both orogenic belts accommodated relative northward tectonic escape of the Nain craton during this interval. (author)

  9. Lesser Himalayan sequences in Eastern Himalaya and their deformation: Implications for Paleoproterozoic tectonic activity along the northern margin of India

    Directory of Open Access Journals (Sweden)

    Dilip Saha


    accretionary orogen which affected the northern margin of greater India. Better understanding of geodynamic evolution of the northern margin of India in the Paleoproterozoic has additional bearing on more refined model of reconstruction of Columbia.

  10. Expansion of the granitic post-orogenic magmatism in the formation of Serrinha (Northeastern Bahia, B R), Sao Francisco craton

    International Nuclear Information System (INIS)

    Rios, Debora Correia; Conceicao, Herbet; Rosa, Maria de Lourdes da Silva; Marinho, Moacyr Moura; Davis, Donaldo Wayne


    The Pedra Vermelha Granitic Massif, located at the North area of Serrinha Nucleus, presents a circular shape, being intrusive at the Archaean geoscience-magmatic basement rocks and the Paleoproterozoic volcano sedimentary sequences. The single zircon U-Pb dating yield a crystallization age of 2080 ± 8 Ma. The geological, petrographic al and litogeochemical characteristics of the studied rocks are similar to those of the Morro do Lopes granitic magmatism (2076 ± 6 a 2071 ± 6 Ma), which is located at the South area of this nucleus. These allow us to infer that those post-orogenic alkaline bodies are widespread throughout the Serrinha Nucleus and constitute its last Paleoproterozoic magmatic expression. (author)

  11. An Integrated Geochronological, Petrological, Geochemical and Paleomagnetic Study of Paleoproterozoic and Mesoproterozoic Mafic Dyke Swarms in the Nain Craton, Labrador (United States)

    Sahin, Tugce

    The Nain craton comprises the western, Labrador segment of the larger North Atlantic craton (NAC) which exposes Early through Late Archean gneisses. The NAC is bounded on all sides by Paleoproterozoic collisional orogens that involved either considerable structural reworking (Torngat-Nagssugtoqidian-Lewisian) or the accretion of juvenile arc magmas (Ketilidian-Makkovik). The NAC remains poorly understood compared to other Archean crustal blocks now dispersed globally. Compounding this problem is a lack of reliable paleomagnetic poles for NAC units that predate its assembly into the supercontinent Laurentia by ca. 1800 Ma, which could be used to test neighboring relationships with other cratonic fragments. In order to understand the history of the NAC as part of a possible, larger supercontinent, the record of mafic dyke swarms affecting the craton, particularly those that postdate the Late Archean terrane assembly, were examined in this study. Diabase or gabbroic dyke swarms are invaluable in such studies because their geometries offer possible locus points, they often have a punctuated emplacement and precisely datable crystallization histories, and they have cooling histories and oxide mineralogy amenable to recovering robust paleopoles. Coastal Labrador exposes a number of mafic dykes, some of which are demonstrably Paleoproterozoic (e.g. 2235 Ma Kikkertavak dykes; 2121 Ma Tikkigatsiagak dykes) or Mesoproterozoic (e.g. 1280-1270 Ma Nain and Harp dykes) in age (U-Pb; baddeleyite or zircon). The southern half of the Nain craton (Hopedale block) in particular preserves a rich array of mafic dykes. Dyke cross-cutting relationships are numerous and relatively well exposed, permitting multiple opportunities for paleomagnetic field tests (e.g. baked contact). The results presented here allow understanding of the tectonic evolution of the NAC with implications for strengthened Labrador-Greenland correlations, and testing possible Paleoproterozoic supercontinent

  12. Petrology, geochemistry and LA-ICP-MS U-Pb geochronology of Paleoproterozoic basement rocks in Bangladesh: An evaluation of calc-alkaline magmatism and implication for Columbia supercontinent amalgamation (United States)

    Hossain, Ismail; Tsunogae, Toshiaki; Tsutsumi, Yukiyasu; Takahashi, Kazuki


    The Paleoproterozoic (1.7 Ga) basement rocks from Maddhapara, Bangladesh show a large range of chemical variations (e.g. SiO2 = 50.7-74.7%) and include diorite, quartz diorite, monzodiorite, quartz monzonite and granite. The pluton overall displays metaluminous, calc-alkaline orogenic suite; mostly I-type suites formed within subduction-related magmatism. The observed major elements show general trends for fractional crystallization. Trace element contents also indicate the possibility of a fractionation or assimilation; explain the entire variation from diorite to monzonite, even granite. The pluton may have evolved the unique chemical features by a process that included partial melting of calc-alkaline lithologies and mixing of mantle-derived magmas, followed by fractional crystallization, and by assimilation of country rocks. The pluton shows evidence of crystal fractionation involving largely plagioclase, amphibole and possibly biotite. Some of the fractionated magmas may have mixed with more potassic melts from distinct parts of the continental lithosphere to produce granites and/or pegmatites. New geochronological results of granitic pegmatite (1722 ± 10 Ma) are indisputably consistent with diorite and tonalite and those data showing credible geochronological sequence (i.e., diorite - tonalite - granitic pegmatite). Identical Paleoproterozoic age (1.7 Ga) with distinctive magmatism of the Maddhapara basement rocks have agreeable relationship with the CITZ, India. The consistent magmatism is also common in the Transamazonian of South America, Trans-Hudson orogeny in North America, Bohemian Massif and the Svecofennian, Poland, have identified the sequential growth of the continent through the amalgamation of juvenile terrains, succeeded by a major collisional orogeny. Such Paleoproterozoic subduction-related orogens in Australia have similar counterparts in Antarctica and other part of the world. These types of Paleoproterozoic magmatism dominantly contributed

  13. The tectonic significance of the Cabo Frio Tectonic Domain in the SE Brazilian margin: a Paleoproterozoic through Cretaceous saga of a reworked continental margin

    Directory of Open Access Journals (Sweden)

    Renata da Silva Schmitt

    Full Text Available ABSTRACT: The Cabo Frio Tectonic Domain is composed of a Paleoproterozoic basement tectonically interleaved with Neoproterozoic supracrustal rocks (Buzios-Palmital successions. It is in contact with the Neoproterozoic-Cambrian Ribeira Orogen along the SE Brazilian coast. The basement was part of at least three continental margins: (a 1.97 Ga; (b 0.59 - 0.53 Ga; (c 0.14 Ga to today. It consists of continental magmatic arc rocks of 1.99 to 1.94 Ga. Zircon cores show a 2.5 - 2.6 Ga inheritance from the ancient margin of the Congo Craton. During the Ediacaran, this domain was thinned and intruded by tholeiitic mafic dykes during the development of an oceanic basin at ca. 0.59 Ma. After the tectonic inversion, these basin deposits reached high P-T metamorphic conditions, by subduction of the oceanic lithosphere, and were later exhumed as nappes over the basement. The Cabo Frio Tectonic Domain collided with the arc domain of the Ribeira Orogen at ca. 0.54 Ga. It is not an exotic block, but the eastern transition between this orogen and the Congo Craton. Almost 400 m.y. later, the South Atlantic rift zone followed roughly this suture, not coincidently. It shows how the Cabo Frio Tectonic Domain was reactivated as a continental margin in successive extensional and convergent events through geological time.

  14. Paleozoic and Paleoproterozoic Zircon in Igneous Xenoliths Assimilated at Redoubt Volcano, Alaska (United States)

    Bacon, C. R.; Vazquez, J. A.; Wooden, J. L.


    Historically active Redoubt Volcano is a basalt-to-dacite cone constructed upon the Jurassic-early Tertiary Alaska-Aleutian Range batholith. New SHRIMP-RG U-Pb age and trace-element concentration results for zircons from gabbroic xenoliths and crystal-rich andesitic mush from a late Pleistocene pyroclastic deposit indicate that ~310 Ma and ~1865 Ma igneous rocks underlie Redoubt at depth. Two gabbros have sharply terminated prismatic zircons that yield ages of ~310 Ma. Zircons from a crystal mush sample are overwhelmingly ~1865 Ma and appear rounded due to incomplete dissolution. Binary plots of element concentrations or ratios show clustering of data for ~310-Ma grains and markedly coherent trends for ~1865-Ma grains; e.g., ~310-Ma grains have higher Eu/Eu* than most of the ~1865-Ma grains, the majority of which form a narrow band of decreasing Eu/Eu* with increasing Hf content which suggests that ~1865-Ma zircons come from igneous source rocks. It is very unlikely that detrital zircons from a metasedimentary rock would have this level of homogeneity in age and composition. One gabbro contains abundant ~1865 Ma igneous zircons, ~300-310 Ma fluid-precipitated zircons characterized by very low U and Th concentrations and Th/U ratios, and uncommon ~100 Ma zircons. We propose that (1) ~310 Ma gabbro xenoliths from Redoubt Volcano belong to the same family of plutons dated by Aleinikoff et al. (USGS Circular 1016, 1988) and Gardner et al. (Geology, 1988) located ≥500 km to the northeast in basement rocks of the Wrangellia and Alexander terranes and (2) ~1865 Ma zircons are inherited from igneous rock, potentially from a continental fragment that possibly correlates with the Fort Simpson terrane or Great Bear magmatic zone of the Wopmay Orogen of northwestern Laurentia. Possibly, elements of these Paleoproterozoic terranes intersected the Paleozoic North American continental margin where they may have formed a component of the basement to the Wrangellia

  15. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt (United States)

    Zheng, Rongguo; Li, Jinyi; Xiao, Wenjiao; Zhang, Jin


    The ages and origins of metasedimentary rocks, which were previously mapped as Precambrian, are critical in rebuilding the orogenic process and better understanding the Phanerozoic continental growth in the Central Asian Orogenic Belt (CAOB). The Beishan Complex was widely distributed in the southern Beishan Orogenic Collage, southernmost CAOB, and their ages and tectonic affinities are still in controversy. The Beishan Complex was previously proposed as fragments drifted from the Tarim Craton, Neoproterozoic Block or Phanerozoic accretionary complex. In this study, we employ detrital zircon age spectra to constrain ages and provenances of metasedimentary sequences of the Beishan Complex in the Chuanshanxun area. The metasedimentary rocks here are dominated by zircons with Paleoproterozoic-Mesoproterozoic age ( 1160-2070 Ma), and yield two peak ages at 1454 and 1760 Ma. One sample yielded a middle Permian peak age (269 Ma), which suggests that the metasedimentary sequences were deposited in the late Paleozoic. The granitoid and dioritic dykes, intruding into the metasedimentary sequences, exhibit zircon U-Pb ages of 268 and 261 Ma, respectively, which constrain the minimum deposit age of the metasedimentary sequences. Zircon U-Pb ages of amphibolite (274 and 216 Ma) indicate that they might be affected by multi-stage metamorphic events. The Beishan Complex was not a fragment drifted from the Tarim Block or Dunhuang Block, and none of cratons or blocks surrounding Beishan Orogenic Collage was the sole material source of the Beishan Complex due to obviously different age spectra. Instead, 1.4 Ga marginal accretionary zones of the Columbia supercontinent might have existed in the southern CAOB, and may provide the main source materials for the sedimentary sequences in the Beishan Complex.

  16. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols (United States)

    Kanzaki, Yoshiki; Murakami, Takashi


    A weathering model was developed to constrain the partial pressure of atmospheric O2 (PO2) in the Paleoproterozoic from the Fe records in paleosols. The model describes the Fe behavior in a weathering profile by dissolution/precipitation of Fe-bearing minerals, oxidation of dissolved Fe(II) to Fe(III) by oxygen and transport of dissolved Fe by water flow, in steady state. The model calculates the ratio of the precipitated Fe(III)-(oxyhydr)oxides from the dissolved Fe(II) to the dissolved Fe(II) during weathering (ϕ), as a function of PO2 . An advanced kinetic expression for Fe(II) oxidation by O2 was introduced into the model from the literature to calculate accurate ϕ-PO2 relationships. The model's validity is supported by the consistency of the calculated ϕ-PO2 relationships with those in the literature. The model can calculate PO2 for a given paleosol, once a ϕ value and values of the other parameters relevant to weathering, namely, pH of porewater, partial pressure of carbon dioxide (PCO2), water flow, temperature and O2 diffusion into soil, are obtained for the paleosol. The above weathering-relevant parameters were scrutinized for individual Paleoproterozoic paleosols. The values of ϕ, temperature, pH and PCO2 were obtained from the literature on the Paleoproterozoic paleosols. The parameter value of water flow was constrained for each paleosol from the mass balance of Si between water and rock phases and the relationships between water saturation ratio and hydraulic conductivity. The parameter value of O2 diffusion into soil was calculated for each paleosol based on the equation for soil O2 concentration with the O2 transport parameters in the literature. Then, we conducted comprehensive PO2 calculations for individual Paleoproterozoic paleosols which reflect all uncertainties in the weathering-relevant parameters. Consequently, robust estimates of PO2 in the Paleoproterozoic were obtained: 10-7.1-10-5.4 atm at ∼2.46 Ga, 10-5.0-10-2.5 atm at ∼2

  17. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments (United States)

    Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu


    The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and

  18. Sr-Nd evidence of paleoproterozoic mantle metasomatism in the lithospheric mantle beneath northeastern Brazil

    International Nuclear Information System (INIS)

    Hollanda, M.H.B.M.; Pimentel, M.M.; Jardim de Sa, E.F


    In the Borborema Province (Northeastern Brazil), the Brasiliano/Pan-African Cycle is expressed by two prominent and penecontemporaneous features: a regional network of transcurrent shear zones and associated large granitoid magmatism. The Rio Grande do Norte Domain (RGND) is an orogenic domain located in the northeastern part of the Borborema Province, and its tectonic evolution is largely related to the Brasiliano orogeny (ca. 600 Ma). This domain includes four major tectonic terranes, which are represented by two metavolcanosedimentary sequences Jaguaribe-Oeste Potiguar and Serido belts, and its gneiss-migmatite Paleoproterozoic basement the Rio Piranhas and Sao Jose de Campestre massifs (Brito Neves et al., 2000). The rocks have been metamorphosed up to the amphibolite facies. Its deformational fabrics are dominated by extensive Brasiliano ductile shear zones displaying predominantly dextral transcurrent kinematic regime. These structures control the emplacement of several Neoproterozoic granitoid intrusions which are made up mainly by porphyritic granitoid suites with subalkaline monzonitic affinity. These occur as isolated plutons of various sizes or as composite intrusions, associated with basic-tointermediate suites. In the latter case, magma mingling and mixing attest that these are contemporaneous igneous suites. Several features suggest coeval relationships with granitic magmas, possibly implying processes such as assimilation or magma mixing. Field evidence of magma mixing include (i) extensive capture of feldspar phenocrysts of the acid mushes by the basic magmas, (ii) common presence of globular to ellipsoidal basic enclaves in the granitic suites, (iii) stockwork-type features consisting of felsic material veining through a diorite host and (iv) syn-plutonic basic dykes intruded into the porphyritic granites (Jardim de S 1994). In this work, Rb-Sr and Sm-Nd isotopic compositions from six distinct basic-to-intermediate suites were investigated to

  19. Geochemical constraints on genesis of Paleoproterozoic A-type granite in the south margin of North China Craton (United States)

    Xue, Shuo; Xu, Yang; Ling, Ming-Xing; Kang, Qing-Qing; Jiang, Xiao-Yan; Sun, Sai-Jun; Wu, Kai; Zhang, Zhe-Kun; Luo, Ze-Bin; Liu, Yu-Long; Sun, Weidong


    Paleoproterozoic A-type granites are widely outcropped in the North China Craton (NCC), particularly in the Trans-North China Orogen. However, their genesis and tectonic significance remain obscure. Here we report systematic studies on geochronology and geochemical characteristics of A-type granite in Huayangchuan, south margin of the NCC. The samples are enriched in total alkali (K2O + Na2O > 8.97 wt%), and depleted in MgO (0.84-0.93 wt%), CaO (1.28-1.90 wt%) and P2O5 (0.18-0.20 wt%), with high FeOT/MgO (5.69-6.67). They are characterized by high Zr + Y + Nb + Ce values (1293-1392 ppm) and 10,000 × Ga/Al ratios (3.14-3.35), which are typical characteristics of A-type granite. The Huayangchuan A-type granite can be further classified as A1-type subgroup based on particular geochemical features, e.g., low Y/Nb (0.87-1.00) and Yb/Ta (0.88-1.10). High precision zircon U-Pb dating of the A-type granite by secondary ion mass spectrometry (SIMS) yields Paleoproterozoic 207Pb/206Pb ages of 1829.5 ± 2.5 Ma. The low zircon ɛHf(t) values (-6.97 to -10.45), along with zircon Hf model age of 2.7-2.9 Ga, indicate that the Huayangchuan A-type granite was derived from partial melting of the ancient continental crust with contribution of enriched mantle components. The low zircon δ18O composition (4.00 to 6.78‰) indicates that the zircons were crystallized from low δ18O magmas, which derived from the crust metasomatized by low δ18O mantle fluids or melts. The E-W trend A1-type granitic plutons in the NCC are generally outcropped in a rift tectonic regime, which is consistent with the development of the mantle plume in the Xiong'er district. The large volume of basaltic magmas, generated by mantle plume head, underplated the lower continental crust and formed the Huayangchuan A-type granite.

  20. Orogenic, Ophiolitic, and Abyssal Peridotites (United States)

    Bodinier, J.-L.; Godard, M.


    "Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting

  1. Chronological constraints on the Paleoproterozoic Francevillian Group in Gabon

    Directory of Open Access Journals (Sweden)

    Yusuke Sawaki


    Full Text Available The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic. However, its age is rather poorly constrained, mainly based on Rb-Sr and Nd-Sm datings. This study reports new zircon data obtained from Chaillu massif and N'goutou complex, which constrain the protolith age of the basement orthogneisses and the igneous age of an intrusive granite, respectively. Most zircons from the orthogneisses are blue and exhibit oscillatory zoning in cathode-luminescence images. Zircons with lower common lead abundances tend to be distributed close to the concordia curve. Two age clusters around 2860 Ma and 2910 Ma are found in zircons plotted on the concordia curve. Based on the Th/U ratios of zircons, these ages correspond to the protolith ages of the orthogneisses, and the zircons are not metamorphic in origin. Syenites and granites were collected from the N'goutou complex that intrudes into the FA and FB units of the Francevillian Group. The granitoids exhibit chemical composition of A-type granite affinity. Half of zircons separated from the granite are non-luminous, and the remaining half exhibit obscure internal textures under cathode-luminescence observation. All zircon grains contain significant amounts of common lead; the lead isotopic variability is probably attributed to the mixing of two components in the zircons. The zircon radiogenic 207Pb/206Pb ratio is 0.13707 ± 0.0010, corresponding to a 207Pb/206Pb age of 2191 ± 13 Ma. This constrains the minimum depositional age of the FA and FB units. Furthermore, the FB unit consists of manganese-rich carbonate rocks and organic carbon-rich black shales with macroscopic fossils. Based on our age constraints, these organisms appeared in the study area just after the last Paleoproterozoic Snowball Earth event, in concert with global scale oxidation event encompassing the Snowball Earth.

  2. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei


    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  3. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China (United States)

    Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao


    Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical

  4. Earthquake activity along the Himalayan orogenic belt (United States)

    Bai, L.; Mori, J. J.


    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  5. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei


    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  6. U-Pb SHRIMP and Sm-Nd geochronology of the paleoproterozoic Silvania magmatic arc in the neoproproterozoic Brasilia Belt, Goias, Central Brazil

    International Nuclear Information System (INIS)

    Fischel, D.P.; Pimentel, M.M.; Fuck, R.A; Armstrong, R


    The Brasilia Belt is a large Neoproterozoic orogen formed along the western margin of the Sao Francisco/Congo Craton in central Brazil. It comprises: (i) a thick Meso-Neoproterozoic metasedimentary/sedimentary pile with eastward tectonic vergence; (ii) a large Neoproterozoic juvenile arc in the west (Goias Magmatic Arc); and (iii) a micro-continent (or exotic sialic terrain) formed by Archean rock units (the Crixas -Goias granitegreenstones) and associated Proterozoic formations (Almeida et al. 1981, Fuck et al. 1993,1994, Pimentel et al. 2000a, b). The sialic basement on which the Brasilia Belt sediments were deposited is poorly understood, despite being well exposed in some areas of Goias and Tocantins. Gneiss and volcano-sedimentary units form most of this basement. Early studies have suggested that these rock units are dominantly Archean ( Danni et al. 1982, Marini et al. 1984). However, recent Sm- Nd isotopic studies have indicated that most of them are Paleoproterozoic (Sato 1998, Pimentel et al. 1999a, 2000b). Granite gneiss to the south and east of the Barro Alto mafic-ultramafic layered complex has been dated at 2128+/- 15 Ma (Correia et al. 1997). Calc-alkaline granite gneiss from Almas-Dianopolis is dated at ca. 2.2-2.45 Ga old (U-Pb SHRIMP on zircon and titanite, Cruz et al. 2000). The latter is probably the western extension of Paleoproterozoic rocks which underlie the San Francisco Craton to the east of the northern part of the Brasilia Belt. In central Goias, a large part of the Brasilia Belt is underlain by high-grade metamorphic rocks known as the Anapolis-Itaucu Complex, together with surrounding greenschist to amphibolite facies Mesoto Neoproterozoic cover metasediments of the Araxa group. These rocks represent the main constituent of the internal zone of the Brasilia Belt (Fuck et al. 1994, Pimentel et al. 2000b). Between the Araxa Group, and the easternmost part of the Anapolis-Itaucu Complex a volcano-sedimentary association known as Silvania

  7. Uranium cycle and tectono-metamorphic evolution of the Lufilian Pan-African orogenic belt (Zambia)

    International Nuclear Information System (INIS)

    Eglinger, Aurelien


    Uranium is an incompatible and lithophile element, and thus more concentrated in silicate melt produced by the partial melting of the mantle related to continental crust formation. Uranium can be used as a geochemical tracer to discuss the generation and the evolution of continental crust. This thesis, focused on the Pan-African Lufilian belt in Zambia, combines structural geology, metamorphic petrology and thermos-barometry, fluid inclusions, geochemistry and geochronology in order to characterize the uranium cycle for this crustal segment. Silici-clastic and evaporitic sediments have been deposited within an intra-continental rift during the dislocation of the Rodinia super-continent during the early Neo-proterozoic. U-Pb ages on detrital zircon grains in these units indicate a dominant Paleo-proterozoic provenance. The same zircon grains show sub-chondritic εHf (between 0 and -15) and yield Hf model ages between ∼2.9 and 2.5 Ga. These data suggest that the continental crust was generated before the end of the Archean (< 2.5 Ga) associated with uranium extraction from the mantle. This old crust has been reworked by deformation and metamorphism during the Proterozoic. Uranium has been re-mobilized and reconcentrated during several orogenic cycles until the Pan-African orogeny. During this Pan-African cycle, U-Pb and REY (REE and Yttrium) signatures of uranium oxides indicate a first mineralizing event at ca. 650 Ma during the continental rifting. This event is related to late diagenesis hydrothermal processes at the basement/cover interface with the circulation of basinal brines linked to evaporites of the Roan. The second stage, dated at 530 Ma, is connected to metamorphic highly saline fluid circulations, synchronous to the metamorphic peak of the Lufilian orogeny (P=9±3 kbar; T=610±30 deg. C). These fluids are derived from the Roan evaporite dissolution. Some late uranium re-mobilizations are described during exhumation of metamorphic rocks and their

  8. Unraveling the tectonic evolution of a Neoproterozoic-Cambrian active margin in the Ribeira Orogen (Se Brazil): U-Pb and Lu-Hf provenance data

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Gabriel Lamounier de F. [Servico Geologico do Estado do Rio de Janeiro (DRM-RJ), Niteroi, RJ (Brazil); Schmitt, Renata; Bongiolo, Everton M.; Mendes, Julio [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Basei, Miguel S. [Universidade de Sao Paulo (USP), SP (Brazil)


    Full text: The Neoproterozoic-Ordovician Central Ribeira Orogen, in SE Brazil, presents two contrasting tectonic domains in its southern portion: (a) The Arc Domain constituted of Neoproterozoic to Paleozoic magmatic rocks and low P-high T metamorphic para (Sao Fidelis Group) - and ortho- derived units (in Oriental Terrane); and (b) The Basement Domain, constituted of a Paleoproterozoic and Neoproterozoic medium P-high T metamorphic para (Palmital-Buzios Succession)- and ortho-derived units (in Cabo Frio Tectonic Domain). Our work focuses on paraderived rocks sequences from both domains. The provenance analysis using U-Pb and Lu-Hf in zircon grains is presented here as an effective tool to unravel the paleogeography and nature of the pre-collisional sedimentary basins. We performed 505 analyses (U-Pb) on detrital zircon grains and some metamorphic overgrowths from six paragneiss samples. Besides, 141 analyses (Lu-Hf) in six samples only on the detrital zircon grains domains. All samples present a main peak from Neoproterozoic sources (750-570 Ma) and the other minor peak in the Stenian/Tonian periods (1200-850Ma), this indicate an orogenic contribution for this basin. Scarce register from the Mesoproterozoic and two peaks in the Archean/Paleoproterozoic (2.6 and 1.9 Ga) are recognized as a contribution from an ancient continent. The Lu-Hf data reveals a juvenile source for the detrital zircon grains from Buzios Succession while Palmital and Sao Fidelis Group units show a main crustal signature for their detrital zircon population. Based on the U-Pb and Lu-Hf data presented here, plus petrological data, geological correlations, and compilation of data from literature, we propose a tectonic model for the origin of para-derived rocks from the eastern part of the Ribeira Orogen. Starting with an extensional environment of ca. 600 Ma in a back-arc basin (Buzios succession deposition) and continuing as an active margin between 570 and 550 Ma in the fore-arc and prism

  9. Late-orogenic mantle garnet pyroxenites evidence mantle refertilization during exhumation of orogenic belt (United States)

    Chazot, G.; France, L.; Kornprobst, J.; Dallai, L.; Vannucci, R.


    The petrological and geochemical study of garnet bearing pyroxenites from four localities (FMC, Morocco, Jordan, Cameroon) demonstrates that these rocks are cumulates crystallised in the lithospheric mantle domain. Metamorphic reactions, exsolutions and trace elements WR analysis demonstrate that their crystallisation pressure ranges between 1 and 2GPa (30 to 60km). The elaboration of the PTt paths for the studied samples attests of important movements in the respective lithospheres. Replaced in the geodynamical contexts, the samples are interpreted to represent the crystallisation of melts formed during exhumation of orogenic domains. Radiogenic isotopes (Sr-Nd) show that in a very same region, the samples are isotopicaly heterogeneous but are similar to the respective regional lithosphere. Initial isotopic ratios lead to propose that the FMC samples have crystallised at the end of the Hercynian orogen and that the samples from the other localities (Morocco, Jordan and Cameroon) have crystallised at the end of the Pan-African orogen. After recalculation at the crystallisation time, the isotopic compositions are in good agreement with the respective regional lithosphere ones and so samples of this study could represent the product of the melting of these lithospheres. The analyses of oxygen stable isotopes allow to precise the model; they show that twelve of the samples come from the melting of a lherzolitic mantle and that the four others come from the melting of a heterogeneous mantle formed of lherzolites and eclogites. The presence of some hydrous minerals such as amphiboles and micas and the trace elements WR analyses show that some of the samples were affected by a late metasomatic event. Results of our study show that thermal relaxation following orogenic events lead to the crystallisation of pyroxenites in the lithosphere. The presence of lage amounts of mantle pyroxenites in old orogenic regions confers physical and chemical particularities to these

  10. Mesoproterozoic and Paleoproterozoic subcontinental lithospheric mantle domains beneath southern Patagonia: Isotopic evidence for its connection to Africa and Antarctica

    Czech Academy of Sciences Publication Activity Database

    Mundl, A.; Ntaflos, T.; Ackerman, Lukáš; Bizimis, M.; Bjerg, E. A.; Hauzenberger, Ch. A.


    Roč. 43, č. 1 (2015), s. 39-42 ISSN 0091-7613 Institutional support: RVO:67985831 Keywords : lithospheric mantle * Mesoproterozoic * Paleoproterozoic Subject RIV: DD - Geochemistry Impact factor: 4.548, year: 2015

  11. Petrography and geochemistry of iron formations of the Paleoproterozoic Koegas Subgroup, Transvaal Supergroup, Griqualand West, South Africa



    M.Sc. (Geology) Nel, B.P. (2013). Petrography and geochemistry of iron formations of the Paleoproterozoic Koegas Subgroup, Transvaal Supergroup, Griqualand West, South Africa. MSc thesis (unpublished), University of Johannesburg, Aucklandpark, pp. 133. The Early Paleoproterozoic Koegas Subgroup comprises a succession of siltstone, mudstone, iron-­‐formation, chert and carbonate rocks that overlies the iron-­‐formations of the Asbestos Hills Subgroup with sharp contact. It is overlain with ...

  12. Mantle refertilization and magmatism in old orogenic regions: The role of late-orogenic pyroxenites (United States)

    France, Lydéric; Chazot, Gilles; Kornprobst, Jacques; Dallai, Luigi; Vannucci, Riccardo; Grégoire, Michel; Bertrand, Hervé; Boivin, Pierre


    Pyroxenites and garnet pyroxenites are mantle heterogeneities characterized by a lower solidus temperature than the enclosing peridotites; it follows that they are preferentially involved during magma genesis. Constraining their origin, composition, and the interactions they underwent during their subsequent evolution is therefore essential to discuss the sources of magmatism in a given area. Pyroxenites could represent either recycling of crustal rocks in mantle domains or mantle originated rocks (formed either by olivine consuming melt-rock reactions or by crystal fractionation). Petrological and geochemical (major and trace elements, Sr-Nd and O isotopes) features of xenoliths from various occurrences (French Massif-Central, Jordan, Morocco and Cameroon) show that these samples represent cumulates crystallized during melt percolation at mantle conditions. They formed in mantle domains at pressures of 1-2 GPa during post-collisional magmatism (possibly Hercynian for the French Massif-Central, and Panafrican for Morocco, Jordan and Cameroon). The thermal re-equilibration of lithospheric domains, typical of the late orogenic exhumation stages, is also recorded by the samples. Most of the samples display a metasomatic overprint that may be either inherited or likely linked to the recent volcanic activity that occurred in the investigated regions. The crystallization of pyroxenites during late orogenic events has implications for the subsequent evolution of the mantle domains. The presence of large amounts of mantle pyroxenites in old orogenic regions indeed imparts peculiar physical and chemical characteristics to these domains. Among others, the global solidus temperature of the whole lithospheric domain will be lowered; in turn, this implies that old orogenic regions are refertilized zones where magmatic activity would be enhanced.

  13. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China (United States)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi


    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  14. Termination of BIF deposition in the Paleoproterozoic: the Tongwane Formation, South Africa


    Schroeder, Stefan; Warke, Matthew


    The Tongwane Formation (~2.4 Ga) conformably overlies banded iron formations (BIF; Penge Iron Formation) on the Kaapvaal Craton, South Africa. As such, it provides a unique window into depositional processes and environmental conditions in the aftermath of major Archean-Paleoproterozoic BIF deposition, and on the eve of irreversible environmental oxygenation in the Great Oxidation Event (GOE, ~2.35 Ga). This study presents the first sedimentological and bulk-rock geochemical characterization ...

  15. Northward laramide thrusting in the quitovac region, northwestern sonora, mexico: Implications for the juxtaposition of paleoproterozoic basement blocks and the mojave-sonora megashear hypothesis (United States)

    Iriondo, Alexander; Martínez-Torres, Luis M.; Kunk, Michael J.; Atkinson, William W.; Premo, Wayne R.; McIntosh, William C.


    Restoration of 12%–30% Basin and Range extension allows direct interpretation of ductile fabrics associated with a stack of Laramide thrust faults in the Quitovac region in northwestern Sonora. The inferred direction of displacement of these thrusts varies gradually from N63°W to N23°E and is interpreted to represent a clockwise rotation of the direction of Laramide thrusting through time. The thrust faults represent a piggy-back sequence of thrusting propagating north, toward the foreland. The average direction and sense of displacement of the thrusts is N18°W, and the cumulative 45 km of estimated northward-directed displacement corresponds to ∼86% of shortening.Based on geochronological constraints, onset of thrusting in Quitovac occurred sometime between 75 and 61 Ma, whereas cessation occurred at ca. 39 Ma. The presence of Paleocene-Eocene orogenic gold mineralization, spatially associated with thrusting, strengthens our idea that compressional tectonism associated with the Laramide orogeny is a very important and widespread dynamometamorphic event in the region.Similarities in age, kinematics, and structural stratigraphy indicate that the thrusting in the Quitovac region may be equivalent to the Laramide Quitobaquito Thrust in southwestern Arizona. In both areas, thrust faults juxtapose the Paleoproterozoic Caborca and “North America” basement blocks. This juxtaposition was previously proposed as exclusively related to movements along the hypothetical Upper Jurassic Mojave-Sonora megashear. The Laramide northward displacements and clockwise rotations recorded in the Caborca block rocks in Quitovac contradict the southward displacements (∼800 km) and counterclockwise rotations inherent in the left-lateral Upper Jurassic Mojave-Sonora megashear hypothesis. We conclude that if this megashear exists in northwestern Sonora, its trace should be to the southwest of the Quitovac region.

  16. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton

    International Nuclear Information System (INIS)

    Silva, Luiz Carlos da; Pimentel, Marcio; Armstrong, Richard; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos; Carneiro, Mauricio Antonio


    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  17. Tectonic controls of Holocene erosion in a glaciated orogen


    Adams, Byron A.; Ehlers, Todd A.


    Recent work has highlighted a strong, worldwide, glacial impact of orogen erosion rates over the last 2 Ma. While it may be assumed that glaciers increased erosion rates when active, the degree to which past glaciations influence Holocene erosion rates through the adjustment of topography is not known. In this study, we investigate the influence of long-term tectonic and post-glacial topographic controls on erosion in a glaciated orogen, the Olympic Mountains, USA. We present 14 new 10Be and ...

  18. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.


    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  19. Spatial and temporal distribution of the orogenic gold deposits in the Late Palaeozoic Variscides and Southern Tianshan: How orogenic are they?

    NARCIS (Netherlands)

    Boorder, H. de


    A principal uncertainty in models of orogenic ore deposits concerns their ages relative to orogenic processes. The yardstick of the relation has resided, loosely, in the peak of metamorphism. Age estimates in the Variscides and Tianshan indicate that most orogenic ore deposits were formed in the

  20. What Can Modern River Profiles Tell Us about Orogenic Processes and Orogen Evolution? (United States)

    Whipple, K. X.


    Numerous lines of evidence from theory, numerical simulations, and physical experiments suggest that orogen evolution is strongly coupled to atmospheric processes through the interrelationships among climate, topography, and erosion rate. In terms of orogenic processes and orogen evolution, these relationships are most important at the regional scale (mean topographic gradient, mean relief above surrounding plains) largely because crustal deformation is most sensitive to erosional unloading averaged over sufficiently long wavelengths. For this reason, and because above moderate erosion rates (> 0.2 mm/yr) hillslope form becomes decoupled from erosion rate, attention has focused on the river network, and even on particularly large rivers. We now have data that demonstrates a monotonic relationship between erosion rate and the channel steepness index (slope normalized for differences in drainage area) in a variety of field settings. Consequently, study of modern river profiles can yield useful information on recent and on-going patterns of rock uplift. It is not yet possible, however, to quantitatively isolate expected climatic and lithologic influences on this relationship. A combination of field studies and theoretical analyses are beginning to reveal the timescale of landscape response, and thus the topographic memory of past conditions. At orogen scale, river profile response to a change in rock uplift rate is on the order of 1-10 Myr. Because of these long response times, the modern profiles of large rivers and their major tributaries can potentially preserve an interpretable record of rock uplift rates since the Miocene and are insensitive to short-term climatic fluctuations. Only significant increases in rock uplift rate, however, are likely to leave a clear topographic signature. Strategies have been developed to differentiate between temporal and spatial (tectonic, climatic, or lithologic) influences on channel profile form, especially where spatially

  1. Geochemistry of the Nsuta Mn deposit in Ghana: Implications for the Paleoproterozoic atmosphere and ocean chemistry (United States)

    Goto, K. T.; Ito, T.; Suzuki, K.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.


    Oxygenation of the atmosphere and oceans has influenced the evolution of ocean chemistry and diversification of early life. A number of large manganese (Mn) deposits are distributed in the Paleoproterozoic sedimentary successions that were formed during the great oxidation event (GOE) around 2.4-2.2 Ga (Meynard, 2010). Due to the high redox potential of Mn, occurrences of Mn deposits have been regarded as important evidence for a highly oxidized environment during the Paleoproterozoic (Kirschvink et al., 2000). Furthermore, because Mn oxides strongly adsorb various elements, including bioessential elements such as Mo, formation of large Mn deposits may have affected the seawater chemical composition and ecology during the Paleoproterozoic. However, the genesis of each Mn deposit is poorly constrained, and the relationships among the formation of Mn deposits, the evolution of atmospheric and ocean chemistry, and the diversification of early life are still ambiguous. In this study, we report the Re-Os isotope compositions, rare earth element (REE) compositions, and abundance of manganophile elements in the Mn carbonate ore and host sedimentary rock samples collected from the Nsuta Mn deposit of the Birimian Supergroup, Ghana. The Nsuta deposit is one of the largest Paleoproterozoic Mn deposits, although its genesis remains controversial (Melcher et al., 1995; Mucke et al., 1999). The composite Re-Os isochron age (2149 × 130 Ma) of the Mn carbonate and sedimentary rock samples was consistent with the depositional age of the sedimentary rocks (~2.2 Ga) presumed from the U-Pb zircon age of volcanic rocks (Hirdes and Davis, 1998), suggesting that the timing of Mn ore deposition was almost equivalent to the host rock sedimentation. The PAAS-normalized REE pattern showed a positive Eu anomaly in all samples and a positive Ce anomaly only in the Mn carbonate ore. These REE patterns indicate the possible contribution of Eu-enriched fluids derived from hydrothermal activity

  2. Protracted deformation during cooling of the Paleoproterozoic arc system as constrained by {sup 40}Ar/{sup 39}Ar ages of muscovite from brittle faults: the Transamazonan Bacajá Terrane, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Perico, Edimar; Barros, Carlos Eduardo de Mesquita; Mancini, Fernando [Universidade Federal do Paraná – UFPR, Curitiba, PR (Brazil); Rostirolla, Sidnei Pires, E-mail: [Rosneft, Rio de Janeiro, RJ (Brazil)


    In the Paleoproterozoic Transamazonas Province, synkinematic granitogenesis has taken place synchronously with compressive tectonic stress. The synkinematic character of the granites is marked by their WNW elongate shape, and by the presence of pervasive and concordant synmagmatic foliation. Ductile shear zones are concordant to the previous regional WNW structures, and tend to be accommodated along contacts between Rhyacian synkinematic granitoids and both Archean orthogneisses and Siderian metabasites. Locally phyllonitic shear zones and brittle-ductile shear zones with cataclasites are oriented subparallel to the preexisting ductile foliation. Late orogenic brittle faults N30E-trending strike-slip faults are either sinistral or destral. {sup 40}Ar/{sup 39}Ar dating of muscovite developed on fault planes gave ages of 1977 ± 8 Ma and 1968 ± 11 Ma. Structural and geochronological data from rocks of the Transamazonas Province permit to conclude that most mylonites and brittle structures were controlled by preexisting structures such as geological contacts and petrographic facies boundaries. Compressive tectonic stress would have initiated at ca. 2100 Ma, since the former magmatic arc (Bacajaí complex), still present at 2070 Ma when syntectonic granites were emplaced and remained until 1975 Ma after granite plutonism and regional cooling. (author)

  3. Sr–Nd isotopic compositions of Paleoproterozoic metavolcanic rocks from the southern Ashanti volcanic belt, Ghana


    Dampare, Samuel; Shibata, Tsugio; Asiedu, Daniel; Okano, Osamu; Manu, Johnson; Sakyi, Patrick


    Neodymium (Nd) and strontium (Sr) isotopic data are presented for Paleoproterozoic metavolcanic rocks in the southern part of the Ashanti volcanic belt of Ghana. The metavolcanic rocks are predominantly basalts/basaltic andesites and andesites with minor dacites. Two types of basalts/basaltic andesites (B/A), Type I and Type II, have been identified. The Type I B/A are stratigraphically overlain by the Type II B/A, followed by the andesites and the dacites. The analyzed volcanic rocks commonl...

  4. A highly oxidized atmosphere-ocean system and oceanic molybdenum drawdown during the Paleoproterozoic (United States)

    Goto, K. T.; Ito, T.; Suzuki, K.; Anbar, A. D.; Gordon, G. W.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.


    Multiple lines of evidence suggest that the first major oxidation of the atmosphere-ocean system occurred during the Paleoproterozoic. However, the course of this redox transition remains elusive. A number of large Mn deposits are distributed in Paleoproterozoic sedimentary successions. As Mn is a redox-sensitive element characterized by high redox potential, knowledge of the Mn cycle in Paleoproterozoic seawater may provide insight into redox evolution during this period. Here, we investigate the Mn cycle in Paleoproterozoic seawater based on the Re-Os and Mo isotope compositions, and the abundance of major and trace elements, in Mn-rich sedimentary rocks from the Nsuta deposit of the Birimian Supergroup, Ghana. The Mn ore is composed mainly of rhodochrosite and is distributed at the boundaries between sedimentary rocks and tholeiitic volcanic rocks. The Re-Os isochron age (2217 ± 100 Ma) we obtained was consistent with U-Pb zircon ages of the volcanic rocks. The manganophile elements, except for Mo, show no enrichment, which is similar to modern hydrothermal Mn oxides. The PAAS-normalized REE compositions show positive Ce anomaly, indicative of Ce enrichment due to the oxidation of Ce(III) by Mn(IV). These findings suggest that Mn ore formed from primary precipitation of Mn oxides from hydrothermal fluids as they were mixed with bottom seawater at ~2.2 Ga. Thus, the bottom seawater would have been sufficiently oxygenated for the precipitation of Mn oxides at ~2.2 Ga. The Nsuta ore samples exhibit slight Mo enrichment, but Mo/Mn ratios are orders of magnitude lower than those in modern hydrothermal Mn oxides. We also found that the Mo isotopes in the Nsuta ore are ~0.7‰ heavier than those in modern hydrothermal and hydrogenous Mn oxides. As Mo in hydrothermal Mn oxides is sourced primarily from seawater (Goto et al., in prep), these results may reflect smaller oceanic Mo inventory and heavier seawater Mo isotope composition at 2.2 Ga than those of present

  5. The Khida terrane - Geology of Paleoproterozoic rocks in the Muhayil area, eastern Arabian Shield, Saudi Arabia (United States)

    Stoeser, D.B.; Whitehouse, M.J.; Stacey, J.S.


    The bulk of the Arabian Shield of Saudi Arabia is underlain by Neoproterozoic terranes of oceanic affinity that were accreted during Pan-African time (about 680- 640Ma). Geologicalmappingandisotopicinvestigations during the 1980’s,however, provided the first evidence for Paleoproterozoic continental crust within the east- central part of the shield in Saudi Arabia. These studies delineated an older basement domain, herein referred to as the Khida terrane (Fig. l), which is defined as that part of the southern Afif composite terrane underlain by Paleoproterozoicto Archean continental crust (Stoeser and Stacey, 1988). The isotopic and geochronologic work to support our current studies within the Khida terrane are discussed in a companion abstract (Whitehouse et al., this volume). The regional geology and geochronology of the region has been summarized in detail by Johnson (1996). The current study is based on the continued use of samples previously collected in the Khida area by the authors and others as well as new field work conducted by us in 1999. This work further defines the occurrence of late Paleoproterozoic rocks at Jabal Muhayil, which is located at the eastern margin of the exposed terrane (Fig. 1). Our isotopic work is at an early stage and this abstract partly relates geologic problems that remain to be resolved. 

  6. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 69): Chapter H in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II) (United States)

    Goldfarb, Richard J.; Marsh, Erin; Anderson, Eric D.; Horton, John D.; Finn, Carol A.; Beaudoin, Georges


    The gold resources of Mauritania presently include two important deposits and a series of poorly studied prospects. The Tasiast belt of deposits, which came into production in 2007, is located in the southwestern corner of the Rgueïbat Shield and defines a world-class Paleoproterozoic(?) orogenic gold ore system. The producing Guelb Moghrein deposit occurs along a shear zone in Middle Archean rocks at the bend in the Northern Mauritanides and is most commonly stated to be an iron oxide-copper-gold (IOCG) type of deposit, although it also has some important characteristics of orogenic gold and skarn deposits. Both major deposits are surrounded by numerous prospects that show similar mineralization styles. The Guelb Moghrein deposit, and IOCG deposit types in general are discussed in greater detail in a companion report by Fernette (2015). In addition, many small gold prospects, which are probably orogenic gold occurrences and are suggested to be early Paleozoic in age, occur along the length of Southern Mauritanides. Existing data indicate the gold deposits and prospects in Mauritania have a sulfide assemblage most commonly dominated by pyrrhotite and chalcopyrite, and have ore-related fluids with apparently high salinities.

  7. Seismological Constraints on Lithospheric Evolution in the Appalachian Orogen (United States)

    Fischer, K. M.; Hopper, E.; Hawman, R. B.; Wagner, L. S.


    Crust and mantle structures beneath the Appalachian orogen, recently resolved by seismic data from the EarthScope SESAME Flexible Array and Transportable Array, provide new constraints on the scale and style of the Appalachian collision and subsequent lithospheric evolution. In the southern Appalachians, imaging with Sp and Ps phases reveals the final (Alleghanian) suture between the crusts of Laurentia and the Gondwanan Suwannee terrane as a low angle (Kellogg, 2017) isostatic arguments indicate crustal thicknesses were 15-25 km larger at the end of the orogeny, indicating a thick crustal root across the region. The present-day residual crustal root beneath the Blue Ridge mountains is estimated to have a density contrast with the mantle of only 104±20 kg/m3. This value is comparable to other old orogens but lower than values typical of young or active orogens, indicating a loss of lower crustal buoyancy over time. At mantle depths, the negative shear velocity gradient that marks the transition from lithosphere to asthenosphere, as illuminated by Sp phases, varies across the Appalachian orogen. This boundary is shallow beneath the northeastern U.S. and in the zone of Eocene volcanism in Virginia, where low velocity anomalies occur in the upper mantle. These correlations suggest recent active lithosphere-asthenosphere interaction.

  8. Triassic rejuvenation of unexposed Archean-Paleoproterozoic deep crust beneath the western Cathaysia block, South China (United States)

    Li, Xi-Yao; Zheng, Jian-Ping; Xiong, Qing; Zhou, Xiang; Xiang, Lu


    Jurassic (ca. 150 Ma) Daoxian basalts from the western Cathaysia block (South China) entrained a suite of deep-seated crustal xenoliths, including felsic schist, gneiss and granulite, and mafic two-pyroxene granulite and metagabbro. Zircon U-Pb-Hf isotopic, whole-rock elemental and Sr-Nd-Pb isotopic compositions have been determined for these valuable xenoliths to reveal the poorly-known, unexposed deep crust beneath South China. Detrital zircons from the garnet-biotite schists show several populations of ages at 0.65-0.5 Ga, 1.1-0.75 Ga, 1.6-1.4 Ga, 1.8-1.7 Ga, 2.5-2.4 Ga, 2.8 Ga, and 3.5 Ga, representing a multi-sourced, meta-sedimentary origin with deposition time at the early Cambrian. One mafic granulite contains zircons with concordant U-Pb ages of Neoarchean ( 2520 Ma), as well as Hf model ages of 2.8-2.6 Ga and positive εHf(t) values (up to 6.3), suggesting an accretion of juvenile crust in Neoarchean, probably as the main framework of the lower crust. Geochemical and geochronological evidence shows the mafic granulite and metagabbro were produced by underplating of magmas derived from the depleted asthenosphere and mixed with EM2-type materials during the Late Triassic (205-196 Ma). This magmatic underplating also resulted in the widespread metamorphism of the mafic lower crust and felsic middle crust (e.g., the felsic granulite and gneiss) at 202-201 Ma. We suggest the existence of a highly evolved Archean-Paleoproterozoic basement beneath the western Cathaysia block, which experienced episodic accretion and reworking and the strong rejuvenation during the Triassic. A three-layered structure of the lower crust could exist beneath the Daoxian area during the Jurassic time: its upper layer is an evolved Archean-Paleoproterozoic basement; the middle hybrid layer represents a mixture of Archean-Paleoproterozoic basement with newly accreted/reworked Proterozoic to Phanerozoic materials; and the deeper layer consists of mafic granulites derived from the

  9. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean (United States)

    Zheng, Zhen; Chen, Yan-Jing; Deng, Xiao-Hua; Yue, Su-Wei; Chen, Hong-Jin; Wang, Qing-Fei


    The Qiman Tagh of the East Kunlun Orogen, NW China, lies within the Tethysides and hosts a large W-Sn belt associated with the Bashierxi monzogranite. To constrain the origin of the granitic magmatism and its relationship with W-Sn mineralization and the tectonic evolution of the East Kunlun Orogen and the Tethys, we present zircon U-Pb ages and Hf isotopic data, and whole-rock compositional and Sr-Nd-Pb isotopic data of the Bashierxi monzogranite. The granite comprises quartz, K-feldspar, plagioclase, and minor muscovite, tourmaline, biotite, and garnet. It contains high concentrations of SiO2, K2O, and Al2O3, and low concentrations of TiO2 and MgO, indicating a peraluminous high-K calc-alkaline affinity. The rocks are enriched in Rb, U, Pb, and light rare earth elements, and relatively depleted in Eu, Ba, Nb, Sr, P, and Ti, and are classified as S-type granites. Twenty zircon grains yield a weighted mean 238U/206Pb age of 432 ± 2.6 Ma (mean square weighted deviation = 1.3), indicating the occurrence of a middle Silurian magmatic event in the region. Magmatic zircons yield εHf(t) values of -6.7 to 0.7 and corresponding two-stage Hf model ages of 1663-1250 Ma, suggesting that the granite was derived from Mesoproterozoic crust, as also indicated by 207Pb/206Pb ages of 1621-1609 Ma obtained from inherited zircon cores. The inherited zircon cores yield εHf(t) values of 8.3-9.6, which indicate the generation of juvenile crust in the late Paleoproterozoic. Samples of the Bashierxi granite yield high initial 87Sr/86Sr ratios and radiogenic Pb concentrations, and negative εNd(t) values. Isotopic data from the Bashierxi granite indicate that it was derived from partial melting of ancient (early Paleozoic to Mesoproterozoic) sediments, possibly representing recycled Proterozoic juvenile crust. Middle Silurian granitic magmatism resulted from continental collision following closure of the Proto-Tethys Ocean. The Qiman Tagh represents a Caledonian orogenic belt containing

  10. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. (United States)

    Pang, K; Tang, Q; Schiffbauer, J D; Yao, J; Yuan, X; Wan, B; Chen, L; Ou, Z; Xiao, S


    The well-known debate on the nature and origin of intracellular inclusions (ICIs) in silicified microfossils from the early Neoproterozoic Bitter Springs Formation has recently been revived by reports of possible fossilized nuclei in phosphatized animal embryo-like fossils from the Ediacaran Doushantuo Formation of South China. The revisitation of this discussion prompted a critical and comprehensive investigation of ICIs in some of the oldest indisputable eukaryote microfossils-the ornamented acritarchs Dictyosphaera delicata and Shuiyousphaeridium macroreticulatum from the Paleoproterozoic Ruyang Group of North China-using a suite of characterization approaches: scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM). Although the Ruyang acritarchs must have had nuclei when alive, our data suggest that their ICIs represent neither fossilized nuclei nor taphonomically condensed cytoplasm. We instead propose that these ICIs likely represent biologically contracted and consolidated eukaryotic protoplasts (the combination of the nucleus, surrounding cytoplasm, and plasma membrane). As opposed to degradational contraction of prokaryotic cells within a mucoidal sheath-a model proposed to explain the Bitter Springs ICIs-our model implies that protoplast condensation in the Ruyang acritarchs was an in vivo biologically programmed response to adverse conditions in preparation for encystment. While the discovery of bona fide nuclei in Paleoproterozoic acritarchs would be a substantial landmark in our understanding of eukaryote evolution, the various processes (such as degradational and biological condensation of protoplasts) capable of producing nuclei-mimicking structures require that interpretation of ICIs as fossilized nuclei be based on comprehensive investigations. © 2013 John Wiley & Sons Ltd.

  11. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton; Reavaliacao da evolucao geologica em terrenos pre-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte 2: orogeno Aracuai, cinturao mineiro e craton Sao Francisco Meridional

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Carlos da; Pimentel, Marcio [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail:; Leite, Carlos Augusto; Vieira, Valter Salino; Silva, Marcio Antonio da; Paes, Vinicius Jose de Castro; Cardoso Filho, Joao Moraes [Companhia de Pesquisas de Recursos Minerais (CPRM), Belo Horizonte, MG (Brazil); Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias. Centro de Pesquisa Manuel Teixeira da Costa; Carneiro, Mauricio Antonio [Ouro Preto Univ., MG (Brazil). Dept. de Geologia


    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  12. Orogenic structural inheritance and rifted passive margin formation (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.


    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  13. Piedra lata terrane of Uruguay: Rb-Sr geochronological data of two new paleoproterozoic (transamazonian) granitoids

    International Nuclear Information System (INIS)

    Cingolani, C; Bossi, J; Varela, R; Maldonado, S.; Pineyro, D.; Schipilov, A


    The Precambrian basement of Uruguay consists of three major terranes separated and crosscut by wide NE-striking subvertical transcurrent shear zones. The western terrane as a part of the Rio de la Plata Craton is known as the Piedra Alta Terrane (PAT). This is separated from the Nico Perez Terrane by the Sarandi del Yi-Piri olis subvertical shear zone (Bossi et al., 1993). A mafic dykes complex intruded the PAT at 1.8 Ga and was not later deformed. The PAT has equivalent rocks in the igneous-metamorphic basement of Tandilia region and the Martin Garcia Island, Buenos Aires Province, Argentina (Dalla Salda et al., 1988; Cingolani and Dalla Salda, 2000). The PAT shows no evidence of the Neoproterozoic orogenies and is considered a best preserved Paleoproterozoic block (Transamazonian Cycle). It contains three E-W trending belts of volcano-sedimentary rocks with low grade metamorphism. These are from south to north: Pando, San Jose and Andresito belts (Bossi et al., 1996). Associated with them, three granitic-gneissic zones he Ecilda Paullier, Florida and Feliciano- were recognized with magmatic intrusives emplaced at different crustal levels. The San Jose belt is the largest supracrustal unit and contains abundant volcanic and volcaniclastic rocks of low grade metamorphic (Paso Severino Fm.) with sheets of granitic rocks intercalated (Mutti et al., 1996; Bossi et al., 1996). The associated granitic rocks are of large areal extension, mostly granodiorites and tonalites, and minor monzogranite and gabbro (e.g. Cerro Rospide region), including xenoliths from Paso Severino Fm. Towards the north of the San Jose belt an important Florida granitized zone is developed in the central part of the PAT, where the Pintos massif was recognized. The main purpose of this contribution is to offer new Rb-Sr geochronological data from two granitoid units, The Cerro Rospide intrusive in Paso Severino Fm. and Pintos massif included in medium grade migmatic-metamorphic complex and its

  14. Dynamic Settings and Interactions between Basin Subsidence and Orogeny in Zhoukou Depression and Dabie Orogenic Belt

    Institute of Scientific and Technical Information of China (English)


    This paper presents a study of the geo-dynamic setting and the relation between orogenic uplift and basin subsidence in the inland Zhoukou depression and Dabie orogenic belt. Since the Mesozoic the evolution of Zhoukou depression can be divided into three stages: (1) foreland basin, (2) transitional stage, (3) fault depression. Formation and variations of basin were not only related to the orogenesis, but also consistent with the orogenic uplift.

  15. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles (United States)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.


    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  16. The Atuba complex: a paleoproterozoic belt intensively reworked in the neoproterozoic era

    International Nuclear Information System (INIS)

    Siga Junior, O.; Basei, M.A.S.; Machiavelli, A.; Harara, O.M.; Reis Neto, J.M.


    Studies of terranes between the northern Ribeira and southern Dom Feliciano Belts allow the characterization of three geotectonic domains with different evolutions: the Luis Alves, Curitiba and Paranagua terranes. The Atuba complex occurs in Curitiba Domain, which has a northwestern limit with metasediments of the Acungui and Setuva Groups and a southwestern limit with the granulitic gneisses of the Luis Alves domains. The contacts are expressive shear zones. The predominant rocks of the Curitiba Domain are banded, migmatitic gneisses in amphibolite grade with biotite-amphibolite gneissic mesosomes and tonalitic/graodioritic leucosomes, here called the Atuba complex. The migmatites are Paleoproterozoic (2.000±200 Ma) and remigmatized in Neoproterozoic (600±20 Ma). During the latter period temperatures reached more than 500 0 C. The structural pattern indicated shear-controlled tectonics with an important lateral component, and low-angle, south-southeastward transport direction. The terranes of the Atuba complex appear to represent deep-level rocks which were migmatized, granitized and then added to the border of the Luis Alves Microplate during the Neoproterozoic. This late Neoproterozoic tectonic scheme which continued to the Cambro-Ordoviciano seems to be the result of larger scale processes of continental agglutination which ended with the formation of western Gondwanaland. (author). 17 figs., 2 tabs

  17. Occurrence and significance of blueschist in the southern Lachlan Orogen

    International Nuclear Information System (INIS)

    Spaggiari, C.V.; Gray, D.R.; Foster, D.A.; Fanning, C.M.


    Serpentinite/talc-matrix melanges, bearing blocks of blueschist metavolcanics, occur within the Heathcote and Governor Fault Zones of the southern Lachlan Orogen. In the Heathcote Fault Zone, serpentinite-matrix melange consists of blocks or small pods of boninite, andesite, ultramafic rocks, chert and volcanogenic sandstone variably metamorphosed to prehnite-pumpellyite, greenschist, or greenschist to blueschist facies. In the Governor Fault Zone, blueschist metavolcanics occur as blocks within serpentinite/talc matrix that is interleaved with prehnite-pumpellyite to greenschist facies, intermediate pressure slate and phyllite. Ar/Ar dating of white mica from slaty mud-matrix (broken formation) indicates that the main fabric development occurred at 446 ± 2 Ma. U-Pb (SHRIMP) dating of titanite from blueschists in the Governor Fault Zone indicates that metamorphism occurred at approximately 450 Ma, close to the time of melange formation. Previously published, Ar/Ar dating of white mica from phyllite and biotite from metadiorite in the Heathcote Fault Zone suggest that blueschist metamorphism occurred at a similar time. These ages are supported by field relationships. Illite crystallinity and b 0 data from white mica, and the preservation of blueschist blocks indicate that these fault zones maintained low temperatures both during and after intermediate- to high-pressure metamorphism. Occurrences of blueschists in the Arthur Lineament of the Tyennan (Delamerian) Orogen in Tasmania, and in the New England Orogen, have different ages, and in conjunction with the occurrences described here, suggest that subduction-accretion processes contributed significantly to the development of the Tasmanides from Cambrian through to Carboniferous times. Copyright (2002) Geological Society of Australia

  18. Asymmetric gravitational spreading - Analogue experiments on the Svecofennian orogen (United States)

    Nikkilä, Kaisa; Korja, Annakaisa; Koyi, Hemin; Eklund, Olav


    Over-thickened orogenic crust may suffer from rheological, gravitational and topographical unbalancing resulting in discharging via gravitational spreading. If the thickened orogen is also hot, then increased temperature may reduce the viscosity of the crust that may induce large-scale horizontal flow. The effect of flow on the crustal architecture has previously been modeled with symmetric two-way spreading or asymmetric one- or two-way spreading (like channel flow) experiments. Most models do not take into account of the contrasting mechanical properties of the juxtaposed terranes. We have made analogue experiments to study gravitational one-way spreading and the interplay between two crustal blocks with contrasting rheological properties. The models are 3 cm thick replicas of 60 km thick crust. They have three horizontal layers representing strong lower, weak middle and brittle upper crust. The models have cuts to study the effect of inherited crustal-scale weakness zones. The experiments have been conducted within a large centrifuge in the Hans Ramberg Tectonic Laboratory at Uppsala University. The analogue models propose that asymmetric, unilateral flow has different effect on the contrasting crustal units, in both horizontal and vertical directions. The laterally heterogeneous crust flows towards the direction of extension, and it rotates and extends the pre-existing weakness zones. The weakness zones facilitate exhumation and they increase strain rate. The weakness zones split the crust into subblocks, which stretch individually and which may show signatures of compression or rotation. The changes in thickness of the model reflect changes in the layers, which may thin or thicken depending on the mechanical properties of crustal layers. A consequence of this the total amount of flattening is less than the model extension. The results are compared to geophysical and geological data from Precambrian Svecofennian orogen in Fennoscandia. The comparison suggest

  19. Proterozoic orogenic belts and rifting of Indian cratons: Geophysical constraints

    Directory of Open Access Journals (Sweden)

    D.C. Mishra


    an earlier episode of rifting during Paleo–Mesoproterozoic period. They are highly disturbed and deformed due to subsequent Meso–Neoproterozoic convergence. As these Paleoproterozoic basins are characterized by large scale basic/ultrabasic intrusives that are considerably wide spread, it is suggested that a plume/superplume might have existed under the Indian cratons at that time which was responsible for the breakup of these cratons. Further, the presence of older intrusives in these mobile belts suggests that there might have been some form of convergence also during Paleoproterozoic period.

  20. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua


    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a

  1. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming


    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  2. Weathering model for the quantification of atmospheric oxygen evolution during the Paleoproterozoic (United States)

    Yokota, Kohei; Kanzaki, Yoshiki; Murakami, Takashi


    A weathering model has been developed to quantify atmospheric oxygen evolution during the Paleoproterozoic. The weathering model calculates the concentrations of Fe2+ dissolved from Fe2+-bearing primary minerals and oxidized Fe3+ out of the dissolved Fe2+ at a given partial pressure of atmospheric oxygen (PO2) during weathering and establishes the relationships between PO2 and ϕ, where ϕ is the ratio of oxidized and then precipitated Fe3+ out of the Fe2+ dissolved from primary minerals to the dissolved Fe2+ in a whole weathering profile. The weathering model considers controlling factors of the redistribution of Fe during weathering, that is, the dissolution rate of Fe2+-bearing primary minerals, the oxidation rate of Fe2+, and the groundwater flow rate. The validity of the model was confirmed by applying the model to the experimental data of olivine dissolution carried out under low O2 conditions. The sensitivity analysis of the model has revealed that the formation time of weathering, the mineral dissolution rate and the diffusion of O2 into a weathering profile have no or slight influence on ϕ, resulting in ˜0, 0 and 0.3 changes in log(PO2) caused by four orders of magnitude change of the formation time, more than 10 orders change of the mineral dissolution rate, and assumed change of the O2 diffusion, respectively. On the other hand, the temperature, the pH and the groundwater flow rate have moderate to large effects on ϕ: 0.6, 1.4 and 1.5 changes in log(PO2) for changes of 5 °C in temperature, 0.5 in pH, and one order of magnitude in groundwater flow rate, respectively. Using possible surface temperature, pH and groundwater flow rate estimated from the literature, we calculated the ϕ-PO2 relationships which were then applied to the ϕ values of paleosols (fossil weathering profiles) formed between 2.5 and 1.8 Ga. Taking account of the constraints given by the records of mass independent fractionation in sulfur isotopes and other geological proxies (i


    Directory of Open Access Journals (Sweden)

    V. V. Chashchin


    Full Text Available The article provides data on the structure of the Paleoproterozoic intercontinental Imandra-Varzuga rifting structure (IVS and compositions of intrusive formations typical of the early stage of the IVS development and associated mineral resources. IVS is located in the central part of the Kola region. Its length is about 350 km, and its width varies from 10 km at the flanks to 50 km in the central part. IVS contains an association of the sedimentary-volcanic, intrusive and dyke complexes. It is a part of a large igneous Paleoproterozoic province of the Fennoscandian Shield spreading for a huge area (about 1 million km2, which probably reflects the settings of the head part of the mantle plume. Two age groups of layered intrusions were associated with the initial stage of the IVS development. The layered intrusions of the Fedorovo-Pansky and Monchegorsk complexes (about 2.50 Ga are confined to the northern flank and the western closure of IVS, while intrusions of the Imandra complex (about 2.45 Ga are located at the southern flank of IVS. Intrusions of older complexes are composed of rock series from dunite to gabbro and anorthosites (Monchegorsk complex and from orthopyroxenite to gabbro and anorthosites (Fedorovo-Pansky complex. Some intrusions of this complexes reveal features of multiphase ones. The younger Imandra complex intrusions (about 2.45 Ga are stratified from orthopyroxenite to ferrogabbro. Their important feature is comagmatical connection with volcanites. All the intrusive complexes have the boninite-like mantle origin enriched by lithophyle components. Rocks of these two complexеs with different age have specific geochemical characteristics. In the rocks of the Monchegorsk and Fedorovo-Pansky complexes, the accumulation of REE clearly depends on the basicity of the rocks, the spectrum of REE is non-fractionated and ‘flat’, and the Eu positive anomaly is slightly manifested. In the rocks of the Imandra complex, the level of

  4. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics (United States)

    Murakami, Takashi; Sreenivas, Bulusu; Sharma, Subrata Das; Sugimori, Hirokazu


    The increase in atmospheric oxygen during the Precambrian is a key to understand the co-evolution of life and environment and has remained as a debatable topic. Among various proxies for the estimation of atmospheric oxygen levels, paleosols, ancient weathering profiles, can provide a quantitative pattern of atmospheric oxygen increase during the Precambrian period of Earth history. We have re-evaluated the chemical compositions of paleosols, and presented a new method of applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols to decipher the quantitative partial pressure of atmospheric oxygen ( P) between 2.5 and 2.0 Ga. We first estimated the compaction factor ( CF, the fraction of original thickness) using the immobile elements such as Ti, Al and Zr on equal volume basis, which was then used to calculate retention fractions ( M R), a mass ratio of paleosol to parent rock, of redox-sensitive elements. The CF and Fe R values were evaluated for factors such as homogeneity of immobile elements, erosion, and formation time of weathering. Fe R increased gradually within the time window of ˜2.5-2.1 Ga and remained close to 1.0 since ˜2.1 Ga onwards. Mn R also increased gradually similar to Fe R but at a slower rate and near complete retention was observed ˜1.85 Ga, suggesting an almost continuous increase in the oxidation of Fe 2+ and Mn 2+ in paleosols ranging in age between ˜2.5 and 1.9 Ga. We have modeled P variations during the Paleoproterozoic by applying Fe 2+ oxidation kinetics to the Fe 2+ and Fe 3+ concentrations in paleosols, which enabled us to derive an Fe 2+ oxidation term referred to as ψ. Possible changes in temperature and P during this time window and their effects on resulting models of P evolution have been also considered. We assumed four cases for the calculations of P variations between 2.5 and 2.0 Ga: no change in either temperature or P, long-term change in only P, long-term changes in both temperature and P

  5. Polymetamorphic evolution of the granulite-facies Paleoproterozoic basement of the Kabul Block, Afghanistan (United States)

    Collett, Stephen; Faryad, Shah Wali; Mosazai, Amir Mohammad


    The Kabul Block is an elongate crustal fragment which cuts across the Afghan Central Blocks, adjoining the Indian and Eurasian continents. Bounded by major strike slip faults and ophiolitic material thrust onto either side, the block contains a strongly metamorphosed basement consisting of some of the only quantifiably Proterozoic rocks south of the Herat-Panjshir Suture Zone. The basement rocks crop-out extensively in the vicinity of Kabul City and consist predominantly of migmatites, gneisses, schists and small amounts of higher-grade granulite-facies rocks. Granulite-facies assemblages were identified in felsic and mafic siliceous rocks as well as impure carbonates. Granulite-facies conditions are recorded by the presence of orthopyroxene overgrowing biotite in felsic rocks; by orthopyroxene overgrowing amphibole in mafic rocks and by the presence of olivine and clinohumite in the marbles. The granulite-facies assemblages are overprinted by a younger amphibolite-facies event that is characterized by the growth of garnet at the expense of the granulite-facies phases. Pressure-temperature (P-T) conditions for the granulite-facies event of around 850 °C and up to 7 kbar were calculated through conventional thermobarometry and phase equilibria modeling. The younger, amphibolite-facies event shows moderately higher pressures of up to 8.5 kbar at around 600 °C. This metamorphism likely corresponds to the dominant metamorphic event within the basement of the Kabul Block. The results of this work are combined with the litho-stratigraphic relations and recent geochronological dating to analyze envisaged Paleoproterozoic and Neoproterozoic metamorphic events in the Kabul Block.

  6. Geologic characterization of paleoproterozoics rocks in middle south of Uruguay (PIEDRA ALTA terrains - Craton of Rio de la Plata)

    International Nuclear Information System (INIS)

    Oyhantcabal, P.; Spoturno, J.; Loureiro, J.


    An updated synthesis of the Units of the Precambrian Basement (Piedra Alta Terrane; Paleoproterozoic; Transamazonian Cycle) of Montevideo, Canelones, San Jose and southern Florida is presented. This review is based on data from a mapping project (CONICYT 6019) of the area at 1:100 000 scale. Two metamorphic successions are recognised in the San Jose Belt: Paso Severino and Montevideo formations (low and medium grade respectively) and an significant bimodal magmatism recorded in syn- as well as postoregenic intrusions. A system of conjugated shear zones (ENE and NNW; sinistral and dextral respectively) determine the architecture of the Basement. (author)

  7. Granite ascent and emplacement during contractional deformation in convergent orogens (United States)

    Brown, Michael; Solar, Gary S.


    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  8. Critical elements in Carlin, epithermal, and orogenic gold deposits (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.


    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  9. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data (United States)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.


    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  10. Role of mantle dynamics in rebuilding the Tianshan Orogenic Belt in NW China: A seismic tomographic investigation (United States)

    He, Chuansong; Santosh, M.


    The Tianshan orogenic belt, Junggar terrane and Altai terrane are located at the southwestern part of the Central Asian Orogenic Belt (CAOB). Here, we investigate the velocity structure beneath the Xinjiang region in NW China, which includes the Tarim terrane, Tianshan orogenic belt, Junggar terrane and Altai terrane with a view to evaluate the mantle dynamics based on teleseismic data recorded by 103 seismic stations. Our tomographic results show both high and low velocity perturbations beneath the Tianshan orogenic belt. We suggest that the high velocity perturbations beneath this orogenic belt might represent the northward subducted lithosphere of the Tarim Basin and the southward subducted lithosphere of the Junggar Basin. The low velocity structure beneath the Tianshan orogenic belt might represent asthenosphere upwelling that triggered the extensive magmatism which contributed to rebuilding of the Tianshan orogenic belt.

  11. Paleoproterozoic andesitic volcanism in the southern Amazonian craton (northern Brazil); lithofacies analysis and geodynamic setting (United States)

    Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo


    Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian

  12. The Rio Pardo salient, northern Araçuaí orogen: an example of a complex basin-controlled fold-thrust belt curve

    Directory of Open Access Journals (Sweden)

    Eliza Peixoto

    Full Text Available ABSTRACT: The Rio Pardo salient, the large antitaxial curve described by the Araçuaí fold-and-thrust belt along the southeastern edge of the São Francisco craton, is one of the most prominent and one of the least studied features of the Brasiliano Araçuaí-West Congo orogenic system (AWCO. In addition to the Archean/Paleoproterozoic basement, the salient is comprised of metasedimentary rocks mainly from the Neoproterozoic Macaúbas Group and the Salinas Formation. Its western limb occupies a portion of the Espinhaço ridge, where the NS-trending structures of the Araçuaí belt progressively curve NE and E, thereby defining the hinge zone along the Serra Geral on the Minas-Bahia boundary. The eastern limb is NW-trending and marked by a major shear zone. In models postulated to generate the AWCO through the closure of the Neoproterozoic Macaúbas basin, this large curve plays a critical kinematic role. Yet, in spite of this, its development is still not fully understood. How did this curve originate? Which factors controlled its generation? Our field study performed in the northern Araçuaí orogen characterized the kinematic picture of the salient, and led to a model that addresses these questions. The results we obtained indicate that the Rio Pardo salient developed in response to four deformation phases. The contractional D1 and D2 phases are coaxial and responsible for a craton-directed tectonic transport along the salient’s outer arc, which is coupled with an overall southward motion of the inner arc, thereby giving rise to a rather complex kinematic picture. Furthermore, structures of the D1/D2 phases define a zigzag pattern with alternating NE- and NW-trending segments along the salient’s leading edge. Along the NE-trending segments, the metasedimentary rocks are thrust northwestwards on top of the craton basement, while along the NW-trending segments, the supracrustal rocks are displaced along dextral to reverse

  13. Isotopic characteristics (Nd and Sr) of the intrusive plutonism at the northwestern Amazonian Craton, Venezuela, and implications for the Paleoproterozoic evolution

    International Nuclear Information System (INIS)

    Teixeira, Wilson; Tassinari, Colombro Celso G.; Mondin, M.


    Nd and Sr analyses were performed on selected granitoid plutons that intrude Archean and Paleoproterozoic domains of the Guyana shield (Venezuela). The isotopic signatures of these plutons together with the geochronologic background of the country rocks are used to constrain their magma genesis and tectonic setting within the Paleoproterozoic evolutions of mobile belts (Maroni-Itacaiunas and Ventuari-Tapajos provinces) of the Amazonian Craton. The Encrucijada Suite (2187 +- 94 Ma), which intrudes Archean rocks of the Imataca Complex, originated predominantly from partial melt of this crust, as supported by negative epsilon Nd(2.1Ga ) values (-2.2 to - 4.9) and T DM ages between 2.82 and 2.49 Ga. Conversely, the plutons from the Supamo Complex (2230 - 2050 Ma) and Cuchivero Group (1980 - 1830 Ma), occurring within the adjoining Paleoproterozoic provinces, are juvenile in nature (derived from roughly contemporary protoliths). These bodies display T DM ages between 2.13 and 2.22 Ga, as well as positive epsilon Nd(2.1Ga ) values (+0.74 to + 3.05). Isotopic correlation diagrams 143 Nd/144 Nd vs. 147 Sm/144 Nd and 143 Nd/144 Nd vs. time) plotted together with the plutonic rocks and Imataca Complex rocks were evaluated taking into account the geologic background of the NW part of the Amazonian Craton. Interpretation of these isotopic data supports the idea of tectonic juxtaposition between the Imataca Complex and the Maroni-Itacaiunas province during the Transamazonian orogeny (2.25 - 2.05 Ga). On the other hand, the Cuchivero Group plutons have a contrasting isotopic signature compared to the other Paleoproterozoic plutonic rocks. This is consistent with the existence of a tectonic boundary between the Maroni-Itacaiunas and the Ventuari-Tapajos province in the late Paleoproterozoic. (author)

  14. Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland


    Engström, Adam


    Orogenic gold deposits occur within metamorphic belts throughout the world and have through time represented the source for over 25% of the world’s gold production. Although orogenic gold deposits are of great economic importance, controversies exist on the subject of fluid and metal sources and there have been few studies of gold´s distribution and mobility outside of large economic deposits. Research made by Pitcairn et al. (2006), on the Mesozoic Otago and Alpine schists of New Zealand, ob...

  15. Petro-mineralogical Studies of the Paleoproterozoic Phosphorites in the Sonrai basin, Lalitpur District, Uttar Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Shamim A., E-mail:; Khan, K. F.; Khan, Saif A.; Khan, Samsuddin [Aligarh Muslim University, Department of Geology (India); Masroor Alam, M. [Aligarh Muslim University, Geology Section Department of Civil Engineering (India)


    The Paleoproterozoic phosphorites constitute an economically significant component of the Sonrai basin of Lalitpur district. These are associated with ferruginous shale, ironstone, limestone and quartz breccia. Petro-mineralogical studies of samples of the phosphorites, using X-ray diffractometry and scanning electron microscopy, reveal that the collophane (carbonate-fluorapatite) is the dominant phosphate mineral. Calcite, dolomite, quartz, mica and haematite are the dominant gangue constituents. The phosphate minerals occur as oolites mutually replaced by carbonate and silica. The presence of iron oxides has been found in most of the thin sections. There is meagre evidence of organic matter in the form of filaments of microbial phosphate laminae in the samples of phosphorite. The mineral assemblages, their texture and various forms in these phosphorites may be due to some environmental vicissitudes followed by replacement processes and biogenic activities.

  16. Petro-mineralogical Studies of the Paleoproterozoic Phosphorites in the Sonrai basin, Lalitpur District, Uttar Pradesh, India

    International Nuclear Information System (INIS)

    Dar, Shamim A.; Khan, K. F.; Khan, Saif A.; Khan, Samsuddin; Masroor Alam, M.


    The Paleoproterozoic phosphorites constitute an economically significant component of the Sonrai basin of Lalitpur district. These are associated with ferruginous shale, ironstone, limestone and quartz breccia. Petro-mineralogical studies of samples of the phosphorites, using X-ray diffractometry and scanning electron microscopy, reveal that the collophane (carbonate-fluorapatite) is the dominant phosphate mineral. Calcite, dolomite, quartz, mica and haematite are the dominant gangue constituents. The phosphate minerals occur as oolites mutually replaced by carbonate and silica. The presence of iron oxides has been found in most of the thin sections. There is meagre evidence of organic matter in the form of filaments of microbial phosphate laminae in the samples of phosphorite. The mineral assemblages, their texture and various forms in these phosphorites may be due to some environmental vicissitudes followed by replacement processes and biogenic activities

  17. Reconstruction of the Paleoproterozoic deeper ocean environment: Preliminary Report of the Ghana Birimian Greenstone Belt Drilling Project (GHB) (United States)

    Kiyokawa, S.; Yoshimaru, S.; Miki, T.; Sakai, S.; Ikehara, M.; Yamaguchi, K. E.; Ito, T.; Onoue, T.; Takehara, M.; Tetteh, G. M.; Nyame, F. K.


    The Paleoproterozoic Era are one of the most rapid environmental change when the earth surface environment was affected by formation of continents and increasing atmospheric oxygen levels. Major oxidation of Great Oxidation Event (GOE) are reported this ages (eg. Holland, 2006; Condie, 2001; Lyons et al., 2014). The nature of deep sea environments at this time have not been clearly identified and oceanic sediments are mostly involved in subduction. The Paleoproterozoic Birimian Greenstone Belt is an ophiolitic volcaniclastic sequence in Ghana, with depositional age of over 2.3-2.2 Ga (Petersson et al., 2016). Detail research was conducted of the Ashanti (Axim-Konongo) Belt of the Birimian Greenstone Belt along the coast near Cape Three Points area. Very thick volcaniclastic and organic-rich sedimentary rocks, which we now refer to as the Cape Three Points Group, crop out in the lower part of the Birimian Greenstone Belt. Stratigraphically, three unit identified; the lower portion contains thick vesicular volcaniclastic rocks, the middle portion is made up of laminated volcaniclastics and black shale, and the upper portion dominated by fine laminated volcaniclastics with more black shale sequence. Continuous core drilling from Dec 3-12th 2015 of the upper part of the sequence intersected saprolite to a depth of 30m and fresh, well preserved stratigraphy with graded bedding and lamination to a depth of 195m. Half cut cores show well laminated organic rich black shale and relative carbonate rich layers with very fine pyrite grains. SHRIMP age data from a porphyry intrusion into this sequence indicate an age of 2250 Ma. Carbon isotope analysis shows δ13C = -43 to -37‰ for black shale with the very light isotope values for cyanobacterial signature.The fining-upward sequences, well laminated bed and black shales and REE data suggest this sequence situated partly silent stagnant with volcanic activity ocean floor environment around an oceanic island arc condition.

  18. Temporal constraints on the kinematics of the destabilization of an orogen : syn- to post-orogenic extensional collapse of the Northern Aegean region

    NARCIS (Netherlands)

    Lips, A.L.W.


    The Mediterranean region is situated at the interface of the African and Eurasian plates and has been shaped by the Alpine Orogeny and the subsequent post-orogenic extension during the convergence and collision of the African and Eurasian plates. Numerous tectonic studies have focussed on the role

  19. Temporal constraints on the kinematics of the destabilization of an orogen : syn- to post-orogenic extensional collapse of the Northern Aegean region

    NARCIS (Netherlands)

    Lips, A.L.W.


    The Mediterranean region is situated at the interface of the African and Eurasian plates and has been shaped by the Alpine Orogeny and the subsequent post-orogenic extension during the convergence and collision of the African and Eurasian plates. Numerous tectonic studies have focussed on the

  20. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe


    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  1. Deformation of the Songshugou ophiolite in the Qinling orogen (United States)

    Sun, Shengsi; Dong, Yunpeng


    The Qinling orogen, middle part of the China Central Orogenic Belt, is well documented that was constructed by multiple convergences and subsequent collisions between the North China and South China Blocks mainly based on geochemistry and geochronology of ophiolites, magmatic rocks as well as sedimentary reconstruction. However, this model is lack of constraints from deformation of subduction/collision. The Songshugou ophiolite outcropped to the north of the Shangdan suture zone represents fragments of oceanic crust and upper mantle. Previous works have revealed that the ophiolite was formed at an ocean ridge and then emplaced in the northern Qinling belt. Hence, deformation of the ophiolite would provide constraints for the rifting and subduction processes. The ophiolite consists chiefly of metamorphosed mafic and ultramafic rocks. The ultramafic rocks contain coarse dunite, dunitic mylonite and harzburgite, with minor diopsidite veins. The mafic rocks are mainly amphibolite, garnet amphibolite and amphibole schist, which are considered to be eclogite facies and retrograde metamorphosed oceanic crust. Amphibole grains in the mafic rocks exhibit a strong shape-preferred orientation parallel to the foliation, which is also parallel to the lithologic contacts between mafic and ultramafic rocks. Electron backscattered diffraction (EBSD) analyses show strong olivine crystallographic preferred orientations (CPO) in dunite including A-, B-, and C-types formed by (010)[100], (010)[001] and (100)[001] dislocation slip systems, respectively. A-type CPO suggests high temperature plastic deformation in the upper mantle. In comparison, B-type may be restricted to regions with significantly high water content and high differential stress, and C-type may also be formed in wet condition with lower differential stress. Additionally, the dunite evolved into amphibolite facies metamorphism with mineral assemblages of olivine + talc + anthophyllite. Assuming a pressure of 1.5 GPa

  2. Some aspects of the role of rift inheritance on Alpine-type orogens (United States)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy; Chevrot, Sébastien


    Processes commonly recognized as fundamental for the formation of collisional orogens include oceanic subduction, arc-continent and continent-continent collision. As collisional belts result from the closure of oceanic basins and subsequent inversion of former rifted margins, their formation and evolution may also in theory be closely interlinked with the initial architecture of the former rifted margins. This assumption is indeed more likely to be applicable in the case of Alpine-type orogens, mainly controlled by mechanical processes and mostly devoid of arc-related magmatism. More and more studies from present-day magma-poor rifted margins illustrate the complex evolution of hyperextended domains (i.e. severely thinned continental crust (images across the Pyrenees (PYROPE) and the Alps (CIFALPS) reveal a surprisingly comparable present-day overall crustal and lithospheric structure. Based on the comparison between the two orogens we discuss: (1) the nature and depth of decoupling levels inherited from hyperextension; (2) the implications for restorations and interpretations of orogenic roots (former hyperextended domains vs. lower crust only); and (3) the nature and major role of buttresses in controlling the final stage of collisional processes. Eventually, we discuss the variability of the role of rift-inheritance in building Alpine-type orogens. The Pyrenees seem to represent one extreme, where rift-inheritance is important at different stages of collisional processes. In contrast, in the Alps the role of rift-inheritance is subtler, likely because of its more complex and polyphase compressional deformation history.

  3. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China (United States)

    Hu, Jun; Wang, He; Wang, Min


    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  4. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea (United States)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu


    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  5. Neodymium and strontium isotope study of ophiolite and orogenic lherzolite petrogenesis

    International Nuclear Information System (INIS)

    Richard, P.; Allegre, C.J.; Paris-7 Univ., 75


    Neodymium isotopic analyses have been measured on nine ophiolites and four orogenic lherzolites. Epsilonsub(Nd) varies from +12 to +3 in the ophiolites and from +18 to +2 in the orogenic lherzolites. The majority of the analyses plot on a epsilonsub(Nd)-epsilonsub(Sr) correlation line as defined by Nd and Sr isotopic analyses of oceanic basalts. However, certain ophiolitic and lherzolitic samples exhibit high 87 Sr/ 86 Sr ratios and as such lie to the right of the correlation line towards seawater compositions. From these data one can postulate several origins for ophiolites including that of mid-ocean ridges and ocean islands. If the orogenic lherzolites are interpreted as representative of the mantle occurring below active ridges a more complex model is required involving mantle heterogeneity and multi-episodic chemical fractionation starting prior to 2 Ga ago. (orig.)

  6. The earliest Paleoproterozoic supracrustal rocks in Koillismaa, northern Finland – their petrographic and geochemical characteristics and lithostratigraphy

    Directory of Open Access Journals (Sweden)

    Laura S. Lauri


    Full Text Available The 2.44 Ga Koillismaa layered igneous complex (KLIC in northern Finland is interpreted to have formed as a consequence of early Paleoproterozoic continental rifting. Associated with the mafic layered intrusions are felsic to intermediate volcanic and plutonic rocks of approximately the same age. The supracrustal rocks on top of the KLIC have been divided into three stratigraphic groups. The lowermost of these, the Sirniö Group, is thought to predate the KLIC and thus to represent the original roof. The overlying Kynsijärvi andHautavaara Groups are somewhat younger than the layered intrusions. The Sirniö Group comprises two formations of felsic and intermediate volcanic rocks. The Sirniövaara Formation, also called as the Koillismaa granophyre, consists of a thick rhyodacitic unit withgranophyric groundmass and some breccia interlayers. The Sirniövaara rhyodacite consists of plagioclase, quartz and biotite. Minor and accessory phases include ilmenite, magnetite, apatite, titanite, zircon and fluorite. Low-grade metamorphic minerals such as chlorite, epidote, carbonate and sericite are also commonly present. The granophyric texture is considered to have formed as a consequence of contact metamorphism and hydrothermal alteration associated with the emplacement of the KLIC. Above the Sirniövaara Formation is the Unijoki Formation, a heterogeneous group of felsic to intermediate volcanic rocks. The felsic rocks of the Unijoki Formation resemble the Sirniövaara rhyodacite whereas the intermediate rocks generally contain amphibole, instead of biotite, as the predominant mafic mineral. The rocks of the Sirniö Group show A-type geochemical character, e.g., high alkali content, Fe/Mg, 10000*Ga/Al, LREE, Y and Zr. In addition to primary compositional variation, metamorphic, and possibly hydrothermal, disturbance are recorded in the Sirniö Group lithologies. We consider them to be an example of early Paleoproterozoic rift-related volcanic rocks

  7. Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt (CAOB) (United States)

    Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao


    The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.

  8. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves


    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  9. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.


    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  10. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  11. Kinematics of post-orogenic extension and exhumation of the Taku Schist, NE Peninsular Malaysia

    NARCIS (Netherlands)

    Md Ali, M.A.; Willingshofer, E.; Matenco, L.; Francois, T.; Daanen, T.P.; Ng, T.F.; Taib, N.I.; Shuib, M.K.


    Abstract Recent studies imply that the formation and evolution of many SE Asian basins was driven by extensional detachments or systems of low-angle normal faults that created significant crustal exhumation in their footwalls. In this context, the architecture of the Triassic Indosinian orogen

  12. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar (United States)

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.


    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  13. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.


    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  14. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization (United States)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen


    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  15. Magnetic fabric transposition in folded granite sills in Variscan orogenic wedge

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Calassou, T.; Schulmann, K.; Hrouda, F.; Štípská, P.; Hasalová, Pavlína; Míková, J.; Magna, T.; Mixa, P.


    Roč. 94, January (2017), s. 166-183 ISSN 0191-8141 R&D Projects: GA ČR GA14-15632S Institutional support: RVO:67985530 Keywords : orogenic sill * AMS fabric * folding Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.408, year: 2016

  16. Deformation correlations, stress field switches and evolution of an orogenic intersection: The Pan-African Kaoko-Damara orogenic junction, Namibia

    Directory of Open Access Journals (Sweden)

    Ben Goscombe


    Full Text Available Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System. Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing, and switches between different deformation events. Horizontal principle compressive stress rotated clockwise ∼180° in total during Kaoko Belt evolution, and ∼135° during Damara Belt evolution. At most stages, stress field variation is progressive and can be attributed to events within the Damara Orogenic System, caused by changes in relative trajectories of the interacting Rio De La Plata, Congo, and Kalahari Cratons. Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ∼590 Ma, involving E–W directed shortening, progressing through different transpressional states with ∼45° rotation of the stress field to strike-slip shear under NW–SE shortening at ∼550–530 Ma. Damaran orogenesis evolved from collision at ∼555–550 Ma with NW–SE directed shortening in common with the Kaoko Belt, and subsequently evolved through ∼90° rotation of the stress field to NE–SW shortening at ∼512–508 Ma. Both Kaoko and Damara orogenic fronts were operating at the same time, with all three cratons being coaxially convergent during the 550–530 Ma period; Rio De La Plata directed SE against the Congo Craton margin, and both together over-riding the Kalahari Craton margin also towards the SE. Progressive stress field rotation was punctuated by rapid and significant switches at ∼530–525 Ma, ∼508 Ma and ∼505 Ma. These three events included: (1 Culmination of main phase orogenesis in the Damara Belt, coinciding with maximum burial and peak metamorphism at 530–525 Ma. This occurred at the same time as termination of transpression and initiation of

  17. The Russian-Kazakh Altai orogen: An overview and main debatable issues

    Directory of Open Access Journals (Sweden)

    Inna Safonova


    Full Text Available The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB, between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite- and turbidite (graywacke-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are: (1 Altai-Mongolian terrane (AMT; (2 subduction-accretionary (Rudny Altai, Gorny Altai and collisional (Kalba-Narym terranes; (3 Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ. The evolution of this orogen proceeded in five major stages: (i late Neoproterozoic–early Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii Ordovician–Silurian passive margin; (iii Devonian–Carboniferous active margin and collision of AMT with the Siberian continent; (iv late Paleozoic closure of the PAO and coeval collisional magmatism; (v Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian-Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin, age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.

  18. The land Piedra Alta : A geotectonic unit in the juvenile Paleoproterozoic craton del Rio de la Plata ( Uruguay )

    International Nuclear Information System (INIS)

    Preciozzi, F.; Sanchez Bettucci, L.; Oyhantcabal, P.; Pecoits, E.; Aubet, N.; Peel, E.; Basei, M.


    Brazilian Shield (Rio Grande do Sul) where Paleoproterozoic os land, located in the region Western, are covered by Paleozoic sediments of the Paraná Basin. The Neoproterozoic domains develop east of the Precambrian shield of Uruguay. The Exceptions to this comparative correlation are represented by the Campanero Unit and Field Suspect Punta del Este, only identified in Uruguayan territory. The Piedra Alta (Río de la Plata Craton, ss.) Is composed of a complex gneissic-migmatítico plant, essentially composed of porphyritic foliated granitoids interspersed with different types of mafic rocks Paleoproterozoicas Migmatites and, at least in the southern portion, where four metamorphic belts of different degree and extent are interleaved (Montevideo, San Jose, Cerros de San Juan and Arroyo Grande). Granites, granodiorites, and bodies mafic, of different composition, age and location environment are intruding the whole ground. The last magmatic activity is represented by a swarm of dykes aged mafic ca. 1750 - 1790 Ma (Bossi and Pitched, 1991, Halls et al., 2001) and meta tuffs acid intercalated in the Belt of Los Cerros de San Juan whose ages by the method U / Pb located in the vicinity of 1753 ± 5 Ma (Preciozzi et al, in prep.). The Piedra Alta Terrane no evidence of being affected by events tectonotérmicos Neoproterozoic and is separated from the Block Valentines by the shear zone Sarandi del Yi (Preciozzi et al., 1979). From geochronological studies U / Pb, Rb / Sr, K / Ar and Sm / Nd recent, carried out on the rocks Intrusive and Piedra Alta Land gneisses, it has been possible to observe a set of events that They affected the Land

  19. The Petäjäskoski Formation, a new lithostratigraphic unit in the Paleoproterozoic Peräpohja Belt, northern Finland


    Markus Kyläkoski; Eero Hanski; Hannu Huhma


    This paper gives the first description of a newly-recognized, basin-wide metasedimentary unit in the Paleoproterozoic (~2.4–1.9 Ga) Peräpohja Belt, northern Finland. The unit, which is named the Petäjäskoski Formation (PFm) after the single location where the rocks are known to be exposed, is situated stratigraphically in the middle part of the Kivalo Group between the quartzites of the>2.22 Ga Palokivalo Formation and the mafic volcanic rocks of the ~2.1 Ga Jouttiaapa Formation.The bulk of t...

  20. Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen (United States)

    Goscombe, Ben; Hand, Martin; Gray, David


    The Kaoko Belt portion of the Damara Orogen, Namibia, is the deeply eroded core of a sinistral transpressional orogen that has half-flower structure geometry centred on the major, 4-5-km-wide Purros Mylonite Zone. Formed between the Congo Craton in the east and Rio De La Plata Craton in Brazil, the Kaoko Belt represents the northern coastal arm of a triple junction within the Pan-African Orogenic System. Consisting of reworked Archaean, Palaeoproterozoic and Mesoproterozoic basement and a cover of Neoproterozoic Damara Sequence, the Kaoko Belt can be sub-divided structurally into three parallel NNW-trending zones. The Eastern Kaoko Zone comprises sub-greenschist facies shelf carbonates that have been uprightly folded. The Central Kaoko Zone contains a slope and deep basin facies succession that has experienced intense deformation, including pervasive reworking of basement into large-scale east-vergent nappes. The Western Kaoko Zone is predominantly deep basin facies of high metamorphic grade intruded by numerous granites. It has experienced intense wrench-style deformation with formation of upright isoclines and steep, crustal-scale shear zones. The Kaoko Belt evolved through three distinct phases of a protracted Pan-African Orogeny in the late Neoproterozoic to Cambrian. (1) An early Thermal Phase (M 1) was responsible for pervasive partial melting and granite emplacement in the Western Kaoko Zone from 656 Ma. (2) The Transpressional Phase produced the geometry of the belt by progressive sinistral shearing between 580 and 550 Ma. Deformation was continuously progressive through two stages and involved both temporal and spatial migration of deformation outwards towards the margin. The early strike-slip Wrench-Stage produced a high-strain L-S fabric by sub-horizontal transport. Deformation became progressively more transpressive, with high-angle convergence and flattening strains during the Convergent-Stage. In this stage, strike-slip movements evolved through

  1. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.


    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  2. The susceptibility of large river basins to orogenic and climatic drivers (United States)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm


    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect

  3. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang


    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  4. Recent advances about of the orogenic modern belt (1000-500 M.A.) in Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.


    Progress in lithologic, structural, tectonic and geo tectonic data about a 1000-500 m.y.orogenic belt developed at the East of Uruguay, arrived in the 80, are here described. Conclusions are mainly based on the 1/100.000 scale geologic map of a 6000 sq. km comprised between Sierra Ballena, Sierra de Animas, Pan de Azucar and Mariscala. These new data clearly states the lithological distribution and contribute to guide strategic prospect ion.

  5. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri


    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  6. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen


    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  7. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model (United States)

    Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu


    The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.

  8. Geochemical element mobility during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, Philippe


    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary basins. The purpose of this study is to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study some natural analogues of deep geological nuclear waste storage. Five research topics were studied: 3D modelling of the distribution of normative minerals and trace elements on a basin-wide scale; U-Pb and Rb-Sr systematics; average chemical age estimation; thermodynamic modelling of the major mineralogical assemblages; U-Pb geochronology of uranium oxides. Some elements have remained immobile (Zr) since their initial sedimentary deposition, or were transferred from one phase to another (Al, Th). Other elements have been transported during fluid flow events that occurred: (1) on a basin wide scale during diagenesis (REE, Y, Sr, Fe), (2) at the unconformity and in the vicinity of the fault zones that represent preferential fluid flow pathways between the basement and the sandstone cover (U, Ni, As, B, Mg, K, Fe, Sr, REE), (3) during the late fault reactivation events associated with the basin uplift (U, Pb, Ni, S, Sr, REE). The successive tectonic events related to the geodynamical context that lead to the formation of these high-grade U concentrations (1460 Ma, 1335 Ma and 1275 Ma in the McArthur River deposit), did not however systematically occur in the whole basin (1275 Ma only at Shea Creek). The exceptionally high grade and tonnages of some deposits seem to be related to a larger number of U

  9. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens (United States)

    Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin


    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and

  10. The effect of flexural isostasy on the response time of orogenic systems (United States)

    Braun, J.; Margirier, A.; Guerit, L.


    The concept of orogenic steady-state implies that mountain belts can reach a dynamic balance between uplift and erosion in order to maintain a quasi-constant shape. The final morphology of the mountain will be a function of the relative efficiency between uplift and erosion and is therefore likely to be modulated by climate. However, reaching such a steady-state cannot be instantaneous and there must exist a time lag between the onset of convergence and the full development of the mountain topography. Similarly, when an orogenic system is subject to a marked change in convergence rate or in climatic conditions, it takes a certain time for it to adapt to such a change and develop a new steady-state morphology. It is during these transient phases that the nature and efficiency of the interactions between tectonics and climate are most likely to be constrained by observations and understood. The duration of this transient stage remains, however, poorly constrained and understood. As shown by many authors (Whipple and Tucker, 1999, for example) the rate at which tectonic systems evolve to reach steady-state is likely controlled by climate and rock strength, which both determine the efficiency of erosional processes, and the rate of uplift. Here we show that isostasy also plays a very important role in determining the length of the transient phase and that, depending on the level of isostatic adjustment, which in turn depends on the flexural strength of the underlying lithosphere, isostasy can change the time it takes for an orogenic system to reach steady-state by an order of magnitude, i.,e. from a few millions to a few tens of millions of years. This has very important implications. It may explain why many young orogenic systems display an increase in uplift and erosion rate millions of years after the onset of collision and that, in these situations, such an increase does not require a steady change in tectonic and/or climate conditions/forcing. We also show that

  11. Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens (United States)

    Şengör, A. M. Celâl; Özeren, Mehmet Sinan; Keskin, Mehmet; Sakınç, Mehmet; Özbakır, Ali Değer; Kayan, İlhan

    Post-collisional magmatism may be generated by extensive crustal melting in Tibet-type collisional environments or by falling out of slabs from under giant subduction-accretion complexes in Turkic-type collisional orogens giving rise to decompression melting of the asthenospheric mantle replacing the removed oceanic lithosphere. In Turkic-type post-collisional magmatism, the magmatic products are dominantly alkalic to peralkalic and greatly resemble those of extensional regions giving rise to much confusion especially in interpreting old collisional orogenic belts. Such magmatic regions are also host to a variety of economically valuable ore deposits, including gold. One place in the world where today active, Turkic-type post-collisional magmatism is present is the eastern Anatolian high plateau, produced after the terminal Arabia/Eurasia collision in the late Miocene. The plateau is mostly underlain by the late Cretaceous to Oligocene East Anatolian Accretionary Complex, which formed south of the Rhodope-Pontide magmatic arc. This subduction-accretion complex has been further shortening since the collision, but it has also since been domed and became almost entirely covered by at least 15,000 km 3 of volcanic rocks. The volcanic rocks are calc-alkalic in the north, transitional in the middle, and alkalic in the south of the plateau. Where the crust is thinnest today (less than 38 km), the volcanics are derived almost entirely from an enriched mantle. The ages of the volcanics also become younger from north to south, from about 11 Ma to possibly 17th century AD. We interpret the origin of the magmatic rocks as the result of decompression melting of the asthenospheric mantle sucked towards the exposed base of the East Anatolian Accretionary Complex as the oceanic lithosphere beneath it fell out. The lower density of the hot asthospheric material was the cause of the doming. We believe that similar processes dominated the post-collisional tectonics of such vast

  12. Geochemical elements mobility during the history of a paleo-Proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, P.


    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary. The purpose of this study was to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study the mobility of some elements in a context that shows analogies with deep geological nuclear waste disposals. The natural analogies of interest include (i) uranium oxide and spent nuclear fuel; (ii) clay alteration halo and near field barrier, (iii) Athabasca sandstone cover and far-field barrier. Five research axis: (1) 3D modelling of the distribution of the main minerals and of some trace elements (U, Pb, Zr, Th, REE, Y, Rb, Sr) on a basin-wide scale and in the U mineralized zones, using the Gocad software. The models have been compared with detailed mineralogical studies performed on selected samples. (2) Pb-Pb and Rb-Sr systematics by TIMS (3) Mass balance calculation of the average Pb/U ratio at the scale of the deposit to evaluate whether the present day amount of radiogenic lead is sufficient to explain a U deposition in one or several episodes (geostatistical tools on Gocad) (4) Thermodynamic modelling of the mineralogical evolution of the Athabasca basin, considering the main mineral present in the sandstone (Phreeqc and Supcrt softwares) (5) U-Pb geochronology of uranium oxides using a 3 step approach: (i) optical and scanning electron microscopy; (ii) electron microprobe; (iii) ion microprobe (SIMS). The purpose was to study the long term stability of the uranium oxides and to characterise the

  13. Fault Dating in the US Rockies and Large Regional Extent of Deformation Pulses Along the Sevier Orogen of North America. (United States)

    van der Pluijm, B.; Lynch, E. A.; Pana, D.; Yonkee, A.


    Recent Ar dating of clay-rich fault rock in the Canadian Rockies identified multiple orogenic pulses: Late Jurassic (163-146 Ma), Mid-Cretaceous (103-99 Ma), Late Cretaceous (76-72 Ma) and Eocene (54-52 Ma; Pana and van der Pluijm, GSAB 2015). New dating in the US Rockies combined with ages in the most frontal section along an Idaho-Wyoming transect show a remarkably similar age pattern: Meade Thrust, 108-102 Ma; (S)Absaroka Thrust, 73 Ma; Darby-Bear Thrust, 56-50 Ma. These radiometric fault ages in the US Rockies match field and tectono-stratigraphic predictions, analogues to those in the Canadian Rockies. Thus, a remarkably long (>1500km) lateral tract along the North American Sevier orogen is characterized by at least three major orogenic pulses that are structurally contiguous. These orogenic pulses are progressively younger in the direction of easterly thrust fault motion (toward cratonic interior) and are separated by long periods of relative tectonic quiescence. We interpret the extensive regional continuity of deformation pulses and tectonic quiescence along the Sevier Orogen as the result of three plate reorganization events in western North America since the Late Jurassic.

  14. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying


    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  15. A study of the hydrothermal alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri


    Hypogene hydrothermal minerals have been identified by short-wave infrared spectroscopy in hydrothermally altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are hydrothermal products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of hydrothermally altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.

  16. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution (United States)

    Schiffer, C.; Petersen, K. D.


    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often

  17. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora (United States)

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.


    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  18. Geological characters and petrological characters of metamorphosed medium-acidic intrusive complexes in Ludong Orogenic Belt,China

    Institute of Scientific and Technical Information of China (English)

    凌贤长; 胡庆立; 王丽霞


    Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino-Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium-acidic intrusive complexes, which can be divided into four types, that's, quartz dioritz, granite dioritz, monzonitic granite and undertint monzonitic granite, principal minerals are plagioclases, potassium feldspars and quartzs, minor minerals are hornblendes, biotites, clinopyxenes and garnets, accessory mineral types and assemblages are very similar, specially, various rocks are mainly fine-grained textures. They have the history of regional amphibolite facies metamorphism and deep-middle-shallow structural layer deformation, and are changed into various gneiss and tectonic system. There are many xenolithes of middle Proterozoic eclogite-host rock extrahigh-high pressure metamorphic complexes, a small xenolithes of early Proterozoic layered metamorphite system and granulites, and ultrabasic-basic rocks of various epoches in the metamorphosed medium-acidic intrusive complexes.

  19. Evolving lithospheric flexure and paleotopography of the Pyrenean Orogen from 3D flexural modeling and basin analysis (United States)

    Curry, M. E.; van der Beek, P.; Huismans, R. S.; Muñoz, J. A.


    The Pyrenees are an asymmetric, doubly-vergent orogen with retro- and pro- foreland basins that preserve a record of deformation since the Mesozoic. The extensive research and exploration efforts on the mountain belt and flanking foreland basins provide an exceptional dataset for investigating geodynamics and surface processes over large spatial and temporal scales in western Europe. We present the results of a numerical modeling study investigating the spatio-temporal variation in lithospheric flexure in response to the developing orogen. We employ a finite element method to model the 3D flexural deformation of the lithosphere beneath the Pyrenean orogen since the onset of convergence in the late Cretaceous. Using subsurface, geophysical, and structural data, we describe the evolving geometry of both the French Aquitaine and Spanish Ebro foreland basins at the present (post-orogenic), the mid-Eocene (peak orogenic), the Paleocene (early orogenic), and the end of the Cretaceous (pre- to early orogenic). The flexural modeling provides insight into how both the rigidity of the lithosphere and the paleotopographic load have varied over the course of orogenesis to shape the basin geometry. We find that the overriding European plate has higher rigidity than the subducting Iberian plate, with modern Effective Elastic Thickness (EET) values of 20 ± 2 and 12 ± 2 km, respectively. Modeling indicates that the modern rigidity of both plates decreases westward towards the Bay of Biscay. The lithospheric rigidity has increased by 50% since the Mesozoic with early Cenozoic EET values of 13 ± 2 and 8 ± 1 km for the European and Iberian plates, respectively. The topographic load began increasing with convergence in the late Cretaceous, reaching modern levels in the central and eastern Pyrenees by the Eocene. In contrast, the topographic load in the western Pyrenees was 70% of the modern value in the Eocene, and experienced topographic growth through the Oligo-Miocene. The

  20. Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia) (United States)

    Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.


    A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.

  1. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. (United States)

    Song, Wenlei; Xu, Cheng; Smith, Martin P; Kynicky, Jindrich; Huang, Kangjun; Wei, Chunwan; Zhou, Li; Shu, Qihai


    Carbonatites, usually occurring within intra-continental rift-related settings, have strong light rare earth element (LREE) enrichment; they rarely contain economic heavy REE (HREE). Here, we report the identification of Late Triassic HREE-Mo-rich carbonatites in the northernmost Qinling orogen. The rocks contain abundant primary HREE minerals and molybdenite. Calcite-hosted fluid inclusions, inferred to represent a magmatic-derived aqueous fluid phase, contain significant concentrations of Mo (~17 ppm), reinforcing the inference that these carbonatitic magmas had high Mo concentrations. By contrast, Late Triassic carbonatites in southernmost Qinling have economic LREE concentrations, but are depleted in HREE and Mo. Both of these carbonatite types have low δ 26 Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution for REE enrichment in their mantle sources. We propose that the carbonatites in the Qinling orogen were formed, at least in part, by the melting of a subducted carbonate-bearing slab, and that 10 Ma younger carbonatite magmas in the northernmost Qinling metasomatized the thickened eclogitic lower crust to produce high levels of HREE and Mo.

  2. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid


    , carbonate and quartz to form veins and breccia but did not generate significant volumes of iron ore. Ore stage 4 involved Mesozoic(?) to recent supergene oxidation and hydration in a weathering environment reaching down to depths of ˜100 to maximum 200 m below surface. Supergene ore formation involved goethite replacement of dolomite and quartz as well as martitisation. Important `ground preparation' for supergene modification and upgrade were mainly the formation of steep D1 to D4 structures, steep BIF/basalt margins and particularly the syn-D1 to syn-D2 carbonate alteration of BIF that is most susceptible to supergene dissolution. The Windarling deposits are structurally controlled, supergene-modified hydrothermal iron ore systems that share comparable physical, chemical and ore-forming characteristics to other iron ore deposits in the Yilgarn Craton (e.g. Koolyanobbing, Beebyn in the Weld Range, Mt. Gibson). However, the remarkable variety in pre-, syn- and post-deformational ore textures (relative to D1 and D2) has not been described elsewhere in the Yilgarn and are similar to the ore deposits in high-strain zones, such as of Brazil (Quadrilátero Ferrífero or Iron Quadrangle) and Nigeria. The overall similarity of alteration stages, i.e. the sequence of hydrothermal carbonate introduction and hypogene leaching, with other greenstone belt-hosted iron ore deposits supports the interpretation that syn-orogenic BIF alteration and upgrade was crucial in the formation of hypogene-supergene iron ore deposits in the Yilgarn Craton and possibly in other Archean/Paleoproterozoic greenstone belt settings worldwide.

  3. Cenozoic landforms and post-orogenic landscape evolution of the Balkanide orogen: Evidence for alternatives to the tectonic denudation narrative in southern Bulgaria (United States)

    Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.


    Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback

  4. Geochemistry, geochronology and Nd isotopes of the Gogó da Onça Granite: A new Paleoproterozoic A-type granite of Carajás Province, Brazil (United States)

    Teixeira, Mayara Fraeda Barbosa; Dall'Agnol, Roberto; Santos, João Orestes Schneider; de Sousa, Luan Alexandre Martins; Lafon, Jean-Michel


    The Gogó da Onça Granite (GOG) comprise a stock located in the Carajás Province in the southeastern part of Amazonian Craton near its border with the Araguaia Belt. Three facies were identified in the pluton: biotite-amphibole granodiorite, biotite-amphibole monzogranite and amphibole-biotite syenogranite. The GGO crosscut discordantly the Archean country rocks and are not foliated. All Gogó da Onça Granite varieties are metaluminous, ferroan A2-subtype granites with reduced character. The major and trace element behavior suggests that its different facies are related by fractional crystallization. Zircon and titanite U-Pb SHRIMP ages show that the pluton crystallized at ∼1880-1870 Ma and is related to the remarkable Paleoproterozoic magmatic event identified in the Carajás Province. Whole-rock Nd isotope data (TDM ages 2.78 to 2.81, εNd values of -9.07 to -9.48) indicate that the GOG magmas derived from an Archaean source compatible with that of some other Paleoproterozoic suites from Carajás Province. The GOG show significant contrasts with the Jamon and Velho Guilherme Paleoproterozoic suites from Carajás Province and the inclusion of the Gogó da Onça granite in any of these suites is not justified. The GOG is more akin to the Serra dos Carajás Suite and to the Seringa and São João granites of Carajás and to the Mesoproterozoic Sherman granite of USA and the Paleoproterozoic Suomenniemi Batholith of Finland. This study puts in evidence the relevance of precise geochronological data and estimation of magma oxidation state in the characterization and correlation of A-type granites.

  5. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen (United States)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong


    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  6. Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Upton, P.; MacKenzie, D.J.


    Orogenic hydrothermal systems in the South Island of New Zealand were active during Mesozoic and late Cenozoic collisional deformation and metamorphism of greywacke/schist terranes. Observations on the currently active mountain-building environment yield insights on processes occurring in the upper 5-15 km of the crust, and observations on an adjacent lithologically identical exhumed ancient mountain belt provide information on processes at 10-20 km in the crust. Hydrothermal fluids were mainly derived from metamorphic dehydration reactions and/or circulating topographically driven meteoric water in these mountain belts. Three geochemically and mineralogically different types of hydrothermal alteration and vein mineralisation occurred in these orogenic belts, and gold enrichment (locally economic) occurred in some examples of each of these three types. The first type of alteration involved fluids that were in or near chemical equilibrium with their greenschist facies host rocks. Fluid flow was controlled by discontinuous fractures, and by microshears and grain boundaries in host rocks, in zones from metres to hundreds of metres thick. Vein and alteration mineralogy was similar to that of the host rocks, and included calcite and chlorite. The second type of alteration occurred where the fluids were in distinct disequilibrium with the host rocks. Fracture permeability was important for fluid flow, but abundant host rock alteration occurred as well. The alteration zones were characterised by decomposition of chlorite and replacement by ankeritic carbonate in zones up to tens of metres thick. The mineralising fluid was deep-sourced and initially rock-equilibrated, with some meteoric input. The third type of mineralisation was controlled almost exclusively by fracture permeability, and host rock alteration was minor (centimetre scale). This mineralisation type commonly involved calcite and chlorite as vein and alteration minerals, and mineralisation fluids had a major

  7. Origin and structure of major orogen-scale exhumed strike-slip (United States)

    Cao, Shuyun; Neubauer, Franz


    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  8. Evaluation of the Orogenic Belt Hypothesis for the Formation of Thaumasia, Mars (United States)

    Nahm, A. L.; Schultz, R. A.


    The Thaumasia Highlands (TH) and Solis Planum are two of the best-known examples of compressional tectonics on Mars. The TH is a region of high topography located in the southern portion of the Tharsis Province, Mars. Solis Planum is located in eastern Thaumasia. Two hypotheses for the formation of this region have been suggested: sliding on a weak horizon or thrusting analogous to orogenic wedges on Earth. Both hypotheses require a shallowly dipping to sub-horizontal weak horizon below Thaumasia. Wrinkle ridges in Solis Planum are also inferred to sole into a décollement. If Thaumasia formed by thrusting related to sliding on a décollement, then certain conditions must be met as in critical taper wedge mechanics (CTWM) theory. If the angle between the surface slope and the basal décollement is less than predicted by the critical taper equation, the 'subcritical' wedge will deform internally until critical taper is achieved. Once the critical taper has been achieved, internal deformation ceases and the wedge will slide along its base. Formation of orogenic belts on Earth (such as the Central Mountains in Taiwan) can be described using CTWM. This method is applied here to the Thaumasia region on Mars. The surface slope (alpha) was measured in three locations: Syria Planum-Thaumasia margin, Solis Planum, and the TH. Topographic slopes were compared to the results from the critical taper equation. Because the dip of the basal décollement (beta) cannot be measured directly as on Earth, the dip angle was varied at 0 - 10 degrees; these values span the range of likely values based on terrestrial wedges. Pore fluid pressure (lambda) was varied between 0 (dry) and 0.9 (overpressured); these values span the full range of this important unknown parameter. Material properties, such as the coefficients of internal friction and of the basal décollement, were varied using reasonable values. Preliminary results show that for both reasonable (such as lambda = 0, mu b = 0

  9. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan-Tianshan orogenic collages (NW China) (United States)

    Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang


    The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.

  10. Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes (United States)

    Wegmann, S.F.G.; Franke, K.L.; Hughes, S.; Lewis, R.Q.; Lyons, N.; Paris, P.; Ross, K.; Bauer, J.B.; Witt, A.C.


    The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post-orogenic landscape remain enigmatic. The non-glaciated Cullasaja River basin of south-western North Carolina, with uniform lithology, frequent debris flows, and the availability of high-resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post-orogenic landscape through the lens of hillslope-channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris-flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint-driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area-elevation and slope distributions is presented that may be representative of post-orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel- hillslope coupling is an important factor in tectonically-inactive (i

  11. Contributions to the petrography, geochemistry and geochronology (U-Pb and Sm-Nd) of the Paleoproterozoic effusive rocks from Iricoume Group, Amazonian Craton, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Suelen Nonata de Souza; Nascimento, Rielva Solimairy Campelo do, E-mail:, E-mail: [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Inst. de Geociencias; Souza, Valmir da Silva; Dantas, Elton Luiz, E-mail:, E-mail: [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Geociencias; Valerio, Cristovao da Silva, E-mail: [Universidade Federal de Roraima (UFRR), Boa Vista, RR (Brazil). Inst. de Geociencias


    The southernmost region of the Guyana shield, Amazonian craton, hosts large record of Paleoproterozoic effusive rocks of the Iricoume Group. They present remarkably well-preserved igneous textures and structures. The SiO{sub 2} contents reveal a bimodal association marked by a compositional gap between acid (SiO{sub 2} > 67 wt%) and intermediate (SiO{sub 2} < 57.7 wt%) rocks. The acid effusive rocks are rhyolites to rhyodacites with high SiO{sub 2}, alkali, Rb, Zr, Nb + Ta, La + Ce and 104 Ga/Al content and low Fe{sub 2}O{sub 3tot}, TiO{sub 2}, CaO, Sr and Co content. They exhibit subalkaline, metaluminous-to-peraluminous compositions, and geochemically compatible to A-type magmatism emplaced in post-collisional to within-plate tectonic settings. The intermediate rocks are andesitic/basalt to andesite relatively high contents of TiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3total}, MgO, CaO, Sr and Co; low SiO{sub 2}, K{sub 2}O, Rb, Zr, Nb + Ta, La + Ce. They have subalkaline and metaluminous geochemical composition and plot on within-plate basalt field. The acid rocks crystallized at 1882 ± 11 Ma in U-Pb analyses for LA-MC-ICPMS zircon data. The Sm-Nd isotopic data on all rocks reveal a Nd TDM model ages between 2.59 and 2.16 Ga and ε{sub Nd}(t) values between -5.78 and 0.03, indicate that the magmatic evolution was related to the reworking of older Paleoproterozoic at the Rhyacian-Siderian period, continental crust (Transamazonian crust-forming event) with some mixing with a limited amount mantle-derived magmas or with contamination by Archean crust. The petrographic, geochemical and geochronological data presented in this paper suggest a within-plate to post-collisional tectonic setting for the Iricoume volcanism, involving lower crust uplift and generation of basalt magma in an extensional regime. (author)

  12. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA (United States)

    Hiatt, Eric E.; Pufahl, Peir K.; Edwards, Cole T.


    Phosphorus is a nutrient fundamental to life and when it precipitates in modern environments bacteria are intimately involved in its release, concentration, and mineralization. Preserved fossil bacteria in phosphate crusts and grains from the ca. 1850 million-year-old Bijiki Iron Formation Member of the Michigamme Formation, Michigan provide insight into the longevity and nature of this relationship. The Michigamme Formation accumulated near the end of the Earth's initial phosphogenic episode (ca. 2.2 and 1.8 Ga) to produce one of the first granular phosphorites. Phosphatic lithofacies consist of fine- to medium-sand-sized francolite peloids concentrated on bedding surfaces in peritidal facies. Granular beds are up to 2 cm thick and peloids are often partially to completely replaced by dolomite and chert. The grains contain organic matter and pyrite framboids that suggest bacterial breakdown of organic matter and bacterial sulfate reduction. The peritidal nature of phosphorite in the Michigamme Formation is in sharp contrast to Phanerozoic phosphogenic environments in deeper coastal upwelling settings. Peritidal settings were well suited for phosphogenesis under the very low oxygen and low dissolved sulfate levels of the Paleoproterozoic as cyanobacteria produced oxygen in shallow water and evaporation led to increased sulfate concentrations. Such concomitant processes helped establish focused redox interfaces in the sediment that chemosynthetic bacterial communities (sulfur oxidizers, reducers, forms that concentrate P, and possibly iron oxidizers) could exploit. Phosphate released from organic matter by heterotrophic bacteria and Fe-redox pumping was further concentrated by these chemotrophs; a process that forms late Neoproterozoic to Phanerozoic phosphorites but on a much larger scale. This early example of a granular phosphorite demonstrates that, like their Phanerozoic counterparts, Paleoproterozoic phosphorites are the concentrated indirectly biomineralized

  13. U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): Unravelling the structure of the Río de la Plata Craton (United States)

    Pamoukaghlián, Karina; Gaucher, Claudio; Frei, Robert; Poiré, Daniel G.; Chemale, Farid; Frei, Dirk; Will, Thomas M.


    The Río de la Plata Craton is a continental block that crops out in Uruguay, eastern Argentina, southernmost Brazil and Paraguay. It comprises in Uruguay the Piedra Alta, Tandilia and Nico Pérez terranes, separated by the Colonia and the Sarandí del Yí megashears. The La Tuna Granite, which intrudes the Araminda metasandstones in the Tandilia Terrane, was considered Cambrian in age and the intruded sandstones were assigned to the Neoproterozoic Piedras de Afilar Formation. We show that the granite is Paleoproterozoic in age and that the host metasandstones do not belong to the Piedras de Afilar Formation, but to the Paleoproterozoic Montevideo Formation. U-Pb LA ICP-MS of zircon ages for the La Tuna Granite yielded a concordant crystallization age of 2156 ± 26 Ma. Furthermore a metamorphic event at 2010 ± 9 Ma is revealed by Pb stepwise leaching dating of monazites. U-Pb detrital zircon ages of the host Araminda metasandstone yield an upper intercept discordia age of 2152 ± 29 Ma, which marks the intrusion of the La Tuna pluton, and which is in accordance with the zircon U-Pb LA ICP MS constraints. A concordant U-Pb detrital zircon age of 2465 ± 40 Ma provides a maximum depositional age constraint for the metapsammites. Comparing quartz arenites of the Ediacaran Piedras de Afilar Formation with the Araminda metaquartzites, we conclude that they are very similar regarding petrology but they differ in age and metamorphic overprint. Detrital zircons in quartz arenites of the Piedras de Afilar Formation show youngest ages of 1.0 Ga. On the other hand, detrital zircons recovered from the Araminda metasandstones and the age of the intruding granite allow interpreting a depositional age between 2465 and 2150 Ma. Nd model ages show crustal residence times in average more than 200 myr older for the Tandilia Terrane both in Uruguay and Argentina, with a significant Neoarchean component, which is lacking in the Piedra Alta Terrane. Whereas the Piedra Alta Terrane was


    Directory of Open Access Journals (Sweden)

    D. P. Gladkochub


    Full Text Available The origin of the Central-Asian Orogenic Belt (CAOB, especially of its northern segment nearby the southern margin of the Siberian craton (SC is directly related to development and closure of the Paleo-Asian Ocean (PAO. Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area to south-east (Baikal area and further to north-east (Patom area. Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions.

  15. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model (United States)

    Yakubchuk, Alexander


    The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust

  16. 40Ar-39Ar method for age estimation: principles, technique and application in orogenic regions

    International Nuclear Information System (INIS)

    Dalmejer, R.


    A variety of the K-Ar method for age estimation by 40 Ar/ 39 Ar recently developed is described. This method doesn't require direct analysis of potassium, its content is calculated as a function of 39 Ar, which is formed from 39 K under neutron activation. Errors resulted from interactions between potassium and calcium nuclei with neutrons are considered. The attention is paid to the technique of gradual heating, used in 40 Ar- 39 Ar method, and of obtaining age spectrum. Aplicabilities of isochronous diagram is discussed for the case of presence of excessive argon in a sample. Examples of 40 Ar- 39 Ar method application for dating events in orogenic regions are presented

  17. The Pan-African Damara Orogen of South West Africa/Namibia

    International Nuclear Information System (INIS)

    Miller, R.McG.


    The structural grain of the Damara orogen points to a reversal of spreading and to north-westward subduction of the African cratons below a South American craton and of the Kalahari Craton below the Congo Craton. D 1 recumbent folding was followed by intrusion of 650 m.y.-old granitic rocks, uplift and erosion and deposition of a northern molasse. D 2 deformation in the coastal arm marked the continental collision phase in this region. The final, large-scale deformational event in this region caused westward-vergent back folding which was followed by intrusion of 570 m.y.-old post-tectonic granites. In the Central Zone, widespread intrusion of 550 m.y.-old, syntectonic granites and extrusion of their volcanic equivalents in a 150 km-wide, high-temperature-low-pressure zone along the leading edge of the Congo Craton was accompanied by uplift, erosion and the deposition of K-rich greywackes as a fore-arc sequence above the earlier, spreading-phase deposits in the closing Southern Zone ocean. Sedimentological aspects of the Damara along the southern margin of the orogen suggest that the lower Nama Group, which contains a unique Ediacara fauna and was derived from easterly sources, was deposited between about 650 and 550 m.y. ago during deformation north of the Southern Zone ocean. During the final major deformation event in the Central Zone (D 3 doming), the fore-arc deposits and the underlying passive-margin sediments to the south were deformed. The Damaran granitic rocks are Hercynotype; granites make up 96 per cent of the more than 200 plutons. Average compositions have a slightly less calc-alkaline character than typical compressional margin granitic suites. Early granites have I-type chemistries and appear to have been derived from deep crustal sources, whereas most of the young granites have intermediate to S-type compositions and were generated at various crustal levels

  18. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia (United States)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo


    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  19. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt (United States)

    Ren, Zhi; Zhou, Taofa; Hollings, Pete; White, Noel C.


    The Shapinggou molybdenum deposit is located in the Qinling-Dabie Orogen, which hosts the world's largest molybdenum belt. The igneous rocks at Shapinggou can be divided into two stages (136-127 Ma and 118-114 Ma), the early suite of felsic (136-127 Ma, SiO2 = 58.0 to 72.9 wt%) and mafic rocks (133-128 Ma, SiO2 = 45.2 to 57.0 wt%), and a later suite comprising syenite (117 Ma, SiO2 = 64.2 to 65.0 wt%), quartz syenite porphyry (116 Ma, 62.5 to 70.0 wt%), granite porphyry (112 Ma, SiO2 = 75.5 to 77.6 wt%) and diorite porphyry (111 Ma, SiO2 = 56.6 to 59.7 wt%). The early-stage felsic rocks display high SiO2, Al2O3, Na2O, K2O, Sr, LREE contents, and Sr/Y, (La/Yb)N ratios, initial Sr isotope ratios of 0.7076 to 0.7089, but low MgO, FeOT, Y, Yb contents and negative εNd(t) values, consistent with partial melting of the lower continental crust. The early-stage mafic rocks exhibit low SiO2, high MgO, Ni and Cr contents, consistent with an upper mantle source, but trace element and isotope data suggest a role for crustal contamination. The late-stage syenite and quartz syenite porphyry show high abundances of Na2O, K2O, Al2O3, HFSEs (e.g., Th, U, Zr, Hf) and significant negative Eu anomalies. The late-stage granite porphyry displays high SiO2 contents, and depletions in Ba, Sr, Eu and Ti. The geochemical features of the late-stage intrusions are similar to A-type granites. Crystal fractionation of plagioclase, K-feldspar, biotite/ muscovite, amphibole/ garnet and Fe-Ti oxides controlled the evolution of the magma. The geochemical and isotopic data suggest that the rocks at Shapinggou were likely derived from a mixed source of lithospheric mantle, subducted continental crust of the Yangtze Block (Kongling Group) and partial melts of the Dabie Complex. Early stage rocks represent melts of the source with a lower proportion of Dabie Complex materials, whereas late stage rocks were derived from a source with a higher proportion Dabie Complex component. The geochemical and

  20. The Atuba complex: a paleoproterozoic belt intensively reworked in the neoproterozoic era; O complexo Atuba: um cinturao paleoproterozoico intensamente retrabalhado no neoproterozoico

    Energy Technology Data Exchange (ETDEWEB)

    Siga Junior, O.; Basei, M.A.S.; Machiavelli, A.; Harara, O.M. [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias; Reis Neto, J.M. [Parana Univ., Curitiba, PR (Brazil). Dept. de Geologia


    Studies of terranes between the northern Ribeira and southern Dom Feliciano Belts allow the characterization of three geotectonic domains with different evolutions: the Luis Alves, Curitiba and Paranagua terranes. The Atuba complex occurs in Curitiba Domain, which has a northwestern limit with metasediments of the Acungui and Setuva Groups and a southwestern limit with the granulitic gneisses of the Luis Alves domains. The contacts are expressive shear zones. The predominant rocks of the Curitiba Domain are banded, migmatitic gneisses in amphibolite grade with biotite-amphibolite gneissic mesosomes and tonalitic/graodioritic leucosomes, here called the Atuba complex. The migmatites are Paleoproterozoic (2.000{+-}200 Ma) and remigmatized in Neoproterozoic (600{+-}20 Ma). During the latter period temperatures reached more than 500{sup 0} C. The structural pattern indicated shear-controlled tectonics with an important lateral component, and low-angle, south-southeastward transport direction. The terranes of the Atuba complex appear to represent deep-level rocks which were migmatized, granitized and then added to the border of the Luis Alves Microplate during the Neoproterozoic. This late Neoproterozoic tectonic scheme which continued to the Cambro-Ordoviciano seems to be the result of larger scale processes of continental agglutination which ended with the formation of western Gondwanaland. (author). 17 figs., 2 tabs.

  1. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang


    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  2. The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions

    NARCIS (Netherlands)

    Qiu, H.N.; Wijbrans, J.R.


    The pressure-temperature-time evolution of the UHP eclogites of Dabie-Sulu, in the eastern sector of the Central Orogenic Belt of China shows a complex pattern of predominantly Triassic, and to a lesser extent Early Paleozoic ages.

  3. A discussion on the tectonic implications of Ediacaran late- to post-orogenic A-type granite in the northeastern Arabian Shield, Saudi Arabia (United States)

    Robinson, F. A.; Bonin, B.; Pease, V.; Anderson, J. L.


    The transition from late-orogenic to post-orogenic magmatism following major orogenic episodes such as the Neoproterozoic to Cambrian East African Orogen (EAO) is an important, yet not well-understood geological event marking the cessation of subduction-controlled magmatism between buoyant lithospheric fragments. Forming the northern part of the EAO in the Arabian-Nubian Shield are three granitic suites that successively intruded the same northeastern area and post-date the 640 Ma major orogenic episode: (1) 620-600 Ma alkali feldspar (hypersolvous) granite with alkaline/ferroan/A-type geochemistry, (2) 599 Ma granite cumulates (some garnet-bearing) with calc-alkaline/magnesian affinities, and (3) 584-566 Ma alkali feldspar (hypersolvous) granite (aegirine-bearing) with a distinctive peralkaline/ferroan/A-type signature. Combining whole-rock geochemistry from the southern and northern Arabian Shield, suites 1 and 2 are suggested to be products of late-orogenic slab tear/rollback inducing asthenospheric mantle injection and lower crustal melting/fractionation toward A-type/ferroan geochemistry. Suite 3, however, is suggested to be produced by post-orogenic lithospheric delamination, which replaced the older mantle with new asthenospheric (rare earth element-enriched) mantle that ultimately becomes the thermal boundary layer of the new lithosphere. Major shear zones, such as the 620-540 Ma Najd Fault System (NFS), are some of the last tectonic events recorded across the Arabian Shield. Data presented here suggest that the NFS is directly related to the late-orogenic (620-600 Ma) slab tear/rollback in the northeastern Shield as it met with opposing subduction polarity in the southern Shield. Furthermore, this study infers that east and west Gondwana amalgamation interacted with opposing convergence reflected by the NFS.

  4. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.


    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  5. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.


    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  6. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen. (United States)

    Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars


    Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya-Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle's elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya-Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide.

  7. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings (United States)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.


    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  8. Magnitude of crustal shortening and structural framework of the easternmost Himalayan orogen, northern Indo-Burma Ranges of northeastern India (United States)

    Haproff, P. J.; Yin, A.


    Along-strike variation in crustal shortening throughout the Himalayan orogen has been attributed to (1) diachronous, eastward-increasing convergence, or (2) localized controls including pre-collisional stratigraphic configuration and climate. In this study, we present new geologic maps and balanced cross-sections across the easternmost segment of the Himalayan orogen, the N-S-trending N. Indo-Burma Ranges of northeastern India. First order structures are NE-dipping, km-wide ductile thrust shear zones with mylonitic fabrics indicating top-to-the SW motion. Major structures include the Mayodia klippe and Hunli window, generated during folding of the SW-directed Tidding thrust and duplexing of Lesser Himalayan rocks (LHS) at depth. Reconstruction of two balanced cross-sections yields minimum shortening estimates of 70% (48 km) and 71% (133 km), respectively. The widths of the orogen for each transect are 21 km and 54 km, respectively. Our percent strain values are comparable to that of western Arunachal Himalaya, reflecting eastward-increasing strain due to counterclockwise rotation of India during convergence or along-strike variation in India's subduction angle. However, shortening magnitudes much less than that of the Sikkim (641 km), Bhutan (414-615 km), and western Arunachal Himalaya (515-775 km) could signal eastward increasing shortening of a unique Himalayan stratigraphic framework, evidenced by few GHC rocks, absence of Tethyan strata, and an extensive subduction mélange and forearc complex.

  9. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; van der Pluijm, B.A. (Univ. of Michigan, Ann Arbor (USA))


    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  10. Organic molecular paleohypsometry: A new approach to reconstructing the paleoelevation history of an orogen (United States)

    Hren, M. T.; Ouimet, W. B.


    Paleoelevation data is critical to understanding the links and feedbacks between rock-uplift and erosion yet few approaches have proved successful in quantifying changes in paleoelevation rapidly eroding, tropical landscapes. In addition, quantitative methods of reconstructing paleoelevation from marine sedimentary archives are lacking. Here we present a new approach to quantifying changes in paleoelevation that is based on the geochemical signature of organic matter exported via the main river networks of an orogen. This new approach builds on fundamentals of stable isotope paleoaltimetry and is akin to the theory behind cosmogenic isotope records of catchment-integrated erosion. Specifically, we utilize predictable patterns of precipitation and organic molecular biomarker stable isotopes to relate the hypsometry of organic matter in a catchment to the geochemical signal in exported organic carbon. We present data from two sites (the cold temperate White Mountains of New Hampshire, USA and the tropical, rapidly eroding landscape of Taiwan) to demonstrate this relationship between exported carbon geochemistry and catchment hypsometry and the validity of this approach.

  11. Devonian magmatism in the Timan Range, Arctic Russia - subduction, post-orogenic extension, or rifting? (United States)

    Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.


    Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.

  12. Three-dimensional thermoluminescence spectra of different origin quartz from Altay Orogenic belt, Xinjiang, China

    International Nuclear Information System (INIS)

    Tan Kaixuan; Liu Zehua; Zeng Sheng; Liu Yan; Xie Yanshi; Rieser, Uwe


    Three-dimensional thermoluminescence spectra are measured for different types of geological origin quartz from the Altay orogenic belt, northern Xinjiang, China. The results show striking differences which appear to be characteristic of their geological origin. Granitic quartz is dominated by emission bands at 420-430 nm, 550-560 nm, at a temperature of 170 deg. C. Pegmatite quartz is characterized by an intense 480 nm emission band at 170 deg. C. Volcanic quartz has exclusive UV (340-360 nm) and violet (410-430 nm) emission bands. Hydrothermal quartz exhibits very different TL spectral characteristics because of different hydrothermal activity and mineralization. Only one TL peaks at 485 nm/170 deg. C was observed in sedimentary quartz. An intense 730 nm emission band observed at 170 deg. C considered generally to be characteristics of feldspar was observed in quartz from granite and hydrothermal Au-bearing quartz. This TL peak is probably related to the centre of [FeO 4 ] 0 on an Si site. All samples show an intense 990-1000 nm emission band at 330 deg. C. Identical types of quartz formed in different regions or different geological and tectonic settings can also exhibit striking differences in TL spectra.

  13. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar (United States)

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.


    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  14. Uraniferous alaskitic granites with special reference to the Damara Orogenic Belt

    International Nuclear Information System (INIS)

    Toens, P.D.; Corner, B.


    The control and patterns of uranium mineralisation in the alaskitic granites of the Damara Orogenic Belt are discussed. The polyphase Damara metamorphism produced high-grade metamorphic assemblages, migmatites and syn-, late-, and post-tectonic anatectic granites through reactivation of the basement and overlying Damara rocks. During anatexis the incompatible elements, particularly the uranium derived from these formations, were incorporated into the melts which then rose, in an attempt to attain gravitational equilibrium, by varying distances depending on the depth of origin of the melts, on their water content and on the availability of tensional environments. Fractional crystallisation during ascent and increased water content concentrated the uranium into residual melts which finally crystallised as alaskitic pegmatitic granite. Structural episodes played an important part in the emplacement of the uraniferous granites and the presence of marble bands was an important factor in not only providing a structural trap for the alaskitic melts and associated uranium-rich volatiles, but also by leading to the boiling of the magma and the subsequent deposition of uranium. The present-day level of erosion is considered to be an important factor contributing to the preservation of many of the uraniferous granite bodies. In addition it is suggested that secondary enrichment occurring above the water-table in the prevailing desert environment is an important criterion in enriching the tenor of mineralisation to ore grades. The exploration techniques necessary for the location of uraniferous granite bodies are briefly outlined [af

  15. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran

    Directory of Open Access Journals (Sweden)

    Taghipour Batoul


    Full Text Available The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ, within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist and footwall (meta-limestone rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG type shear zone and orogenic type gold mineralisation.

  16. Geochemistry and microbial community composition across a range of acid mine drainage impact and implications for the Neoarchean-Paleoproterozoic transition (United States)

    Havig, Jeff R.; Grettenberger, Christen; Hamilton, Trinity L.


    Streams impacted by acid mine drainage (AMD, also known as acid rock drainage) represent local environmental and ecological disasters; however, they may also present an opportunity to study microbial communities in environments analogous to past conditions. Neoarchean continents had streams and rivers replete with detrital pyrites. Following the emergence of oxygenic photosynthesis, Cyanobacteria colonized streams and rivers on continental surfaces. The combination of labile detrital pyrite grains and locally produced O2 generated by Cyanobacteria produced ideal conditions for pyrite oxidation similar to that found at modern AMD-impacted sites. To explore the connection of modern sites to ancient conditions, we sampled sites that exhibited a range of AMD-impact (e.g., pH from 2.1 to 7.9 [Fe2+] up to 5.2 mmol/L [SO42-] from 0.3 to 52.4 mmol/L) and found (i) nearly all analytes correlated to sulfate concentration; (ii) all sites exhibited the predominance of a single taxon most closely related to Ferrovum myxofaciens, an Fe-oxidixing betaproteoabacterium capable of carbon and nitrogen fixation, and (iii) signs of potential inorganic carbon limitation and nitrogen cycling. From these findings and building on the work of others, we present a conceptual model of continental surfaces during the Neoarchean and Paleoproterozoic linking local O2 production to pyrite oxidation on continental surfaces to sulfate production and delivery to nearshore environments. The delivery of sulfate drives sulfate reduction and euxinia—favoring anoxygenic photosynthesis over cyanobacterial O2 generation in near-continent/shelf marine environments.

  17. Calcite twinning strain variations across the Proterozoic Grenville orogen and Keweenaw-Kapuskasing inverted foreland, USA and Canada

    Directory of Open Access Journals (Sweden)

    John P. Craddock


    Full Text Available We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW to Ft. Ann, New York (SE, including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains across the Central Gneiss Belt (CGB; 3 samples, the Central Metasedimentary Belt (CMB; 27 samples, the Central Granulite Terrane (CGT; Adirondack's; 13 samples and the Ottawan Orogenic Lid (OOL; 11 samples. Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (∼1150 Ma; n = 4 document these marbles formed during the Shawinigan (1190–1140 Ma part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound, then becomes parallel to the Grenville thrust direction (NW–SE across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE. Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11 and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8. Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2. The better-developed e1 sets (n = 406 record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146 preserve a margin-parallel (SW–NE horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV, perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville

  18. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides (United States)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.


    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  19. Linking orogen and peripheral foreland basin: conceptual model and application to the Southalpine-Dinaric (Friuli) orocline (United States)

    Heberer, Bianca; Neubauer, Franz


    Surface uplift and rock exhumation within an orogen are generally a consequence of convergence, and can often be linked with subsidence in a peripheral foreland. Since vertical loads act on the entire lithosphere, these processes can, therefore, be considered as plate-scale processes. Here, we propose a conceptual model for this linkage for the Friuli orocline and its surrounding units. The Friuli orocline stretches from the ENE-trending Southern Alps to the SE-trending Dinarides. There, two Neogene stages of convergence and associated deformation can be differentiated: (1) a Mid-Late Miocene phase of increased surface uplift and intra-orogenic subsidence of sedimentary basins reflecting intra-orogenic crustal-scale folding. Depocentres are e.g. the flexural Belluno, Ljubljana and Klagenfurt basins. (2) A second stage of convergence during Late Pliocene-Pleistocene times led to overall surface uplift in the orogen and contemporaneous pronounced subsidence in the peripheral foreland basin (Venetian platform and the northern Adriatic Sea). We propose, that the spatially variable extent of subsidence originates in variably strong orogen-basin coupling, i.e. weak coupling during stage 1 vs. strong coupling during stage 2. This interpretation is based on the apatite fission track age pattern, the distribution of intra-orogenic Neogene sediment basins and subsidence analyses in the foreland basin (Barbieri et al., 2007). Available low-temperature thermochronological data for the Southern Alps and the NW Dinarides are sparse, in contrast to a dense network of primarily apatite fission track ages north of the Periadriatic lineament (e.g. summarized by Luth & Willingshofer, 2008). AFT ages adjacent to the eastern Periadriatic Lineament mainly range from 15 to 25 Ma (Hejl, 1997; Fodor et al., 2008). Detrital studies on Oligocene to Miocene sediments from the Venetian foreland basin yielded dominant age groups clustering roughly around 20 and 30 Ma (Stefani et al., 2008

  20. Understanding erosion rates in the Himalayan orogen: A case study from the Arun Valley (United States)

    Olen, Stephanie M.; Bookhagen, Bodo; Hoffmann, Bernd; Sachse, Dirk; Adhikari, D. P.; Strecker, Manfred R.


    Understanding the rates and pattern of erosion is a key aspect of deciphering the impacts of climate and tectonics on landscape evolution. Denudation rates derived from terrestrial cosmogenic nuclides (TCNs) are commonly used to quantify erosion and bridge tectonic (Myr) and climatic (up to several kiloyears) time scales. However, how the processes of erosion in active orogens are ultimately reflected in 10Be TCN samples remains a topic of discussion. We investigate this problem in the Arun Valley of eastern Nepal with 34 new 10Be-derived catchment-mean denudation rates. The Arun Valley is characterized by steep north-south gradients in topography and climate. Locally, denudation rates increase northward, from <0.2 mm yr-1 to ~1.5 mm yr-1 in tributary samples, while main stem samples appear to increase downstream from ~0.2 mm yr-1 at the border with Tibet to 0.91 mm yr-1 in the foreland. Denudation rates most strongly correlate with normalized channel steepness (R2 = 0.67), which has been commonly interpreted to indicate tectonic activity. Significant downstream decrease of 10Be concentration in the main stem Arun suggests that upstream sediment grains are fining to the point that they are operationally excluded from the processed sample. This results in 10Be concentrations and denudation rates that do not uniformly represent the upstream catchment area. We observe strong impacts on 10Be concentrations from local, nonfluvial geomorphic processes, such as glaciation and landsliding coinciding with areas of peak rainfall rates, pointing toward climatic modulation of predominantly tectonically driven denudation rates.

  1. Differential decay of the East-African Antarctic Orogen : an integrated examination of Northeastern Mozambique (United States)

    Ueda, K.; Jacobs, J.; Emmel, B.; Thomas, R. J.; Matola, R.


    In Northeastern Mozambique, the late Proterozoic - early Paleozoic East African-Antarctic Orogen can be subdivided into two major blocks that exhibit some relevant differences. The line of divide is represented by the Lurio Belt, a kinematically poorly constrained shear zone that also marks the conceptual northern limit of frequent late-tectonic granitoid intrusions. Moreover, far-travelled granulite-facies nappes cover a much larger area north of this belt (Viola et. al, 2008), giving rise to the assumption of different exhumation and present exposure levels. U/Pb data from previous surveys (e.g., Norconsult consortium, 2007) show coeval high-grade metamorphism in the whole region between c. 610 - 550 Ma, while the block south of the Lurio Belt also shows continuing metamorphism until c. 490 Ma that can be related to extension. Geothermobarometry for samples from within the Lurio Belt (Engvik et. al, 2007) indicates rapid exhumation after high-pressure granulite facies metamorphism and is consistant with the assumption of long tectonic activity. A possible model for the outlined pattern is the delamination of the orogenic root only in the southern part, followed by rapid mechanical thinning as well as by isostatic accommodation along the Lurio Belt. A valuable marker was identified in the metasedimentary Mecuburi group that overlies the southern basement. U/Pb analysis of detrital zircons have yielded a maximum deposition age of c. 600 Ma, while metamorphism is recorded until c. 505 Ma. Investigations of the relationship between metasediments and older basement show that the basal contact is a fairly preserved depositional contact, allowing to suppose a conjoint post-depositional evolution. It is notable that the timing of deposition shortly follows the onset of the main, widespread high-grade metamorphism. Relatively high but variable degrees of migmatisation in the Mecuburi Group require a phase of burial from surface to deep levels after 600 Ma, followed by

  2. Paleoproterozoic source contributions to the Sao Roque Group sedimentation: LA-MC-ICPMS U-Pb dating and Sm-Nd systematics of clasts from metaconglomerates of the Boturuna Formation

    Energy Technology Data Exchange (ETDEWEB)

    Henrique-Pinto, Renato; Janasi, Valdecir de Assis; Tassinari, Colombo Celso Gaeta [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Simonetti, Antonio [University of Notre Dame, South Bend (United States). Dept. of Civil Engineering and Geological Sciences; Heaman, Larry Michael, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [University of Alberta, Edmonton (Canada). Dept. of Earth and Atmospheric Sciences


    The Sao Roque Group is characterized by volcano-sedimentary sequences, in which deposition probably started in the late Paleoproterozoic. U-Pb dating by LA-MC-ICPMS of zircons extracted from predominantly equigranular monzogranites clasts from Morro Doce and Morro do Polvilho regions, yield paleoproterozoic ages of 2199 {+-}8.5 Ma and 2247 {+-}13 Ma, respectively. These represent the ages for the main source of granite for the metaconglomerates from the Boturuna Formation (basal unit of Sao Roque Group). Its polycyclic history is reinforced by the presence of inherited Archean zircons (2694 {+-}29 Ma) found within the clasts. Moreover, these clasts have also been affected by the Neoproterozoic overprinting event as indicated by their lower intercept Concordia ages. Sm-Nd isotope data for the main clast varieties from the Morro Doce metaconglomerates yield T{sub DM} ages of 2.6 to 2.7 Ga, demonstrating that these granites are the recycling products of an Archean crustal component. The metaconglomerate arkosean framework yields slightly lower {epsilon}{sub Nd(t)} values than those for the clasts, indicating that a younger and/or more primitive source also contributed to the Boturuna Formation. (author)

  3. Origin of Fe-Ti Oxide Mineralization in the Middle Paleoproterozoic Elet'ozero Syenite-Gabbro Intrusive Complex (Northern Karelia, Russia) (United States)

    Sharkov, E. V.; Chistyakov, A. V.; Shchiptsov, V. V.; Bogina, M. M.; Frolov, P. V.


    Magmatic oxide mineralization widely developed in syenite-gabbro intrusive complexes is an important Fe and Ti resource. However, its origin is hotly debatable. Some researchers believe that the oxide ores were formed through precipitation of dense Ti-magnetite in an initial ferrogabbroic magma (Bai et al., 2012), whereas others consider them as a product of immiscible splitting of Fe-rich liquid during crystallization of Fe-Ti basaltic magma (Zhou et al., 2013). We consider this problem with a study of the Middle Paleoproterozoic (2086 ± 30 Ma) Elet'ozero Ti-bearing layered intrusive complex in northern Karelia (Baltic Shield). The first ore-bearing phase of the complex is mainly made up of diverse ferrogabbros, with subordinate clinopyroxenites and peridotites. Fe-Ti oxides (magnetite, Ti-magnetite, and ilmenite) usually account for 10-15 vol %, reaching 30-70% in ore varieties. The second intrusive phase is formed by alkaline and nepheline syenites. Petrographical, mineralogical, and geochemical data indicate that the first phase of the intrusion was derived from a moderately alkaline Fe-Ti basaltic melt, while the parental melt of the second phase was close in composition to alkaline trachyte. The orebodies comprise disseminated and massive ores. The disseminated Fe-Ti oxide ores make up lenses and layers conformable to general layering. Massive ores occur in subordinate amounts as layers and lenses, as well as cross-cutting veins. Elevated Nb and Ta contents in Fe-Ti oxides makes it possible to consider them complex ores. It is shown that the Fe-Ti oxide mineralization is related to the formation of a residual (Fe,Ti)-rich liquid, which lasted for the entire solidification history of the first intrusive phase. The liquid originated through multiple enrichment of Fe and Ti in the crystallization zone of the intrusion owing to the following processes: (1) precipitation of silicate minerals in the crystallization zone with a corresponding increase in the Fe and

  4. The Petäjäskoski Formation, a new lithostratigraphic unit in the Paleoproterozoic Peräpohja Belt, northern Finland

    Directory of Open Access Journals (Sweden)

    Markus Kyläkoski


    Full Text Available This paper gives the first description of a newly-recognized, basin-wide metasedimentary unit in the Paleoproterozoic (~2.4–1.9 Ga Peräpohja Belt, northern Finland. The unit, which is named the Petäjäskoski Formation (PFm after the single location where the rocks are known to be exposed, is situated stratigraphically in the middle part of the Kivalo Group between the quartzites of the>2.22 Ga Palokivalo Formation and the mafic volcanic rocks of the ~2.1 Ga Jouttiaapa Formation.The bulk of the PFm comprises phlogopitic-sericitic and albitic schists with abundant hematite as a diagnostic feature. Quartzite and dolomite interbeds are common. Based on drillcore and geophysical data, the succession is several hundreds of meters thick. The unit has prograde, chiefly lower greenschist facies mineral assemblages and, though being commonly intensely deformed, shows well-preserved sedimentary structures that imply deposition in shallow-water tosubaerial environments. Based on the original lithological features, the Petäjäskoski Formation can be defined as a claystone-siltstone-sandstone-dolostone association. On the geochemical and stratigraphic basis, the albite schists likely represent albitized equivalents of the micaceous claystones and siltstones. They are intercalated with stratabound collapse breccias, up to tens of meters in thickness, with clasts composed mainly of bordering albite schist. A mafic sill intruding the Petäjäskoski Formation yielded a U-Pb zircon age of 2140 ± 11 Ma. The older, c. 2220 Ma, differentiated sills are not known to reach the stratigraphic level of thePetäjäskoski Formation and hence, the depositional age of the PFm sediments can be bracketed between c. 2220 and 2140 Ma. Detrital zircon grains dated from a quartzitic sample from the PFmshow an Archean (c. 2650–3470 Ma provenance.The moderate to high MgO (~6–13 wt.%, K2O (~3–8 wt.% and FeOtot(8–15 wt.% contents, low CaO and Na2O contents, and abundant

  5. P-T composition and evolution of paleofluids in the Paleoproterozoic Mag Hill IOCG system, Contact Lake belt, Northwest Territories, Canada (United States)

    Somarin, A. Karimzadeh; Mumin, A. Hamid


    The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite-monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite-actinolite-apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz-sericite-pyrite), and propylitic (chlorite-epidote-carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper-gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite-actinolite-apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5-45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104-450 °C) and salinity (4.2-46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu-Ag-U-Zn-Co-Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by

  6. Stratigraphy and Age of Paleoproterozoic Birimian Volcaniclastic Sequence in the Cape Three Points area, Axim-Konongo (Ashanti) Belt, Southwest Ghana (United States)

    Yoshimaru, S.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Horie, K.; Takehara, M.; Sano, T.; Nyame, F. K.; Tetteh, G. M.


    This study investigated the depositional environments and bioactivities of well preserved volcaniclastic sequences in the Cape Three Points area in the Paleoproterozoic Axim-Konongo (Ashanti) belt in the Birimian of Ghana. Our current research outlines the stratigraphy, structure, approximate age and depositional setting of the volcaniclastic sequence in the Cape Three Points area in Ghana, West Africa.Axim-Konongo (Ashanti) belt is composed of mainly andesitic basalts, volcaniclastic rocks and belt type granitoids, which are unconformably overlain by Tarkwaian conglomerates and metasedimentary rocks. The rocks show NE-SW strike with maximum depositional age of overlying metasedimentary rocks of 2154±2 Ma (U-Pb zircon; Oberthür et al., 1998). The oldest age of an intrusive into Birimian volcanic rock near Sekondi is 2174±2 Ma (U-Pb zircon; Oberthür et al., 1998). Thick volcaniclastic succession over 4000 m thickness was reconstructed for 1000 m thickness after detailed field investigations. The succession shows approximately N-S strike mainly 60-80° dip to the east and generally upward sequence. The rocks were affected by greenschist facies metamorphism. TiO2/Al2O3 ratios of chromites and whole- rock trace elements compositions with low Nb concentration and high LREE concentration support deposition on mid-deep sea floor in a volcanic arc. New age data were obtained from foliated porphyritic dyke which occurs in the Cape Three Points area. Zircon grains, measured by SHRIMP at National Institute of Polar Research (NIPR), yielded a weighted mean 204Pb-corrected 207Pb/206Pb age of 2265.6±4.6 Ma (95% confidence). Thus, the volcaniclastic sequence was deposited before 2265.6±4.6 Ma and was deformed after 2265 Ma. 2260 Ma is the oldest age at which early volcanic activity in the Birimian terrane occurred (Loh and Hirdes, 1999). References Oberthür T et al. (1998) Precambrian Research 89: 129-143 Loh G and Hirdes W (1999) Exlplanatory Notes for the Geological Map

  7. Timing and nature of Holocene glacier advances at the northwestern end of the Himalayan-Tibetan orogen (United States)

    Saha, Sourav; Owen, Lewis A.; Orr, Elizabeth N.; Caffee, Marc W.


    Holocene glacial chronostratigraphies are developed for four glaciated valleys at the northwestern end of the Himalayan-Tibetan orogen using geomorphic mapping and cosmogenic 10Be surface exposure dating. The study areas include the Hamtah valley in the Lahul Himalaya, and the Karzok, Lato and upper Stok valleys in Zanskar. Five local glacial stages are dated to ∼10.4, ∼6.1-3.3, ∼2.1-0.9, ∼0.7-0.4, and ∼0.3-0.2 ka based on 49 new moraine boulder ages. Large age dispersions are evident for each of the local glacial stages. This is especially the case for ∼6.1-3.3 and ∼2.1-0.9 ka, which is likely a result of prior and/or incomplete exposures in very young moraine boulders. An additional compilation of 187 published 10Be moraine boulder ages help define seven Himalayan Holocene regional glacial stages (HHs) for the northwestern end of the Himalayan-Tibetan orogen. These HHs date to ∼10.9-9.3, ∼8.2-7.4, ∼6.9-4.3, ∼4.5-2.8, ∼2.7-1.8, ∼1.8-0.9, and forced northerly migration of the Intertropical Convergence Zone and enhanced summer monsoon. The timing of the majority of HHs during mid- and late Holocene corresponds well with the North Atlantic cooling that is likely teleconnected via mid-latitude westerlies, particularly during ∼8 ka and after ∼5 ka. These chronostratigraphies suggest that Holocene glaciation in the northwestern part of the Himalayan-Tibetan orogen is largely influenced by long-term orbital forcing amplified by large-scale migration of the Earth's thermal equator and the associated hemispheric oceanic-atmospheric systems.

  8. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil

    International Nuclear Information System (INIS)

    Almeida, Marcelo Esteves


    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  9. Tectonic evolution of a part of the Tethyside orogenic collage: The Kargi Massif, northern Turkey (United States)

    Tüysüz, Okan


    The central part of the Rhodope-Pontide fragment, one of the major tectonic units in Turkey, provides critical data for evaluating the Cimmeride and Alpide evolution of the Mediterranean Tethysides. Tectonic events that affected the central part of the Rhodope-Pontide fragment since the end of the Paleozoic, generated east-west trending belts with the event of every episode redeforming and partly obliterating the structures of previous episodes. This evolution may be conveniently described in terms of three major episodes: (1) Two different realms of pre-Dogger oceanic rocks are present in the area. The northern realm coincided with main branch of Paleo-Tethys that was being actively destroyed by south dipping subduction. The southern realm, the Karakaya ocean, a back arc basin related to this subduction, began opening by rifting of a retroarc carbonate platform during the Permo-Triassic. To the west a continental domain with sparse magmatism seperated the two oceanic areas. Toward the east the two oceans become united by the wedging out of the continental domain. These two pre-Dogger oceans closed during the Lias, and their remnants were emplaced between the southern margin of Laurasia and the fragments of the Cimmerian continent. (2) The second episode partly overlapped the first with rifting south of the Cimmerian continent fragment during the Lias. This rifting was followed by a transgression which covered the ruins of the Cimmeride orogenic belt by the Malm. This rifting concurrently led to the development of the northern branch of the Neo-Tethys and a south facing Atlantic-type continental margin. A southerly thickening sedimentary prism developed on this margin during the Lias to early Cretaceous interval. (3) The floor of the northern branch of Neo-Tethys began to be consumed along the north dipping subduction zone beneath the previosly constructed continental margin. This convergent margin generated a magmatic arc to the north and to the south a subduction

  10. Two modes of orogenic collapse of the Pamir plateau recorded by titanite (United States)

    Stearns, M. A.; Hacker, B. R.; Ratschbacher, L.; Rutte, D.; Kylander-Clark, A. R.


    Processes that operate in the mid- to lower crust during and following continent-continent collision are important for understanding how orogenic plateaux transition from thickening to collapse. In the central and southern Pamir, mid- to lower crustal rocks crop out in two belts of extensional domes. The central Pamir domes were exhumed by symmetrical N-S extension. In contrast, the southern Pamir domes were exhumed by asymmetrical top to the south (NNW-SSE) extension via a rolling-hinge detachment. To investigate the high-temperature exhumation history, titanites were dated using LASS (laser ablation split stream-ICP-MS). A multi-collector ICP was used to collect U-Pb isotopic ratios and a single collector ICP-MS was used to measure trace-element abundances. The data indicate that the central Pamir domes began exhumation synchronously at ~17 Ma. Titanite from the southern Pamir record two periods of protracted (re)crystallization: older metamorphic dates ranging from ~35-18 Ma and younger igneous and metamorphic dates from ~15-7 Ma. Samples with single populations of titanite dates are present throughout both groups. Samples with more-complex date populations typically have distinct trace-element (e.g., Sr, Y, Zr, and Nb) groups that can be used to distinguish different date populations (e.g., older dates may have higher Zr and younger dates lower Zr). The distinct early exhumation histories of the north and south Pamir require either a diachronous single process or two semi-independent processes. The N to S sequence of exhumation, ranges of dates, and overall extension directions may be related to two important plate-tectonic events inferred from seismic data: 1) breakoff of the northward subducting Indian slab around ~20 Ma, and 2) southward subduction and northwestward rollback of the Asian lithosphere between ~15-10 Ma based on geodetic convergence rates and Benioff zone length. We interpret these two lithospheric-detachment events to have driven the

  11. Geochemical modeling of orogenic gold deposit using PCANN hybrid method in the Alut, Kurdistan province, Iran (United States)

    Mohammadzadeh, Mohammadjafar; Nasseri, Aynur


    In this paper stream sediments based geochemical exploration program with the aim of delineating potentially promising areas by a comprehensive stepwise optimization approach from univariate statistics, PCA, ANN, and fusion method PCANN were under taken for an orogenic gold deposit located in the Alut, Kurdistan province, NW of Iran. At first the data were preprocessed and then PCA were applied to determine the maximum variability directions of elements in the area. Subsequently the artificial neural network (ANN) was used for quick estimation of elemental concentration, as well as discriminating anomalous populations and intelligent determination of internal structure among the data. However, both the methods revealed constraints for modeling. To overcome the deficiency and shortcoming of each individual method a new methodology is presented by integration of both "PCA & ANN" referred as PCANN method. For integrating purpose, the detected PCs pertinent to ore mineralization selected and intruded to neural network structure, as a result different MLPs with various algorithms and structures were produced. The resulting PCANN maps suggest that the gold mineralization and its pathfinder elements (Au, Mo, W, Bi, Sb, Cu, Pb, Ag & As) are associated with metamorphic host rocks intruded by granite bodies in the Alut area. In addition, more concealed and distinct Au anomalies with higher intensity were detected, confirming the privileges of the method in evaluating susceptibility of the area in delineating new hidden potential zones. The proposed method demonstrates simpler network architecture, easy computational implementation, faster training speed, as well as no need to consider any primary assumption about the behavior of data and their probability distribution type, with more satisfactory predicting performance for generating gold potential map of the area. Comparing the results of three methods (PCA, ANN and PCANN), representing the higher efficiency and more

  12. Fluid-driven normal faulting earthquake sequences in the Taiwan orogen (United States)

    Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui


    Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5

  13. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria (United States)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.


    high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.

  14. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit (United States)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure


    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  15. Seismic evidence for multiple-stage exhumation of high/ultrahigh pressure metamorphic rocks in the eastern Dabie orogenic belt (United States)

    Luo, Yinhe; Zhao, Kaifeng; Tang, Chi-Chia; Xu, Yixian


    The Dabie-Sulu orogenic belt in China contains one of the largest exposures of high and ultrahigh pressure (HP and UHP) metamorphic rocks in the world. The origin of HP/UHP metamorphic rocks and their exhumation to the surface in this belt have attracted great interest in the geologic community because the study of exhumation history of HP/UHP rocks helps to understand the process of continental-continental collision and the tectonic evolution of post-collision. However, the exhumation mechanism of the HP-UHP rocks to the surface is still contentious. In this study, by deploying 28 broadband seismic stations in the eastern Dabie orogenic belt and combining seismic data from 40 stations of the China National Seismic Network (CNSN), we image the high-resolution crustal isotropic shear velocity and radial anisotropy structure using ambient noise tomography. Our high-resolution 3D models provide new information about the exhumation mechanism of HP/UHP rocks and the origin of two dome structures.

  16. Sulfur and lead isotope geochemistry of the orogenic gold deposits in the eastern Kunlun area, Qinghai province

    International Nuclear Information System (INIS)

    Feng Chengyou; Zhang Dequan; Li Daxin; She Hongquan; Zhu Huaping


    Based on researches on the basic geological characteristics and sulfur and lead isotopic geochemistry of four typical gold deposits, it is considered that they have many similar geo-geochemical characteristics and are all related genetically to orogenic process. Therefore, they should belong to a type of orogenic gold deposits according to the newest classification of gold deposits provided by Kerrich et al. (2000). There is a big change in the average 34 S values of the sulfides selected from different deposits, varying from -3.7‰-4.4‰ and tower-shape distribution is apparent. The lead isotope in four gold deposits is characterized by high compositions and minor changes, with 206 Pb/ 204 Pb > 18.3380, 207 Pb/ 204 Pb > 15.5555, 208 Pb/ 204 Pb >38.1796 in ores and wall-rocks, it can be concluded that the ore-forming material consisting of sulfur and lead are mainly derived from wall-rocks. Intensive subduction and collision during late Paleozoic and early Mesozoic not only formed deep faults, large-scale shear belt, and low-order folds and faults but also induced fluidization and mineralization, and resulted in formation and zonal distribution of several large or medium gold deposits in this area. (authors)

  17. Extreme mass flux from the glaciated, collisional St. Elias Orogen: Preliminary results from IODP Expedition 341 (Invited) (United States)

    Gulick, S. P.; Jaeger, J. M.


    Integrated Ocean Drilling Program Expedition 341 drilled a cross-margin transect to investigate the linkages between global climate change, modification of the dynamics of surficial processes, and subsequent tectonic responses. The Gulf of Alaska (GoA) borders the St. Elias orogen, the highest coastal mountain range on Earth. Exp. 341 drilled five sites within a regional seismic reflection grid that spans from the distal Surveyor Fan to the continental shelf. More than 3000 m of high-quality core coupled with seismic reflection profiles collected with nested vertical resolution allows us to address the major objectives of drilling in the GoA. These objectives were to: 1) document the tectonic response of an active orogenic system to late Miocene to recent climate change; 2) establish the timing of advance/retreat phases of the northern Cordilleran ice sheet to test its relation to dynamics of other global ice sheets; 3) implement an expanded source-to-sink study of the interactions between glacial, tectonic, and oceanographic processes responsible for creation of one of the thickest Neogene high-latitude continental margin sequences; 4) understand the dynamics of productivity, nutrients, freshwater input to the ocean, and ocean circulation in the northeast Pacific and their role in the global carbon cycle, and 5) document the spatial and temporal behavior of the geomagnetic field at extremely high temporal resolution in an under-sampled region of the globe. The Exp. 341 cross-margin transect discovered transitions in sediment accumulation rates from >100 m/Ma at the distal site to > 1000 m/Ma in the proximal fan, slope and on the continental shelf that provide a telescoping view of strata formation from the Miocene to the Holocene. Complete recovery and development of spliced sedimentary records of the Pleistocene through Holocene were achieved at the distal, proximal, and slope Sites U1417, U1418, and U1419, respectively, because of exceptional piston core

  18. The Stratigraphy and Lithofacies of the Paleoproterozoic Volcaniclastic Sequences in the Cape Three Points Area- Akodda section of the Southern in Ashanti Belt in the Birimian of southwest Ghana (United States)

    Yoshimaru, S.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Nyame, F. K.; Tetteh, G. M.


    The Paleoproterozoic Era is thought to have experienced one of the most significant changes in earth's environment during earth history. Early continents started to diverge and collide accompanied by first major oxidation of the atmosphere-oceanic system known as the Great Oxidation Environment (GOE). Due to their well-preserved oceanic sedimentary sequences, Paleoproterozoic belts are usually good targets for studies on the history of earth's past environment. In addition, these belts provide great help to understand the nature of the Paleoproterozoic deeper oceanic environments. Birimian greenstone belt in southwestern Ghana is likely to have made up of subduction of oceanic basin to form a volcanic island arc. Birimian rocks are separated by nonconformity from the Tarkwaian Group which is a younger paleoplacer deposit (Perrouty et al., 2012). The Birimian is made up of island-arc volcanic rocks; foreland basin made up of shale, sandstone, quartzite and turbidities derived from 2.17 Ga granite intrusions during Birimian volcanism. In this study, we focused on the coastal area around Cape Three Points at the southernmost part of the Ashanti (Axim-Konongo) belt in Ghana. In the eastern part of the area, excellently preserved Paleoprotorozoic deeper oceanic sedimentary sequences extensively outcrop for over 4km stretch. This volcano-sedimentary sequence has been affected by greenschist facies metamorphism. Structurally, this region preserves S1 cleavage and asymmetrical synform with west vergence and S0 younging to the east. Provisional stratigraphy is very continuous up to more than 2000m thick and, in addition, suggests at least four different fining upward sequences in the area to the east and west of Atwepo, west of Kwetakora and Akodda. These sub-sequences are mainly composed of volcaniclasitc, sandstone, black shale and rare volcanics such as pillow basalt or massive volcanic lava. In other words, this continuous sequence suggests distal submarine

  19. Mantle reservoirs (EM-1, OIB, E-MORB and N-MORB), long duration and polystages history for PGE-bearing paleoproterozoic layered intrusions in the N-E part of Fennoscandian Shield. (United States)

    Bayanova, Tamara; Nerovich, Ludmila; Serov, Pavel; Kunakkuzin, Evgeniy; Elizarov, Dmitriy


    Paleoproterozoic layered PGE -bearing intrusions located in the N-E part of the Fennoscandian Shield and have a total are about 2000 km2. Long multidisciplinary studies using isotope Nd-Sr, U-Pb and 3He/4He systematics permit create a big bank of geochemistry data for different part of the intrusions: barren and main Cu-Ni-Cr-Ti-V and PGE phases, dykes complexes and host rocks. Based on U-Pb isotope data (on baddeleyite and zircon) and Sm-Nd mineral isochrones (on rock-forming and sulphides minerals) there is distinguished long magmatic duration from 2.53 to 2.40 Ga. Using precise U-Pb and Sm-Nd data for different part of the intrusions there are established four main impulses: 2.53, 2.50, 2.45, and 2.40 Ga of magmatic (LIP) activities for gabbronorite, anothosite et.set. rocks. The primary reservoir for all precious and multimetal massifs are considered as enriched mantle EM-1 using ɛNd- ISr system with negative ɛNd values and low ISr data for whole rocks of the intrusions. Dyke complexes are presented as three groups: high Ti-ferrodolerites, low Ti and low Fe-gabbronorites. Complex isotope (U-Pb, Sm-Nd) and geochemistry (REE, ɛNd, ISr) data investigations reflect OIB, E-MORB and N-MORB reservoirs for its origin (Nerovich et all., 2014). Isotope 3He/4He and 3He concentrations for accessory minerals ( ilmenite, magnetite et. set ) from the layered paleoproterozoic intrusions reflect significant lower mantle component and upper mantle contribution. According to the model of binary mixing (Jahn et all, 2000) there were calculated mantle and core component into plume magmatic reservoir connected with the origin of the PGE paleoproterozoic intrusions. The mantle contributions lie in the interval from 85 to 93% and core component are very less. All investigations are devoted to memory of academician RAS, professor F.Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogenesis of ore deposits. The studies are

  20. Structural Framework and Architecture of the Paleoproterozoic Bryah and Padbury Basins from Integrated Potential Field and Geological Datasets: Towards an Understanding of the Basin Evolution (United States)

    Nigro R A Ramos, L.; Aitken, A.; Occhipinti, S.; Lindsay, M.


    The Bryah and Padbury Basins were developed along the northern margin of the Yilgarn Craton, in the southern portion of the Capricorn Orogen, which represents a Proterozoic tectonic zone that bounds the Yilgarn and Pilbara Cratons in Western Australia. These basins have been previously interpreted as developing in a rift, back-arc, and retro-arc foreland basins. Recent studies suggest that the Bryah Basin was deposited in a rift setting, while the overlying Padbury Basin evolved in a pro-foreland basin during the collision of the Yilgarn Craton and the Pilboyne block (formed by the Pilbara Craton and the Glenburgh Terrane), occurring in the Glenburgh Orogeny (2005-1960 Ma). This study focuses on characterizing the architecture and structural framework of the Bryah and Padbury Basins through analysis of geophysical and geological datasets, in order to better understand the different stages of the basins evolution. Gravity and magnetic data were used to define the main tectonic units and lithological boundaries, and to delineate major discontinuities in the upper and lower crust, as well as anomalies through a combination of map view interpretation and forward modelling. Geological mapping and drill core observations were linked with the geophysical interpretations. Fourteen magnetic domains are distinguished within the basins, while four main domains based on the Bouguer Anomaly are recognized. The highest gravity amplitude is related with an anomaly trending EW/NE-SW, which is coincident with the voluminous mafic rocks of the Bryah Basin, and may indicate the presence of an approximately 5km thick package of higher density mafic rocks. Magnetic depth estimations also indicate deep magnetic sources up to approximately 4,45km. These results can help to elucidate processes that occurred during the precursor rift of the early stages of the Bryah Basin, add information in relation to the basement control on sedimentation, allow the characterization of the varying

  1. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination (United States)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii


    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the

  2. 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: implications for genetic models (United States)

    Pollard, Peter J.; Taylor, Roger G.; Peters, Lisa; Matos, Fernando; Freitas, Cantidiano; Saboia, Lineu; Huhn, Sergio


    this time. The Paleoproterozoic Cu-Au deposits are commonly hosted within Neoarchean IOCG alteration systems and the common occurrence of potassic alteration (especially biotite) in both types of deposits means that special care is required in interpreting the paragenesis of alteration in both types of deposits. The Paleoproterozoic Cu-Au deposits are reduced, and sulfur- and quartz-rich deposits lacking in major amounts of iron oxides and are therefore unlike IOCG deposits. Instead, they share many characteristics in common with widespread Paleoproterozoic Sn-W deposits in the Amazon Craton, including close spatial and temporal relationships with reduced A-type B-Li-F granites, and the occurrence of greisen and quartz-rich vein/breccia systems within and above granite cupolas. The occurrence of sericitic alteration in the Paleoproterozoic Cu-Au deposits is not evidence for an upward transition to sericitic alteration in IOCG deposits in the Carajás Mineral Province.

  3. Miocene magmatism and tectonics within the Peri-Alboran orogen (western Mediterranean) (United States)

    El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.


    The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar isotopic ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar isotopic age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain magmatism. These two sets of data allow us to place the magmatic activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive magmatic events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras magmatic province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf

  4. Natural and mining-related mercury in an orogenic greywacke terrane, South Island, New Zealand

    International Nuclear Information System (INIS)

    Holley, E.A.; Craw, D.; Kim, J.P.


    Mercury (Hg) is naturally present in warm springs and mesothermal (orogenic) gold-bearing quartz vein systems in the South Island of New Zealand. Mercury amalgamation was used historically in ore processing at gold (Au) mines, resulting in composite natural and anthropogenic Hg signatures at these sites. This study compares natural Hg enrichment of the Au vein systems, residual anthropogenic Hg added for amalgamation, and enrichment of naturally present Hg during ore processing. Mercury concentration data are presented for solids and water at historic mine sites, the modern Macraes mine, fault-related warm springs, and zones of naturally occurring cinnabar and Hg-bearing Au. Arsenic (As) concentrations are also presented, as As is the most environmentally significant element in this tectonic setting. Tailings and processing residues at historic mine sites (Blackwater mine, West Coast; Golden Point and Golden Bar, Hyde-Macraes shear zone) contain up to 1000 mg/kg Hg, and in adjacent surface waters Hg is at or slightly above background from 0.6 to 0.8 ng/L. Relative to South Island Hg, As is more environmentally significant: solid wastes at some historic mine and mineral processing sites contain up to 30.5 wt% As due to enrichment of natural As in mineralised rocks. Shallow groundwater and processing waters at the modern Macraes mine are up to 0.01 mg/L Hg due to natural Hg in mineralised rocks, and no significant Hg elevation is evident in nearby surface waters, which are 3 to 10 4 times higher than primary ore, and Hg is disproportionally increased relative to As, indicating that much of the Hg was added during the amalgamation process. Natural cinnabar deposition from warm springs results in localised, strongly elevated Hg, equal to or less than the Hg contents in historic mine processing residues. Warm spring precipitates are up to 111 mg/kg Hg and waters are 0.3 μg/L Hg, comparable to data reported for active North Island geothermal (epithermal-style) systems

  5. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran) (United States)

    Taghipour, Batoul; Ahmadnejad, Farhad


    The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation. Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385

  6. Multiple fluid sources/pathways and severe thermal gradients during formation of the Jílové orogenic gold deposit, Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Zachariáš, J.; Žák, Karel; Pudilová, M.; Snee, L. W.


    Roč. 54, October (2013), s. 81-109 ISSN 0169-1368 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : Orogenic gold deposits * Carbon isotopes * Oxygen isotopes * Bismuth * Age * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.383, year: 2013


    Directory of Open Access Journals (Sweden)

    Qie Qin


    Full Text Available The Ku’erchu granitic pluton (283±4 Ma was exposed in the eastern part of the South Tianshan Orogenic Belt. The granites from the intrusion are mainly composed of orthoclase (~45 vol. %, plagioclase (~15 vol. %, quartz (~20 vol. %, muscovite (~10 vol. % and biotite (~5 vol. %, with accessory minerals including garnet, zircon and Fe-Ti oxide.

  8. Bicarbonate-rich fluid inclusions and hydrogen diffusion in quartz from the Libčice orogenic gold deposit, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Hrstka, Tomáš; Dubessy, J.; Zachariáš, J.


    Roč. 281, 3-4 (2011), s. 317-332 ISSN 0009-2541 Institutional research plan: CEZ:AV0Z30130516 Keywords : bicarbonate * fluid inclusions * hydrogen diffusion * orogenic gold deposits * raman spectroscopy Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.518, year: 2011

  9. Palaeozoic polymetamorphism in the North Qinling orogenic belt, Central China: Insights from petrology and in situ titanite and zircon U-Pb geochronology

    NARCIS (Netherlands)

    Li, Y.; Zhou, H.; Li, Q.L.; Xiang, H.; Zhong, Z.Q.; Brouwer, F.M.


    The Qinling orogenic belt experienced multiple phases of orogenesis during the Palaeozoic. Unraveling the timing and P- T conditions of these events is the key to understanding the convergence processes between the South China and the North China Blocks. The Songshugou Complex, located in the

  10. Nature and timing of the final collision of Central Asian Orogenic Belt: insights from basic intrusion in the Xilin Gol Complex, Inner Mongolia, China

    NARCIS (Netherlands)

    Li, Y.; Zhou, H.; Brouwer, F.M.; Xiao, W.; Wijbrans, J.R.; Zhao, J.; Zhong, Z.; Liu, H.


    The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations

  11. Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt

    Czech Academy of Sciences Publication Activity Database

    Carmichael, A.; Waters, J. A.; Batchelor, C. J.; Coleman, D. M.; Suttner, T. J.; Kido, E.; Moore, L. M.; Chadimová, Leona


    Roč. 32, 1 April (2016), s. 213-231 ISSN 1342-937X Institutional support: RVO:67985831 Keywords : Central Asian Orogenic Belt * chemostratigraphy * Devonian-Carboniferous * Hangenberg Event * West Junggar Subject RIV: DB - Geology ; Mineralogy Impact factor: 6.959, year: 2016

  12. Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogen, central China: implications for the geodynamic evolution of the North Qinling arc–back-arc system

    NARCIS (Netherlands)

    Wang, H.; Wu, Y.B.; Qin, Z.W.; Zhu, L.Q.; Liu, Q.; Liu, X.C.; Gao, J.; Wijbrans, J.R.; Gong, H.J.; Yuan, H.L.


    The tectonic properties of the Erlangping unit and the subduction polarity of oceanic basins in the North Qinling-Tongbai orogen have been the focus of debate for more than twenty years. The resolution of these controversies hinges on the refined constraints on the location and nature of

  13. Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China

    Directory of Open Access Journals (Sweden)

    Peter G. Betts


    Full Text Available We present three 3D numerical models of deep subduction where buoyant material from an oceanic plateau and a plume interact with the overriding plate to assess the influence on subduction dynamics, trench geometry, and mechanisms for plateau accretion and continental growth. Transient instabilities of the convergent margin are produced, resulting in: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a “bowed” shaped subducting slab. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction is re-established directly behind the trailing edge of the plateau. The plateau shortens and some plateau material subducts. The presence of buoyant plume material beneath the oceanic plateau has a profound influence on the behaviour of the convergent margin. In the plateau + plume model, plateau accretion causes rapid trench advance. Plate convergence is accommodated by shearing at the base of the plateau and shortening in the overriding plate. The trench migrates around the edge of the plateau and subduction is re-established well behind the trailing edge of the plateau, effectively embedding the plateau into the overriding plate. A slab window forms beneath the accreted plateau and plume material is transferred from the subducting plate to the overriding plate through the window. In all of the models, the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The models provide a dynamic context for plateau and plume accretion in Phanerozoic accretionary orogenic systems such as the East China Orogen and the Central Asian

  14. Juvenile crustal recycling in an accretionary orogen: Insights from contrasting Early Permian granites from central Inner Mongolia, North China (United States)

    Yuan, Lingling; Zhang, Xiaohui; Xue, Fuhong; Liu, Fulin


    Coeval high-K calc-alkaline to alkaline granites constitute important components of post-collisional to post-orogenic igneous suites in most orogenic belts of various ages on Earth and their genesis harbors a key to ascertaining critical geodynamic controls on continental crustal formation and differentiation. This zircon U-Pb dating and geochemical study documents three contrasting Early Permian granites from Erenhot of central Inner Mongolia, eastern Central Asian Orogenic Belt (CAOB) and reveals concurrent high-K calc-alkaline to alkaline granite association derived from successive partial melting of distinct protoliths. The ca. 280 Ma Gancihuduge (GCG) pluton shows a calc-alkaline I-type character, with initial 87Sr/86Sr ratios of 0.7035 to 0.7039, εNd(t) of + 1.87 to + 4.70, zircon εHf(t) of + 8.0 to + 13.2 and δ18O from 7.4 to 8.7‰. The ca. 276 Ma Cailiwusu (CLS) pluton is magnesian and peraluminous, with initial 87Sr/86Sr ratios of 0.7036 to 0.7040, εNd(t) of + 1.9 to + 2.4, zircon εHf(t) of + 6.5 to + 12.1 and δ18O from 9.7 to 10.9‰. These features are consistent with partial melts of mixed sources composed of newly underplated meta-basaltic to -andesitic protoliths and variable supracrustal components, with distinctively higher proportion of the latter in the CLS pluton. By contrast, the ca. 279 Ma Kunduleng (KDL) suite exhibits an A-type magmatic affinity, with typical enrichment in alkalis, Ga, Zr, Nb and Y, εNd(t) of + 2.39 to + 3.55, zircon εHf(t) from + 8.3 to + 12.3 and δ18O values from 6.8 to 7.5‰. These features suggest that they stem from high-temperature fusion of dehydrated K-rich mafic to intermediate protoliths. Besides presenting a snapshot into a stratified crustal architecture in δ18O, these contrasting granites could not only serve as a temporal marker for monitoring post-collisional extension in the aftermath of a retreating subduction zone, but also present spatial magmatic proxy for tracing crustal formation and

  15. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong


    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  16. An overview of the regional, geological and structural setting of the uraniferous granites in the Damara Orogen, Namibia

    International Nuclear Information System (INIS)

    Brynard, H.J.; Andreoli, M.A.G.


    Uranium-bearing granites, comprising both potentially economic deposits and source rocks for uranium deposits in duricrustal and sedimentary sequences, occur in the Damara Orogen of Namibia. The economically important uraniferous granites are mainly confined to the Central Zone, delimited by the Omaruru and Okahandja lineaments, which demarcate the boundary between two markedly different magnetic and hence depositional and/or tectonic regimes. Various models to explain the origin and evolution of the uranium-enriched granites have been proposed to date, none of which are found to explain the observed petrological phenomena adequately. The paper critically reviews the existing literature on the origin of the granites and some criteria for exploration are discussed. (author). 24 refs, 6 figs, 2 tabs

  17. Constraining a Precambrian Wilson Cycle lifespan: An example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland (United States)

    Nicoli, Gautier; Thomassot, Emilie; Schannor, Mathias; Vezinet, Adrien; Jovovic, Ivan


    In the Phanerozoic, plate tectonic processes involve the fragmentation of the continental mass, extension and spreading of oceanic domains, subduction of the oceanic lithosphere and lateral shortening that culminate with continental collision (i.e. Wilson cycle). Unlike modern orogenic settings and despite the collection of evidence in the geological record, we lack information to identify such a sequence of events in the Precambrian. This is why it is particularly difficult to track plate tectonics back to 2.0 Ga and beyond. In this study, we aim to show that a multidisciplinary approach on a selected set of samples from a given orogeny can be used to place constraints on crustal evolution within a P-T-t-d-X space. We combine field geology, petrological observations, thermodynamic modelling (Theriak-Domino) and radiogenic (U-Pb, Lu-Hf) and stable isotopes (δ18O) to quantify the duration of the different steps of a Wilson cycle. For the purpose of this study, we focus on the Proterozoic Nagssugtoqidian Orogenic Belt (NOB), in the Tasiilaq area, South-East Greenland. Our study reveals that the Nagssugtoqidian Orogen was the result of a complete three stages juvenile crust production (Xjuv) - recycling/reworking sequence: (I) During the 2.60-2.95 Ga period, the Neoarchean Skjoldungen Orogen remobilised basement lithologies formed at TDM 2.91 Ga with progressive increase of the discharge of reworked material (Xjuv from 75% to 50%; δ18O: 4-8.5‰). (II) After a period of crustal stabilization (2.35-2.60 Ga), discrete juvenile material inputs (δ18O: 5-6‰) at TDM 2.35 Ga argue for the formation of an oceanic lithosphere and seafloor spreading over a period of 0.2 Ga (Xjuv from < 25% to 70%). Lateral shortening is set to have started at ca. 2.05 Ga with the accretion of volcanic/magmatic arcs (i.e. Ammassalik Intrusive Complex) and by subduction of small oceanic domains (M1: 520 ± 60 °C at 6.6 ± 1.4 kbar). (III) Continental collision between the North Atlantic

  18. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model (United States)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza


    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  19. The Sanfengshan copper deposit and early Carboniferous volcanogenic massive sulfide mineralization in the Beishan orogenic belt, Northwestern China (United States)

    Wang, Jialin; Gu, Xuexiang; Zhang, Yongmei; Zhou, Chao; He, Ge; Liu, Ruiping


    The Sanfengshan copper deposit, located in the Beishan orogenic belt, Northwestern China, is hosted in the lower member of the Hongliuyuan Formation, an early Carboniferous metavolcanic-sedimentary sequence. Mineralization occurs as stratiform, stratiform-like and lenticular orebodies, and comprises of laminated, brecciated, banded, massive, and disseminated ores. The mineralogy is dominated by pyrite, chalcopyrite and sphalerite. Fe-Mn chert is widely distributed and generally occurs as massive, laminated, bands or lenses, which are consistent with the orebody. Alteration at Sanfengshan displays a clear concentric zoning pattern and the footwall alteration is more intense and somewhat thicker than the hanging-wall alteration. Systematic geochemical investigation on the volcanic rocks in this area shows that the basalts of the Hongliuyuan Formation (HLY) are predominantly tholeiites with nearly flat rare earth element (REE) pattern, insignificant negative anomalies of high field strength elements (HFSEs), and low Ti/V and Th/Nb ratios. They were most likely derived from partial melting of depleted asthenospheric mantle and formed in a fore-arc setting during initiation of the southward subduction of the Paleo-Asian Ocean. The basalts of the Maotoushan Formation (MTS) display a calc-alkaline nature and are enriched in large ion lithophile elements (LILEs) and depleted in HFSEs, suggesting an active continental margin setting. Sulfur isotope (δ34S) values of the sulfide and sulfate minerals vary between 0‰ and 5.4‰, which are consistent with sulfur derivation from leaching of the host volcanic rocks, although a direct magmatic contribution cannot be ruled out. The Re-Os isotope data of pyrite yield an isochron age of 353 ± 35 Ma, consistent with the age of the host HLY basalts. Thus, a syngenetic (volcanogenic massive sulfide) model is proposed and it is concluded that the Sanfengshan copper deposit is a typical Cyprus-type VMS deposit that formed in an early

  20. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus


    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  1. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum (United States)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.


    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.


    Directory of Open Access Journals (Sweden)

    V. M. Soloviev


    Full Text Available The paper presents the results of deep seismic studies on Geophysical Reference Profile 1-SB (Sredneargunsk – Ust-Karenga – Taksimo – Vitim in East Transbaikalia,Russia. The1200 kmlong profile crosses the major tectonic structures of the Central Asian fold belt: the Argun median massif, the Selenga-Stanovoy and Transbaikalia folded regions, and the Baikal rift zone. Its northwestern fragment extends into the Angara-Lena monocline of the Siberian platform. The southeastern (Transbaikalia and northwestern (Baikal-Patom fragments of the profile are based on the spot (differential seismic sounding technique using explosions and 40-tonne vibrators. The south­eastern (Transbaikalia fragment shows small crustal thickness values (~40 km, an almost horizontal position of the Moho, and high velocities of longitudinal waves (~8.4 km/sec beneath the Moho. The analysis of parallelism graphs and the dynamic expression of the wave refracted from the Moho suggests a less than 5–10 km thick layer of high velocities and low gradients below Moho. The database on theterritoryofTransbaikaliaincludes ~200 wave arrival times from large earthquakes, which were refracted at the Moho at distances of ~200–1400 km. As part of the tomographic interpretation, using additional DSS data on the Moho, theterritoryofTransbaikaliahas been mapped to show the patterns of the threshold velocity values at the Moho. The seismic data was used to contour an area with high velocity values in the mantle in the central part of the Mongolia-Okhotsk orogenic belt and the neighboring fold structures of Transbaikalia. According to the analysis of the seismic and geologic data on the study area, the mantle layer with high velocity values in the Mongolian-Okhotsk orogenic belt may be represented by the eclogitic rock plates.

  3. Subduction and exhumation of a continental margin in the Scandinavian Caledonides: Insights from ultrahigh pressure metamorphism, late orogenic basins and 3D numerical modelling (United States)

    Cuthbert, Simon


    The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin

  4. Records of Mesoproterozoic taphrogenic events in the eastern basement of the Araçuaí Orogen, southeast Brazil

    Directory of Open Access Journals (Sweden)

    Tobias Maia Rabelo Fonte-Boa

    Full Text Available ABSTRACT: The history of palaeocontinents alternates long fragmentation to drift periods with relatively short agglutination intervals. One of the products of a Rhyacian-Orosirian orogeny was a palaeocontinent that brought together the basement of the Araçuaí-West Congo orogen (AWCO with regions now located in the São Francisco and Congo cratons. From ca. 2 Ga to ca. 0.7 Ga, this large region of the São Francisco-Congo palaeocontinent was spared of orogenic events, but underwent at least five taphrogenic events recorded by anorogenic magmatism and/or sedimentation. The taphrogenic events are well documented in the AWCO proximal portions and neighboring cratonic regions, but lack evidence in the AWCO high-grade core. Our studies on amphibolites intercalated in the Rhyacian Pocrane complex, basement of the Rio Doce magmatic arc, allowed to the recognition of two Mesoproterozoic taphrogenic episodes. The oldest one, a Calymmian episode, is recorded by amphibolites with a zircon magmatic crystallization age at 1529 ± 37 Ma (U-Pb SHRIMP, and lithochemical signature of basaltic magmatism related to continental intraplate settings. Another set of amphibolite bodies records the youngest taphrogenic episode, a Stenian event, with a zircon magmatic crystallization age at 1096 ± 20 Ma (U-Pb SHRIMP, and lithochemical signature similar to mature magmatism of continental rift setting. The Calymmian episode (ca. 1.5 Ga correlates to the Espinhaço II basin stage and mafic dikes of the northern Espinhaço, Chapada Diamantina and Curaçá domains, while the Stenian episode (ca. 1.1 Ga correlates to the Espinhaço III basin stage. We also present U-Pb data for 87 detrital zircon grains from a quartzite lens intercalated in the Pocrane complex, the Córrego Ubá quartzite. Its age spectrum shows main peaks at 1176 ± 21 Ma (35%, 1371 ± 30 Ma (18%, 1536 ± 22 Ma (19%, 1803 ± 36 Ma (17% and 1977 ± 38 Ma (12%, suggesting a Stenian (ca. 1176 Ma maximum

  5. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?) (United States)

    Abd El Monsef, Mohamed


    The orogenic gold deposits are a distinctive type of deposits that revealed unique temporal and spatial association with an orogeny. Where, the system of gold veins and related ore minerals was confined to hydrothermal solutions formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens, with the respect to ongoing deep-crustal, subduction-related thermal processes. In Egypt, most of vein-type and dyke-type gold mineralization are restricted to granitic rocks or at least near of granitic intrusion that seems to have had an important influence on gold mineralization. Shear zone-related, mesothermal gold deposits of Fatira and Gidami mines in the northern Eastern Desert of Egypt are found within granitic bodies or at the contact between granites and metavolcanic rocks. The hosting-granitic rocks in Fatira and Gidami areas are mainly of granodioritic composition (I-Type granite) which is related to calc-alkaline magmatic series. However, Fatira granitoids were developed within island arc tectonic settings related to mature island arc system (Late-orogenic stage), at relatively low temperature (around 660° C) and medium pressure between (5 - 10 Kbar). On the other hand, Gidami granitoids were developed during the collision stage in continental arc regime related to active continental margin (Syn-orogeny), which were crystallized at relatively high temperature (700-720° C) and low pressure (around 0.1 Kbar). The ore mineralogy includes pyrite, chalcopyrite, sphalerite, covellite, ilmenite, goethite ± pyrrhotite ± pentlandite ± galena ± molybdenite. Native gold is detected only in Gidami mineralization as small inclusions within pyrite and goethite or as tiny grains scattered within quartz vein (in close proximity to the sulfides). In Fatira deposits, it is detected only by microprobe analysis within the crystal lattice of pyrite and jarosite. Fluid inclusions study for the mineralized

  6. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden


    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  7. Evidences for an orogenic-induced global cooling at the Frasnian-Famennian boundary (ca 376 Ma BP) (United States)

    Averbuch, O.; Tribovillard, N.; Devleeschouwer, X.; Riquier, L.


    Late Devonian time (Famennian, 376--362 Ma BP) is a period of both intense orogenic activity and drastic climatic variations with the onset of a major glaciation event upon parts of the Gondwanian Southern America and Africa situated in high southern latitudes. This global cooling event is coeval with a significant fall in the atmospheric CO_2 content as suggested both by stomatal data and modelling. In the stratigraphic record, the Frasnian-Famennian transition is characterized by a great loss of biotic diversity and pronounced environmental changes with the demise of reefal carbonate platforms and the deposition of extensive organic-rich levels (Kellwasser levels) in Late Frasnian times followed by a rapid global scale sea-level fall and an increase in detrital input in the basal Famennian. We propose to relate the Famennian global cooling and the associated environnmental changes to the development of major mountain cordilleras extending on one hand from the Urals to South America (including the Central Asian, the European, the Northern African, the Appalachian belts) and on the other hand from the western American Antler to the Arctic Ellesmerian belt. Extensive high pressure metamorphic rocks dated between ca 380 and 360 Ma BP, pervasive deformations distributed along the belt (Eo-Variscan phase) and synorogenic molassic rocks trapped within the flexural foreland basins indicate a major collisional event in Late Frasnian-Famennian times inducing an important crustal thickening and associated high continental relief. The major drop in the atmospheric CO2 content would be driven by the conjunction of two orogenic-induced mechanisms : (1) the intensification of silicate weathering on the continental areas as attested by a major rise in the 87Sr/86Sr composition of sea water at the Frasnian-Famennian boundary ; the coeval development of vascular plants on emerged lands is also probably an important factor in enhanced chemical weathering of continental soils (2

  8. Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions (United States)

    Wu, Kai; Ding, Xing; Ling, Ming-Xing; Sun, Wei-dong; Zhang, Li-Peng; Hu, Yong-Bin; Huang, Rui-Fang


    Serpentinites are important volatile and fluid mobile element repositories in oceanic lithosphere and subduction zones, and thus provide significant constraints on global geochemical cycles and tectonic evolution at convergent margins. In this contribution, two types of serpentinites from the Mianlue suture zone in the Qinling orogenic belt, central China, are identified on the basis of detailed mineralogical and geochemical study. Serpentinites from the Jianchaling region (Group 1) are composed of lizardite/chrysotile + magnesite + magnetite. Most of these serpentinites (Group 1a), consist of pseudomorphic orthopyroxene and olivine, and are characterized by low Al2O3/SiO2, high MgO/SiO2 and Ir-type PGEs to Pt ratios, suggesting a residual mantle origin. Meanwhile, the U-shape REE pattern and positive Eu, Sr and Ba anomalies of these serpentinites indicate that serpentinization fluids have interacted with gabbroic cumulates at moderately high temperatures or associate with the chlorinity and redox conditions of the fluid. Considering the limited mobility of U in the hydrating fluids for the Group 1a serpentinites, hydrating fluids for these serpentinites are most likely derived from the dehydrated slab, and have been in equilibrium with subducting sediments. There are also some serpentinites with low-grade metamorphic recrystallization from the Jianchaling region (Group 1b), represented by recrystallized serpentine minerals (antigorite). The trace element compositions of these Group 1b serpentinites suggest that partial dehydration of serpentinites associated with the transformation from lizardite to antigorite in subduction zone is also likely to affect the geochemistry of serpentinites. Serpentinites from the Liangyazi region (Group 2) are composed of antigorite + dolomite + spinel + magnetite. The high Cr number (0.65-0.80) and low Ti concentrations of spinels in Group 2 serpentinites indicate a refractory mantle wedge origin. Fertile major element compositions

  9. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran (United States)

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.


    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  10. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis (United States)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu


    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  11. What happens along the flank and corner of a continental indenter? Insights from the easternmost Himalayan orogen and constraints on the models of the India-Asia collision (United States)

    Haproff, P. J.; Yin, A.; Zuza, A. V.


    Investigations of continental collisions often focus on thrust belts oriented perpendicular to the plate-convergence direction and exclude belts that bound the flanks of a continental indenter despite being crucial to understanding the collisional process. Research of the Himalayan orogen, for example, has mostly centered on the east-trending thrust belt between the eastern and western syntaxes, resulting in inadequate examination of the north-trending Indo-Burma Ranges located along the eastern margin of India. To better understand the development of the entire Himalayan orogenic system, we conducted field mapping across the Northern Indo-Burma Range (NIBR), situated at the intersection of the eastern Himalaya and Indo-Burma Ranges. Our research shows that major lithologic units and thrust faults of the Himalaya extend to the NIBR, suggesting a shared geologic evolution. The structural framework of the NIBR consists of a southwest-directed thrust belt cored by a hinterland-dipping duplex, like the Himalaya. However, the Northern Indo-Burma orogen is distinct based on (1) the absence of the Tethyan Himalayan Sequence and southern Gangdese batholith, (2) the absence of the South Tibetan detachment, (3) crustal shortening greater than 80%, (4) an incredibly narrow orogen width of 7-33 km, (5) exposure of an ophiolitic mélange complex as a klippe, (6) and right-slip shear along the active range-bounding thrust fault. Furthermore, lithospheric deformation along the flank and northeast corner of India is characterized by right-slip transpression partitioned between the thrust belt and right-slip faults. Such a regime is interpreted to accommodate both contraction and clockwise rotation of Tibetan lithosphere around India, consistent with existing continuum deformation and rotation models.

  12. The Heart of China revisited: II Early Paleozoic (ultra)high-pressure and (ultra)high-temperature metamorphic Qinling orogenic collage (United States)

    Bader, Thomas; Franz, Leander; Ratschbacher, Lothar; de Capitani, Christian; Webb, A. Alexander G.; Yang, Zhao; Pfänder, Jörg A.; Hofmann, Mandy; Linnemann, Ulf


    Orogens with multiple (ultra)high-pressure ((U)HP) and (ultra)high-temperature ((U)HT) metamorphic events provide a complex but telling record of oceanic and continental interaction. The Early Paleozoic history of the "Heart of China," the Qinling orogenic collage, offers snapshots of at least three (U)HP and two (U)HT metamorphic events. The preservation of remnants of both oceanic and continental domains together with a ≥110 Myr record of magmatism allows the reconstruction of the processes that resulted in this disparate metamorphism. Herein, we first illuminate the pressure-temperature-time (P-T-t) evolution of the Early Paleozoic (U)HP and (U)HT events by refining the petrographic descriptions and P-T estimates, assess published, and employ new U/Th-Pb zircon, monazite, and titanite, and 40Ar-39Ar phengite geochronology to date the magmatic and metamorphic events. Then we explore how the metamorphic and magmatic events are related tectonically and how they elucidate the affinities among the various complexes in the Qinling orogenic collage. We argue that a Meso-Neoproterozoic crustal fragment—the Qinling complex—localized subduction-accretion events that involved subduction, oceanic-arc formation, and back-arc spreading along its northern margin, and mtantle-wedge exhumation and spreading-ridge subduction along its southern margin.

  13. Unfolding the arc: The use of pre-orogenic constraints to assess the evolution of the Variscan belt in Western Europe (United States)

    Casas, Josep M.; Brendan Murphy, J.


    We present a pre-orogenic, early Paleozoic, palinspastic reconstruction of the northern Gondwana margin that was subsequently involved in the Late Paleozoic Variscan orogeny in central and Western Europe. Our reconstruction is based on two pre-orogenic data sets, the age and distribution of Cambrian-Ordovician magmatism and the detrital zircon age signature of late Neoproterozoic-early Paleozoic clastic rocks. We obtain this reconstruction by unfolding the Ibero-Armorican arc and by restoring the movement of the large-scale dextral strike-slip faults that transect the different tectono-stratigraphic units. Our results favour an irregular shape for this part of the northern Gondwana margin with a N-S central segment linking two E-W oriented segments. The proposed reconstruction and the structural restoration of the main features of Variscan deformation is in accordance with some aspects of previously proposed structural models, such as the curved geometry of the Gondwanan margin required by the indentor model for continental collision, the role played by the large strike-slip faults in dispersing formerly juxtaposed units, and the regional-scale oroclinal folding of part of this margin during late Carboniferous-Early Permian times. The combined use of the pre-orogenic geological constraints and palinspastic restoration is a useful approach that may provide a foundation for continual refinement of reconstructions as more data become available.

  14. Timing of sediment-hosted Cu-Ag mineralization in the Trans-Hudson orogen at Janice Lake, Wollaston Domain, Saskatchewan, Canada (United States)

    Perelló, José; Valencia, Víctor A.; Cornejo, Paula; Clifford, John; Wilson, Alan J.; Collins, Greg


    The Janice Lake Cu-Ag mineralization in the Wollaston Domain of northern Saskatchewan is hosted by a metasedimentary sequence in the upper part of the Wollaston Supergroup of the Trans-Hudson orogen. The Wollaston Supergroup was deposited between 2070 and 1865 Ma in a foreland basin setting constructed over Archean basement of the Hearne craton. The Trans-Hudson orogen underwent final collision and peak metamorphism at 1810 Ma, during consolidation of Laurentia and its amalgamation with the Columbia supercontinent. Titanite is a common constituent of the post-peak metamorphic assemblages of Trans-Hudson lithotectonic units and accompanied disseminated sediment-hosted Cu sulfide mineralization at Janice Lake. Titanite crystals, intergrown with chalcocite over a strike-length of 2 km of Cu-bearing stratigraphy, were dated by the ID-TIMS and LA-ICP-MS U-Pb methods, returning an age range from 1780 to 1760 Ma and a weighted average age of 1775 ± 10 Ma. The titanite ages effectively date the associated chalcocite-dominated sediment-hosted Cu-Ag mineralization and its formation during initial post-orogenic uplift and cooling, 30 myr after peak metamorphism. The age-range and tectonic setting of the Janice Lake mineralization confirms that sediment-hosted Cu mineralization was an integral part of the metallogenic endowment of Columbia and that its emplacement coincided with the continental-scale Trans-Hudson orogeny rather than with diagenesis and extensional basin development 100 myr earlier.

  15. Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege (north-eastern pyrenees, France): An ion microprobe study

    Energy Technology Data Exchange (ETDEWEB)

    Chaussidon, M. (Centre de Recherches Petrographiques et Geochimiques, Vandoeuvre-les-Nancy (France)); Lorand, J. (Unite associee au CNRS, Paris (France))


    The orogenic spinel lherzolite massifs from Ariege, which represent tectonically emplaced fragments of the sub-continental upper mantle, are composed mainly of variously depleted peridotites. These rocks are crosscut by two generations of pyroxenites. The first is made up of layered pyroxenites, which are interpreted either as crystal segregates from Triassic continental tholeiites or as subducted parts of the oceanic crust re-injected within the upper mantle. The second consists of amphibole-rich dikes separated from Cretaceous alkali basalts. Forty sulfide grains, occurring either as inclusions within silicates or as interstitial grains, were investigated by ion microprobe for their sulfur isotopic compositions. Comparison between sulfide inclusions in silicates and interstitial sulfide grains strongly suggests that serpentinization and pyrenean metamorphism had no significant effect don the {delta}{sup 34}S values. Likewise, these values are broadly independent of the degree of partial melting. The negative {delta}{sup 34}S values of the massive peridotites could represent an ancient depletion event in the upper mantle. By contrast, the positive {delta}{sup 34}S values observed in the layered pryoxenites and the amphibole-rich dikes indicate that the two parent magmas had in common a mantle source variously enriched in {sup 34}S. Therefore, the present study reveals two extreme reservoirs characterized by different {delta}{sup 34}S values in the upper mantle. This range of variations can explain most {delta}{sup 34}S values found in MORB, continental tholeiites, and alkali basalts.

  16. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen


    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  17. Chemical and spectroscopic characteristics of potassium white micas related to polystage evolution of the Central Western Carpathians orogenic wedge (United States)

    Sulák, Marián; Kaindl, Reinhard; Putiš, Marián; Sitek, Jozef; Krenn, Kurt; Tóth, Ignác


    Potassium white micas in sheared basement and cover rocks from the Central Western Carpathians (CWC) were investigated by PL microscopy, electron microprobe (EMP) analysis, Mössbauer and micro-Raman spectroscopy. We specified chemical and spectroscopic characteristics, which allow distinction between celadonite-poor (muscovitic) and celadonite-rich (phengitic) white mica (Wmca). Wmca generations formed during a polystage evolution in changing P- T conditions ranging from the very low to medium temperatures at medium pressure within the Alpidic CWC orogenic wedge. BSE imaging, EMP analyses and X-ray element maps indicate chemical differences between muscovite and phengite, mainly in Al, Fe and Si contents. Mössbauer spectroscopy revealed their contrasting spectra, related to different hyperfine parameters, mainly of quadrupole splitting (QS of Ms: 2.6-2.7 mm/s, or 2.9-3.0 mm/s for Phg), corresponding to Fe 2+ and Fe 3+ contents. Blastomylonitic samples with a single dominating Wmca generation and finite-strain XZ sections were suitable for micro-Raman study. These data corroborate correlation between the frequencies of two vibrational modes of Wmca and Si content. The investigated Wmca generations indicate an enhanced transformation between Wmca phases in shear zones.

  18. Comparison of the orogenic displacement of sodium caseinate with the caseins from the air-water interface by nonionic surfactants. (United States)

    Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J


    Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.

  19. Greisen deposits associated to carboniferous post-orogenic granites with mineralization potential, Sierra de Fiambala, Catamarca, Argentina

    International Nuclear Information System (INIS)

    Fogliata, A. S.; Rubinstein, N. R.; Avila, J. C.; Baez, M.


    The Fiambala range is located in the central south part of the province of Catamarca, Western Sierras Pampeanas, Argentina. It is largely conformed by Precambrian metamorphic rocks, a Cambrian granitic intrusive, Ordovician basic and ultra basic rocks and epi zonal Carboniferous granites (Los Ratones, El Salto and Ayacucho Granites). The Carboniferous granites are sub alkaline, weakly peraluminous, high silica (except for the porphyritic facies of Los Ratones granite) and moderately enriched in K. Contents of trace elements and REE indicate that El S alto and Ayacucho granites and the granular facies of Los Ratones granite have characteristics of evolved and differentiated granite associated with hydrothermal systems. The variations of trace elements, particularly Sn, W, U, Rb, Ba, Zr and Sr suggest that they correspond to granites with mineralization potential. Genetically linked to these granites there are Sn, W, U and minor base metals greisen deposits. The hydrothermal process that yield to these deposits involved two main alteration stages, beginning with alkali metasomatism follow by greissenization. According to the isotopic ages the hydrothermal processes postdate about 1 Ma the magmatic activity. The analyses of the granites and the associated greisen deposits confirm that the post orogenic carboniferous magmatism is the major metallogenetic control of the ore deposits from the studied area. This metallogenetic control could be a useful tool in prospecting similar deposits in the rest of the Western Sierras Pampeanas. (Author)

  20. Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling (United States)

    Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil


    A new kinematic reconstruction that incorporates estimates of post-20 Ma shortening and extension in the Apennines, Alps, Dinarides, and Sicily Channel Rift Zone (SCRZ) reveals that the Adriatic microplate (Adria) rotated counterclockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Minimum and maximum amounts of rotation are derived by using, respectively, estimates of crustal extension along the SCRZ (minimum of 30 km) combined with crustal shortening in the Eastern Alps (minimum of 115 km) and a maximum amount (140 km) of convergence between Adria and Moesia across the southern Dinarides and Carpatho-Balkan orogens. When combined with Neogene convergence in the Western Alps, the best fit of available structural data constrains Adria to have moved 113 km to the NW (azimuth 325°) while rotating 5 ± 3° counterclockwise relative to Europe since 20 Ma. Amounts of plate convergence predicted by our new model exceed Neogene shortening estimates of several tens of kilometers in both the Apennines and Dinarides. We attribute this difference to crust-mantle decoupling (delamination) during rollback in the Apennines and to distributed deformation related to the northward motion of the Dacia Unit between the southern Dinarides and Europe (Moesia). Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenides slab pulling to the northeast, and crustal wedging in the Western Alps, which acted as a pivot and stopped farther northwestward motion of Adria relative to Europe.

  1. Late Archaean-early Proterozoic source ages of zircons in rocks from the Paleozoic orogen of western Galicia, NW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, R P; Priem, H N.A. [Laboratorium voor Isotopen-Geologie, Amsterdam (Netherlands); Den Tex, E [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Aardwetenschappen


    U-Pb data are reported for nine suites of zircons and three monazites from the Paleozoic orogen in western Galicia: one paragneiss and six orthogneisses from the early Paleozoic basement, and two Carboniferous (ca. 310 Ma old) intrusions of two-mica granite. New whole-rock Rb-Sr analyses, along with earlier data, indicate an age of ca. 470-440 Ma (Ordovician) for the emplacement of the granitic precursors of the orthogneisses. Monazite from the paragneiss also yields an U-Pb age of ca. 470 Ma. From the high initial /sup 87/Sr//sup 86/Sr ratios an involvement of Precambrian continental crust material is evident in the generation of the early Paleozoic suite of granites, while the zircon U-Pb data give evidence of the presence of about 3.0-2.0 Ga old (late Archaean-early Proterozoic) components in the source material. Zircons from the oldest sedimentary rocks in the area, now present as catazonal paragneisses and a likely source for the granites, likewise reveal a provenance age of 3.0-2.0 Ga.

  2. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li


    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  3. Pre- and syn-Ross orogenic granitoids at Drake Head and Kartografov Island, Oates Coast, northern Victoria Land, East Antarctica

    International Nuclear Information System (INIS)

    Adams, C.J.; Roland, N.W.


    The majority of the Oates Coast, northern Victoria Land granitoids, typified by those at Drake Head and Kartografov Island (Harald Bay), are monzogranites with lesser granodiorites and minor quartz-monzodiorite and syenogranite. All are plagioclase-K-feldspar-biotite granitoids with additional muscovite, garnet and/or hornblende, and are subalkaline and peraluminous. Berg Granite typifies the early Ordovician, Granite Harbour Instrusive (GHI) suite of the Ross Orogen at the Oates Coast. Granitoids from Kartografov Island have higher amounts of Fe+Mg+Ti and an ambiguous Rb-Sr geochronology: they could be either pre-Ross Orogeny in age, or syn-Ross Orogeny and representing a lower structural level of GHI. The Drake Head granite gneiss has a fractionated leuco-granite composition similar to Berg Granite, and is intruded by granite and granodiorite. Rb-Sr ages indicate that all are Neoproterozoic, although the granite gneiss result is probably an errorchron age, reflecting its less uniform nature (granodiorite:649 ± 30 Ma, initial ratio 0.7065 +/- 6; granite gneiss: 682 ± 140 Ma, initial ratio 0.7107 ± 50). These late Neoproterozoic granitoids provide a source for distinctive detrital zircon age components in extensive early Paleozoic turbidites of Australia-New Zealand-Antarctica. (author). 24 refs., 5 figs., 1 tab

  4. U-Pb SHRIMP and Sm-Nd geochronology of the Silvania Volcanics and Jurubatuba Granite: juvenile paleoproterozoic crust in the basement of the Neo proterozoic Brasilia Belt, Goias, central Brazil

    International Nuclear Information System (INIS)

    Fischel, Danielle P.; Pimentel, Marcio M.; Fuck, Reinhardt A.; Armstrong, Richard


    U-Pb SHRIMP and Sm-Nd isotopic ages were determined for felsic meta volcanic rocks from the Silvania Sequence and Jurubatuba Granite in the central part of the Brasilia Belt. Zircon grains from a meta volcanic sample yielded 2115 ± 23 Ma and from the granite yielded 2089 ±14 Ma, interpreted as crystallization ages of these rocks. Six meta volcanic samples of the Silvania Sequence yielded a six-point whole-rock Sm-Nd isochron indicating a crystallization age of 2262 ±110 Ma and positive ε Nd (T) = +3.0 interpreted as a juvenile magmatic event. Nd isotopic analyses on samples from the Jurubatuba Granite have Paleoproterozoic T DM model ages between 2.30 and 2.42 Ga and ε Nd (T) values vary between -0.22 and -0.58. The oldest T DM value refers to a sedimentary xenolith in the granite. These results suggest crystallization ages of Silvania volcanics and Jurubatuba Granite are the first evidence of a ca. 2.14-2.08 juvenile magmatic event in the basement of the central part of the Brasilia Belt that implies the presence of arc/suture hidden in reworked basement of the Brasilia Belt. (author)

  5. U-Pb SHRIMP and Sm-Nd geochronology of the Silvania Volcanics and Jurubatuba Granite: juvenile paleoproterozoic crust in the basement of the Neo proterozoic Brasilia Belt, Goias, central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fischel, Danielle P.; Pimentel, Marcio M.; Fuck, Reinhardt A. [Brasilia Univ., DF (Brazil). Inst. de Geociencias; Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences


    U-Pb SHRIMP and Sm-Nd isotopic ages were determined for felsic meta volcanic rocks from the Silvania Sequence and Jurubatuba Granite in the central part of the Brasilia Belt. Zircon grains from a meta volcanic sample yielded 2115 {+-} 23 Ma and from the granite yielded 2089 {+-}14 Ma, interpreted as crystallization ages of these rocks. Six meta volcanic samples of the Silvania Sequence yielded a six-point whole-rock Sm-Nd isochron indicating a crystallization age of 2262 {+-}110 Ma and positive {epsilon}{sub Nd} (T) = +3.0 interpreted as a juvenile magmatic event. Nd isotopic analyses on samples from the Jurubatuba Granite have Paleoproterozoic T{sub DM} model ages between 2.30 and 2.42 Ga and {epsilon}{sub Nd} (T) values vary between -0.22 and -0.58. The oldest T{sub DM} value refers to a sedimentary xenolith in the granite. These results suggest crystallization ages of Silvania volcanics and Jurubatuba Granite are the first evidence of a ca. 2.14-2.08 juvenile magmatic event in the basement of the central part of the Brasilia Belt that implies the presence of arc/suture hidden in reworked basement of the Brasilia Belt. (author)

  6. U-Pb SHRIMP and Sm-Nd geochronology of the Silvânia Volcanics and Jurubatuba Granite: juvenile Paleoproterozoic crust in the basement of the Neoproterozoic Brasília Belt, Goiás, central Brazil

    Directory of Open Access Journals (Sweden)



    Full Text Available U-Pb SHRIMP and Sm-Nd isotopic ages were determined for felsic metavolcanic rocks from the Silvânia Sequence and Jurubatuba Granite in the central part of the Brasília Belt. Zircon grains from a metavolcanic sample yielded 2115 ± 23 Ma and from the granite yielded 2089 ± 14 Ma, interpreted as crystallization ages of these rocks. Six metavolcanic samples of the Silvânia Sequence yielded a six-point whole-rock Sm-Nd isochron indicating a crystallization age of 2262 ± 110 Ma and positive epsilonNd(T = +3.0 interpreted as a juvenile magmatic event. Nd isotopic analyses on samples from the Jurubatuba Granite have Paleoproterozoic T DM model ages between 2.30 and 2.42 Ga and epsilonNd(T values vary between -0.22 and -0.58. The oldest T DM value refers to a sedimentary xenolith in the granite. These results suggest crystallization ages of Silvânia volcanics and Jurubatuba Granite are the first evidence of a ca. 2.14-2.08 juvenile magmatic event in the basement of the central part of the Brasília Belt that implies the presence of arc/suture hidden in reworked basement of the Brasília Belt.

  7. New insight on the paleoproterozoic evolution of the São Francisco Craton: Reinterpretation of the geology, the suture zones and the thicknesses of the crustal blocks using geophysical and geological data (United States)

    Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.


    The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.

  8. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du


    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  9. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.


    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  10. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.


    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  11. Orogenic plateau growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt (United States)

    Allen, M. B.; Saville, C.; Blanc, E. J.-P.; Talebian, M.; Nissen, E.


    This paper shows how the Turkish-Iranian Plateau grows laterally by incrementally incorporating adjacent parts of the Zagros fold-and-thrust belt. The limit of significant, seismogenic, thrusting in the Zagros (Mw > 5) occurs close to the regional 1250 m elevation contour. The seismicity cutoff is not a significant bedrock geology boundary. Elevations increase northward, toward regional plateau elevations of 2 km, implying that another process produced the extra elevation. Between the seismogenic limit of thrusting and the suture, this process is a plausibly ductile thickening of the basement, suggesting depth-dependent strain during compression. Similar depth-dependant crustal strain may explain why the Tibetan plateau has regional elevations 1500 m greater than the elevation limit of seismogenic thrusting at its margins. We estimate 68 km shortening across the Zagros Simply Folded Belt in the Fars region, and 120 km total shortening of the Arabian plate. The Dezful Embayment is a low strain zone in the western Zagros. Deformation is more intense to its northeast, in the Bakhtyari Culmination. The orogenic taper (across strike topographic gradient) across the Dezful Embayment is 0.0004, and across the Bakhtyari Culmination, 0.022. Lateral plateau growth is more pronounced farther east (Fars), where a more uniform structure has a taper of 0.010 up to elevations of 1750 m. A >100 km wide region of the Zagros further northeast has a taper of 0.002 and is effectively part of the Turkish-Iranian Plateau. Internal drainage enhances plateau development but is not a pre-requisite. Aspects of the seismicity, structure, and geomorphology of the Zagros do not support critical taper models for fold-and-thrust belts.

  12. Strain histories from the eastern Central Range of Taiwan: A record of advection through a collisional orogen (United States)

    Mondro, Claire A.; Fisher, Donald; Yeh, En-Chao


    In the eastern Central Range of Taiwan there is a regional variation in the orientation of maximum finite stretch across the slate belt, with down-dip maximum stretch found in the western Central Range and along-strike maximum stretch in the eastern Central Range. Incremental strain histories from syntectonic fibers in pyrite pressure shadows indicate a progressive change in extension direction from down dip to along strike during deformation, there is a corresponding temporal variation in stretching direction shown in samples from the eastern edge of the Central Range, a pattern that mimics the regional west-to-east spatial variation. These observed temporal and spatial strain distributions are used to evaluate the kinematics associated with slaty cleavage development during advection through the Taiwan orogenic system. The subduction zone beneath the island of Taiwan is influenced by two types of obliquity that have the potential to generate the observed along-strike stretching. First, the plate motion vector of the Philippine Sea plate relative to the Eurasian plate is slightly oblique to the regional strike of the mountain range, which could result in partitioning of strike slip shearing into the interior of the collision. Second, the north-south Luzon volcanic arc on the Philippine Sea Plate is obliquely oriented relative to the northeast-southwest edge of the Eurasian continental margin, which could result in lateral extrusion of the ductile core of the range. Incremental strain histories in cleavage-parallel samples represent a time-for-space equivalence where the stretching direction is fixed relative to the position within the mountain belt architecture (e.g., the topographic divide), and temporal variations in the eastern central Range reflect lateral advection through the strain field in response to accretionary and erosional fluxes. Incremental strain histories in cleavage perpendicular samples show both clockwise and counter-clockwise rotation of

  13. Cenozoic Deformation of the Tarim Basin (Xinjiang, China): a Record of the Deformation Propagation through the Asian Orogenic System (United States)

    Laborde, A.; Barrier, L.; Simoes, M.; Li, H.


    During the Cenozoic, the ongoing India-Eurasia collision resulted in the formation of the Himalayan-Tibetan plateau and reactivated the Tian Shan and Altai ranges located thousands of kilometers further north. Despite numerous studies carried out on the geology and tectonics of this large convergent orogenic system, several mechanisms remain controversial such as the stress propagation through the Asia Continent or the strain partitioning between crustal thickening and lateral extruding of its lithosphere. Located between the Tibetan Plateau and the Tian Shan Range, the Tarim Basin and its several kilometres thick Cenozoic sediments derived from the surrounding mountain belts are key recorders to reconstruct the evolution of the latters. Moreover, this basin is often considered as a relatively rigid block, which behaved as a secondary ``indenter'' transmitting collisional stresses to the Tian Shan. However, due to the size of the Tarim and its thick Cenozoic sedimentary series hiding most of its structures, the constraints on the spatial distribution and timing of the its Cenozoic deformation remain fragmentary. Therefore, the main objective of our study was to produce a synthetic view of this deformation at the scale of the whole basin. Based on numerous surface and subsurface data (satellite images, field surveys, seismic profiles, and well data), we established a tectonic map of the Cenozoic structures in the region and built balanced geological cross-sections across the basin. Our surface and subsurface observations confirm that, contrary to what had been proposed, the Tarim block has also undergone a major deformation during the Cenozoic. The quantification and history of this deformation provide useful insights into the modalities of the crustal shortening in the area and the problems of stress propagation and strain partitioning following the Indo-Asian collision.

  14. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt (United States)

    Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili


    The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.

  15. Common Pb isotope mapping of UHP metamorphic zones in Dabie orogen, Central China: Implication for Pb isotopic structure of subducted continental crust (United States)

    Shen, Ji; Wang, Ying; Li, Shu-Guang


    We report Pb isotopic compositions for feldspars separated from 57 orthogneisses and 2 paragneisses from three exhumed UHPM slices representing the North Dabie zone, the Central Dabie zone and the South Dabie zone of the Dabie orogen, central-east China. The feldspars from the gneisses were recrystallized during Triassic continental subduction and UHP metamorphism. Precursors of the orthogneisses are products of Neoproterozoic bimodal magmatic events, those in north Dabie zone emplaced into the lower crust and those in central and south Dabie zones into middle or upper crust, respectively. On a 207Pb/204Pb vs. 206Pb/204Pb diagram, almost all orthogneisses data lie to the left of the 0.23 Ga paleogeochron and plot along the model mantle evolution curve with the major portion of the data plotting below it. On a 208Pb/204Pb vs. 206Pb/204Pb diagram the most of data of north Dabie zone extend in elongate arrays along the lower crustal curve and others extend between the lower crustal curve to near the mantle evolution curve for the plumbotectonics model. This pattern demonstrates that the Pb isotopic evolution of the feldspars essentially ended at 0.23 Ga and the orthogneiss protoliths were principally dominated by reworking of ancient lower crust with some addition of juvenile mantle in the Neoproterozoic rifting tectonic zone. According to geological evolution history of the locally Dabie orogen, a four-stage Pb isotope evolution model including a long time evolution between 2.0 and 0.8 Ga with a lower crust type U/Pb ratio (μ = 5-6) suggests that magmatic emplacement levels of the protoliths of the orthogneisses in the Dabie orogen at 0.8 Ga also play an important role in the Pb evolution of the exhumed UHPM slices, corresponding to their respective Pb characters at ca. 0.8-0.23 Ga. For example, north Dabie zone requires low μ values (3.4-9.6), while central and south Dabie zones require high μ values (10.9-17.2). On the other hand, Pb isotopic mixing between

  16. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen (United States)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li


    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental

  17. An analogue of long-term stability of flow-path structure in crystalline rocks distributed in the orogenic belt, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University, University Museum Material Research Section, 464-8601, Chikusa, Nagoya, 464-8601 (Japan)]. E-mail:; Takeuchi, M. E-mail:


    In the orogenic belt, in the Japanese islands, crystalline rocks from the youngest to older ages and of different orders have been identified which have formed massive areas. The fracture system observed within these rock masses implies that the groundwater and solute can be conducted through the fracture's network. It is expected that the nuclides can be retarded due to chemical sorption and/or physical retardation by the fracture fillings and fracture open pore geometry. Most of the evaluation framework of the nuclides retardation process in the geological disposal of high level radioactive waste (HLW) is, however, basically taken into account in the present geological state, without changes of structural and mineralogical features, and in its influence on the groundwater flow system over a long period of time. This paper seeks analogous evidence that can provide the confidence of such evaluation methodology and its long-term applicability. Here, we describe the fracture system developed in the crystalline rock with the different ages intruded in the orogenic belt in order to build the long-term fracturing and its 'stability' model. In particular, comparisons with the rock of 1.9-0.8 Ma Takidani Granodiorite (the youngest pluton in the world), ca. 67 Ma of Toki Granite and ca. 117 Ma Kurihashi Granodiorite located in central to northwest Japan suggest a unique characteristic of the fracture forming process and their relatively stable geometrical changing. This analogue enables us to provide a model to build the confidence of a safety context applicable for the geological setting under the orogenic field with a long-term scale. The model may also be useful for other stable tectonic settings as well as for a site characterisation methodology of crystalline rock for HLW geological disposal. (author)

  18. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence (United States)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.


    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  19. The Glória quartz-monzodiorite: isotopic and chemical evidence of arc-related magmatism in the central part of the Paleoproterozoic Mineiro belt, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Ciro A. Ávila


    Full Text Available The Glória quartz-monzodiorite, one of the mafic plutons of the Paleoproterozoic Mineiro belt, is intrusive into banded gneisses, amphibolites, schists and phyllites of the Rio das Mortes greenstone belt, in the southern portion of the São Francisco Craton, State of Minas Gerais, Brazil. The Glória quartz-monzodiorite yields a SHRIMP U-Pb zircon age of 2188 ± 29 Ma, suggesting a tectonic relationship with the pre-collisional phase of the Mineiro belt. According to the Nd isotopic evidence (epsilonNd(T = -3.4; T DM = 2.68 Ga the original magmas was formed by a mixture among Archean crustal material and Paleoproterozoic juvenile magma. The Glória quartz-monzodiorite shows metaluminous and calc-alkaline tendency with intermediate K content, comparable to that of volcanic-arc rocks. The primary mineralogical assemblage was partly modified by metamorphism, dated between 2131-2121 Ma in nearby coeval plutons. Such metamorphism is significantly older than the reported metamorphic episodes of the Mineiro belt in the Quadrilátero Ferrífero region (2059-2041 Ma in the eastern portion of the study area. This evidence, together with chemical and isotopic data from other mafic and felsic plutons coeval with the Glória quartz-monzodiorite, indicate a tectonic and magmatic migration within the Mineiro belt from west to east.O Quartzo Monzodiorito Glória é um corpo plutônicomáfico associado à evolução Paleoproterozóica do Cinturão Mineiro. Este é intrusivo em gnaisses bandados, anfibolitos, xistos e filitos do Greenstone Belt Rio das Mortes, na porção sudeste do Cráton São Francisco, Estado de Minas Gerais, Brasil. Este corpo possui idade de cristalização SHRIMP (em zircão de 2188 ± 29 Ma, enquanto os isótopos de Nd (épsilonNd(T = -3,4; T DM = 2,68 Ga apontam que sua fonte magmática envolveumaterial juvenil paleoproterozóico contaminada por protólitos arqueanos. As rochas do Quartzo Monzodiorito Glória são metaluminosas, c

  20. Discovery of Latest Cretaceous OIB-type alkaline gabbros in the Eastern Pontides Orogenic Belt, NE Turkey: Evidence for tectonic emplacement of seamounts (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Chatterjee, Nilanjan; Liu, Ze; Yılmaz-Değerli, Sedanur


    The Meso-Cenozoic geodynamic evolution of the Eastern Pontides Orogenic Belt, a mountain chain extending parallel to the southeastern margin of the Black Sea, has been controversial for the last forty years. Here we present data for a newly discovered alkaline gabbro body and its surrounding basaltic rocks in the northern part of the Eastern Pontides Orogenic Belt. We also provide a comprehensive assessment of the Late Mesozoic-Cenozoic geodynamic evolution of the Eastern Mediterranean region. The gabbroic body is bounded by reverse faults along its northern and southern borders and is surrounded by vesicular, pillow-fragment breccias and pillow basalts. Mineral compositions suggest that crystallization of the gabbros began at about 1170 °C, and the lowest preserved crystallization T is near 1000 °C. Estimated pressure at the beginning of crystallization is 5.7-7.4 kb. The 40Ar/39Ar dating of kaersutite and plagioclase and Usbnd Pb dating of titanite indicated that the Hayrat gabbro crystallized at 67 Ma (Late Maastrichtian). Whole rock major-trace-rare earth element and Sr-Nd-Pb isotope data indicate that the gabbros and basalts have different origins. The gabbros are alkaline and exhibit the geochemical features of OIB, whereas the basalts are tholeiitic and reveal depletions of HFSE that are similar to those of arc rocks. The gabbros are strongly fractionated, and derive from an enriched, lithospheric mantle source, with partial melting occurring in a garnet-stable environment. The basalts are less fractionated, and probably derive from a shallower source in which spinel peridotite was the predominant lithology. Considering all new and old geological, geochemical, geochronological and geophysical data from the Black Sea Basin and the Eastern Pontides-Lesser Caucasus-Alborz Orogenic Belt, we suggest that the alkaline Hayrat gabbro formed in an oceanic intraplate setting, and was accreted to the forearc region of the Eastern Pontides Orogenic Belt during

  1. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy) (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.


    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  2. An interpretation of the aeromagnetic data covering portion of the Damara orogenic belt, with special reference to the occurrence of uraniferous granite

    International Nuclear Information System (INIS)

    Corner, B.


    This thesis comprises primarily palaeomagnetic studies within the Damara orogenic belt of South West Africa (Namibia), as well as an interpretation of the regional structure, utilizing published aeromagnetic data. The prime objectives of the study were to aid uranium exploration programmes in this area by establishing any possible magnetic relationships associated with the uraniferous granites in the area, and to interpret regional structure from the aeromagnetic data. Cursory interpretation of the airborne radiometric data is also undertaken. Gravity traverses, conducted across three dome structures with which uranium mineralisation is intimately associated, are interpreted in order to determine the origin of these structures

  3. Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: a setting for reactivation of asymmetric crenulation cleavage (United States)

    Marshak, Stephen; Alkmim, Fernando F.; Whittington, Alan; Pedrosa-Soares, Antônio Carlos


    The Araçuaí orogen of eastern Brazil is one of many Brasiliano/Pan African orogens formed during the Neoproterozoic assembly of Gondwana. Its western edge, bordering the São Francisco craton, is the Serra do Espinhaço fold-thrust belt, in which top-up-to-the-west (reverse-sense) faults, west-verging folds (F 1), and east-dipping spaced to phyllitic cleavage (S 1) developed. We have found that the kinematics of deformation changes markedly at the hinterland margin of this fold-thrust belt. Here, beneath a plateau known as the Chapada Acauã, metadiamictite and fine-grained pelitic schist comprise an east-dipping belt that contains an assemblage of structures indicative of top-down-to-the-east (normal-sense) shear. This assemblage includes a cascade of F 2 folds that refold F 1 folds and verge down the dip of the belt's enveloping surfaces, vertical tension gashes, and top-down-to-the-east rotated clasts. Based on the presence of these structures, we propose that the plateau exposes a regional-scale normal-sense shear zone, here called the Chapada Acauã shear zone (CASZ). Because F 2 folds refold F 1 folds, normal-sense shear in the CASZ occurred subsequent to initial west-verging thrusting. Considering this timing of motion in the CASZ, we suggest that the zone accommodated displacement of the internal zone of the Araçuaí orogen down, relative to its foreland fold-thrust belt, and thus played a role in extensional collapse of the orogen. The CASZ trends parallel to preserved thrusts to the west, and thus may represent an inverted thrust fault. Notably, throughout the CASZ, S 1 schistosity has been overprinted by a pervasive, west-dipping asymmetric crenulation cleavage (S 2). The sigmoid shape of S 1 surfaces in S 2 microlithons require that slip on each S 2 surface was top-down-to-the-west. S 2 cleavage is axial-planar to the down-dip verging F 2 folds. Based on its geometry, we suggest that S 2 cleavage initiated either as an antithetic extensional

  4. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao


    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  5. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition (United States)

    Wang, Xinyu; Yuan, Chao; Zhang, Yunying; Long, Xiaoping; Sun, Min; Wang, Lixing; Soldner, Jeremie; Lin, Zhengfan


    Voluminous Paleozoic intrusions occur in the Beishan Orogenic Collage (BOC) and their genesis and tectonic background are important to reconstruct the accretion-collision processes in the southernmost Altaids. Paleozoic is an important period for arc development in the BOC, where the Gongpoquan and Huaniushan arcs are located. There are two pulses of magmatism in the Huaniushan and Gongpoquan arcs, i.e., the ca. 470-423 Ma I-type and ca. 424-395 Ma S- and A-type granitoids. In this study, we focus on two peraluminous granitic plutons in the Gongpoquan arc, i.e., the Baitoushan muscovite granite and Haergen two-mica granite, aiming at unraveling their petrogenesis and tectonic background. Zircon LA-ICP-MS U-Pb dating yields emplacement ages of ca. 409-395 Ma and ca. 409 Ma for the Baitoushan and Haergen plutons, respectively. Both the granitic plutons are strongly peraluminous with A/CNK ratios of 1.10-1.20, indicative of S-type affinities. The rocks are characterized by high SiO2 and K2O contents with high CaO/Na2O ratios. Moreover, the rocks possess low MgO contents, Rb/Sr and Rb/Ba ratios, together with their relatively high initial 87Sr/86Sr ratios (0.7139-0.7152) and less radiogenic εNd(t) values (-3.15 to -5.17), implying a clay-poor and plagioclase-rich crustal source. Compared with earlier pulse of arc-related magmatism (ca. 470-423 Ma), the latter pulse of magmatism (ca. 424-395 Ma) consists mainly of "normal granite" characterized by higher SiO2 (>66%) and K2O contents, weaker fractionated REE patterns and lower δEu values, and gabbroic to dioritic intrusions are only sporadic. Moreover, the granitoids of the latter pulse show variable but more crust-like Sr-Nd isotopic compositions ((87Sr/86Sr)0 = 0.7038-0.7327; εNd(t) = -6.70 to +0.33) than the earlier ones ((87Sr/86Sr)0 = 0.7024-0.7080; εNd(t) = -2.56 to +8.86), indicating that the Early Devonian (ca. 424-395 Ma) experienced extensive crustal melting with minor involvement of mantle materials

  6. The Origin of the Chinese Central Tianshan Block in the Southern Central Asian Orogenic Belt: Evidence from Detrital Zircon Study (United States)

    Huang, Z.; Long, X.; Yuan, C.


    The Chinese Central Tianshan Block (CTB) is one of the oldest continental fragments in the southern Central Asian Orogenic Belt (CAOB). Although it is vital for understanding the evolution of the CAOB, its origin has been poorly studied. The CTB was previously suggested to have been originated from the North China, the South China, the Tarim cratons or the East European Craton (Baltica). A total of 165 concordant U-Pb and Hf isotopic analyses of detrital zircon are obtained from three meta-sediments in the CTB, including one meta-sandstone from Xingxingxia formation and one meta-sandstone as well as one quartzite from Kawabulake formation. Detrital zircon grains from the Xingxingxia and Kawabulake formations are dominated by respective youngest age populations at 1002 Ma and 930-960 Ma, providing constraints on the maximum depositional ages for these two formations. Zircon grains from the meta-sediments have very similar age distributions, with two dominant peaks at 0.93-1.0 Ga and 1.0-1.6 Ga and a minor peak at 2.3-2.7 Ga. They have similar Hf isotopic signatures, suggesting that the meta-sediments in the CTB share similar sedimentary provenance. The early Neoproterozoic detrital zircon grains are mainly local-derived, whereas the Paleo-Mesoproterozoic grains are both autochthonous and allochthonous. The occurrence of these Mesoproterozoic and Neoproterozoic zircon grains are coincident with the Nuna breakup and the Rodinia assembly. This suggests that the CTB might experience the tectonic switching of the Nuna to the Rodinia. The distinct Meso-Neoproterozoic age patterns and Hf isotopic compositions of these detrital grains from the CTB and the surrounding blocks indicate that the CTB was not located close to the North China, the South China or the Tarim cratons in Precambrian. Our new data suggest that the CTB was most likely once a part of the East European Craton before the Neoproterozoic. This study was supported by National Basic Research Program of China

  7. Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton

    Directory of Open Access Journals (Sweden)

    Biswajit Mishra


    Full Text Available Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include (1 the famous Kolar mine and the world class Hutti deposit; (2 small mines at Hira-Buddini, Uti, Ajjanahalli, and Guddadarangavanahalli; (3 prospects at Jonnagiri; and (4 old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous (H2O + CO2 ± CH4 + NaCl ore fluids, which precipitated gold and altered the host rocks in a narrow P–T window of 0.7–2.5 kbar and 215–320 °C. While the calculated fluid O- and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs. magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite

  8. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan


    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  9. Changes in dip and frictional properties of the basal detachment controlling orogenic wedge propagation and frontal collapse: The external central Betics case (United States)

    Jimenez-Bonilla, A.; Torvela, T.; Balanyá, J. C.; Expósito, I.; Díaz-Azpiroz, M.


    Thin-skinned fold-and-thrust belts (FTBs) have been extensively studied through both field examples and modeling. The overall dynamics of FTBs are, therefore, well understood. One less understood aspect is the combined influence of across-strike changes in the detachment properties and the basement topography on the behavior of an orogenic wedge. In this paper, we use field data together with reflection seismic interpretation from the external zones of the central Betics FTB, southern Spain, to identify a significant increase in the wedge basal dip (a basement "threshold") coinciding with the pinch-out of a weak substrate. This induced both changes to the wedge geometry and to the basal friction, which in turn influenced the wedge dynamics. The changing dynamics led to a transient "stagnation" of the FTB propagation, topographic buildup, and subsequent collapse of the FTB front. This in turn fed an important Langhian depocenter made up of mass transport deposits. Coevally with the FTB propagation, extension took place both parallel and perpendicular to the orogenic trend. This case study illustrates how across-strike changes in wedge basal properties can control the detailed behavior of a developing FTB front, but questions remain regarding the time-space interaction and relative importance of the basal parameters.

  10. Thermobarometry and electron-microprobe Th-U-Pb monazite dating in garnet metapelites from the Capelinha Formation, Aracuai Orogen, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Queiroga, Glaucia Nascimento; Martins, Maximiliano de Souza; Castro, Marco Paulo de; Jordt-Evangelista, Hanna; Silva, Ana Lucia da, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG (Brazil). Escola de Minas. Departamento de Geologia; Pedrosa-Soares, Antonio Carlos, E-mail: [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Instituto de Geociencias. Departamento de Geologia; Schulz, Bernhard, E-mail: [TU Bergakademie - Institute of Mineralogy, Freiberg - Saxony (Germany)


    The Capelinha Formation (Macaubas Group) consists of a lower quartzitic unit with metamafic intercalations and an upper metapelitic sequence. It occurs in a complex tectono-metamorphic sector of the Aracuai orogen, where post-collisional collapse-related structures superimposed collisional structures. The garnet-bearing assemblages started crystallization in the collisional deformation stage that formed the main regional foliation around 570 Ma. Garnet porphyroblasts display a well developed growth zonation of Fe-Mg-Ca-Mn and show, from core to rim, increasing almandine and pyrope contents in contrast with decreasing grossular and spessartine contents. Mineral relations and microstructures provide criteria for local equilibria and a structurally controlled application of geothermobarometry based on cation exchange and net transfer reactions. The P-T values calculated from cores to rims of garnets, aligned along clockwise trends, resulted in increasing temperatures (from 500 deg C up to 620 deg C) under decompression conditions (from 8.0 kbar to 4.5 kbar). The Th-UPb dating of homogeneous monazites by electron microprobe revealed a recrystallization period at around 490 - 480 Ma. These ages can be related to the tectono-thermal event associated with the gravitational collapse, constraining the youngest time limit for metamorphic processes in the Aracuai orogen. (author)

  11. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen (United States)

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.


    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic

  12. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Wilson [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas]. E-mail:; Avila, Ciro Alexandre [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Museu Nacional. Dept. de Geologia e Paleontologia]. E-mail:; Nunes, Luciana Cabral [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias]. E-mail:


    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K{sub 2}O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 {+-} 9 Ma, whereas the Lajedo granodiorite yields 2208 {+-} 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low {sup 87}Sr/{sup 86}Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 {+-} 2 Ma), Brumado

  13. Nd-Sr isotopic geochemistry and U-Pb geochronology of the Fe granitic gneiss and Lajedo Granodiorite: implications for paleoproterozoic evolution of the Mineiro Belt, southern Sao Francisco craton, Brazil

    International Nuclear Information System (INIS)

    Teixeira, Wilson; Avila, Ciro Alexandre; Nunes, Luciana Cabral


    The Fe granitic gneiss and Lajedo granodiorite belong to a voluminous felsic-mafic plutonism, tectonically linked to Paleoproterozoic magmatic evolution of the Mineiro Belt, southern portion of the Sao Francisco Craton, central-eastern Brazil. The Fe pluton is located north of the Lenheiros shear zone and is intrusive with respect to the Rio das Mortes greenstone belt and pyroxenite - gabbroic bodies, as indicated by xenoliths of gneiss and amphibolite, in the first case, and pyroxenite in the latter. The Lajedo granodiorite is located south of the Lenheiros shear zone and cuts the metamafic rocks of the Forro peridotite - pyroxenite and mafic and intermediate rocks of the Nazareno greenstone belt, as evidenced by xenoliths from the latter unit. The modal composition of the Fe granitic gneiss lies within the ranges of monzogranite and syenogranite. It is peraluminous and shows a large variation in K 2 O content, which implies a middle-K calc-alkaline to high-K calc-alkaline tendency. The Lajedo modal composition is consistent with granodioritic and tonalitic compositions. It indicates a predominantly peraluminous composition and calc-alkaline character. The U-Pb zircon crystallization age of the Fe granitic gneiss is 2191 ± 9 Ma, whereas the Lajedo granodiorite yields 2208 ± 26 Ma. The Nd/Sr characteristics of the Fe and Lajedo plutons are consistent with mixtures of enriched mantle (EMI-type), DMM and crustal components during magma genesis in a plutonic arc setting, while the low 87 Sr/ 86 Sri ratios point to contribution of mafic rock protoliths during magma genesis. This is also in accordance with the characteristic xenoliths observed within the investigated plutons from the Nazareno and Rio das Mortes greenstone belts. The Fe granitic gneiss and Lajedo granodiorite show tectonic characteristics which are comparable to those of nearby coeval plutons: Brito quartz-diorite (2221 +- 2 Ma), Brumado de Cima granodiorite (2219 ± 2 Ma), Brumado de Baixo

  14. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt (United States)

    Chen, Ming; Sun, Min


    The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of

  15. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism? (United States)

    Li, Chusi; Zhang, Mingjie; Fu, Piaoer; Qian, Zhuangzhi; Hu, Peiqing; Ripley, Edward M.


    The Permian Kalatongke Ni-Cu deposits in the Central Asian Orogenic Belt are among the most important Ni-Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5 mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ˜15% of olivine crystallization from a primary magma, itself produced by 7-8% partial melting of depleted mantle peridotite. Positive ɛ Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6-18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc-arc or arc-continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal

  16. A Comparative Study of the Electrical Structure of Circum Tibetan Plateau Orogenic Belts and its Tectonic Implications (United States)

    Jin, Sheng; Zhang, Letian; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang; Yin, Yaotian


    The Tibetan Plateau, as known as "roof of the world", was created through the on-going continent-continent collision between the Indian and Eurasian plates since 55 Ma. As the process continues, the plateau is growing both vertically and horizontally. The horizontal expansion of the plateau is blocked by the Yangtze block in the east, the Tarim block in the north, and the Ordos block in the northeast, and consequently lead to the formation of the circum Tibetan plateau orogenic belts. To better understand the mechanism behind this process, we conducted a comparative study by collecting 7 magnetotelluric (MT) profiles over the margins of the Tibetan plateau, namely, the INDEPTH 100, 700 and 800 lines in the southern Tibet, the INDEPTH 4000 and 5000 lines across the Altyn Tagh fault on the northern margin of the plateau, as well as other two profiles across the Haiyuan fault and the Longmenshan fault on the northeastern and eastern margins of the plateau deployed under the framework of project SinoProbe. The electrical features of the stable blocks surrounding the Tibetan plateau are generally resistive, while crustal conductive layers are found to be wide spread within the plateau. The southern margin of the Tibetan plateau is characterized by large scale underthrust of the Indian lithosphere beneath the plateau. This intense converging process created the thrust fault system distributed along the southern margin of the Tibetan plateau over 1000 km. Crustal conductive layers discovered in southern Tibet are generally associated with the southward crustal flow that originated from the lower crust within the plateau and exhumed along the thrust belts in the Himalayas. On the eastern margin of the Tibetan plateau, the electrical structures suggest that the Yangtze block wedged into the Tibetan lithosphere and caused decoupling between the crust and upper mantel. Large scale conductors discovered beneath the Songpan-Ganze block reflect that the eastward crustal flow was

  17. An evolving tectonic environment of Late Carboniferous to Early Permian granitic plutons in the Chinese Altai and Eastern Junggar terranes, Central Asian Orogenic Belt, NW China (United States)

    Zhang, Chen; Liu, Dongdong; Luo, Qun; Liu, Luofu; Zhang, Yunzhao; Zhu, Deyu; Wang, Pengfei; Dai, Quanqi


    The Central Asian Orogenic Belt (CAOB) represents one of the most important sites of juvenile crustal growth during the Phanerozoic. Located in the central part of the CAOB, the Chinese Altai and Eastern Junggar terranes record the collisional processes between the peri-Siberian and Kazakhstan orogenic systems. However, the precise timing of collision between the two terranes remains controversial. The Wukuli and Kadelat plutons in the Chinese Altai belt are dated at ∼305 and ∼280 Ma respectively, whereas the Aketas pluton in the Eastern Junggar terrane is dated at ∼308 Ma. Granites from the Wukuli and Kadelat plutons are strongly peraluminous (A/CNK > 1.1), and are characterized by low Al2O3, Na2O, MnO, MgO, CaO and heavy rare earth element (HREE) contents, but with high SiO2, K2O and Rb contents as well as high Rb/Sr ratios. Granites from the Wukuli pluton have low εNd(t) and εHf(t) values of -3.7 to -3.4 and -9.7 to +4.9, whereas those from the Kadelat pluton have values of -3.6 to -3.4 and -8.0 to +2.6. These features suggest S-type affinity for the Wukuli and Kadelat plutons with magma derivation through partial melting of Mesoproterozoic metasediments. The Aketas pluton is composed of weakly peraluminous quartz monzonites that have A/CNK values ranging from 0.92 to 1.08, with high Na2O, Sr, and Sr/Y, and low Y, Yb, Nb, and Ta. These rocks display positive εNd(t) (+4.8 to +6.4) and εHf(t) (+9.7 to +14.6) values, and low initial 87Sr/86Sr ratios (0.703357-0.703868), similar to modern adakites, suggesting that the quartz monzonites were derived from the partial melting of lower crustal material. The geochemical characteristics suggest that the Aketas pluton was formed in a subduction-related setting, the Wukuli pluton in a syn-collisional setting, and the Kadelat pluton in the subsequent post-orogenic strike-slip-related setting. In combination with data from other granitoids in these two terranes, the Aketas pluton represents the youngest record of

  18. An analysis of the daily precipitation variability in the Himalayan orogen using a statistical parameterisation and its potential in driving landscape evolution models with stochastic climatic forcing (United States)

    Deal, Eric; Braun, Jean


    A current challenge in landscape evolution modelling is to integrate realistic precipitation patterns and behaviour into longterm fluvial erosion models. The effect of precipitation on fluvial erosion can be subtle as well as nonlinear, implying that changes in climate (e.g. precipitation magnitude or storminess) may have unexpected outcomes in terms of erosion rates. For example Tucker and Bras (2000) show theoretically that changes in the variability of precipitation (storminess) alone can influence erosion rate across a landscape. To complicate the situation further, topography, ultimately driven by tectonic uplift but shaped by erosion, has a major influence on the distribution and style of precipitation. Therefore, in order to untangle the coupling between climate, erosion and tectonics in an actively uplifting orogen where fluvial erosion is dominant it is important to understand how the 'rain dial' used in a landscape evolution model (LEM) corresponds to real precipitation patterns. One issue with the parameterisation of rainfall for use in an LEM is the difference between the timescales for precipitation (≤ 1 year) and landscape evolution (> 103 years). As a result, precipitation patterns must be upscaled before being integrated into a model. The relevant question then becomes: What is the most appropriate measure of precipitation on a millennial timescale? Previous work (Tucker and Bras, 2000; Lague, 2005) has shown that precipitation can be properly upscaled by taking into account its variable nature, along with its average magnitude. This captures the relative size and frequency of extreme events, ensuring a more accurate characterisation of the integrated effects of precipitation on erosion over long periods of time. In light of this work, we present a statistical parameterisation that accurately models the mean and daily variability of ground based (APHRODITE) and remotely sensed (TRMM) precipitation data in the Himalayan orogen with only a few

  19. Is the HP-UHP Hong'an-Dabie-Sulu orogen a piercing point for offset on the Tan-Lu fault? (United States)

    Leech, Mary L.; Webb, Laura E.


    The Tan-Lu fault is a major strike-slip fault in eastern China that appears to offset the high-grade rocks of the Hong'an-Dabie-Sulu orogen left-laterally ˜540 km. We evaluate models for the collision between the South and North China blocks, published radiometric dates recording HP-UHP metamorphism and exhumation in the Hong'an-Dabie and Sulu terranes, and the timing of sinistral motion on the Tan-Lu fault to evaluate whether UHP rocks provide a piercing point for offset on the Tan-Lu fault. UHP metamorphism in Hong'an-Dabie was concurrent with Sulu based on U-Pb dating of coesite-bearing domains of zircon at 244 ± 5-226 ± 2 Ma for Hong'an-Dabie and 243 ± 4-225 ± 2 Ma for Sulu. Retrograde metamorphism began c. 220 Ma for both Hong'an-Dabie and Sulu, but retrograde zircon growth ended c. 214 Ma in Hong'an-Dabie and continued until c. 202 Ma in Sulu based on U-Pb dating of zircon domains external to coesite-bearing domains. Structures in Sulu are rotated 25° counter-clockwise from, but are broadly similar to, Hong'an-Dabie suggesting the two areas have a common Triassic orogenic history that pre-dates motion on the Tan-Lu fault, and that is consistent with paleomagnetic studies. We constructed a pre-Cretaceous restoration of the Hong'an-Dabie-Sulu belt that moves the Sulu terrane south, aligning the suture and the eclogite-facies isograd, and rotates Sulu c. 25° clockwise to re-align structures with Hong'an-Dabie. Our restoration is supported by published data and shows that the Hong'an-Dabie-Sulu orogen is a piercing point for post-collisional offset on the Tan-Lu fault and that these regions shared a common subduction-exhumation history. The Tan-Lu fault did not play a significant role in the Hong'an-Dabie-Sulu collision and likely developed later, in the Early Cretaceous.

  20. Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília orogen (SE Brazil) (United States)

    Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Pedrosa-Soares, Antônio; Hermann, Jörg; Dussin, Ivo; Pinheiro, Marco Aurélio P.; Bouvier, Anne-Sophie; Baumgartner, Lukas


    The identification of markers of subduction zones in orogenic belts requires the estimation of paleo-geothermal gradients through pressure-temperature-time (P-T-t) estimates in mafic rocks that potentially derive from former oceanic units once. However, such markers are rare in supracrustal sequences specially in deeply eroded and weathered Precambrian orogens, and reconstructing their metamorphic history is challenging because they are commonly retrogressed and only preserve a few mineral relicts of high-pressure metamorphism. Metamorphosed mafic rocks from Pouso Alegre region of the Neoproterozoic Southern Brasília Orogen outcrop as rare lenses within continental gneisses. They have previously been classified as retrograde eclogites, based on the presence of garnet and the characteristic symplectitic texture replacing omphacite. These rocks were interpreted to mark the suture zone between the Paranapanema and São Francisco cratons. To test the possible record of eclogitic conditions in the Pouso Alegre mafic rocks, samples including the surrounding felsic rocks have been investigated using quantitative compositional mapping, forward thermodynamic modeling and in-situ dating of accessory minerals to refine their P-T-t history. In the metamorphosed mafic rocks, the peak pressure assemblage of garnet and omphacite (Jd20, reconstructed composition) formed at 690 ± 35 °C and 13.5 ± 3.0 kbar, whereas local retrogression into symplectite or corona occurred at 595 ± 25 °C and 4.8 ± 1.5 kbar. The two reactions were coupled and thus took place at the same time. A zircon U-Pb age of 603 ± 7 Ma was obtained for metamorphic rims and linked to the retrogression stage. Monazite and metamorphic zircon U-Th-Pb ages for the surrounding rocks are at ca. 630 Ma and linked to peak pressure conditions similar to the one recorded by the mafic rocks. The low maximal pressure of 14 kbar and the high geothermal gradient do not necessarily support subduction process

  1. Analogue modeling of rotational orogenic wedges: implications for the Neogene structural evolution of the Southern Central Andes (33°-35°S) (United States)

    Herrera, S. S.; Farías, M.; Pinto, L.; Yagupsky, D. L.; Guzman, C.; Charrier, R.


    Structural evolution of the southernmost Central Andes is a major subject of debate. Overall vergence within the range and how intra-continental subduction prompts Andean orogeny are controversial topics. Between 33°-35° S, strike of the western slope main structures shifts southwards, from N-S to NNE-SSW, defining the Maipo Orocline. Likely, width of the Principal Cordillera increases southwards. Despite, a progressive southward decrease in orogenic volume has been determined for the segment. To understand such latitudinal variations, and to provide explanations for overall vergence, we carry out analogue models of contractional wedges to explore upper-crustal thrust system development with a progressive variation of the convergence vector. The model setup consisted of a fixed plate on which a mobile plate generated a velocity discontinuity. The upper-crust was simulated using low-cohesive quartz sand. The mobile plate was fixed at its northern end to a pivot, thus progressively incrementing shortening and the obliquity of convergence southwards. PIV photogrammetry recorded wedge evolution. A classical doubly-vergent wedge was formed, consisting of a steep 35° dipping, static thrust on the retro-side, an uplifted core, and an incipient forward-breaking, 25° critically tapered imbricated thrust fan on the pro-side, wider (in plan-view) where the imposed shortening reached the maximum. The resulting wedge is reminiscent of: the steep western Andean slope, in which the bordering thrust has maintained its present position during the Neogene; and the east-vergent fold-and-thrust belt of the eastern slope. The asymmetrical doubly vergence of the model suggests west-directed subduction of the South American continent beneath the orogen. The southward width increase is geometrically comparable to the natural analogue, yet we observe a flat contrast with orogenic shortening and volume estimates for the region. This can be attributed to the fact that uplift and erosion

  2. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: Tectonic implications for the evolution of Southeast Asia (United States)

    Shellnutt, J. Gregory; Lan, Ching-Ying; Van Long, Trinh; Usuki, Tadashi; Yang, Huai-Jen; Mertzman, Stanley A.; Iizuka, Yoshi; Chung, Sun-Lin; Wang, Kuo-Lung; Hsu, Wen-Yu


    Cordilleran-type batholiths are useful in understanding the duration, cyclicity and tectonic evolution of continental margins. The Dalat zone of southern Vietnam preserves evidence of Late Mesozoic convergent zone magmatism superimposed on Precambrian rocks of the Indochina Block. The Dinhquan, Deoca and Ankroet plutons and their enclaves indicate that the Dalat zone transitioned from an active continental margin producing Cordilleran-type batholiths to highly extended crust producing within-plate plutons. The Deoca and Dinhquan plutons are compositionally similar to Cordilleran I-type granitic rocks and yield mean zircon U/Pb ages between 118 ± 1.4 Ma and 115 ± 1.2 Ma. Their Sr-Nd whole rock isotopes (ISr = 0.7044 to 0.7062; εNd(T) = - 2.4 to + 0.2) and zircon Hf isotopes (εHf(T) = + 8.2 ± 1.2 and + 6.4 ± 0.9) indicate that they were derived by mixing between a mantle component and an enriched component (i.e. GLOSS). The Ankroet pluton is chemically similar to post-orogenic/within-plate granitic rocks and has a zircon U/Pb age of 87 ± 1.6 Ma. Geobarometric calculations indicate that amphibole within the Ankroet pluton crystallized at a depth of ~ 6 kbar which is consistent with the somewhat more depleted Sr-Nd isotope (ISr = 0.7017 to 0.7111; εNd(T) = - 2.8 to + 0.6) and variable εHf(T) compositions suggesting a stronger influence of crustal material in the parental magma. The compositional change of the Dalat zone granitic rocks during the middle to late Cretaceous indicates that the tectonic regime evolved from a continental arc environment to one of post-orogenic extension. The appearance of sporadic post-90 Ma magmatism in the Dalat zone and along the eastern margin of Eurasian indicates that there was no subsequent orogenic event and the region was likely one of highly extended crust that facilitated the opening of the South China Sea during the latter half of the Cenozoic.

  3. Looking at the roots of the highest mountains: the lithospheric structure of the Himalaya-Tibet and the Zagros orogens. Results from a geophysical-petrological study (United States)

    Tunini, L.; Jimenez-Munt, I.; Fernandez, M.; Villasenor, A.; Afonso, J. C.; Verges, J.


    The Himalaya-Tibet and Zagros orogens are the two most prominent mountain belts built by continental collision. They are part of a huge belt of Cenozoic age which runs from the Pyrenees to Burma. In its central sector, the collision with the southern margin of the Eurasian plate has resulted not only in the building of mountain ranges over the north-eastern edges of the Arabian and Indian plates but also in widespread deformation 1000-3000 km from the suture zones. Zagros and Himalaya-Tibet orogens share many geodynamic processes but at different rates, amount of convergence and stage of development. The study of their present-day structures provides new insights into their quasi coeval collisional event pointing out differences and similarities in the mountain building processes. We present 2D crust and upper mantle cross-sections down to 400 km depth, along four SW-NE trending profiles. Two profiles cross the Zagros Mountains, running from the Mesopotamian Foreland Basin up to the Alborz and Central Iran. Two other profiles run through the Himalaya-Tibetan orogen: the western transect crosses the western Himalaya, Tarim Basin, Tian Shan Mountains and Junggar Basin; the eastern transect runs from the Indian shield to the Beishan Basin, crossing the eastern Himalaya, Tibetan Plateau, Qaidam Basin and Qilian Mountains. We apply the LitMod-2D code which integrates potential fields (gravity and geoid), isostasy (elevation) and thermal (heat flow and temperature distribution) equations, and mantle petrology. The resulting crust and upper mantle structure is constrained by available data on elevation, Bouguer anomaly, geoid height, surface heat flow and seismic data including P- and S-wave tomography models. Our results show distinct deformation patterns between the crust and the lithospheric mantle beneath the Zagros and Himalaya-Tibetan orogens, indicating a strong strain partitioning in both areas. At crustal level, we found a thickening beneath the Zagros and the

  4. Orogen migration and tectonic setting of the Andrelândia Nappe system: An Ediacaran western Gondwana collage, south of São Francisco craton (United States)

    Campos Neto, Mario da Costa; Basei, Miguel Angelo Stipp; Assis Janasi, Valdecir de; Moraes, Renato


    The southern Brasília Orogen is organized in a pile of nappes that records the Neoproterozoic history of the subduction and collision between passive and active margins, respectively belonging to the São Francisco and Paranapanema Plates. The whole pile of allochthons comprises the rootless Andrelândia Nappe System (the upper kyanite-bearing granulite of Três Pontas-Varginha Nappe, the intermediate high-pressure amphibolite-to eclogite facies of Liberdade Nappe and the lower Andrelândia Nappe) that is located below an Andean-type magmatic arc (Socorro-Guaxupé Nappe) and overrides the Lima Duarte Nappe and the Carrancas Nappe System. The tectonic units of the Andrelândia Nappe System seem to be exotic to the São Francisco Plate. The retroeclogite of the Liberdade Nappe yielded a 670 Ma SHRIMP U-Pb age in zircon, that is interpreted as the age of N-MORB-type basic magmatism. Detrital zircon grains of proximal flysh deposits of wackes in the Andrelândia Nappe present similar ages that reflect the crystallization in its source area. Both, rocks present Nd isotopic juvenile signatures with T DM in the range of 1.4 to 1.1 Ga. Rhyacian orthogneisses occur as slices in the Liberdade Nappe and have Nd isotope signature of juvenile source. The building of the collision pile of the whole system of nappes was diachronic and records a continuous outward migration of the orogen. The main structure is a middle crust-level duplex. The propagation of the structure and the metamorphism advanced progressively from the upper to the lower nappes, as is shown by U-Pb monazite ages in the range of 618-595 Ma for the Andrelândia Nappe System and 590-575 Ma for the Carrancas and Lima Duarte nappes.

  5. Transpressional folding and associated cross-fold jointing controlling the geometry of post-orogenic vein-type W-Sn mineralization: examples from Minas da Panasqueira, Portugal (United States)

    Jacques, Dominique; Vieira, Romeu; Muchez, Philippe; Sintubin, Manuel


    The world-class W-Sn Panasqueira deposit consists of an extensive, subhorizontal vein swarm, peripheral to a late-orogenic greisen cupola. The vein swarm consists of hundreds of co-planar quartz veins that are overlapping and connected laterally over large distances. Various segmentation structures, a local zigzag geometry, and the occurrence of straight propagation paths indicate that they exploited a regional joint system. A detailed orientation analysis of the systematic joints reveals a geometrical relationship with the subvertical F2 fold generation, reflecting late-Variscan transpression. The joints are consistently orthogonal to the steeply plunging S0-S2 intersection lineation, both on the regional and the outcrop scale, and are thus defined as cross-fold or ac-joints. The joint system developed during the waning stages of the Variscan orogeny, when already uplifted to an upper-crustal level. Veining reactivated these cross-fold joints under the conditions of hydraulic overpressures and low differential stress. The consistent subperpendicular orientation of the veins relative to the non-cylindrical F2 hinge lines, also when having an inclined attitude, demonstrates that veining did not occur during far-field horizontal compression. Vein orientation is determined by local stress states variable on a meter-scale but with the minimum principal stress consistently subparallel to fold hinge lines. The conspicuous subhorizontal attitude of the Panasqueira vein swarm is thus dictated by the geometry of late-orogenic folds, which developed synchronous with oroclinal buckling of the Ibero-Armorican arc.

  6. Age and kinematics of ductile deformation in the Cerro Durazno area, NW Argentina: Significance for orogenic processes operating at the western margin of Gondwana during Ordovician - Silurian times (United States)

    Wegmann, Maja I.; Riller, Ulrich; Hongn, Fernando D.; Glodny, Johannes; Oncken, Onno


    The Cerro Durazno Pluton belongs to a suite of Paleozoic granitoid intrusions in NW-Argentina, that are central for understanding the tectonic setting of the western margin of Gondwana in Ordovician and Silurian times. The pluton and its host rocks were tectonically overprinted by metamorphic mineral shape fabrics formed under middle greenschist-facies metamorphic conditions and associated with the nearby Agua Rosada Shear Zone. Kinematic analysis of the shear zone based on the geometric relationship between individual segments of the shear plane and principal axes of mineral fabric ellipsoids indicates reverse-sense of shear with a minor component of left-lateral displacement. This is compatible with the kinematics of other ductile deformation zones in this area, collectively forming a network, which accomplished orogen-parallel extension in addition to vertical thickening. Using the Rb-Sr isotopic system, an undeformed pegmatite dike of the Cerro Durazno Pluton was dated at 455.8 ± 3.6 Ma and mineral fabrics of the Agua Rosada Shear Zone formed at middle greenschist-facies metamorphism gave deformation ages of 437.0 ± 3.8 Ma and ⩽428.4 ± 4.5 Ma. Thus, tectonic overprint at low metamorphic grade occurred about 20-30 Ma after terminal magmatism in the Cerro Durazno area. Our data from the Cerro Durazno area and regional considerations suggest that the western margin of Gondwana was characterized by orogen-parallel extension in addition to crustal thickening as well as episodes of magmatism and ductile deformation that varied greatly in time and space.

  7. Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens

    International Nuclear Information System (INIS)

    Haines, P.W.; Hand, M.; Sandiford, M.


    The Palaeozoic Alice Springs Orogeny was a major intraplate tectonic event in central and northern Australia. The sedimentological, structural and isotopic effects of the Alice Springs Orogeny have been well documented in the northern Amadeus Basin and adjacent exhumed Arunta lnlier, although the full regional extent of the event, as well as lateral variations in timing and intensity are less well known. Because of the lack of regional isotopic data, we take a sedimentological approach towards constraining these parameters, compiling the location and age constraints of inferred synorogenic sedimentation across a number of central and northern Australian basins. Such deposits are recorded from the Amadeus, Ngalia, Georgina, Wiso, Eastern Officer and, possibly, Warburton Basins. Deposits are commonly located adjacent to areas of significant basement uplift related to north-south shortening. In addition, similar aged orogenic deposits occur in association with strike-slip tectonism in the Ord and southern Bonaparte Basins of northwest Australia. From a combination of sedimentological and isotopic evidence it appears that localised convergent deformation started in the Late Ordovician in the eastern Arunta lnlier and adjacent Amadeus Basin. Synorogenic style sedimentation becomes synchronously widespread in the late Early Devonian and in most areas the record terminates abruptly close to the end of the Devonian. A notable exception is the Ngalia Basin in which such sedimentation continued until the mid-Carboniferous. In the Ord and Bonaparte Basins there is evidence of two discrete pulses of transcurrent activity in the Late Devonian and Carboniferous. The sedimentological story contrasts with the isotopic record from the southern Arunta lnlier, which has generally been interpreted in terms of continuous convergent orogenic activity spanning most of the Devonian and Carboniferous, with a suggestion that rates of deformation increased in the mid-Carboniferous. Either

  8. The Chinese North Tianshan Orogen was a rear-arc (or back-arc) environment in the Late Carboniferous: constraint from the volcanic rocks in the Bogda Mountains (United States)

    Xie, W.


    The Tianshan Orogen is a key area for understanding the Paleozoic tectonics and long-lasting evolution of the Central Asian Orogenic Belt (CAOB). However, considerable debate persists as to its tectonic setting during the late Paleozoic, with active subduction system and intraplate large igneous provinces as two dominant schools (Ma et al., 1997; Gu et al., 2000; Xiao et al., 2004; Han et al., 2010; Shu et al., 2011; Chen et al., 2011; Xia et al., 2012). With aims of providing constraints on this issue, petrology, mineralogy, geochronological and geochemistry for the Late Carboniferous volcanics from the Bogda Mountains have been carried out. We find two suits of high-Al basalt (HAB, 315-319 Ma) and a suit of submarine pillow basalt ( 311 Ma) in this region. Both of the two basalts belong to the tholeiitic magma (the tholeiitic index THI > 1) and contain low pre-eruptive magmatic H2O (coexisted with the Bogda HABs is I-type intermediate ignimbrites and rhyolite lavas. The rhyolites are formed by partial melting of a hydrated and juvenile arc crust and the ignimbrites are affected by magma mingling and feldspar fractionation (Xie et al., 2016c). The two basalts both have the MORB-like Sr-Nd-Hf-Pb isotopes and arc-like trace element compositions. We discuss that they may have been generated from a dry and depleted mantle source metasomatized by coexisted felsic volcanics were likely formed in a rear-arc or back-arc environment, probably related to southward subduction of the Paleo-Tianshan Ocean (Xie et al., 2016a, b, c).

  9. Paleoproterozoic (~1.88Ga felsic volcanism of the Iricoumé Group in the Pitinga Mining District area, Amazonian Craton, Brazil: insights in ancient volcanic processes from field and petrologic data

    Directory of Open Access Journals (Sweden)

    Ronaldo Pierosan


    Full Text Available The Iricoumé Group correspond to the most expressive Paleoproterozoic volcanism in the Guyana Shield, Amazonian craton. The volcanics are coeval with Mapuera granitoids, and belong to the Uatumã magmatism. They have U-Pb ages around 1880 Ma, and geochemical signatures of α-type magmas. Iricoumé volcanics consist of porphyritic trachyte to rhyolite, associated to crystal-rich ignimbrites and co-ignimbritic fall tuffs and surges. The amount and morphology of phenocrysts can be useful to distinguish lava (flow and dome from hypabyssal units. The morphology of ignimbrite crystals allows the distinction between effusive units and ignimbrite, when pyroclasts are obliterated. Co-ignimbritic tuffs are massive, and some show stratifications that suggest deposition by current traction flow. Zircon and apatite saturation temperatures vary from 799°C to 980°C, are in agreement with most temperatures of α-type melts and can be interpreted as minimum liquidus temperature. The viscosities estimation for rhyolitic and trachytic compositions yield values close to experimentally determined melts, and show a typical exponential decay with water addition. The emplacement of Iricoumé volcanics and part of Mapuera granitoids was controlled by ring-faults in an intracratonic environment. A genesis related to the caldera complex setting can be assumed for the Iricoumé-Mapuera volcano-plutonic association in the Pitinga Mining District.O Grupo Iricoumé corresponde ao mais expressivo vulcanismo Paleoproterozóico do Escudo das Guianas, craton Amazônico. As rochas vulcânicas são coexistentes com os granitóides Mapuera, e pertencem ao magmatismo Uatumã. Possuem idades U-Pb em torno 1888 Ma, e assinaturas geoquímicas de magmas tipo-A. As vulcânicas do Iricoumé consistem de traquitos a riolitos porfiríticos, associados a ignimbritos ricos em cristal e tufos co-ignimbríticos de queda e surge. A quantidade e a morfologia dos fenocristais podem ser

  10. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain. (United States)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio


    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  11. Fold superimposition in the Permian groups in the central Beishan orogenic collage (northwestern China): highlights for the late evolution of the Altaids (United States)

    Zhonghua, Tian; Wenjiao, Xiao; Yehua, Shan


    The southernmost part of the Central Asian Orogenic Belt (CAOB) or Altaids (Sengör and Burtman, 1993; Xiao et al., 2009), a rare and magnificent example of mesoscopic fold superimposition, involving the Permian sandstone, slightly to mildly metamorphosed clastic rocks, is well exposed in the central Beishan Orogenic Collage (BOC). We provide a detailed description of the morphological features of this phenomenon, based on an enormous amount of structural data collected during recent twice field mapping in the study area. Two phases of folds are readily distinguishable both in satellite image ( and our own field map (Fig.1b). Fold is tight to close, N-S-trending in the first phase (F1), and open and E-W-trending in the second phase (F2). The first phase upright folds were refolded into a smaller number of (F2), whose axial planes and axes are vertical or subvertical. They plunge gentle to moderately in the former and moderately to steeply in the latter. Their interference is in general categorized as Ramsay's (Ramsay, 1967) type 2 or Ghosh's third/fourth mode based on the value of initial tightness. However, from east to west there exists a slight variation of a zigzag to crescent to mushroom interference pattern. This subtle variation corresponds with the westward increases of the F2 interlimb angle and of the percentage of coarse-grain clastic rocks, suggesting its dependence upon the F2 deformation and the lithology. Axial slaty cleavages (S1) and associated dip-slip slickensides are more abundant in the first phase. Cleavages and strike-slip slickensides related to the seconding refolding are also occurred in the area. Finally, according to the petrological, geochemical and geochronological data, we conclude that the deformation history of the superposed folds were associated with the late evolution in the BOC. In the late Permian, the fold superimposition occurred in sedimentary rocks deposited in a Permian back-arc basin. The basin was intensely

  12. Molybdenum mineralization related to the Yangtze's lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit (United States)

    Liu, Qing-Quan; Li, Bin; Shao, Yong-Jun; Lu, An-Huai; Lai, Jian-Qing; Li, Yong-Feng; Luo, Zheng-Zhuan


    The Dabie Orogen is a world-class case for large amounts of Mo mineralization in that it contains at least 10 porphyry Mo deposits with Mo metal reserves over 3 Mt from the time period of 156-110 Ma. However, the principal mechanism for the Mo mineralization remains controversial due to the lack of a precise definition of its source and shallow ore-forming process, which is essential to understand these rare large Mo deposits. Detailed geochronology, geochemistry, and isotopic data for ore-related granites and minerals were analyzed in order to place constraints on the massive Mo mineralization in the Dabie Orogen in eastern China. The Yaochong molybdenum orebodies were hosted in the transition belt and alteration zone between the granitic stocks and the Dabie Complex and were characterized as numerous veinlets with potassic, phyllic and propylitic alterations. The buried Yaochong granitic intrusions and associated molybdenum mineralization yield Early Cretaceous ages of magmatic activities at ca. 138 Ma and extremely similar Re-Os isotope ages for the corresponding Mo metallogenic event at ca. 137 Ma. The Yaochong monzogranite and granite porphyry belong to the highly fractionated I-type granites, which are believed to be derived from the dominantly Yangtze's lower crust mixed with the Northern Dabie Complex due to their geochemical and isotope features. The elemental diversity and isotopic homogeneity suggest that the formation of the Yaochong monzogranite involved the fractionation of biotite, garnet and minor feldspar and accessory minerals combined with a weak crustal assimilation process. In contrast, the granite porphyry was possibly generated by the partial melting of the same mixed lower continental crust via the differentiation process involving the fractionation of feldspar, apatite, and/or titanite. Fractional crystallization processes can significantly elevate the molybdenum concentration in the residual melts. The biotite fractional crystallization

  13. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton (United States)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei


    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia

  14. Geochemistry of Gneisses from Dabie Complex and Tongbai Complex in Qinling-Tongbai-Dabie Orogenic Belt: Implications for Location of Yangtze-Sino-Korean Suture

    Institute of Scientific and Technical Information of China (English)


    The Dabie complex (DC) and the Tongbai complex (TBC) are separately distributed in the middle and eastern parts of the Qinling-Tongbai-Dabie orogenic belt. In this study, the Dabie complex can be divided into two units: one is the complex with no high pressure and ultrahigh pressure metamorphic rocks (DC1), and the other is the complex containing coesite-bearing eclogite lenses or boudins (DC2). Gneisses are predominant in the TBC, DC1 and DC2. Major and trace element data of gneisses in the TBC, DC1 and DC2 show them to be the orthogneisses. The gneisses in the DC1 have higher incompatible element contents and higher ratios of w(K2O)/w(Na2O) and w(La)n/w(Yb)n than those in the DC2. However, no obvious differences arise in other element contents and the ratios of w(La)/w( Nb), w(Nb)/w(Th), w(Nb)/w(Hf), w(Ba)/w(La), w(Sm)/w(Nd) and w(Th)/w(U) between the gneisses in the DC2 and those in the DC1. These observations suggest that the protoliths of the gneisses in the DC2 have affinities to those in the DC1. The difference between the DC1 and DC2 gneisses in incompat- ible element contents could reflect the difference in their partial melting extent. The TBC gneisses are geochemically similar to the DC1 gneisses, suggesting that the TBC and DC1 gneisses are the same lithologic unit in the Qinling-Tongbai-Dabie orogenic belt and that they have experienced similar formations and evolution histories. In the Qinling-Tongbai area, the TBC is part of the northern blocks of the Yangtze craton. Given the similarity of geochemical characteristics, the rock assemblage and the ages between the TBC and DC1 gneisses, we can infer that the Dabie complex also belongs to the northern blocks of the Yangtze craton. In terms of the distribution of eciogites and metamorphic facies, we propose that the collisionai suture in the Dabie area is distributed along the Xiaotian-Mozitan fault, at the contact with the Shang-Dan-Tongbai fault to the west.

  15. Controls of structural inheritance on orogenic curvature and foreland basin sedimentation: Insights from the Przemyśl area, Western Carpathians (United States)

    Szaniawski, Rafał; Mazzoli, Stefano; Jankowski, Leszek


    Orogenic curvatures can have various origins and are widely debated worldwide. In the Poland-Ukraine border area, the Outer Western Carpathians are characterized by a marked curvature. The origin of this curvature was analysed by integrating stratigraphic information with structural constraints and anisotropy of the magnetic susceptibility (AMS) data. Hangingwall frontal ramp domains are characterized by a relatively simple deformation dominated by layer-parallel shortening and folding around a regional NW-SE trending axis, recorded by an AMS lineation with a similar trend. On the other hand, the N-S trending hangingwall oblique ramp domain is characterized by maximum AMS axes recording transpressional strain either dominated by simple shear (sub-horizontal AMS lineation) or pure shear (steeply plunging AMS lineation) components. Early Miocene basin inversion with two distinct depocentres created a number of different detachment surfaces and thickness variations for the sedimentary successions involved in thrusting. The main depocentre of the Lower-Middle Miocene foredeep was originally located in the recess area of the curved Carpathian front. On the other hand, the occurrence of a salient to the west resulted in the axial zone of the foreland flexure being filled with allochthonous units, thereby dramatically reducing the accommodation space for foredeep sediments in this area. Our results suggest that thrust-belt geometry was controlled by the inherited Mesozoic extensional basin architecture.

  16. Thermochronometry across the Austroalpine-Pennine boundary, Central Alps, Switzerland: Orogen-perpendicular normal fault slip on a major ‘overthrust’ and its implications for orogenesis (United States)

    Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.


    Fifty‐one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top‐north thrust fault, is in fact primarily an Oligocene‐Miocene normal fault that has a minimum of 60 km of displacement with top‐south or top‐southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.

  17. Thermochronometry Across the Austroalpine-Pennine Boundary, Central Alps, Switzerland: Orogen-Perpendicular Normal Fault Slip on a Major "Overthrust" and Its Implications for Orogenesis (United States)

    Price, Jason B.; Wernicke, Brian P.; Cosca, Michael A.; Farley, Kenneth A.


    Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from 450 to 70°C) from the Graubünden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine "orogenic lid") and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous "overthrust" between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine "lid" and the European cratonic margin, with the Helvetic system (European margin) acting as the "floor" of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe.

  18. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.


    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  19. Teleseismic P-wave tomography and the upper mantle structure of the Sulu orogenic belt (China): implications for Triassic collision and exhumation mechanism (United States)

    Peng, Miao; Tan, Handong; Jiang, Mei; Xu, Zhiqin; Li, Zhonghai; Xu, Lehong


    As the largest ultrahigh-pressure (UHP) metamorphic tectonic unit outcropping in the world, the Dabie-Sulu UHP metamorphic belt is considered to be one of the best areas for studying the continental dynamics. However, their continental collision and exhumation mechanism are still debated. We performed a 3D teleseismic P-wave tomography beneath the Sulu orogen for the purpose of understanding the deep structure. The tomographic results show that there is a prominently near-SN-trending low-velocity zone (LVZ) close to the Tanlu fault (TLF), indicating a slab tear of the subducted Yangtze plate (YZP) during the initial Early Triassic collision. Our results also suggest that both the Yangze crustal slab and the North China lithospheric slab were dragged downwards by the subducted oceanic slab, which constituted a ‘two-sided’ subduction mode. A conceptual geodynamic model is proposed to explain the exhumation of Sulu high- to UHP rocks and imply a polyphase exhumation driven by buoyancy of continental materials at different depth and upward extrusion of crustal partial melting rocks to the surface at the later stage.

  20. The tectono-magmatic evolution of the occidental terrane and the Paraiba do Sul Klippe within the Neoproterozoic Ribeira orogenic Belt, Southeastern Brazil

    International Nuclear Information System (INIS)

    Valladares, Claudia Sayao; Duarte, Beatriz Paschoal; Heilbron, Monica; Ragatky, Diana


    The occidental Terrane is envisaged as the eastern/southeastern reworked margin of the Sao Francisco/Rio de la Plata plate associated with and E-trending subduction under the Congo plate. The Paraiba do Sul Klippe is part of the Oriental Terrane, envisaged as a portion of the Congo plate. A collisional-stage resulted in intense westward deformation of the Occidental Terrane under intermediate pressure metamorphism (syn-D1+D2 events). A late-collisional stage resulted in subvertical folding and steep shear zones (D3 event). Both stages were associated with voluminous crustal-derived granites. U-Pb and Sm-Nd geochronology as well as geochemical and structural data point to three magmatic episodes: a syn-collisional stage 1; a syn-collisional stage 2; and a late-collisional stage. This paper presents a magmatic evolutionary model for this crustal segment of the Ribeira orogenic belt based on new geological data of Brasiliano granites and data available in the literature. (author)

  1. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau (United States)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi


    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  2. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications (United States)

    Pilitsyna, Anfisa V.; Tretyakov, Andrey A.; Degtyarev, Kirill E.; Cuthbert, Simon J.; Batanova, Valentina G.; Kovalchuk, Elena V.


    The Anrakhai Metamorphic Complex (AMC), located in the SE part of the Chu-Ili Mountains of Southern Kazakhstan in the western part of Central Asian Orogenic Belt, exhibits occurrences of HP metamorphic rocks in the form of eclogites and garnet clinopyroxenites with peak metamorphic conditions of 750-850° and 15-19 kbar estimated with both conventional geothermobarometric methods and phase diagram modeling. P-T estimates as well as intimate field relations evidently imply a common metamorphic history for eclogites and garnet clinopyroxenites of the AMC. These high-pressure, medium temperature eclogite facies P-T conditions are indicative of a collision or subduction tectonic setting. Major and trace element geochemistry suggests that they probably had a common magmatic origin as part of a suite of differentiated tholeiitic intrusions. Furthermore, distinctive mineral and chemical compositions of these eclogites and garnet clinopyroxenites correspond to the Fe-Ti type of ultramafic rocks suggesting that they may have been derivatives of intraplate tholeiitic melts, introduced into continental crust before HP metamorphism.

  3. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern-central China: Constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes (United States)

    Chen, Wei; Xu, Zhaowen; Qiu, Wenhong; Li, Chao; Yu, Yang; Wang, Hao; Su, Yang


    The Dabie orogen is among the most famous continent-continent collisional orogenic belts in the world, and is characterized by intensive post-collisional extension, magmatism and Mo mineralization. However, the genetic links between the mineralization and the geodynamic evolution of the orogen remain unresolved. In this paper, the Yaochong Mo deposit and its associated granitic stocks were investigated to elucidate this issue. Our new zircon U-Pb ages yielded an Early Cretaceous age (133.3 ± 1.3 Ma) for the Yaochong granite, and our molybdenite Re-Os dating gave a similar age (135 ± 1 Ma) for the Mo deposit. The Yaochong stock is characterized by high silica and alkali but low Mg, Fe and Ca. It is enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: Rb, K, Th and U), but strongly depleted in heavy REEs, and high field strength elements (HFSEs: Nb, Ta, Ti and Y). The Yaochong granite has initial 87Sr/86Sr ratios of 0.7087-0.7096, and Pb isotopic ratios of (206Pb/204Pb)i = 16.599-16.704, (207Pb/204Pb)i = 15.170-15.618 and (208Pb/204Pb)i = 36.376-38.248. The granite has εNd(t) of -18.0 to -16.3 and εHf(t) values of -26.5 to -20.0. All these data indicate that the Yaochong granite is a high-K calc-alkaline fractionated I-type granite, and may have originated from partial melting of the thickened Yangtze continental crust. The Mo ores also show low radiogenic Pb isotopes similar to the Yaochong stock. Medium Re content in molybdenite (21.8-74.8 ppm) also suggests that the ore-forming materials were derived from the thickened lower crust with possibly minor mixing with the mantle. Similar to the Eastern Dabie orogen, the thickened crust beneath the Western Dabie orogen may also have experienced tectonic collapse, which may have exerted fundamental geodynamic controls on the two-stage Mo mineralization in the region.

  4. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization (United States)

    Han, Chunming; Xiao, Wenjiao; Zhao, Guochun; Ao, Songjian; Zhang, Jien; Qu, Wenjun; Du, Andao


    The timing and genesis of the major Ni-Cu-Co sulfide deposit in the Xiangshan intrusion have been studied based on newly obtained in-situ U-Pb, Hf and Re-Os isotopic analyses. The SIMS U-Pb zircon ages of the gabbro hosting the Ni-Cu-Co sulfide deposit indicate that the Xiangshan intrusion was emplaced at 279.6 ± 1.1 Ma (95% confidence level, MSWD = 1.30, n = 15). On the basis of combined geological and geochronological evidence, we suggest that the Xiangshan and other adjacent Ni-Cu deposits were formed in the same period. Sulphides have low common Os concentrations and high Re/Os ratios, similar to sulphide ores from the Duluth, Sally Malay and Voisey Bay complexes. The Re-Os isotopic data from the disseminated and massive ores from the Xiangshan intrusion do not form a single isochron, as they have different initial Os ratios. The Hf and Os isotopic data suggest that the Xiangshan intrusion and associated Ni-Cu-Co mineralization were derived from crustally contaminated mantle melts. The geochemical data show a tholeiitic affinity and a strong suprasubduction zone signature with negative Nb, Sr, and Ti anomalies similar to N-MORB and E-MORB. We suggest that the mafic-ultramafic rocks and associated Ni-Cu mineralization of the Eastern Tianshan orogen formed in an Alaska-type subduction zone-arc setting. Some diagnostic features of ridge-trench interaction are present in the Chinese East Tianshan orogen (e.g. granites, adakites, high-Mg andesites, near-trench magmatism, Alaskan-type mafic-ultramafic complexes, high-temperature metamorphic belts that prograde rapidly from low-grade belts, and orogenic gold deposits). The above distinctive rock groups are probably related to the same thermal event, ridge subduction, as in the Cenozoic orogen of Alaska. We suggest that ridge subduction is the most plausible mechanism to provide the necessary heat. Ridge subduction provides an important promising model for understanding many aspects of the evolution of the Chinese

  5. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon


    The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late

  6. Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau? (United States)

    Zhang, Yuqi; Song, Shuguang; Yang, Liming; Su, Li; Niu, Yaoling; Allen, Mark B.; Xu, Xin


    Oceanic plateaus with high-Mg rocks in the present-day oceanic crust have attracted much attention for their proposed mantle-plume origins and abnormally high mantle potential temperatures (Tp). However, equivalent rocks in ancient oceanic environments are usually poorly preserved because of deformation and metamorphism. Here we present petrological, geochronological and geochemical data for pillow lavas from Cambrian ophiolites in the Lajishan and Yongjing regions of the South Qilian Accretionary Belt (SQAB), from the southern part of the Qilian Orogen, northern China. Three rock groups can be identified geochemically: (1) sub-alkaline basalts with enriched mid- ocean ridge basalt (E-MORB) affinity; (2) alkaline basalts with oceanic island basalt (OIB) features, probably derived from partial melting of an enriched mantle source; and (3) picrites with MgO (18-22 wt%). Cr-numbers [Cr# = Cr/(Cr + Al)] of spinels from the picrites suggest 18-21% degree of partial melting at the estimated mantle potential temperature (Tp) of 1489-1600 °C, equivalent to values of Cenozoic Hawaiian picrites (1500-1600 °C). Zircons from one gabbro sample yielded a U-Pb Concordia age of 525 ± 3 Ma, suggesting the oceanic crust formed in the Cambrian. Available evidence suggests that Cambrian mantle plume activity is preserved in the South Qilian Accretionary Belt, and influenced the regional tectonics: "jamming" of the trench by thick oceanic crust explains the emplacement and preservation of the oceanic plateau, and gave rise to the generation of concomitant Ordovician inner-oceanic island arc basalts via re-organisation of the subduction zones in the region.

  7. Elucidating tectonic events and processes from variably tectonized conglomerate clast detrital geochronology: examples from the Hongliuhe Formation in the southern Central Asian Orogenic Belt, NW China (United States)

    Cleven, Nathan; Lin, Shoufa; Davis, Donald; Xiao, Wenjiao; Guilmette, Carl


    This work expands upon detrital zircon geochronology with a sampling and analysis strategy dating granitoid conglomerate clasts that exhibit differing degrees of internal ductile deformation. As deformation textures within clastic material reflect the variation and history of tectonization in the source region of a deposit, we outline a dating methodology that can provide details of the provenance's tectonomagmatic history from deformation-relative age distributions. The method involves bulk samples of solely granitoid clasts, as they are representative of the magmatic framework within the provenance. The clasts are classified and sorted into three subsets: undeformed, slightly deformed, and deformed. LA-ICPMS U-Pb geochronology is performed on zircon separates of each subset. Our case study, involving the Permian Hongliuhe Formation in the southern Central Asian Orogenic Belt, analyzes each of the three clast subsets, as well as sandstone detrital samples, at three stratigraphic levels to yield a profile of the unroofed provenance. The age spectra of the clast samples exhibit different, wider distributions than sandstone samples, considered an effect of proximity to the respective provenance. Comparisons of clast data to sandstone data, as well as comparisons between stratigraphic levels, yield indications of key tectonic processes, in addition to the typical characteristics provided by detrital geochronology. The clast data indicates a minimal lag time, implying rapid exhumation rates, whereas sandstone data alone would indicate a 90 m.y. lag time. Early Paleozoic arc building episodes appear as Ordovician peaks in sandstone data, and Silurian-Devonian peaks in clast data, indicating a younging of magmatism towards the proximal provenance. A magmatic hiatus starts in the Devonian, correlating with the latest age of deformed clasts, interpreted as timing of collisional tectonics. Provenance interpretation using the correlations seen between the clast and sandstone

  8. Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case of the Emilia-Romagna Apennine (Italy) (United States)

    Bonini, Marco


    The Northern Apennine prowedge exposes two adjacent sectors showing a marked along-strike change in erosion intensity, namely the Emilia Apennine to the northwest and the Romagna Apennine to the southeast. This setting has resulted from Pliocene erosion (≤5 Ma) and exhumation, which have affected the whole Romagna sector and mostly the watershed ridge in Emilia. Such an evolution has conceivably influenced the equilibrium of this fold-and-thrust belt, which can be evaluated in terms of critical Coulomb wedge theory. The present state of the thrust wedge has been assessed by crosschecking wedge tapers measured along transverse profiles with fluid pressure values inferred from deep wellbores. The interpretation of available data suggests that both Emilia and Romagna are currently overcritical. This condition is compatible with the presence in both sectors of active NE-dipping normal faults, which would work to decrease the surface slope of the orogenic wedge. However, the presence of Late Miocene-Pliocene passive-roof and out-of-sequence thrusts in Romagna may reveal a past undercritical wedge state ensuing during the regional erosion phase, thereby implying that the current overcritical condition would be a recent feature. The setting of the Emilia Apennine (i.e., strong axial exhumation and limited erosion of the prowedge) suggests instead a long lasting overcritical wedge, which was probably contemporaneous with the Pliocene undercritical wedge in Romagna. The reasons for this evolution are still unclear, although they may be linked to lithosphere-scale processes that have promoted the uplift of Romagna relative to Emilia. The lessons from the Northern Apennine thus suggest that erosion and exhumation have the ability to produce marked along-strike changes in the equilibrium of a fold-and-thrust belt.

  9. Inferred Early Permian Arc Rifting in Bogda Mountain, Southernmost of the Central Asia Orogenic Belt: Evidence from a Peperite Bearing Volcano-Sedimentary Succession (United States)

    Memtimin, M.; Guo, Z.


    Late Paleozoic tectonic history, especially Carboniferous-Permian periods, of the Central Asia Orogenic Belt (CAOB) is considered to be the turning point for the termination of terrane amalgamation and closure of the Paleoasian Ocean. However, the debate about the paleoenvironment and tectonic setting of the region during the period is still not resolved. In this study, we report a set of volcano-sedimentary sequence in the Bogda Mountain of the southernmost of CAOB, which is associated with contemporaneous subaqueous emplacement of and interaction between mafic lava and carbonate sediments. The succession contains four distinct facies including closely packed pillow basalts, pillow basalts with interstitial materials, hyaloclastites and peperites. We discuss their formation and emplacement mechanism, interaction between hot magma-water/unconsolidated sediments and thermal metamorphism during the interaction. Textural features of the sequence, especially hyaloclastites and peperites, provide clear evidence for in situ autofragmentation of lava flows, synvolcanic sedimentation of carbonates, fuel coolant interaction when hot magma bulldozed into wet unconsolidated sediments, and represent autochthonous origin of the succession. Lateral transition of the lithofacies indicate a progressively deepening subaqueous environment, resembling a stepwise evolution from early stage of volcanic intrusion with lower lava flux in shallower water level to increasingly subsiding basin with more lava flux in greater depth. Previous studies determined that the mafic magma was intruded around the Carboniferous-Permian boundary ( 300Ma), and geochemical studies showed the magma was originated from dry depleted mantle with little crustal contamination. Nevertheless, the succession was thought to be fault related allochthones formation which was transferred in as part of a Carboniferous intraplate arc. Combining our findings with the previous study results, we propose a new model to

  10. Folded Basinal Compartments of the Southern Mongolian Borderland: A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt

    Directory of Open Access Journals (Sweden)

    Dickson Cunningham


    Full Text Available The Central Asian Orogenic Belt (CAOB records multiple Phanerozoic tectonic events involving consolidation of disparate terranes and cratonic blocks and subsequent reactivation of Eurasia’s continental interior. The final amalgamation of the CAOB terrane collage involved diachronous closure of the Permian-Triassic Solonker suture in northernmost China and the Jurassic Mongol-Okhotsk suture in northeast Mongolia and eastern Siberia. The distribution, style, and kinematics of deformation associated with these two terminal collision events is poorly documented in southern Mongolia and northernmost China because these regions were later tectonically overprinted by widespread Cretaceous basin and range-style crustal extension and Miocene-recent sinistral transpressional mountain building. These younger events structurally compartmentalized the crust into uplifted crystalline basement blocks and intermontane basins. Consequently, widespread Cretaceous and Late Cenozoic clastic sedimentary deposits overlie older Permian-Jurassic sedimentary rocks in most basinal areas and obscure the deformation record associated with Permian-Triassic Solonker and Jurassic Mongol-Okhotsk collisional suturing. In this report, satellite image mapping of basinal compartments that expose folded Permian-Jurassic sedimentary successions that are unconformably overlapped by Cretaceous-Quaternary clastic sediments is presented for remote and poorly studied regions of southern Mongolia and two areas of the Beishan. The largest folds are tens of kilometers in strike length, east-west trending, and reveal north-south Late Jurassic shortening (present coordinates. Late Jurassic fold vergence is dominantly northerly in the southern Gobi Altai within a regional-scale fold-and-thrust belt. Local refolding of older Permian north-south trending folds is also evident in some areas. The folds identified and mapped in this study provide new evidence for the regional distribution and

  11. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens (United States)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard


    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites

  12. Effects of lateral variations of crustal rheology on the occurrence of post-orogenic normal faults: The Alto Tiberina Fault (Northern Apennines, Central Italy) (United States)

    Pauselli, Cristina; Ranalli, Giorgio


    The Northern Apennines (NA) are characterized by formerly compressive structures partly overprinted by subsequent extensional structures. The area of extensional tectonics migrated eastward since the Miocene. The youngest and easternmost major expression of extension is the Alto Tiberina Fault (ATF). We estimate 2D rheological profiles across the NA, and conclude that lateral rheological crustal variations have played an important role in the formation of the ATF and similar previously active faults to the west. Lithospheric delamination and mantle degassing resulted in an easterly-migrating extension-compression boundary, coinciding at present with the ATF, where (i) the thickness of the upper crust brittle layer reaches a maximum; (ii) the critical stress difference required to initiate faulting at the base of the brittle layer is at a minimum; and (iii) the total strengths of both the brittle layer and the whole lithosphere are at a minimum. Although the location of the fault is correlated with lithospheric rheological properties, the rheology by itself does not account for the low dip ( 20°) of the ATF. Two hypotheses are considered: (a) the low dip of the ATF is related to a rotation of the stress tensor at the time of initiation of the fault, caused by a basal shear stress ( 100 MPa) possibly related to corner flow associated with delamination; or (b) the low dip is associated to low values of the friction coefficient (≤ 0.5) coupled with high pore pressures related to mantle degassing. Our results establishing the correlation between crustal rheology and the location of the ATF are relatively robust, as we have examined various possible compositions and rheological parameters. They also provide possible general indications on the mechanisms of localized extension in post-orogenic extensional setting. The hypotheses to account for the low dip of the ATF, on the other hand, are intended simply to suggest possible solutions worthy of further study.

  13. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin


    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  14. Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB) (United States)

    Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.


    The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is

  15. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan


    The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs

  16. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei


    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  17. Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage (United States)

    Wang, Shengdong; Zhang, Kexin; Song, Bowen; Li, Shucai; Li, Ming; Zhou, Jie


    The Niujuanzi ophiolitic mélange (NOM), located in the Beishan Orogenic Collage, marks the termination between the Huaniushan arc and Mingshui-Hanshan Massifs. The NOM is mainly composed of gabbros, diabases, plagiogranites, basalts, and greywacke. Two gabbros have ages of 433.8 ± 3.1 and 354.0 ± 3.3 Ma, two plagiogranites have ages of 429.8 ± 2 and 448.7 ± 2.0 Ma, and a diabase has an age of 433.4 ± 3.2 Ma. The gabbros and diabases are calc-alkaline and tholeiitic, with high Al2O3, CaO, and TiO2 contents and low FeOT contents. The gabbros have high Mg# values (49-82), while the diabases have relatively low Mg# values (46-61). The plagiogranites are calc-alkaline and metaluminous, with high SiO2 and Na2O contents and low Al2O3 and K2O contents. The gabbros and diabases are enriched in large iron lithophile elements and slightly depleted in high field strength elements relative to N-MORB and their trace element characteristics are similar to E-MORB. With respect to rare earth element (REE), they have slightly enriched LREEs relative to HREEs. The majority of the plagiogranite trace elements approximate those of the volcanic arc granite. The plagiogranites have obviously enriched LREEs relative to HREEs, with a slightly to strongly negative Eu anomaly, which is similar to ORG but distinct from volcanic arc and within plate granite. The NOM was formed from the Ordovician to the Carboniferous, representing the expansion period of the Niujuanzi Ocean. The gabbros, diabases, and plagiogranites were formed in a mid-ocean ridge environment. The gabbros and diabases were generated by different degrees of partial melting of the mantle, and the plagiogranites derived from both the crystallization differentiation of basaltic magma and the partial melting of amphibolites in the crust.

  18. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin (United States)

    Zhao, Y.; Zheng, J.; Wang, B.


    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  19. Active shortening, intermontane basin formation, and geomorphic evolution in an orogenic plateau: Central Puna Plateau, NW Argentina (24°37'S, 67°03'W) (United States)

    Strecker, Manfred R.; Alonso, Ricardo N.; Bookhagen, Bodo; Freymark, Jessica; Pingel, Heiko


    The high-elevation Andean Plateau (Altiplano-Puna; 4km) is a first-order morphotectonic province of the Central Andes and constitutes the world's second largest orogenic plateau. While there are many unifying basin characteristics in this region, including internal drainage, semi-arid to arid climate and associated deposition of evaporites, there are notable differences between the northern and southern parts of the plateau. In contrast to the vast basins of the Altiplano (north) and incipient establishment of fluvial connectivity and sediment transport to the foreland, the Puna (south) comprises numerous smaller basins, bordered by reverse-fault bounded ranges up to 6 km high. The plateau is internally drained and fluvial connectivity with the foreland does not exist leading to thick sedimentary basin fills that comprise continental evaporites, volcanic and clastic deposits, typically between 3 and 5 km thick. However, repeated impacts of climate change and superposed tectonic activity in the southern plateau have resulted in further basin differentiation, abandonment or re-arrangement of fluvial networks and impacts on sediment transport. Here we report evidence for sustained contractional tectonic activity in the Pocitos Basin in the southern plateau. On the western margin of the basin fanning of dipping strata and regraded, steeply inclined gravel-covered pediment surfaces and wind gaps associated with gravel derived from distant sources in the west document late Tertiary to Pleistocene growth of an approximately N-S oriented and N plunging anticline. The growth of the eastern limb of this anticline has caused the isolation of a formerly more extensive basin. In addition, Late Pleistocene and Holocene lake shorelines and lacustrine deposits are tilted eastward along the same structure and InSAR measurements of deformed lake terraces document that the fold is growing. Despite widely reported extensional faulting in the southern Puna, we conclude (1) that the

  20. On the formation and evolution of the Pannonian basin: constraints derived from the orogenic collapse recorded at the junction between Carpathians and Dinarides (United States)

    Matenco, L. C.; Radivojevic, D.


    -ward prolongation of the large scale extension in an area that is adjacent across Carpathians to the Moesian platform suggests that the roll-back of the Carpathians is not the only mechanism that is responsible for the formation of the Pannonian basin. The correlation with similar extensional structures superposed over the orogenic chain located S-wards strongly points towards a component of Pannonian collapse driven by a Middle Miocene roll-back of a Dinaridic slab. The study provides critical constraints for the pre-Neogene evolution of an area where there major crustal blocks (i.e. Tisza, Dacia and Dinarides) are juxtaposed together with their partly overlying obducted ophiolitic sequences against the major oceanic suture of Dinarides, the Sava zone.

  1. Peeking out of the basins: looking for the Late Devonian Kellwasser Event in the open ocean in the Central Asian Orogenic Belt, southwestern Mongolia (United States)

    Thomas, R. M., Jr.; Carmichael, S. K.; Waters, J. A.; Batchelor, C. J.


    Two of the top five most devastating mass extinctions in Earth's history occurred during the Late Devonian (419.2 Ma - 358.9 Ma), and are commonly associated with the black shale deposits of the Kellwasser and Hangenberg ocean anoxia events. Our understanding of these extinction events is incomplete partly due to sample bias, as 95% of the field sites studying the Late Devonian are limited to continental shelves and continental marine basins, and 77% of these sites are derived from the Euramerican paleocontinent. The Samnuuruul Formation at the Hoshoot Shiveetiin Gol locality (HSG), located in southwestern Mongolia, offers a unique opportunity to better understand global oceanic conditions during the Late Devonian. The HSG locality shows a continuous sequence of terrestrial to marine sediments on the East Junggar arc; an isolated, open-ocean island arc within the Central Asian Orogenic Belt (CAOB). Samples from this near shore locality consist of volcanogenic silts, sands and immature conglomerates as well as calc-alkalic basalt lava flows. Offshore sections contain numerous limestones with Late Devonian fossil assemblages. Preliminary biostratigraphy of the associated marine and terrestrial sequences can only constrain the section to a general Late Devonian age, but TIMS analysis of detrital zircons from volcanogenic sediments from the Samnuuruul Formation in localities 8-50 km from the site suggests a late Frasnian age (375, 376 Ma). To provide a more precise radiometric age of the HSG locality, zircon geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) will be performed at UNC-Chapel Hill. If the HSG section crosses the Frasnian-Famennian boundary, geochemical, mineralogical, and ichnological signatures of the Kellwasser Event are expected to be preserved, if the Kellwasser Event was indeed global in scope (as suggested by Carmichael et al. (2014) for analogous sites on the West Junggar arc in the CAOB). Black shale

  2. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran) (United States)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad


    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher

  3. Geochronology, geochemistry and Hf–Sr–Nd isotopes of the ore-bearing syenite from the Shapinggou porphyry Mo deposit, East Qinling-Dabie orogenic belt

    Directory of Open Access Journals (Sweden)

    Tao He


    Full Text Available The Shapinggou Mo deposit is located in the western Dabie mountains, the eastern part of the Qinling-Dabie molybdenum orogenic belt. Shapinggou Mo deposit is a concealed deposit with the ore body mainly hosted by explosive breccia of Gaijing and the granite porphyry as well as the syenite of Shapinggou. Geochemistry study show that the SiO2 contents of Shapinggou syenite range from 61.74 to 69.93%, and the A/CNK from 0.95 to 1.06, classified as metaluminous to weak peraluminous, belonging to alkalic to shoshonitic series. The Mo deposits in Qinling Mo belt formed in two main periods, i.e., the first period occurred in to the Early Cretaceous (145–130 Ma, the second period in the late Early Cretaceous (130–110 Ma. Most of the Mo deposits in Dabie region formed in the second period. The results of zircon U–Pb show that the age of the Shapinggou syenite is 111.3 ± 1.2 Ma, which belongs to the second period. Proterozoic-Archean inherited zircons suggest that it may include some more ancient crustal material like Kongling group. The ɛHf(t values of Shapinggou syenite range from −15.6 to −8.0, TDM2(Hf from 1.7 to 2.16 Ga, respectively. The ɛNd(t values of the Shapinggou syenite range from −12.29 to −11.76, TDM2(Nd from 1.85 to 1.89 Ga, the 87Sr/86Sr from 0.709 to 0.710, respectively. Results of zircon Hf isotope and whole rock Sr–Nd isotope of Shapinggou syenite indicate that the Mo ore-forming materials were mainly generated from old Yangtze craton, e.g., gneiss from Dabie orogeny, mixed with some juvenal mantle materials. The geodynamics of the Shapinggou Mo deposit corresponded to an extension period in Eastern China, which caused by large scale lithospheric thinning. The delamination caused asthenosphere upwelling and crust-mantle interaction, which provided the ore-forming material and heat.

  4. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau (United States)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han


    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  5. The Development of Topography in Ancient and Active Orogens: Case Studies of Landscape Evolution in the Southern Appalachians, USA and Crete, Greece (United States)

    Gallen, Sean Francis

    Understanding the development of topography is fundamental to the geosciences. Topography represents the sum of all tectonic and geodynamic processes that force the earth's surface upward paired with those that act to bring it down. Spatial and temporal changes in topographic relief can modulate the various feedbacks between atmospheric, earth surface and rock exhumation processes, sediment flux, and the magnitude and style of gravity driven natural hazards. Plate tectonics provides the first-order framework necessary to understand how topography is built through the interaction of lithospheric plates. However, density contrasts in the mantle can also influence the elevation of the earth's surface through dynamic topography, while poorly understood nuances of mountain building at convergent margins complicate drawing direct connections between tectonics and topography. Such linkages are further confounded by non-linearity between rock uplift and erosion, variations in rates of deformation, changes in climate and the properties of bedrock. Great advances in our understanding of the evolution of topography have been achieved, yet numerous questions remain regarding the evolution of topography in ancient and active orogens. This research addresses knowledge gaps in the development of topography through case-studies of landscape evolution in the southern Appalachians Mountains, USA and the forearc overlying the Hellenic subduction zone. Chapter 1 explores the origins of modern topographic relief in the southern Appalachians, where tectonic activity ceased prior to 200 Ma. Conventional theories invoked to explain modern relief in the region are challenged. Quantitative analyses of digital elevation models and numerical modeling are coupled to provide the magnitudes and timing of changes in topographic relief. The results suggest that the southern Appalachians experienced a phase of topographic rejuvenation during the Miocene that increased the distance between the

  6. Fragments of deeper parts of the hanging wall mantle preserved as orogenic peridotites in the central belt of the Seve Nappe Complex, Sweden (United States)

    Clos, Frediano; Gilio, Mattia; van Roermund, Herman L. M.


    Formation conditions of olivine microstructures are investigated in the Kittelfjäll spinel peridotite (KSP), a fragment of lithospheric mantle which occurs as an isolated body within high grade metamorphic crustal rocks of the Seve Nappe Complex (SNC), southern Västerbotten, central Sweden. The KSP is an orogenic peridotite containing a well developed penetrative compositional layering, defined by highly depleted dunite with olivine Mg# (100 × Mg/Mg + Fe) of 92.0-93.5 and harzburgite with lower Mg# (91.0-92.5). Dunite is characterized by three contrasting olivine microstructures formed in response to different tectonometamorphic events: Coarse-grained, highly strained olivine porphyroclasts (M1) up to 20 cm long are surrounded by dynamically recrystallized olivine grains (M2) defining a characteristic olivine "foam" microstructure (grain size: 200-2000 μm). An olivine "mortar" (M3) microstructure (10-50 μm) forms a penetrative fabric element only in strongly localized, cm-to-m sized shear zones that crosscut earlier structures/foliations. Olivine fabric analysis in synergy, with mineralogical and chemical analyses, reveals that the KSP body represents old, possibly Archean, sub-continental lithospheric mantle that was crustally emplaced into the Caledonian tectonic edifice from the hanging wall mantle during exhumation of the subducted Seve Nappe Complex (Jämtlandian orogeny ~ 454 Ma). Olivine porphyroclasts (M1) grew at high temperature during dominant isobaric cooling after extensive polybaric melt extraction (> 40%) and subsequent refertilization. The onset of the early Caledonian deformation is interpreted to be related to the crustal emplacement of the KSP during eduction of the SNC. This phase is characterized by the development of the olivine M2 foam microstructure, formed at 650-830 °C/1-2 GPa by dislocation creep processes producing an E-type CPO's by the operation of the [100](001) and subordinate [001](100) slip systems with operating flow stress

  7. 'Extra-regional' strike-slip fault systems in Chile and Alaska: the North Pacific Rim orogenic Stream vs. Beck's Buttress (United States)

    Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.


    The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading

  8. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): Implications for the architecture and evolution of the western Central Asian Orogenic Belt (United States)

    Li, Di; He, Dengfa; Tang, Yong


    The Altai-Junggar area in northwestern China is a critical region to gain insights on the tectonic framework and geological evolution of the western Central Asian Orogenic Belt (CAOB). In this study, we report results from integrated geological, geochemical and geophysical investigations on the Wulungu Depression of the Junggar Basin to determine the basement nature of the basin and understand its amalgamation history with the Chinese Altai, within the broad tectonic evolution of the Altai-Junggar area. Based on borehole and seismic data, the Wulungu Depression is subdivided into two NW-trending tectonic units (Suosuoquan Sag and Hongyan High) by southward-vergent thrust faults. The Suosuoquan Sag consists of the Middle-Late Devonian basaltic andesite, andesite, dacite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava flows and shallow marine sediments from a proximal juvenile provenance (zircon εHf(t) = 6.0-14.9), compared to the Late Carboniferous andesite and rhyolite in the Hongyan High. Zircon SIMS U-Pb ages for dacites and andesites indicate that these volcanics in the Suosuoquan Sag and Hongyan High erupted at 376.3 Ma and 313.4 Ma, respectively. The Middle-Late Devonian basaltic andesites from well LC1 are calc-alkaline and exhibit primitive magma-like MgO contents (7.9-8.6%) and Mg# values (66-68), with low initial 87Sr/86Sr (0.703269-0.704808) and positive εNd(t) values (6.6-7.6), and relatively high Zr abundance (98.2-116.0 ppm) and Zr/Y ratios (5.1-5.4), enrichment in LREEs and LILEs (e.g., Th and U) and depletion in Nb, Ta and Ti, suggesting that they were probably derived from a metasomatized depleted mantle in a retro-arc extensional setting. The well LC1 andesitic tuffs, well L8 dacites, well WL1 dacitic tuffs and well L5 andesites belong to calc-alkaline and metaluminous to peraluminous (A/CNK = 0.8-1.7) series, and display low Mg# values (35-46) and variably positive εNd(t) (4

  9. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting (United States)

    Chen, Ming; Sun, Min


    Granitoids are a major component in the upper continental crust and hold key information on how did the continental crust grow and differentiate. This study focuses on the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt (CAOB). The association of granitoids and mafic enclaves can provide important clues on the source nature, petrogenetic processes and geodynamic setting of the Yaloman intrusive complex, which in turn will shed light on the crustal evolution in the northwestern CAOB. Zircon U-Pb dating shows that the granitoids, including quartz diorites and granodiorites, were emplaced in ca. 389-387 Ma. The moderate Na2O + K2O contents and low A/CNK values indicate that these rocks belong to the sub-alkaline series with metaluminous to weakly peraluminous compositions. The granitoids yield two-stage zircon Hf model ages of ca. 0.79-1.07 Ga and whole-rock Nd model ages of ca. 0.90-0.99 Ga, respectively, implying that they were mainly sourced from Neoproterozoic juvenile crustal materials. The mafic enclaves show an almost identical crystallization age of ca. 389 Ma. The identification of coarse-grained xenocrysts and acicular apatites, together with the fine-grained texture, makes us infer that these enclaves are likely to represent magmatic globules commingled with the host magmas. The low SiO2 and high MgO contents of the mafic enclaves further suggest that substantial mantle-derived mafic melts were probably involved in their formation. Importantly, the SiO2 contents of the granitoids and mafic enclaves are well correlated with other major elements and most of the trace elements. Also a broadly negative correlation exists between the SiO2 contents and whole-rock epsilon Nd (390 Ma) values of the granitoids. Given the observation of reversely zoned plagioclases within the granitoids and the common occurrence of igneous mafic enclaves, we propose that magma mixing probably played an important role in the formation

  10. What can the Cretaceous-to-present latitude history of the Lhasa terrane tell us about plate-scale deformation in the Tibetan-Himalayan orogen? (Invited) (United States)

    Lippert, P. C.; Van Hinsbergen, D. J.; Dupont-Nivet, G.; Huang, W.


    Published paleomagnetic data from well-dated sedimentary and volcanic rocks from the Lhasa terrane have been re-evaluated in a statistically consistent framework to assess the latitude history of southern Tibet from ~110 Ma to the present. We apply a methodology similar to the one used by the Time-Averaged geomagnetic Field Initiative to each paleomagnetic data set to establish coherency within and between paleomagnetic data from Tibet (see Session T023 for more details). Moreover, we use only sedimentary data that have been evaluated for and, where necessary, corrected for sedimentary inclination shallowing. The resulting apparent polar wander path (APWP) shows that the southern margin of the Lhasa terrane at the longitudes of Nepal remained at 20×4°N latitude from ~110 to at least 50 Ma and subsequently drifted northward to its present latitude of 29°N. This latitude history provides a paleomagnetically-determined collision age between the Tibetan Himalaya and the southern margin of Asia that is 49.5×4.5 Ma at 21×4° N latitude. The paleomagnetic age and latitude of this collision may be a few millions of years earlier and ~2° lower if estimates for shortening within the suture zone are considered. When compared to the global APWP of Torsvik et al. (2012) in Eurasian coordinates, the Lhasa APWP indicates that at most 1100×560 km of post-50 Ma India-Asia convergence was partitioned into Asian lithosphere. The lower bound of these paleomagnetic estimates is consistent with the magnitude of upper crustal shortening within Asia calculated from orogen-scale geological reconstructions. An implication is that 1700×560 km or more post-50 Ma India-Asia convergence was partitioned into Greater India. Paleomagnetic data from the Tibetan Himalaya are consistent with >2000 km of extension of Greater Indian lithosphere after break-up from Gondwana but prior to collision with the southern margin of Asia. Cenozoic subduction of this Cretaceous extensional basin following

  11. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China (United States)

    Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen


    The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently

  12. Rb-Sr and Sm-Nd isotopic relations and ages of the Brasiliano granitic magmatism of the eastern region of the Dom Feliciano belt in the Rio Grande do Sul State, South region Brazil: evidences of the reworking of a paleoproterozoic continental crust, South region, Brazil

    International Nuclear Information System (INIS)

    Frantz, Jose Carlos; Koester, Edinei; Teixeira, Roberto Santos; Botelho, Nilson Francisquini; Pimentel, Marcio Martins; Potrel, Alan


    The granitoids belonging to the brasiliano cycle from the eastern region at the Dom Feliciano Belt in the Rio Grande do Sul state have had Rb-Sr data that indicated bodies which were intruded between 800 and 585 Ma. The T DM ages are suggesting the participation of an older source in their generation. This source could be represented by a long period enriched mantle, much than would be expected during the evolution of the magmatic arcs, or could be represented by the interaction between an older continental crust and mantle during a continental collision regime. The tectonic evolution of this area., the existence of a long period of time between the granitic intrusions associated to the tangential regime and to the transpressive regime and to the transpressive regime ones, the isotopic relations between Sr and nd and the very low negative values of ε N dt are suggesting a strong participation of an older continental crust. This older continental crust, may be constituted by gneissic protoliths of paleoproterozoic ages and generated during the evolution of the Transamazonic Cycle, has participated in the formation of the sources of the granitic magmatism of this part of the belt. The variations of the T DM ages and of the Nd ratios in the calc-alkaline granitoids are suggesting different proportions of mixture between and older continental crust and mantle or different homogenization grades in the magmas sources. For the peraluminous granites, that have be resulted from continental crustal melt, there are indications of different sources to the different bodies. (author)

  13. Tracking the multi-stage exhumation history of the western Chinese Tianshan by Apatite Fission Track (AFT) dating - Implications for the preservation of epithermal deposits in ancient orogenic belt (United States)

    Wang, Yannan; Cai, Keda


    The western Chinese Tianshan, located in the southern domain of the Central Asian Orogenic Belt (CAOB), was originally constructed by multiple accretion-collision processes in the Paleozoic, and was superimposed by complex intracontinental tectonic evolution in the Mesozoic-Cenozoic. Understanding the timing and mechanism of the latter geological processes is critical to unravel the preservation conditions of the epithermal deposits in the western Chinese Tianshan. This work presents new apatite fission track (AFT) data for three mountain ranges of the western Chinese Tianshan to track their exhumation history. Our AFT data gave a wide range of ages from 76.8 ± 5.5 Ma to 182.3 ± 9.9 Ma, and the mean confined fission track lengths are between 9.8 ± 0.5 μm and 12.3 ± 0.2 μm. The new data, in combination with the thermal history modeling,enable us to attribute the exhumation history to three primary stages, including Early Permian (300-280 Ma), Late Triassic-Early Cretaceous (230-130 Ma), and Late Oligocene-Early Miocene (30-20 Ma). The first stage may be caused by the terrane accretion-collision in the late Paleozoic. The second stage was likely related to the closure of the Mongol-Okhotsk Ocean during the Mesozoic. The last one is regarded as the result of the collision between the Indian Plate and the Eurasia Plate in the Cenozoic. The extraordinary exhumation processes of these three major mountain ranges might have been responsible for sediment supply to the corresponding intra-mountain basins in the western Chinese Tianshan, and the particularly mountain-basin coupling evolution is ascribed to an essential condition for the preservation of epithermal deposits in ancient orogenic belt.

  14. Reactivation of inherited structures during the opening of the South Atlantic: a low-temperature thermochronology study on the Araçuaí orogenic belt (east Brazilian margin) (United States)

    Van Ranst, Gerben; De Grave, Johan; Pedrosa-Soares, Antonio Carlos; Tack, Luc; Baudet, Daniel; Novo, Tiago


    A subject that has historically been regarded with increasing interest in geology are the supercontinent-cycles. This still poses questions about tectonic evolution on a regional scale, more precisely on the role of reactivation of older, pre-existing structures (inheritance), in which the same faults or weak zones are reactivated rather than the emergence of new systems. A region that is ideally suited for this research is the Araçuaí-West Congo Orogenic belt (AWCO), which is situated partly in eastern Brazil (Gonçalves et al., 2014) and partly in western Africa (D.R. Congo, Congo Brazza, Gabon and Angola; Frimmel et al., 2006; Tack et al., 2001). This orogenic belt was formed during the Cambrian as a result of a series of extension and compression events, of which the final phase is known as the Braziliano-Pan-African orogenesis (e.g. Pedrosa-Soares & Alkmim, 2011). During the break-up of Gondwana and the opening of the South Atlantic, the AWCO became separated. The main part is situated in east Brazil, known as the Araçuaí orogeny, while on the west African margin, the West Congo Belt is a witness to this event. In order to gain a better understanding, the tectonic movements should be placed in an absolute timeframe. Multi-method low-temperature thermochronology lends itself as an ideal tool for this purpose. In this study samples from N-S and E-W profiles in east Brazil (Caparáo-Vitória-Gov. Valadares) have been acquired. These samples are investigated using the apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) methods. In a later phase the samples which were taken on profiles in the D.R. Congo (Lower Congo) will be analysed by the same methods. Preliminary results for the Brazilian margin indicate cooling ages ranging between 55 Ma and c. 80 Ma.

  15. Late Palaeozoic magmatism in the northern New England Orogen - evidence from U-Pb SHRIMP dating in the Yarrol and Connors provinces, central Queensland

    International Nuclear Information System (INIS)

    Withnall, I.W.; Hutton, L.J.; Hayward, M.A.; Blake, P.; Fanning, C.M.; Burch, G.


    Full text: The northern part of the New England Orogen in central Queensland has been divided into three provinces, which are from east to west, the Wandilla, Yarrol and Connors Provinces. Previous workers suggested that the provinces are elements in an Early Carboniferous west-dipping subduction system with the Wandilla Province representing the accretionary wedge, the Yarrol Province a forearc basin and the Connors Province the volcanic arc. Farther west, a fourth province, the Drummond Basin, is interpreted as a back-arc basin. The Connors Province crops out in two areas, the Auburn Arch in the south and Connors Arch in the north. Prior to the present study, some workers recognised two superimposed volcanic arcs, one in the Late Devonian and a second in the Early Permian. Other workers have challenged this model suggesting that the rocks in the Connors Province were mainly Late Carboniferous to Early Permian and that they recorded a period of continental extension. U-Pb SHRIMP dating in the Connors Province has confirmed the existence of at least episodic Early Carboniferous magmatism from the Tournaisian to Namurian in both the Auburn and Connors Arches. We suggest that the Tournaisian rocks are vestiges of the Early Carboniferous volcanic arc suggested by earlier workers. Ages of ∼350Ma and ∼349Ma in the Connors Province are similar to ages for volcanics in Cycle 1 in the Drummond Basin and to volcanics in the lower part of the Rockhampton Group in the Yarrol Province. Magmatism in the Drummond Basin and Yarrol Province continued into the Visean although no early Visean rocks have yet been recognised in the Connors Province. The mid-Carboniferous (late Visean) may represent an important change in the evolution of the region. East of the Auburn Arch, in the Yarrol Province, this time corresponds to the boundary between the Rockhampton Group and Lorray Formation, and is marked by a sudden increase in regional radiometric response. It represents the start of

  16. Metamorphic rock-hosted orogenic gold deposit style at Bombana (Southeast Sulawesi and Buru Island (Maluku: Their key features and significances for gold exploration in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus


    are identified. Early quartz veins are segmented, sigmoidal discontinuous and parallel to the foliation of the host rock. This generation of quartz veins is characterized by crystalline relatively clear quartz, and weakly mineralized with low sulfide and gold contents. The second type of quartz veins occurs within the ‘mineralized zone’ of about 100 m in width and ~1,000 m in length. Gold mineralization is intensely overprinted by argillic alteration. The mineralization-alteration zone is probably parallel to the mica schist foliation and strongly controlled by N-S or NE-SW-trending structures. Gold-bearing quartz veins are characterized by banded texture particularly following host rock foliation and sulphide banding, brecciated and rare bladed-like texture. Alteration types consist of propylitic (chlorite, calcite, sericite, argillic and carbonation represented by graphite banding and carbon flakes. Ore mineral comprises pyrite, native gold, pyrrhotite, and arsenopyrite. Cinnabar and stibnite are present in association with gold. Ore chemistry indicates that 11 out of 15 samples yielded more than 1 g/t Au, in which 6 of them graded in excess of 3 g/t Au. All high-grade samples are composed of limonite or partly contain limonitic material. This suggests the process of supergene enrichment. Interestingly, most of the high-grade samples contain also high concentrations of As (up to 991ppm, Sb (up to 885ppm, and Hg (up to 75ppm. Fluid inclusions in both quartz vein types consist of 4 phases including L-rich, V-rich, L-V-rich and L1-L2-V (CO2-rich phases. The mineralizing hydrothermal fluid typically is CO2-rich, of moderate temperature (300-400 ºC, and low salinity (0.36 to 0.54 wt.% NaCl eq. Based on those key features, gold mineralization in Bombana and Buru Island tends to meet the characteristics of orogenic, mesothermal types of gold deposit. Metamorphic rock-hosted gold deposits could represent the new targets for gold exploration particularly in Eastern

  17. Superposed orogenic collision and core-complex formation at the present contact between the Dinarides and the Pannonian basin: The Bukulja and Cer Mountains in central and western Serbia (United States)

    Matenco, Liviu; Toljic, Marinko; Ducea, Mihai; Stojadinovic, Uros


    Formation of large extensional detachments during orogenic collapse can follow inherited weakness zones such as major asymmetries given by pre-existing subduction zones active during mountain building processes. This is valid in particular in low-topography foreland coupling orogens of Mediterranean type where large amounts of deformation is concentrated in their lower plates, favoring weakness zones activated during a subsequent phase of extensional collapse. One good place to study the orogenic collapse post-dating major collision is the NE margin of the Dinarides in central and western Serbia, where Cretaceous-Eocene shortening and collision was recorded in the Alpine Tethys Sava zone between the European-derived Dacia and Tisza mega-units and the lower Adriatic plate. This is the same place where the Pannonian basin formed as a Miocene back-arc basin in response to a different subduction and roll-back taking place along the external Carpathians. A lineament of Paleogene and Miocene plutons is observed at the northern and eastern margin of the Dinarides, interpreted to be the product of both syn- to post-orogenic subduction magmatism and of decompressional melting during the Pannonian extension. Two of these plutons, Cer and Bukulja, located in western and respectively central Serbia, are intruded in the Jadar-Kopaonik composite thrust sheet, part of the lower Adriatic plate, near the contact with the main suture formed during the Cretaceous-Eocene subduction of the Sava zone. The Lower Miocene age (19-17Ma) Bukulja intrusion is a S-type granite with rare aplitic veins (Cvetkovic et al., 2007). The Cer intrusive complex is a S type two mica granite of around 16Ma in age with an older I-type quartz monzonite component (Koroneos et al. in press). Both granitoids are intruded into the Jadar-Kopaonik metamorphic series, which are in direct contact along the northern, eastern and southern flank with non-metamorphosed, mainly clastic sediments of Cretaceous-Miocene in

  18. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil; Evolucao geologica da porcao centro-sul do escudo das Guianas com base no estudo geoquimico, geocronologico e isotopico dos granitoides paleoproterozoicos do sudeste de Roraima, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcelo Esteves


    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  19. The Great Oxidation Event Recorded in Paleoproterozoic Rocks from Fennoscandia

    Directory of Open Access Journals (Sweden)

    Dmitry V. Rychanchik


    Full Text Available With support of the International Continental Scientific Drilling Program (ICDP and other funding organizations, the Fennoscandia Arctic Russia – Drilling Early Earth Project (FAR-DEEP operations have been successfully completed during 2007. A total of 3650 meters of core have been recovered from fifteen holes drilled through sedimentary and volcanic formations in Fennoscandia (Fig. 1, recording several global environmental changes spanning the time interval 2500–2000 Ma, including the Great Oxidation Event (GOE (Holland, 2002. The core was meanwhile curated and archived in Trondheim, Norway, and it has been sampled by an international team of scientists.

  20. Geochemistry of sericite deposits at the base of the Paleoproterozoic ...

    Indian Academy of Sciences (India)

    Paleosols are useful rock types for understanding the .... rock contains blades of kyanite. ... Figure 2. Typical section, illustrating the occurrence of sericite deposits near Barodia quarry. Note that .... (c) Sericite schist of Madar area showing variable grain sizes of mica. ... dards that were analyzed during the same runs as the.

  1. Mineral chemistry and geochemistry of the Late Neoproterozoic Gabal Abu Diab granitoids, Central Eastern Dessert, Egypt: Implications for the origin of rare metal post-orogenic A-type granites (United States)

    Sami, Mabrouk; Ntaflos, Theodoros; Farahat, Esam S.; Ahmed, Awaad F.; Mohamed, Haroun A.


    within A-type granite worldwide. According to Zhang et al., 2012, the garnet crystallized at the expense of biotite from the MnO-rich evolved melt after fractionation of biotite, plagioclase, K-feldspar, zircon, apatite, and ilmenite. The granitoids are alkali feldspar granites showing distinct geochemical features and most likely, belong to the post-orogenic younger Egyptian granitoids. They are peraluminous A-type alkaline rocks but they have lower Fe2O3, MgO, MnO, CaO, TiO2, P2O5, Sr, Ba, V, and higher SiO2, Na2O, K2O, Nb, Ta, U, Zr, Th, Ga/Al and Rb than the typical rocks of this type. The positive correlation between Ba and Sr, and the negative correlation between Rb and K/Rb reveal fractional crystallization of alkali feldspar. The similarity in most geochemical characteristics suggests that Abu Diab granitoids are genetically related to each other and extremely enrichment in incompatible elements such as Nb and Ta, indicating that they crystallized from extremely differentiated magmas. References: Zhang, J., Ma, C. and She, Z., 2012. An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical and geochemical constraints. Geoscience Frontiers 3 (5), 635-646.

  2. Dynamic of an intra-continental orogenic prism: thermo-chronologic (apatite fission tracks) and tectonic evolution of the axial zone and the piedmont of the west-central Pyrenees

    International Nuclear Information System (INIS)

    Meresse, F.


    This work illustrates the application of thermo chronology to the study of the following geologic issue: the tectonic evolution of the Pyrenean oncologic prism. Thermo-chronology gives information on the vertical movements at the scale of geological eras. Thermo-chronology is based on the following principle: the decay of a nucleus gives birth to a daughter nucleus. Above a specific temperature named closure temperature, the daughter element can diffuse outside the system while below the closure temperature, diffusion is not possible. Consequently thermo-chronology can be considered to date the moment when a mineral goes below a a specific closure temperature. Minerals have different closure temperatures and so by using a suite of thermo-chronometers on a single sample, its cooling path through the crust can be reconstructed. This work focuses on apatite fission track (AFT)analysis which is a low temperature thermo-chronometer. In apatites the temperature range between 60 and 120 Celsius degrees corresponds to the partial annealing zone. The spontaneous fission of one U 238 nucleus entails the formation of one fission track. The determination of the initial quantity of U 238 is based on the natural steady ratio U 238 /U 235 which equals 137.88. The initial quantity of U 235 is determined through the neutron irradiation of the sample. The knowledge of the initial quantity of U 238 and the number of tracks in the sample allows the dating of the sample. In this work we combine AFT thermo- chronology with a detailed structural analysis to describe vertical movements related to the thrusting system evolution, and to determine the influence of the latter on the sedimentation/burial/exhumation cycle of the syn-orogenic deposits of the southern fore-land basin

  3. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China. Evidence from detrital zircon ages and Nd-Hf isotopic composition

    International Nuclear Information System (INIS)

    Li Xianghui; Chen Fukun; Guo Jinghui; Xie Liewen; Siebel, Wolfgang


    The Dabie-Sulu ultrahigh-pressure orogenic belt resulted from the early Mesozoic collision of the North China block and South China block (comprising the Yangtze and the Cathaysia) and subsequent exhumation of the subducted South China continental slabs. This belt consists of tectonically juxtaposed rock units of different metamorphic grade. Provenance of the low-grade metamorphic terranes exposed along the northern part of the belt can offer useful information about the location of the boundary between these two continental blocks. This study reports detrital zircon ages and Nd-Hf isotopic composition of sedimentary rocks of the low-grade Penglai Group, situated north of the Sulu UHP terrane. Results show that detrital zircon grains mostly crystallized during Mesoproterozoic time, clustering at 1.7 Ga to 1.6 Ga and 1.2 Ga. Nd isotopic composition (T DM value) of the Penglai Group suggests that sedimentary sources are similar to average crustal material of the Yangtze block and mostly formed in Paleo- to Mesoproterozoic. Late Mesoproterozoic detrital zircons probably demonstrate the sedimentary material was derived from the boundary of the Yangtze and Cathaysia blocks, which was formed by the late Mesoproterozoic convergence. Absence of Neoproterozoic detrital zircons from the Penglai sediments probably suggests a late Mesoproterozoic to early Neoproterozoic deposition age (about 1.1 Ga to 0.8 Ga). The age and isotopic evidence implies that the Penglai Group originated from the South China block and probably was thrust onto the basement of the North China block during the early Mesozoic continental collision. (author)

  4. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    Mbaguedje, Diondoh


    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author) [fr

  5. Pseudo- and real-inverted metamorphism caused by the superposition and extrusion of a stack of nappes: a case study of the Southern Brasília Orogen, Brazil (United States)

    da Motta, Rafael Gonçalves; Moraes, Renato


    The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P-T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.

  6. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt (United States)

    Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang


    The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.

  7. Applications and limitations of thermobarometry in migmatites and granulites using as an example rocks of the Araçuaí Orogen in southern Bahia, including a discussion on the tectonic meaning of the current results

    Directory of Open Access Journals (Sweden)

    Renato Moraes

    Full Text Available In southern Bahia, there are outcrops of migmatites and granulites in the Jequitinhonha Complex, which is part of the northern portion of the Araçuaí Orogen. Migmatites (garnet-cordierite diatexite dominate the metamorphic rocks and host lenses and layers of felsic garnet granulite. The conditions of temperature and pressure of metamorphism were calculated using conventional thermobarometry and the software THERMOCALC. Values around 850 °C and 7 kbar were obtained with THERMOCALC. The calculations for the garnet-cordierite diatexite were made considering aH2O equal to 1, but the best results of calculations for the granulites are obtained with aH2O values of 0.3. Pressure values obtained with GAPES resulted in consistent values with THERMOCALC, but the pair garnet-orthopyroxene always produces low values for temperature and high ones for pressure. The results are consistent with the presence of the pair garnet and cordierite in diatexite and orthopyroxene in felsic granulite. From the tectonic point of view, the setting in which metamorphism of these rocks occurred requires high heat flow with a thermal anomaly in mid continental crust, as indicated by values of 7 kbar. Recent studies have favored the closure of a back-arc basin for this tectonic setting, but it does not solve the problem that the time span between metamorphic peak and the end of granite intrusions, involving large bodies of charnockite, is more than 80 million years. The model of tectonic switching is suggested here as it can explain the maintenance of high temperatures for a more extended interval of time.

  8. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China (United States)

    Wang, Hao; Wu, Yuan-Bao; Yang, Jin-Hui; Qin, Zheng-Wei; Duan, Rui-Chun; Zhou, Lian; Yang, Sai-Hong


    Ascertaining the petrogenesis of granitoid rocks in subduction zones holds the key for understanding the processes of how continental crust is produced. The synchronous Taoyuan and Huanggang plutons occur in two different geological units of the Paleozoic Tongbai orogen of central China. They provide an optimal opportunity for a study to address the role of the crustal basement in generating voluminous granitoid magmatism in subduction zones. The Taoyuan and Huanggang plutons have identical U-Pb zircon crystallization ages of 440-444 Ma, which are temporally related to northward subduction of the Paleotethyan Ocean. The Taoyuan samples show high SiO2 (73.36-79.16%) and low Al2O3 (12.00-13.45%) contents, Mg numbers (20.6-38.2), and Sr/Y (2.04-10.1) and (La/Yb)N (2.34-7.32) ratios with negative Eu anomalies (Eu/Eu* = 0.33-0.93). They yielded positive εNd(t) (+ 3.0 to + 6.7) and εHf(t) (+ 11.8 to + 13.2) values, elevated initial Sr isotopic ratios (0.7040-0.7057) and relatively low zircon δ18O values of 4.62-5.39‰. These suggest that they were produced through partial melting of hydrothermally altered lower crust of the accreted Erlangping oceanic arc. In contrast, the Huanggang samples exhibit variable whole-rock geochemical and isotopic compositions with SiO2 contents of 57.01-64.42 wt.%, initial Sr isotopic ratios of 0.7065-0.7078, and εNd(t) values of - 5.7 to - 9.4. Additionally, they have high zircon δ18O values of 7.57-8.45‰ and strongly negative zircon εHf(t) values of - 14.4 to - 10.5. They were suggested to have been mainly derived from ancient continental crust of the Kuanping crustal unit with the addition of 20-40% juvenile, mantle-derived material. Accordingly, the granitoids in both oceanic and continental arcs are likely to be mainly derived from intracrustal melting of their crustal basement. It is revealed by the Huanggang pluton that little net continental crust growth occurs in continental arcs, and addition of new volume of continental

  9. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China (United States)

    Yuan, Feng; Liu, Jia-Jun; Carranza, Emmanuel John M.; Zhang, Shuai; Zhai, De-Gao; Liu, Gang; Wang, Gong-Wen; Zhang, Hong-Yuan; Sha, Ya-Zhou; Yang, Shang-Song


    Evidence for open-system magmatic processes related to wallrock assimilation accompanied by fractional crystallization (AFC) is present in the Guangshigou biotite pegmatites, North Qinling Orogen. The biotite pegmatite-gneiss contacts generally coincide with the greatest enrichment of U and Th. Zircon Usbnd Pb dating constrains the crystallization ages of the biotite pegmatite (rim zone-415 ± 2.6 Ma; internal zone-413.5 ± 2.5 Ma), in line with a pyrite Pbsbnd Pb isochron age (413 ± 22 Ma). Metamict areas in zircon show generally elevated concentrations of trace elements and expulsion of radioactive Pb. Internal zone samples, representing uncontaminated magma, have negative to positive zircon ( 413 Ma) εHf(t) (- 1.53 - + 3.24), low εNd(t) values (- 2.4), and old Hf and Nd model ages (tDM2 = 1.5-1.19 Ga, T2DM = 1.35 Ga, respectively), indicating a dominantly recycled Mesoproterozoic lower crustal material with involvement of some juvenile materials in the source region. The magmatic oxygen fugacity (fO2) and crystallization temperatures ranges from - 24.81 to - 13.34 of log fO2 and 570 °C to 793 °C, respectively. Compared to the internal zone, pegmatite rim samples display a variable and lower εNd(t) values (- 3.9 to - 2.8) and T2DM (1.47-1.37 Ga), but similar Hf isotopic compositions, favouring a three-component isotopic mixing model (recycled Mesoproterozoic lower crust materials, juvenile materials, and host gneiss). Pronounced variations of Ti, Y, U, Th, Hf, and REE concentrations in zircon from grain to grain in individual samples and from area to area within individual grains suggest a fluctuating crystallization environment in hybridized magma from which the rim-hosted zircons crystallized. Variable and high radiogenic Pb ratios of pyrites forming in the hybridized magma were inherited from the matrix. Zircons from both zones exhibit similar Hf isotope patterns, indicating the rim-hosted zircons crystallized during the early stage of hybridization of

  10. Geological and Geophysical Integration Regarding a Structural Evolution Modelling of a Suture Zone Controlled by a Cratonic Buttress - The Case of Dom Feliciano Orogenic Belt, SSE Brazil, Implications for Western Gondwana Assembly (United States)

    Bruno, H.; Almeida, J.; Heilbron, M. C. P. L.; Salomão, M.


    The matters surrounding the amalgamation of tectonic blocks during the Brasiliano / Pan-African orogeny have been the main subject of study of several works in recent years. The main objective of this work is the hierarchy and discrimination of the boundaries between the known tectonic blocks, integrating geological and geophysical data. The geology of the study area is dominated by Precambrian terranes; Luís Alves Terrane, the vulcanosedimentary sequences of the Itajaí and Campo Alegre Basins, the metasedimentary sequences of the Brusque and Paranaguá Terranes and their granitic suites besides the granitoids of the Florianópolis Terrane. The shear zones and faults that separate these crustal blocks were developed during the Brasiliano / Pan-African orogenic cycle that led to the formation of the supercontinent Gondwana. These tectonic boundaries generally separate blocks of different rheology and crustal thickness. The integration of geological and geophysical data allowed the identification of important structural lineaments and crustal boundaries. The presented geodynamic model suggests that the suture between the block composed of the Brusque, Paranaguá and Florianópolis Terranes and the block composed by the Luís Alves Terrane is the Itajaí Perimbó Shear Zone, and not the Major Gercino Shear Zone as previously suggested. Considering the Itajaí Perimbó Shear Zone as the suture zone, the metassediments of the Brusque Terrane were deposited on the basement of the Florianópolis Terrane, hereby declared as part of the Angola Craton, and are correlated to the metassediments of the Paranaguá Terrane as a passive margin that in approximately ca. 650 My became active margin, functioning as a forearc basin. The oblique collision between the blocks would have occurred with the development of a dextral transpression in the Itajaí Perimbó Shear Zone, separating the Luís Alves Terrane from the Brusque Terrane, a sinistral transcurrence represented by the

  11. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China (United States)

    Chen, Lei; Wang, Zongqi; Yan, Zhen; Gong, Jianghua; Ma, Shouxian


    A number of Sn deposits associated with Neoproterozoic granites are located in the western Jiangnan Orogen of northern Guangxi. The distribution of Sn mineralization is controlled by faults occurring within and around the Neoproterozoic granites. The hydrothermal alteration and mineralization of these Sn deposits exhibit zoning from the granite to the wall rock. The laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb ages of the cassiterite and zircon from ore-bearing granite in the Menggongshan Sn deposit are 829 ± 19 Ma and 822 ± 4 Ma, respectively, indicating that the Sn mineralization and granites formed in the Neoproterozoic and can considered to be products of coeval magmatic and hydrothermal activities. The ore-bearing granite and Neoproterozoic granites in northern Guangxi are high-K, calc-alkaline, peraluminous, S-type granites that are depleted in Nb, Ti, Sr and Ba and highly enriched in Rb, U and Pb. All the granites show steep fractionated light rare earth element (LREE) and flat heavy rare earth element (HREE) patterns, with strongly negative Eu anomalies. The ɛHf(t) values of the ore-bearing granite vary from - 9.0 to - 1.7, with an average value of - 4.1. Additionally, the ore-bearing granite exhibits low oxygen fugacity values. The magmatic source experienced partial melting during their evolution, and the source was dominated by recycled heterogeneous continental crustal materials. Our evidence confirms that the Neoproterozoic granites in northern Guangxi formed in a collisional tectonic setting. The collision between the Cathaysia and Yangtze blocks or between the Sibao arc (Jiangnan arc) and the Yangtze Block caused asthenospheric upwelling, leading to partial melting and recycling of the crust, forming the peraluminous S-type granites in the Neoproterozoic. The Sn mineralization has a close genetic relationship with the Neoproterozoic granite. The highly differentiated, peraluminous, B-enriched, crustally derived

  12. Petrology and geochemistry of greywackes of Middle Aravalli supergroup, NW India: evidence for active margin processes

    International Nuclear Information System (INIS)

    Absar, Nurul; Sreenivas, B.


    Aravalli Mountain Belt (AMB) of Northwestern, India represents one of the major Proterozoic accretionary orogens of the world, preserving two Wilson cycles; viz. Paleoproterozoic Aravalli Supergroup and Mesoproterozoic Delhi Supergroup. Although two gross Wilson cycles involving opening and closing of Paleoproterozoic Aravalli ocean and Mesoproterozoic Delhi ocean are recognized, the finer details of the evolution of the orogen are still poorly understood. We have carried out geochemical and petrological study of the well-preserved greywacke horizon of the 'Middle Aravalli Supergroup' in order to place constraints on early evolution of the Aravalli basin. These greywackes are enriched in Fe, Mg and K; and depleted in Na in comparison to normal greywackes and can be classified as ferroan potassic sandstone. Petrographic examination indicate that the greywacke samples contain about 30 to 50% matrix that is mainly composed of biotite/chlorite and interspersed with fine Fe-Ti rich opaque mineral phases

  13. U-Pb (SHRIMP) and Sm-Nd geochronology of basaltic green schists of the Aracuai orogen: implications for the age of the Macaubas group; Geocronologia U-Pb (SHRIMP) e Sm-Nd de xistos verdes basalticos do orogeno Aracuai: implicacoes para a idade do grupo Macaubas

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, Marly [Universidade de Sao Paulo, SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas]. E-mail:; Gradim, Rafael Jaude; Alkmim, Fernando Flecha de [Universidade Federal de Ouro Preto, MG (Brazil). Escola de Minas. Dept. de Geologia]. E-mails:;; Pedrosa-Soares, Antonio Carlos; Noce, Carlos Mauricio [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias; Liu, Dunyi [Chinese Academy of Geological Sciences, Beijing (China). Beijing SHRIMP Lab.


    The age and stratigraphic position of the basaltic green schists of the Rio Preto valley, located in the western part of the Aracuai Belt (ca. 60 km north of Diamantina, Minas Gerais) were a matter of controversy in the geologic literature, because several authors correlated them to the Neo proterozoic Macaubas Group but others to the lower Espinhaco Supergroup (ca. 1.7 Ga). However, detailed studies demonstrate that these green schists represent an interplay of submarine basaltic volcanism, volcanoclastic sedimentation and fire fountaining, and that they belong to the Chapada Acaua Formation of the Macaubas Group (Gradim et al., 2005). Geochemical studies indicate that the green schist protoliths evolved in a continental intra plate environment. Zircon crystals were separated from a green schist sample and analyzed by the U-Pb SHRIMP method. A Sm-Nd whole-rock isotopic analysis was obtained from the same sample. The Sm- Nd model age of ca. 1.52 Ga suggests that the green schist protoliths are younger than the magmatism of the Espinhaco rift. Most analyzed zircon crystals show features of detrital grains. The older ages indicate zircon grains inherited from the Archean- Paleoproterozoic basement and from magmatic rocks of the Espinhaco rift. The younger U-Pb values constrain the maximum age of the green schist protoliths at ca. 1,16 Ga. (author)

  14. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Foothills province, California (United States)

    Taylor, Ryan D.; Goldfarb, Richard J.; Monecke, Thomas; Fletcher, Ian R.; Cosca, Michael A.; Kelly, Nigel M.


    The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, the largest historic gold producer of the North American Cordillera, comprises both steeply dipping east-west (E-W) veins located along lithologic contacts in accreted ca. 300 and 200 Ma oceanic rocks and shallowly dipping north-south (N-S) veins hosted by the Grass Valley granodiorite; the latter have yielded about 70 percent of the 13 million ounces of historic lode gold production in the district. The oceanic host rocks were accreted to the western margin of North America between 200 and 170 Ma, metamorphosed to greenschist and amphibolite facies, and uplifted between 175 and 160 Ma. Large-scale magmatism in the Sierra Nevada occurred between 170-140 Ma and 120-80 Ma, with the Grass Valley granodiorite being emplaced during the older episode of magmatism. Uranium-lead isotopic dating of hydrothermal xenotime yielded the first absolute age of 162±5 Ma for the economically more significant N-S veins. The vein-hosted xenotime, as well as associated monazite, are unequivocally of hydrothermal origin as indicated by textural and chemical characteristics, including grain shape, lack of truncated growth banding, lack of a Eu anomaly, and low U and Th concentrations. Furthermore, the crack-seal texture of the veins, with abundant wallrock slivers, suggests their formation as a result of episodic fluid flow possibly related to reoccurring seismic events, rather than a period of fluid exsolution from an evolving magma. The N-S veins are temporally distinct from a younger 153-151 Ma gold event that was previously reported for the E-W veins. Overlapping U-Pb zircon (159.9±2.2 Ma) and 40Ar/39Ar biotite and hornblende (159.7±0.6 to 161.9±1.4 Ma) ages and geothermobarometric calculations indicate that the Grass Valley granodiorite was emplaced at ca. 160 Ma at elevated temperatures (~800°C) within approximately 3 km of the paleosurface and rapidly cooled to the ambient

  15. Paleoproterozoic volcanism in the southern Amazon Craton (Brazil): insight into its origin and deposit textures (United States)

    Roverato, Matteo; Juliani, Caetano


    The Brazilian Amazon craton hosts a primitive volcanic activity that took place in a region completely stable since 1.87 Ga. The current geotectonic context is very different from what caused the huge volcanism that we are presenting in this work. Volcanic rocks in several portions of the Amazon craton were grouped in the proterozoic Uatumã supergroup, a well-preserved magmatic region that covers an area with more than 1,200,000 km2. In this work one specific region is considered, the southwestern Tapajos Gold province (TGP) that is part of the Tapajós-Parina tectonic province (Tassinari and Macambri, 1999). TGP consists of metamorphic, igneous and sedimentary sequences resulted from a ca. 2.10-1.87 Ga ocean-continent orogeny. High-K andesites to felsic volcanic sequences and plutonic bodies, andesitic/rhyolitic epiclastic volcanic rocks and A-type granitic intrusions form part of this volcanism/plutonism. In this work we focus particularly our attention on welded, reomorphic and lava-like rhyolitic ignimbrites and co-ignimbrite brecchas. Fiamme texture of different welding intensity, stretched obsidian fragments, "glassy folds", relict pumices, lithics, rotated crystals of feldspars, bipiramidal quarz, and devetrification spherulites are the common features represented by our samples. Microscopical images are provided to characterize the deposits analyzed during this preliminary research. The lack of continuum outcrops in the field made more difficult the stratigraphic reconstruction, but the superb preservation of the deposits, apparently without any metamorphic evidences (not even low-grade), permits a clearly description of the textures and a differentiation between deposits. A detailed exploration of this ancient andesitic and rhyolitic volcanic activity could contribute greatly to the knowledge of the Amazon territory and in particular for the recognition of the various units that form the supergroup Uatumã, especially in relation to different eruptive style that produced them. The aim of this work is to provide a preliminary detailed description of the textural facies of this old volcanic units that outcrop in the southern region of Tapajós to better understand its origins, mechanisms of genesis, and, even possible, stratigraphic relationships. Acknowledgments: we acknowledge the CNPq/CT-Mineral (Proc. 550.342/2011-7) and the INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS).

  16. Porfiroblastic hornblendites: lithological, guide of arch root plutonism in Piedra Alta Terrane. (Paleoproterozoic, Uruguay)

    International Nuclear Information System (INIS)

    Bossi, J.; Pineyro, D.


    Petrographic and geochemical features of porphyroblastic hornblendites in Piedra Alta Terrene of Uruguay are described. Their spatial and genetic relationships whith hornblendic gabbros and other basic plutonic rocks is also stablished. Their association with low grade metamorphic supracrustals inmagmatic mingling structures and late development, suggests an origin related to high vapour pressure that take off stability to gabbro paragenesis and favours Deer's reaction:pyroxene+ plagioclase +water= hornblende + SIO2. The silica produced is expressed as quartz dikes frequently mineralized with gold and platinum group elements. San Carlos gabbro is an uruguayan exemple of such proposed model.

  17. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics (United States)

    Peng, Peng; Guo, Jinghui; Zhai, Mingguo; Windley, Brian F.; Li, Tiesheng; Liu, Fu


    The 2200-1880 Ma igneous rocks in the central and eastern parts of the North China Craton (NCC) constitute a new Hengling magmatic belt (HMB), which includes the ~ 2147 Ma Hengling mafic sill/dyke swarm, the ~ 2060 Ma Yixingzhai mafic dyke swarm, and the ~ 1973 Ma Xiwangshan mafic dyke swarm. The three swarms are contiguous and have experienced variable degrees of metamorphism from greenschist to low amphibolite facies (Hengling), medium granulite facies (Yixingzhai), and medium/high-pressure granulite facies (Xiwangshan). They are all tholeiitic in composition typically with 47-52 wt.% SiO2 and 4-10 wt.% MgO, and all show light rare earth element enrichments and Nb- and Ta-depletion. Their Nd TDM ages are in the range of 2.5-3.0 Ga. Specifically, the Hengling and Yixingzhai dykes/sills are depleted in Th, U, Zr, Hf and Ti, whereas the Xiwangshan dykes are enriched in U and weakly depleted in other elements. Variable Sr-anomalies indicate significant feldspar accumulation (positive anomalies) or fractionation. The ɛNd(t) values of the three swarms are: - 3.2-+3.0 (Hengling), - 1.7-+ 1.8 (Yixingzhai) and - 1.4-+ 1.0 (Xiwangshan). These mafic representatives of the HMB originated from the > 2.5 Ga sub-continental lithospheric mantle of the NCC, and with A-type granites and other igneous associations in this belt they likely evolved in an intra-continental rift. The progressive changing compositions of the three swarms are interpreted in terms of their source regions at different depths, i.e., shallower and shallower through time. And the decrease in scale and size of the intrusions and their magma volumes indicate the progressive weakening of magmatism in this rift. The rocks in this belt are different chronologically, petrologically and chemically from those in the Xuwujia magmatic belt (XMB). We propose that the two magmatic belts represent two different magmatic systems in different blocks of the NCC, i.e., an eastern block (with the HMB) and a western block (with the XMB). Terminal collision was possibly a result of ridge subduction between the two blocks, which led to exhumation of the igneous rocks in the two belts from different crustal levels, distinguishable by their different grades of metamorphism.

  18. Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event (United States)

    Ossa Ossa, Frantz; Eickmann, Benjamin; Hofmann, Axel; Planavsky, Noah J.; Asael, Dan; Pambo, Florent; Bekker, Andrey


    The ca. 2.1 Ga Francevillian Group of Gabon was deposited in the aftermath of the Great Oxidation Event (GOE) and records the Lomagundi Event (LE), which is the most pronounced and long-lived carbon isotope excursion in the geologic record. Moreover, the sedimentary succession contains putative evidence for the earliest appearance of macro-eukaryotes. An emerging paradigm is that the end of the LE was accompanied by a deoxygenation event that preceded the apparent stability of environmental and redox conditions as well as the carbon cycle characteristic of the Mesoproterozoic. However, the processes that led to deoxygenation some 300 to 200 Ma after the beginning of the GOE are not well understood. Here we present a multi-proxy stable isotope (δ34 S, Δ33 S, Δ36 S, δ98 Mo , δ13Corg, δ13Ccarb, and δ18Ocarb) study of the Francevillian Group. We suggest that sedimentation of the lower part of the Francevillian Group took place during the LE in oxygenated shallow waters with elevated sulfate concentrations. Two episodes of anoxic water shoaling during deposition of the upper Francevillian Group correspond with broader marine deoxygenation and a contraction of the seawater sulfate reservoir. This shoaling of anoxic conditions may be linked to intense submarine hydrothermal and volcanic activity that led to sedimentary manganese deposits. We propose that increased concentrations of aqueous, hydrothermally sourced reductants drove oxygen consumption during the first deoxygenation event and established a sulfidic oxygen-minimum zone at the margin of the shallow shelf. Carbonates with positive δ13Ccarb values characteristic of the LE precipitated during this first stage of deoxygenation. The second deoxygenation, separated from the previous event by a period of well-oxygenated conditions, was marked by a stronger contraction of the seawater sulfate reservoir and coincided with the end of the LE. During this time, widespread euxinic conditions were established in shallow (above storm wave base) marine environments. The presence of a shallow-water redoxcline points to a generally low-oxygen atmosphere-ocean system. Further, the negative co-variation between δ34 S and δ13 C values in sediments of the Francevillian Group and other sedimentary successions of similar age worldwide suggests that the inferred two-step deoxygenation corresponding to the end of the LE reflects global rather than local events that likely occurred between ∼2.1 and 2.05 Ga ago.

  19. Mountain building processes at the orogenic front: A study of the unroofing in Neogene foreland sequence (37°S Procesos orogénicos en el frente Andino: Estudio de una secuencia de destechado correspondiente a la cuenca de antepaís neógena

    Directory of Open Access Journals (Sweden)

    Lucía Sagripanti


    Full Text Available The orogenic front at 37°S has been mainly formed through at least two contraccional stages, as inferred from the exhumed major angular unconformities at the Late Eocene and the Late Miocene times respectively. A Late Cretaceous event is restricted to the hinterland zones in the Main Cordillera. A series of syntectonic sedimentary packages, that thin to the east is identified through a detailed description of the cannibalized westernmost Neogene foreland basin associated with the Sierra de Reyes. Their detrital microscopic and macroscopic descriptions reveal that the Neogene basin was fed from the west and particularly from the eastern Sierra de Reyes slope at the time of mountain incision. Detrital composition of the upper section reveals that a metamorphic component is present, implying that a domain further east has been exhumed, and therefore that the westernmost foreland basin has been cannibalized. This also implies that exhumation previous to Miocene times should have been minimum in the area, since the Neogene succession represents a complete unroofing. The structural cross sections show Neogene shortening of about 20%, leaving in comparison Eocene contraction as negligible.El frente orogénico a los 37°S ha sido construido por, al menos, dos episodios con-traccionales, determinados a partir de discordancias angulares entre los depósitos del Eoceno Superior y del Mioceno Superior. Un episodio contraccional del Cretácico Superior, ampliamente descrito con anterioridad, se encuentra parcialmente restringido a las zonas internas de la Cordillera Principal. A partir de un detallado análisis de la cuenca de antepaís neógena asociada, canibalizada por el frente de levantamiento de la sierra de Reyes, se puede distinguir una secuencia sedimentaria que experimenta una disminución de su espesor hacia el este. Las descripciones microscópicas y macroscópicas de estos depósitos sinorogénicos revelan que la cuenca neógena fue alimentada

  20. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil) (United States)

    Peucat, J. J.; Mascarenhas, J. F.; Barbosa, J. S. F.; de Souza, S. L.; Marinho, M. M.; Fanning, C. M.; Leite, C. M. M.


    Felsic metavolcanics associated with supracrustal rocks provide U-Pb zircon and Sm-Nd TDM ages of approximately 3.3 Ga, which establish an Archean age of the Mundo Novo greenstone belt. A granodioritic gneiss from the Mairi complex, located on the eastern boundary of the Mundo Novo greenstone belt, exhibits a zircon evaporation minimum age of 3.04 Ga and a Nd model age of 3.2 Ga. These results constrain the occurrence of at least three major geological units in this area: the Archean Mundo Novo greenstone belt, the Archean Mairi gneisses, and the adjoining Paleoproterozoic (<2.1 Ga) Jacobina sedimentary basin. The Jacobina basin follows the same trend as the Archean structure, extending southward to the Contendas-Mirante belt, in which a similar Archean-Paleoproterozoic association appears. We postulate that during the Paleoproterozoic in the eastern margin of the Gavião block, these Archean greenstone belts constituted a zone of weakness along which a late-stage orogenic sedimentary basin developed.

  1. From a collage of microplates to stable continental crust - an example from Precambrian Europe (United States)

    Korja, Annakaisa


    Svecofennian orogen (2.0-1.7 Ga) comprises the oldest undispersed orogenic belt on Baltica and Eurasian plate. Svecofennian orogenic belt evolved from a series of short-lived terrane accretions around Baltica's Archean nucleus during the formation of the Precambrian Nuna supercontinent. Geological and geophysical datasets indicate W-SW growth of Baltica with NE-ward dipping subduction zones. The data suggest a long-lived retreating subduction system in the southwestern parts whereas in the northern and central parts the northeasterly transport of continental fragments or microplates towards the continental nucleus is also documented. The geotectonic environment resembles that of the early stages of the Alpine-Himalayan or Indonesian orogenic system, in which dispersed continental fragments, arcs and microplates have been attached to the Eurasian plate margin. Thus the Svecofennian orogeny can be viewed as proxy for the initial stages of an internal orogenic system. Svecofennian orogeny is a Paleoproterozoic analogue of an evolved orogenic system where terrane accretion is followed by lateral spreading or collapse induced by change in the plate architecture. The exposed parts are composed of granitoid intrusions as well as highly deformed supracrustal units. Supracrustal rocks have been metamorphosed in LP-HT conditions in either paleo-lower-upper crust or paleo-upper-middle crust. Large scale seismic reflection profiles (BABEL and FIRE) across Baltica image the crust as a collage of terranes suggesting that the bedrock has been formed and thickened in sequential accretions. The profiles also image three fold layering of the thickened crust (>55 km) to transect old terrane boundaries, suggesting that the over-thickened bedrock structures have been rearranged in post-collisional spreading and/or collapse processes. The middle crust displays typical large scale flow structures: herringbone and anticlinal ramps, rooted onto large scale listric surfaces also suggestive

  2. New monazite U-Pb age constraints on the evolution of the Paleoproterozoic Vaasa granitoid batholith, western Finland

    Directory of Open Access Journals (Sweden)

    A.K. Kotilainen


    Full Text Available The Vaasa batholith, western Finland, is a large, peraluminous granitoid pluton that crystallized at 1.88–1.87 Ga during the culmination of the Svecofennian orogeny. The batholith has gradual contacts, through metatexites and diatexites, with the enveloping metasedimentary rocks of the Bothnian Belt. We present ID-TIMS U-Pb age data on monazite from granitoids and xenoliths of the Vaasa batholith and combine these with published U–Pb zircon ages in order to shed further light on the evolution of the Vaasa batholith. The apparent monazite ages for seven of the examined samples are 1870–1863 Ma, and 1855±3 Ma for one further sample from the southern part of the batholith. Combined with pre-existing data, the monazite ages of the granitoids are 9 to 18 Ma (face values or 3 to 9 Ma (external errors considered younger than the U–Pb zircon crystallization ages from respective samples. Our new data suggest slow cooling for the Vaasa batholith – the closure/saturation temperature of the monazite U–Pb system was probably reached in ~10 m.y. after the crystallization of magmatic zircon in the examined rocks.

  3. New geological and tectonic map of Paleoproterozoic basement in western Burkina Faso: integrated interpretation of airborne geophysical and field data (United States)

    Metelka, Vaclav; Baratoux, Lenka; Jessell, Mark; Naba, Seta


    The recent acquisition of regional scale airborne datasets over most of the West African craton sparked off a number of studies concentrating on their litho-tectonic interpretation. In such polydeformed terrains, where outcrop is very sparse or virtually nonexistent due to the presence of thick lateritic cover, geophysics and specifically geomagnetic surveying provide a wealth of information that facilitates the deciphering of regional litho-structural hierarchies. A revised geological and tectonic map of the Houndé and Boromo greenstone belts was derived by interpretation of aeromagnetic and gamma-ray spectrometric data constrained by field observations where available. Medium resolution geophysical data gridded at 250 meters acquired during the SYSMIN project served as a basis for the interpretation. This dataset was integrated with the SRTM digital elevation model and over 600 field observations. Furthermore, the BRGM/BUMIGEB SYSMIN project outcrops database (Castaing et al., 2003) as well as older outcrop maps, maintained by BUMIGEB, were used. Locally, outcrop maps and high resolution geophysics provided by mining companies (Orezone, SEMAFO, Volta Resources, Wega Mining) were employed. 2-D geophysical inversion modeling in GM-sys software using the ground gravity and airborne magnetic data was applied to three selected E-W profiles. Principal component analysis (PCA) of magnetic and radiometric data was a powerful tool for distinguishing different lithological units, in particular tholeiitic suites of basalts and gabbros and various volcano-sedimentary units. Some of the granite pluton limits can be traced as well using the PCA; however thick lateritic cover substantially hinders precise mapping. Magnetic data used on its own gave better results not only for granite limits but also for determining internal structures such as shear zones and concentric compositional zoning. Several major N-S to NNE-SSW oriented shear zones, representing most probably deep crustal structures were identified, some of them previously unreported. The western-most one runs through the eastern margin of the Banfora belt, continues eastwards through to Houndé belt and defines the northern limit of the Boromo belt. Regional stitches of airborne magnetic data at the craton scale show that this structure continues southeastwards to Liberia, attaining over 1000 km. Another shear zone, one of the newly discovered major structures, is NNW-SSE oriented and it affects granitoids between the Banfora and Houndé belts, joining the N-S trending shear zone limiting the Hounde belt in the west. Tarkwaian type metasediments occur as cca 400 km N-S oriented quasi-continuous unit located in the easterly part of the Houndé belt and they are limited on both eastern and western sides by regional scale shear zones. Finally, the Boromo belt is affected along all its length by a connected system of anastomosing subvertical shear zones, some of them representing the limit between the greenstone and granitoids. Additionally, tight isoclinal folds in the Houndé belt indicating E-W compression during the Eburnean orogeny are clearly visible on the PCA image. Interpreted structures are in a good accordance with the meso-scale structures measured in-situ. Castaing, C., Billa, M., Milési, J.P., Thiéblemont, D., Le Mentour, J., Egal, E., Donzeau, M. (BRGM) (coordonnateurs) et Guerrot, C., Cocherie, A., Chevremont, P., Tegyey, M., Itard, Y. (BRGM), Zida, B., Ouedraogo, I., Kote, S., Kabore, B.E., Ouedraogo, C. (BUMIGEB), Ki, J.C., Zunino (ANTEA), 2003. Notice explicative de la Carte géologique et miniére du Burkina Faso à 1/1 000 000.

  4. Horizontal faults as potential aquifers in the department of Florida. Part One: Thrust-fault Paleoproterozoic Castro Creek

    International Nuclear Information System (INIS)

    Bossi, J.; Caggiano, R.; Pineyro, D.


    Since 1996 Bossi and Pineyro proposed the posibility of subhorizontal contacts between Piedra Alta geological units with very different metamorphic grade and lithological associations. The idea was discarded in an itinerant workshop because of lacking of mylonites in the proposed planes containing pegmatites and/or muscovite granites of very low dipping. The possibility that peraluminous magma acted as a lubricant and allow significant movements without great efforts led to rework the topic, utilizing 850 observations of the Vulcanitas Arqueanas Project and 750 observations of the Terreno Piedra Alta Project Georeferenced observations were located on 1:50,000 topographic maps and areas with higher density were aerophotointerpreted at 1:40,000 scale and geologically surveyed at different scales.The thrust-fault of Florida granite belt over San Jose belt was confirmed, and a new thrust-fault was found in the Arroyo Castro valley with 2% dipping to the north

  5. Testing the Mojave-Sonora megashear hypothesis: Evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico (United States)

    Amato, J.M.; Lawton, T.F.; Mauel, D.J.; Leggett, W.J.; Gonzalez-Leon, C. M.; Farmer, G.L.; Wooden, J.L.


    U-Pb ages and Nd isotope values of Proterozoic rocks in Sonora, Mexico, indicate the presence of Caborca-type basement, predicted to lie only south of the Mojave-Sonora mega-shear, 40 km north of the postulated megashear. Granitoids have U-Pb zircon ages of 1763-1737 Ma and 1076 Ma, with ??Nd(t) values from +1.4 to -4.3, typical of the Caborca block. Lower Jurassic strata near the Proterozoic rocks contain large granitic clasts with U-Pb ages and ??Nd(t) values indistinguishable from those of Caborcan basement. Caborca-type basement was thus present at this location north of the megashear by 190 Ma, the depositional age of the Jurassic strata. The Proterozoic rocks are interpreted as parautochthonous, exhumed and juxtaposed against the Mesozoic section by a reverse fault that formed a footwall shortcut across a Jurassic normal fault. Geochronology, isotope geochemistry, and structural geology are therefore inconsistent with Late Jurassic megashear displacement and require either that no major transcurrent structure is present in Sonora or that strike-slip displacement occurred prior to Early Jurassic time. ?? 2009 The Geological Society of America.

  6. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on new SHRIMP U-Pb data, part 1: central-eastern border of Sao Francisco Craton in Bahia state, Brazil

    International Nuclear Information System (INIS)

    Silva, Luiz Carlos da; Pimentel, Marcio; Jost, Hardy; Armstrong, Richard


    This paper discusses new U-Pb SHRIMP zircon data for 12 key-exposures of several geological units exposed at the eastern border of the Sao Francisco Craton. The samples represent mostly Archean basement units within the Paleoproterozoic Eastern Bahia Belt (Orogen). Samples were collected along several E-W tran sects trying to more accurately assess the areal distribution of the Archean polycyclic basement of the Sao Francisco Craton and to identify the limits of Paleoproterozoic metamorphic overprint resulting from the development of the Eastern Bahia Orogen. Owing to the polycyclic evolution and/or high grade metamorphic conditions which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. Except for one unit (sample LH 44), which present crystallization age of ca 3000 Ma - interpreted, therefore, as the eastern extension of the Serrinha Craton - the others are ascribed to two major age groups at ca. 2870-2500 Ma and ca. 2200?-2030 Ma. The former group includes ortho gneisses with crystallization ages between ca. 2870-2500 Ma, which have been mapped and interpreted, in its major extension, as juvenile Paleoproterozoic arc (Itabuna and Salvador-Curaca belts/domains). The new data presented in this study, however, indicate that these ortho gneisses represent a multi-episodic collage of primitive Archean orogenic arcs, which gave rise to the Archean basement of that part of the Sao Francisco Craton. All the investigated zircon populations were extensively recrystallized at ca. 2080-2050 Ma as a result of

  7. U-Pb dating of deformed mafic dyke and host gneiss: implications for understanding reworking processes on the western margin of the Archaean U3o8 Block, NE Sao Francisco Craton, Brazil

    International Nuclear Information System (INIS)

    Oliveira, Elson Paiva


    U-Pb ages of deformed mafic dyke and host migmatitic grey gneiss from the transition zone between the Archaen Uaua Block and the Caldeirao Belt are presented. Titanites from the metamorphic dyke's margin and zircons from the gneiss were dated at 2,039 ± 2 Ma and 2,956 ± 39 Ma, respectively. The Sm-Nd data (T DM =2,965 Ma and ε Nd(t) =1.69) on the gneiss, coupled with the U-Pb data on both dyke and gneiss, suggest than an Archaen granodioritic batholith, probably originated at an andean-type continental margin, was intruded by mafic dykes, and subsequently was reworked during the Paleoproterozoic collisional event associated with the development of the Salvador-Curaca Orogen. (author)

  8. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey


    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  9. Petrogenesis of the uraniferous albitites, BA, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Alexandre de Oliveira, E-mail: [Universidade Federal de Minas Gerais (CPMTC/IGC/UFMG), Belo Horizonte, MG (Brazil). Centro de Pesquisas Manoel Teixeira da Costa. Instituto de Geociencias


    After Chaves et al. (2007), the crystallization and coeval deformation of the Lagoa Real uraniferous sodic syenite (uraniferous albitite protolith) took place along paleoproterozoic shear zones developed under regional late-orogenic tectonic conditions. The interpretation of new major elements, Zr and Th lithogeochemical data points to a petrogenetic connection between alkali-gabbro (local amphibolite protolith) and sodic syenite by fractional crystallization through transitional alkaline series. This magmatic differentiation occurred either before or during shear process, which in turn led to albitite and amphibolite formation. The regional microclinegneiss, whose protolith is a syn-collisional potassic granite, represents the albitite host rock, and, apparently, it has no petrogenetic association to syenite (albitite protolith) in magmatic evolutive terms (author)

  10. Geology and geochronology of Cardoso Island, in the southeastern coast of Sao Paulo State; Geologia e geocronologia da Ilha de Cardoso, sudeste do Estado de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Werner


    This aim of work is the geological and geochronological study of rocks cropping out on Cardoso Island, on the southeastern coast of Sao Paulo States, close to be boundary with Parana State. The Island with an area of about 151 km{sup 2} is a protected area administered by the Forest Institute of Environment Secretariat of the State of Sao Paulo. It is mountanious, with a peak at 814 m, and is covered by dense Mata Atlantica vegetation. The terrains which compose the island are mainly an igneous complex with light grey leucocratic, inequigranular, medium - to coarse-grained syenites. The predominant Tres Irmaos Syenite (STI), composed of pyroxene, hornblende, and perthitic to mesoperthitic microcline, has a magmatic flow structures, and is cut by the Cambriu alkali-feldspar Granites (GC), which is pinkish grey, leucocratic and medium-grained. Geochemical analysis of STI and GC demonstrate their meta luminous alkaline nature and late-orogenic to an orogenic character. The geochronological results suggest that the bodies were formed between 620 and 570 My according to the U-Pb method in zircons, with cooling between 597 and 531 My (K-Ar in amphiboles). Whole rock Sm-Nd analysis yield T{sub DM} ages in the Meso and Paleoproterozoic (1.200 - 2.200 My). belt of low grade meta sedimentary rocks occurs in the northern part of the island. Quartz schist, quartz-mica schist and mica-quartz schist, often containing andaluzite and cordierite, predominate. The geochemical and geochronological data suggest that the sources of the metasediments were andesites of continental arc whose protolities separated from the mantle during the Paleoproterozoic, between 1.800 and 2.200 My. These metasediments probably continue on the continent in the Taquari region and extend southwards in narrow strips between the granitoids of the Paranagua Domain. Although quaternary deposits are expressive, they were not studied in details since they were not the objectives of this study. (author)

  11. Geology and geochronology of Cardoso Island, in the southeastern coast of Sao Paulo State

    International Nuclear Information System (INIS)

    Weber, Werner


    This aim of work is the geological and geochronological study of rocks cropping out on Cardoso Island, on the southeastern coast of Sao Paulo States, close to be boundary with Parana State. The Island with an area of about 151 km 2 is a protected area administered by the Forest Institute of Environment Secretariat of the State of Sao Paulo. It is mountanious, with a peak at 814 m, and is covered by dense Mata Atlantica vegetation. The terrains which compose the island are mainly an igneous complex with light grey leucocratic, inequigranular, medium - to coarse-grained syenites. The predominant Tres Irmaos Syenite (STI), composed of pyroxene, hornblende, and perthitic to mesoperthitic microcline, has a magmatic flow structures, and is cut by the Cambriu alkali-feldspar Granites (GC), which is pinkish grey, leucocratic and medium-grained. Geochemical analysis of STI and GC demonstrate their meta luminous alkaline nature and late-orogenic to an orogenic character. The geochronological results suggest that the bodies were formed between 620 and 570 My according to the U-Pb method in zircons, with cooling between 597 and 531 My (K-Ar in amphiboles). Whole rock Sm-Nd analysis yield T DM ages in the Meso and Paleoproterozoic (1.200 - 2.200 My). belt of low grade meta sedimentary rocks occurs in the northern part of the island. Quartz schist, quartz-mica schist and mica-quartz schist, often containing andaluzite and cordierite, predominate. The geochemical and geochronological data suggest that the sources of the metasediments were andesites of continental arc whose protolities separated from the mantle during the Paleoproterozoic, between 1.800 and 2.200 My. These metasediments probably continue on the continent in the Taquari region and extend southwards in narrow strips between the granitoids of the Paranagua Domain. Although quaternary deposits are expressive, they were not studied in details since they were not the objectives of this study. (author)

  12. La Escalerilla pluton, San Luis Argentina: The orogenic and post-orogenic magmatic evolution of the famatinian cycle at Sierras de San Luis (United States)

    Morosini, Augusto Francisco; Ortiz Suárez, Ariel Emilio; Otamendi, Juan Enrique; Pagano, Diego Sebastián; Ramos, Gabriel Alejandro


    Field relationships, geochemical analysis and two new absolute ages (LA-MC-ICP-MS U/Pb-zircon) allow the division of the La Escalerilla pluton (previously considered to be a single granitic body) into two different plutons: a new La Escalerilla pluton (s.s.), dated at 476.7 ± 9.6 Ma, that represents the northern portion, and the El Volcán pluton, dated at 404.5 ± 8.5 Ma, located in the southern sector. The La Escalerilla pluton is composed of three facies: (1) biotite-bearing granodiorite, (2) porphyritic biotite-bearing granite, and (3) porphyritic two micas-bearing leucogranite, being the presence of late-magmatic dykes in these facies common. The El Volcán pluton is composed of two main facies: 1) porphyritic biotite-bearing granite, and 2) two micas-bearing leucogranite, but amphibole-bearing monzodioritic and tonalititic mega-enclaves are also common, as well as some dykes of amphibole and clinopyroxene-bearing syenites. A peculiarity between the two plutons is that their most representative facies (porphyritic biotite-bearing granites) have, apart from different absolute ages, distinctive geochemical characteristics in their concentrations of trace elements; the La Escalerilla granite is comparatively poorer in Ba, Sr, Nb, La, Ce, P, and richer in Rb, Tb, Y, Tm and Yb. The El Volcán granite is notably enriched in Sr and depleted in Y, resulting in high Sr/Y ratios (12.67-39.08) compared to the La Escalerilla granite (1.11-2.41). These contrasts indicate that the separation from their sources occurred at different depths: below 25 km for the La Escalerilla, and above 30 km for the El Volcán. Moreover, the contrasts allow us to interpret a thin crust linked to an environment of pre-collisional subduction for the first case, and a thickened crust of post-collisional environment for the second, respectively.

  13. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on new SHRIMP U-Pb data, part 3: Borborema, Southern Mantiqueira and Rio Negro-Juruena provinces; Reavaliacao da evolucao geologica em terrenos pre-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte 3: Provincias Borborema, Mantiqueira Meridional e Rio Negro-Juruena

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Carlos da; Pimentel, Marcio [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail:; Scandolara, Jaime; Ramgrab, Gilberto [Centro de Pesquisas e Recursos Minerais, Brasilia, DF (Brazil); Wildner, Wilson; Sander, Andrea [Centro de Pesquisas e Recursos Minerais, Porto Alegre, RS (Brazil); Angelim, Luiz Alberto de Aquino [Centro de Pesquisas e Recursos Minerais, Recife, PE (Brazil); Vasconcelos, Antonio Maurilio [Centro de Pesquisas e Recursos Minerais, Fortaleza, CE (Brazil); Rizzoto, Gilmar; Quadros, Marcio Luiz do Espirito Santo [Centro de Pesquisas e Recursos Minerais, Porto Veolho, RO (Brazil); Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences; Rosa, Ana Lucia Zucatti da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas


    This paper discusses new SHRIMP U-Pb data for 17 key-exposures (mostly granites and ortho gneisses) from the Borborema, Southern Mantiqueira (Pelotas Orogen) and Rio Negro-Juruena provinces. In the Borborema Province (Ceara state) two samples from the Cruzeta Complex TTG ortho gneisses, ascribed to the Paleoproterozoic basement, were studied. One revealed Paleoarchean crystallization minimum age of ca. 3270 Ma. Accordingly, the gneiss is interpreted as the oldest continental crustal remnant already recognised in Ceara. The other sample, from the Saboeiro-Aiuaba Granite gave a crystallization age of ca. 625 Ma, suggesting the correlation of this syn-orogenic pluton with the Brasiliano II orogenic system (climax at 630 Ma). In the Paraiba state the granodioritic gneiss pluton ascribed to the Mesoproterozoic Sume Complex showed a crystallization age of ca. 640 Ma, also indicating that its evolution is associated with the Brasiliano II orogenic system. In the Pernambuco state one widespread ortho gneissic unit within the Pernambuco-Alagoas Massif (Belem do Sao Francisco Complex), mapped as a component of the Meso proterozoic Cariris Velho Orogen, yielded a crystallization age of ca. 2079 Ma and metamorphic overprinting at ca. 655 Ma (1{sigma}), without evidence of a Mesoproterozoic (Cariris Velhos) reworking. In the southern part of the province, near the northern margin of the Sao Francisco Craton, the Santa Maria da Boa Vista (S-type) orthogneiss yielded a crystallisation age of ca. 3070 Ma. In the southern Mantiqueira Province/Pelotas Orogen a foliated granitic pluton (mylonitic) from the Florianopolis Batholith showed Paleoproterozoic protolithic age of ca. 2175 Ma and imprecise Brasiliano age on reprecipitated overgrowths. Both results match previous ages obtained on the orthogneisses protoliths from the Aguas Mornas complex, the main exposure of reworked basement within the batholith. The large, zoned calc-alkaline pluton of the Maruim Suite, confirmed its

  14. The Rae craton of Laurentia/Nuna: a tectonically unique entity providing critical insights into the concept of Precambrian supercontinental cyclicity (United States)

    Bethune, K. M.


    Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.

  15. Wilson cycle passive margins: Control of orogenic inheritance on continental breakup

    DEFF Research Database (Denmark)

    Petersen, Kenni D.; Schiffer, Christian


    Abstract Rifts and passive margins often develop along old suture zones where colliding continents merged during earlier phases of the Wilson cycle. For example, the North Atlantic formed after continental break-up along sutures formed during the Caledonian and Variscan orogenies. Even though suc...

  16. Geodynamic models for the post-orogenic exhumation of the lower crust (United States)

    Bodur, O. F.; Gogus, O.; Karabulut, H.; Pysklywec, R. N.; Okay, A. I.


    Recent geodynamic modeling studies suggest that the exhumation of the high pressure and the very/ultra high-pressure crustal rocks may occur due to the slab detachment (break-off), slab roll-back (retreat) and the buoyancy-flow controlled subduction channel. We use convective removal (Rayleigh-Taylor, 'dripping' instability) mechanism to quantitatively investigate the burial and the exhumation pattern of the lower/middle crustal rocks from ocean subduction to post-collisional geodynamic configuration. In order to address the model evolution and track crustal particles for deciphering P-T-t variation, we conduct a series of thermo-mechanical numerical experiments with arbitrary Eularian-Lagrangian finite element code (SOPALE). We show how additional model parameters (e.g moho temperature, upper-middle crustal activation energy, density contrast between the lithosphere and the underlying mantle) can effectively influence the burial and exhumation depths, rate and the styles (e.g clockwise or counterclockwise). First series of experiments are designed to investigate the exhumation of crustal rocks at 32 km depth for only post-collisional tectonic setting -where pre-existing ocean subduction has not been implemented-. Model predictions show that a max. 8 km lower crustal burial occurs concurrent with the lower crustal convergence as a response to the mantle lithosphere dripping instability. The subsequent exhumation of these rocks up to -25 km- is predicted at an exhumation rate of 1.24 cm/year controlled by the removal of the underlying mantle lithosphere instability with crustal extension. At the second series of experiments, we tracked the burial and exhumation history of crustal particles at 22 and 31 km depths while pre-existing ocean subduction has been included before the continental collision. Model results show that burial depths down to 62 km occurs and nearly the 32 km of exhumation is predicted again by the removal of the mantle lithosphere after the dripping instability but the crustal rocks are buried deeper because of the downward forcing of the sinking ocean plate. We suggest that the first set of model results are comparable to the peak pressure calculations from the high pressure rocks of the Afyon Zone in western Turkey with a significant offset (175°C) in temperature values.

  17. Orogen and long-term carbon cycle, what numerical modelling can tell us about their interactions. (United States)

    Maffre, P.; Godderis, Y.; Carretier, S.; Ladant, J. B.; Moquet, J. S.; Donnadieu, Y.


    If the uplift of current mountain ranges is often cited as a possible cause for Cenozoic cooling and the onset of the quaternary glaciation, this hypothesis is highly discussed. The main reason is that mountain uplift has a wide range of consequences, turning on or of sources or sinks of CO2. Most of these CO2 fluxes are still poorly constrained. Indeed, high erosion rates of mountain ranges increase silicate weathering by increasing fresh material supply (Goddéris et al. 2017) and enhance organic matter burial throughout intense sediment discharge by rivers (Galy et al. 2007). Yet, the effect of fresh matter supply by erosion is different if it happens on a weathering-limited or a supply-limited place (West 2012), and as eroded clasts are often weathered in pediments or floodplains (Moquet et al 2011, Lupker et al. 2012), it makes the issue more complex. Moreover, mountain ranges dramatically alter local and global climatic pattern by affecting atmospheric and oceanic circulation (Maffre et al. 2017), which must have consequences on weathering efficiency. Finally, it has been shown that the CO2 source due to sulphur oxidation can locally exceed the CO2 sink associated to silicate weathering (Torres et al. 2016) and may be relevant at geological timescale (Torres et al. 2014). Our aim here is to investigate theses processes in a global model in order to quantify their relative importance. We used the spatially resolved numerical model GEOCLIM ( to test the effect of orography on CO2 fluxes with present-day continent configuration. We designed for that purpose two experiments, with and without orography, everything else kept as present-day state. Preliminary results show antagonist effects of mountain ranges. While erosion acts to enhance weathering efficiency when mountains are built, dryer and cooler conditions triggered by reorganization of ocean-atmosphere circulation act to reduce it. A first quantification using weathering data to constraint the model gives a probable range of 30% less to 100% more weathering with mountains (at constant CO2), depending on the sensitivity to the model to climate pattern or erosion. The uncertainty is primarily due to the lack of data.

  18. Dating emplacement and evolution of the orogenic magmatism in the internal Western Alps

    DEFF Research Database (Denmark)

    Berger, Alfons; Thomsen, Tonny B.; Ovtcharova, Maria


    The Canavese Line in the Western Alps represents the position in the Alpine chain, where alkaline and calc-alkaline magmatism occur in close spatial and temporal association. In addition to available data on the alkaline Valle del Cervo Pluton, we present petrological and geochemical data...... on the Miagliano tonalite. The latter is of special interest, because it is located in the south-eastern side of the Canavese Line, in contrast to most Periadriatic Plutons. The dioritic to tonalitic rocks of the Miagliano Pluton represent an intermediate stage of a calc-alkaline differentiation, demonstrated...... by relics of two different pyroxenes as well as the texture of allanite. Hornblende barometry indicates pressures of similar to 0.46 GPa consistent with the presence of magmatic epidote. Field relationships between the two Plutons, the volcanic and volcaniclastic rocks of the Biella Volcanic Suite...

  19. Source discrimination between Mining blasts and Earthquakes in Tianshan orogenic belt, NW China (United States)

    Tang, L.; Zhang, M.; Wen, L.


    In recent years, a large number of quarry blasts have been detonated in Tianshan Mountains of China. It is necessary to discriminate those non-earthquake records from the earthquake catalogs in order to determine the real seismicity of the region. In this study, we have investigated spectral ratios and amplitude ratios as discriminants for regional seismic-event identification using explosions and earthquakes recorded at Xinjiang Seismic Network (XJSN) of China. We used a data set that includes 1071 earthquakes and 2881 non-earthquakes as training data recorded by the XJSN between years of 2009 and 2016, with both types of events in a comparable local magnitude range (1.5 to 2.9). The non-earthquake and earthquake groups were well separated by amplitude ratios of Pg/Sg, with the separation increasing with frequency when averaged over three stations. The 8- to 15-Hz Pg/Sg ratio was proved to be the most precise and accurate discriminant, which works for more than 90% of the events. In contrast, the P spectral ratio performed considerably worse with a significant overlap (about 60% overlap) between the earthquake and explosion populations. The comparison results show amplitude ratios between compressional and shear waves discriminate better than low-frequency to high-frequency spectral ratios for individual phases. In discriminating between explosions and earthquakes, none of two discriminants were able to completely separate the two populations of events. However, a joint discrimination scheme employing simple majority voting reduces misclassifications to 10%. In the region of the study, 44% of the examined seismic events were determined to be non-earthquakes and 55% to be earthquakes. The earthquakes occurring on land are related to small faults, while the blasts are concentrated in large quarries.

  20. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway

    NARCIS (Netherlands)

    Spengler, D.; Van Roermund, H.L.M.; Drury, M.R.; Ottolini, L.; Mason, P.R.D.; Davies, G.R.


    The buoyancy and strength of sub-continental lithospheric mantle is thought to protect the oldest continental crust (cratons) from destruction by plate tectonic processes. The exact origin of the lithosphere below cratons is controversial, but seems clearly to be a residue remaining after the

  1. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults. (United States)

    Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M


    Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36 Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36 Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10 4  yr; 10 2  km) but over shorter timescales most of the deformation may be accommodated by fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  2. Gravity characteristics of the panafrican orogen in Ghana, Togo and Benin (West Africa)

    International Nuclear Information System (INIS)

    El-Hadji Tidjani, M.; Affaton, P.; Louis, P.; Socohou, A.


    The studied area is straddling the West-African Craton and Nigerian-Beninian panafrican mobile plate. From west to east, it is composed of three large petrostructural sets which show specific gravity characteristics: the Volta Basin domain, constituted of sedimentary formations lying in a major discordance on the West-African Craton crystalline basement; it exhibits positive gravity anomalies probably linked with basic magmatic intrusions met in the basin. Next, one medial set, corresponding to the external structural unit domain of the Dahomeyid range; composed of epi- to mesozonal rocks, it shows large negative anomaly panels very likely in close relation with the tectonic overload. Finally, one eastern set, comprising gneisso-migmatitic internal units of the Nigerian-Beninian plate western border; it mainly outlines positive anomalies which seem to be in connection with granulitic and basic complexes encountered in places inside this area. This set includes the suture zone. We mention in these three sets numerous gravity discontinuities which testify to the great structural complexity of the region. However, this complexity is frequently concealed or attenuated by counterbalance and smoothing phenomena. This gravity complexity increases from north to south, and is interpreted as the sign of a rise of the southern part deep zones of this sector during the panafrican event. Moreover, this complexity also might testify to an aggregation of panafrican mobile plate compartments. (author). 33 refs, 12 figs

  3. Paleoproterozoic high-sulfidation mineralization in the Tapajós gold province, Amazonian Craton, Brazil: geology, mineralogy, alunite argon age, and stable-isotope constraints (United States)

    Juliani, Caetano; Rye, Robert O.; Nunes, Carmen M.D.; Snee, Lawrence W.; Correa, Rafael H.; Monteiro, Lena V.S.; Bettencourt, Jorge S.; Neumann, Rainer; Neto, Arnaldo A.


    The Brazilian Tapajós gold province contains the first evidence of high-sulfidation gold mineralization in the Amazonian Craton. The mineralization appears to be in large nested calderas. The Tapajós–Parima (or Ventuari–Tapajós) geological province consists of a metamorphic, igneous, and sedimentary sequence formed during a 2.10 to 1.87 Ga ocean−continent orogeny. The high-sulfidation mineralization with magmatic-hydrothermal alunite is related to hydrothermal breccias hosted in a rhyolitic volcanic ring complex that contains granitic stocks ranging in age from 1.89 to 1.87 Ga. Cone-shaped hydrothermal breccias, which flare upward, contain vuggy silica and have an overlying brecciated cap of massive silica; the deposits are located in the uppermost part of a ring-structure volcanic cone. Drill cores of one of the hydrothermal breccias contain alunite, natroalunite, pyrophyllite, andalusite, quartz, rutile, diaspore, woodhouseite–svanbergite, kaolinite, and pyrite along with inclusions of enargite–luzonite, chalcopyrite, bornite, and covellite. The siliceous core of this alteration center is surrounded by advanced argillic and argillic alteration zones that grade outward into large areas of propylitically altered rocks with sericitic alteration assemblages at depth. Several occurrences and generations of alunite are observed. Alunite is disseminated in the advanced argillic haloes that envelop massive and vuggy silica or that underlie the brecciated silica cap. Coarse-grained alunite also occurs in branching veins and locally is partly replaced by a later generation of fine-grained alunite. Silicified hydrothermal breccias associated with the alunite contain an estimated reserve of 30 tonnes of gold in rock that grades up to 4.5 g t−1 Au. Seven alunite samples gave 40Ar/39Ar ages of 1.869 to 1.846 Ga, with various degrees of apparent minor Ar loss. Stable isotopic data require a magmatic-hydrothermal origin for the alunite, typical for high-sulfidation mineralization. The δ34S values of most samples of alunite range from 14.0‰ to 36.9‰. Sulfur isotopic alunite–pyrite and oxygen isotopic alunite SO4−OH temperatures range from 130 to 420 °C. The δDH2O and δ18OH2O values for alunite-forming hydrothermal fluids suggest a predominance of magmatic water, with a small meteoric contribution. A rare sample of supergene alunite has a δ34S value of 4.1‰ and an 40Ar/39Ar age of 51.3±0.1 Ma. Other than local foliation in the volcanic rocks and recrystallization of alunite near faults, the mineralization and associated alteration appears to have been remarkably undisturbed by later metamorphism and by supergene alteration. The Au mineralization was preserved because of burial by sediments and tuffs in taphrogenic basins that probably developed shortly after mineralization and were probably first exhumed at about 60 Ma. Because high-sulfidation mineralization forms at relatively shallow crustal levels, the discoveries in Tapajós province provide new perspectives for mineral exploration for the Amazonian and perhaps for other Precambrian cratons.

  4. Compositional Variation of Tourmaline from the Paleoproterozoic Bhukia Gold Prospect of Aravalli Supergroup, Western India: Implications for the Provenance and Gold Metallogeny (United States)

    Mukherjee, R.; Venkatesh, A. S.; Fareeduddin, F.


    Bhukia is a unique gold prospect in terms of its host lithologies such as albitite and carbonates with respect to greenstone hosted Archean gold deposits from India. Tourmaline occurs along with apatite, magnetite, graphite, chalcopyrite and gold-sulfide association in Bhukia gold prospect preserve geochemical record of changing physico-chemical conditions during its growth. Tourmalinization is one of the distinct hydrothermal alterations present in the study area. Chemical composition of two varieties of tourmalines presents as significant amounts within albitite and carbonate rocks from Bhukia gold prospect. EPMA analysis of two varieties of tourmalines viz. 1) rounded to sub-rounded, euhedral, green colored tourmalines and 2) elongated, zoned, brown colored tourmalines unlocks their chemical compositions as well as variations from core to rim. In some albitite litho-units, tourmaline occurs as major constituents (>15%), present as layers, termed as tourmalinites. Al-Fe-Mg and Na/ (Na+Ca) vs Fe/ (Fe+Mg) suggests that tourmalines from the Bhukia gold prospect are Mg-rich dravite to Fe-rich schrol in composition. Tourmalines present within the albitite rocks show variations in iron and sodium content from core to rim whereas similarity exist from core to rim in case of carbonate rocks. Presence of albite confirms the role of Na-rich fluids during the formation of tourmalines. Tourmalines present in Bhukia gold prospect is mainly influenced by boron influx and the source may be boron bearing hydrothermal fluid or boron bearing minerals. Dewatering of original un-metamorphosed rock during progressive metamorphism may remove boron from the metasedimentary rocks. Due to the mobile nature of boron, it dispersed and mixed with hydrothermal fluids and alumina that is required for the formation of the tourmaline might have been leached from metasedimentary rocks present in Bhukia gold prospect. Presence of hydrothermal alterations such as tourmalinization and albitization along with Au-Cu-graphite-magnetite association suggest this deposit to be an IOCG (Iron oxide copper gold) type.

  5. New paleomagnetic results on ˜ ˜2367 Ma Dharwar giant dyke swarm, Dharwar craton, southern India: implications for Paleoproterozoic continental reconstruction (United States)

    Babu, N. Ramesh; Venkateshwarlu, M.; Shankar, Ravi; Nagaraju, E.; Parashuramulu, V.


    Here we report new paleomagnetic results and precise paleopole position of the extensional study on ˜ 2367 Ma mafic giant radiating dyke swarm in the Dharwar craton, southern India. We have sampled 29 sites on 12 dykes from NE-SW Karimnagar-Hyderabad dykes and Dhone-Gooty sector dykes, eastern Dharwar craton to provide unambiguous paleomagnetism evidence on the spectacular radiating dyke swarm and thereby strengthening the presence of single magmatic event at ˜ 2367 Ma. A total of 158 samples were subjected to detailed alternating field and thermal demagnetization techniques and the results are presented here along with previously reported data on the same dyke swarm. The remanent magnetic directions are showing two components, viz., seven sites representing four dykes show component (A) with mean declination of 94{{}°} and mean inclination of - 70{{}°} (k=87, α_{95}=10{{}°}) and corresponding paleopole at 16{{}°}N, 41{{}°}E (dp=15{{}°} and dm=17{{}°}) and 22 sites representing 8 dykes yielded a component (B) with mean declination of 41{{}°} and mean inclination of - 21{{}°} (k=41, α_{95}=9{{}°}) with a paleopole at 41{{}°}N, 200{{}°}E (dp=5{{}°} and dm=10{{}°}). Component (A) results are similar to the previously reported directions from the ˜ 2367 Ma dyke swarm, which have been confirmed fairly reliably to be of primary origin. The component (B) directions appear to be strongly overprinted by the 2080 Ma event. The grand mean for the primary component (A) combined with earlier reported studies gives mean declination of 97{{}°} and mean inclination of - 79{{}°} (k=55, α_{95}=3{{}°}) with a paleopole at 15{{}°}N, 57{{}°}E (dp=5{{}°}, dm=6{{}°}). Paleogeographical position for the Dharwar craton at ˜ 2367 Ma suggests that there may be a chance to possible spatial link between Dharwar dykes of Dharwar craton (India), Widgemooltha and Erayinia dykes of Yilgarn craton (Australia), Sebanga Poort Dykes of Zimbabwe craton (Africa) and Karelian dykes of Kola-Karelia craton (Baltica Shield).

  6. U-Pb age of the Anuri dyke: paleoproterozoic potassic alkaline magmatism and implications for the Transamazonic orogeny in the Sao Francisco Craton

    International Nuclear Information System (INIS)

    Conceicao, Herbet; Rios, Debora Correia; Oberli, Felix


    The Anuri Syenitic Dyke (72 km 2 ) is the south representative of a 1000 km N-S alignment of syenitic dykes which occur at the East Bahia. As the others bodies, Anuri is essentially composed of hypersolvus ultrapotassic syenites, which show the records of its differentiation by the presence of mafic-ultramafic apatite-rich cumulates. Its crystallization age of 2095- 4 Ma (U-Pb zircao ) is quite similar with results obtained for the other syenitic dykes, which suggest that their intrusions occur almost at the same time, sincronically, after the Transamazonic Orogeny climax. The geochemical data reveal that Anuri syenites are Ba, Sr, P, LREE enriched and show negative anomalies of Ti and Nb, suggesting a mantelic source subduction related. The initial Sr ratio and ε Nd values confirms the presence of this anomalous mantle. These data suggest that at the end of Transamazonic Orogeny, at the Sao Francisco Craton, there were particular conditions which allow the generation of alkaline magmas through the melting of an EMI reservoir. (author)

  7. A preserved early Ediacaran magmatic arc at the northernmost portion of the Transversal Zone central subprovince of the Borborema Province, Northeastern South America

    Directory of Open Access Journals (Sweden)

    Benjamim Bley de Brito Neves

    Full Text Available ABSTRACT: Magmatic arcs are an essential part of crust-forming events in planet Earth evolution. The aim of this work was to describe an early Ediacaran magmatic arc (ca. 635-580 Ma exposed in the northernmost portion of the Transversal Zone, central subprovince of Borborema Province, northeast Brazil. Our research took advantage of several syntheses by different authors, including theses and dissertations, carried out on magmatic rocks of the study area for the last 30 years. The ca. 750 km long and up to 140 km wide arc, trending ENE-WSW, is preserved to the south of the Patos Lineament, between 35º15' and 42º30'W and 7º15' and 8ºS. About 90 different stocks and batholiths of I-type granitic rocks were mapped along this orogenic zone, preferentially intruding low-grade schists of the Cryogenian-Ediacaran Piancó-Alto Brígida (SPAB belt. Three igneous supersuites are recognized: a epidote-bearing granodiorites and tonalites ("Conceição" type; b high-K calc-alkaline granites ("Itaporanga" type; c biotite granodiorites of trondhjemite affinity ("Serrita" type. A fourth group of peralkalic and shoshonitic rocks occurs to the south of the previous ones, reflecting special tectonic conditions. NNE-SSW trending Paleoproterozoic fold belts, surrounding Archean nuclei, characterize the continental part of the northern lower plate. The oceanic fraction of this lower plate was recycled by subduction and scarce remnants of which may be seen either within the enclosing low-grade schists or as xenoliths within the arc intrusions. The upper continental plate presents WSW-ENE structural trends and is composed of Neoproterozoic fold belts and Paleoproterozoic reworked basement inliers. Available data bear clear evidence of an Ediacaran magmatic arc built at the northern portion of the Transversal Zone in the Borborema Province, northeast Brazil.

  8. Neoproterozoic alkaline magmatism in Ilha do Cardoso, southeastern coast of Sao Paulo State, Brazil

    International Nuclear Information System (INIS)

    Weber, Werner; Basei, Miguel A.S.; Siga Junior, Oswaldo; Sato, Kei


    This work focuses on the geology and geochronology of rocks cropping out on Cardoso Island, on the southeastern coast of Sao Paulo State, close to the boundary with Parana State. The island, with an area of about 151 km 2 is a protected area administered by the Forest Institute of the Secretariat for the Environment of the State of Sao Paulo. It is mountainous, with a peak at 814 m, and is covered by dense Atlantic Forest vegetation. The island is made up mainly of an igneous complex with light grey leucocratic, inequigranular, medium to coarse-grained syenites. The Tres Irmaos Syenite (STI), composed of pyroxene, hornblende, and perthitic to mesoperthitic microcline, predominates has magmatic flow structures, and it cut by the pinkish grey, leucocratic medium-grained Cambriu alkali-feldspar granites (GC). Geochemical analysis of STI and GC demonstrate their metaluminous alkaline nature and late orogenic to anorogenic character. The bodies formed between 620 and 570 Ma according to U-Pb dating of zircons and cooled between 597 and 531 Ma (K-Ar in amphiboles). Whole rock Sm-Nd analyses yield Meso- and Paleoproterozoic TDM ages (1,500 - 2,200 Ma). A belt of low-grade metasedimentary rocks occurs in the northern part of the island. Quartz schist, quartz-mica schist and mica-quartz schist, often-containing andalusite and cordierite, predominate. Geochemical and geochronological data suggest that the sources of the metasediments were continental arc andesites of whose protoliths separated from the mantle between 1,800 and 2,200 Ma during the Paleoproterozoic. These metasediments probably continue on the continent in the Taquari region and extend southwards in narrow strips between the granitoids of the Paranagua Domain. (author)

  9. Constraining the dynamic response of subcontinental lithospheric mantle to rifting using Re-Os model ages in the Western Ross Sea, Antarctica (United States)

    Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.


    In order to understand the dynamic response of the subcontinental lithospheric mantle (SCLM) to rifting, it is important to be able to distinguish the geochemical signatures of SCLM vs. asthenosphere. Recent work demonstrates that unradiogenic Os isotope ratios can indicate old depletion events in the convecting upper mantle (e.g. Rudnick & Walker, 2009), and allow us to make these distinctions. Thus, if SCLM can be traced across a rifted margin, its fate during rifting can be established. The Western Ross Sea provides favorable conditions to test the dynamic response of SCLM to rifting. Re-Os measurements from 8 locations extending from the rift shoulder to 200 km into the rift basin reveal 187Os/188Os ranging from 0.1056 at Foster Crater on the shoulder, to 0.1265 on Ross Island within the rift. While individual sample model ages vary widely throughout the margin, 'aluminochron' ages (Reisberg & Lorand, 1995) reveal a narrower range of lithospheric stabilization ages. Franklin Island and Sulfur Cones show a range of Re-depletion ages (603-1522 Ma and 436-1497 Ma) but aluminochrons yield Paleoproterozoic stabilization ages of 1680 Ma and 1789 Ma, respectively. These ages coincide with U-Pb zircon ages from Transantarctic Mountain (TAM) crustal rocks, in support of SCLM stabilization at the time of crust formation along the central TAM. The Paleoproterozoic stabilization age recorded at Franklin Island is especially significant, since it lies 200km off of the rift shoulder. The similar ages beneath the rift shoulder and within the rift suggests stretched SCLM reaches into the rift and thus precludes replacement by asthenospheric mantle. The persistence of thinned Paleoproterozoic SCLM into the rifted zone in WARS suggests that it represents a 'type I' margin of Huismans and Beaumont (2011), which is characterized by crustal breakup before loss of lithospheric mantle. The Archean Re-depletion age of 3.2 Ga observed on the rift shoulder suggests that cratonic

  10. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt: Constrains on the tectonic evolution of the North China Craton

    Directory of Open Access Journals (Sweden)

    Ju-Quan Zhang


    Full Text Available The Wutai greenstone belt in central North China Craton (NCC hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation (BIF, meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ∼2.5–2.3 Ga and the third one at ∼1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows. (1 ∼2.6–2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite (TTG magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean. (2 ∼2.5–2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization. (3 ∼2.2–2.1 Ga: extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits. (4 ∼2.2–2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region. (5 ∼1.95–1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.

  11. The Formation of Laurentia: Evidence from Shear Wave Splitting and Seismic Tomography (United States)

    Liddell, M. V.; Bastow, I. D.; Rawlinson, N.; Darbyshire, F. A.; Gilligan, A.


    The northern Hudson Bay region of Canada comprises several Archean cratonic nuclei, assembled by Paleoproterozoic orogenies including the 1.8 Ga Trans-Hudson Orogen (THO) and Rinkian-Nagssugtoqidian Orogen (NO). Questions remain about how similar in scale and nature these orogens were compared to modern orogens like the Himalayas. Also in question is whether the thick Laurentian cratonic root below Hudson Bay is stratified, with a seismically-fast Archean core underlain by a lower, younger, thermal layer. We investigate these problems via shear-wave splitting and teleseismic tomography using up to 25 years of data from 65 broadband seismic stations across northern Hudson Bay. The results of the complementary studies comprise the most comprehensive study to date of mantle seismic velocity and anisotropy in northern Laurentia. Splitting parameter patterns are used to interpret multiple layers, lithospheric boundaries, dipping anisotropy, and deformation zone limits for the THO and NO. Source-side waveguide effects from Japan and the Aleutian trench are observed despite the tomographic data being exclusively relative arrival time. Mitigating steps to ensure data quality are explained and enforced. In the Hudson Strait, anisotropic fast directions (φ) generally parallel the THO, which appears in tomographic images as a strong low velocity feature relative to the neighbouring Archean cratons. Several islands in northern Hudson Bay show short length-scale changes in φ coincident with strong velocity contrasts. These are interpreted as distinct lithospheric blocks with unique deformational histories, and point to a complex, rather than simple 2-plate, collisional history for the THO. Strong evidence is presented for multiple anisotropic layers beneath Archean zones, consistent with the episodic development model of cratonic keels (e.g., Yuan & Romanowicz 2010). We show via both tomographic inversion models and SKS splitting patterns that southern Baffin Island was

  12. The Penokean orogeny in the Lake Superior region (United States)

    Schulz, K.J.; Cannon, W.F.


    period of vertical faulting in the Archean basement and overlying Paleoproterozoic strata. This deformation is now known to have post-dated the terminal Penokean plutons by at least several tens of millions of years. Evidence of the Penokean orogen is now largely confined to the Lake Superior region. Comparisons with more recent orogens formed by similar plate tectonic processes implies that significant parts of a once more extensive Penokean orogen have been removed or overprinted by younger tectonic events. ?? 2007 Elsevier B.V. All rights reserved.

  13. Petrography, geochemistry and Sm-Nd isotopes of the granites from eastern of the Tapajós Domain, Pará state

    Directory of Open Access Journals (Sweden)

    Flávio Robson Dias Semblano

    Full Text Available ABSTRACT: The Tapajós Domain, located in the southern portion of the Amazonian Craton, is a tectonic domain of the Tapajós-Parima Province, a Paleoproterozoic orogenic belt adjacent to a reworked Archean crust, the Central Amazonian Province. This domain has been interpreted as the product of an assemblage of successive magmatic arcs followed by post-orogenic A-type magmatism formed ca. 1880 Ma-old granites of the Maloquinha Intrusive Suite. The study presented here was carried out in four granitic bodies of this suite (Igarapé Tabuleiro, Dalpaiz, Mamoal and Serra Alta from the eastern part of the Tapajós Domain, as well as an I-type granite (Igarapé Salustiano related to the Parauari Intrusive Suite. The A-type granites are syenogranites and monzogranites, and alkali feldspar granites and quartz syenites occur subordinately. These rocks are ferroan, alkalic-calcic to alkalic and dominantly peraluminous, with negative anomalies of Ba, Sr, P and Ti and high rare earth elements (REE contents with pronounced negative Eu anomaly. This set of features is typical of A-type granites. The Igarapé Salustiano granite encompasses monzogranites and quartz monzonites, which are magnesian, calcic to calc-alkalic, high-K and mainly metaluminous, with high Ba and Sr contents and depleted pattern in high field strength elements (HFSE and heavy rare earth elements (HREE, characteristic of I-type granites. The source of magma of these A-type granites is similar to post-collisional granites, while the I-type granite keeps syn-collisional signature. Most of the studied granites have εNd (-3.85 to -0.76 and Nd TDM model ages (2.22 to 2.46 Ga compatible with the Paleoproterozoic crust of the Tapajós Domain. We conclude that the Archean crust source (εNd of -5.01 and Nd TDM of 2.6 Ga was local for these A-type granites.

  14. A Cambrian mixed carbonate-siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin (United States)

    Ramacciotti, Carlos D.; Casquet, César; Baldo, Edgardo G.; Galindo, Carmen; Pankhurst, Robert J.; Verdecchia, Sebastián O.; Rapela, Carlos W.; Fanning, Mark


    The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to the early Paleozoic tectonic evolution of SW Gondwana. Two well-known orogenies took place at the proto-Andean margin of Gondwana in the Cambrian and the Ordovician, i.e., the Pampean (545-520 Ma) and Famatinian (490-440 Ma) orogenies, respectively. Between them, an extensive continental platform was developed, where mixed carbonate-siliciclastic sedimentation occurred. This platform was later involved in the Famatinian orogeny when it underwent penetrative deformation and metamorphism. The platform apparently extended from Patagonia to northwestern Argentina and the Eastern Sierras Pampeanas, and has probable equivalents in SW Africa, Peru, and Bolivia. The WSP record the outer (deepest) part of the platform, where carbonates were deposited in addition to siliciclastic sediments. Detrital zircon U-Pb SHRIMP ages from clastic metasedimentary successions and Sr-isotope compositions of marbles from the WSP suggest depositional ages between ca. 525 and 490 Ma. The detrital zircon age patterns further suggest that clastic sedimentation took place in two stages. The first was sourced mainly from re-working of the underlying Neoproterozoic metasedimentary rocks and the uplifted core of the early Cambrian Pampean orogen, without input from the Paleoproterozoic Río de la Plata craton. Sediments of the second stage resulted from the erosion of the still emerged Pampean belt and the Neoproterozoic Brasiliano orogen in the NE with some contribution from the Río de la Plata craton. An important conclusion is that the WSP basement was already part of SW Gondwana in the early Cambrian, and not part of the exotic Precordillera/Cuyania terrane, as was previously thought.

  15. New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil) (United States)

    de Oliveira Chaves, Alexandre


    New evidence supported by petrography (including mineral chemistry), lithogeochemistry, U-Pb geochronology by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), and physicochemical study of fluid and melt inclusions by LA-ICP-MS and microthermometry, point to an orogenic setting of Lagoa Real (Bahia-Brazil) involving uraniferous mineralization. Unlike the previous models in which uraniferous albitites represent Na-metasomatised 1.75 Ga anorogenic granitic rocks, it is understood here that they correspond to metamorphosed sodium-rich and quartz-free 1.9 Ga late-orogenic syenitic rocks (Na-metasyenites). These syenitic rocks are rich not only in albite, but also in U-rich titanite (source of uranium). The interpretation of geochemical data points to a petrogenetic connection between alkali-diorite (local amphibolite protolith) and sodic syenite by fractional crystallization through a transalkaline series. This magmatic differentiation occurred either before or during shear processes, which in turn led to albitite and amphibolite formation. The metamorphic reactions, which include intense recrystallization of magmatic minerals, led uraninite to precipitate at 1.87 Ga under Oxidation/Reduction control. A second population of uraninites was also generated by the reactivation of shear zones during the 0.6 Ga Brasiliano Orogeny. The geotectonic implications include the importance of the Orosirian event in the Paramirim Block during paleoproterozoic Săo Francisco Craton edification and the influence of the Brasiliano event in the Paramirim Block during the West-Gondwana assembly processes. The regional microcline-gneiss, whose protolith is a 2.0 Ga syn-collisional potassic granite, represents the albitite host rock. The microcilne-gneiss has no petrogenetic association to the syenite (albitite protolith) in magmatic evolutionary terms.

  16. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies (United States)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook


    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  17. Petrography and geochemistry of five granitic plutons from south central Uruguay: contribution to the knowledge of the Piedra Alta terrane

    International Nuclear Information System (INIS)

    Preciozzi, F.


    Granitoid rocks in south-central Uruguay are largely concentrated in three east-west trending metamorphic belts, known as (from south to north) the Montevideo Belt, the San José Belt and the Arroyo Grande Belt. These belts are separated from one another by intervening bands of gneisses of granitic composition. The whole assemblage, the gneisses as well as the metamorphic belts and their associated granites, collectively constitute the Piedra Alta Terrane. Five of these granite plutons, two from the San José Belt and three from the Arroyo Grande Belt, have been studied in some detail and the chemical composition of 86 samples (major elements as well as a selected suite of trace elements) have been determined. These data, as well as Rb-Sr isotopic data, show that these plutons are typically composite in nature, and that the various units range in age from 1900 Ma to 2500 Ma. The older ages were obtained from the main units of the plutons themselves whereas the younger ages are from late dykes which were emplaced into the plutons and which are clearly not related to them. The plutons are predominantly, but not exclusively, of calc-alkaline affinity and are typically synorogenic whereas the dykes are post-orogenic and are either calc-alkaline or alkaline in composition. These data have been incorporated into a tectonic model for the Piedra Alta Terrane which is considerably different from that heretofore proposed. The essential features of the geological history of the area are: 1) development of an older ''basement'' of granitic gneisses 2) deposition, upon or adjacent to this gneisses basement, of a typical Archean greenstone belt assemblage (no komatiites so far reported) 3) Paleo-proterozoic metamorphism, followed by syn-tectonic to post-tectonic intrusion of the plutonic rocks 4) major tectonic dislocation(s) associated with the Transamazonian orogeny 5) dyke emplacement (post-orogenic to anorogenic) following the Transamazonian orogeny

  18. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

    DEFF Research Database (Denmark)

    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon


    Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin...

  19. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt (United States)

    Schiffer, Christian; Stephenson, Randell; Oakey, Gordon N.; Jacobsen, Bo H.


    Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (˜82°-83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (˜35-36 km) and comparable velocity-depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ˜24-30 km in the Eurekan fold and thrust belt (˜79.7°-80.6°N) to ˜16-20 km in the Hazen Stable Block (HSB; ˜80.6°-81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (˜48 km) at ˜79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1-4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.

  20. Mesozoic alkaline plutonism: Evidence for extensional phase in Alpine-Himalayan orogenic belt in Central Alborz, north Iran

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi


    Full Text Available The Kamarbon Jurassic alkaline basic intrusion crops out in Central Alborz, north Iran, along the northern margin of the Alpine-Himalayan belt. The intrusion includes foid gabbros at the margins and foid monzodiorites towards the center. The foid monzodiorites are considered as the evolved melts after the fractional crystallization mostly of olivine and clinopyroxene from a foid gabbro parental magma. Based on mass balance calculation the evolution of the Kamarbon alkaline gabbro could be explained by 19.2% fractionation of clinopyroxene, 13.8% of olivine, 3% of plagioclase and 1.0% Ti-Magnetite, with 63% of residual liquid. REE inversion modeling indicates that the Kamarbon intrusion magma was generated by low degrees (<3% of partial melting from a garnet-bearing mantle source. In primitive mantle-normalized incompatible element diagrams, the Kamarbon rocks show enrichment in LILE elements (Ba, Rb, Sr and Th, HFSE elements (Nb, Ta, Ti, Zr and Hf and P and depletion in K, Y and HREE (Yb, Lu which are similar to patterns of HIMU-OIBs or intraplate alkaline magmas. According to the existence of extensional phases and occurrence of different rifting during late Triassic to middle Jurassic in Central Alborz, the formation of Kamarbon intrusion could be related to an intracontinental rifting.

  1. The Shahewan rapakivi-textured granite – quartz monzonite pluton, Qinling orogen, central China: mineral composition and petrogenetic significance

    Directory of Open Access Journals (Sweden)

    Xiaoxia Wang


    Full Text Available The Mesozoic Shahewan pluton consists of four texturally different types of biotite-hornblende quartz monzonite. In the porphyritic types alkali feldspar occurs as euhedral or ovoidal megacrysts that are often mantled by one or more plagioclase shells, and as smaller grains in the groundmass. Quartz, plagioclase (An20–28, biotite, and hornblende occur as inclusions in the alkali feldspar megacrystsand, more abundantly, in the groundmass. Euhedral quartz crystals in the groundmass are not as common and well developed as in typical rapakivi granite. Compared to typical rapakivi granites, the mafic minerals (biotite and hornblende are rich in Mg and poor in Fe, and the whole rock is low in Si, K, F, Ga, Zr, LREE, Fe/Mg, and K/Na. The rocks of the Shahewan pluton are thus regarded as rapakivi-textured quartz monzonites and granites but not true rapakivi granites.

  2. Linkages between orogenic plateau build-up, fold-thrust shortening, and foreland basin evolution in the Zagros (NW Iran) (United States)

    Barber, D. E.; Stockli, D. F.


    The Iranian Plateau (IP) is a thickened, low-relief morphotectonic province of diffuse deformation that formed due to Arabia-Eurasia collision and may serve as a younger analogue for the Tibetan Plateau. Despite detailed geophysical characterization of the IP, its deformation history and relationship to the Zagros fold-thrust belt and its foreland basin evolution remains unresolved. Low-temperature thermochronometry and provenance data from a transect across the internal and external Zagros track growth of the IP and delineate multiphase interaction between upper- and lower-plate processes during closure of the Neotethys and Arabia-Eurasia suturing. Inversion of zircon (U-Th)/He and fission-track data from plutonic and metamorphic basement rocks in the Sanandaj-Sirjan Zone (SSZ) of the IP reveals an initial stage of low-rate exhumation from 36-25 Ma, simultaneous with the onset of tectonic subsidence and marine incursion in the Zagros foreland basin. Overlapping apatite fission-track and (U-Th)/He ages indicate sharp acceleration in SSZ exhumation rates between 20-15 Ma, coincident with rejuvenation of foreland basin subsidence and an influx of Eurasian-derived sediments into the Zagros foreland deposited above an Oligocene unconformity. The mid-Miocene marks a transition in focused exhumation from the SSZ to Arabian lower-plate. Apatite (U-Th)/He ages suggest in-sequence fold-thrust propagation from the High Zagros to simply folded belt from 10 Ma to recent, which is reflected in the foreland by a shift in provenance to dominantly recycled Arabian-derived detritus and clastic facies progradation. Integrated thermochronometric and provenance data document a two-phase outward expansion of the Iranian Plateau and Zagros fold-thrust belt, tightly coupled to distinct phases of basin evolution and provenance shifts in the Zagros foreland. We associate multiple deformation and basin episodes with protracted collisional processes, from subduction of attenuated Arabian transitional crust beneath Eurasia causing low-rate upper-plate exhumation in the late Eocene, to accelerated Miocene unroofing and basin flexure linked to increased plate coupling and eventual to suturing as buoyant Arabian continental lithosphere entered the subduction interface.

  3. Episodic melting and magmatic recycling along 50 Ma in the Variscan belt linked to the orogenic evolution in NW Iberia (United States)

    Gutiérrez-Alonso, G.; López-Carmona, A.; García Acera, G.; Martín Garro, J.; Fernández-Suárez, J.; Gärtner, A.; Hofmann, M.


    The advent of a large amount of more precise U-Pb age data on Variscan granitoids from NW Iberia in recent years has provided a more focused picture of the magmatic history of the Western European Variscan belt (WEVB). Based on these data, three main pulses of magmatic activity seem to be well established.

  4. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi


    Idrus, Arifudin; Nur, I; Warmada, I. W; Fadlin, Fadlin


    DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This pa...

  5. Remote sensing as a preliminary analysis for the detection of active tectonic structures: an application to the Albanian orogenic system

    Directory of Open Access Journals (Sweden)

    Andrea Favretto


    Full Text Available As is well known, both the traditional direct geological and geophysical survey methods used to identify geologic features are very expensive and time-consuming procedures. In this regard, remote sensing methods applied to multispectral and medium spatial resolution satellite images allow a more focused approach with respect to the more specific geologic methods. This is achieved by a preliminary land inspection carried out by the semi-automated analysis of satellite imagery. This avoids wasting resources as the geological/geophysical survey methods can be later applied only to those zones suspected of having certain tectonic activity (derived by the remotely sensed imagery. This paper will evaluate an ASTER sensor satellite image (and its derived Digital Elevation Model or DEM, in order to point out the suspected presence of active geologic structures (faults. The area in question is west – central Albania. The results of the remote sensing procedures are later compared with the established data for the same area taken by satellite images, in order to verify the reliability of the adopted method. The source of the established data has been from the bibliography.

  6. Detachment folding of partially molten crust in accretionary orogens: A new magma-enhanced vertical mass and heat transfer mechanism

    Czech Academy of Sciences Publication Activity Database

    Lehmann, J.; Schulmann, K.; Lexa, O.; Závada, Prokop; Štípská, P.; Hasalová, Pavlína; Belyanin, G.; Corsini, M.


    Roč. 9, č. 6 (2017), s. 889-909 ISSN 1941-8264 Institutional support: RVO:67985530 Keywords : continental crust * shear-zone * gneiss domes Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.662, year: 2016

  7. 2.5D seismic velocity modelling in the south-eastern Romanian Carpathians Orogen and its foreland.

    NARCIS (Netherlands)

    Bocin, A.; Stephenson, R.A.; Tryggvason, A.; Panea, I; Mocanu, V.I.; Hauser, F


    The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining new information on the deep structure of the external Carpathians nappe system and the

  8. 2.5D seismic velocity modelling in the south-eastern Romanian Carpathians Orogen and its foreland (United States)

    Bocin, Andrei; Stephenson, Randell; Tryggvason, Ari; Panea, Ionelia; Mocanu, Victor; Hauser, Franz; Matenco, Liviu


    The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining new information on the deep structure of the external Carpathians nappe system and the architecture of the Tertiary/Quaternary basins developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly WNW-ESE direction, from near the southeast Transylvanian Basin, across the mountainous south-eastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion of the DACIA-PLAN first arrival data. The results show that the data fairly accurately resolve the transition from sediment to crystalline basement beneath the Focsani Basin, where industry seismic data are available for correlation, at depths up to about 10 km. Beneath the external Carpathians nappes, apparent basement (material with velocities above 5.8 km/s) lies at depths as shallow as 3-4 km, which is less than previously surmised on the basis of geological observations. The first arrival travel-time data suggest that there is significant lateral structural heterogeneity on the apparent basement surface in this area, suggesting that the high velocity material may be involved in Carpathian thrusting.

  9. Granitic magma emplacement and deformation during early-orogenic syn-convergent transtension: The Stare Sedlo complex, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Tomek, Filip; Žák, J.; Chadima, Martin


    Roč. 87, JUL (2015), s. 50-66 ISSN 0264-3707 Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility (AMS) * Bohemian Massif * pluton emplacement * granite * transtension * Variscan orogeny Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.926, year: 2015

  10. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China (United States)

    Kun-Feng Qiu,; Taylor, Ryan D.; Yao-Hui Song,; Hao-Cheng Yu,; Kai-Rui Song,; Nan Li,


    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in deuterium during the life of the magmatic–hydrothermal system. Alternatively, δD variability may have been caused by a minor amount of mixing with meteoric waters. We propose that the ore-related magma was derived from partial melting of the ancient Mesoproterozoic to Neoproterozoic middle to lower continental crust. This crust was likely metasomatized during earlier subduction, and the crustal magmas may have been contaminated with lithospheric mantle derived magma triggered by MASH (e.g., melting, assimilation, storage, and homogenization) processes during collisional orogeny. In addition, a significant proportion of the metals and sulfur supplied from mafic magma were simultaneously incorporated into the resultant hybrid magmas.

  11. Detrital rutile geochemistry and thermometry from the Dabie orogen: Implications for source-sediment links in a UHPM terrane (United States)

    Liu, Lei; Xiao, Yilin; Wörner, G.; Kronz, A.; Simon, K.; Hou, Zhenhui


    This study explores the potential of detrital rutile geochemistry and thermometry as a provenance tracer in rocks from the Central Dabie ultrahigh-pressure metamorphic (UHPM) zone in east-central China that formed during Triassic continental collision. Trace element data of 176 detrital rutile grains selected from local river sediments and 91 rutile grains from distinct bedrocks in the Shuanghe and Bixiling areas, obtained by both electron microprobe (EMP) and in situ LA-ICP-MS analyses, suggest that geochemical compositions and thermometry of detrital rutiles are comparable to those from their potential source rocks. After certification of the Cr-Nb discrimination method for the Central Dabie UHPM zone, we show that 29% of the detrital rutiles in the Shuanghe area were derived from metamafic sources whereas in the Bixiling area that it is up to 76%. Furthermore, the proportion of distinct types of detrital rutiles combined with modal abundances of rutile in metapelites and metamafic bedrocks can be used to estimate the proportion of different source lithologies. Based on this method the proportion of mafic source rocks was estimated to ∼10% at Shuanghe and >60% at Bixiling, respectively, which is consistent with the proportions of eclogite (the major rutile-bearing metamafic rock) distribution in the field. Therefore, the investigation of detrital rutiles is a potential way to evaluate the proportion of metamafic rocks and even to prospect for metamafic bodies in UHPM terranes. Zr-in-rutile temperatures were calculated at different pressures and compared with temperatures derived from rock-in rutiles and garnet-clinopyroxene Fe-Mg thermometers. Temperatures calculated for detrital rutiles range from 606 °C to 707 °C and 566 °C to 752 °C in Shuanghe and Bixiling, respectively, at P = 3 GPa with an average temperatures of ca. 630 °C for both areas. These temperature averages and ranges are similar to those calculated for rutiles from surrounding source rocks. Combined with comparable Zr distribution characteristics between detrital and source rock rutiles, demonstrating a close source-sediment link for rutiles from clastic and rock in UHPM terranes. Thus rutiles can be accurate tracers of source rock lithologies in sedimentary provenance studies even at a small regional scale. In Bixiling, Nb/Ta ratios of metamafic and metapelitic detrital rutiles fall between 11.0 to 27.3 and 7.7 to 20.5, respectively. In contrast, in Shuanghe, these ratios are highly variable, ranging from 10.9 to 71.0 and 7.6 to 87.1, respectively. When ignoring four outlier compositions with extremely high Nb/Ta in Shuanghe, a distinct clustering of Nb/Ta ratios in rutiles is shown: metapelitic detrital rutiles have Nb/Ta of 7-40 vs. metamafic detrital rutiles with Nb/Ta = 11-25. The Nb/Ta characteristics in detrital rutiles from both areas may reflect the degree of fluid-rock interaction during metamorphism and/or different source lithologies. Therefore, the trace element compositions in detrital rutiles can accurately trace the lithology, proportion and fluid-rock interaction of different source rocks.

  12. Long-term exhumation of a Palaeoproterozoic orogen and the role of pre-existing heterogeneous thermal crustal properties

    DEFF Research Database (Denmark)

    McGregor, E.D.; Nielsen, S.B.; Stephenson, R.A.


    Ma. Modelling the 3D exhumation of a heterogeneous crust with flat topography demonstrates that some of the variability in observed fission-track ages could be attributed to heterogeneity in crustal heat production and thermal conductivity. The remaining variability in the observed dataset...

  13. Uplifting of the Jiamusi Block in the eastern Central Asian Orogenic Belt, NE China: evidence from basin provenance and geochronology (United States)

    Liu, Yongjiang; Wen, Quanbo; Han, Guoqing; Li, Wei


    The main part of Jiamusi Block, named as Huanan-Uplift, is located in the northeastern Heilongjiang, China. The Huanan-Uplift is surrounded by many relatively small Mesozoic-Cenozoic basins, e.g. Sanjiang Basin, Hulin Basin, Boli Basin, Jixi Basin, Shuangyashan Basin and Shuanghua Basin. However previous research works were mainly focused on stratigraphy and palaeontology of the basins, therefore, the coupling relation between the uplift and the surrounding basins have not been clear. Based on the field investigations, conglomerate provenance studies of the Houshigou Formation in Boli Basin, geochronology of the Huanan-Uplift basement, we have been studied the relationships between Huanan-Uplift and the surrounding basins. The regional stratigraphic correlations indicates that the isolated basins in the area experienced the same evolution during the period of the Chengzihe and the Muling Formations (the Early Cretaceous). The paleogeography reconstructions suggest that the area had been a large-scale basin as a whole during the Early Cretaceous. The Huanan-Uplift did not exist. The paleocurrent directions, sandstone and conglomerate provenance analyses show that the Huanan-Uplift started to be the source area of the surrounding basins during the period of Houshigou Formation (early Late Cretaceous), therefore, it suggests that the Jiamusi Block commenced uplift in the early Late Cretaceous. The granitic gneisses in Huanan-Uplift give 494-415 Ma monazite U-Th-total Pb ages, 262-259 Ma biotite and 246-241 Ma K-feldspar 40Ar/39Ar ages. The cooling rates of 1-2 ℃/Ma from 500-260 Ma and 10-11 ℃/Ma from 260-240 Ma have been calculated based on the ages. This suggests that the Jiamusi Block had a rapid exhumation during late Permian, which should be related to the closure of the Paleo-Asian Ocean between the Siberian and North China continents. It is concluded that during the late Paleozoic the Jiamusi Block was stable with a very slow uplifting. With the closure of the Paleo-Asian Ocean the Jiamusi Block underwent a very rapid exhumation in the late Permian. In the early Mesozoic the area went into a basin developing stage and formed a large basin as a whole during the Early Cretaceous. In the Late Cretaceous the Jiamusi Block started uplifting and the basin was broken into isolate small basins. References: Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional geology of Heilongjiang Province. Beijing: Geological Publishing House, 1993.578-581. Cao Chengrun, Zheng Qingdao. Structural evolution feature and its significance of hydrocarbon exploration in relict basin formation, Eastern Heilongjiang province. Journal of Jilin university (Earth Science Edition), 2003, 33(2):167-172. Lang Xiansheng. Biologic Assemblage features of Coal-bearing Strata in Shuangyashan-Jixian coal-field. Coal geology of China, 2002, 14(2):7-12. Piao Taiyuan , Cai Huawei , Jiang Baoyu. On the Cretaceous coal-bearing Strata in Eastern Heilongjiang. Journal Of Stratigraphy, 2005, 29:489-496. Wang Jie , He Zhonghua , Liu Zhaojun , Du Jiangfeng , Wang Weitao. Geochemical characteristics of Cretaceous detrital rocks and their constraint on provenance in Jixi Basin. Global Geology,2006, 25(4):341-348. DickinsonW R and Christopher A. Suczek. Plate Tectonics and Sandstone Composition. AAPG B. 1979,63(12 ):2164-2182. DickinsonW R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bull Geo-Soc Amer, 1983, 94: 222-235. Maruyama S, Seno T. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 1986,127(3-4):305-329. Maruyama S, Isozaki Y, Kimura Gand Terabayashi M C.Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. Island Arc, 1997,6:121-142.


    Directory of Open Access Journals (Sweden)

    A. G. Vladimirov


    Full Text Available In the Chernorud granulite zone in the Olkhon region of West Pribaikalie, we studied gabbro‐pyroxenites composing tectonic plates (Chernorud, Tonta and synmetamorphic intrusive bodies (Ulan‐Khargana, as well as nu‐ merous disintegrated boudins and inclusions embedded in the metamorphic matrix. Based on the results of compara‐ tive analysis of the chemical compositions, the gabbro‐pyroxenites are classified into a single island‐arc tholeiitic se‐ ries. The COMAGMAT software was used to simulate this series and to estimate the initial composition of the parent magma (magnesian basalt: SiO2=46.0 wt. %, TiO2=0.8 wt. %, Al2O3=15.3 wt. %, ΣFeO=9.0 wt. %, MnO=0.15 wt. %, MgO=10.5 wt. %, CaO=17.0 wt. %, Na2O=1.0 wt. %, K2O=0.2 wt. %, P2O5=0.05 wt. %, total = 100.0 %, Mg# = 67.5 %. It is concluded that the granulite metamorphism (P=7.7 to 8.6 kbar, T=770 to 820 °C was due not only to dipping of the initial sedimentary‐volcanic series to a depth of 25–28 km, but also to the presence of a deep chamber of magnesian basalt magma. In our estimations, garnet‐pyroxenites (i.e. mafic rocks of the top facies in the above‐mentioned cham‐ ber originated at P=8.0–8.3 kbar and T=900–930 °C. Considering petrology, the deep mafic chamber under the layer of granulite facies is evidenced by metamorphic magma mingling, as well as pipe‐shaped intrusions characterized by the specific morphology, internal structure and bulk rock compositions. Based on the data on the Ulan‐Khargana mas‐ sif and gabbro‐pyroxenite bodies involved in the structure of the marble melange, we propose a petrological model showing two stages of mafic injection – Stage 1: hydraulic fracturing of granulite series and the emergence of tubular structures and bodies, which are similar to kimberlite pipes or channels of different shapes; Stage 2: rising of the flu‐ idized residual alkaline melt through the emerging ‘pipes’ and fractures armored by hardened zones, which is fol‐ lowed by metamorphic magma mingling under viscous deformation conditions. The mafic magmas intruding to the level of the granulite facies facilitated the deep anatexis and formation of synmetamorphic hypersthene plagiogranites (U‐Pb isotope dating: 500–490 Ma and high‐K stress granites. In the Chernorud granulite zone, intense ductile‐plastic and brittle‐plastic deformations accompanied the processes of metamorphism, intrusion and formation of gabbro‐ pyroxenites and the anatexis of the crustal substance. As a result, the intrusive bodies were fragmented, and specific tectonic structures termed ‘metamorphic magma‐mingling’ were formed. All the tectonic and magmatic structures were subsequently ‘sealed up’ by K‐Na synkinematic granites at the regressive stage under conditions of the amphibo‐ lite‐facies metamorphism (U‐Pb and Ar‐Ar isotope dating: 470–460 Ma.

  15. Geomorphic response of an active metamorphic core-complex in a collisional orogen: Example from the Lunggar Shan, Southern Tibet

    International Nuclear Information System (INIS)

    Taylor, M H; Stockli, D F; Kapp, P A


    We present structural and neotectonic mapping from the Lunggar Shan rift in southern Tibet. The Lunggar Shan is a N-trending mountain range ∼70 km long N-S and up to 40 km wide E-W. The Lunggar Shan is bounded on its east side by a low-angle ( 0 ) east-dipping detachment fault that juxtaposes mylonitic gneiss and variably deformed granites in its footwall against alluvial fans and Neogene gravels in its hangingwall. Foliations in the mylonitic footwall dip 40 m of throw on individual scarps. An intriguing observation is that an intrabasinal topographic high is actively developing near areas of inferred maximum extension, with lacustrine sediments being uplifted and eroded. This observation indicates that the rift basin initially developed as a typical half-graben system that underwent a transition from deposition, to uplift and erosion perhaps as a result of isostatic rebound of the footwall at depth, warping the overlying hangingwall basin. If correct, the Lunggar Shan may represent a modern analogue to the supradetachment basin model

  16. Accessory priderite and burbankite in multiphase solid inclusions in the orogenic garnet peridotite from the Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Naemura, K.; Shimizu, I.; Svojtka, Martin; Hirajima, T.


    Roč. 110, č. 1 (2015), s. 20-28 ISSN 1345-6296 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100131203 Program:Program interní podpory projektů mezinárodní spolupráce AV ČR Institutional support: RVO:67985831 Keywords : garnet peridotite * Variscan orogeny * multiphase solid inclusion * priderite * burbankite Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.648, year: 2015

  17. Neoproterozoic of the Teplá-Barrandian Unit as part of the Cadomian orogenic belt: A review and correlation aspects

    Czech Academy of Sciences Publication Activity Database

    Kříbek, B.; Pouba, Z.; Skoček, V.; Waldhausrová, Jarmila


    Roč. 75, č. 3 (2000), s. 175-196 ISSN 1210-3527 R&D Projects: GA AV ČR(CZ) IAA3013806 Keywords : geotectonic model * paleogeography * volcanics * geochemistry Subject RIV: DD - Geochemistry

  18. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary (United States)

    Emsbo, P.; Groves, D.I.; Hofstra, A.H.; Bierlein, F.P.


    Northern Nevada hosts the only province that contains multiple world-class Carlin-type gold deposits. The first-order control on the uniqueness of this province is its anomalous far back-arc tectonic setting over the rifted North American paleocontinental margin that separates Precambrian from Phanerozoic subcontinental lithospheric mantle. Globally, most other significant gold provinces form in volcanic arcs and accreted terranes proximal to convergent margins. In northern Nevada, periodic reactivation of basement faults along this margin focused and amplified subsequent geological events. Early basement faults localized Devonian synsedimentary extension and normal faulting. These controlled the geometry of the Devonian sedimentary basin architecture and focused the discharge of basinal brines that deposited syngenetic gold along the basin margins. Inversion of these basins and faults during subsequent contraction produced the complex elongate structural culminations that characterize the anomalous mineral deposit "trends." Subsequently, these features localized repeated episodes of shallow magmatic and hydrothermal activity that also deposited some gold. During a pulse of Eocene extension, these faults focused advection of Carlin-type fluids, which had the opportunity to leach gold from gold-enriched sequences and deposit it in reactive miogeoclinal host rocks below the hydrologic seal at the Roberts Mountain thrust contact. Hence, the vast endowment of the Carlin province resulted from the conjunction of spatially superposed events localized by long-lived basement structures in a highly anomalous tectonic setting, rather than by the sole operation of special magmatic or fluid-related processes. An important indicator of the longevity of this basement control is the superposition of different gold deposit types (e.g., Sedex, porphyry, Carlin-type, epithermal, and hot spring deposits) that formed repeatedly between the Devonian and Miocene time along the trends. Interestingly, the large Cretaceous Alaska-Yukon intrusion-related gold deposits (e.g., Fort Knox) are associated with the northern extension of the same lithospheric margin in the Selwyn basin, which experienced an analogous series of geologic events. ?? Springer-Verlag 2006.

  19. Provenance of Austroalpine basement metasediments: tightening up Early Palaeozoic connections between peri-Gondwanan domains of central Europe and Northern Africa (United States)

    Siegesmund, S.; Oriolo, S.; Heinrichs, T.; Basei, M. A. S.; Nolte, N.; Hüttenrauch, F.; Schulz, B.


    New U-Pb and Lu-Hf detrital zircon data together with whole-rock geochemical and Sm-Nd data were obtained for paragneisses of the Austroalpine basement south of the Tauern Window. Geochemically immature metasediments of the Northern-Defereggen-Petzeck (Ötztal-Bundschuh nappe system) and Defereggen (Drauzug-Gurktal nappe system) groups contain zircon age populations which indicate derivation mainly from Pan-African orogens. Younger, generally mature metasediments of the Gailtal Metamorphic Basement (Drauzug-Gurktal nappe system), Thurntaler Phyllite Group (Drauzug-Gurktal nappe system) and Val Visdende Formation (South Alpine Basement) were possibly derived from more distant sources. Their significantly larger abundances of pre-Pan-African zircons record a more advanced stage of downwearing of the Pan-African belts and erosion of older basement when the Austroalpine terrane was part of the Early Palaeozoic Northern Gondwana passive margin. Most zircon age spectra are dominated by Ediacaran sources, with lesser Cryogenian, Tonian and Stenian contributions and subordinate Paleoproterozoic and Neoarchean ages. These age patterns are similar to those recorded by Cambro-Ordovician sedimentary sequences in northeastern Africa between Libya and Jordan, and in some pre-Variscan basement inliers of Europe (e.g. Dinarides-Hellenides, Alboran microplate). Therefore, the most likely sources seem to be in the northeastern Saharan Metacraton and the Northern Arabian-Nubian Shield (Sinai), further supported by whole-rock Sm-Nd and zircon Lu-Hf data.

  20. The Gogebic Iron Range - A Sample of the Northern Margin of the Penokean Fold and Thrust Belt (United States)

    Cannon, William F.; LaBerge, Gene L.; Klasner, John S.; Schulz, Klaus J.


    The Gogebic iron range is an elongate belt of Paleoproterozoic strata extending from the west shore of Lake Gogebic in the upper peninsula of Michigan for about 125 km westward into northern Wisconsin. It is one of six major informally named iron ranges in the Lake Superior region and produced about 325 million tons of direct-shipping ore between 1887 and 1967. A significant resource of concentrating-grade ore remains in the western and eastern parts of the range. The iron range forms a broad, gently southward-opening arc where the central part of the range exposes rocks that were deposited somewhat north of the eastern and western parts. A fundamental boundary marking both the tectonic setting of deposition and the later deformation within the Penokean orogen lies fortuitously in an east-west direction along the range so that the central part of the range preserves sediments deposited north of that boundary, whereas the eastern and western parts of the range were deposited south of the boundary. Thus, the central part of the range provides a record of sedimentation and very mild deformation in a part of the Penokean orogen farthest from the interior of the orogen to the south. The eastern and western parts of the range, in contrast, exhibit a depositional and deformational style typical of parts closer to the interior of the orogen. A second fortuitous feature of the iron range is that the entire area was tilted from 40° to 90° northward by Mesoproterozoic deformation so that the map view offers an oblique cross section of the Paleoproterozoic sedimentary sequence and structures. Together, these features make the Gogebic iron range a unique area in which to observe (1) the lateral transition from deposition on a stable platform to deposition in a tectonically and volcanically active region, and (2) the transition from essentially undeformed Paleoproterozoic strata to their folded and faulted equivalents.Paleoproterozoic strata in the Gogebic iron range are part

  1. Grenvillian vs Pan-African tectonic evolution in the Gamburtsev Province of East Antarctica (United States)

    Ferraccioli, F.; Guochao, W.; Finn, C.; Bell, R. E.


    The Gamburtsev Subglacial Mountains in interior East Antarctica are underlain by 50-60 km thick crust. In contrast, the Archean to Mesoproterozoic Mawson craton that occupies the Wilkes and Terre Adelie region features only 40-45 km thick crust. The Gamburtsev Province is underlain by 200 km thick lithoshere, as typically observed over Precambrian lithosphere that has not been substantially reworked during Phanerozoic subduction or collision. Ferraccioli et al., (2011) proposed that a segment of a stalled orogen (i.e. an orogen where widespread orogenic collapse and root delamination has not occurred) is preserved in the Gamburtsev Province and hypothesised that its origin relates to accretionary and subsequent collisional events at ca 1 Ga, linked to the assembly of Rodinia. However, passive seismic interpretations indicate that crustal thickening may relate instead to Pan-African age assembly of Gondwana (at ca 550 Ma). Here we interpret a set of enhanced magnetic and gravity images, depth to magnetic and gravity sources and 2D and forward and inverse models to characterise the crustal architecture of the Gamburtsev Province. Enhanced aeromagnetic images reveal a system of subglacial faults that segment the Gamburtsev Province into three distinct geophysical domains, the northern, central and southern domains. Apparent offsets in high-frequency magnetic anomalies within the central domain are interpreted as revealing a transpressional fault system parallel to the previously proposed Gamburtsev Suture. Our magnetic and gravity model, combined with independent constraints from sediment provenance ages, is interpreted as revealing arc and back arc terranes of inferred Grenvillian age in the northern and Central domains of the Gambrurtsev Province. Distinct magnetic anomalies correspond to inferred Paleoproterozoic crust that may have affinities with the Lambert Terrane and the South Pole Province, an inferred Mesoproterozoic (1.6-1.4 Ga?) igneous province. We

  2. Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications (United States)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu


    The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu

  3. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism (United States)

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.


    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  4. Corrigendum to "Geochemistry and geochronology of orthogneisses in Bode Saadu area, southwestern Nigeria and their implications for the Paleoproterozoic evolution of the area" [J. African Earth Sciences 109 (2015) 131-142 (United States)

    Okonkwo, Chukwuemeka T.; Ganev, Valentin Y.


    The authors regret the error in Table 1-Chemical composition of the orthogneisses where the sum of the elements for each sample was mistakenly indicated as LOI (loss on ignition). The correct table is given below.

  5. Pb-Pb age and Rb-Sr and Sm-Nd isotope signature of paleoproterozoic syenitic plutonism in the south of Salvador-Curaca mobile belt: Sao Felix Syenitic Massif, Bahia-Brazil

    International Nuclear Information System (INIS)

    Rosa, Maria de Lourdes da Silva; Conceicao, Herbet; Leal, Luiz Rogerio Bastos


    The Sao Felix Syenitic Massif (MSSF) has a tabular shape with about 32 km 2 that represents the south expression of the aligned syenitic plutonism, which occur in the middle part of Salvador-Curaca mobile belt (CMSC). Single zircon dating by stepwise Pb evaporation methodology yields an age of 2098 ± 1 Ma to SFSM. This data correlate the emplacement of the SFSM with the late stages of SCMB stabilization. This massif is isotopically characterized by negative epsilon neodymium values (-1.45 to -2.89) and low initial strontium ratio (0.701 to 0.704). SFSM isotopic signature is similar to the ones displayed by the others syenites from the belt and reflects an enriched source which should be related to a metasomatic enriched mantle. (author)

  6. A-type granites from the Guéra Massif, Central Chad: Petrology, geochemistry, geochronology, and petrogenesis. (United States)

    Pham, Ngoc Ha T.; Shellnutt, J. Gregory; Yeh, Meng-Wan; Lee, Tung-Yi


    The poorly studied Saharan Metacraton of North-Central Africa is located between the Arabian-Nubian Shield in the east, the Tuareg Shield in the west and the Central African Orogenic Belt in the south. The Saharan Metacraton is composed of Neoproterozoic juvenile crust and the relics of pre-Neoproterozoic components reactivated during the Pan-African Orogeny. The Republic of Chad, constrained within the Saharan Metacraton, comprises a Phanerozoic cover overlying Precambrian basement outcroppings in four distinct massifs: the Mayo Kebbi, Tibesti, Ouaddaï, and the Guéra. The Guéra massif is the least studied of the four massifs but it likely preserves structures that were formed during the collision between Congo Craton and Saharan Metacraton. The Guéra Massif is composed of mostly granitic rocks. The granitoids have petrologic features that are consistent with A-type granite, such as micrographic intergrowth of sodic and potassic feldspar, the presence of sodic- and iron-rich amphibole, and iron-rich biotite. Compositionally, the granitic rocks of the Guéra Massif have high silica (SiO2 ≥ 68.9 wt.%) content and are metaluminous to marginally peraluminous. The rocks are classified as ferroan calc-alkalic to alkali-calcic with moderately high to very high Fe* ratios. The first zircon U/Pb geochronology of the silicic rocks from the Guéra Massif yielded three main age groups: 590 Ma, 570 Ma, 560 Ma, while a single gabbro yielded an intermediate age ( 580 Ma). A weakly foliated biotite granite yielded two populations, in which the emplacement age is interpreted to be 590 ± 10 Ma, whereas the younger age (550 ± 11 Ma) is considered to be a deformation age. Furthermore, inherited Meso- to Paleoproterozoic zircons are found in this sample. The geochemical and geochronology data indicate that there is a temporal evolution in the composition of rocks with the old, high Mg# granitoids shifting to young, low Mg# granitoids. This reveals that the A-type granites in

  7. 3D modeling of magnetotelluric data unraveling the tectonic setting and sources of magmatism in the northeastern corner of Borborema Province, NE Brazil (United States)

    Padilha, A. L.; Vitorello, I.; Padua, M. B.; Batista, J. C.; Fuck, R. A.


    The Borborema Province in northeast Brazil is a complex orogenic system formed by crustal blocks of different ages, origin and evolution amalgamated during the West Gondwana convergence in late Neoproterozoic-early Phanerozoic Brasiliano Orogeny. We discuss here new magnetotelluric (MT) data collected along four linear profiles crisscrossing the northeastern corner of the province to assess its deep electrical resistivity structure. Dimensionality analysis showed that a 3D electrical structure predominates in the subsurface and thus the data were modeled by a 3D MT data inversion scheme. The modeling revealed several subvertical discontinuities, with significant lateral contrast in the overall geoelectric structure, down to upper mantle depths. A major conductivity anomaly is registered in the crust beneath Neoproterozoic supracrustal rocks (Serido Group) and this anomaly deepens to upper mantle depths in the northwest direction below a zone of Paleoproterozoic plutons (Caico Complex). It has been suggested that the Serido Group was originally initiated as a sedimentary basin developed upon a Paleoproterozoic basement during a Neoproterozoic extension event related to a collisional foredeep of a south-dipping subduction slab, contrary to our northwest-dipping conductivity vergence. In case of the Caico Complex, because of the petrogenesis of its orthogneisses that indicates partial melting of a metasomatically enriched spinel-to garnet-bearing lherzolite with adakitic features, we also propose a subduction zone environment for its original magmatism. Considering the tenuous evidence indicating that this conductive anomaly could extend down into the upper mantle in the same region where teleseismic tomography register an attenuation of P waves, it can be concluded that this zone could also be the source of the metasomatic fluids and minerals observed along north-south Mesozoic volcanic plugs and flows of alkaline rocks and alkali basalts (Macau-Queimadas belt). In

  8. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history

    Directory of Open Access Journals (Sweden)

    Grant M. Young


    Full Text Available In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturbations, when extensive glaciations occurred, together with alternating warm periods which were accompanied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian “explosion” of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break-up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan

  9. Ted Irving and the Precambrian continental drift of (within?) the Canadian Shield (United States)

    Hoffman, P. F.


    Ted Irving was no stranger to the Precambrian when he began paleomagnetic studies in the Canadian Shield (CS) that would dominate his research in the early and mid-1970's. Twenty years before, his graduate work on billion-year-old strata in Scotland established paleomagnetic methodologies applicable to sedimentary rocks generally. In 1958, he and Ronald Green presented an 'Upper Proterozoic' APW path from Australia as evidence for pre-Carboniferous drift relative to Europe and North America (the poles actually range in age from 1.2 to 2.7 Ga). His first published CS poles were obtained from the Franklin LIP of the Arctic platform and demonstrate igneous emplacement across the paleoequator. Characteristically, his 1971 poles are statistically indistinguishable from the most recent grand mean paleopole of 2009. His main focus, however, was on the question of Precambrian continental drift. He compared APW paths with respect to Laurentia with those obtained from other Precambrian shields, and he compared APW paths from different tectonic provinces within the CS. He was consistently antagonistic to the concept of a single long-lived Proterozoic supercontinent, but he was on less certain ground regarding motions within the CS due to inadequate geochronology. With Ron Emslie, he boldly proposed rapid convergence between parts of the Grenville Province and Interior Laurentia (IL) ~1.0 Ga. This was controversial given the uncertain ages of multiple magnetic components in high-grade metamorphic rocks. With John McGlynn and John Park, he developed a Paleoproterozoic APW path for the Slave Province from mafic dikes and red clastics, encompassing the time of consolidation of IL during 2.0-1.8 Ga orogenesis. Before 1980, he constructed Paleoproterozoic APW paths for IL as a whole, finding little evidence for significant internal displacement. He recognized that the Laurentian APW path describes a series of straight tracks linked by hairpins, the latter corresponding in age to

  10. Is Absence of Evidence of UHPM Evidence of Absence: Did Conditions on Earth Before the Ediacaran Period Allow Formation of UHP Rocks but Only Rarely Their Exhumation? (United States)

    Brown, M.


    UHPM provides petrologic evidence of transport of continental lithosphere to asthenospheric depth and return of some of these materials to crustal depth. The rock record registers UHPM since the Ediacaran Period, and studies of inclusion assemblages in zircon have increased the evidence of UHPM in Phanerozoic orogens and enabled an assessment of the real estate involved. Plots of apparent thermal gradient vs. age of metamorphism and P vs. age of metamorphism reveal two dramatic changes in inferred thermal environment and inferred depth of metamorphism from which continental lithosphere has been recovered during Earth evolution. First, from the Mesoarchean Era to the Neoproterozoic Era, sutures in subduction-to- collision orogens are marked by eclogite and high-pressure granulite metamorphism (characterized by apparent thermal gradients of 750-350 C/GPa). The P of metamorphism in sutures jumped from the Eoarchean-Paleoarchean up to 2 GPa during the Paleoproterozoic. Second, from the Cryogenian- Ediacaran to the present, many sutures in subduction-to-collision orogens, and sometimes intracratonic sutures in the overriding plate, are marked by UHPM (characterized by apparent thermal gradients of 2.7GPa. Given this pattern of secular change to colder apparent thermal gradients in sutures, the recent discovery of diamonds in zircons of crustal paragenesis in Neoarchean sedimentary rocks is surprising. Maybe UHPM has been possible since the Neoarchean but the evidence was rarely exhumed or if exhumed maybe the evidence was rarely preserved? The Appalachian/Caledonian-Variscide-Altaid and the Cimmerian-Himalayan-Alpine orogenic systems were formed by successive closure of short-lived oceans by transfer and suturing of ribbon-continent terranes derived from the Gondwanan side. Subduction of young ocean lithosphere followed by choking of the subduction channel by arc or terrane collision limited transport of water to the mantle wedge, and suppressed development of small

  11. Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India

    Directory of Open Access Journals (Sweden)

    Huawen Cao


    Full Text Available The Upper Triassic flysch sediments (Nieru Formation and Langjiexue Group exposed in the Eastern Tethyan Himalayan Sequence are crucial for unraveling the controversial paleogeography and paleotectonics of the Himalayan orogen. This work reports new detrital zircon U-Pb ages and whole-rock geochemical data for clastic rocks from flysch strata in the Shannan area. The mineral modal composition data suggest that these units were mainly sourced from recycled orogen provenances. The chemical compositions of the sandstones in the strata are similar to the chemical composition of upper continental crust. These rocks have relatively low Chemical Index of Alteration values (with an average of 62 and Index of Compositional Variability values (0.69, indicating that they experienced weak weathering and were mainly derived from a mature source. The geochemical compositions of the Upper Triassic strata are similar to those of graywackes from continental island arcs and are indicative of an acidic-intermediate igneous source. Furthermore, hornblende and feldspar experienced decomposition in the provenance, and the sediment became enriched in zircon and monazite during sediment transport. The detrital zircons in the strata feature two main age peaks at 225–275 Ma and 500–600 Ma, nearly continuous Paleoproterozoic to Neoproterozoic ages, and a broad inconspicuous cluster in the Tonian–Stenian (800–1200 Ma. The detrital zircons from the Upper Triassic sandstones in the study area lack peaks at 300–325 Ma (characteristic of the Lhasa block and 1150–1200 Ma (characteristic of the Lhasa and West Australia blocks. Therefore, neither the Lhasa block nor the West Australia blocks likely acted as the main provenance of the Upper Triassic strata. Newly discovered Permian–Triassic basalt and mafic dikes in the Himalayas could have provided the 225–275 Ma detrital zircons. Therefore, Indian and Himalayan units were the main provenances of the flysch

  12. Tectonic implications of U-Pb (zircon) Geochronology of Chor Granitoids of the Lesser Himalaya, Himachal Pradesh, NW Himalaya (United States)

    Singh, P.; Bhakuni, S. S.


    Granitoids of various ages ranging from Proterozoic to Tertiary occur throughout the Himalayan fold-thrust belt. The occurrence of the Neoproterozoic granitoids are very less in the Himalayan orogen. One of the best example of Neoproterozoic granitoids is Chor granitoids, which are the intrusive granite bodies in the Paleoproterozoic of the Lesser Himalayan Crystallines of the Jutogh Group. In the central part these granites are non-foliated homogeneous that are porphyritic and peraluminous in nature (Singh et al., 2002; Bhargava et al., 2014, 2016), whereas in the peripheral part these are foliated showing south directed shear sense of movement. In this work we present the U-Pb (zircon) geochronology of two different granites samples of the Chor granitoids of Himachal Pradesh, NW Himalaya. The Jutogh Group of rocks is thrust over the Lesser Himalayan Sequence along the Jutogh Thrust or MCT. The geochronology of the Chor Granitoids and Lesser Himalayan Crystallines and their relationship with each other, including with the Indian shield are sparsely obscure. U-Pb zircon geochrnological age populations from these granitoids yield ages between 780 and 980 Ma. One sample gives the prominent age spectra for 206Pb/238U with weighted mean age of 908.3 ± 6.7 Ma (2σ) MSWD = 2.4 (n = 18). Similarly another sample gives the age of crystallization with weight mean age of 917 ± 17 Ma (2σ) MSWD = 3 (n = 11) and Th/U ratios of both samples are >0.1, indicating their magmatic origin. As a result of ductile shearing of granites along the MCT during the Cenozoic Himalayan Orogeny, the age has reduced to 780 Ma. The Neoproterozoic age of Chor granite matches with the Neoproterozoic detrital zircon age (800 to 1000 Ma by Parrish and Hodges 1996, Decelles et al., 2000) of the HHC. On the basis of U-Pb (zircon) geochronological ages, it is revealed that the source of zircons of the Chor granite and HHC rocks was the northern margin of the Pan-African orogen. The Chor granitoids was

  13. High-pressure granulites in the Fuping Complex of the central North China Craton: Metamorphic P-T-t evolution and tectonic implications (United States)

    Qian, Jiahui; Yin, Changqing; Zhang, Jian; Ma, Li; Wang, Luojuan


    well the protracted Paleoproterozoic orogenic event occurred in the central North China Craton.

  14. Geology, petrology, U-Pb (shrimp geochronology of the Morrinhos granite -Paraguá terrane, SW Amazonian craton: implications for the magmatic evolution of the San Ignácio orogeny

    Directory of Open Access Journals (Sweden)

    Ohana França

    Full Text Available Morrinhos granite is a batholith body that is slightly elongated in the NNW direction and approximately 1,140 km2 long; it is located in the municipality of Vila Bela da Santíssima Trindade of the state of Mato Grosso, Brazil, in the Paraguá Terrane, Rondonian-San Ignácio Province, in the SW portion of the Amazonian Craton. This intrusion displays a compositional variation from tonalite to monzogranite, has a medium to coarse inequigranular texture and is locally porphyritic; biotite is the predominant mafic in one of the facies, and hornblende is predominant in the other, with both metamorphosed into the greenschist facies. The studied rocks characterize an intermediate to acidic sequence that was formed by a subalkaline magmatism; the series is alkali-calcic to metaluminous to slightly peraluminous, and the rocks evolved through fractioned crystallization mechanisms. The structural data show two deformation phases represented by penetrative foliation (S1 and open folds (D2, and both phases were most likely related to the San Ignácio Orogeny. The geochronological (U-Pb SHRIMP and isotopic (Sm-Nd investigations of these rocks indicated a crystallization age of 1350 ± 12 Ma, TDMof approximately 1.77 Ga and εNd(1.35with a negative value of -2.57, suggesting that their generation was related to a partial melting process of a Paleoproterozoic (Statherian continental crust. The results herein indicate that the Morrinhos granite was generated in a continental magmatic arc in a late- to post-orogenic stage of the San Ignácio Orogeny, and it can be recognized as belonging to the Pensamiento Intrusive Suite.

  15. Provenance and paleogeography of the Devonian Durazno Group, southern Parana Basin in Uruguay (United States)

    Uriz, N. J.; Cingolani, C. A.; Basei, M. A. S.; Blanco, G.; Abre, P.; Portillo, N. S.; Siccardi, A.


    A succession of Devonian cover rocks occurs in outcrop and in the subsurface of central-northern Uruguay where they were deposited in an intracratonic basin. This Durazno Group comprises three distinct stratigraphic units, namely the Cerrezuelo, Cordobés and La Paloma formations. The Durazno Group does not exceed 300 m of average thickness and pr