WorldWideScience

Sample records for paired helical filaments

  1. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  2. Ultrastructural instability of paired helical filaments from corticobasal degeneration as examined by scanning transmission electron microscopy.

    Science.gov (United States)

    Ksiezak-Reding, H.; Tracz, E.; Yang, L. S.; Dickson, D. W.; Simon, M.; Wall, J. S.

    1996-01-01

    Paired helical filaments (PHFs) accumulate in the brains of subjects affected with Alzheimer's disease (AD) and certain other neurodegenerative disorders, including corticobasal degeneration (CBD). Electron microscope studies have shown that PHFs from CBD differ from those of AD by being wider and having a longer periodicity of the helical twist. Moreover, PHFs from CBD have been shown to be primarily composed of two rather than three highly phosphorylated polypeptides of tau (PHF-tau), with these polypeptides expressing no exons 3 and 10. To further explore the relationship between the heterogeneity of PHF-tau and the appearance of abnormal filaments, the ultrastructure and physical parameters such as mass per unit length and dimensions were compared in filaments from CBD and AD using high resolution scanning transmission electron microscopy (STEM). Filament-enriched fractions were isolated as Sarcosyl-insoluble pellets and for STEM studies, samples were freeze-dried without prior fixation or staining. Ultrastructurally, PHFs from CBD were shown to be a heterogeneous population as double- and single-stranded filaments could be identified based on their width and physical mass per unit length expressed in kilodaltons (kd) per nanometer (nm). Less abundant, double-stranded filaments had a maximal width of 29 nm and a mass per unit length of 133 kd/nm, whereas three times more abundant single-stranded filaments were 15 nm wide and bad a mass per unit length of 62 kd/nm. Double-stranded filaments also displayed a distinct axial region of less dense mass, which appeared to divide the PHFs into two protofilament-like strands. Furthermore, these filaments were frequently observed to physically separate along the long axis into two single strands or to break longitudinally. In contrast, PHFs from AD were ultrastructurally stable and uniform both in their width (22 nm) and physical mass per unit length (104 kd/nm). The ultrastructural features indicate that filaments of

  3. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals

    NARCIS (Netherlands)

    Arendt, T; Stieler, J; Strijkstra, AM; Hut, RA; Rudiger, J; Van der Zee, EA; Harkany, T; Holzer, M; Hartig, W; Härtig, Wolfgang

    2003-01-01

    Neurofibrillary pathology [ paired helical filaments (PHFs)] formed by the microtubule-associated protein tau in a hyperphosphorylated form is a major hallmark of Alzheimer's disease and related disorders. The process of tau phosphorylation, thought to be of critical importance for PHF formation,

  4. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer's disease: Identification as the microtubule-associated protein tau

    International Nuclear Information System (INIS)

    Goedert, M.; Wischik, C.M.; Crowther, R.A.; Walker, J.E.; Klug, A.

    1988-01-01

    Screening of cDNA libraries prepared from the frontal cortex of an Alzheimer's disease patient and from fetal human brain has led to isolation of the cDNA for a core protein of the paired helical filament of Alzheimer's disease. The partial amino acid sequence of this core protein was used to design synthetic oligonucleotide probes. The cDNA encodes a protein of 352 amino acids that contains a characteristic amino acid repeat in its carboxyl-terminal half. This protein is highly homologous to the sequence of the mouse microtubule-associated protein tau and thus constitutes the human equivalent of mouse tau. RNA blot analysis indicates the presence of two major transcripts, 6 and 2 kilobases long, with a wide distribution in normal human brain. Tau protein mRNAs were found in normal amounts in the frontal cortex from patients with Alzheimer's disease. The proof that at least part of tau protein forms a component of the paired helical filament core opens the way to understanding the mode of formation of paired helical filaments and thus, ultimately, the pathogenesis of Alzheimer's disease

  5. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments.

    Science.gov (United States)

    Nishikawa, T; Takahashi, T; Nakamori, M; Hosomi, N; Maruyama, H; Miyazaki, Y; Izumi, Y; Matsumoto, M

    2016-12-01

    Neurofibrillary tangles (NFTs), a cardinal pathological feature of neurodegenerative disorders, such as Alzheimer's disease (AD) are primarily composed of hyper-phosphorylated tau protein. Recently, several other molecules, including flotillin-1, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] and cyclin-dependent kinase 5 (CDK5), have also been revealed as constituents of NFTs. Flotillin-1 and PtdIns(4,5)P2 are considered markers of raft microdomains, whereas CDK5 is a tau kinase. Therefore, we hypothesized that NFTs have a relationship with raft domains and the tau phosphorylation that occurs within NFTs. We investigated six cases of AD, six cases of other neurodegenerative diseases with NFTs and three control cases. We analysed the PtdIns(4,5)P2-immunopositive material in detail, using super-resolution microscopy and electron microscopy to elucidate its pattern of expression. We also investigated the spatial relationship between the PtdIns(4,5)P2-immunopositive material and tau kinases through double immunofluorescence analysis. Pretangles contained either paired helical filaments (PHFs) or PtdIns(4,5)P2-immunopositive small vesicles (approximately 1 μm in diameter) with nearly identical topology to granulovacuolar degeneration (GVD) bodies. Various combinations of these vesicles and GVD bodies, the latter of which are pathological hallmarks observed within the neurons of AD patients, were found concurrently in neurons. These vesicles and GVD bodies were both immunopositive not only for PtdIns(4,5)P2, but also for several tau kinases such as glycogen synthase kinase-3β and spleen tyrosine kinase. These observations suggest that clusters of raft-derived vesicles that resemble GVD bodies are substructures of pretangles other than PHFs. These tau kinase-bearing vesicles are likely involved in the modification of tau protein and in NFT formation. © 2015 The Authors Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of

  6. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  7. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  8. Helicity and Filament Channels? The Straight Twist!

    Science.gov (United States)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  9. Senile dementia of Lewy body type and Alzheimer type are biochemically distinct in terms of paired helical filaments and hyperphosphorylated tau protein.

    Science.gov (United States)

    Harrington, C R; Perry, R H; Perry, E K; Hurt, J; McKeith, I G; Roth, M; Wischik, C M

    1994-01-01

    We have used biochemical assays to examine cingulate and occipital cortices from age-matched cases of Alzheimer's disease (AD; n = 12), senile dementia of the Lewy body type (SDLT; n = 13), Parkinson's disease (PD; 5 non-demented cases and 7 cognitively impaired cases) and controls (n = 11) for paired helical filaments (PHFs), phosphorylated and normal tau protein and beta/A4-protein. Whereas cingulate cortex is characterised by relatively high densities of cortical Lewy bodies in the SDLT cases and lower numbers in PD, these inclusion bodies were absent in the cingulate cortex from AD and control cases. Protease-resistant PHFs and hyperphosphorylated tau protein were found in AD and, at low levels, in a minority of SDLT cases. Qualitatively, both of these preparations were indistinguishable in SDLT from those found in AD but levels of both parameters in SDLT were less than 5% of those in AD. SDLT, PD and control groups did not differ from each other in terms of the quantity of protease-resistant PHFs or the level of hyperphosphorylated tau. Furthermore, PHF accumulation did not distinguish between PD cases with or without dementia. The levels of normal tau protein did not differ between the four groups. beta/A4 protein levels did not distinguish between PD and control groups, between AD and SDLT groups, or between SDLT and control groups for either cingulate or occipital cortices. Thus extensive accumulation of PHFs in either neurofibrillary tangles or dystrophic neurites is not a feature of either SDLT or PD. Our findings provide molecular support for the neuropathological and clinical separation of SDLT as a form of dementia that is distinct from AD.

  10. Chirality of Intermediate Filaments and Magnetic Helicity of Active Regions

    Science.gov (United States)

    Lim, Eun-Kyung; Chae, J.

    2009-05-01

    Filaments that form either between or around active regions (ARs) are called intermediate filaments. Even though there have been many theoretical studies, the origin of the chirality of filaments is still unknown. We investigated how intermediate filaments are related to their associated ARs, especially from the point of view of magnetic helicity and the orientation of polarity inversion lines (PILs). The chirality of filaments has been determined based on the orientations of barbs observed in the full-disk Hα images taken at Big Bear Solar Observatory during the rising phase of solar cycle 23. The sign of magnetic helicity of ARs has been determined using S/inverse-S shaped sigmoids from Yohkoh SXT images. As a result, we have found a good correlation between the chirality of filaments and the magnetic helicity sign of ARs. Among 45 filaments, 42 filaments have shown the same sign as helicity sign of nearby ARs. It has been also confirmed that the role of both the orientation and the relative direction of PILs to ARs in determining the chirality of filaments is not significant, against a theoretical prediction. These results suggest that the chirality of intermediate filaments may originate from magnetic helicity of their associated ARs.

  11. Polymer dynamics driven by a helical filament

    Science.gov (United States)

    Balin, Andrew; Shendruk, Tyler; Zoettl, Andreas; Yeomans, Julia

    Microbial flagellates typically inhabit complex suspensions of extracellular polymeric material which can impact the swimming speed of motile microbes, filter-feeding of sessile cells, and the generation of biofilms. There is currently a need to better understand how the fundamental dynamics of polymers near active cells or flagella impacts these various phenomena. We study the hydrodynamic and steric influence of a rotating helical filament on suspended polymers using Stokesian Dynamics simulations. Our results show that as a stationary rotating helix pumps fluid along its long axis, nearby polymers migrate radially inwards and are elongated in the process. We observe that the actuation of the helix tends to increase the probability of finding polymeric material within its pervaded volume. At larger Weissenberg numbers, this accumulation of polymers within the vicinity of the helix is greater. Further, we have analysed the stochastic work performed by the helix on the polymers and we show that this quantity is positive on average and increases with polymer contour length. Our results provide a basis for understanding the microscopic interactions that govern cell dynamics in complex media. This work was supported through funding from the ERC Advanced Grant 291234 MiCE and we acknowledge EMBO funding to TNS (ALTF181-2013).

  12. Helical beating of an actuated elastic filament

    International Nuclear Information System (INIS)

    Coq, Nais; Roure, Olivia du; Fermigier, Marc; Bartolo, Denis

    2009-01-01

    We investigate the propulsive force resulting from the rotation of a flexible filament in the low Reynolds number regime. Using a simple linear model, we establish the nonlinear torque-force relations for two torque-driven actuation modes. When the rotation of the filament is induced by two perpendicular transverse oscillating torques, the propulsive force increases monotonically with the torque amplitude. Conversely, when a constant axial torque is applied, the torque-force characteristics displays an unstable branch, related to a discontinuous transition in the shape of the filament. We characterize this shape transition using two geometrical parameters, quantifying the wrapping around and the collapse on the axis of the filament. The proposed theoretical description correctly accounts for our experimental observations and reveals a strong dependence of the filament dynamics on the anchoring conditions.

  13. Structure determination of helical filaments by solid-state NMR spectroscopy

    Science.gov (United States)

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  14. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Box 500, Batavia, Illinois 60510-0500 (USA) Departamento de Fisica Teorica, Universidad de Valencia, 46100 Burjassot (Valencia) (Spain)); Gandhi, R. (Department of Physics and Astronomy, University of Arizona, Tucson, AZ (USA))

    1990-04-15

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such a process can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to estimate neutrino mass limits from SN 1987A neutrino observations.

  15. Pair production of helicity-flipped neutrinos in supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Gandhi, R.

    1989-07-03

    We calculate the emissivity for the pair production of helicity-flipped neutrinos, in a way that can be used in supernova calculations. We also present some simple estimates which show that such processes can act as an efficient energy-loss mechanism in the shocked supernova core, and we use this fact to extract neutrino mass limits from SN1987A neutrino observations. 24 refs., 2 figs.

  16. Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale

    Science.gov (United States)

    Yu, Xiong; Egelman, Edward H.

    2010-01-01

    Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double stranded DNA with ∼ 6.4 subunits per turn, and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy (STEM) that the Dmc1 filament formed on single stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions, and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or STEM to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated. PMID:20600108

  17. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

    International Nuclear Information System (INIS)

    Swulius, Matthew T.; Chen, Songye; Jane Ding, H.; Li, Zhuo; Briegel, Ariane; Pilhofer, Martin; Tocheva, Elitza I.; Lybarger, Suzanne R.; Johnson, Tanya L.; Sandkvist, Maria; Jensen, Grant J.

    2011-01-01

    Highlights: → No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. → Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm) helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.

  18. Modelling of helical current filaments induced by LHW on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael; Denner, Peter; Liang, Yunfeng [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Zeng, Long [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gong, Xianzu; Gan, Kaifu; Wang, Liang; Liu, Fukun; Qian, Jinping; Shen, Biao; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gauthier, Eric [Association EURATOM-CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Collaboration: the EAST Team

    2013-07-01

    Helical radiation belts have been observed in the scrape-off layer (SOL) of the plasma during the application of lower hybrid wave (LHW) heating at the superconducting tokamak EAST. Modelled SOL field lines, starting in-front of the LHW antennas, show agreement in position and pitch angle to the experimental observed radiation belts. A splitting of the strike-line can be observed on the outer divertor plates during the application of LHW heating. Agreement in the comparison of the Mirnov coil signals and a modelled electric current flow along these SOL field lines was found. A lower hybrid current drive can induce such an electric current flow near the plasma edge. This electric current flow causes a change of the plasma topology which could result in the splitting of the strike-line as known from the application of resonant magnetic perturbation fields. Comparisons of modelled footprint structures and experimental observed heat load patterns in the divertor region are discussed.

  19. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Science.gov (United States)

    Petrie, Gordon; McMaken, Tyler C.

    2017-08-01

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  20. The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold

    Directory of Open Access Journals (Sweden)

    Rodolfo Ciuffa

    2015-05-01

    Full Text Available The scaffold protein p62/SQSTM1 is involved in protein turnover and signaling and is commonly found in dense protein bodies in eukaryotic cells. In autophagy, p62 acts as a selective autophagy receptor that recognizes and shuttles ubiquitinated proteins to the autophagosome for degradation. The structural organization of p62 in cellular bodies and the interplay of these assemblies with ubiquitin and the autophagic marker LC3 remain to be elucidated. Here, we present a cryo-EM structural analysis of p62. Together with structures of assemblies from the PB1 domain, we show that p62 is organized in flexible polymers with the PB1 domain constituting a helical scaffold. Filamentous p62 is capable of binding LC3 and addition of long ubiquitin chains induces disassembly and shortening of filaments. These studies explain how p62 assemblies provide a large molecular scaffold for the nascent autophagosome and reveal how they can bind ubiquitinated cargo.

  1. Twist and Stretch of Helices Explained via the Kirchhoff-Love Rod Model of Elastic Filaments

    KAUST Repository

    Đuričković, Bojan

    2013-09-05

    In various single-molecule experiments, a chiral polymer, such as DNA, is simultaneously pulled and twisted. We address an elementary but fundamental question raised by various authors: does the molecule overwind or unwind under tension? We show that within the context of the classic Kirchhoff-Love rod model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of the polymer. More generally, our analysis provides an effective linear response theory for helical structures that relates axial force and axial torque to axial translation and rotation. © 2013 American Physical Society.

  2. The Great Solar Active Region NOAA 12192: Helicity Transport, Filament Formation, and Impact on the Polar Field

    Energy Technology Data Exchange (ETDEWEB)

    McMaken, Tyler C. [National Solar Observatory REU Program, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States); Petrie, Gordon J. D., E-mail: tmcmaken@gmail.com, E-mail: gpetrie@noao.edu [National Solar Observatory, 3665 Discovery Drive, 3rd Floor, Boulder, CO 80303 (United States)

    2017-05-10

    The solar active region (AR), NOAA 12192, appeared in 2014 October as the largest AR in 24 years. Here we examine the counterintuitive nature of two diffusion-driven processes in the region: the role of helicity buildup in the formation of a major filament, and the relationship between the effects of supergranular diffusion and meridional flow on the AR and on the polar field. Quantitatively, calculations of current helicity and magnetic twist from Helioseismic and Magnetic Imager (HMI) vector magnetograms indicate that, though AR 12192 emerged with negative helicity, positive helicity from subsequent flux emergence, consistent with the hemispheric sign-preference of helicity, increased over time within large-scale, weak-field regions such as those near the polarity inversion line (PIL). Morphologically, Atmospheric Imaging Assembly observations of filament barbs, sigmoidal patterns, and bases of Fe xii stalks initially exhibited signatures of negative helicity, and the long filament that subsequently formed had a strong positive helicity consistent with the helicity buildup along the PIL. We find from full-disk HMI magnetograms that AR 12192's leading positive flux was initially closer to the equator but, owing either to the region’s magnetic surroundings or to its asymmetric flux density distribution, was transported poleward more quickly on average than its trailing negative flux, contrary to the canonical pattern of bipole flux transport. This behavior caused the AR to have a smaller effect on the polar fields than expected and enabled the formation of the very long neutral line where the filament formed.

  3. Evidence for a rotating helical filament in L1641, part of the Orion cloud complex

    International Nuclear Information System (INIS)

    Uchida, Y.

    1991-01-01

    Interstellar cloud structures, typically 10-30 pc long and 3-5 pc wide, are often seen extending outwards from dense clouds that show marked enhancement of star formation within them. We have used the Nagoya 4-m radiotelescope to study one such 'streamer', L1641, a part of the giant molecular-cloud complex in Orion, lying south of the Kleinmann-Low (KL) nebula. Using the 110-GHz line of 13 Co (J=1-0), we have obtained intensity and velocity data, and find within the streamer a dense filament with a helical structure, spinning in the same sense as the gas in the Orion KL region. We propose a model for this structure in which the streamer, through the action of the interstellar magnetic field, acts as an angular-momentum drain on the Orion KL region, allowing it to collapse. In this model, the ∼30-pc-long streamer is essential to the formation of the cloud, as well as the formation of stars within the dense cloud. (author)

  4. Triple helical DNA in a duplex context and base pair opening

    Science.gov (United States)

    Esguerra, Mauricio; Nilsson, Lennart; Villa, Alessandra

    2014-01-01

    It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region. PMID:25228466

  5. Twist and Stretch of Helices Explained via the Kirchhoff-Love Rod Model of Elastic Filaments

    KAUST Repository

    Đuričković, Bojan; Goriely, Alain; Maddocks, John H.

    2013-01-01

    that within the context of the classic Kirchhoff-Love rod model of elastic filaments, both behaviors are possible, depending on the precise constitutive relations of the polymer. More generally, our analysis provides an effective linear response theory

  6. Transport and pairing properties of helical edges with proximity induced superconductivity and ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Keidel, Felix; Burset, Pablo; Trauzettel, Bjoern [Institute of Theoretical Physics and Astrophysics, University of Wuerzburg, 97074 Wuerzburg (Germany); Crepin, Francois [Laboratoire de Physique Theorique de la Matiere Condensee, UPMC, Sorbonne Universites, 75252 Paris (France)

    2016-07-01

    The scientific interest in Quantum Spin Hall systems is far from declining. While these certainly are fascinating by themselves, there is plenty of new and exciting physics to arise when superconductivity and ferromagnetism are brought into the game. The strong constraint of helicity in the edge states of a two-dimensional topological insulator is responsible for an intimate relation between the allowed scattering processes in a hybrid junction and the parameters of the system, namely the superconducting order parameter and the magnetic field. In our work, we study a helical liquid in proximity to a conventional s-wave superconductor and ferromagnetic insulators by means of a Green's function analysis. The ferromagnet gives rise to sub-gap Andreev/Majorana bound states and non-local crossed Andreev reflection (CAR), both of which decisively affect the pairing and transport properties of the junction. As a result, the simple s-wave symmetry of the superconductor is enriched and unconventional odd-frequency triplet superconductivity emerges. Strikingly, we have identified a setup that favors CAR over electron co-tunneling and may allow for the indirect measurement of the symmetries of the superconducting order parameter.

  7. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs

    International Nuclear Information System (INIS)

    Wu, Yuan-Yan; Bao, Lei; Zhang, Xi; Tan, Zhi-Jie

    2015-01-01

    Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5–50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ∼6 bps at each helix end. Correspondingly, the apparent persistence length l p of short DNAs increases gradually from ∼29 nm to ∼45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ∼6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with l p ∼ 50 nm

  8. Amino acid pair- and triplet-wise groupings in the interior of α-helical segments in proteins.

    Science.gov (United States)

    de Sousa, Miguel M; Munteanu, Cristian R; Pazos, Alejandro; Fonseca, Nuno A; Camacho, Rui; Magalhães, A L

    2011-02-21

    A statistical approach has been applied to analyse primary structure patterns at inner positions of α-helices in proteins. A systematic survey was carried out in a recent sample of non-redundant proteins selected from the Protein Data Bank, which were used to analyse α-helix structures for amino acid pairing patterns. Only residues more than three positions apart from both termini of the α-helix were considered as inner. Amino acid pairings i, i+k (k=1, 2, 3, 4, 5), were analysed and the corresponding 20×20 matrices of relative global propensities were constructed. An analysis of (i, i+4, i+8) and (i, i+3, i+4) triplet patterns was also performed. These analysis yielded information on a series of amino acid patterns (pairings and triplets) showing either high or low preference for α-helical motifs and suggested a novel approach to protein alphabet reduction. In addition, it has been shown that the individual amino acid propensities are not enough to define the statistical distribution of these patterns. Global pair propensities also depend on the type of pattern, its composition and orientation in the protein sequence. The data presented should prove useful to obtain and refine useful predictive rules which can further the development and fine-tuning of protein structure prediction algorithms and tools. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. The Contribution of Kawada to the Analytical Solution for the Velocity Induced by a Helical Vortex Filament and Modern Applications of Helical Vortices

    DEFF Research Database (Denmark)

    Fukumoto, Yasuhide; Okulov, Valery; Wood, David H.

    2017-01-01

    a comprehensive treatment of deriving the induced velocity by helical vortices with a view to applying it to the propeller theory. This paper recollects Kawada’s contribution, together with his life devoted to lead the Japanese aeronautical engineering in the time of its dawning....

  10. Comment on “Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation” [Phys. Fluids 25, 085101 (2013)

    International Nuclear Information System (INIS)

    Hietala, Niklas; Hänninen, Risto

    2014-01-01

    We comment on the paper by Van Gorder [“Motion of a helical vortex filament in superfluid 4 He under the extrinsic form of the local induction approximation,” Phys. Fluids 25, 085101 (2013)]. We point out that the flow of the normal fluid component parallel to the vortex will often lead into the Donnelly–Glaberson instability, which will cause the amplification of the Kelvin wave. We explain why the comparison to local nonlinear equation is unreasonable, and remark that neglecting the motion in the x-direction is not reasonable for a Kelvin wave with an arbitrary wavelength and amplitude. The correct equations in the general case are also derived

  11. Escherichia coli DnaA forms helical structures along the longitudinal cell axis distinct from MreB filaments.

    Science.gov (United States)

    Boeneman, Kelly; Fossum, Solveig; Yang, Yanhua; Fingland, Nicholas; Skarstad, Kirsten; Crooke, Elliott

    2009-05-01

    DnaA initiates chromosomal replication in Escherichia coli at a well-regulated time in the cell cycle. To determine how the spatial distribution of DnaA is related to the location of chromosomal replication and other cell cycle events, the localization of DnaA in living cells was visualized by confocal fluorescence microscopy. The gfp gene was randomly inserted into a dnaA-bearing plasmid via in vitro transposition to create a library that included internally GFP-tagged DnaA proteins. The library was screened for the ability to rescue dnaA(ts) mutants, and a candidate gfp-dnaA was used to replace the dnaA gene of wild-type cells. The resulting cells produce close to physiological levels of GFP-DnaA from the endogenous promoter as their only source of DnaA and somewhat under-initiate replication with moderate asynchrony. Visualization of GFP-tagged DnaA in living cells revealed that DnaA adopts a helical pattern that spirals along the long axis of the cell, a pattern also seen in wild-type cells by immunofluorescence with affinity purified anti-DnaA antibody. Although the DnaA helices closely resemble the helices of the actin analogue MreB, co-visualization of GFP-tagged DnaA and RFP-tagged MreB demonstrates that DnaA and MreB adopt discrete helical structures along the length of the longitudinal cell axis.

  12. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils.

    Science.gov (United States)

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L P; Tattum, M Howard; Panico, Silvia; Clare, Daniel K; Collinge, John; Saibil, Helen R; Wadsworth, Jonathan D F

    2016-05-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. © 2016 The Authors.

  13. Pulling Helices inside Bacteria: Imperfect Helices and Rings

    Science.gov (United States)

    Allard, Jun F.; Rutenberg, Andrew D.

    2009-04-01

    We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or bundling of the polymeric protein could mediate this coexistence.

  14. Electron emitting filaments for electron discharge devices

    International Nuclear Information System (INIS)

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1988-01-01

    This patent describes an electron emitting device for use in an electron discharge system. It comprises: a filament having a pair of terminal ends, electrical supply means for supplying electrical power to the terminal ends of the filament for directly heating the filament by the passage of an electrical current along the filament between the terminal ends, the filament being substantially tapered in cross section continuously in one direction from one of its pair of terminal ends to another of its pair of terminal ends to achieve uniform heating of the filament along the length thereof by compensating for the nonuniform current along the filament due to the emission of electrons therefrom

  15. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  16. Response to “Comment on ‘Motion of a helical vortex filament in superfluid 4He under the extrinsic form of the local induction approximation”’ [Phys. Fluids 26, 019101 (2014)

    International Nuclear Information System (INIS)

    Van Gorder, Robert A.

    2014-01-01

    I agree with the authors regarding their comments on the Donnelly-Glaberson instability for such helical filaments as those obtained in my paper. I also find merit in their derivation of the quantum LIA (local induction approximation) in the manner of the LIA of Boffetta et al. However, I disagree with the primary criticisms of Hietala and Hänninen. In particular, though they suggest LIA and local nonlinear equation modes are not comparable since the former class of models contains superfluid friction parameters, note that since these parameters are small one may take them to zero and consider a qualitative comparison of the models (which is what was done in my paper). Second, while Hietala and Hänninen criticize certain assumptions made in my paper (and the paper of Shivamoggi where the model comes from) since the results break-down when Ak → ∞, note that in my paper I state that any deviations from the central axis along which the filament is aligned must be sufficiently bounded in variation. Therefore, it was already acknowledged that Ak(=|Φ x |) should be sufficiently bounded, precluding the Ak → ∞ case. I also show that, despite what Hietala and Hänninen claim, the dispersion relation obtained in my paper is consistent with LIA, where applicable. Finally, while Hietala and Hänninen claim that the dispersion parameter should be complex valued, I show that their dispersion relation is wrong, since it was derived incorrectly (they assume the complex modulus of the potential function is constant, yet then use this to obtain a potential function with non-constant modulus)

  17. Evolution of Filament Barbs

    OpenAIRE

    Liu, Rui; Xu, Yan; Wang, Haimin

    2010-01-01

    We present a selected few cases in which the sense of chirality of filament barbs changed within as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes only one overlay a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward and then departed ...

  18. Various Barbs in Solar Filaments

    Science.gov (United States)

    Filippov, Boris

    2017-07-01

    Interest to lateral details of the solar filament shape named barbs, motivated by their relationship to filament chirality and helicity, showed their different orientation relative to the expected direction of the magnetic field. While the majority of barbs are stretched along the field, some barbs seem to be transversal to it and are referred to as anomalous barbs. We analyse the deformation of helical field lines by a small parasitic polarity using a simple flux rope model with a force-free field. A rather small and distant source of parasitic polarity stretches the bottom parts of the helical lines in its direction creating a lateral extension of dips below the flux-rope axis. They can be considered as normal barbs of the filament. A stronger and closer source of parasitic polarity makes the flux-rope field lines to be convex below its axis and creates narrow and deep dips near its position. As a result, the narrow structure, with thin threads across it, is formed whose axis is nearly perpendicular to the field. The structure resembles an anomalous barb. Hence, the presence of anomalous barbs does not contradict the flux-rope structure of a filament.

  19. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  20. Evolution of filament barbs.

    Science.gov (United States)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  1. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  2. Polymorphic transformation of helical flagella of bacteria

    Science.gov (United States)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  3. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  4. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  5. Topology of helical fluid flow

    DEFF Research Database (Denmark)

    Andersen, Morten; Brøns, Morten

    2014-01-01

    function for the topology of the streamline pattern in incompressible flows. On this basis, we perform a comprehensive study of the topology of the flow field generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Hardin, J. C. 1982...... the zeroes of a single real function of one variable, and we show that three different flow topologies can occur, depending on a single dimensionless parameter. By including the self-induced velocity on the vortex filament by a localised induction approximation, the stream function is slightly modified...... and an extra parameter is introduced. In this setting two new flow topologies arise, but not more than two critical points occur for any combination of parameters....

  6. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  7. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    International Nuclear Information System (INIS)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations. (paper)

  8. Bacillus subtilis MreB paralogues have different filament architectures and lead to shape remodelling of a heterologous cell system.

    Science.gov (United States)

    Soufo, Hervé Joël Defeu; Graumann, Peter L

    2010-12-01

    Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.

  9. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  10. Filamentous Fungi.

    Science.gov (United States)

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  11. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  12. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    speeds in the northern and the southern hemispheres do not differ significantly in the Solar Cycle 23. We also processed a number of relatively high-resolution Hα images obtained by BBSO. It is found that in some cases, the filament axis has single chirality and the associated magnetic field also has single helicity, while its barbs in different parts of it have opposite barb chirality.

  13. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament.

    Science.gov (United States)

    Ma, Chu Jian; Gibb, Bryan; Kwon, YoungHo; Sung, Patrick; Greene, Eric C

    2017-01-25

    Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. What Helicity Can Tell Us about Solar Magnetic Fields Alexei A ...

    Indian Academy of Sciences (India)

    Concept of magnetic/current helicity was introduced to solar physics about 15 ... represented by a thin flux tube model with flux , one can show that magnetic helicity,. Hm = (2π). −1 2 ... For example, spiral pattern of filaments forming sunspot ...

  15. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  16. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  17. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  18. Multi-pair states in electron–positron pair creation

    Energy Technology Data Exchange (ETDEWEB)

    Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.

    2016-09-10

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  19. Multi-pair states in electron–positron pair creation

    International Nuclear Information System (INIS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  20. On the helicity of open magnetic fields

    International Nuclear Information System (INIS)

    Prior, C.; Yeates, A. R.

    2014-01-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  1. Weaving Knotted Vector Fields with Tunable Helicity.

    Science.gov (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  2. Self-assembly of designed supramolecular magnetic filaments of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Rozhkov, D.A., E-mail: d.a.rozhkov@gmail.com [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Sanchez, P.A. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study via molecular dynamics simulations filaments of ring and linear shape. Filaments are made of magnetic nanoparticles, possessing a point dipole in their centres. Particles in filaments are crosslinked in a particular way, so that the deviation of the neighbouring dipoles from the head-to-tail orientation is penalised by the bond. We show how the conformation of a single chain and ring filament changes on cooling for different lengths. We also study filament pairs, by fixing filaments at a certain distance and analysing the impact of inter-filament interaction on the equilibrium configurations. Our study opens a perspective to investigate the dispersions of filaments, both theoretically and numerically, by using effective potentials. - Highlights: • Single filament study. • Magnetic particles crosslinked in chains and rings. • Magnetic filament interactions.

  3. Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G).

    Science.gov (United States)

    Pardi, A; Morden, K M; Patel, D J; Tinoco, I

    1982-12-07

    The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.

  4. Filament Channel Formation, Eruption, and Jet Generation

    Science.gov (United States)

    DeVore, C. Richard; Antiochos, Spiro K.; Karpen, Judith T.

    2017-08-01

    The mechanism behind filament-channel formation is a longstanding mystery, while that underlying the initiation of coronal mass ejections and jets has been studied intensively but is not yet firmly established. In previous work, we and collaborators have investigated separately the consequences of magnetic-helicity condensation (Antiochos 2013) for forming filament channels (Zhao et al. 2015; Knizhnik et al. 2015, 2017a,b) and of the embedded-bipole model (Antiochos 1996) for generating reconnection-driven jets (Pariat et al. 2009, 2010, 2015, 2016; Wyper et al. 2016, 2017). Now we have taken a first step toward synthesizing these two lines of investigation. Our recent study (Karpen et al. 2017) of coronal-hole jets with gravity and wind employed an ad hoc, large-scale shear flow at the surface to introduce magnetic free energy and form the filament channel. In this effort, we replace the shear flow with an ensemble of local rotation cells, to emulate the Sun’s ever-changing granules and supergranules. As in our previous studies, we find that reconnection between twisted flux tubes within the closed-field region concentrates magnetic shear and free energy near the polarity inversion line, forming the filament channel. Onset of reconnection between this field and the external, unsheared, open field releases stored energy to drive the impulsive jet. We discuss the results of our new simulations with implications for understanding solar activity and space weather.

  5. Dynamics and mechanics of motor-filament systems

    Science.gov (United States)

    Kruse, K.; Jülicher, F.

    2006-08-01

    Motivated by the cytoskeleton of eukaryotic cells, we develop a general framework for describing the large-scale dynamics of an active filament network. In the cytoskeleton, active cross-links are formed by motor proteins that are able to induce relative motion between filaments. Starting from pair-wise interactions of filaments via such active processes, our framework is based on momentum conservation and an analysis of the momentum flux. This allows us to calculate the stresses in the filament network generated by the action of motor proteins. We derive effective theories for the filament dynamics which can be related to continuum theories of active polar gels. As an example, we discuss the stability of homogenous isotropic filament distributions in two spatial dimensions.

  6. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  7. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  8. New formulae for magnetic relative helicity and field line helicity

    Science.gov (United States)

    Aly, Jean-Jacques

    2018-01-01

    We consider a magnetic field {B} occupying the simply connected domain D and having all its field lines tied to the boundary S of D. We assume here that {B} has a simple topology, i.e., the mapping {M} from positive to negative polarity areas of S associating to each other the two footpoints of any magnetic line, is continuous. We first present new formulae for the helicity H of {B} relative to a reference field {{B}}r having the same normal component {B}n on S, and for its field line helicity h relative to a reference vector potential {{C}}r of {{B}}r. These formulae make immediately apparent the well known invariance of these quantities under all the ideal MHD deformations that preserve the positions of the footpoints on S. They express indeed h and H either in terms of {M} and {B}n, or in terms of the values on S of a pair of Euler potentials of {B}. We next show that, for a specific choice of {{C}}r, the field line helicity h of {B} fully characterizes the magnetic mapping {M} and then the topology of the lines. Finally, we give a formula that describes the rate of change of h in a situation where the plasma moves on the perfectly conducting boundary S without changing {B}n and/or non-ideal processes, described by an unspecified term {N} in Ohm’s law, are at work in some parts of D.

  9. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  10. A note on helicity

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Newmann, E.T.; Porter, J.; Winicour, J.; Lukacs, B.; Perjes, Z.; Sebestyen, A.

    1981-03-01

    The authors give a formal definition of the helicity operator for integral spin fields, which does not involve their momentum-space decomposition. The discussion is based upon a representation of the Pauli-Lubanski operator in terms of the action on tensor fields by the Killing vectors associated with the generators of the Poincare group. This leads to an identification of the helicity operator with the duality operator defined by the space-time alternating tensor. Helicity eigenstates then correspond to self-dual or anti-self-dual fields, in agreement with usage implicit in the literature. In addiition, the relationship between helicity eigenstates which are intrinsically non-classical, and states of right or left circular polarization in classical electrodynamics are discussed. (author)

  11. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    Science.gov (United States)

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  12. Helical CT defecography

    International Nuclear Information System (INIS)

    Ferrando, R.; Fiorini, G.; Beghello, A.; Cicio, G.R.; Derchi, L.E.; Consigliere, M.; Resasco, M.; Tornago, S.

    1999-01-01

    The purpose of this work is to investigate the possible role of Helical CT defecography in pelvic floor disorders by comparing the results of the investigations with those of conventional defecography. The series analyzed consisted of 90 patients, namely 62 women and 28 men, ranging in age 24-82 years. They were all submitted to conventional defecography, and 18 questionable cases were also studied with Helical CT defecography. The conventional examination was performed during the 4 standard phases of resting, squeezing, Valsalva and straining; it is used a remote-control unit. The parameters for Helical CT defecography were: 5 mm beam collimation, pitch 2, 120 KV, 250 m As and 18-20 degrees gantry inclination to acquire coronal images of the pelvic floor. The rectal ampulla was distended with a bolus of 300 mL nonionic iodinated contrast agent (dilution: 3g/cc). The patient wore a napkin and was seated on the table, except for those who could not hold the position and were thus examined supine. Twenty-second helical scans were performed at rest and during evacuation; multiplanar reconstructions were obtained especially on the sagittal plane for comparison with conventional defecographic images. Coronal Helical CT defecography images permitted to map the perineal floor muscles, while sagittal reconstructions provided information on the ampulla and the levator ani. To conclude, Helical CT defecography performed well in study of pelvic floor disorders and can follow conventional defecography especially in questionable cases [it

  13. Stability of a plasma filament with a skinned current

    International Nuclear Information System (INIS)

    Blekher, P.M.

    1984-01-01

    An effective sufficient condition of existence of ideal helical plasma filament instability in a strong longitUdinal magnetic field for skinned current profiles is deduced in the paper. The results of numerical calculations of current skinned profiles of instability diagrams are presented and these results are compared with the obtained sufficient condition. An analytical solution for one model current profile skinning and this solution also is compared with the sufficient condition of instability

  14. Evolution and breakdown of helical vortex wakes behind a wind turbine

    International Nuclear Information System (INIS)

    Nemes, A; Jacono, D Lo; Sheridan, J; Blackburn, H M; Sherry, M

    2014-01-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable

  15. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  16. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  17. Helically coiled tube heat exchanger

    International Nuclear Information System (INIS)

    Harris, A.M.

    1981-01-01

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle

  18. Fundamentals of Filament Interaction

    Science.gov (United States)

    2017-05-19

    AFRL-AFOSR-VA-TR-2017-0110 FUNDAMENTALS OF FILAMENT INTERACTION Martin Richardson UNIVERSITY OF CENTRAL FLORIDA Final Report 06/02/2017 DISTRIBUTION...of Filament Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA95501110001 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Martin Richardson 5d. PROJECT...NAME OF RESPONSIBLE PERSON Martin Richardson a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) 407-823-6819 Standard Form

  19. Colored fused filament fabrication

    OpenAIRE

    Song, Haichuan; Lefebvre, Sylvain

    2017-01-01

    Filament fused fabrication is the method of choice for printing 3D models at low cost, and is the de-facto standard for hobbyists, makers and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating ...

  20. Structural and functional properties of chimeric EspA-FliCi filaments of EPEC.

    Science.gov (United States)

    Crepin, Valerie F; Martinez, Eric; Shaw, Robert K; Frankel, Gad; Daniell, Sarah J

    2008-04-18

    Enteropathogenic Escherichia coli utilise a filamentous type III secretion system to translocate effector proteins into host gut epithelial cells. The primary constituent of the extracellular component of the filamentous type III secretion system is EspA. This forms a long flexible helical conduit between the bacterium and host and has a structure almost identical to that of the flagella filament. We have inserted the D3 domain of FliCi (from Salmonella typhimurium) into the outer domain of EspA and have studied the structure and function of modified filaments when expressed in an enteropathogenic E. coli espA mutant. We found that the chimeric protein EspA-FliCi filaments were biologically active as they supported protein secretion and translocation [assessed by their ability to trigger actin polymerisation beneath adherent bacteria (fluorescent actin staining test)]. The expressed filaments were recognised by both EspA and FliCi antisera. Visualisation and analysis of the chimeric filaments by electron microscopy after negative staining showed that, remarkably, EspA filaments are able to tolerate a large protein insertion without a significant effect on their helical architecture.

  1. Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils?

    Science.gov (United States)

    2015-01-01

    The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for “normal” left-hand-helical filaments and below pH 2 for “reversed” right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218–289) prion, and a short polypeptide fragment of transthyretin, TTR (105–115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases. PMID:24484302

  2. Is supramolecular filament chirality the underlying cause of major morphology differences in amyloid fibrils?

    Science.gov (United States)

    Kurouski, Dmitry; Lu, Xuefang; Popova, Ludmila; Wan, William; Shanmugasundaram, Maruda; Stubbs, Gerald; Dukor, Rina K; Lednev, Igor K; Nafie, Laurence A

    2014-02-12

    The unique enhanced sensitivity of vibrational circular dichroism (VCD) to the formation and development of amyloid fibrils in solution is extended to four additional fibril-forming proteins or peptides where it is shown that the sign of the fibril VCD pattern correlates with the sense of supramolecular filament chirality and, without exception, to the dominant fibril morphology as observed in AFM or SEM images. Previously for insulin, it has been demonstrated that the sign of the VCD band pattern from filament chirality can be controlled by adjusting the pH of the incubating solution, above pH 2 for "normal" left-hand-helical filaments and below pH 2 for "reversed" right-hand-helical filaments. From AFM or SEM images, left-helical filaments form multifilament braids of left-twisted fibrils while the right-helical filaments form parallel filament rows of fibrils with a flat tape-like morphology, the two major classes of fibril morphology that from deep UV resonance Raman scattering exhibit the same cross-β-core secondary structure. Here we investigate whether fibril supramolecular chirality is the underlying cause of the major morphology differences in all amyloid fibrils by showing that the morphology (twisted versus flat) of fibrils of lysozyme, apo-α-lactalbumin, HET-s (218-289) prion, and a short polypeptide fragment of transthyretin, TTR (105-115), directly correlates to their supramolecular chirality as revealed by VCD. The result is strong evidence that the chiral supramolecular organization of filaments is the principal underlying cause of the morphological heterogeneity of amyloid fibrils. Because fibril morphology is linked to cell toxicity, the chirality of amyloid aggregates should be explored in the widely used in vitro models of amyloid-associated diseases.

  3. Filament Substructures and their Interrelation

    Science.gov (United States)

    Lin, Y.; Martin, S. F.; Engvold, O.

    The main structural components of solar filaments, their spines, barbs, and legs at the extreme ends of the spine, are illustrated from recent high-resolution observations. The thread-like structures appear to be present in filaments everywhere and at all times. They are the fundamental elements of solar filaments. The interrelation of the spines, barbs and legs are discussed. From observations, we present a conceptual model of the magnetic field of a filament. We suggest that only a single physical model is needed to explain filaments in a continuous spectrum represented by active region filaments at one end and quiescent filaments at the other end.

  4. Signs of helicity in solar prominences and related features

    Science.gov (United States)

    Martin, S.

    This review illustrates several ways to identify the chirality (handedness) of solar prominences (filaments) from their structure and the structure of their surrounding magnetic fields in the chromosphere and corona. For prominences, these structural elements include the axial magnetic field direction, orientation of barbs, and direction of the prominence fine structure. The surrounding structures include the pattern of fibrils beneath the prominences and the pattern of coronal loops above the prominences. These ways of identifying chirality are then interpreted in terms of the formal definitions of helicity to yield a consistent set of one-to-one helicity relationships for all features. The helicity of some prominences can also be independently determined during their eruption by their fine structure, apparent crossings in the line-of-sight of different parts of the same prominence, and by large- scale twist of the prominence structure. Unlike observations of prominences (filaments) observed prior to eruption, in some cases evidence of both signs of helicity are found within the same erupting prominence. This indicates the continued application of forces on the prominences during the eruption process or the possible introduction of force(s) not present during earlier stages of their evolution.

  5. Helical modes generate antimagnetic rotational spectra in nuclei

    Science.gov (United States)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  6. Helicity, Reconnection, and Dynamo Effects

    International Nuclear Information System (INIS)

    Ji, Hantao

    1998-01-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation

  7. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Hill, D.N.; Stallard, B.W.; Bulmer, R.; Cohen, B.; Holcomb, C.T.; Hooper, E.B.; McLean, H.S.; Moller, J.; Wood, R.D.

    2003-01-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (∼1 kV) are produced, giving the highest sustained voltage ∼500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B-tilde)/B≥2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments

  8. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    Science.gov (United States)

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-07

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  9. Helical-D pinch

    International Nuclear Information System (INIS)

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The open-quotes helical-Dclose quotes geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a open-quotes dynamoclose quotes process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1

  10. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    Science.gov (United States)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  11. Review of the helicity formalism

    International Nuclear Information System (INIS)

    Barreiro, F.; Cerrada, M.; Fernandez, E.

    1972-01-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs

  12. Helical Confinement Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C; Brakel, R; Burhenn, R; Dinklage, A; Erckmann, V; Feng, Y; Geiger, J; Hartmann, D; Hirsch, M; Jaenicke, R; Koenig, R; Laqua, H P; Maassberg, H; Wagner, F; Weller, A; Wobig, H [Max-Planck Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany)

    2012-09-15

    Stellarators, conceived 1951 by Lyman Spitzer in Princeton, are toroidal devices that confine a plasma in a magnetic field which originates from currents in coils outside the plasma. A plasma current driven by external means, for example by an ohmic transformer, is not required for confinement. Supplying the desired poloidal field component by external coils leads to a helically structured plasma topology. Thus stellarators - or helical confinement devices - are fully three-dimensional in contrast to the toroidal (rotational) symmetry of tokamaks. As stellarators can be free of an inductive current, whose radial distribution depends on the plasma parameters, their equilibrium must not be established via the evolving plasma itself, but to a first order already given by the vacuum magnetic field. They do not need an active control (like positional feedback) and therefore cannot suffer from its failure. The outstanding conceptual advantage of stellarators is the potential of steady state plasma operation without current drive. As there is no need for current drive, the recirculating power is expected to be smaller than in equivalent tokamaks. The lack of a net current avoids current driven instabilities; specifically, no disruptions, no resistive wall modes and no conventional or neoclassical tearing modes appear. Second order pressure-driven currents (Pfirsch-Schlueter, bootstrap) exist but they can be modified and even minimized by the magnetic design. The magnetic configuration of helical devices naturally possesses a separatrix, which allows the implementation of a helically structured divertor for exhaust and impurity control. (author)

  13. Filaments in Lupus I

    Science.gov (United States)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  14. Interplay between I308 and Y310 residues in the third repeat of microtubule-binding domain is essential for tau filament formation.

    Science.gov (United States)

    Naruto, Keiko; Minoura, Katsuhiko; Okuda, Ryouhei; Taniguchi, Taizo; In, Yasuko; Ishida, Toshimasa; Tomoo, Koji

    2010-10-08

    Investigation of the mechanism of tau polymerization is indispensable for finding inhibitory conditions or identifying compounds preventing the formation of paired helical filament or oligomers. Tau contains a microtubule-binding domain consisting of three or four repeats in its C-terminal half. It has been considered that the key event in tau polymerization is the formation of a β-sheet structure arising from a short hexapeptide (306)VQIVYK(311) in the third repeat of tau. In this paper, we report for the first time that the C-H⋯π interaction between Ile308 and Tyr310 is the elemental structural scaffold essential for forming a dry "steric zipper" structure in tau amyloid fibrils. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  16. THE FORMATION AND ERUPTION OF A SMALL CIRCULAR FILAMENT DRIVEN BY ROTATING MAGNETIC STRUCTURES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe, E-mail: boyang@ynao.ac.cn, E-mail: yjy@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

    2015-04-20

    We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.

  17. Morphological indictors of the chirality of solar filaments

    Science.gov (United States)

    Filippov, B. P.

    2017-10-01

    There is no doubt that the structural features of filaments reflect properties of their magnetic fields, such as chirality and helicity. However, the interpretation of some morphological features can lead to incorrect conclusions when the observing time is limited and the spatial resolution is insufficiently high. In spite of the relative constancy of their overall shapes, filaments are dynamical formations with inhomogeneities moving along the threads making them up. Therefore, it is possible to observe material concentrated not only in magnetic traps, but also along curved arcs. Difficulties often arise in determining the chirality of filaments with anomalous "barbs"; i.e., those whose jagged side is located on the opposite side of the axis compared to most ("normal") filaments. A simple model is used to show that anomalous barbs can exist in an ordinary magnetic flux rope, with the threads of its fine structure oriented nearly perpendicular to its length. A careful analysis of images with the maximum available spatial resolution and with information about temporal dynamics, together with comparisons with observations in various spectral lines, can enable a correct determination of the chirality of filaments.

  18. Coulomb double helical structure

    Science.gov (United States)

    Kamimura, Tetsuo; Ishihara, Osamu

    2012-01-01

    Structures of Coulomb clusters formed by dust particles in a plasma are studied by numerical simulation. Our study reveals the presence of various types of self-organized structures of a cluster confined in a prolate spheroidal electrostatic potential. The stable configurations depend on a prolateness parameter for the confining potential as well as on the number of dust particles in a cluster. One-dimensional string, two-dimensional zigzag structure and three-dimensional double helical structure are found as a result of the transition controlled by the prolateness parameter. The formation of stable double helical structures resulted from the transition associated with the instability of angular perturbations on double strings. Analytical perturbation study supports the findings of numerical simulations.

  19. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    Science.gov (United States)

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Multi-pair states in electron–positron pair creation

    Directory of Open Access Journals (Sweden)

    Anton Wöllert

    2016-09-01

    Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  1. Helically linked mirror arrangement

    International Nuclear Information System (INIS)

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  2. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  3. Filament heater current modulation for increased filament lifetime

    International Nuclear Information System (INIS)

    Paul, J.D.; Williams, H.E. III.

    1996-01-01

    The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed

  4. Magnetic tension and instabilities in the Orion A integral-shaped filament

    Science.gov (United States)

    Schleicher, Dominik R. G.; Stutz, Amelia

    2018-03-01

    The Orion nebula is a prime example of a massive star-forming region in our galaxy. Observations have shown that gravitational and magnetic energy are comparable in its integral-shaped filament on a scale of ˜1 pc, and that the population of pre-main sequence stars appears dynamically heated compared to the protostars. These results have been attributed to a slingshot mechanism resulting from the oscillation of the filament by Stutz & Gould. In this paper, we show that radially contracting filaments naturally evolve towards a state where gravitational, magnetic, and rotational energy are comparable. While the contraction of the filament will preferentially amplify the axial component of the magnetic field, the presence of rotation leads to a helical field structure. We show how magnetic tension can give rise to a filament oscillation, and estimate a typical time-scale of 0.7 Myr for the motion of the filament to the position of maximum displacement, consistent with the characteristic time-scale of the ejected stars. Furthermore, the presence of helical magnetic fields is expected to give rise to magneto-hydrodynamical instabilities. We show here that the presence of a magnetic field significantly enhances the overall instability, which operates on a characteristic scale of about 1 pc. We expect the physics discussed here to be generally relevant in massive star-forming regions, and encourage further investigations in the future.

  5. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.

    Science.gov (United States)

    González-Solá, Maryví; Al-Khayat, Hind A; Behra, Martine; Kensler, Robert W

    2014-04-15

    To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    Science.gov (United States)

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  7. Filament wound structure and method

    International Nuclear Information System (INIS)

    Dritt, W.S.; Gerth, H.L.; Knight, C.E. Jr.; Pardue, R.M.

    1977-01-01

    A filament wound spherical structure is described comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness

  8. Helical Tomotherapy Quality Assurance

    International Nuclear Information System (INIS)

    Balog, John; Soisson, Emilie

    2008-01-01

    Helical tomotherapy uses a dynamic delivery in which the gantry, treatment couch, and multileaf collimator leaves are all in motion during treatment. This results in highly conformal radiotherapy, but the complexity of the delivery is partially hidden from the end-user because of the extensive integration and automation of the tomotherapy control systems. This presents a challenge to the medical physicist who is expected to be both a system user and an expert, capable of verifying relevant aspects of treatment delivery. A related issue is that a clinical tomotherapy planning system arrives at a customer's site already commissioned by the manufacturer, not by the clinical physicist. The clinical physicist and the manufacturer's representative verify the commissioning at the customer site before acceptance. Theoretically, treatment could begin immediately after acceptance. However, the clinical physicist is responsible for the safe and proper use of the machine. In addition, the therapists and radiation oncologists need to understand the important machine characteristics before treatment can proceed. Typically, treatment begins about 2 weeks after acceptance. This report presents an overview of the tomotherapy system. Helical tomotherapy has unique dosimetry characteristics, and some of those features are emphasized. The integrated treatment planning, delivery, and patient-plan quality assurance process is described. A quality assurance protocol is proposed, with an emphasis on what a clinical medical physicist could and should check. Additionally, aspects of a tomotherapy quality assurance program that could be checked automatically and remotely because of its inherent imaging system and integrated database are discussed

  9. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  10. Soliton on thin vortex filament

    International Nuclear Information System (INIS)

    Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.

    1990-12-01

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  11. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  12. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    Science.gov (United States)

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  13. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  14. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    Science.gov (United States)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  15. Flexible helical yarn swimmers.

    Science.gov (United States)

    Zakharov, A P; Leshansky, A M; Pismen, L M

    2016-09-01

    We investigate the motion of a flexible Stokesian flagellar swimmer realised as a yarn made of two intertwined elastomer fibres, one active, that can reversibly change its length in response to a local excitation causing transition to the nematic state or swelling, and the other one, a passive isotropic elastomer with identical mechanical properties. A propagating chemical wave may provide an excitation mechanism ensuring a constant length of the excited region. Generally, the swimmer moves along a helical trajectory, and the propagation and rotation velocity are very sensitive to the ratio of the excited region to the pitch of the yarn, as well as to the size of a carried load. External excitation by a moving actuating beam is less effective, unless the direction of the beam is adjusted to rotation of the swimmer.

  16. LHD helical divertor

    International Nuclear Information System (INIS)

    Ohyabu, N.; Watanabe, T.; Ji Hantao

    1993-07-01

    The Large Helical Device (LHD) now under construction is a heliotron/torsatron device with a closed divertor system. The edge LHD magnetic structure has been studied in detail. A peculiar feature of the configuration is existence of edge surface layers, a complicated three dimensional magnetic structure which does not, however, seem to hamper the expected divertor functions. Two divertor operational modes are being considered for the LHD experiment, high density, cold radiative divertor operation as a safe heat removal scheme and high temperature divertor plasma operation. In the latter operation, a divertor plasma with temperature of a few kev, generated by efficient pumping, expects to lead to significant improvement in core plasma confinement. Conceptual designs of the LHD divertor components are under way. (author)

  17. PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Xiang, Yongyuan; Cai, Yunfang; Liu, Weiwei

    2015-01-01

    The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolations using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope

  18. Kawada's Contribution to Induced Velocity by Helical Vortices with Application to Propeller Theory

    OpenAIRE

    Fukumoto, Y.; Okulov, Valery; Wood, D. H.

    2016-01-01

    The analytical form of the velocity field induced by a helical vortex filament is well known as Hardin’s solution (1982). But the essentially same result had been obtained by a Japanese scientist Kawada in 1936, which predates Hardin by 46 years. This talk exposes Kawada’s paper (1939) which provides a comprehensive treatment of induced velocity by helical vortices with application to the propeller theory.Sandi Kawada was a pioneer of aeronautics engineering in Japan, and played a leading rol...

  19. Modern filaments for composite materials

    International Nuclear Information System (INIS)

    Krivelli-Viskonti, I.

    1982-01-01

    Analysis of modern state and ways to improve properties of different filaments for the forecast of the filament application in composite materials has been conducted. In the near future as before the greatest attention will be paid to fibre glass, as this material is widely used in the reinforcing of organic matrices. Carbon and kevlar filaments are the most prospective ones. For the service at medium, high or superhigh temperatures selection of matrix material is more significant than selection of filament. Organic matrices can not be used at temperatures > 250 deg C: this is already the range of metal matrix application. Though at temperatures above room one many filaments can be used, boron filaments and metal wire are the only reinforcing materials, inspite of the fact that carbon filaments are successfully used for metal matrix reinforcing. At very high temperatures only carbon filaments or silicon carbide ones can be used, but their cost is very high and besides economical problems there are many difficulties of technical character

  20. Coexisting Flux Rope and Dipped Arcade Sections Along One Solar Filament

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2010-05-01

    We compute the three-dimensional magnetic field of an active region in order to study the magnetic configuration of active region filaments. The nonlinear force-free field model is adopted to compute the magnetic field above the photosphere, where the vector magnetic field was observed by THEMIS/MTR on 2005 May 27. We propose a new method to remove the 180° ambiguity of the transverse field. Next, we analyze the implications of the preprocessing of the data by minimizing the total force and torque in the observed vector fields. This step provides a consistent bottom boundary condition for the nonlinear force-free field model. Then, using the optimization method to compute the coronal field, we find a magnetic flux rope along the polarity inversion line. The magnetic flux rope aligns well with part of an Hα filament, while the total distribution of the magnetic dips coincides with the whole Hα filament. This implies that the magnetic field structure in one section of the filament is a flux rope, while the other is a sheared arcade. The arcade induced a left-bearing filament in the magnetic field of negative helicity, which is opposite to the chirality of barbs that a flux rope would induce in a magnetic field of the same helicity sign. The field strength in the center of the flux rope is about 700 G, and the twist of the field lines is ~1.4 turns.

  1. Formation and Eruption Process of a Filament in Active Region NOAA 12241

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, ZhongQuan; Xue, Zhike; Yang, Liheng [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2017-04-20

    In order to better understand active-region filaments, we present an intensive study on the formation and eruption of a filament in active region NOAA 12241 during the period from 2014 December 18 to 19. Using observations from the Helioseismic and Magnetic Imager (HMI) vector magnetograms, we investigate the helicity injection rate, Lorentz force, and vertical electric current in the entire region associated with the filament. The helicity injection rate before eruption is found to be larger than that after eruption, while the vertical electric current undergoes an increase at first and then a gradual decrease, similar to what the magnetic flux undergoes. Meanwhile, we find that the right part of the filament is formed by magnetic reconnection between two bundles of magnetic field lines while the left part originated from shearing motion. The interaction of the two parts causes the eruption of this filament. The mean horizontal magnetic fields in the vicinity of the magnetic polarity inversion line (PIL) enhance rapidly during the eruption. Another striking phenomenon, where the vertical electric currents close to the magnetic PIL suddenly expand toward two sides during the eruption, is found. We propose that this fascinating feature is associated with the release of energy during the eruption.

  2. Mahonian pairs

    OpenAIRE

    Sagan, Bruce E.; Savage, Carla D.

    2012-01-01

    We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...

  3. Filaments and clusters of galaxies

    International Nuclear Information System (INIS)

    Soltan, A.

    1987-01-01

    A statistical test to investigate filaments of galaxies is performed. Only particular form of filaments is considered, viz. filaments connecting Abell clusters of galaxies. Relative position of triplets ''cluster - field object - cluster'' is analysed. Though neither cluster sample nor field object sample are homogeneous and complete only peculiar form of selection effects could affect the present statistics. Comparison of observational data with simulations shows that less than 15 per cent of all field galaxies is concentrated in filaments connecting rich clusters. Most of the field objects used in the analysis are not normal galaxies and it is possible that this conclusion is not in conflict with apparent filaments seen in the Lick counts and in some nearby 3D maps of the galaxy distribution. 26 refs., 2 figs. (author)

  4. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung; Teixeira, Paula S.; Zapata, Luis A.

    2013-01-01

    We present a high angular resolution map of the 850 μm continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 × 2.'0 (0.88 × 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H 2 mass between 0.3-5.7 M ☉ and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n H 2 ≥10 6 cm –3 ), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of ≈17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud (≈35 pc), large-scale clumps (≈1.3 pc), and small-scale clumps (≈0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  5. Theoretical aspects of magnetic helicity

    International Nuclear Information System (INIS)

    Hammer, J.H.

    1985-01-01

    The magnetic helicity, usually defined as K=integralA.Bdv, where A is the vector potential and B the magnetic field, measures the topological linkage of magnetic fluxes. Helicity manifests itself in the twistedness and knottedness of flux tubes. Its significance is that it is an ideal MHD invariant. While the helicity formalism has proven very useful in understanding reversed field pinch and spheromak behavior, some problems exist in applying the method consistently for complex (e.g., toroidal) conductor geometries or in situations where magnetic flux penetrates conducting walls. Recent work has attempted to generalize K to allow for all possible geometries

  6. Godbillon Vey Helicity and Magnetic Helicity in Magnetohydrodynamics

    Science.gov (United States)

    Webb, G. M.; Hu, Q.; Anco, S.; Zank, G. P.

    2017-12-01

    The Godbillon-Vey invariant arises in homology theory, and algebraic topology, where conditions for a layered family of 2D surfaces forms a 3D manifold were elucidated. The magnetic Godbillon-Vey helicity invariant in magnetohydrodynamics (MHD) is a helicity invariant that occurs for flows, in which the magnetic helicity density hm= A\\cdotB=0 where A is the magnetic vector potential and B is the magnetic induction. Our purpose is to elucidate the evolution of the magnetic Godbillon-Vey field η =A×B/|A|2 and the Godbillon-Vey helicity hgv}= η \\cdot∇ × η in general MHD flows in which the magnetic helicity hm≠q 0. It is shown that hm acts as a source term in the Godbillon-Vey helicity transport equation, in which hm is coupled to hgv via the shear tensor of the background flow. The transport equation for hgv depends on the electric field potential ψ , which is related to the gauge for A, which takes its simplest form for the advected A gauge in which ψ =A\\cdot u where u is the fluid velocity.

  7. Filament structure, organization, and dynamics in MreB sheets.

    Science.gov (United States)

    Popp, David; Narita, Akihiro; Maeda, Kayo; Fujisawa, Tetsuro; Ghoshdastider, Umesh; Iwasa, Mitsusada; Maéda, Yuichiro; Robinson, Robert C

    2010-05-21

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  8. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  9. Observation of helical structure in a low energy plasma focus pinch

    International Nuclear Information System (INIS)

    Rout, R.K.; Shyam, A.

    1989-01-01

    Helical structure and hot spots were observed in a Mather-type plasma focus operated at 3 KJ of bank energy. The experiments were carried out with the help of a fast optical framing camera and two X-ray pin-hole cameras with different filters. It was observed that initially a conical pinch (with base diameter of 6 mm and length of 14 mm) with temperature of ≅ 10 2 eV was formed. This pinch disintegrated after ≅ 50 ns by a single lobe sausage instability into a central high temperature (≅ 10 3 eV) filament of 1 mm diameter and 8 mm length containing a high emissivity helical structure. This helix is probably responsible for generation of axial magnetic field and relaxation of the focus pinch. Hot spots of high X-ray intensity and temperature (≅ 10 3 eV) were also observed much beyond the filament region. (author)

  10. Energy landscape, structure and rate effects on strength properties of alpha-helical proteins

    International Nuclear Information System (INIS)

    Bertaud, Jeremie; Hester, Joshua; Jimenez, Daniel D; Buehler, Markus J

    2010-01-01

    The strength of protein domains is crucial to identify the mechanical role of protein domains in biological processes such as mechanotransduction, tissue mechanics and tissue remodeling. Whereas the concept of strength has been widely investigated for engineered materials, the strength of fundamental protein material building blocks and how it depends on structural parameters such as the chemical bonding, the protein filament length and the timescale of observation or deformation velocity remains poorly understood. Here we report a systematic analysis of the influence of key parameters that define the energy landscape of the strength properties of alpha-helical protein domains, including energy barriers, unfolding and refolding distances, the locations of folded and unfolded states, as well as variations of the length and pulling velocity of alpha-helical protein filaments. The analysis is facilitated by the development of a double-well mesoscale potential formulation, utilized here to carry out a systematic numerical analysis of the behavior of alpha-helices. We compare the results against widely used protein strength models based on the Bell model, one of the simplest models used to characterize the strength of protein filaments. We find that, whereas Bell-type models are a reasonable approximation to describe the rupture of alpha-helical protein domains for a certain range of pulling speeds and values of energy barriers, the model ceases to hold for very large energy barriers and for very small pulling speeds, in agreement with earlier findings. We conclude with an application of our mesoscale model to investigate the effect of the length of alpha-helices on their mechanical strength. We find a weakening effect as the length of alpha-helical proteins increases, followed by an asymptotic regime in which the strength remains constant. We compare strand lengths found in biological proteins with the scaling law of strength versus alpha-helix filament length. The

  11. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  12. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function.

    Science.gov (United States)

    Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio; Gillilan, Richard; Tsaturyan, Andrey; Padrón, Raúl

    2017-10-01

    The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, "free" and "blocked", formed an asymmetric structure named the "interacting-heads motif" (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca 2+ -activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.

  13. Single filament semiconductor laser

    International Nuclear Information System (INIS)

    Botez, D.

    1980-01-01

    A semiconductor laser comprising: a body of semiconductor material including a substrate having a surface and a pair of spaced, substantially parallel dove-tailed shaped grooves in said surface, said body having a pair of end surfaces between which said grooves extend, said end surfaces being reflective to light with at least one of said end surfaces being partially transparent to light a first epitaxial layer over said surface of the substrate and the surfaces of the grooves, said first epitaxial layer having a flat surface portion over the portion of the substrate surface between the grooves, a thin second epitaxial layer over said first epitaxial layer, a third epitaxial layer over said second epitaxial layer, said first and third epitaxial layers being of opposite conductivity types and the second epitaxial layer being the active recombination region of the laser with the light being generated therein in the vicinity of the portion which is over the flat surface portion of the first epitaxial layer, and a pair of contacts on said body with one contact being over said third epitaxial body and the other being on said substrate

  14. Elastic deformation and failure in protein filament bundles: Atomistic simulations and coarse-grained modeling.

    Science.gov (United States)

    Hammond, Nathan A; Kamm, Roger D

    2008-07-01

    The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long beta-sheets that pair together to form filaments; filaments form bundles approximately 30-60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two beta-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials.

  15. Microinstability Studies for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2002-01-01

    Fully kinetic assessments of the stability properties of toroidal drift modes have been obtained for cases for the Large Helical Device (LHD). This calculation employs the comprehensive linear microinstability code FULL, as recently extended for nonaxisymmetric systems. The code retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. These effects include trapped particles, FLR, transit and bounce and magnetic drift frequency resonances, etc., for any number of plasma species. Results for toroidal drift waves destabilized by trapped electrons and ion temperature gradients are presented, using numerically-calculated three-dimensional MHD equilibria. These are reconstructed from experimental measurements. Quasilinear fluxes of particles and energy for each species are also calculated. Pairs of LHD discharges with different magnetic axis positions and with and without pellet injection are compared

  16. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  17. Regulation of Contraction by the Thick Filaments in Skeletal Muscle.

    Science.gov (United States)

    Irving, Malcolm

    2017-12-19

    Contraction of skeletal muscle cells is initiated by a well-known signaling pathway. An action potential in a motor nerve triggers an action potential in a muscle cell membrane, a transient increase of intracellular calcium concentration, binding of calcium to troponin in the actin-containing thin filaments, and a structural change in the thin filaments that allows myosin motors from the thick filaments to bind to actin and generate force. This calcium/thin filament mediated pathway provides the "START" signal for contraction, but it is argued that the functional response of the muscle cell, including the speed of its contraction and relaxation, adaptation to the external load, and the metabolic cost of contraction is largely determined by additional mechanisms. This review considers the role of the thick filaments in those mechanisms, and puts forward a paradigm for the control of contraction in skeletal muscle in which both the thick and thin filaments have a regulatory function. The OFF state of the thick filament is characterized by helical packing of most of the myosin head or motor domains on the thick filament surface in a conformation that makes them unavailable for actin binding or ATP hydrolysis, although a small fraction of the myosin heads are constitutively ON. The availability of the majority fraction of the myosin heads for contraction is controlled in part by the external load on the muscle, so that these heads only attach to actin and hydrolyze ATP when they are required. This phenomenon seems to be the major determinant of the well-known force-velocity relationship of muscle, and controls the metabolic cost of contraction. The regulatory state of the thick filament also seems to control the dynamics of both muscle activation and relaxation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Boolean gates on actin filaments

    International Nuclear Information System (INIS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  19. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  20. Collective dynamics of populations of weakly correlated filaments of incoherent white light

    International Nuclear Information System (INIS)

    Guo, Jinxin; Sheridan, John T; Saravanamuttu, Kalaichelvi

    2013-01-01

    We examined the dynamics of two populations of self-trapped filaments of spatially and temporally incoherent white light. The populations consisted of (i) independent filaments generated through self-trapping of incandescent speckles, and (ii) co-dependent filaments created through modulation instability of a broad incandescent beam. Both filament populations were positionally stable in conditions where individual pairs of self-trapped beams interact strongly. Both also acquired significantly broad intensity distributions, which were independent of their parent optical fields; a small but persistent number of high-intensity filaments was identified in both cases. These studies provide accessible routes to weakly correlated ensembles, insight into their collective behaviour such as self-stabilization and self-selected intensity distributions, and reveal intriguing similarities between the dynamics of two populations of different origins. (paper)

  1. Free-fall dynamics of a pair of rigidly linked disks

    Science.gov (United States)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  2. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  3. Generalized helicity and Beltrami fields

    Energy Technology Data Exchange (ETDEWEB)

    Buniy, Roman V., E-mail: roman.buniy@gmail.com [Schmid College of Science, Chapman University, Orange, CA 92866 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom); Kephart, Thomas W., E-mail: tom.kephart@gmail.com [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Isaac Newton Institute, University of Cambridge, Cambridge, CB3 0EH (United Kingdom)

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  4. Generalized helicity and Beltrami fields

    International Nuclear Information System (INIS)

    Buniy, Roman V.; Kephart, Thomas W.

    2014-01-01

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫ Ω trF μν F μν d 4 x subject to the local constraint ε μναβ trF μν F αβ =0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity

  5. Toroidal helical quartz forming machine

    International Nuclear Information System (INIS)

    Hanks, K.W.; Cole, T.R.

    1977-01-01

    The Scyllac fusion experimental machine used 10 cm diameter smooth bore discharge tubes formed into a simple toroidal shape prior to 1974. At about that time, it was discovered that a discharge tube was required to follow the convoluted shape of the load coil. A machine was designed and built to form a fused quartz tube with a toroidal shape. The machine will accommodate quartz tubes from 5 cm to 20 cm diameter forming it into a 4 m toroidal radius with a 1 to 5 cm helical displacement. The machine will also generate a helical shape on a linear tube. Two sets of tubes with different helical radii and wavelengths have been successfully fabricated. The problems encountered with the design and fabrication of this machine are discussed

  6. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  7. Resonant helical fields in tokamaks

    International Nuclear Information System (INIS)

    Okano, V.

    1990-01-01

    Poincare maps of magnetic field lines of a toroidal helical system were made. The magnetic field is a linear superposition of the magnetic fields produced by a toroidal plasma in equilibrium and by external helical currents. Analytical expression for the Poincare maps was no obtained since the magnetic field do not have symmetry. In order to obtain the maps, the equation minus derivative of l vector times B vector = 0 was numerically integrated. In the Poincare maps, the principal and the secondary magnetic island were observed. (author)

  8. Helical-tokamak hybridization concepts for compact configuration exploration and MHD stabilization

    International Nuclear Information System (INIS)

    Oishi, T.; Yamazaki, K.; Arimoto, H.; Baba, K.; Hasegawa, M.; Ozeki, H.; Shoji, T.; Mikhailov, M.I.

    2010-11-01

    To search for low-aspect-ratio torus systems, a lot of exotic confinement concepts are proposed so far historically. One of the authors previously proposed the tokamak-helical hybrid called TOKASTAR (Tokamak-Stellarator Hybrid) to improve the magnetic local shear near the bad curvature region. This is characterized by simple and compact coil systems with enough divertor space relevant to reactor designs. Based on this TOKASTAR concept, a toroidal mode number N=2 C (compact) -TOKASTAR machine (R - 35 mm) was constructed. The rotational transform of this compact helical configuration is rather small to confine hot ions, but can be utilized as a compact electron plasma machine for multi-purposes. The C-TOKASTAR has a pair of spherically winding helical coils and a pair of poloidal coils. Existence of magnetic surface and electron confinement property in C-TOKASTAR device were investigated by an electron-emission impedance method. Calculation of the particle orbit also supports that closed magnetic surface is formed in the cases that the ratio between poloidal and helical coil current is appropriate. Another aspect of the research using TOKASTAR configuration includes the evaluation of the effect of the outboard helical field application to tokamak plasmas. It is considered that outboard helical field has roles to assist the initiation of plasma current, to improve MHD stability, and so on. To check these roles, we made TOKASTAR-2 machine (R - 0.12 m, B - 1 kG) with ohmic heating central coil, eight toroidal field coils, a pair of vertical field coils and two outboard helical field coil segments. The electron cyclotron heating plasma start-up and plasma current disruption control experiments might be expected in this machine. Calculation of magnetic field line tracing has revealed that magnetic surface can be formed using additional outer helical coils. (author)

  9. Helical system. History and current state of helical research

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki

    2017-01-01

    This paper described the following: (1) history of nuclear fusion research of Japan's original heliotron method, (2) worldwide development of nuclear fusion research based on helical system such as stellarator, and (3) worldwide meaning of large helical device (LHD) aiming to demonstrate the steady-state performance of heliotron type in the parameter area extrapolable to the core plasma, and research results of LHD. LHD demonstrated that the helical system is excellent in steady operation performance at the world's most advanced level. In an experiment using deuterium gas in 2017, LHD achieved to reach 120 million degrees of ion temperature, which is one index of nuclear fusion condition, demonstrated the realization of high-performance plasma capable of extrapolating to future nuclear fusion reactors, and established the foundation for full-scale research toward the realization of nuclear fusion reactor. Besides experimental research, this paper also described the helical-type stationary nuclear fusion prototype reactor, FFHR-d1, which was based on progress of large-scale simulation at the world's most advanced level. A large-scale superconducting stellarator experimental device, W7-X, with the same scale as LHD, started experiment in December 2015, whose current state is also touched on here. (A.O.)

  10. Helicity and evanescent waves. [Energy transport velocity, helicity, Lorentz transformation

    Energy Technology Data Exchange (ETDEWEB)

    Agudin, J L; Platzeck, A M [La Plata Univ. Nacional (Argentina); Albano, J R [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina

    1978-02-20

    It is shown that the projection of the angular momentum of a circularly polarized electromagnetic evanescent wave along the mean velocity of energy transport (=helicity) can be reverted by a Lorentz transformation, in spite of the fact that this velocity is c.

  11. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  12. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  13. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  14. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  15. The helical tomotherapy thread effect

    International Nuclear Information System (INIS)

    Kissick, M.W.; Fenwick, J.; James, J.A.; Jeraj, R.; Kapatoes, J.M.; Keller, H.; Mackie, T.R.; Olivera, G.; Soisson, E.T.

    2005-01-01

    Inherent to helical tomotherapy is a dose variation pattern that manifests as a 'ripple' (peak-to-trough relative to the average). This ripple is the result of helical beam junctioning, completely unique to helical tomotherapy. Pitch is defined as in helical CT, the couch travel distance for a complete gantry rotation relative to the axial beam width at the axis of rotation. Without scattering or beam divergence, an analytical posing of the problem as a simple integral predicts minima near a pitch of 1/n where n is an integer. A convolution-superposition dose calculator (TomoTherapy, Inc.) included all the physics needed to explore the ripple magnitude versus pitch and beam width. The results of the dose calculator and some benchmark measurements demonstrate that the ripple has sharp minima near p=0.86(1/n). The 0.86 factor is empirical and caused by a beam junctioning of the off-axis dose profiles which differ from the axial profiles as well as a long scatter tail of the profiles at depth. For very strong intensity modulation, the 0.86 factor may vary. The authors propose choosing particular minima pitches or using a second delivery that starts 180 deg off-phase from the first to reduce these ripples: 'Double threading'. For current typical pitches and beam widths, however, this effect is small and not clinically important for most situations. Certain extremely large field or high pitch cases, however, may benefit from mitigation of this effect

  16. W+- pairs and neutral currents at ISABELLE

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1975-01-01

    A report is presented on two different types of processes which may form part of the weak interactions program. The first is the production of pairs of charged weak bosons in the process pp → W + W - X; the second involves searching for neutral current effects in the rate for ordinary lepton production, without measuring any charge asymmetry or helicities using the reaction pp → l + l - X

  17. High-resolution Observations of Flares in an Arch Filament System

    Science.gov (United States)

    Su, Yingna; Liu, Rui; Li, Shangwei; Cao, Wenda; Ahn, Kwangsu; Ji, Haisheng

    2018-03-01

    We study five sequential solar flares (SOL2015-08-07) occurring in Active Region 12396 observed with the Goode Solar Telescope (GST) at the Big Bear Solar Observatory, complemented by Interface Region Imaging Spectrograph and SDO observations. The main flaring region is an arch filament system (AFS) consisting of multiple bundles of dark filament threads enclosed by semicircular flare ribbons. We study the magnetic configuration and evolution of the active region by constructing coronal magnetic field models based on SDO/HMI magnetograms using two independent methods, i.e., the nonlinear force-free field (NLFFF) extrapolation and the flux rope insertion method. The models consist of multiple flux ropes with mixed signs of helicity, i.e., positive (negative) in the northern (southern) region, which is consistent with the GST observations of multiple filament bundles. The footprints of quasi-separatrix layers (QSLs) derived from the extrapolated NLFFF compare favorably with the observed flare ribbons. An interesting double-ribbon fine structure located at the east border of the AFS is consistent with the fine structure of the QSL’s footprint. Moreover, magnetic field lines traced along the semicircular footprint of a dome-like QSL surrounding the AFS are connected to the regions of significant helicity and Poynting flux injection. The maps of magnetic twist show that positive twist became dominant as time progressed, which is consistent with the injection of positive helicity before the flares. We hence conclude that these circular shaped flares are caused by 3D magnetic reconnection at the QSLs associated with the AFS possessing mixed signs of helicity.

  18. New Modular Heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1994-04-01

    A new helical system ('Modular Heliotron') with improved modular coils compatible with efficient closed helical divertor and good plasma confinement property is proposed based on a Heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. The Modular Heliotron with standard coil winding law (reference Modular Heliotron) was previously proposed, but it is found that this is not appropriate to keep clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional Heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved Modular Heliotron permits larger gap angle between adjacent modules and produces more clean helical divertor configuration than the reference Modular Heliotron. All these helical system are created by only modular coils without poloidal coils. (author)

  19. New modular heliotron system compatible with closed helical divertor and good plasma confinement

    International Nuclear Information System (INIS)

    Yamazaki, K.; Watanabe, K.Y.

    1995-01-01

    A new helical system ('modular heliotron') with improved modular coils compatible with an efficient closed helical divertor and a good plasma confinement property is proposed, based on a heliotron system with continuous helical coils and one pair of poloidal coils. The physics optimization of this system as a function of the gap angle between adjacent modular coils has been carried out by means of vacuum magnetic surface calculations and finite-beta plasma analyses, and a new improved coil system is invented by combining sectored helical field coils with sectored returning poloidal field coils. A modular heliotron with standard coil winding law (the reference modular heliotron) was previously proposed, but it is found that this was not appropriate to keep a clean helical divertor and high beta configuration when the coil gap becomes large. By modulating the modular coil winding with outside-plus and inside-minus pitch modulation, almost the same good magnetic configuration as that of a conventional heliotron can be produced. The optimal gap angle is determined as a function of the modulation parameter. This improved modular heliotron permits a larger gap angle between adjacent modules and produces a cleaner helical divertor configuration than the reference modular heliotron. All these helical systems are created by only modular coils without poloidal coils. (author). Letter-to-the-editor. 11 refs, 7 figs

  20. Helical Birods: An Elastic Model of Helically Wound Double-Stranded Rods

    KAUST Repository

    Prior, Christopher

    2014-03-11

    © 2014, Springer Science+Business Media Dordrecht. We consider a geometrically accurate model for a helically wound rope constructed from two intertwined elastic rods. The line of contact has an arbitrary smooth shape which is obtained under the action of an arbitrary set of applied forces and moments. We discuss the general form the theory should take along with an insight into the necessary geometric or constitutive laws which must be detailed in order for the system to be complete. This includes a number of contact laws for the interaction of the two rods, in order to fit various relevant physical scenarios. This discussion also extends to the boundary and how this composite system can be acted upon by a single moment and force pair. A second strand of inquiry concerns the linear response of an initially helical rope to an arbitrary set of forces and moments. In particular we show that if the rope has the dimensions assumed of a rod in the Kirchhoff rod theory then it can be accurately treated as an isotropic inextensible elastic rod. An important consideration in this demonstration is the possible effect of varying the geometric boundary constraints; it is shown the effect of this choice becomes negligible in this limit in which the rope has dimensions similar to those of a Kirchhoff rod. Finally we derive the bending and twisting coefficients of this effective rod.

  1. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  2. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...

  3. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  4. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  5. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  6. Filament Winding. A Unified Approach

    NARCIS (Netherlands)

    Koussios, S.

    2004-01-01

    In this dissertation we have presented an overview and comprehensive treatment of several facets of the filament winding process. With the concepts of differential geometry and the theory of thin anisotropic shells of revolution, a parametric shape generator has been formulated for the design

  7. Ultraviolet treatment on high performance filaments

    International Nuclear Information System (INIS)

    Gu Huang

    2005-01-01

    Quartz, Kevlar, carbon, and glass filaments were irradiated by ultraviolet ray with various periods. Tensile strength of the treated fibres was tested and analyzed, and the outward appearance of the treated filaments was shown

  8. Role of Intermediate Filaments in Vesicular Traffic

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  9. Positrusion Filament Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  10. Analysis of a filament stretching rheometer

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1996-01-01

    A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....

  11. Coupling between myosin head conformation and the thick filament backbone structure.

    Science.gov (United States)

    Hu, Zhongjun; Taylor, Dianne W; Edwards, Robert J; Taylor, Kenneth A

    2017-12-01

    The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Hot spots and filaments in the pinch of a plasma focus: a unified approach

    International Nuclear Information System (INIS)

    Di Vita, A.

    2009-01-01

    To date, no MHD-based complete description of the tiny, relatively stable, well-ordered structures (hot spots, filaments) observed in the pinch of a plasma focus seems to be feasible. Indeed, the large value of electron density suggests that a classification of such structures which is based on the approximation of local thermodynamical equilibrium (LTE) is possible. Starting from an often overlooked, far-reaching result of LTE, we derive a purely analytical description of both hot spots and filaments. In spite of their quite different topology, both configurations are extrema of the same variational principle. Well-known results of conventional MHD are retrieved as benchmark cases. It turns out that hot spots satisfy Taylor's principle of constrained minimum of magnetic energy, the constraint being given by fixed magnetic helicity. Filaments are similar to the filaments of a superconductor and form a plasma with β equals 0.11 and energy diffusion coefficient equals 0.88*D(Bohm). Any process - like e.g. radiative collapse - which raises particle density while reducing radial size may transform filaments into hot spots. A well-known scaling law is retrieved - the collisional Vlasov high beta scaling. A link between dissipation and topology is highlighted. Accordingly, a large-current pinch may give birth to tiny hot spots with large electron density and magnetic field. (author)

  13. Generalized helicity and its time derivative

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Marklin, G.J.

    1985-01-01

    Spheromaks can be sustained against resistive decay by helicity injection because they tend to obey the minimum energy principle. This principle states that a plasma-laden magnetic configuration will relax to a state of minimum energy subject to the constraint that the magnetic helicity is conserved. Use of helicity as a constraint on the minimization of energy was first proposed by Woltjer in connection with astrophysical phenomena. Helicity does decay on the resistive diffusion time. However, if helicity is created and made to flow continuoiusly into a confinement geometry, these additional linked fluxes can relax and sustain the configuration indefinitely against the resistive decay. In this paper we will present an extension of the definition of helicity to include systems where B vector can penetrate the boundary and the penetration can be varying in time. We then discuss the sustainment of RFPs and spheromaks in terms of helicity injection

  14. Striation and convection in penumbral filaments

    NARCIS (Netherlands)

    Spruit, H.C.; Scharmer, G.B.; Löfdahl, M.G.

    2010-01-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward

  15. cgHeliParm : analysis of dsDNA helical parameters for coarse-grained MARTINI molecular dynamics simulations

    NARCIS (Netherlands)

    Faustino, Ignacio; Marrink, S. J.

    2017-01-01

    Summary: We introduce cgHeliParm, a python program that provides the conformational analysis of Martini-based coarse-grained double strand DNA molecules. The software calculates the helical parameters such as base, base pair and base pair step parameters. cgHeliParm can be used for the analysis of

  16. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  17. Helical CT of ureteral disease

    International Nuclear Information System (INIS)

    Cikman, Pablo; Bengio, Ruben; Bulacio, Javier; Zirulnik, Esteban; Garimaldi, Jorge

    2000-01-01

    Among the new applications of helical CT is the study of the ureteral pathology. The objective of this paper was to evaluate patients with suspected pathology of this organ and the repercussion in the therapeutic plans. We studied 23 patients with a helical CT protocol, without IV contrast injection and performed multiplanar reconstruction (MPR). We called this procedure Pielo CT. Thirteen ureteral stones were detected, 6 calculi, 2 urinary tract tumors, dilatation of the system in a patient with neo-bladder. In 2 patients, in whom ureteral pathology was ruled out, we found other alterations that explained the symptoms, (gallbladder stones, disk protrusion). The Pielo CT let decide a therapeutical approach in 20 or 21 patients with ureteral pathology. (author)

  18. Helicity formalism and spin effects

    International Nuclear Information System (INIS)

    Anselmino, M.; Caruso, F.; Piovano, U.

    1990-01-01

    The helicity formalism and the technique to compute amplitudes for interaction processes involving leptons, quarks, photons and gluons are reviewed. Explicit calculations and examples of exploitation of symmetry properties are shown. The formalism is then applied to the discussion of several hadronic processes and spin effects: the experimental data, when related to the properties of the elementary constituent interactions, show many not understood features. Also the nucleon spin problem is briefly reviewed. (author)

  19. Radiation characteristics of helical tomotherapy

    International Nuclear Information System (INIS)

    Jeraj, Robert; Mackie, Thomas R.; Balog, John; Olivera, Gustavo; Pearson, Dave; Kapatoes, Jeff; Ruchala, Ken; Reckwerdt, Paul

    2004-01-01

    Helical tomotherapy is a dedicated intensity modulated radiation therapy (IMRT) system with on-board imaging capability (MVCT) and therefore differs from conventional treatment units. Different design goals resulted in some distinctive radiation field characteristics. The most significant differences in the design are the lack of flattening filter, increased shielding of the collimators, treatment and imaging operation modes and narrow fan beam delivery. Radiation characteristics of the helical tomotherapy system, sensitivity studies of various incident electron beam parameters and radiation safety analyses are presented here. It was determined that the photon beam energy spectrum of helical tomotherapy is similar to that of more conventional radiation treatment units. The two operational modes of the system result in different nominal energies of the incident electron beam with approximately 6 MeV and 3.5 MeV in the treatment and imaging modes, respectively. The off-axis mean energy dependence is much lower than in conventional radiotherapy units with less than 5% variation across the field, which is the consequence of the absent flattening filter. For the same reason the transverse profile exhibits the characteristic conical shape resulting in a 2-fold increase of the beam intensity in the center. The radiation leakage outside the field was found to be negligible at less than 0.05% because of the increased shielding of the collimators. At this level the in-field scattering is a dominant source of the radiation outside the field and thus a narrow field treatment does not result in the increased leakage. The sensitivity studies showed increased sensitivity on the incident electron position because of the narrow fan beam delivery and high sensitivity on the incident electron energy, as common to other treatment systems. All in all, it was determined that helical tomotherapy is a system with some unique radiation characteristics, which have been to a large extent

  20. Temporal symmetry of individual filaments in different spatial symmetry filaments pattern in a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Dong, L. F.; Xiao, H.; Fan, W. L.; Yin, Z. Q.; Zhao, H. T.

    2010-01-01

    The temporal behavior of individual filament in different spatial symmetry filaments patterns in dielectric barrier discharge is investigated by using an optical method. A series of return maps of the discharge moments of individual filaments is given. It is found that the temporal symmetry of individual filament changes with the change of the spatial symmetry of filaments pattern as the applied voltage increases. The role of wall charges for this phenomenon is analyzed.

  1. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  2. Structure of the hDmc1-ssDNA filament reveals the principles of its architecture.

    Directory of Open Access Journals (Sweden)

    Andrei L Okorokov

    Full Text Available In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1, a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active and compressed (inactive. However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds DNA nucleoprotein filaments, the extended (active state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers

  3. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  4. Temperature distributions of a conductively heated filament

    International Nuclear Information System (INIS)

    Tamura, Koji; Ohba, Hironori; Shibata, Takemasa

    1999-07-01

    Temperature distributions of a heated filament were measured. A W-Re(5%) filament (0.25 mm in diameter, 24.7 mm in length) was conductively heated by currents between 5A and 7A with a DC power supply, and the surface of the filament was imaged with a charge coupled device (CCD) camera through a monochromatic filter. The spectral radiation intensity at the filament center region was almost uniform. Since the temperature distribution was also uniform and the energy loss by thermal conduction was negligible, temperature in this region was determined from the energy balance between applied power and radiation loss. Temperature distribution of the filament was determined based on the Planck's law of radiation from the spectral radiation intensity ratio of the filament surface using obtained temperature as a reference. It was found that temperature distribution of a filament was easily measured by this method. (author)

  5. Filament instability under constant loads

    Science.gov (United States)

    Monastra, A. G.; Carusela, M. F.; D’Angelo, M. V.; Bruno, L.

    2018-04-01

    Buckling of semi-flexible filaments appears in different systems and scales. Some examples are: fibers in geophysical applications, microtubules in the cytoplasm of eukaryotic cells and deformation of polymers freely suspended in a flow. In these examples, instabilities arise when a system’s parameter exceeds a critical value, being the Euler force the most known. However, the complete time evolution and wavelength of buckling processes are not fully understood. In this work we solve analytically the time evolution of a filament under a constant compressive force in the small amplitude approximation. This gives an insight into the variable force scenario in terms of normal modes. The evolution is highly sensitive to the initial configuration and to the magnitude of the compressive load. This model can be a suitable approach to many different real situations.

  6. Lighting the universe with filaments.

    Science.gov (United States)

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  7. An active region filament studied simultaneously in the chromosphere and photosphere. I. Magnetic structure

    Science.gov (United States)

    Kuckein, C.; Martínez Pillet, V.; Centeno, R.

    2012-03-01

    trapped in the photosphere. Therefore, only the top of the helical structure is seen by the helium lines. The pores and orphan penumbrae at the PIL appear to be the photospheric counterpart of the extremely low-lying filament. We suggest that orphan penumbrae are formed in very narrow PILs of compact ARs and are the photospheric manifestation of flux ropes in the photosphere.

  8. Bacterial actin MreB forms antiparallel double filaments.

    Science.gov (United States)

    van den Ent, Fusinita; Izoré, Thierry; Bharat, Tanmay Am; Johnson, Christopher M; Löwe, Jan

    2014-05-02

    Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments of Caulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments.DOI: http://dx.doi.org/10.7554/eLife.02634.001. Copyright © 2014, van den Ent et al.

  9. MHD stability analysis of helical system plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yuji

    2000-01-01

    Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)

  10. Employing helicity amplitudes for resummation in SCET

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam

    2016-05-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  11. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    International Nuclear Information System (INIS)

    Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao

    2017-01-01

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  12. Spontaneous formation of non-uniform double helices for elastic rods under torsion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyuan [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Shumin, E-mail: zhaosm@mail.xjtu.edu.cn [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Xia, Minggang [Department of Optical Information Science and Technology, School of Science, Xi' an Jiaotong University, 710049 (China); Laboratory of Nanostructure and Physics Properties, School of Science, Xi' an Jiaotong University, 710049 (China); He, Siyu [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Yang, Qifan [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China); Yan, Yuming [Department of Electrical Engineering and Automation, School of Electrical Engineering, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Hanqiao [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2017-02-19

    The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.

  13. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    Full Text Available Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  14. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    Science.gov (United States)

    Dempwolff, Felix; Reimold, Christian; Reth, Michael; Graumann, Peter L

    2011-01-01

    Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  15. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    International Nuclear Information System (INIS)

    Wang, Y.-M.

    2013-01-01

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowing a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity

  16. Biomechanical evaluation of potential damage to hernia repair materials due to fixation with helical titanium tacks.

    Science.gov (United States)

    Lerdsirisopon, Sopon; Frisella, Margaret M; Matthews, Brent D; Deeken, Corey R

    2011-12-01

    This study aimed to determine whether the strength and extensibility of hernia repair materials are negatively influenced by the application of helical titanium tacks. This study evaluated 14 meshes including bare polypropylene, macroporous polytetrafluoroethylene, absorbable barrier, partially absorbable mesh, and expanded polytetrafluoroethylene materials. Each mesh provided 15 specimens, which were prepared in 7.5 × 7.5-cm squares. Of these, 5 "undamaged" specimens were subjected to ball-burst testing to determine their biomechanical properties before application of helical titanium tacks (ProTack). To 10 "damaged" specimens 7 tacks were applied 1 cm apart in a 3.5-cm-diameter circle using a tacking force of 25 to 28 N. The tacks were removed from five of the specimens before ball-burst testing and left intact in the remaining five specimens. The application of tacks had no effect on the tensile strength of Dualmesh, ProLite Ultra, Infinit, Ultrapro, C-QUR Lite (6 in.). Most of the meshes did not exhibit significantly different tensile strengths between removal of tacks and tacks left intact. Exceptions included C-QUR, Prolene, Ultrapro, and Bard Soft Mesh, which were weaker with removal of tacks than with tacks left intact during the test. Damage due to the application of helical titanium tacks also caused increased strain at a stress of 16 N/cm for all the meshes except C-QUR Lite (>6 in.) and Physiomesh. Many of the meshes evaluated in this study exhibited damage in the form of reduced tensile strength and increased extensibility after the application of tacks compared with the corresponding "undamaged" meshes. Meshes with smaller interstices and larger filaments were influenced negatively by the application of helical titanium tacks, whereas mesh designs with larger interstices and smaller filaments tended to maintain their baseline mechanical properties.

  17. Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses

    DEFF Research Database (Denmark)

    Vestergaard, Gisle Alberg; Aramayo, Ricardo; Basta, Tamara

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae....... The structures of the approximately 2-mum-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases...... structural proteins; (iii) multiple overlapping open reading frames, which may be indicative of gene recoding; (iv) putative 12-bp genetic elements; and (v) partial gene sequences corresponding closely to spacer sequences of chromosomal repeat clusters....

  18. Economic method for helical gear flank surface characterisation

    Science.gov (United States)

    Koulin, G.; Reavie, T.; Frazer, R. C.; Shaw, B. A.

    2018-03-01

    Typically the quality of a gear pair is assessed based on simplified geometric tolerances which do not always correlate with functional performance. In order to identify and quantify functional performance based parameters, further development of the gear measurement approach is required. Methodology for interpolation of the full active helical gear flank surface, from sparse line measurements, is presented. The method seeks to identify the minimum number of line measurements required to sufficiently characterise an active gear flank. In the form ground gear example presented, a single helix and three profile line measurements was considered to be acceptable. The resulting surfaces can be used to simulate the meshing engagement of a gear pair and therefore provide insight into functional performance based parameters. Therefore the assessment of the quality can be based on the predicted performance in the context of an application.

  19. The Mysterious Case of the Missing Filaments

    Science.gov (United States)

    Alden, C. R.

    2016-12-01

    Coronal Mass Ejections, or CMEs, are large solar eruptions that can have major debilitating impacts on society. Typically, these eruptions have the three following key structures: the leading edge, the empty chamber known as the cavity, and the filament which often is the brightest part of the CME. When we can see all three structures clearly with a coronagraph, it is called a classic three-part CME, also referred to as a 'lightbulb' CME. According to current knowledge, when a CME erupts, a filament should also erupt or lift off the Sun in order to have the bright center within the CME. However, we do not always see a filament erupt at the surface, and yet we still get a 'filament' within the coronagraph CME. To better understand what might be occurring with these missing filaments, we looked at three-part CMEs using the SOHO LASCO CME Catalog and filaments from the SDO AIA Filament Catalog in order to create a list of 50 CMEs without a listed filament erupting at the surface. For those CMEs without filaments in the list we closely inspected the AIA images for evidence of filament eruption. To ensure that there were no filaments past the limb of the Sun, we used data from the STEREO-A and STEREO-B spacecraft's to look at the Sun from other angles. We have found numerous events where no filament erupts from the surface, but we still see the classic three-part CME. We believe this may be due to an optical illusion occurring from the twisting of the flux rope.

  20. Unambiguous Evidence of Filament Splitting-induced Partial Eruptions

    Science.gov (United States)

    Cheng, X.; Kliem, B.; Ding, M. D.

    2018-03-01

    Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter.

  1. GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB.

    Science.gov (United States)

    Esue, Osigwe; Wirtz, Denis; Tseng, Yiider

    2006-02-01

    MreB, a major component of the recently discovered bacterial cytoskeleton, displays a structure homologous to its eukaryotic counterpart actin. Here, we study the assembly and mechanical properties of Thermotoga maritima MreB in the presence of different nucleotides in vitro. We found that GTP, not ADP or GDP, can mediate MreB assembly into filamentous structures as effectively as ATP. Upon MreB assembly, both GTP and ATP release the gamma phosphate at similar rates. Therefore, MreB is an equally effective ATPase and GTPase. Electron microscopy and quantitative rheology suggest that the morphologies and micromechanical properties of filamentous ATP-MreB and GTP-MreB are similar. In contrast, mammalian actin assembly is favored in the presence of ATP over GTP. These results indicate that, despite high structural homology of their monomers, T. maritima MreB and actin filaments display different assembly, morphology, micromechanics, and nucleotide-binding specificity. Furthermore, the biophysical properties of T. maritima MreB filaments, including high rigidity and propensity to form bundles, suggest a mechanism by which MreB helical structure may be involved in imposing a cylindrical architecture on rod-shaped bacterial cells.

  2. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  3. Beta-helical polymers from isocyanopeptides

    NARCIS (Netherlands)

    Cornelissen, J.J.L.M.; Donners, J.J.J.M.; Gelder, de R.; Graswinckel, W.S.; Metselaar, G.A.; Rowan, A.E.; Sommerdijk, N.A.J.M.; Nolte, R.J.M.

    2001-01-01

    Polymerization of isocyanopeptides results in the formation of high molecular mass polymers that fold in a proteinlike fashion to give helical strands in which the peptide chains are arranged in ß-sheets. The ß-helical polymers retain their structure in water and unfold in a cooperative process at

  4. Magnetic islands created by resonant helical windings

    International Nuclear Information System (INIS)

    Fernandes, A.S.; Heller, M.V.; Caldas, I.L.

    1986-01-01

    The triggering of disruptive instabilities by resonant helical windings in large aspect-ratio tokamaks is associated to destruction of magnetic surfaces. The Chirikov condition is applied to estimate analytically the helical winding current thresholds for ergodization of the magnetic field lines. (Autor) [pt

  5. Helicity amplitudes for matter-coupled gravity

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Novaes, S.F.; Spehler, D.

    1992-07-01

    The Weyl-van der Waerden spinor formalism is applied to the evaluation of helicity invariant amplitudes in the framework of linearized gravitation. The graviton couplings to spin-0, 1 - 2 , 1, and 3 - 2 particles are given, and, to exhibit the reach of this method, the helicity amplitudes for the process electron + positron → photon + graviton are obtained. (author)

  6. Stiffness versus architecture of single helical polyisocyanopeptides

    NARCIS (Netherlands)

    Buul, van A.M.; Schwartz, E.; Brocorens, P.; Koepf, M.; Beljonne, D.; Maan, J.C.; Christianen, P.C.M.; Kouwer, P.H.J.; Nolte, R.J.M.; Engelkamp, H.; Blank, K.; Rowan, A.E.

    2013-01-01

    Helical structures play a vital role in nature, offering mechanical rigidity, chirality and structural definition to biological systems. Little is known about the influence of the helical architecture on the intrinsic properties of polymers. Here, we offer an insight into the nano architecture of

  7. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  8. Three-dimensional printing of freeform helical microstructures: a review.

    Science.gov (United States)

    Farahani, R D; Chizari, K; Therriault, D

    2014-09-21

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ∼100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  9. The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag.

    Science.gov (United States)

    Swulius, Matthew T; Jensen, Grant J

    2012-12-01

    Based on fluorescence microscopy, the actin homolog MreB has been thought to form extended helices surrounding the cytoplasm of rod-shaped bacterial cells. The presence of these and other putative helices has come to dominate models of bacterial cell shape regulation, chromosome segregation, polarity, and motility. Here we use electron cryotomography to show that MreB does in fact form extended helices and filaments in Escherichia coli when yellow fluorescent protein (YFP) is fused to its N terminus but native (untagged) MreB expressed to the same levels does not. In contrast, mCherry fused to an internal loop (MreB-RFP(SW)) does not induce helices. The helices are therefore an artifact of the placement of the fluorescent protein tag. YFP-MreB helices were also clearly distinguishable from the punctate, "patchy" localization patterns of MreB-RFP(SW), even by standard light microscopy. The many interpretations in the literature of such punctate patterns as helices should therefore be reconsidered.

  10. The quantum Hall effect helicity

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Keshav N., E-mail: keshav1001@yahoo.com [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  11. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  12. Prediction of Solar Eruptions Using Filament Metadata

    Science.gov (United States)

    Aggarwal, Ashna; Schanche, Nicole; Reeves, Katharine K.; Kempton, Dustin; Angryk, Rafal

    2018-05-01

    We perform a statistical analysis of erupting and non-erupting solar filaments to determine the properties related to the eruption potential. In order to perform this study, we correlate filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a spatiotemporal tracking algorithm. The HEK provides metadata about each filament instance, including values for length, area, tilt, and chirality. We add additional metadata properties such as the distance from the nearest active region and the magnetic field decay index. We compare trends in the metadata from erupting and non-erupting filament tracks to discover which properties present signs of an eruption. We find that a change in filament length over time is the most important factor in discriminating between erupting and non-erupting filament tracks, with erupting tracks being more likely to have decreasing length. We attempt to find an ensemble of predictive filament metadata using a Random Forest Classifier approach, but find the probability of correctly predicting an eruption with the current metadata is only slightly better than chance.

  13. Scanning For Hotspots In Lamp Filaments

    Science.gov (United States)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  14. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  15. Particles trajectories in magnetic filaments

    International Nuclear Information System (INIS)

    Bret, A.

    2015-01-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed

  16. Particles trajectories in magnetic filaments

    Science.gov (United States)

    Bret, A.

    2015-07-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  17. Particles trajectories in magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  18. Actin filaments as tension sensors.

    Science.gov (United States)

    Galkin, Vitold E; Orlova, Albina; Egelman, Edward H

    2012-02-07

    The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Hao Juan; Zhang Mei

    2011-01-01

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the Σ-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  20. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  1. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, A.M.; Simon, M.; Sen, A.; Yu, X.; Griffith, J. D.; Egelman, E. H.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  2. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  3. Lepton pair production in deep inelastic scattering of polarized particles

    International Nuclear Information System (INIS)

    Hongan, P.; Danhua, Q.

    1981-08-01

    Using the leading order nucleon density function of QCD, we have calculated the differential cross sections and the helicity asymmetries Asub(L)(M 2 ) associated with definite initial helicity states in e(μ)+P→e(μ)+γsup(*), Z 0 +X→e(μ)+ll-bar+X at two energy ranges. The differential cross sections are too small to measure, but the integrated helicity asymmetry may be a measurable quantity which could be a clear test about the existence of Z 0 particle. We also show that the contributions of LPP where γsup(*),Z 0 radiated from e(μ) lepton lines are important when lepton pair mass M < or approx. 5 GeV., but becomes tiny as M is approximately equal to Msub(Z). (author)

  4. Localized nonlinear waves on quantized superfluid vortex filaments in the presence of mutual friction and a driving normal fluid flow.

    Science.gov (United States)

    Shah, Rehan; Van Gorder, Robert A

    2016-03-01

    We demonstrate the existence of localized structures along quantized vortex filaments in superfluid helium under the quantum form of the local induction approximation (LIA), which includes mutual friction and normal fluid effects. For small magnitude normal fluid velocities, the dynamics are dissipative under mutual friction. On the other hand, when normal fluid velocities are sufficiently large, we observe parametric amplification of the localized disturbances along quantized vortex filaments, akin to the Donnelly-Glaberson instability for regular Kelvin waves. As the waves amplify they will eventually cause breakdown of the LIA assumption (and perhaps the vortex filament itself), and we derive a characteristic time for which this breakdown occurs under our model. More complicated localized waves are shown to occur, and we study these asymptotically and through numerical simulations. Such solutions still exhibit parametric amplification for large enough normal fluid velocities, although this amplification may be less uniform than would be seen for more regular filaments such as those corresponding to helical curves. We find that large rotational velocities or large wave speeds of nonlinear waves along the filaments will result in more regular and stable structures, while small rotational velocities and wave speeds will permit far less regular dynamics.

  5. Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models.

    Science.gov (United States)

    Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro

    2010-07-28

    We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1

  6. Plasmoid behavior in helical plasmas

    International Nuclear Information System (INIS)

    Ishizaki, R.; Nakajima, N.

    2009-01-01

    Full text: It is well known that an ablation cloud; a high density and low temperature plasmoid, drifts to the lower field side in tokamak plasmas, which leads to a good performance on fueling in tokamak. Such a good performance, however, has not been obtained yet in the planar axis heliotron; Large Helical Device (LHD) experiments, even if a pellet has been injected from the high field side. The purpose of the study is to clarify the difference on the plasmoid motion between tokamak and LHD plasmas by using the MHD simulation including ablation processes. It is found in tokamaks that the drift motion is induced by a tire tube force and 1/R force in the major radius direction, and that the pressure and density of the plasmoid have oscillation due to fast compressional Alfven wave. On the other hand, the upper and lower portions surrounding the plasmoid center drift to the higher field side, because 1/R force by magnetic field becomes negative in the major radius direction since the magnetic field surrounding the plasmoid is accumulated by the extremely large ablation pressure and the magnetic pressure perturbation becomes positive. It is also found that the plasmoid does not drift when the perturbation of the plasmoid is small. In addition, the motion of the plasmoid is investigated in LHD plasmas in four cases that the plasmoids are initially located at the inner and outer sides of the torus on the vertically and horizontally elongated poloidal cross sections. The plasmoids drift to the lower field sides in all cases. However, in the case that it is located at the inner side of the torus on the horizontally elongated poloidal cross section, it is found that the plasmoid drifts in the negative direction of the major radius and subsequently drifts in the positive direction of it. In other words, the plasmoid finally drifts in the positive direction of the major radius the same as the plasmoid located at the outer side of the torus. This fact might be one of the

  7. Filamentation of Campylobacter in broth cultures

    Directory of Open Access Journals (Sweden)

    Nacheervan M Ghaffar

    2015-06-01

    Full Text Available The transition from rod to filamentous cell morphology has been identified as a response to stressful conditions in many bacterial species and has been ascribed to confer certain survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur spontaneously on entry in to stationary phase distinguishing it from many other bacteria where a reduction in size is more common. The aim of this study was to investigate the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into the process. Using minimal medium, augmentation of filamentation occurred and it was observed that this morphological change was wide spread amongst C. jejuni strains tested but was not universal in C. coli strains. Filamentation did not appear to be due to release of diffusible molecules, toxic metabolites, or be in response to oxidative stress in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66 to 17.4 fg than spiral forms (0.99 to 1.7 fg and showed enhanced survival in water at 4oC and 37oC compared to spiral cells. These observations support the conclusion that the filaments are adapted to survive extra-intestinal environments. Differences in cell morphology and physiology need to be considered in the context of the design of experimental studies and the methods adopted for the isolation of campylobacters from food, clinical and environmental sources.

  8. Striation and convection in penumbral filaments

    Science.gov (United States)

    Spruit, H. C.; Scharmer, G. B.; Löfdahl, M. G.

    2010-10-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and “canals”. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations. 4 movies are only available in electronic form at http://www.aanda.org

  9. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  10. Spin versus helicity in processes involving transversity

    CERN Document Server

    Mekhfi, Mustapha

    2011-01-01

    We construct the spin formalism in order to deal in a direct and natural way with processes involving transversity which are now of increasing popularity. The helicity formalism which is more appropriate for collision processes of definite helicity has been so far used also to manage processes with transversity, but at the price of computing numerous helicity amplitudes generally involving unnecessary kinematical variables.In a second step we work out the correspondence between both formalisms and retrieve in another way all results of the helicity formalism but in simpler forms.We then compute certain processes for comparison.A special process:the quark dipole magnetic moment is shown to be exclusively treated within the spin formalism as it is directly related to the transverse spin of the quark inside the baryon.

  11. Helical magnetized wiggler for synchrotron radiation laser

    International Nuclear Information System (INIS)

    Wang Mei; Park, S.Y.; Hirshfield, J.L.

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude

  12. Helical magnetized wiggler for synchrotron radiation laser

    CERN Document Server

    Wang Mei; Hirshfield, J L

    1999-01-01

    A helical magnetized iron wiggler has been built for a novel infrared synchrotron radiation laser (SRL) experiment. The wiggler consists of four periods of helical iron structure immersed in a solenoid field. This wiggler is to impart transverse velocity to a prebunched 6 MeV electron beam, and thus to obtain a desired high orbit pitch ratio for the SRL. Field tapering at beam entrance is considered and tested on a similar wiggler. Analytic and simulated characteristics of wigglers of this type are discussed and the performance of the fabricated wigglers is demonstrated experimentally. A 4.7 kG peak field was measured for a 6.4 mm air gap and a 5.4 cm wiggler period at a 20 kG solenoid field. The measured helical fields compare favorably with the analytical solution. This type of helical iron wigglers has the potential to be scaled to small periods with strong field amplitude.

  13. Using helical compressors for coke gas condensation

    Energy Technology Data Exchange (ETDEWEB)

    Privalov, V E; Rezunenko, Yu I; Lelyanov, N V; Zarnitzkii, G Eh; Gordienko, A A; Derebenko, I F; Venzhega, A G; Leonov, N P; Gorokhov, N N

    1982-08-01

    Coke oven gas compression is discussed. Presently used multilevel piston compressors are criticized. The paper recommends using helical machines which combine advantages of using volume condensing compressors and compact high-efficiency centrifugal machines. Two kinds of helical compressors are evaluated: dry and oil-filled; their productivities and coke oven gas chemical composition are analyzed. Experiments using helical compressors were undertaken at the Yasinovskii plant. Flowsheet of the installation is shown. Performance results are given in a table. For all operating conditions content of insolubles in oil compounds is found to be lower than the acceptable value (0.08%). Compressor productivity measurements with variable manifold pressure are evaluated. Figures obtained show that efficient condensation of raw coke oven gas is possible. Increasing oil-filled compressor productivity is recommended by decreasing amount of oil injected and simultaneously increasing rotation speed. The dry helical compressor with water seal is found to be most promising for raw coke oven gas condensation. (10 refs.)

  14. SLOW RISE AND PARTIAL ERUPTION OF A DOUBLE-DECKER FILAMENT. I. OBSERVATIONS AND INTERPRETATION

    International Nuclear Information System (INIS)

    Liu Rui; Kliem, Bernhard; Török, Tibor; Titov, Viacheslav S.; Lionello, Roberto; Linker, Jon A.; Liu Chang; Wang Haimin

    2012-01-01

    We study an active-region dextral filament that was composed of two branches separated in height by about 13 Mm, as inferred from three-dimensional reconstruction by combining SDO and STEREO-B observations. This 'double-decker' configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Analyzing this evolution, we obtain the following main results. (1) During the hours before the eruption, filament threads within the lower branch were observed to intermittently brighten up, lift upward, and then merge with the upper branch. The merging process contributed magnetic flux and current to the upper branch, resulting in its quasi-static ascent. (2) This transfer might serve as the key mechanism for the upper branch to lose equilibrium by reaching the limiting flux that can be stably held down by the overlying field or by reaching the threshold of the torus instability. (3) The erupting branch first straightened from a reverse S shape that followed the polarity inversion line and then writhed into a forward S shape. This shows a transfer of left-handed helicity in a sequence of writhe-twist-writhe. The fact that the initial writhe is converted into the twist of the flux rope excludes the helical kink instability as the trigger process of the eruption, but supports the occurrence of the instability in the main phase, which is indeed indicated by the very strong writhing motion. (4) A hard X-ray sigmoid, likely of coronal origin, formed in the gap between the two original filament branches in the impulsive phase of the associated flare. This supports a model of transient sigmoids forming in the vertical flare current sheet. (5) Left-handed magnetic helicity is inferred for both branches of the dextral filament. (6) Two types of force-free magnetic configurations are compatible with the data, a double flux rope equilibrium and a single flux rope situated above a loop arcade.

  15. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  16. Filaments in simulations of molecular cloud formation

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ∼15 pc and masses ∼600 M {sub ☉} above density n ∼ 10{sup 3} cm{sup –3} (∼2 × 10{sup 3} M {sub ☉} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ∼0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ∼30 M {sub ☉} Myr{sup –1} pc{sup –1}.

  17. Helicity evolution at small x

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2016-01-01

    We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g 1 structure function. These evolution equations resum powers of α s ln 2  (1/x) in the polarization-dependent evolution along with the powers of α s ln (1/x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-N c and large-N c   N f limits. As a cross-check, in the ladder approximation, our equations map onto the same ladder limit of the infrared evolution equations for the g 1 structure function derived previously by Bartels, Ermolaev and Ryskin http://dx.doi.org/10.1007/s002880050285.

  18. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  19. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvi......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  20. Diffusion in a tokamak with helical magnetic cells

    International Nuclear Information System (INIS)

    Wakatani, Masahiro

    1975-05-01

    In a tokamak with helical magnetic cells produced by a resonant helical magnetic field, diffusion in the collisional regime is studied. The diffusion coefficient is greatly enhanced near the resonant surface even for a weak helical magnetic field. A theoretical model for disruptive instabilities based on the enhanced transport due to helical magnetic cells is discussed. This may explain experiments of the tokamak with resonant helical fields qualitatively. (author)

  1. Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields

    International Nuclear Information System (INIS)

    Irvine, William T M

    2010-01-01

    Maxwell's equations allow for some remarkable solutions consisting of pulsed beams of light which have linked and knotted field lines. The preservation of the topological structure of the field lines in these solutions has previously been ascribed to the fact that the electric and magnetic helicities, a measure of the degree of linking and knotting between field lines, are conserved. Here we show that the elegant evolution of the field is due to the stricter condition that the electric and magnetic fields be everywhere orthogonal. The field lines then satisfy a 'frozen field' condition and evolve as if they were unbreakable filaments embedded in a fluid. The preservation of the orthogonality of the electric and magnetic field lines is guaranteed for null, shear-free fields such as the ones considered here by a theorem of Robinson. We calculate the flow field of a particular solution and find it to have the form of a Hopf fibration moving at the speed of light in a direction opposite to the propagation of the pulsed light beam, a familiar structure in this type of solution. The difference between smooth evolution of individual field lines and conservation of electric and magnetic helicities is illustrated by considering a further example in which the helicities are conserved, but the field lines are not everywhere orthogonal. The field line configuration at time t = 0 corresponds to a nested family of torus knots but unravels upon evolution.

  2. Bifurcation of plasma cylinder equilibrium into a stationary helical flow with magnetic islands

    International Nuclear Information System (INIS)

    Gubarev, V.F.; Dmitrenko, A.G.; Fesenko, A.I.

    1985-01-01

    Introduction of the low-hydrodynamic viscosity into the system of nonlinear MHD-equations enabled to use the bifurcation theory for the investigation into nonlinear phenomena connected with a tearing mode. The existance of a stable stationary helical flow with magnetic islands in the vicinity of a neutral curve is established. Fransfer from an axisymmetric equilibrium of a plasma cylinder to a helical one takes place only under soft conditions at both sides of the neutral curve. This result confirms the fact that the tearing mode, actually, is not an instability and may be con sidered only as a reason of formation of equilibrium with splitted magnetic surfaces. Really, changing the q 0 parameter (q 0 is the value proportional to a value of stability margin) at the plasma filament boundary a plasma equilibrium is attained corresponding to a stable branch of the bifurcation curve. In this case, a stable branch of the bifurcation curve corresponds to a helical stationary flow with magnetic islands in the instabwility region determined from the linear theory

  3. Mutation-specific effects on thin filament length in thin filament myopathy.

    Science.gov (United States)

    Winter, Josine M de; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A; Pappas, Christopher T; Gregorio, Carol C; Stienen, Ger J M; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B; Engelen, Baziel G van; Voermans, Nicol C; Donkervoort, Sandra; Bönnemann, C G; Clarke, Nigel F; Beggs, Alan H; Granzier, Henk; Ottenheijm, Coen A C

    2016-06-01

    Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969. © 2016 American Neurological Association.

  4. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available extensively used for the deposition of various materials, including diamond [1], polymers [2], silicon thin films [3], boron-carbon-nitride layers [4] and carbon nanotubes (CNTs) [5]. The process relies on the catalytic decomposition of precursor gases... (Ho) twice as efficient as a W filament during the deposition of microcrystalline silicon thin films [6]. Reactions between the precursor gases and the heated filament result in changes of the structural properties of the filaments; a process...

  5. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  6. Morgellons disease: a filamentous borrelial dermatitis

    OpenAIRE

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they resu...

  7. Control of multiple filamentation in air

    Science.gov (United States)

    Fibich, Gadi; Eisenmann, Shmuel; Ilan, Boaz; Zigler, Arie

    2004-08-01

    In this Letter we provide what is believed to be the first experimental evidence of suppression of the number of filaments for high-intensity laser pulses propagating in air by beam astigmatism. We also show that the number, pattern, and spatial stability of the filaments can be controlled by varying the angle that a focusing lens makes with the axial direction of propagation. This new methodology can be useful for applications involving atmospheric propagation, such as remote sensing.

  8. Flux Cancellation Leading to CME Filament Eruptions

    Science.gov (United States)

    Popescu, Roxana M.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-01-01

    Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to approx.100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable, often by magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both on board the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions. We find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two CME-producing eruptions in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field, and thereafter evolve in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)].

  9. Torsion effect on fully developed flow in a helical pipe

    Science.gov (United States)

    Kao, Hsiao C.

    1987-01-01

    Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.

  10. Dimensional quantization effects in the thermodynamics of conductive filaments

    Science.gov (United States)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  11. Observing meiosis in filamentous fungi: Sordaria and Neurospora.

    Science.gov (United States)

    Zickler, Denise

    2009-01-01

    The filamentous fungi Neurospora crassa and Sordaria macrospora are materials of choice for recombination studies because each of the DNA strands involved in meiosis can be visually analyzed using spore-color mutants. Well-advanced molecular genetic methodologies have been developed for each of these fungi, and several mutants defective in recombination and/or pairing are available. Moreover, the complete genome sequence of N. crassa has made it possible to clone virtually any gene involved in their life cycle. Both fungi provide also a particularly attractive experimental system for cytological analysis of meiosis: stages can be determined independently of chromosomal morphology and their seven chromosomes are easily identified. The techniques for light, immunofluorescence and electron microscopy presented here have been used, with success, for monitoring of chromosome behavior during both meiotic and sporulation processes. They have also proved useful for the analysis of mitochondria and peroxisomes as well as cytoskeleton and spindle pole-body components. Moreover, all techniques of this chapter can be easily applied to other filamentous ascomycetes, including other Sordaria and Neurospora species as well as Podospora, Ascobolus, Ascophanus, Fusarium, Neotiella, and Aspergillus species.

  12. Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments.

    Science.gov (United States)

    Hayward, Steven; Milner-White, E James

    2017-10-01

    Examples of homomeric β-helices and β-barrels have recently emerged. Here we generalize the theory for the shear number in β-barrels to encompass β-helices and homomeric structures. We introduce the concept of the "β-strip," the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n-fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β-strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α-hemolysin, T4 phage spike, cylindrin, and the HET-s(218-289) prion. From reported dimensions measured by X-ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in-register β-strands folded into a "β-strip helix." Results suggest both stabilization of an individual β-strip helix and growth by addition of further β-strip helices can involve the same pair of sequence segments associating with β-sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design. © 2017 Wiley Periodicals, Inc.

  13. Dynamic helical CT mammography of breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Fukushima, Hitoshi; Okamura, Ryuji; Nakamura, Yoshiaki; Morimoto, Taisuke; Urata, Yoji; Mukaihara, Sumio; Hayakawa, Katsumi

    2006-01-01

    The purpose of this study was to determine whether dynamic helical computed tomography (CT)-mammography could assist in selecting the most appropriate surgical method in women with breast cancer. Preoperative contrast-enhanced helical CT scanning of the breast was performed on 133 female patients with suspicion of breast cancer at the same time as clinical, mammographic, and/or ultrasonographic examinations. The patients were scanned in the prone position with a specially designed CT-compatible device. A helical scan was made with rapid intravenous bolus injection (3 ml/s) of 100 ml of iodine contrast material. Three-dimensional maximum intensity projection (MIP) images were reconstructed, and CT findings were correlated with surgical and histopathological findings. Histopathological analysis revealed 84 malignant lesions and seven benign lesions. The sensitivity, specificity, and accuracy levels of the CT scanning were 94.6%, 58.6%, and 78.9%. Helical scanning alone revealed additional contralateral carcinomas in three of four patients and additional ipsilateral carcinomas in three of five patients. However, the technique gave false-positive readings in 24 patients. The preoperative CT-mammogram altered the surgical method in six patients. Dynamic helical CT-mammography in the prone position may be one of the choices of adjunct imaging in patients with suspected breast cancer scheduled for surgery. (author)

  14. Introduction to the m = 1 helicity source

    International Nuclear Information System (INIS)

    Platts, D.A.; Jarboe, T.R.; Wright, B.L.

    1985-01-01

    The m = 1 Helicity Source, formerly called the Kinked Z-pinch, was developed as part of the Electrode Studies program at Los Alamos. The Electrode Studies program was initiated to study the control of electrode erosion in long discharge duration spheromak sources. Erosion control is necessary to reduce plasma impurities and to obtain adequate electrode lifetimes. The first task of the Electrode Studies program is to determine, from among a variety of configurations including the coaxial one, a helicity source geometry with good prospects for erosion control. The more efficient the helicity source the easier it will be to control erosion, but the source most also be easy to diagnose and modify if it is to be a useful test bed. The various erosion control techniques which have been proposed will require extensive experimentation to evaluate and optimize. Proposed techniques include, using refractory metals, profiling of the electrodes and magnetic fields, and various gas injection schemes including porous electrodes. It is considered necessary to do these experiments on an optimized helicity source so that the electrode geometries and plasma properties will be relevant. Therefore the present Electrode Studies program is aimed at developing an improved helicity source design

  15. Sensitivity Analysis and Stray Capacitance of Helical Flux Compression Generator with Multi Layer Filamentary Conductor in Rectangular Cross-Section

    Directory of Open Access Journals (Sweden)

    M. E. Mosleh

    2012-03-01

    Full Text Available This paper presents an approach to calculate the equivalent stray capacitance (SC of n-turn of the helical flux compression generator (HFCG coil with multi layer conductor wire filaments (MLCWF in the form of rectangular cross-section. This approach is based on vespiary regular hexagonal (VRH model. In this method, wire filaments of the generator coil are separated into many very small similar elementary cells. By the expanded explosion in the liner and move explosion to the end of the liner, the coil turns number will be reduced. So, the equivalent SC of the HFCG will increase. The results show that by progress of explosion and decrease of the turns’ number in the generator coil total capacitance of the generator increases until the explosion reaches to the second turn. When only one turn remains in the circuit, a decrease occurs in the total capacitance of the generator.

  16. Clinical application of helical CT colonography

    International Nuclear Information System (INIS)

    Zeng Huiliang; Zhu Xinjin; Liang Rujian; Liang Jianhao; Ou Weiqian; Wen Haomao

    2009-01-01

    Objective: To investigate the clinical value of 16-slice helical CT colonography in the diagnosis of colon tumor and polypus. Methods: 16-slice helical CT volumetric scanning was performed in 18 patients with colonic disease, including colonic tumor (n=16) and colonic polypus (n=2). 3D images, virtual endoscopy and multiplanar reformation were obtained in the AW4.1 workstation. CT appearances were compared with operation and fiberoptic colonoscopy. Results: Satisfied results were achieved from 18 patients, no difference found in results between CT colonography and operation in 16 patients with colonic tumor. Conclusion: 16-slice helical CT colonography is of great value in preoperative staging of colonic tumor and have a high value in clinical application. (authors)

  17. Helicity antenna showers for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine; Skands, Peter [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Lifson, Andrew [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); ETH Zuerich, Zurich (Switzerland)

    2017-10-15

    We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226. (orig.)

  18. Manipulation of wavefront using helical metamaterials.

    Science.gov (United States)

    Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming

    2016-08-08

    Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.

  19. Helicity antenna showers for hadron colliders

    Science.gov (United States)

    Fischer, Nadine; Lifson, Andrew; Skands, Peter

    2017-10-01

    We present a complete set of helicity-dependent 2→ 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2→ 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.

  20. Neutrino's helicity in a gravitational field

    International Nuclear Information System (INIS)

    Pansart, J.P.

    1996-01-01

    By using approximated solutions of Dirac's equation, we show that there is no helicity reversal for light neutrinos in the Schwarzschild metric nor in an expanding universe. The actual coupling between a particle spin and the angular momentum of a heavy rotating body induces a possible helicity reversal but with an unobservable probability proportional to m 2 p / E 2 , where m p is the particle mass and E its energy. In these calculations, the helicity is defined through the spin orientation with respect to the current and not with respect to the linear momentum. This definition gives simple expressions and is equal to the usual definition in the case of a flat space. (N.T.)

  1. Single-superfield helical-phase inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ketov, Sergei V., E-mail: ketov@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Terada, Takahiro, E-mail: takahiro@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany)

    2016-01-10

    Large-field inflation in supergravity requires the approximate global symmetry needed to protect flatness of the scalar potential. In helical-phase inflation, the U(1) symmetry of the Kähler potential is assumed, the phase part of the complex scalar of a chiral superfield plays the role of inflaton, and the radial part is strongly stabilized. The original model of helical phase inflation, proposed by Li, Li and Nanopoulos (LLN), employs an extra (stabilizer) superfield. We propose a more economical new class of the helical phase inflationary models without a stabilizer superfield. As the specific examples, the quadratic, the natural, and the Starobinsky-type inflationary models are studied in our approach.

  2. Resonant helical fields in the TBR tokamak

    International Nuclear Information System (INIS)

    Bender, O.W.

    1986-01-01

    The influence of external resonant helical fields (RHF) in the tokamak TBR plasma discharges was investigated. These fields were created by helical windings wounded on the TBR vessel with the same helicity of rational magnetic surfaces, producing resonant efects on these surfaces. The characteristics of the MHZ activity (amplitude, frequency and poloidal and toroidal wave numbers, m=2,3,4 and n=1, respectively) during the plasma discharges were modified by eletrical winding currents of the order of 2% of the plasma current. These characterisitics were measured for diferent discharges safety factors at the limiter (q) between 3 and 4, with and without the RHF, with the atenuation of the oscillation amplitudes and the increasing of their frequencies. The existente of expontaneous and induced magnetic islands were investigated. The data were compared with results obtained in other tokamaks. (author) [pt

  3. The helical structure of DNA facilitates binding

    International Nuclear Information System (INIS)

    Berg, Otto G; Mahmutovic, Anel; Marklund, Emil; Elf, Johan

    2016-01-01

    The helical structure of DNA imposes constraints on the rate of diffusion-limited protein binding. Here we solve the reaction–diffusion equations for DNA-like geometries and extend with simulations when necessary. We find that the helical structure can make binding to the DNA more than twice as fast compared to a case where DNA would be reactive only along one side. We also find that this rate advantage remains when the contributions from steric constraints and rotational diffusion of the DNA-binding protein are included. Furthermore, we find that the association rate is insensitive to changes in the steric constraints on the DNA in the helix geometry, while it is much more dependent on the steric constraints on the DNA-binding protein. We conclude that the helical structure of DNA facilitates the nonspecific binding of transcription factors and structural DNA-binding proteins in general. (paper)

  4. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  5. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    Science.gov (United States)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  6. Nonideal, helical, vortical magnetohydrodynamic steady states

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Montgomery, D.

    1991-01-01

    The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)

  7. Equilibrium calculations for helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.

    1984-04-01

    An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations

  8. Helical post stellarator. Part 1: Vacuum configuration

    International Nuclear Information System (INIS)

    Moroz, P.E.

    1997-08-01

    Results on a novel type of stellarator configuration, the Helical Post Stellarator (HPS), are presented. This configuration is different significantly from all previously known stellarators due to its unique geometrical characteristics and unique physical properties. Among those are: the magnetic field has only one toroidal period (M = 1), the plasma has an extremely low aspect ratio, A ∼ 1, and the variation of the magnetic field, B, along field lines features a helical ripple on the inside of the torus. Among the main advantages of a HPS for a fusion program are extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and improved particle transport characteristics

  9. Equilibrium studies of helical axis stellarators

    International Nuclear Information System (INIS)

    Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.

    1984-01-01

    The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit

  10. Conversion from mutual helicity to self-helicity observed with IRIS

    Science.gov (United States)

    Li, L. P.; Peter, H.; Chen, F.; Zhang, J.

    2014-10-01

    Context. In the upper atmosphere of the Sun observations show convincing evidence for crossing and twisted structures, which are interpreted as mutual helicity and self-helicity. Aims: We use observations with the new Interface Region Imaging Spectrograph (IRIS) to show the conversion of mutual helicity into self-helicity in coronal structures on the Sun. Methods: Using far UV spectra and slit-jaw images from IRIS and coronal images and magnetograms from SDO, we investigated the evolution of two crossing loops in an active region, in particular, the properties of the Si IV line profile in cool loops. Results: In the early stage two cool loops cross each other and accordingly have mutual helicity. The Doppler shifts in the loops indicate that they wind around each other. As a consequence, near the crossing point of the loops (interchange) reconnection sets in, which heats the plasma. This is consistent with the observed increase of the line width and of the appearance of the loops at higher temperatures. After this interaction, the two new loops run in parallel, and in one of them shows a clear spectral tilt of the Si IV line profile. This is indicative of a helical (twisting) motion, which is the same as to say that the loop has self-helicity. Conclusions: The high spatial and spectral resolution of IRIS allowed us to see the conversion of mutual helicity to self-helicity in the (interchange) reconnection of two loops. This is observational evidence for earlier theoretical speculations. Movie associated with Fig. 1 and Appendix A are available in electronic form at http://www.aanda.org

  11. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  12. Spindles and active vortices in a model of confined filament-motor mixtures.

    Science.gov (United States)

    Head, David A; Briels, Wj; Gompper, Gerhard

    2011-11-16

    Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic

  13. Spindles and active vortices in a model of confined filament-motor mixtures

    Directory of Open Access Journals (Sweden)

    Head David A

    2011-11-01

    Full Text Available Abstract Background Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Results Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. Conclusions We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue

  14. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  15. Intermediate filaments and gene regulation.

    Science.gov (United States)

    Traub, P

    1995-01-01

    The biological role of intermediate filaments (IFs) of eukaryotic cells is still a matter of conjecture. On the basis of immunofluorescence and electron microscopic observations, they appear to play a cytoskeletal role in that they stabilize cellular structure and organize the distribution and interactions of intracellular organelles and components. The expression of a large number of cell type-specific and developmentally regulated subunit proteins is believed to provide multicellular organisms with different IF systems capable of differential interactions with the various substructures and components of their multiple, differentiated cells. However, the destruction of distinct IF systems by manipulation of cultured cells or by knock-out mutation of IF subunit proteins in transgenic mice exerts relatively little influence on cellular morphology and physiology and on development of mutant animals. In order to rationalize this dilemma, the cytoskeletal concept of IF function has been extended to purport that cytoplasmic (c) IFs and their subunit proteins also play fundamental roles in gene regulation. It is based on the in vitro capacity of cIF(protein)s to interact with guanine-rich, single-stranded DNA, supercoiled DNA and histones, as well as on their close structural relatedness to gene-regulatory DNA-binding and nuclear matrix proteins. Since cIF proteins do not possess classical nuclear localization signals, it is proposed that cIFs directly penetrate the double nuclear membrane, exploiting the amphiphilic, membrane-active character of their subunit proteins. Since they can establish metastable multisite contacts with nuclear matrix structures and/or chromatin areas containing highly repetitive DNA sequence elements at the nuclear periphery, they are supposed to participate in chromosome distribution and chromatin organization in interphase nuclei of differentiated cells. Owing to their different DNA-binding specificities, the various cIF systems may in this

  16. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Mechanical model for filament buckling and growth by phase ordering.

    Science.gov (United States)

    Rey, Alejandro D; Abukhdeir, Nasser M

    2008-02-05

    A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.

  18. Dynamics and deformability of α-, 310- and π-helices

    Directory of Open Access Journals (Sweden)

    Narwani Tarun Jairaj

    2018-01-01

    Full Text Available Protein structures are often represented as seen in crystals as (i rigid macromolecules (ii with helices, sheets and coils. However, both definitions are partial because (i proteins are highly dynamic macromolecules and (ii the description of protein structures could be more precise. With regard to these two points, we analyzed and quantified the stability of helices by considering α-helices as well as 310- and π-helices. Molecular dynamic (MD simulations were performed on a large set of 169 representative protein domains. The local protein conformations were followed during each simulation and analyzed. The classical flexibility index (B-factor was confronted with the MD root mean square flexibility (RMSF index. Helical regions were classified according to their level of helicity from high to none. For the first time, a precise quantification showed the percentage of rigid and flexible helices that underlie unexpected behaviors. Only 76.4% of the residues associated with α-helices retain the conformation, while this tendency drops to 40.5% for 310-helices and is never observed for π-helices. α-helix residues that do not remain as an α-helix have a higher tendency to assume β-turn conformations than 310- or π-helices. The 310-helices that switch to the α-helix conformation have a higher B-factor and RMSF values than the average 310-helix but are associated with a lower accessibility. Rare π-helices assume a β-turn, bend and coil conformations, but not α- or 310-helices. The view on π-helices drastically changes with the new DSSP (Dictionary of Secondary Structure of Proteins assignment approach, leading to behavior similar to 310-helices, thus underlining the importance of secondary structure assignment methods.

  19. Review of the helicity formalism; Revision del formalismo de helicidad

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, F; Cerrada, M; Fernandez, E

    1972-07-01

    Our purpose in these notes has been to present a brief and general review of the helicity formalism. We begin by discussing Lorentz invariance, spin and helicity ideas, in section 1 . In section 2 we deal with the construction of relativistic states and scattering amplitudes in the helicity basis and we study their transformation properties under discrete symmetries. Finally we present some more sophisticated topics like kinematical singularities of helicity amplitudes, kinematical constraints and crossing relations 3, 4, 5 respectively. (Author) 8 refs.

  20. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  1. Filament stretching rheometer: inertia compensation revisited

    DEFF Research Database (Denmark)

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...

  2. Infrared Radiation Filament And Metnod Of Manufacture

    Science.gov (United States)

    Johnson, Edward A.

    1998-11-17

    An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

  3. Analytical Core Mass Function (CMF) from Filaments: Under Which Circumstances Can Filament Fragmentation Reproduce the CMF?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ning; Hennebelle, Patrick [IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Chabrier, Gilles, E-mail: yueh-ning.lee@cea.fr [École normale supérieure de Lyon, CRAL, UMR CNRS 5574, Université de Lyon, F-69364 Lyon Cedex 07 (France)

    2017-10-01

    Observations suggest that star formation in filamentary molecular clouds occurs in a two-step process, with the formation of filaments preceding that of prestellar cores and stars. Here, we apply the gravoturbulent fragmentation theory of Hennebelle and Chabrier to a filamentary environment, taking into account magnetic support. We discuss the induced geometrical effect on the cores, with a transition from 3D geometry at small scales to 1D at large ones. The model predicts the fragmentation behavior of a filament for a given mass per unit length (MpL) and level of magnetization. This core mass function (CMF) for individual filaments is then convolved with the distribution of filaments to obtain the final system CMF. The model yields two major results. (i) The filamentary geometry naturally induces a hierarchical fragmentation process, first into groups of cores, separated by a length equal to a few filament Jeans lengths, i.e., a few times the filament width. These groups then fragment into individual cores. (ii) Non-magnetized filaments with high MpL are found to fragment excessively, at odds with observations. This is resolved by taking into account the magnetic field (treated simply as additional pressure support). The present theory suggests two complementary modes of star formation: although small (spherical or filamentary) structures will collapse directly into prestellar cores, according to the standard Hennebelle–Chabrier theory, the large (filamentary) ones, the dominant population according to observations, will follow the aforedescribed two-step process.

  4. Exabyte helical scan devices at Fermilab

    International Nuclear Information System (INIS)

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs

  5. Helical axial injection concept for cyclotrons

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical.

  6. Helical axial injection concept for cyclotrons

    International Nuclear Information System (INIS)

    Hudson, E.D.

    1981-01-01

    A concept for an external beam injection system using a helical beam path centered on the cyclotron axis is described. This system could be used to couple two accelerator stages, with or without intermediate stripping, in cases where conventional axial injection or radial injection are not practical

  7. Electron image reconstruction of helical protein assemblies

    International Nuclear Information System (INIS)

    Cremers, A.F.M.

    1980-01-01

    The analysis of projections of large ordered biological systems obtained by electron microscopy of negatively stained specimens is described. The biological structures amenable to this approach are constructed from a large number of identical protein molecules, which are arranged according to helical symmetry. Electron images of these structures generally contain sufficient information in order to calculate a three-dimensional density map. (Auth.)

  8. Adaptive radiotherapy using helical tomotherapy system

    International Nuclear Information System (INIS)

    Jeswani, Sam; Ruchala, Kenneth; Olivera, Gustavo; Mackie, T.R.

    2008-01-01

    As commonly known in the field, adaptive radiation therapy (ART) is the use of feedback to modify a radiotherapy treatment. There are numerous ways in which this feedback can be received and used, and this presentation will discuss some of the implementations of ART being investigated with a helical TomoTherapy system

  9. Topological characteristics of helical repeat proteins

    NARCIS (Netherlands)

    Groves, M R; Barford, D

    The recent elucidation of protein structures based upon repeating amino acid motifs, including the armadillo motif, the HEAT motif and tetratricopeptide repeats, reveals that they belong to the class of helical repeat proteins. These proteins share the common property of being assembled from tandem

  10. A Prospective Evaluation of Helical Tomotherapy

    International Nuclear Information System (INIS)

    Bauman, Glenn; Yartsev, Slav; Rodrigues, George; Lewis, Craig; Venkatesan, Varagur M.; Yu, Edward; Hammond, Alex; Perera, Francisco; Ash, Robert; Dar, A. Rashid; Lock, Michael; Baily, Laura; Coad, Terry C; Trenka, Kris C.; Warr, Barbara; Kron, Tomas; Battista, Jerry; Van Dyk, Jake

    2007-01-01

    Purpose: To report results from two clinical trials evaluating helical tomotherapy (HT). Methods and Materials: Patients were enrolled in one of two prospective trials of HT (one for palliative and one for radical treatment). Both an HT plan and a companion three-dimensional conformal radiotherapy (3D-CRT) plan were generated. Pretreatment megavoltage computed tomography was used for daily image guidance. Results: From September 2004 to January 2006, a total of 61 sites in 60 patients were treated. In all but one case, a clinically acceptable tomotherapy plan for treatment was generated. Helical tomotherapy plans were subjectively equivalent or superior to 3D-CRT in 95% of plans. Helical tomotherapy was deemed equivalent or superior in two thirds of dose-volume point comparisons. In cases of inferiority, differences were either clinically insignificant and/or reflected deliberate tradeoffs to optimize the HT plan. Overall imaging and treatment time (median) was 27 min (range, 16-91 min). According to a patient questionnaire, 78% of patients were satisfied to very satisfied with the treatment process. Conclusions: Helical tomotherapy demonstrated clear advantages over conventional 3D-CRT in this diverse patient group. The prospective trials were helpful in deploying this technology in a busy clinical setting

  11. Helicity-flip in particle production on nuclei

    International Nuclear Information System (INIS)

    Faeldt, G.

    1977-01-01

    Coherent nuclear production processes are generally analyzed assuming helicity conserving production amplitudes. In view of the uncertainties of the actual helicity structure this could be a dangerous assumption. It is shown that helicity-flip contributions might be part of the explanation of the small effective (pππ)-nucleon cross sections observed in coherent production. (Auth.)

  12. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  13. A real-scale helical coil winding trial of the Large Helical Device

    International Nuclear Information System (INIS)

    Senba, T.; Yamamoto, T.; Tamaki, T.; Asano, K.; Suzuki, S.; Yamauchi, T.; Uchida, K.; Nakanishi, K.; Yamagiwa, T.; Suzuki, S.; Miyoshi, R.; Sasa, H.; Watanabe, S.; Tatemura, M.; Hatada, N.; Yamaguchi, S.; Imagawa, S.; Yanagi, N.; Satow, T.; Yamamoto, J.; Motojima, O.

    1995-01-01

    A real-scale helical coil winding trial of the Large Helical Device (LHD) has been conducted for a study of coil winding configuration and winding methods and for exhibiting the state of the art. It includes construction and test run of a specifically designed winding machine and development of various manufacturing methods for accurate coil winding. It has been carried out in Hitachi Works before in situ winding, and has provided much needed engineering data for construction of the LHD. (orig.)

  14. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  15. Bearing capacity of helical pile foundation in peat soil from different, diameter and spacing of helical plates

    Science.gov (United States)

    Fatnanta, F.; Satibi, S.; Muhardi

    2018-03-01

    In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.

  16. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  17. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement.

    Science.gov (United States)

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M; Clark, Noel A; Yoon, Dong Ki

    2017-02-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'- n -pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.

  18. Secure pairing with biometrics

    NARCIS (Netherlands)

    Buhan, I.R.; Boom, B.J.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.

    Secure pairing enables two devices that share no prior context with each other to agree upon a security association, which they can use to protect their subsequent communication. Secure pairing offers guarantees of the association partner identity and it should be resistant to eavesdropping and to a

  19. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.

    2011-01-01

    Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and

  20. Solutions of nuclear pairing

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Pehlivan, Y.

    2007-01-01

    We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators

  1. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  2. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  3. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    pair-sending families in the Philippines, this dissertation examines the long-term trajectories of these young Filipinas. It shows how the au pairs’ local and transnational family relations develop over time and greatly influence their life trajectories. A focal point of the study is how au pairs...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality......Since 2000, thousands of young Filipino migrants have come to Denmark as au pairs. Officially, they are there to “broaden their cultural horizons” by living temporarily with a Danish host family, but they also conduct domestic labor in exchange for food and money, which allows them to send...

  4. Patellofemoral joint dysfunction. Combined diagnostic imaging evaluation (X-rays, 3D helical CT and MRI)

    International Nuclear Information System (INIS)

    Carrascosa, P.; Sanchez, F.; Mazzucco, J.; Capanay, C.; Carrascosa, J.

    2000-01-01

    The comprehensive study including 3D helical CT, Magnetic Resonance (MR) and X-ray exams provide a more complete diagnosis than those obtained through the conventional CT. We studied 43 patients with presumptive or certain diagnosis of patellofemoral instability. All the patients were studied by: a) Radiological pair; b) Tomography under extension and flexion, without and with contraction, using a helical CT equipment; and c) MRI STIR sequence in axial plane. The findings were classified as muscular lesion, cartilage lesion, bone and associated lesions (e.g. synovitis), statistically comparing both studies (comprehensive vs. conventional). The results allow us to accept the hypothesis that the comprehensive study provides a more complete diagnosis about the origin of the patellofemoral dysfunction. In 65% of the patients, the conventional study gave a negative result. Only in 35% of the cases the result was positive, but incomplete, showing only 35.3% of the pathological findings detected by the comprehensive study. (author)

  5. Highlights from the assembly of the helical field coils for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Benson, R.D.

    1985-01-01

    The helical field (HF) coils in the Advanced Toroidal Facility (ATF) device consist of a set of 24 identical segments connected to form a continuous pair of helical coils wrapped around a toroidal vacuum vessel. Each segment weighs approximately 1364 kg (3000 lb) and is composed of 14 water-cooled copper plate conductors bolted to a cast stainless steel structural support member with a T-shape cross section (known as the structural tee). The segment components are electrically insulated with Kapton adhesive tape, G-10, Tefzel, and rubber to withstand 2.5 kV. As a final insulator and structural support, the entire segment is vacuum impregnated with epoxy. This paper offers a brief overview of the processes used to assemble the component parts into a completed segment, including identification of items that required special attention. 4 figs

  6. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo-metabolome...

  7. Nonlinear Binormal Flow of Vortex Filaments

    Science.gov (United States)

    Strong, Scott; Carr, Lincoln

    2015-11-01

    With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.

  8. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  9. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  10. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  11. Ponderomotive and thermal filamentation of laser light

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1985-01-01

    As targets are irradiated with longer, more energetic pulses of laser light, longer-scalelength plasmas are produced. Filamentation is a potentially important process in such plasmas. In this instability, perturbations in the intensity profile of an incident light beam grow in amplitude, causing the beam to break up into intense filaments. The instability arises when a local increase in the light intensity creates a depression in plasma density either directly, via the ponderomotive force, or indirectly, via enhanced collisional absorption and subsequent plasma expansion. The density depression refracts the light into the lower-density region, enhancing the intensity perturbations. The instability is termed either ponderomotive or thermal filamentation, depending on which mechanism generates the density depression. The analogous process involving the entire beam is called self-focusing. Filamentation can significantly affect laser-plasma coupling. Intensity enhancements can introduce or modify other instabilities, change the location of the energy deposition, and possibly aggravate deleterious collective effects such as hot-electron generation

  12. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    and filament eruptions, then, one might hope to discover important properties of the .... reasoning would lead to an estimated average field of 23 G in the corona, in ... paradigm relies heavily on the concept of twisted flux ropes as agents of ...

  13. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  14. Evolution of genetic systems in filamentous ascomycetes

    NARCIS (Netherlands)

    Nauta, M.J.

    1994-01-01

    A great variety of genetic systems exist in filamentous ascomycetes. The transmission of genetic material does not only occur by (sexual or asexual) reproduction, but it can also follow vegetative fusion of different strains. In this thesis the evolution of this variability is studied,

  15. Morphology and rheology in filamentous cultivations.

    Science.gov (United States)

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  16. A symplectic integration method for elastic filaments

    Science.gov (United States)

    Ladd, Tony; Misra, Gaurav

    2009-03-01

    Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.

  17. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  18. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  19. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  20. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    Science.gov (United States)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity

  1. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  2. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide.

    Science.gov (United States)

    Yakimov, Alexander; Pobegalov, Georgii; Bakhlanova, Irina; Khodorkovskii, Mikhail; Petukhov, Michael; Baitin, Dmitry

    2017-09-19

    The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction

    International Nuclear Information System (INIS)

    Sugimoto, Yasunobu; Takezawa, Yasunori; Matsuo, Tatsuhito; Ueno, Yutaka; Minakata, Shiho; Tanaka, Hidehiro; Wakabayashi, Katsuzo

    2008-01-01

    In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by ∼0.1% upon activation relative to the relaxing state and increased by ∼0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca 2+ -binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca 2+ -binding and the second induced by actomyosin interaction

  4. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    International Nuclear Information System (INIS)

    Stallard, B.W.; Hooper, E.B.; Woodruff, S.; Bulmer, R.H.; Hill, D.N.; McLean, H.S.; Wood, R.D.

    2003-01-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX

  5. Solar filament material oscillations and drainage before eruption

    International Nuclear Information System (INIS)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-01-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  6. Architecture and fine structure of gill filaments in the brown mussel, perna perna

    CSIR Research Space (South Africa)

    Gregory, MA

    1996-10-01

    Full Text Available attention was paid to filament architecture, enervation of filaments, number and type of cells populating filament epithelia and variations in epithelial cell morphotogy and cilia ultra structure. Filament shape was maintained by thickened chitin...

  7. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, CCHEN, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Castillo, Fermin [Universidad Nacional Autónoma de México, Cuernavaca, México (Mexico); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago (Chile); Auluck, S. K. H. [Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  8. Interaction between the intrinsic edge state and the helical boundary state of topological insulator phase in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Xiaoling [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Liwei [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China); Zheng, Yisong, E-mail: zhengys@jlu.edu.cn [National Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun 130012 (China)

    2016-04-22

    Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can also be established in such a two-dimensional carbon material at the boundary of topological insulator (TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We theoretically investigate the interaction between these two kinds of edge (boundary) states when they coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands at the two line defects are not equal to each other. In such a case, the backscattering lacking is still forbidden since the Kramers pairs are valley polarized. - Highlights: • The TI helical state moves to nanoribbon edge in a gated ZENR-BG. • The gapless modes of LD-BG at the two line defects are not equal to each other. • The Kramers pairs are still valley polarized in a gated LD-BG.

  9. Helical CT of congenital ossicular anomalies

    International Nuclear Information System (INIS)

    Osada, Hisato; Machida, Kikuo; Honda, Norinari

    2001-01-01

    Since January 1996 to December 2000, 26 cases of congenital ossicular anomaly could be diagnosed with helical CT. All cases were unilateral. In 8 patients with malformation of the external ear, CT showed malleoincudal fixation (n=5), malleoincudal fixation and deformed incuts long process (n=1), deformed incus long process (n=1), and partial fusion of malleus neck and incus long process (n=1). In 18 patients with normal external ear, CT showed defect of the incus long process (n=5), defect of both the incus long process and stapes superstructure (n=8, 2 patients with congenital cholesteatoma, 1 with hypoplastic oval window), defect of the stapes superstructure (n=2, 1 patient with oval window absence), defect of the malleus manubrium (n=1), ossification of the stampede's tendon (n=1), and monopod stapes (n=1). Helical CT can evaluate the auditory ossicular chain in detail and is useful for diagnosing congenital ossicular anomaly. (author)

  10. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  11. SUPERCONDUCTING HELICAL SNAKE MAGNETS: CONSTRUCTION AND MEASUREMENTS

    International Nuclear Information System (INIS)

    Mackay, W.W.; Anerella, M.; Courant, E.

    1999-01-01

    In order to collide polarized protons, the RHIC project will have two snakes in each ring and four rotators around each of two interaction regions. Two snakes on opposite sides of each ring can minimize depolarization during acceleration by keeping the spin tune at a half. Since the spin direction is normally along the vertical direction in a flat ring, spin rotators must be used around an interaction point to have longitudinal polarization in a collider experiment. Each snake or rotator will be composed of four helical dipoles to provide the required rotation of spin with minimal transverse orbit excursions in a compact length of 10m. The basic helical dipole is a superconducting magnet producing a transverse dipole field which is twisted about the magnet axis through 360 o in a length of 2.4 m. The design and construction of the magnets is described in this paper

  12. Mesoscopic pairing without superconductivity

    Science.gov (United States)

    Hofmann, Johannes

    2017-12-01

    We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.

  13. Investigations into nuclear pairing

    International Nuclear Information System (INIS)

    Clark, R.M.

    2006-01-01

    This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88-Inch Cyclotron of LBNL to test the idea. (Author)

  14. Buoyant Helical Twin-Axial Wire Antenna

    Science.gov (United States)

    2016-11-15

    February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300169 1 of 9 BUOYANT HELICAL TWIN-AXIAL WIRE ANTENNA CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0001] This application is a divisional...application and claims the benefit of the filing date of United States Patent Application No. 14/280,889; filed on May 19, 2014; and entitled “Twin-Axial

  15. Molecular Dynamics with Helical Periodic Boundary Conditions

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Bouř, Petr

    2014-01-01

    Roč. 35, č. 21 (2014), s. 1552-1559 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200551205; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : periodic boundary conditions * helical symmetry * molecular dynamics * protein structure * amyloid fibrils Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.589, year: 2014

  16. Simplification of the helical TEN2 laser

    Science.gov (United States)

    Krahn, K.-H.

    1980-04-01

    The observation that the helical TEN2 laser can effectively be simplified by giving up the use of decoupling elements as well as by abolishing the segmentation of the electrode structure is examined. Although, as a consequence of this simplification, the operating pressure range was slightly decreased, the output power could be improved by roughly 30%, a result which is attributed to the new electrode geometry exhibiting lower inductance and lower damping losses.

  17. Field of a helical Siberian Snake

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  18. Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps.

    Science.gov (United States)

    Kühn, Marco J; Schmidt, Felix K; Eckhardt, Bruno; Thormann, Kai M

    2017-06-13

    Many bacterial species swim by rotating single polar helical flagella. Depending on the direction of rotation, they can swim forward or backward and change directions to move along chemical gradients but also to navigate their obstructed natural environment in soils, sediments, or mucus. When they get stuck, they naturally try to back out, but they can also resort to a radically different flagellar mode, which we discovered here. Using high-speed microscopy, we monitored the swimming behavior of the monopolarly flagellated species Shewanella putrefaciens with fluorescently labeled flagellar filaments at an agarose-glass interface. We show that, when a cell gets stuck, the polar flagellar filament executes a polymorphic change into a spiral-like form that wraps around the cell body in a spiral-like fashion and enables the cell to escape by a screw-like backward motion. Microscopy and modeling suggest that this propagation mode is triggered by an instability of the flagellum under reversal of the rotation and the applied torque. The switch is reversible and bacteria that have escaped the trap can return to their normal swimming mode by another reversal of motor direction. The screw-type flagellar arrangement enables a unique mode of propagation and, given the large number of polarly flagellated bacteria, we expect it to be a common and widespread escape or motility mode in complex and structured environments.

  19. Helical waves in easy-plane antiferromagnets

    Science.gov (United States)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  20. Helical CT in acute lower gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Ernst, Olivier; Leroy, Christophe; Sergent, Geraldine; Bulois, Philippe; Saint-Drenant, Sophie; Paris, Jean-Claude

    2003-01-01

    The purpose of this study was to assess the usefulness of helical CT in depicting the location of acute lower gastrointestinal bleeding. A three-phase helical CT of the abdomen was performed in 24 patients referred for acute lower gastrointestinal bleeding. The diagnosis of the bleeding site was established by CT when there was at least one of the following criteria: spontaneous hyperdensity of the peribowel fat; contrast enhancement of the bowel wall; vascular extravasation of the contrast medium; thickening of the bowel wall; polyp or tumor; or vascular dilation. Diverticula alone were not enough to locate the bleeding site. The results of CT were compared with the diagnosis obtained by colonoscopy, enteroscopy, or surgery. A definite diagnosis was made in 19 patients. The bleeding site was located in the small bowel in 5 patients and the colon in 14 patients. The CT correctly located 4 small bowel hemorrhages and 11 colonic hemorrhages. Diagnosis of the primary lesion responsible for the bleeding was made in 10 patients. Our results suggest that helical CT could be a good diagnostic tool in acute lower gastrointestinal bleeding to help the physician to diagnose the bleeding site. (orig.)

  1. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  2. Total scalp irradiation using helical tomotherapy

    International Nuclear Information System (INIS)

    Orton, Nigel; Jaradat, Hazim; Welsh, James; Tome, Wolfgang

    2005-01-01

    Homogeneous irradiation of the scalp poses technical and dosimetric challenges due to the extensive, superficial, curved treatment volume. Conventional treatments on a linear accelerator use multiple matched electron fields or a combination of electron and photon fields. Problems with these techniques include dose heterogeneity in the target due to varying source-to-skin distance (SSD) and angle of beam incidence, significant dose to the brain, and the potential for overdose or underdose at match lines between the fields. Linac-based intensity-modulated radiation therapy (IMRT) plans have similar problems. This work presents treatment plans for total scalp irradiation on a helical tomotherapy machine. Helical tomotherapy is well-suited for scalp irradiation because it has the ability to deliver beamlets that are tangential to the scalp at all points. Helical tomotherapy also avoids problems associated with field matching and use of more than one modality. Tomotherapy treatment plans were generated and are compared to plans for treatment of the same patient on a linac. The resulting tomotherapy plans show more homogeneous target dose and improved critical structure dose when compared to state-of-the-art linac techniques. Target equivalent uniform dose (EUD) for the best tomotherapy plan was slightly higher than for the linac plan, while the volume of brain tissue receiving over 30 Gy was reduced by two thirds. Furthermore, the tomotherapy plan can be more reliably delivered than linac treatments, because the patient is aligned prior to each treatment based on megavoltage computed tomography (MVCT)

  3. THE EFFECTS OF SPATIAL SMOOTHING ON SOLAR MAGNETIC HELICITY PARAMETERS AND THE HEMISPHERIC HELICITY SIGN RULE

    Energy Technology Data Exchange (ETDEWEB)

    Ocker, Stella Koch [Department of Physics, Oberlin College, Oberlin, OH 44074 (United States); Petrie, Gordon, E-mail: socker@oberlin.edu, E-mail: gpetrie@nso.edu [National Solar Observatory, Boulder, CO 80303 (United States)

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode /SOT-SP data spanning 2006–2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  4. Fabrication of PLA Filaments and its Printable Performance

    Science.gov (United States)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  5. The Presence of Thermally Unstable X-Ray Filaments and the Production of Cold Gas in the NGC 5044 Group

    Energy Technology Data Exchange (ETDEWEB)

    David, Laurence P.; Vrtilek, Jan; O’Sullivan, Ewan; Jones, Christine; Forman, William [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Sun, Ming, E-mail: ldavid@head.cfa.harvard.edu [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-06-20

    We present the results of a deep Chandra observation of the X-ray bright moderate-cooling flow group NGC 5044 along with the observed correlations between the ionized, atomic, and molecular gas in this system. The Chandra observation shows that the central AGN has undergone two outbursts in the past 10{sup 8} years, based on the presence of two pairs of nearly bipolar X-ray cavities. The molecular gas and dust within the central 2 kpc is aligned with the orientation of the inner pair of bipolar X-ray cavities, suggesting that the most recent AGN outburst had a dynamical impact on the molecular gas. NGC 5044 also hosts many X-ray filaments within the central 8 kpc, but there are no obvious connections between the X-ray and H α filaments and the more extended X-ray cavities that were inflated during the prior AGN outburst. Using the line width of the blended Fe-L line complex as a diagnostic for multiphase gas, we find that the majority of the multiphase thermally unstable gas in NGC 5044 is confined within the X-ray filaments. While the cooling time and entropy of the gas within the X-ray filaments are very similar, not all filaments show evidence of gas cooling or an association with H α emission. We suggest that the various observed properties of the X-ray filaments are suggestive of an evolutionary sequence where thermally unstable gas begins to cool, becomes multiphased, develops H α emitting plasma, and finally produces cold gas.

  6. Mirror Symmetry Breaking in Helical Polysilanes: Preference between Left and Right of Chemical and Physical Origin

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2010-08-01

    Full Text Available From elemental particles to human beings, matter is dissymmetric with respect to mirror symmetry. In 1860, Pasteur conjectured that biomolecular handedness— homochirality—may originate from certain inherent dissymmetric forces existing in the universe. Kipping, a pioneer of organosilicon chemistry, was interested in the handedness of sodium chlorate during his early research life. Since Kipping first synthesized several Si-Si bonded oligomers bearing phenyl groups, Si-Si bonded high polymers carrying various organic groups—polysilanes—can be prepared by sodium-mediated condensation of the corresponding organodichlorosilanes. Among these polysilanes, optically active helical polysilanes with enantiomeric pairs of organic side groups may be used for testing the mirror symmetry-breaking hypothesis by weak neutral current (WNC origin in the realm of chemistry and material science. Several theoretical studies have predicted that WNC-existing chiral molecules with stereogenic centers and/or stereogenic bonds allow for distinguishing between image and mirror image molecules. Based on several amplification mechanisms, theorists claimed that minute differences, though still very subtle, may be detectable by precise spectroscopic and physicochemical measurements if proper chiral molecular pairs were employed. The present paper reports comprehensively an inequality between six pairs of helical polysilane high polymers, presumably, detectable by (chiroptical and achiral 29Si-/13C- NMR spectra, and viscometric measurements.

  7. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  8. In situ ellipsometric study of surface immobilization of flagellar filaments

    Energy Technology Data Exchange (ETDEWEB)

    Kurunczi, S., E-mail: kurunczi@mfa.kfki.hu [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Nemeth, A.; Huelber, T. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Kozma, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Petrik, P. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Jankovics, H. [Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Sebestyen, A. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Vonderviszt, F. [Department of Photonics, Research Institute for Technical Physics and Materials Science, H-1121, Konkoly Thege Miklos ut 29-33, Budapest (Hungary); Department of Nanotechnology, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprem, H-8200 (Hungary); Institute of Enzymology, Karolina ut 29-33, Budapest, H-1113 (Hungary); and others

    2010-10-15

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  9. Transition from linear- to nonlinear-focusing regime in filamentation

    Science.gov (United States)

    Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin

    2014-01-01

    Laser filamentation in gases is often carried out in the laboratory with focusing optics to better stabilize the filament, whereas real-world applications of filaments frequently involve collimated or near-collimated beams. It is well documented that geometrical focusing can alter the properties of laser filaments and, consequently, a transition between a collimated and a strongly focused filament is expected. Nevertheless, this transition point has not been identified. Here, we propose an analytical method to determine the transition, and show that it corresponds to an actual shift in the balance of physical mechanisms governing filamentation. In high-NA conditions, filamentation is primarily governed by geometrical focusing and plasma effects, while the Kerr nonlinearity plays a more significant role as NA decreases. We find the transition between the two regimes to be relatively insensitive to the intrinsic laser parameters, and our analysis agrees well with a wide range of parameters found in published literature. PMID:25434678

  10. Morgellons disease: a filamentous borrelial dermatitis.

    Science.gov (United States)

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii , Borrelia miyamotoi , and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined.

  11. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  12. Filament supply circuit for particle accelerator

    International Nuclear Information System (INIS)

    Thompson, C.C. Jr.; Malone, H.F.

    1975-01-01

    In a particle accelerator of the type employing ac primary power and a voltage multiplication apparatus to achieve the required high dc accelerating voltage, a filament supply circuit is powered by a portion of the ac primary power appearing at the last stage of the voltage multiplier. This ac power is applied across a voltage regulator circuit in the form of two zener diodes connected back to back. The threshold of the zeners is below the lowest peak-to-peak voltage of the ac voltage, so that the regulated voltage remains constant for all settings of the adjustable acceleration voltage. The regulated voltage is coupled through an adjustable resistor and an impedance-matching transformer to the accelerator filament. (auth)

  13. Merging and energy exchange between optical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, D. A., E-mail: dgeorgieva@tu-sofia.bg [Faculty of Applied Mathematics and Computer Science, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia (Bulgaria); Kovachev, L. M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2015-10-28

    We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing P{sub cr} trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is described through FPPM scheme and requests initial phase difference between the waves.

  14. Helical muon beam cooling channel engineering design

    International Nuclear Information System (INIS)

    Johnson, Rolland

    2015-01-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb 3 Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb 3 Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb 3 Sn solenoid as originally planned. Instead, a complementary project was approved by the

  15. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  16. Filamented plasmas in laser ablation of solids

    Czech Academy of Sciences Publication Activity Database

    Davies, J.R.; Fajardo, M.; Kozlová, Michaela; Mocek, Tomáš; Polan, Jiří; Rus, Bedřich

    2009-01-01

    Roč. 51, č. 3 (2009), 035013/1-035013/12 ISSN 0741-3335 EU Projects: European Commission(XE) 12843 - TUIXS Grant - others:FCT(PT) POCI/FIS/59563/2004 Institutional research plan: CEZ:AV0Z10100523 Keywords : magneto-hydrodynamic modelling * perturbation * filaments * x-ray * plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.409, year: 2009

  17. Laser induced white lighting of tungsten filament

    Science.gov (United States)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  18. Cold Milky Way HI Gas in Filaments

    Science.gov (United States)

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Winkel, B.; Ben Bekhti, N.; Flöer, L.; Lenz, D.

    2016-04-01

    We investigate data from the Galactic Effelsberg-Bonn H I Survey, supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all-sky distribution of the local Galactic H I gas with | {v}{{LSR}}| \\lt 25 km s-1 on angular scales of 11‧-16‧. Unsharp masking is applied to extract small-scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes | b| \\gt 20^\\circ is described by a log-normal distribution, with a median Doppler temperature TD = 223 K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (H I) column density is NH I ≃ 1019.1 cm-2. These CNM structures are embedded within a warm neutral medium with NH I ≃ 1020 cm-2. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of ≲0.3 pc. Adopting a magnetic field strength of Btot = (6.0 ± 1.8) μG, proposed by Heiles & Troland, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly, the median volume density is in the range 14 ≲ n ≲ 47 cm-3. The authors thank the Deutsche Forschungsgemeinschaft (DFG) for support under grant numbers KE757/11-1, KE757/7-3, KE757/7-2, KE757/7-1, and BE4823/1-1.

  19. Magnetization Modeling of Twisted Superconducting Filaments

    CERN Document Server

    Satiramatekul, T; Devred, Arnaud; Leroy, Daniel

    2007-01-01

    This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...

  20. The Magnetic Structure of Filament Barbs

    Science.gov (United States)

    Chae, Jongchul; Moon, Yong-Jae; Park, Young-Deuk

    2005-06-01

    There is a controversy about how features protruding laterally from filaments, called barbs, are magnetically structured. On 2004 August 3, we observed a filament that had well-developed barbs. The observations were performed using the 10 inch refractor of the Big Bear Solar Observatory. A fast camera was employed to capture images at five different wavelengths of the Hα line and successively record them on the basis of frame selection. The terminating points of the barbs were clearly discernable in the Hα images without any ambiguity. The comparison of the Hα images with the magnetograms taken by SOHO MDI revealed that the termination occurred above the minor polarity inversion line dividing the magnetic elements of the major polarity and those of the minor polarity. There is also evidence that the flux cancellation proceeded on the polarity inversion line. Our results together with similar other recent observations support the idea that filament barbs are cool matter suspended in local dips of magnetic field lines, formed by magnetic reconnection in the chromosphere.

  1. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  2. A first approach to filament dynamics

    International Nuclear Information System (INIS)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G; Simoes, R

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  3. Tracer filamentation at an unstable ocean front

    Science.gov (United States)

    Feng, Yen Chia; Mahadevan, Amala; Thiffeault, Jean-Luc; Yecko, Philip

    2017-11-01

    A front, where two bodies of ocean water with different physical properties meet, can become unstable and lead to a flow with high strain rate and vorticity. Phytoplankton and other oceanic tracers are stirred into filaments by such flow fields, as can often be seen in satellite imagery. The stretching and folding of a tracer by a two-dimensional flow field has been well studied. In the ocean, however, the vertical shear of horizontal velocity is typically two orders of magnitude larger than the horizontal velocity gradient. Theoretical calculations show that vertical shear alters the way in which horizontal strain affects the tracer, resulting in thin, sloping structures in the tracer field. Using a non-hydrostatic ocean model of an unstable ocean front, we simulate tracer filamentation to identify the effect of vertical shear on the deformation of the tracer. In a complementary laboratory experiment, we generate a simple, vertically sheared strain flow and use dye and particle image velocimetry to quantify the filamentary structures in terms of the strain and shear. We identify how vertical shear alters the tracer filaments and infer how the evolution of tracers in the ocean will differ from the idealized two-dimensional paradigm. Support of NSF DMS-1418956 is acknowledged.

  4. FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION

    International Nuclear Information System (INIS)

    Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-01-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  5. On the fragmentation of filaments in a molecular cloud simulation

    Science.gov (United States)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes

  6. [Paired kidneys in transplant].

    Science.gov (United States)

    Regueiro López, Juan C; Leva Vallejo, Manuel; Prieto Castro, Rafael; Anglada Curado, Francisco; Vela Jiménez, Francisco; Ruiz García, Jesús

    2009-02-01

    Many factors affect the graft and patient survival on the renal transplant outcome. These factors depend so much of the recipient and donor. We accomplished a study trying to circumvent factors that depend on the donor. We checked the paired kidneys originating of a same donor cadaver. We examined the risk factors in the evolution and follow-up in 278 couples of kidney transplant. We describe their differences, significance, the graft and patient survival, their functionality in 3 and 5 years and the risk factors implicated in their function. We study immunogenic and no immunogenic variables, trying to explain the inferior results in the grafts that are established secondly. We regroup the paired kidneys in those that they did not show paired initial function within the same couple. The results yield a discreet deterioration in the graft and patient survival for second group establish, superior creatinina concentration, without obtaining statistical significance. The Cox regression study establishes the early rejection (inferior to three months) and DR incompatibility values like risk factors. This model of paired kidneys would be able to get close to best-suited form for risk factors analysis in kidney transplant from cadaver donors, if more patients examine themselves in the same way. The paired kidneys originating from the same donor do not show the same function in spite of sharing the same conditions of the donor and perioperative management.

  7. Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities

    Energy Technology Data Exchange (ETDEWEB)

    Cammarato, Anthony, E-mail: acammara@burnham.org [Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 (United States); Craig, Roger [Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 (United States); Lehman, William [Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 (United States)

    2010-01-01

    Throughout the animal kingdom striated muscle contraction is regulated by the thin filament troponin-tropomyosin complex. Homologous regulatory components are shared among vertebrate and arthropod muscles; however, unique protein extensions and/or components characterize the latter. The Troponin T (TnT) isoforms of Drosophila indirect flight and tarantula femur muscle for example contain distinct C-terminal extensions and are {approx}20% larger overall than their vertebrate counterpart. Using electron microscopy and three-dimensional helical reconstruction of native Drosophila, tarantula and frog muscle thin filaments we have identified species-specific differences in tropomyosin regulatory strand densities. The strands on the arthropod thin filaments were significantly larger in diameter than those from vertebrates, although not significantly different from each other. These findings reflect differences in the regulatory troponin-tropomyosin complex, which are likely due to the larger TnT molecules aligning and extending along much of the tropomyosin strands' length. Such an arrangement potentially alters the physical properties of the regulatory strands and may help establish contractile characteristics unique to certain arthropod muscles.

  8. Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities

    International Nuclear Information System (INIS)

    Cammarato, Anthony; Craig, Roger; Lehman, William

    2010-01-01

    Throughout the animal kingdom striated muscle contraction is regulated by the thin filament troponin-tropomyosin complex. Homologous regulatory components are shared among vertebrate and arthropod muscles; however, unique protein extensions and/or components characterize the latter. The Troponin T (TnT) isoforms of Drosophila indirect flight and tarantula femur muscle for example contain distinct C-terminal extensions and are ∼20% larger overall than their vertebrate counterpart. Using electron microscopy and three-dimensional helical reconstruction of native Drosophila, tarantula and frog muscle thin filaments we have identified species-specific differences in tropomyosin regulatory strand densities. The strands on the arthropod thin filaments were significantly larger in diameter than those from vertebrates, although not significantly different from each other. These findings reflect differences in the regulatory troponin-tropomyosin complex, which are likely due to the larger TnT molecules aligning and extending along much of the tropomyosin strands' length. Such an arrangement potentially alters the physical properties of the regulatory strands and may help establish contractile characteristics unique to certain arthropod muscles.

  9. Studying Higgs pair production in the process γγ→H0H0 in the two-Higgs-doublet model

    International Nuclear Information System (INIS)

    La-Zhen, S.; Yao-Yang, L.

    1996-01-01

    In the two-Higgs-doublet model the complete nonstandard Higgs boson helicity amplitudes for the Higgs boson pair production process γγ→H 0 H 0 is calculated and explicit formulas for nonstandard Higgs boson contributions to the helicity amplitudes are given. It is shown that the cross section is in the range of 0.03 endash 30 pb at √s=1 TeV, for Higgs boson masses of 350 H 0 <490 GeV in monochromatic γγ collisions. The angular distribution for Higgs pair production is strongly peaked in the forward and backward directions. In particular the angular dependence for Higgs pair production is due to the nonstandard Higgs boson getting larger where the box diagrams constitute the dominant part of the differential cross section. For studying heavy Higgs pair production the use of circularly polarized photon beams with equal helicities is advantageous. copyright 1996 The American Physical Society

  10. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  11. Transmembrane helical interactions in the CFTR channel pore.

    Directory of Open Access Journals (Sweden)

    Jhuma Das

    2017-06-01

    Full Text Available Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF. Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF and develop an inward (IWF facing model employing an integrated experimental-molecular dynamics simulation (200 ns approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.

  12. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  13. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.

    Science.gov (United States)

    Bhattacharyya, Dhananjay; Halder, Sukanya; Basu, Sankar; Mukherjee, Debasish; Kumar, Prasun; Bansal, Manju

    2017-02-01

    Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.

  14. Measuring Filament Orientation: A New Quantitative, Local Approach

    Energy Technology Data Exchange (ETDEWEB)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A. [School of Physics, University of New South Wales, Sydney, NSW, 2052 (Australia); Dawson, J. R. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Novak, G. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Fissel, L. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA, 22903 (United States)

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.

  15. Plasma Brightenings in a Failed Solar Filament Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Ding, M. D., E-mail: yingli@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China)

    2017-03-20

    Failed filament eruptions are solar eruptions that are not associated with coronal mass ejections. In a failed filament eruption, the filament materials usually show some ascending and falling motions as well as generating bright EUV emissions. Here we report a failed filament eruption (SOL2016-07-22) that occurred in a quiet-Sun region observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory . In this event, the filament spreads out but gets confined by the surrounding magnetic field. When interacting with the ambient magnetic field, the filament material brightens up and flows along the magnetic field lines through the corona to the chromosphere. We find that some materials slide down along the lifting magnetic structure containing the filament and impact the chromosphere, and through kinetic energy dissipation, cause two ribbon-like brightenings in a wide temperature range. There is evidence suggesting that magnetic reconnection occurs between the filament magnetic structure and the surrounding magnetic fields where filament plasma is heated to coronal temperatures. In addition, thread-like brightenings show up on top of the erupting magnetic fields at low temperatures, which might be produced by an energy imbalance from a fast drop of radiative cooling due to plasma rarefaction. Thus, this single event of a failed filament eruption shows the existence of a variety of plasma brightenings that may be caused by completely different heating mechanisms.

  16. Measuring Filament Orientation: A New Quantitative, Local Approach

    Science.gov (United States)

    Green, C.-E.; Dawson, J. R.; Cunningham, M. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”

  17. Measuring Filament Orientation: A New Quantitative, Local Approach

    International Nuclear Information System (INIS)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A.; Dawson, J. R.; Novak, G.; Fissel, L. M.

    2017-01-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”

  18. The Cape Ghir filament system in August 2009 (NW Africa)

    Science.gov (United States)

    Sangrà, Pablo; Troupin, Charles; Barreiro-González, Beatriz; Desmond Barton, Eric; Orbi, Abdellatif; Arístegui, Javier

    2015-06-01

    In the framework of the Canaries-Iberian marine ecosystem Exchanges (CAIBEX) experiment, an interdisciplinary high-resolution survey was conducted in the NW African region of Cape Ghir (30°38'N) during August 2009. The anatomy of a major filament is investigated on scales down to the submesoscale using in situ and remotely sensed data. The filament may be viewed as a system composed of three intimately connected structures: a small, shallow, and cold filament embedded within a larger, deeper, and cool filament and an intrathermocline anticyclonic eddy (ITE). The cold filament, which stretches 110 km offshore, is a shallow feature 60 m deep and 25 km wide, identified by minimal surface temperatures and rich in chlorophyll a. This structure comprises two asymmetrical submesoscale (˜18 km) fronts with jets flowing in opposite directions. The cold filament is embedded near the equatorward boundary of a much broader region of approximately 120 km width and 150 m depth that forms the cool filament and stretches at least 200 km offshore. This cool region, partly resulting from the influence of cold filament, is limited by two asymmetrical mesoscale (˜50 km) frontal boundaries. At the ITE, located north of the cold filament, we observe evidence of downwelling as indicated by a relatively high concentration of particles extending from the surface to more than 200 m depth. We hypothesize that this ITE may act as a sink of carbon and thus the filament system may serve dual roles of offshore carbon export and carbon sink.

  19. Alteration of helical vortex core without change in flow topology

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    topology. The helical symmetry as such is preserved, although the characteristic parameters of helical symmetry of the vortex core transfer from a smooth linear variation to a different trend under the influence of a non-uniform pressure gradient, causing an increase in helical pitch without changing its......The abrupt expansion of the slender vortex core with changes in flow topology is commonly known as vortex breakdown. We present new experimental observations of an alteration of the helical vortex core in wall bounded turbulent flow with abrupt growth in core size, but without change in flow...

  20. Helicity conservation under quantum reconnection of vortex rings.

    Science.gov (United States)

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  1. Superposition of helical beams by using a Michelson interferometer.

    Science.gov (United States)

    Gao, Chunqing; Qi, Xiaoqing; Liu, Yidong; Weber, Horst

    2010-01-04

    Orbital angular momentum (OAM) of a helical beam is of great interests in the high density optical communication due to its infinite number of eigen-states. In this paper, an experimental setup is realized to the information encoding and decoding on the OAM eigen-states. A hologram designed by the iterative method is used to generate the helical beams, and a Michelson interferometer with two Porro prisms is used for the superposition of two helical beams. The experimental results of the collinear superposition of helical beams and their OAM eigen-states detection are presented.

  2. The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis.

    Science.gov (United States)

    Chaiyasitdhi, Atitheb; Miphonpanyatawichok, Wirat; Riehle, Mathis Oliver; Phatthanakun, Rungrueang; Surareungchai, Werasak; Kundhikanjana, Worasom; Kuntanawat, Panwong

    2018-01-01

    Morphological transformations in primitive organisms have long been observed; however, its biomechanical roles are largely unexplored. In this study, we investigate the structural advantages of dimorphism in Arthrospira platensis, a filamentous multicellular cyanobacterium. We report that helical trichomes, the default shape, have a higher persistence length (Lp), indicating a higher resistance to bending or a large value of flexural rigidity (kf), the product of the local cell stiffness (E) and the moment of inertia of the trichomes' cross-section (I). Through Atomic Force Microscopy (AFM), we determined that the E of straight and helical trichomes were the same. In contrast, our computational model shows that I is greatly dependent on helical radii, implying that trichome morphology is the major contributor to kf variation. According to our estimation, increasing the helical radii alone can increase kf by 2 orders of magnitude. We also observe that straight trichomes have improved gliding ability, due to its structure and lower kf. Our study shows that dimorphism provides mechanical adjustability to the organism and may allow it to thrive in different environmental conditions. The higher kf provides helical trichomes a better nutrient uptake through advection in aquatic environments. On the other hand, the lower kf improves the gliding ability of straight trichomes in aquatic environments, enabling it to chemotactically relocate to more favorable territories when it encounters certain environmental stresses. When more optimal conditions are encountered, straight trichomes can revert to their original helical form. Our study is one of the first to highlight the biomechanical role of an overall-shape transformation in cyanobacteria.

  3. Progress with helicity injection current drive

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Raman, R.; Nelson, B.A.

    2003-01-01

    Coaxial Helicity Injection (CHI) experiments in the NSTX and HIT-II devices are reported. NSTX has produced toroidal currents of 0.4 MA and pulse lengths of up to 0.33 s. These discharges nearly fill the NSTX main chamber, and show the n=1 rotating distortion characteristic of high-performance CHI plasmas. CHI has been used in HIT-II to provide a closed flux startup plasma for inductive drive. The CHI startup method saves transformer volt-seconds and greatly improves reproducibility and reliability of inductively driven discharges, even in the presence of diminishing wall conditions. (author)

  4. Heat loss by helicity injection in spheromaks

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1994-01-01

    A model is presented for spheromak buildup and decay including thermal diffusivity associated with magnetic turbulence during helicity injection. It is shown that heat loss by magnetic turbulence scales more favorably than gyroBohm transport. Thus gyroBohm scaling for the proposed ignition experiment would be the conservative choice, though present experiments may be dominated by magnetic turbulence. Because of a change in boundary conditions when the gun is turned off, the model may account for the observed increase in electron temperature in CTX after turnoff

  5. Rotation influence on the plasma helical instability

    International Nuclear Information System (INIS)

    Gutkin, T.I.; Tsypin, V.S.; Boleslavskaya, G.I.

    1980-01-01

    The influence of the rotation on helical instability of a plasma with the fixed boundaries (HIFB) is investigated taking into account the compressibility. A case of infinitely long cylinder with distributed current is considered. Cases when a rotating plasma is confined by current magnetic field are analytically considered. It is shown that in the case of the fixed boundary taking into account the compressibility in the HIFB increment increases and the picture of the rotation influence on HIFB considerably changes. Besides, it is shown that in the case of high plasma pressures HIFB can stabilize as a result of the rotation

  6. Frustrated Lewis Pairs

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.

  7. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  8. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.

    2013-01-01

    We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of

  9. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  10. Bursty fluctuation characteristics in SOL/divertor plasmas of large helical device

    International Nuclear Information System (INIS)

    Ohno, N.

    2006-01-01

    Full text: Fluctuation properties in the SOL plasmas were intensively studied to understand the crossfield plasma transport, which determines the SOL structure and heat/particle deposition onto the first wall. Recent studies in tokamaks showed that the SOL density fluctuation is highly intermittent. Convective cross-field transport associated with the intermittent events would have strong influence on recycling processes and impurity generation from the first wall. On the other hand, in helical devices, there are few systematic studies on the SOL fluctuation property focusing on the intermittent bursty fluctuations related to plasma blob transport. Recent theory predicts that the blobs propagate toward a low field side in tokamaks. On the other hand, in the Large Helical Device (LHD), the direction of the gradient in B is not uniform because the high-field and the low-field sides rotates poloidally along the torus in the helical system. Comparison between the intermittent bursty fluctuations in the edge plasma of tokamaks and helical devices makes it possible to understand the essential physics of the blob transport. Recently, fast camera observation showed the radial motion of filaments in the edge of the LHD, suggesting the convective cross-field transport. In this paper, bursty fluctuation properties in the edge of the LHD have been investigated by analyzing the ion saturation currents measured with a probe array embedded in an outboard divertor plate. Statistical analysis based on probability distribution function was employed to determine the intermittent evens in the density fluctuation. Large positive bursty events were often observed in the ion saturation current measured with a divertor probe near a divertor leg at which the magnetic line of force connected to the area of a low-field side with a short connection length. Condition averaging result of the positive bursty events indicates the intermittent feature with a rapid increase and a slow decay is

  11. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  12. The THMIS-MTR observation of a active region filament

    Science.gov (United States)

    Zong, W. G.; Tang, Y. H.; Fang, C.

    We present some THMIS-MTR observations of a active region filament on September 4, 2002. The full stokes parameters of the filament were obtained in Hα, CaII 8542 and FeI 6302. By use of the data with high spatial resolution(0.44" per pixel), we probed the fine structure of the filament and gave out the parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field. Comparing the quiescent filament which we have discussed before, we find that: 1)The velocities of the barbs' endpoints are much bigger in the active region filament, the values are more than one thousand meters per second. 2)The barbs' endpoints terminate at the low logitudinal magnetic field in the active region filament, too.

  13. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang; Nilsen, Roy A; Dutta, Sandeep; Samsonov, Dmitry; Hagiwara, Akira

    2006-01-01

    Based on the structure of the original helical FDK algorithm, a three-dimensional (3D)-weighted cone beam filtered backprojection (CB-FBP) algorithm is proposed for image reconstruction in volumetric CT under helical source trajectory. In addition to its dependence on view and fan angles, the 3D weighting utilizes the cone angle dependency of a ray to improve reconstruction accuracy. The 3D weighting is ray-dependent and the underlying mechanism is to give a favourable weight to the ray with the smaller cone angle out of a pair of conjugate rays but an unfavourable weight to the ray with the larger cone angle out of the conjugate ray pair. The proposed 3D-weighted helical CB-FBP reconstruction algorithm is implemented in the cone-parallel geometry that can improve noise uniformity and image generation speed significantly. Under the cone-parallel geometry, the filtering is naturally carried out along the tangential direction of the helical source trajectory. By exploring the 3D weighting's dependence on cone angle, the proposed helical 3D-weighted CB-FBP reconstruction algorithm can provide significantly improved reconstruction accuracy at moderate cone angle and high helical pitches. The 3D-weighted CB-FBP algorithm is experimentally evaluated by computer-simulated phantoms and phantoms scanned by a diagnostic volumetric CT system with a detector dimension of 64 x 0.625 mm over various helical pitches. The computer simulation study shows that the 3D weighting enables the proposed algorithm to reach reconstruction accuracy comparable to that of exact CB reconstruction algorithms, such as the Katsevich algorithm, under a moderate cone angle (4 deg.) and various helical pitches. Meanwhile, the experimental evaluation using the phantoms scanned by a volumetric CT system shows that the spatial resolution along the z-direction and noise characteristics of the proposed 3D-weighted helical CB-FBP reconstruction algorithm are maintained very well in comparison to the FDK

  14. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    International Nuclear Information System (INIS)

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign

  15. Neutrino helicity flips via electroweak interactions

    International Nuclear Information System (INIS)

    Gaemers, K.J.F.; Gandhi, R.; Lattimer, J.M.; Department of Earth and Space Sciences, State University of New York, Stony Brook, New York 11794)

    1989-01-01

    Electroweak mechanisms via which neutrinos may flip helicity are examined in detail. Exact and approximate expressions for a variety of flip processes relevant in astrophysics and cosmology, mediated by W, Z, and γ exchange, including their interference, are derived for both Dirac and Majorana neutrinos (with emphasis on the former). It is shown that in general flip and nonflip cross sections differ by more than just a multiplicative factor of m/sub ν/ 2 /4E/sub ν/ 2 contrary to what might be expected and that this additional dependence on helicities can be significant. It is also shown that within the context of the standard model with massive neutrinos, for νe yields νe scattering, σ/sub Z//sup flip//σ/sub γ//sup flip/ ∼ 10 4 , independent of particle masses and energies to a good approximation. As an application, using some general considerations and the fact that the observed bar nu/sub e/ burst from SN 1987A lasted several seconds, these weak-interaction flip cross sections are used to rule out μ and tau neutrino masses above 30 keV. Finally, some other consequences for astrophysics in general and supernovae in particular are briefly discussed

  16. Helical type thermonuclear device and control method

    International Nuclear Information System (INIS)

    Ishigaki, Yukio.

    1990-01-01

    In a conventional helical type thermonuclear device, electric current flows in the toroidal direction under magnetic fields of helical coils and vertical magnetic coils, by which a circulating electric field is caused. Therefore, there is a problem that electrons as a seed are generated by cosmic rays, etc., the electrons are confined in a magnetic field boundary, are accelerated by the circulating electric field, to reach a high energy level, collide against structures in a vacuum vessel and emit a great amount of X-rays. Then, compensation coils for offsetting the magnetic fields generated upon energization and deenergization of the vertical magnetic coils and the power source therefor are disposed at the positions opposing to each other on both sides of the vertical magnetic coils for controlling the variation coefficient rate of electric current upon energization and deenergization of the vertical magnetic coils. Since the compensation coils also offset the magnetic field generated upon energization and deenergization of the vertical magnetic field coils by this control, the circulating magnetic field is not caused in the vacuum vessel to reduce the X-ray radiation by electrons at high energy level. (N.H.)

  17. Determining How Magnetic Helicity Injection Really Works

    International Nuclear Information System (INIS)

    Paul M Bellan

    2001-01-01

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments

  18. On the motion of multiple helical vortices

    Science.gov (United States)

    Wood, D. H.; Boersma, J.

    2001-11-01

    The analysis of the self-induced velocity of a single helical vortex (Boersma & Wood 1999) is extended to include equally spaced multiple vortices. This arrangement approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers, or rotors in ascending, descending, or hovering flight. The problem is reduced to finding, from the Biot Savart law, the additional velocity of a helix due to an identical helix displaced azimuthally. The resulting Biot Savart integral is further reduced to a Mellin Barnes integral representation which allows the asymptotic expansions to be determined for small and for large pitch. The Biot Savart integral is also evaluated numerically for a total of two, three and four vortices over a range of pitch values. The previous finding that the self-induced velocity at small pitch is dominated by a term inversely proportional to the pitch carries over to multiple vortices. It is shown that a far wake dominated by helical tip vortices is consistent with the one-dimensional representation that leads to the Betz limit on the power output of wind turbines. The small-pitch approximation then allows the determination of the blade&s bound vorticity for optimum power extraction. The present analysis is shown to give reasonable estimates for the vortex circulation in experiments using a single hovering rotor and a four-bladed propeller.

  19. Perspectives on confinement in helical systems

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae

    1989-01-01

    A review on recent experimental results and theoretical models on anomalous transport and density limit in toroidal helical devices is presented. Importance of transport problems is discussed. Experiments on Heliotron-E, Wendelstein-VIIA and new devices, i.e., ATF, Wendelstein-VIIAS and CHS, are reviewed and an overview on confinement property is given. From recent experimental results one sees that there are anomalous transport, which increases with temperature, and density limit, and that they limit the energy confinement time as well as the attainable beta value. The confinement characteristics of the scrape off layer plasma and loss cone loss are discussed, and perspectives on the high temperature plasma are given. These anomalous transport and density limit will be difficult obstacles in realizing a reactor grade plasma in helical systems. It is an urgent task to draw a realistic picture of the confinement based on the present data base. The relevant knowledge now would be critically essential for the successful development of the research in 1990's. (author) 102 refs

  20. Neutrino helicity reversal and fundamental symmetries

    International Nuclear Information System (INIS)

    Jentschura, U D; Wundt, B J

    2014-01-01

    A rather elusive helicity reversal occurs in a gedanken experiment in which a massive left-handed Dirac neutrino, traveling at a velocity u < c, is overtaken on a highway by a speeding vehicle (traveling at velocity v with u < v < c). Namely, after passing the neutrino, looking back, one would see a right-handed neutrino (which has never been observed in nature). The Lorentz-invariant mass of the right-handed neutrino is still the same as before the passing. The gedanken experiment thus implies the existence of right-handed, light neutrinos, which are not completely sterile. Furthermore, overtaking a bunch of massive right-handed Dirac neutrinos leads to gradual de-sterilization. We discuss the helicity reversal and the concomitant sterilization and de-sterilization mechanisms by way of an illustrative example calculation, with a special emphasis on massive Dirac and Majorana neutrinos. We contrast the formalism with a modified Dirac neutrino described by a Dirac equation with a pseudoscalar mass term proportional to the fifth current. (paper)

  1. Quality assurance of a helical tomotherapy machine

    International Nuclear Information System (INIS)

    Fenwick, J D; Tome, W A; Jaradat, H A; Hui, S K; James, J A; Balog, J P; DeSouza, C N; Lucas, D B; Olivera, G H; Mackie, T R; Paliwal, B R

    2004-01-01

    Helical tomotherapy has been developed at the University of Wisconsin, and 'Hi-Art II' clinical machines are now commercially manufactured. At the core of each machine lies a ring-gantry-mounted short linear accelerator which generates x-rays that are collimated into a fan beam of intensity-modulated radiation by a binary multileaf, the modulation being variable with gantry angle. Patients are treated lying on a couch which is translated continuously through the bore of the machine as the gantry rotates. Highly conformal dose-distributions can be delivered using this technique, which is the therapy equivalent of spiral computed tomography. The approach requires synchrony of gantry rotation, couch translation, accelerator pulsing and the opening and closing of the leaves of the binary multileaf collimator used to modulate the radiation beam. In the course of clinically implementing helical tomotherapy, we have developed a quality assurance (QA) system for our machine. The system is analogous to that recommended for conventional clinical linear accelerator QA by AAPM Task Group 40 but contains some novel components, reflecting differences between the Hi-Art devices and conventional clinical accelerators. Here the design and dosimetric characteristics of Hi-Art machines are summarized and the QA system is set out along with experimental details of its implementation. Connections between this machine-based QA work, pre-treatment patient-specific delivery QA and fraction-by-fraction dose verification are discussed

  2. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  3. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  4. Observations of the Growth of an Active Region Filament

    Science.gov (United States)

    Yang, Bo

    2017-04-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  5. Modeling Vertical Plasma Flows in Solar Filament Barbs

    Science.gov (United States)

    Litvinenko, Y.

    2003-12-01

    Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.

  6. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  7. Statistical Study of the Magnetic Field Orientation in Solar Filaments

    Science.gov (United States)

    Hanaoka, Yoichiro; Sakurai, Takashi

    2017-12-01

    We have carried out a statistical study of the average orientation of the magnetic field in solar filaments with respect to their axes for more than 400 samples, based on data taken with daily full-Sun, full-Stokes spectropolarimetric observations using the He I 1083.0 nm line. The major part of the samples are the filaments in the quiet areas, but those in the active areas are included as well. The average orientation of the magnetic field in filaments shows a systematic property depending on the hemisphere; the direction of the magnetic field in filaments in the northern (southern) hemisphere mostly deviates clockwise (counterclockwise) from their axes, which run along the magnetic polarity inversion line. The deviation angles of the magnetic field from the axes are concentrated between 10° and 30°. This hemispheric pattern is consistent with that revealed for chirality of filament barbs, filament channels, and for other solar features found to possess chirality. For some filaments, it was confirmed that their magnetic field direction is locally parallel to their structure seen in Hα images. Our results for the first time confirmed this hemispheric pattern with the direct observation of the magnetic field in filaments. Interestingly, the filaments which show the opposite magnetic field deviation to the hemispheric pattern, are in many cases found above the polarity inversion line whose ambient photospheric magnetic field has the polarity alignment being opposite to that of active regions following the Hale–Nicholson law.

  8. Probabilities of filaments in a Poissonian distribution of points -I

    International Nuclear Information System (INIS)

    Betancort-Rijo, J.

    1989-01-01

    Statistical techniques are devised to assess the likelihood of a Poisson sample of points in two and three dimensions, containing specific filamentary structures. For that purpose, the expression of Otto et al (1986. Astrophys. J., 304) for the probability density of clumps in a Poissonian distribution of points is generalized for any value of the density contrast. A way of counting filaments differing from that of Otto et al. is proposed, because at low density contrast the filaments counted by Otto et al. are distributed in a clumpy fashion, each clump of filaments corresponding to a distinct observed filament. (author)

  9. MATERIAL SUPPLY AND MAGNETIC CONFIGURATION OF AN ACTIVE REGION FILAMENT

    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: fangc@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-11-10

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the H α filtergrams, cool material is seen to be injected into the filament spine with a speed of 5–10 km s{sup -1}. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7–9 km s{sup -1} in the H α red-wing filtergrams and 9–25 km s{sup -1} in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  10. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  11. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    International Nuclear Information System (INIS)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-01

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  12. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    ... large-scale magnetic field arising due to non-helical interactions and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a primitive model for galactic dynamo has been constructed. Our calculations yield dynamo time-scale for a typical galaxy to be of the order of 108 years.

  13. Alpha-Effect, Current and Kinetic Helicities for Magnetically Driven ...

    Indian Academy of Sciences (India)

    tribpo

    Key words. Sun—dynamo, helicity, turbulent convection. Extended abstract. Recent numerical simulations lead to the result that turbulence is much more mag- netically driven than believed. ... positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicity which is negative ...

  14. Space vehicle electromechanical system and helical antenna winding fixture

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven

    2017-12-26

    A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.

  15. Low-energy properties of fractional helical Luttinger liquids

    NARCIS (Netherlands)

    Meng, T.; Fritz, L.|info:eu-repo/dai/nl/371569559; Schuricht, D.|info:eu-repo/dai/nl/369284690; Loss, D.

    2014-01-01

    We investigate the low-energy properties of (quasi) helical and fractional helical Luttinger liquids. In particular, we calculate the Drude peak of the optical conductivity, the density of states, as well as charge transport properties of the interacting system with and without attached Fermi liquid

  16. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  17. Experimental investigation of solar powered diaphragm and helical pumps

    Science.gov (United States)

    For several years, many types of solar powered water pumping systems were evaluated, and in this paper, diaphragm and helical solar photovoltaic (PV) powered water pumping systems are discussed. Data were collected on diaphragm and helical pumps which were powered by different solar PV arrays at mul...

  18. Morgellons disease: a filamentous borrelial dermatitis

    Directory of Open Access Journals (Sweden)

    Middelveen MJ

    2016-10-01

    Full Text Available Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined. Keywords: Morgellons disease, dermatitis, Lyme disease, Borrelia burgdorferi, spirochetes

  19. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  20. Mass motions in a quiescent filament

    International Nuclear Information System (INIS)

    Malherbe, J.M.; Mein, P.; Schmieder, B.

    1982-01-01

    Observations are presented of the sudden disappearance of a filament (N2O, E35) above an active region with the Multichannel Substractive Double Pass Spectrograph operating on the Meudon Solar Tower, France, from 10:45 UT to 13:30 UT on June 22, 1981. Measurements of the velocity fields and intensity fluctuations were obtained. It was found that the sudden disappearance did not take place simultaneously in all parts of the filament: thin threads with upward radial velocities reaching about 50 km/s were successively observed inside the prominence from the south to north regions. It is suggested that these motions corresponded to the rise of material along magnetic loops closely related to the prominence structure. An investigation of the dynamics inside such a magnetic loop shows a strongly accelerated high speed flow and a deformation of the flux tube, probably due to the centrifugal forces exerted by the flow on the magnetic lines. In addition, it is shown that the present theoretical models cannot account for the prominence structure as a cold H-alpha loop system and the acceleration process of material inside such loops

  1. Electromechanical vortex filaments during cardiac fibrillation

    Science.gov (United States)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  2. Stimuli-Directed Helical Chirality Inversion and Bio-Applications

    Directory of Open Access Journals (Sweden)

    Ziyu Lv

    2016-08-01

    Full Text Available Helical structure is a sophisticated ubiquitous motif found in nature, in artificial polymers, and in supramolecular assemblies from microscopic to macroscopic points of view. Significant progress has been made in the synthesis and structural elucidation of helical polymers, nevertheless, a new direction for helical polymeric materials, is how to design smart systems with controllable helical chirality, and further use them to develop chiral functional materials and promote their applications in biology, biochemistry, medicine, and nanotechnology fields. This review summarizes the recent progress in the development of high-performance systems with tunable helical chirality on receiving external stimuli and discusses advances in their applications as drug delivery vesicles, sensors, molecular switches, and liquid crystals. Challenges and opportunities in this emerging area are also presented in the conclusion.

  3. Helicity conservation and twisted Seifert surfaces for superfluid vortices.

    Science.gov (United States)

    Salman, Hayder

    2017-04-01

    Starting from the continuum definition of helicity, we derive from first principles its different contributions for superfluid vortices. Our analysis shows that an internal twist contribution emerges naturally from the mathematical derivation. This reveals that the spanwise vector that is used to characterize the twist contribution must point in the direction of a surface of constant velocity potential. An immediate consequence of the Seifert framing is that the continuum definition of helicity for a superfluid is trivially zero at all times. It follows that the Gauss-linking number is a more appropriate definition of helicity for superfluids. Despite this, we explain how a quasi-classical limit can arise in a superfluid in which the continuum definition for helicity can be used. This provides a clear connection between a microscopic and a macroscopic description of a superfluid as provided by the Hall-Vinen-Bekarevich-Khalatnikov equations. This leads to consistency with the definition of helicity used for classical vortices.

  4. High performance operational limits of tokamak and helical systems

    International Nuclear Information System (INIS)

    Yamazaki, Kozo; Kikuchi, Mitsuru

    2003-01-01

    The plasma operational boundaries of tokamak and helical systems are surveyed and compared with each other. Global confinement scaling laws are similar and gyro-Bohm like, however, local transport process is different due to sawtooth oscillations in tokamaks and ripple transport loss in helical systems. As for stability limits, achievable tokamak beta is explained by ideal or resistive MHD theories. On the other hand, beta values obtained so far in helical system are beyond ideal Mercier mode limits. Density limits in tokamak are often related to the coupling between radiation collapse and disruptive MHD instabilities, but the slow radiation collapse is dominant in the helical system. The pulse length of both tokamak and helical systems is on the order of hours in small machines, and the longer-pulsed good-confinement plasma operations compatible with radiative divertors are anticipated in both systems in the future. (author)

  5. On Helical Projection and Its Application in Screw Modeling

    Directory of Open Access Journals (Sweden)

    Riliang Liu

    2014-04-01

    Full Text Available As helical surfaces, in their many and varied forms, are finding more and more applications in engineering, new approaches to their efficient design and manufacture are desired. To that end, the helical projection method that uses curvilinear projection lines to map a space object to a plane is examined in this paper, focusing on its mathematical model and characteristics in terms of graphical representation of helical objects. A number of interesting projective properties are identified in regard to straight lines, curves, and planes, and then the method is further investigated with respect to screws. The result shows that the helical projection of a cylindrical screw turns out to be a Jordan curve, which is determined by the screw's axial profile and number of flights. Based on the projection theory, a practical approach to the modeling of screws and helical surfaces is proposed and illustrated with examples, and its possible application in screw manufacturing is discussed.

  6. Internal transport barrier physics in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Minami, T.; Fujisawa, A.; Herranz, J.; Ida, K.; Yamagishi, O.; Yamada, H.; Maaberg, H.; Beidler, C.D.; Dinklage, A.; Estrada, T.; Castejon, F.; Murakami, S.

    2005-01-01

    The electron internal transport barrier (eITB) has been observed in wide range of helical systems, such as CHS [eg.,1], LHD [eg., 2], TJ-II [eg., 3] and W7-AS [eg., 4]. The eITB isA defined as highly peaked electron temperature (Te) profile with strongly positive radial electric field (Er) in the central region. These observations are reviewed in this paper to understand the device-independent common findings and also to draw the main differences. This is the first report from the International Stellarator Profile Database Activity. The formation of the strong central positive Er has been understood mainly as a result of the ambipolarity of neoclassical electron and ion fluxes, although some additional convective electron flux such as driven by ECRH is required in some situations. This 'neoclassical' physics peculiar to low collisional regime of helical plasmas provides the commonly observed existence of the ECRH power threshold (which is also depending on the density). This is contrastive characteristics to the ITB observed in tokamaks. The dependence of the ECRH power threshold on the magnetic configuration and on the heating scenario among these devices are currently being examined by taking the effective ripple and the trapped particle fraction as parameters to achieve the comprehensive understanding. The roles of low order rational surfaces on the onset of eITB formation and also on its radial size (location of the footpoint of the eITB) have been indicated in inward shifted configurations in LHD (depending on the relative locations of heating position and 2/1 island) and TJ-II (eITB becomes possible at higher density when 3/2 rational is introduced in the plasma core region). It is speculated that, for the latter case, the resonance causes an extra electron flux to trigger the positive Er. The interplay between low order rational surfaces and the formation of eITB still waits for the systematic experiment and theoretical analysis. The external controllability

  7. Patterns of uterine enhancement with helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, H.; Loyer, E.M.; Charnsangavej, C. [Department of Diagnostic Radiology, Box 57, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Minami, M. [Department of Radiology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113 (Japan)

    1998-10-01

    Objective: The purpose of this study was to evaluate the enhancement characteristics of the normal uterine body and cervix using dynamic contrast-enhanced helical CT. Methods: Thirty-eight women scheduled for pelvic CT for non-gynecologic malignancies underwent dynamic contrast-enhanced helical CT of the pelvis. Data acquisition was during the arterial phase (30-45 s after the start of injection), the parenchymal phase (90-120 s after the start of injection), and delayed phase (3-9 min after the start of injection). The images were evaluated by four radiologists for the pattern of myometrial and cervical enhancement. Correlation was made with the age and menstrual status of the patients. Results: In the uterine body, three types of enhancement were observed. Type 1 enhancement, seen in 16 patients (42%), was characterized by the visualization of a subendometrial zone of enhancement, 30-120 s after the start of injection. Eight of these patients also showed an enhancing zone in the outer myometrium. Both zones were transitory, and in all cases, the uterus became homogeneous in the delayed phase. This pattern was seen predominantly in premenopausal women with a mean age of 34 years. Type 2 enhancement, seen in 17 cases (45%), was defined by the absence of subendometrial enhancement in the early phase. Enhancement was either diffuse from the outset or originated in the outer myometrium. This pattern was seen nearly equally in premenopausal and postmenopausal women with a mean age of 40 years. Type 3 enhancement was seen in five postmenopausal patients (13%) with a mean age of 53 years and was characterized by faint diffuse enhancement. In the cervix, a zonal pattern of enhancement defining inner and outer stroma was seen in 23 patients (61%). Fifteen patients were premenopausal and eight were postmenopausal. Conclusion: In this study, we have shown a transitory zonal distribution of the contrast in the myometrium and cervix using dynamic contrast-enhanced helical CT

  8. Patterns of uterine enhancement with helical CT

    International Nuclear Information System (INIS)

    Kaur, H.; Loyer, E.M.; Charnsangavej, C.; Minami, M.

    1998-01-01

    Objective: The purpose of this study was to evaluate the enhancement characteristics of the normal uterine body and cervix using dynamic contrast-enhanced helical CT. Methods: Thirty-eight women scheduled for pelvic CT for non-gynecologic malignancies underwent dynamic contrast-enhanced helical CT of the pelvis. Data acquisition was during the arterial phase (30-45 s after the start of injection), the parenchymal phase (90-120 s after the start of injection), and delayed phase (3-9 min after the start of injection). The images were evaluated by four radiologists for the pattern of myometrial and cervical enhancement. Correlation was made with the age and menstrual status of the patients. Results: In the uterine body, three types of enhancement were observed. Type 1 enhancement, seen in 16 patients (42%), was characterized by the visualization of a subendometrial zone of enhancement, 30-120 s after the start of injection. Eight of these patients also showed an enhancing zone in the outer myometrium. Both zones were transitory, and in all cases, the uterus became homogeneous in the delayed phase. This pattern was seen predominantly in premenopausal women with a mean age of 34 years. Type 2 enhancement, seen in 17 cases (45%), was defined by the absence of subendometrial enhancement in the early phase. Enhancement was either diffuse from the outset or originated in the outer myometrium. This pattern was seen nearly equally in premenopausal and postmenopausal women with a mean age of 40 years. Type 3 enhancement was seen in five postmenopausal patients (13%) with a mean age of 53 years and was characterized by faint diffuse enhancement. In the cervix, a zonal pattern of enhancement defining inner and outer stroma was seen in 23 patients (61%). Fifteen patients were premenopausal and eight were postmenopausal. Conclusion: In this study, we have shown a transitory zonal distribution of the contrast in the myometrium and cervix using dynamic contrast-enhanced helical CT

  9. Large scale filaments associated with Milky Way spiral arms

    Science.gov (United States)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-08-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments from a pilot search field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104 Msun, and beam-averaged (28", or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)x1022 cm-2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K due to local star formation activities. All the filaments are located within spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade. These giant filaments, which often contain regularly spaced pc-scale clumps, are much larger than the filaments found in the Herschel Gould's Belt Survey, and they form the upper ends in the filamentary hierarchy. Full operational ALMA and NOEMA will be able to resolve and characterize similar filaments in nearby spiral galaxies, allowing us to compare the star formation in a uniform context of spiral arms.

  10. Topology of interaction between titin and myosin thick filaments.

    Science.gov (United States)

    Kellermayer, Miklós; Sziklai, Dominik; Papp, Zsombor; Decker, Brennan; Lakatos, Eszter; Mártonfalvi, Zsolt

    2018-05-05

    Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Chaotic coordinates for the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Suzuki, Y. [National Institute for Natural Sciences, National Institute for Fusion Sciences, 322-6 Oroshi, Toki, 509-5292 (Japan)

    2014-10-15

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that flux surfaces become “straight” and islands become “square.”.

  12. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  13. ATLAS helicity analyses in beauty hadron decays

    CERN Document Server

    Smizanska, M

    2000-01-01

    The ATLAS detector will allow a precise spatial reconstruction of the kinematics of B hadron decays. In combination with the efficient lepton identification applied already at trigger level, ATLAS is expected to provide large samples of exclusive decay channels cleanly separable from background. These data sets will allow spin-dependent analyses leading to the determination of production and decay parameters, which are not accessible if the helicity amplitudes are not separated. Measurement feasibility studies for decays B/sub s //sup 0/ to J/ psi phi and Lambda /sub b//sup 0/ to Lambda J/ psi , presented in this document, show the experimental precisions that can be achieved in determination of B/sub s//sup 0/ and Lambda /sub b //sup 0/ characteristics. (19 refs).

  14. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  15. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  16. Characteristic features of edge transport barrier formed in helical divertor configuration of the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K.; Ohdachi, S.; Watanabe, F.

    2006-10-01

    In a helical divertor configuration of the Large Helical Device (LHD), transport barrier was formed through low to high confinement (L-H) transition in the plasma edge region including ergodic field layer of which region is in the magnetic hill. The plasma stored energy or the averaged bulk plasma beta dia > (derived from diamagnetic measurement) starts to increase just after the transition. In the case that both dia > and line-averaged electron density e > at the transition are relatively high as dia >≥1.5% and e >≥2x10 19 m -3 , the increase is hampered by rapid growth of edge MHD modes and/or small ELM like activities just after the transition. On the other hand, the transition at lower e > (≤1.5x10 19 m -3 ) and dia > (<2%) leads to a continuous increase in the stored energy with a time scale longer than the global energy confinement time, without suffering from these MHD activities near the edge. The ETB typically formed in electron density profile extends into ergodic field layer defined in the vacuum field. The width of ETB is almost independent of the toroidal field strength from 0.5T to 1.5T and is much larger than the poloidal ion gyro-radius. When resonant helical field perturbations are applied to expand a magnetic island size at the rational surface of the rotational transform ι/2π=1 near the edge, the L-H transition is triggered at lower electron density compared with the case without the field perturbations. The application of large helical field perturbations also suppresses edge MHD modes and ELM like activities. (author)

  17. Coulomb pair-creation

    International Nuclear Information System (INIS)

    Hrasko, P.; Foeldy, L.; Toth, A.

    1986-07-01

    Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)

  18. Pairing correlations around scission

    International Nuclear Information System (INIS)

    Krappe, H.J.; Fadeev, S.

    2001-01-01

    To describe pairing correlations in a fissioning system one commonly projects the BCS wave function separately onto good particle numbers in each fragment in the exit channel, but only onto the total number of particles in the parent system. We propose to interpolate between these limiting situations by the generator-coordinate method with the particle-number difference between the nascent fragments as the generator coordinate. Model calculations are presented for the Hill-Wheeler-box potential with a δ-function diaphragm to mimic scission

  19. Au pairs on Facebook

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2016-01-01

    Ethnographers are increasingly making use of Facebook to acquire access and general acquaintance with their field of study. However, little has been written on how Facebook is used methodologically in research that does not have social media sites as the main focus of interest. This article argues...... the au pairs resist and embrace such dominant representations, and on how such representations are ascribed different meanings in the transnational social fields of which the migrant are a part. The article is based on ethnographic fieldwork conducted between 2010 and 2014 in Denmark, the Philippines...

  20. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  1. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  2. Filament bundle location influence on coupling losses in superconducting composites

    International Nuclear Information System (INIS)

    Ito, Daisuke; Koizumi, Misao; Hamajima, Takataro; Nakane, Fumoto.

    1983-01-01

    The ac losses in multifilamentary superconducting composites with different superconducting filament bundle positions have been measured using the magnetization method in order to reveal the relation between filament bundle position and coupling losses. Loss components depending on dB/dt in a mixed matrix superconducting composite, whose filament bundle is located in a central region surrounded by an outer stabilizing copper sheath, has been compared with another superconducting composite whose stabilizing copper is located in a central region surrounded by an outer filament bundle. In both conductors, key parameters, such as filament twistpitch, wire diameter and amount of copper stabilizer, were almost the same. Applied magnetic field is 2 Tesla with 0.05-2 Tesla/sec field change rate. Experimental results indicate that coupling losses between filaments in the composite with the filament bundle located in the central region is smaller than the composite with the filament bundle located in the outer region. A similar conclusion was reached theoretically by B. Truck. Coupling loss values obtained by the experiment show good agreement with calculated values with the equations proposed by B. Truck. It is also pointed out that a copper stabilizer, divided by the CuNi barrier into small regions, like a honeycomb, causes anomalous increasing in the copper resistivity due to Ni diffusion during heat treatment. (author)

  3. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  4. Method for simultaneously coating a plurality of filaments

    Science.gov (United States)

    Miller, P.A.; Pochan, P.D.; Siegal, M.P.; Dominguez, F.

    1995-07-11

    Methods and apparatuses are disclosed for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors. 3 figs.

  5. Accurate simulation dynamics of microscopic filaments using "caterpillar" Oseen hydrodynamics

    NARCIS (Netherlands)

    Bailey, A.G.; Lowe, C.P.; Pagonabarraga, I.; Cosentino Lagomarsino, M.

    2009-01-01

    Microscopic semiflexible filaments suspended in a viscous fluid are widely encountered in biophysical problems. The classic example is the flagella used by microorganisms to generate propulsion. Simulating the dynamics of these filaments numerically is complicated because of the coupling between the

  6. Process for the production of superconductor containing filaments

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, Olli P. (Candler, NC); Hoyt, Matthew B. (Arden, NC); Mitchell, David F. (Asheville, NC); Morgan, Carol W. (Asheville, NC); Roberts, Clyde Gordon (Asheville, NC); Tyler, Robert A. (Canton, NC)

    2002-01-01

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  7. Design and Optimization of Filament Wound Composite Pressure Vessels

    NARCIS (Netherlands)

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound

  8. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  9. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    Science.gov (United States)

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  10. Thick Filament Protein Network, Functions, and Disease Association.

    Science.gov (United States)

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  11. A catalytic oligomeric motor that walks along a filament track

    Science.gov (United States)

    Huang, Mu-Jie; Kapral, Raymond

    2015-06-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  12. A catalytic oligomeric motor that walks along a filament track

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mu-Jie, E-mail: mjhuang@chem.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2015-06-28

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  13. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  14. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  15. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic

  16. Avian influenza a virus budding morphology: spherical or filamentous?

    Science.gov (United States)

    Most strains of influenza A virus (IAV) can produce long (µm length) filamentous virus particles as well as ~100 nm diameter spherical virions. The function of the filamentous particles is unclear but is hypothesized to facilitate transmission within or from the respiratory tract. In mammalian IAVs,...

  17. A catalytic oligomeric motor that walks along a filament track

    International Nuclear Information System (INIS)

    Huang, Mu-Jie; Kapral, Raymond

    2015-01-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments

  18. Effects of dielectric inhomogeneity on electrostatic twist rigidity of a helical biomolecule in Debye-Hückel regime

    Science.gov (United States)

    Rezaie-Dereshgi, Amir; Mohammad-Rafiee, Farshid

    2018-04-01

    The electrostatic interactions play a crucial role in biological systems. Here we consider an impermeable dielectric molecule in the solvent with a different dielectric constant. The electrostatic free energy in the problem is studied in the Debye-Hückel regime using the analytical Green function that is calculated in the paper. Using this electrostatic free energy, we study the electrostatic contribution to the twist rigidity of a double stranded helical molecule such as a DNA and an actin filament. The dependence of the electrostatic twist rigidity of the molecule to the dielectric inhomogeneity, structural parameters, and the salt concentration is studied. It is shown that, depending on the parameters, the electrostatic twist rigidity could be positive or negative.

  19. Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs.

    Science.gov (United States)

    Liu, Qing; Liu, Guocheng; Wang, Ting; Fu, Jing; Li, Rujiao; Song, Linlin; Wang, Zhen-Gang; Ding, Baoquan; Chen, Fei

    2017-11-03

    Self-assembled DNA nanostructures hold great promise in the fields of nanofabrication, biosensing and nanomedicine. However, the inherent low stability of the DNA double helices, formed by weak interactions, largely hinders the assembly and functions of DNA nanostructures. In this study, we redesigned and constructed a six-arm DNA junction by incorporation of the unnatural base pairs 5-Me-isoC/isoG and A/2-thioT into the double helices. They not only retained the structural integrity of the DNA nanostructure, but also showed enhanced thermal stability and resistance to T7 Exonuclease digestion. This research may expand the applications of DNA nanostructures in nanofabrication and biomedical fields, and furthermore, the genetic alphabet expansion with unnatural base pairs may enable us to construct more complicated and diversified self-assembled DNA nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Beam wandering of femtosecond laser filament in air.

    Science.gov (United States)

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  1. Methods for genetic transformation of filamentous fungi.

    Science.gov (United States)

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  2. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...

  3. Bursting of filaments in the plasma focus

    International Nuclear Information System (INIS)

    Gratton, F.T.L.

    1976-01-01

    Photographs of the current sheath of (low energy) plasma focus show a disruption of the filaments. This phenomenon is interpreted as a vortex breakdown. Physical parameters which support this hypothesis are obtained from measurements, from the theoretical thickness of the current sheath given by Nardi and from some models of the plasma flow. The widening of a vortex due to axial velocity increase is analyzed by means of magnetohydrodynamic collinear models. The main results are: (1) the existence of a limit separating supercritical from subcritical regimes (their character changes with the ratio between kinetic and magnetic energy); (2) the existence of flow regimes where the vortex radius remains approximately constant for moderate increments of the external velocity; (3) the structure of the vortex may change substantially for a sufficiently large increment of the external velocity, even in subcritical states; (4) the possibility that a burst of the vortex may occur when the external velocity suffers a slowdown

  4. Current filaments in turbulent magnetized plasmas

    DEFF Research Database (Denmark)

    Martines, E.; Vianello, N.; Sundkvist, D.

    2009-01-01

    gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events......Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed....

  5. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  6. Natural Fiber Filament Wound Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed Ansari Suriyati

    2017-01-01

    Full Text Available In recent development, natural fibers have attracted the interest of engineers, researchers, professionals and scientists all over the world as an alternative reinforcement for fiber reinforced polymer composites. This is due to its superior properties such as high specific strength, low weight, low cost, fairly good mechanical properties, non-abrasive, eco-friendly and bio-degradable characteristics. In this point of view, natural fiber-polymer composites (NFPCs are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residue from the industrial and agricultural processes are still underutilized as low-value energy sources. This is a comprehensive review discussing about natural fiber reinforced composite produced by filament winding technique.

  7. General architecture of the alpha-helical globule.

    Science.gov (United States)

    Murzin, A G; Finkelstein, A V

    1988-12-05

    A model is presented for the arrangement of alpha-helices in globular proteins. In the model, helices are placed on certain ribs of "quasi-spherical" polyhedra. The polyhedra are chosen so as to allow the close packing of helices around a hydrophobic core and to stress the collective interactions of the individual helices. The model predicts a small set of stable architectures for alpha-helices in globular proteins and describes the geometries of the helix packings. Some of the predicted helix arrangements have already been observed in known protein structures; others are new. An analysis of the three-dimensional structures of all proteins for which co-ordinates are available shows that the model closely approximates the arrangements and packing of helices actually observed. The average deviations of the real helix axes from those in the model polyhedra is +/- 20 degrees in orientation and +/- 2 A in position (1 A = 0.1 nm). We also show that for proteins that are not homologous, but whose helix arrangements are described by the same polyhedron, the root-mean-square difference in the position of the C alpha atoms in the helices is 1.6 to 3.0 A.

  8. MAGNETIC HELICITY FLUX IN THE PRESENCE OF SHEAR

    International Nuclear Information System (INIS)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac and Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  9. Magnetic Helicity Flux in the Presence of Shear

    Science.gov (United States)

    Hubbard, Alexander; Brandenburg, Axel

    2011-01-01

    Magnetic helicity has risen to be a major player in dynamo theory, with the helicity of the small-scale field being linked to the dynamo saturation process for the large-scale field. It is a nearly conserved quantity, which allows its evolution equation to be written in terms of production and flux terms. The flux term can be decomposed in a variety of fashions. One particular contribution that has been expected to play a significant role in dynamos in the presence of mean shear was isolated by Vishniac & Cho. Magnetic helicity fluxes are explicitly gauge dependent however, and the correlations that have come to be called the Vishniac-Cho flux were determined in the Coulomb gauge, which turns out to be fraught with complications in shearing systems. While the fluxes of small-scale helicity are explicitly gauge dependent, their divergences can be gauge independent. We use this property to investigate magnetic helicity fluxes of the small-scale field through direct numerical simulations in a shearing-box system and find that in a numerically usable gauge the divergence of the small-scale helicity flux vanishes, while the divergence of the Vishniac-Cho flux remains finite. We attribute this seeming contradiction to the existence of horizontal fluxes of small-scale magnetic helicity with finite divergences.

  10. Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)

    2017-07-10

    We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.

  11. Intermediate filament protein evolution and protists.

    Science.gov (United States)

    Preisner, Harald; Habicht, Jörn; Garg, Sriram G; Gould, Sven B

    2018-03-23

    Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity. © 2018 Wiley Periodicals, Inc.

  12. High-n helicity-induced shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Nakajima, N.; Cheng, C.Z.; Okamoto, M.

    1992-05-01

    The high-n Helicity-induced shear Alfven Eigenmodes (HAE) are considered both analytically and numerically for the straight helical magnetic system, where n is the toroidal mode number. The eigenmode equation for the high-n HAE modes is derived along the field line and with the aid of the averaging method is shown to reduce to the Mathieu equation asymptotically. The discrete HAE modes are shown to exist inside the continuum spectrum gaps. The continuous spectrum gaps appear around ω 2 = ω A 2 [N(lι-m)/2] 2 for N = 1,2,.., where ω A is the toroidal Alfven transit frequency, and l, m, and ι are the polarity of helical coils, the toroidal pitch number of helical coils, and the rotational transform, respectively. For the same ω A and ι, the frequency of the helical continuum gap is larger than that of the continuum gap in tokamak plasmas by |l-ι -1 m|. The polarity of helical coils l plays a crucial role in determining the spectrum gaps and the properties of the high-n HAE modes. The spectrum gaps near the magnetic axis are created by the helical ripple with circular flux surfaces for l = 1, and ≥ 3 helicals. For l = 2 helical systems, the spectrum gaps are created by the ellipticity of the flux surfaces. These analytical results for the continuum gaps and the existence of the high-n HAE modes in the continuum gaps are confirmed numerically for the l = 2 case, and we find that the HAE modes exist for mode structures with the even and the odd parities. (author)

  13. Assessing Intimacy: The Pair Inventory.

    Science.gov (United States)

    Schaefer, Mark T.; Olson, David H.

    1981-01-01

    Personal Assessment of Intimacy in Relationships (PAIR) provides systematic information in five types of intimacy: emotional, social, sexual, intellectual and recreational. PAIR can be used with couples in marital therapy and enrichment groups. (Author)

  14. Evidence for longitudinal photon polarization in muon-pair production by pions

    International Nuclear Information System (INIS)

    Anderson, K.J.; Coleman, R.N.; Karhi, K.P.; Newman, C.B.; Pilcher, J.E.; Rosenberg, E.I.; Thaler, J.J.; Hogan, G.E.; McDonald, K.T.; Sanders, G.H.; Smith, A.J.S.

    1979-01-01

    Data on μ-pair production by pions are examined as a function of x and P/sub T/ for longitudinal photon polarization. Evidence in the form of a sin 2 theta* term in the helicity angular distribution is observed for x near 1. This is conclusive evidence that production in this region is not predominantly through on-shell quark annihilation. The result is consistent with a calculation based on quantum chromodynamics

  15. Radiation Field of a Square, Helical Beam Antenna

    DEFF Research Database (Denmark)

    Knudsen, Hans Lottrup

    1952-01-01

    square helices are used. Further, in connection with corresponding rigorous formulas for the field from a circular, helical antenna with a uniformly progressing current wave of constant amplitude the present formulas may be used for an investigation of the magnitude of the error introduced in Kraus......' approximate calculation of the field from a circular, helical antenna by replacing this antenna with an ``equivalent'' square helix. This investigation is carried out by means of a numerical example. The investigation shows that Kraus' approximate method of calculation yields results in fair agreement...

  16. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  17. Drift mode calculations for the Large Helical Device

    International Nuclear Information System (INIS)

    Rewoldt, G.; Ku, L.-P.; Tang, W.M.; Sugama, H.; Nakajima, N.; Watanabe, K.Y.; Murakami, S.; Yamada, H.; Cooper, W.A.

    2000-01-01

    A fully kinetic assessment of the stability properties of toroidal drift modes has been obtained for a case for the Large Helical Device (LHD) [A.Iiyoshi, et al., Plasma Physics and Controlled Nuclear Fusion Research, 1998, Nucl.Fusion 39, 1245 (1999)]. This calculation retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. Results for toroidal drift waves destabilized by trapped particle dynamics and ion temperature gradients are presented, using three-dimensional magnetohydrodynamics equilibria reconstructed from experimental measurements. The effects of helically-trapped particles and helical curvature are investigated

  18. Experimental Evidence of Helical Flow in Porous Media

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.

    2015-01-01

    Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation....... The resulting helical flow entails twisting streamlines which cause a significant increase in lateral mass exchange and thus a large enhancement of plume dilution (up to 235%) compared to transport in homogenous media. The setup may be used to effectively mix solutes in parallel streams similarly to static...... mixers, but in porous media....

  19. Linear local stability of electrostatic drift modes in helical systems

    International Nuclear Information System (INIS)

    Yamagishi, O.; Nakajima, N.; Sugama, H.; Nakamura, Y.

    2003-01-01

    We investigate the stability of the drift wave in helical systems. For this purpose, we solve the linear local gyrokinetic-Poisson equation, in the electrostatic regime. As a model of helical plasmas, Large helical Device (LHD) is considered. The equation we apply is rather exact in the framework of linear gyrokinetic theory, where only the approximation is the ballooning representation. In this paper, we consider only collisionless cases. All the frequency regime can be naturally reated without any assumptions, and in such cases, ion temperature gradient modes (ITG), trapped electron modes (TEM), and electron temperature gradient modes (ETG) are expected to become unstable linearly independently. (orig.)

  20. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Famin Qiu

    2015-03-01

    Full Text Available Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT. Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.

  1. QSO Pairs across Active Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located across an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs ...

  2. Pairing in hadron structure

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1981-08-01

    A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)

  3. Paired Hall states

    International Nuclear Information System (INIS)

    Greiter, M.

    1992-01-01

    This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8

  4. Footpoint detection and mass-motion in chromospheric filaments

    Science.gov (United States)

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  5. Microwave structure of quiescent solar filaments at high resolution

    International Nuclear Information System (INIS)

    Gary, D.E.

    1986-01-01

    High resolution very low altitude maps of a quiescent filament at three frequencies are presented. The spatial resolution (approx. 15'' at 1.45 GHz, approx. 6'' at 4.9 GHz, and approx. 2'' at 15 GHz) is several times better than previously attained. At each frequency, the filament appears as a depression in the quiet Sun background. The depression is measurably wider and longer in extent than the corresponding H alpha filament at 1.45 GHz and 4.9 GHz, indicating that the depression is due in large part to a deficit in coronal density associated with the filament channel. In contrast, the shape of the radio depression at 15 CHz closely matches that of the H alpha filament. In addition, the 15 GHz map shows enhanced emission along both sides of the radio depression. A similar enhancement is seen in an observation of a second filament 4 days later, which suggests that the enhancement is a general feature of filaments. Possible causes of the enhanced emission are explored

  6. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  7. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  8. A 3D printed helical antenna with integrated lens

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2015-01-01

    A novel antenna configuration comprising a helical antenna with an integrated lens is demonstrated in this work. The antenna is manufactured by a unique combination of 3D printing of plastic material (ABS) and inkjet printing of silver nano

  9. Particle orbit analysis for LHD helical axis configurations

    International Nuclear Information System (INIS)

    Guasp, J.; Yamazaki, K.; Motojima, O.

    1993-04-01

    Fast ion orbits for helical magnetic axis configurations in LHD (Large Helical Device) are analyzed and compared with the standard circular axis case. Boundaries between passing and helically trapped particle regions show clear differences: in the non-planar axis case the helically trapped region spreads, near the magnetic axis, over a much wider band across the 90deg pitch angle value and shows a very marked asymmetry. The locally trapped particle region is also wider than in the standard case. The differences in the loss cone boundaries of the two cases are rather small, however, the effects of re-entering criteria are very important in both cases. On the contrary, effects of finite coil size are not significant. (author)

  10. Metallic and 3D-printed dielectric helical terahertz waveguides.

    Science.gov (United States)

    Vogt, Dominik Walter; Anthony, Jessienta; Leonhardt, Rainer

    2015-12-28

    We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

  11. Helical-axis stellarators with noninterlocking planar coils

    International Nuclear Information System (INIS)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits

  12. Helical-axis stellarators with noninterlocking planar coils

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.; Boozer, A.

    1983-08-01

    The properties of helical axis stellarator fields generated by unlinked, planar coils are described. It is shown that such fields can have a magnetic well and large rotational transform, implying large equilibrium and stability beta limits.

  13. Energy and helicity of magnetic torus knots and braids

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  14. Investigation into the heat transfer performance of helically ribbed surfaces

    International Nuclear Information System (INIS)

    Firth, R.J.

    1981-12-01

    The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)

  15. Interaction of 18-residue peptides derived from amphipathic helical ...

    Indian Academy of Sciences (India)

    Madhsudhan

    interaction of proteins and peptides with membranes (Segrest ... favour surface activity have been described by Eisenberg et ... amphipathicity and propensity for α-helical conformation ..... Membrane destabilisation occurs due to electrostatic.

  16. Energy fluxes in helical magnetohydrodynamics and dynamo action

    Indian Academy of Sciences (India)

    Kinetic and magnetic helicities do not affect the renormalized parameters, ... Generation of magnetic field in plasma, usually referred to as 'dynamo', is one of the ..... energy fluxes for the inertial-range wave numbers where the same power.

  17. Centromere pairing by a plasmid-encoded type I ParB protein

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Löwe, Jan; Gerdes, Kenn

    2007-01-01

    The par2 locus of Escherichia coli plasmid pB171 encodes two trans-acting proteins, ParA and ParB, and two cis-acting sites, parC1 and parC2, to which ParB binds cooperatively. ParA is related to MinD and oscillates in helical structures and thereby positions ParB/parC-carrying plasmids regularly......, hence identifying the N terminus of ParB as a requirement for ParB-mediated centromere pairing. These observations suggest that centromere pairing is an important intermediate step in plasmid partitioning mediated by the common type I loci....

  18. Pair potentials in liquid metals

    International Nuclear Information System (INIS)

    Faber, T.E.

    1980-01-01

    The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)

  19. Experimental many-pairs nonlocality

    Science.gov (United States)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  20. Large-scale filaments associated with Milky Way spiral arms

    Science.gov (United States)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, C. Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-07-01

    The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3) × 104 M⊙, and beam-averaged (28 arcsec, or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)× 1022 cm- 2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within ≲60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.