WorldWideScience

Sample records for pair creation energy

  1. Polarization effects for pair creation by photon in oriented crystals at high energy

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.

    2006-01-01

    Pair creation by a photon in an oriented crystal is considered in the frame of the quasiclassical operator method, which includes processes with polarized particles. Under some quite generic assumptions the general expression is derived for the probability of pair creation of longitudinally polarized electron (positron) by circularly polarized photon in oriented crystal. In the particular cases θ > V /m (θ is the angle of incidence, angle between the momentum of the initial photon and axis (plane) of crystal, V is the scale of a potential of axis or a plane relative to which the angle θ is defined) one has the constant field approximation and the coherent pair production theory correspondingly. Side by side with coherent process the probability of incoherent pair creation is calculated, which differs essentially from amorphous one. At high energy the pair creation in oriented crystal is strongly enhanced comparing with the amorphous medium. In the corresponding appendixes the integral polarization of positron is found in an external field and for the coherent and incoherent mechanisms

  2. Multi-pair states in electron–positron pair creation

    Directory of Open Access Journals (Sweden)

    Anton Wöllert

    2016-09-01

    Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  3. Multi-pair states in electron–positron pair creation

    Energy Technology Data Exchange (ETDEWEB)

    Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.

    2016-09-10

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  4. Multi-pair states in electron–positron pair creation

    International Nuclear Information System (INIS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  5. Pair creation at large inherent angles

    International Nuclear Information System (INIS)

    Chen, P.; Tauchi, T.; Schroeder, D.V.

    1992-01-01

    In the next-generation linear colliders, the low-energy e + e - pairs created during the collision of high-energy e + e - beams would cause potential deleterious background problems to the detectors. At low collider energies, the pairs are made essentially by the incoherent process, where the pair is created by the interaction of beamstrahlung photons on the individual particles in the oncoming beam. This problem was first identified by Zolotarev, et al. At energies where the beamstrahlung parameter Υ lies approximately in the range 0.6 approx-lt Υ approx-lt 100, pair creation from the beamstrahlung photons is dominated by a coherent process, first noted by Chen. The seriousness of this pair creation problem lies in the transverse momenta that the pair particles carry when leaving the interaction point (IP) with large angles. Since the central issue is the transverse momentum for particles with large angles, the authors notice that there is another source for it. Namely, when the pair particles are created at low energies, the intrinsic angles of these pairs when produced may already be large. In this paper they reinvestigate the problem, following essentially the same equivalent photon approach, but with changes in specific details including the virtual photon spectrum. In addition, various assumptions are made more explicit. The formulas derived are then applied to the collider parameters designed by Palmer

  6. Schwinger pair creation of Kaluza-Klein particles: Pair creation without tunneling

    International Nuclear Information System (INIS)

    Friedmann, Tamar; Verlinde, Herman

    2005-01-01

    We study Schwinger pair creation of charged Kaluza-Klein (KK) particles from a static KK electric field. We find that the gravitational backreaction of the electric field on the geometry--which is incorporated via the electric KK-Melvin solution--prevents the electrostatic potential from overcoming the rest mass of the KK particles, thus impeding the tunneling mechanism which is often thought of as responsible for the pair creation. However, we find that pair creation still occurs with a finite rate formally similar to the classic Schwinger result, but via an apparently different mechanism, involving a combination of the Unruh effect and vacuum polarization due to the E-field

  7. Recoil effects in multiphoton electron-positron pair creation

    International Nuclear Information System (INIS)

    Krajewska, K.; Kaminski, J. Z.

    2010-01-01

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  8. Magnetic Pair Creation Transparency in Pulsars

    Science.gov (United States)

    Story, Sarah; Baring, M. G.

    2013-04-01

    The Fermi gamma-ray pulsar database now exceeds 115 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency below the turnover energy. We adopt a semi-analytic approach, spanning both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. Our work clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths. The altitude bounds, typically in the range of 2-6 neutron star radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. For the Crab pulsar, which emits pulsed radiation up to energies of 120 GeV, we obtain a lower bound of around 15 neutron star radii to its emission altitude.

  9. Experimental study of single-vertex $(e^{-}-e^{+})$ pair creation in a crystal

    CERN Multimedia

    2002-01-01

    This experiment will study the newly predicted process of $e^{-}-e^{+}$ pair production by high energy photons incident along major axial direction of a single crystal. This process is based upon the well-known channeling properties of negatively charged particles along atomic rows of a crystal. The $e^{-}-e^{+}$ pair creation may proceed in a one-step process, without violating energy and momentum conversation laws, due to the lowering of the total energy of the channeled electron (Fig. 1). \\\\ \\\\ The pair creation rate should increase with increasing photon energies (above a threshold of a few GeV) and largely exceed the Bethe-Heitler process rate for photon energies of a few tens of GeV. It is also expected that the created particles share the photon energy nearly equally, in contrast with the rather flat energy distribution associated with the Bethe-Heitler process. \\\\ \\\\ The experimental set-up (Fig. 2) is designed for the study of those two features: photon energy dependence of the pair creation rate, an...

  10. On the pair creation effect in radiative bottonium transitions

    International Nuclear Information System (INIS)

    Lewin, K.; Motz, G.B.

    1986-01-01

    The contributions from internal b-quark pair creation to the radiative transition rates of the processes Y(2S) → X b 1 +γ and X b 2 → Y(1S)+γ have been estimated in a quasilocal approximation preserving the time-dependence of the antiquark propagator and found to be smaller than 10%. Although relatively small, the pair creation correction depends sensitively on quark masses and photon energies and thus cannot be ignored in quantitative investigations of radiative quarkonium transitions

  11. Coherent pair creation from beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1989-09-01

    It has recently been recognized that in future linear colliders, there is a finite probability that the beamstrahlung photons will turn into e + e - pairs induced by the same beam-beam field, and this would potentially cause background problems. In this paper, we first review the probability of such a coherent pair creation process. It is seen that the constraint on the beamstrahlung parameter, Υ, is tight of these coherent pairs to be totally suppressed. We then point out that there exists a minimum energy for the pair-created particles, which scales as ∼1/5Υ. When combining this condition with the deflection angle for the low-energy particles, the constraint on the allowable Υ value is much relaxed. Finally, we calculate the effective cross section for producing the weak bosons by the low-energy e + e - pairs. It is shown that these cross sections are substantial for Υ > 1. We suggest that this effect can help to autoscan the particle spectrum in the high energy frontier. 10 refs., 2 figs

  12. Pair creation of higher dimensional black holes on a de Sitter background

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime

  13. Soliton pair creation at finite temperatures

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.

    1988-01-01

    Creation of soliton-antisoliton pairs at finite temperature is considered within a (1+1)-dimensional model of a real scalar field. It is argued that at certain temperatures, the soliton pair creation in quantum theory can be investigated by studying classical field evolution in real time. The classical field equations are solved numerically, and the pair creation rate and average number of solitons are evaluated. No peculiar suppression of the rate is observed. Some results on the sphaleron transitions in (1+1)-dimensional abelian Higgs model are also presented. (orig.)

  14. Adiabatic pair creation in heavy-ion and laser fields

    International Nuclear Information System (INIS)

    Pickl, P.; Durr, D.

    2008-01-01

    The planned generation of lasers and heavy-ion colliders renews the hope to see electron-positron pair creation in strong classical fields. This old prediction is usually referred to as spontaneous pair creation. We observe that both heavy-ion collisions and pair creation in strong laser fields, are instances of the theory of adiabatic pair creation. We shall present the theory, thereby correcting earlier results. We give the momentum distribution of created pairs in overcritical fields. We discuss carefully the proposed experimental verifications and conclude that pure laser-based experiments are highly questionable. We propose a new experiment, joining laser fields and heavy ions, which may be feasible with present-day technology and which may indeed verify the theoretical prediction of adiabatic pair creation. Our presentation relies on recent rigorous works in mathematical physics. (authors)

  15. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  16. Numerical studies of pair creation in counterpropagating laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Matthias

    2009-05-27

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  17. Numerical studies of pair creation in counterpropagating laser fields

    International Nuclear Information System (INIS)

    Ruf, Matthias

    2009-01-01

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  18. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  19. Magnetic Pair Creation Attenuation Altitude Constraints in Gamma-Ray Pulsars

    Science.gov (United States)

    Baring, Matthew; Story, Sarah

    The Fermi gamma-ray pulsar database now exceeds 150 sources and has defined an important part of Fermi's science legacy, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Among the well established population characteristics is the common occurrence of exponential turnovers in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide lower bounds to the typical altitude of GeV band emission. We explore such constraints due to single-photon pair creation transparency at and below the turnover energy. Our updated computations span both domains when general relativistic influences are important and locales where flat spacetime photon propagation is modified by rotational aberration effects. The altitude bounds, typically in the range of 2-5 stellar radii, provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. However, the exceptional case of the Crab pulsar provides an altitude bound of around 20% of the light cylinder radius if pair transparency persists out to 350 GeV, the maximum energy detected by MAGIC. This is an impressive new physics-based constraint on the Crab's gamma-ray emission locale.

  20. Pair creation by dynamic field configurations

    International Nuclear Information System (INIS)

    Aoyama, H.

    1982-01-01

    This thesis deals with the dynamics of the classical configuration of a quantum field unstable due to pair creation. The effective action method is developed first to treat such problems for a simple two-field model. Physical quantities such as pair creation probabilities are related to a complex function called the effective configuration, which is defined to minimize the effective action. Unitarity of the S-matrix is verified at the lowest order of the weak-field approximation. At the same order, the real valued vacuum expectation value of the quantum field, named the real configuration, is constructed in terms of the effective configuration. An integro-differential equation for the real configuration is given and is used to show that the real configuration is causal, while the effective configuration is not. Two practical applications of the effective action method are discussed. The first deals with pair creation in an anisotropic universe, and the real geometry is given in terms of the effective geometry in the samll anisotropy limit. The second deals with expanding vacuum bubbles. Corresponding to three possible situations, three kinds of field equations of each of the effective configuration and the real configuration are obtained. The behavior of the bubble is also studied by a semi-classical method, and one of the three situations is suggested to be plausible

  1. Klein tunneling phenomenon with pair creation process

    Science.gov (United States)

    Wu, G. Z.; Zhou, C. T.; Fu, L. B.

    2018-01-01

    In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.

  2. Nonlinear Breit–Wheeler pair creation with bremsstrahlung γ rays

    Science.gov (United States)

    Blackburn, T. G.; Marklund, M.

    2018-05-01

    Electron–positron pairs are produced through the Breit–Wheeler process when energetic photons traverse electromagnetic fields of sufficient strength. Here we consider a possible experimental geometry for observation of pair creation in the highly nonlinear regime, in which bremsstrahlung of an ultrarelativistic electron beam in a high-Z target is used to produce γ rays that collide with a counter-propagating laser pulse. We show how the target thickness may be chosen to optimize the yield of Breit–Wheeler positrons, and verify our analytical predictions with simulations of the cascade in the material and in the laser pulse. The electron beam energy and laser intensity required are well within the capability of today’s high-intensity laser facilities.

  3. Few-photon electron-positron pair creation in the collision of a relativistic nucleus and an intense x-ray laser beam

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2004-01-01

    We study the nonlinear process of e - e + pair creation by a nucleus which moves at a relativistic energy in the laboratory frame and collides with an intense x-ray laser beam. The collision system under consideration is chosen in such a way that the simultaneous absorption of at least two photons from the laser wave is required in order to exceed the energy threshold of the reaction. We calculate total and differential rates for both free-free and bound-free pair production. In the case of free-free pair creation we demonstrate the effect of the laser polarization on the spectra of the produced particles, and we show that at very high intensities the total rate exhibits features analogous to those well known from above-threshold ionization rates for atoms. In the case of bound-free pair creation a singularity is found in the laboratory frame angular distribution of the produced positron. This singularity represents a distinct characteristic of the bound-free pair production and allows one to separate this process from free-free pair creation even without detecting a bound state of the captured electron. For both types of pair creation we consider the dependences of the total rates on the collision parameters, give the corresponding scaling laws, and discuss the possibility to observe these nonlinear processes in a future experiment

  4. Bethe-Heitler pair creation in a bichromatic laser field

    International Nuclear Information System (INIS)

    Augustin, Sven

    2014-01-01

    Within this thesis, the non-linear creation of electron-positron pairs in the superposition of a nuclear Coulomb field and a two-colour laser field of high intensity is studied. Primarily, two complementary scenarios are investigated: On the one hand, if the two laser frequencies are commensurable, quantum interference may occur. This interference manifests in the total pair-creation rate and the angular distribution of the created particles, which are studied in the nuclear rest frame and the laboratory frame. Furthermore, the relative phase between the two laser modes allows to tune the strength of the terms arising from interference. Therefore, this parameter may be used to optimize the pair-creation yield. On the other hand, for incommensurable frequencies, a set-up of largely differing frequencies is considered. This way, a strong laser field in the non-perturbative regime assisted by a single highly-energetic γ-photon is described. Due to the assistance of the latter, a strong enhancement of the total pair-creation rate can be found depending on the laser intensity. Additionally, the influence of the γ-photon on the angular and energetic distribution of the created particles is investigated, again in the nuclear rest frame and the laboratory frame. Furthermore, the differences arising in the two former cases are directly compared by means of a continuous variation of the laser frequency ratio. This illustrates the strong modifications due to the interference in the commensurable case. Finally, for the special case of two modes with identical frequency, the total pair-creation rate is studied as a function of the ellipticity of the combined laser field. Here, the cases of a constant total field intensity and a constant maximum field intensity are compared.

  5. Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field

    Science.gov (United States)

    Khalilov, V. R.

    2017-12-01

    Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.

  6. Perturbative neutrino pair creation by an external source

    International Nuclear Information System (INIS)

    Koers, Hylke B.J.

    2005-01-01

    We consider the rate of fermion-antifermion pair creation by an external field. We derive a rate formula that is valid for a coupling with arbitrary vector and axial vector components to first order in perturbation theory. This is then applied to study the creation of neutrinos by nuclear matter, a problem with astrophysical relevance. We present an estimate for the creation rate per unit volume, compare this to previous results and comment on the role of the neutrino mass

  7. On the pair creation effect in radiative charmonium transitions

    International Nuclear Information System (INIS)

    Lewin, K.

    1985-01-01

    Contribution to radiative charmonium decay amplitudes which come from Feynman diagrams containing creation of internal c anti c quark pair is investigated. The a im of the paper is calulation of this pair creation correction to the wave function overlap integral of the transition amplitude in a quasilocal semirelativistic approximation which works for charmed and heavier quark pairs. The application to the decay width of the spin flip transition psi(3685) → γchi(3415) givesa 12% correction to the nopair term using a meson radius near 0.5 Fm and a scale parameter Λ=400 MeV taken from fits inchar=monium spectroscopy. The error of the approximation is estimated to be smaller than 50%. The investigation indicates that also in the case of electroweak meson decays quatitative results cannot be expected from the no-pair contribution alone

  8. Experimental and theoretical study of directional effects on radiation and pair creation in crystal at energies near 100 GeV

    International Nuclear Information System (INIS)

    Belkacem, A.

    1986-07-01

    We investigated the electron-positron pair production from incident photons on a thin crystal. When the photon energy is higher than about 30 GeV, the pair production rate from a photon beam aligned along a crystal direction is higher than the rate measured with an amorphous target (Bethe-Heitler value). In contrast with what was observed for a random orientation (or with an amorphous target) the pair production rate increases sharply with the photon energy. We also investigated the radiation emitted by high energy electrons and positrons (70-200 GeV) along a crystal direction. The intensity of the radiation was found to be extremely high. The increase of the intensity of these two electromagnetic processes (radiation and pair creation) was still observed for incident angles much larger than the channeling critical angle. Thus, a theory based on the channeling phenomenon is not able to explain such observations. In order to understand these new phenomena we developed a new theoretical approach based on the electromagnetic interaction in strong fields. The predictions of this theory on the pair production are in very good agreement with the measurements. The calculations of the radiation are in quantitative agreement with measurements for incident angles larger than the channeling critical angle. This agreement is only qualitative for incident angles smaller than the critical angle [fr

  9. Classical-quantum correspondence in electron-positron pair creation

    International Nuclear Information System (INIS)

    Chott, N. I.; Su, Q.; Grobe, R.

    2007-01-01

    We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to quantum field theory we calculate the spatial and momentum probability distributions for the created particles. A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms of classical mechanics

  10. Pair creation by an external non-Abelian field

    International Nuclear Information System (INIS)

    Hamil, B; Chetouani, L

    2014-01-01

    The problem of the creation of particle pairs of spin 0 and 1/2 from the vacuum by an external field of a non-Abelian type plane wave on the light cone is considered following the approach of Schwinger. Using simple shifts and only by an algebraic calculation, it is shown that with this form of interaction, there is no creation of particles. (paper)

  11. Some remarks on spinor particle pair creation in alternating homogeneous external field

    International Nuclear Information System (INIS)

    Perelomov, A.M.

    1975-01-01

    It is shown that the dynamical symmetry group of the problem of spinor particle pair creation in alternating homogeneous external fields is the SO(5) group. The probability of pair creation is given by the modulus square of the matrix element of spinor representation of this group. (Auth.)

  12. Quark pair creation in color electric fields and effects of magnetic fields

    International Nuclear Information System (INIS)

    Tanji, Noato

    2010-01-01

    The time evolution of a system where a uniform and classical SU(3) color electric field and quantum fields of quarks interact with each other is studied focusing on non-perturbative pair creation and its back reaction. We characterize a color direction of an electric field in a gauge invariant way, and investigate its dependence. Momentum distributions of created quarks show plasma oscillation as well as quantum effects such as the Pauli blocking and interference. Pressure of the system is also calculated, and we show that pair creation moderates degree of anisotropy of pressure. Furthermore, enhancement of pair creation and induction of chiral charge under a color magnetic field which is parallel to an electric field are discussed.

  13. Probability of primordial black hole pair creation in a modified gravitational theory

    International Nuclear Information System (INIS)

    Paul, B. C.; Paul, Dilip

    2006-01-01

    We compute the probability for quantum creation of an inflationary universe with and without a pair of black holes in a modified gravity. The action of the modified theory of gravity contains αR 2 and δR -1 terms in addition to a cosmological constant (Λ) in the Einstein-Hilbert action. The probabilities for the creation of universe with a pair of black holes have been evaluated considering two different kinds of spatial sections, one which accommodates a pair of black holes and the other without black hole. We adopt a technique prescribed by Bousso and Hawking to calculate the above creation probability in a semiclassical approximation using the Hartle-Hawking boundary condition. We note a class of new and physically interesting instanton solutions characterized by the parameters in the action. These instantons may play an important role in the creation of the early universe. We also note that the probability of creation of a universe with a pair of black holes is strongly suppressed with a positive cosmological constant when δ=(4Λ 2 /3) for α>0 but it is more probable for α<-(1/6Λ). In the modified gravity considered here instanton solutions are permitted even without a cosmological constant when one begins with a negative δ

  14. Charged topological black hole pair creation

    International Nuclear Information System (INIS)

    Mann, R.B.

    1998-01-01

    I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)

  15. Electron-positron pair creation from vacuum induced by variable electric field

    International Nuclear Information System (INIS)

    Marinov, M.S.; Popov, V.S.

    1977-01-01

    Problem is considered of spontaneous creation of electron-positron pairs from the vacuum induced by external electric field, that is homogeneous and depends on time in an arbitrary way. The Heisenberg equations of motion are obtained for the creation-annihilation operators. The solution is a linear canonical transformation. The problem is reduced to a set of differential equations for the second-order matrices determining this transformation. A consequence of the CP symmetry of the Dirac equation with an external electric field is that the e + e - pair is created from the vacuum in a state with total spin 1. The case when the variating electric field conserves its direction, is considered in more detail. In this case the equations are much simplified and may be reduced to the Riccati equation or to problem of oscillator with variable frequency, so the problem is equivalent to the one-dimensional quantal problem of a barrier penetration. Two approximate methods to calculate the pair creation probabilities are discussed: the quasiclassical approach and the antidiabatical method, applicable for sharp variations of the external field. Numerical estimates are obtained for the number of e + e - pairs produced by the field E(t) = E cos ωt. Group-theoretical aspects of the problem are also considered. (author)

  16. Pair creation of anti-de Sitter black holes on a cosmic string background

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.

    2004-01-01

    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the string tension. In an AdS background this is the only study done on the process of production of a pair of correlated black holes with spherical topology. The acceleration A of the produced black holes is necessarily greater than √(|Λ|/3), where Λ A bh /4 , where A bh is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when Λ→0

  17. Laser driven electron-positron pair creation-kinetic theory versus analytical approximations

    International Nuclear Information System (INIS)

    Smolyansky, S.A.; Prozorkevich, A.V.; Bonitz, M.

    2013-01-01

    The dynamical Schwinger effect of vacuum pair creation driven by an intense external laser pulse is studied on the basis of quantum kinetic theory. The numerical solutions of these kinetic equations exhibit a complex time dependence which makes an analysis of the physical processes difficult. In particular, the question of secondary effects, such as creation of secondary annihilation photons from the focus spot of the colliding laser beams, remains an important open problem. In the present work we, therefore, develop a perturbation theory which is able to capture the dominant time dependence of the produced electron-positron pair density. The theory shows excellent agreement with the exact kinetic results during the laser pulse, but fails to reproduce the residual pair density remaining in the system after termination of the pulse. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Characterization of a quadrant diamond transmission X-ray detector including a precise determination of the mean electron-hole pair creation energy.

    Science.gov (United States)

    Keister, Jeffrey W; Cibik, Levent; Schreiber, Swenja; Krumrey, Michael

    2018-03-01

    Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state-of-the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron-hole pair creation energy were determined, the latter with an unprecedented relative uncertainty of 1%. The linearity and X-ray scattering properties of the device are also described.

  19. J/psi-> gamma B anti B decays and the quark-pair creation model

    CERN Document Server

    Ping Rong Gang; Shen Peng Nian; Zou Bing Song

    2002-01-01

    The authors generalize the quark-pair creation model to a study of the radiative decays J/psi-> gamma B anti B by assuming that the u, d or s quark pairs are created with the same interaction strength. From the calculation of the ratio of the decay widths GAMMA(J/psi-> gamma p anti B)/GAMMA(J/psi->p anti p), the authors extract the quark-pair creation strength gI=15.40 GeV. Based on the SU(6) spin-flavour basis and the 'uds' basis, the radiative decay branching ratios containing strange baryons are evaluated. Measurements for these decay widths from the BESII data are suggested

  20. J/ψ→γB anti B decays and the quark-pair creation model

    International Nuclear Information System (INIS)

    Ping Ronggang; Jiang Huanqing; Shen Pengnian; Zou Bingsong

    2002-01-01

    The authors generalize the quark-pair creation model to a study of the radiative decays J/ψ→γB anti B by assuming that the u, d or s quark pairs are created with the same interaction strength. From the calculation of the ratio of the decay widths Γ(J/ψ→γp anti B)/Γ(J/ψ→p anti p), the authors extract the quark-pair creation strength gI=15.40 GeV. Based on the SU(6) spin-flavour basis and the 'uds' basis, the radiative decay branching ratios containing strange baryons are evaluated. Measurements for these decay widths from the BESII data are suggested

  1. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    Science.gov (United States)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be

  2. Pair creation of dilaton black holes in extended inflation

    International Nuclear Information System (INIS)

    Bousso, R.

    1997-01-01

    Dilatonic charged Nariai instantons mediate the nucleation of black hole pairs during extended chaotic inflation. Depending on the dilaton and inflaton fields, the black holes are described by one of two approximations in the Lorentzian regime. For each case we find Euclidean solutions that satisfy the no boundary proposal. The complex initial values of the dilaton and inflaton are determined, and the pair creation rate is calculated from the Euclidean action. Similar to standard inflation, black holes are abundantly produced near the Planck boundary, but highly suppressed later on. An unusual feature we find is that the earlier in inflation the dilatonic black holes are created, the more highly charged they can be. copyright 1997 The American Physical Society

  3. DWBA differential and total pair production cross sections for intermediate energy photons

    International Nuclear Information System (INIS)

    Selvaraju, C.; Bhullar, A.S.; Sud, K.K.

    2001-01-01

    We present in this communication the theoretical differential and total cross section for electron-positron pair creation by intermediate energy photons (5.0-10.0 MeV) on different targets (Z=1, 30, 50, 68, 82 and 92). The computed cross sections are in distorted wave Born approximation (DWBA) in point Coulomb potential. The database of the differential and total pair production cross sections is presented in tabulated as well as in graphical form and the interpolation of differential cross sections for different atomic numbers, positron and photon energies is discussed

  4. Initial behavior of a quantized scalar field the associated pair-creation in several anisotropic universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu

    1981-01-01

    As a sequel to previous works on the definition of a positive frequency part of a quantized scalar field near an initial stage of several Robertson-Walker universes with flat, open or closed 3-space and the associated pair-creation of those particles, an attempt is made to seek for the same concept in several Bianchi-type I anisotropic universes. It is shown that, if the positive frequency part is introduced, the pair-creation of scalar particles and their spectral law are uniquely determined, as in the case of isotropic universes. (author)

  5. The internal conversion and e+e- - pairs creation from the heated nuclei

    International Nuclear Information System (INIS)

    Fedotkin, S.N.; Kolomietz, V.M.

    1995-01-01

    General expression for the probabilities of the atomic shell ionization and e + e - -pairs creation at the heated nuclei are found. The spectral distributions of the positrons and conversion electron are investigated in the case of the nuclear E1-transitions

  6. Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption

    International Nuclear Information System (INIS)

    Buchs, Gilles; Krasheninnikov, Arkady V; Ruffieux, Pascal; Groening, Pierangelo; Foster, Adam S; Nieminen, Risto M; Groening, Oliver

    2007-01-01

    The specific, local modification of the electronic structure of carbon nanomaterials is as important for novel electronic device fabrication as the doping in the case of silicon-based electronics. Here, we report low temperature scanning tunneling microscopy and spectroscopy study of semiconducting carbon nanotubes subjected to hydrogen-plasma treatment. We show that plasma treatment mostly results in the creation of paired electronic states in the nanotube band gap. Combined with extensive first-principle simulations, our results provide direct evidence that these states originate from correlated chemisorption of hydrogen adatoms on the tube surface. The energy splitting of the paired states is governed by the adatom-adatom interaction, so that controlled hydrogenation can be used for engineering the local electronic structure of nanotubes and other sp 2 -bonded nanocarbon systems

  7. Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    Suganuma, Hideo; Tatsumi, Toshitaka.

    1993-01-01

    We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)

  8. Defect creation rates in CdTe irradiated by electrons

    International Nuclear Information System (INIS)

    Caillot, M.

    1978-01-01

    Up to now, the defect creation rates in CdTe irradiated by electrons were unknown. They have been calculated for different electron kinetic energies. As the samples studied are thick, the energy loss when the electrons penetrate the material has been taken into account. The cross-sections of Cd and Te displacements vs the depth of electron penetration were determined for different electron kinetic energies, and the defect creation rates obtained for each sublattice. These creation rates have been compared with those deduced from experiments and it was found that the experimental creation rates were lower than the calculated ones. This discrepancy can be explained in terms of creation of neutral Frenkel pairs. (Auth.)

  9. Pair formation by a deep potential well

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1987-01-01

    We obtain solutions of the Dirac and Klein-Gordon equations for a symmetric one-dimensional potential well with a flat bottom, and arbitrary depth, width, and field strength at the walls. Quasistationary solutions are found describing pair creation by the well, and the inverse process. It is shown that when the probability of pair creation by the well is small, it can be expressed in terms of the probability of pair creation at one of the walls and the oscillation frequency of the particle in the well. Among the states of the lower continuum, there are positron resonance scattering states for supercritical well depths. The energies of these states are close to the real part of the quasistationary energy level (the Zel'dovich effect). The qualitative dependence of the transmission coefficient of the positron through the well on its energy and the well width supports the idea that the solution of the so-called one-particle Dirac equation describes a many-particle system with charge 0 or 1

  10. Energy creation in electrical sparks and discharges

    International Nuclear Information System (INIS)

    Pappas, P.T.

    1991-01-01

    In this paper deficiencies of Lorentz force law, of Maxwell';s displacement current, of poynting vector, and of other explicit or implicit assumptions in E/D are analyzed. The infallible Cardinal law of E/D of Ampere is suggested as the most dominating candidate for the future E/D. Apparent difficulties of the Cardinal law are removed by resuming the ideal inertial frame concept to pragmatical cases. Energy creation is considered as not binding, but as possible, according to the Cardinal law as an alternative principle to the continuous creation hypothesis of Astronomy. Various inherent arc oscillations are presented as direct experimental evidence of energy creation. Several unexplained and exciting phenomena in E/D are readily explained by the Cardinal law. Finally, the unique constructive property of the Cardinal law is presented, suggested to be responsible for the Cosmos' creation and constructive evolution to higher forms of organization

  11. Initial behavior of a quantized scalar field and the associated pair-creation in several isotropic closed and open universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1981-01-01

    The concept of a positive frequency part near the initial epoch in a big-bang universe or its counterpart in other (say, de Sitter) one for a canonically quantized scalar field is important in discussing the associated pair-creation of those particles. Therefore, an attempt is made to define the positive frequency part in such isotropic closed and open universes that the scalar wave equation can be exactly solved. Except for some closed universe, the parts in question and, therefore, the Feynman propagators in the remaining universes are uniquely settled. Then it is shown that (1) the pair-creation in the Friedmann open universe (which is very interesting not only from observational, but also from theoretical viewpoints) is essentially equivalent to that in the Chitre-Hartle universe with flat 3-space and (2) the respective pair-creations in expanding metrics with open and flat 3-spaces of the de Sitter universe are different from each other, as insisted upon by Gibbons and Hawking basing on the original static metric. (author)

  12. Initial behavior of a quantized scalar field and the associated pair-creation in several isotropic closed and open universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu

    1982-01-01

    The concept of a positive frequency part near the initial epoch in a big-bang universe or its counterpart in other (say, de Sitter) one for a canonically quantized scalar field is important in discussing the associated pair-creation of those particles. Therefore, an attempt is made to define the positive frequency part in such isotropic closed and open universes that the scalar wave equation can be exactly solved. Except for some closed universe, the parts in question and, therefore, the Feynman propagators in the remaining universes are uniquely settled. Then it is shown that (1) the pair-creation in the Friedmann open universe (which is very interesting not only from observational, but also from theoretical viewpoints) is essentially equivalent to that in the Chitre-Hartle universe with flat 3-space and (2) the respective pair-creations in expanding metrics with open and flat 3-spaces of the de Sitter universe are different from each other, as insisted upon by Gibbons and Hawking basing on the original static metric. (author)

  13. Radiation-mediated Shocks in Gamma-Ray Bursts: Pair Creation

    Science.gov (United States)

    Lundman, Christoffer; Beloborodov, Andrei M.; Vurm, Indrek

    2018-05-01

    Relativistic sub-photospheric shocks are a possible mechanism for producing prompt gamma-ray burst (GRB) emission. Such shocks are mediated by scattering of radiation. We introduce a time-dependent, special relativistic code which dynamically couples Monte Carlo radiative transfer to the flow hydrodynamics. The code also self-consistently follows electron–positron pair production in photon–photon collisions. We use the code to simulate shocks with properties relevant to GRBs. We focus on plane-parallel solutions, which are accurate deep below the photosphere. The shock generates a power-law photon spectrum through the first-order Fermi mechanism, extending upward from the typical upstream photon energy. Strong (high Mach number) shocks produce rising νF ν spectra. We observe that in non-relativistic shocks the spectrum extends to {E}\\max ∼ {m}e{v}2, where v is the speed difference between the upstream and downstream. In relativistic shocks the spectrum extends to energies E> 0.1 {m}e{c}2 where its slope softens due to Klein–Nishina effects. Shocks with Lorentz factors γ > 1.5 are prolific producers of electron–positron pairs, yielding hundreds of pairs per proton. The main effect of pairs is to reduce the shock width by a factor of ∼ {Z}+/- -1. Most pairs annihilate far downstream of the shock, and the radiation spectrum relaxes to a Wien distribution, reaching equilibrium with the plasma at a temperature determined by the shock jump conditions and the photon number per proton. We discuss the implications of our results for observations of radiation generated by sub-photospheric shocks.

  14. Particle creation in inhomogeneous spacetimes

    International Nuclear Information System (INIS)

    Frieman, J.A.

    1989-01-01

    We study the creation of particles by inhomogeneous perturbations of spatially flat Friedmann-Robertson-Walker cosmologies. For massless scalar fields, the pair-creation probability can be expressed in terms of geometric quantities (curvature invariants). The results suggest that inhomogeneities on scales up to the particle horizon will be damped out near the Planck time. Perturbations on scales larger than the horizon are explicitly shown to yield no created pairs. The results generalize to inhomogeneous spacetimes several earlier studies of pair creation in homogeneous anisotropic cosmologies

  15. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  16. Coulomb pair-creation

    International Nuclear Information System (INIS)

    Hrasko, P.; Foeldy, L.; Toth, A.

    1986-07-01

    Electron-positron pair production in strong Coulomb fields is outlined. It is shown that the singular behaviour of the adiabatic basis can be removed if solutions of the time dependent external field Dirac equation are used as a basis to expand the fermion field operator. This latter 'asymptotic basis' makes it possible to introduce Feynman-propagator. Applying the reduction technique, the computation of all of the basic quantities can be reduced to the solution of an integral equation. The positron spectrum for separable potential model with Lorentzian time dependence and for potential jump is analyzed in the pole approximation. (author)

  17. Strangeness suppression of qq creation observed in exclusive reactions.

    Science.gov (United States)

    Mestayer, M D; Park, K; Adhikari, K P; Aghasyan, M; Pereira, S Anefalos; Ball, J; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fleming, J A; Forest, T A; Garillon, B; Garçon, M; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Hakobyan, H; Hanretty, C; Hattawy, M; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Koirala, S; Kubarovsky, V; Kuleshov, S V; Lenisa, P; Levine, W I; Livingston, K; Lu, H Y; MacGregor, I J D; Mayer, M; McKinnon, B; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Peng, P; Phelps, W; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Protopopescu, D; Puckett, A J R; Raue, B A; Rimal, D; Ripani, M; Rizzo, A; Rosner, G; Roy, P; Sabatié, F; Saini, M S; Schott, D; Schumacher, R A; Simonyan, A; Sokhan, D; Strauch, S; Sytnik, V; Tang, W; Tian, Ye; Ungaro, M; Vernarsky, B; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I

    2014-10-10

    We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK(+), pπ(0), and nπ(+), with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.

  18. Duality invariance of black hole creation rates

    International Nuclear Information System (INIS)

    Brown, J.D.

    1997-01-01

    Pair creation of electrically charged black holes and its dual process, pair creation of magnetically charged black holes, are considered. It is shown that the creation rates are equal provided the boundary conditions for the two processes are dual to one another. This conclusion follows from a careful analysis of boundary terms and boundary conditions for the Maxwell action. copyright 1997 The American Physical Society

  19. Pair creation and plasma oscillations

    International Nuclear Information System (INIS)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-01-01

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses

  20. Renewable energy to boost job creation

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    European Union member states are encouraging renewable energies as alternative energy sources with low environmental impacts, making the renewable energy industry one of Europe's fastest growing sectors. An energy scenario has been defined for the next 20 years and a model has been used to compute the employment impact of this new energy policy. The analysis calculates net employment values which includes direct and indirect impacts and takes into account the loss of jobs in conventional energy sectors. The simulation predicts that energy produced from renewable sources will more than double by 2020. The overall number of net additional jobs predicted to be created in the fifteen countries from 1995 to 2020 is about 900000. This figure includes 515000 jobs that are expected to be created as a consequence of investment in biomass fuel production from agricultural and forestry residues and from energy crops. The analysis foresees that around 20% of the total employment creation will occur in Germany and 15% in France. (A.C.)

  1. Dual origin of pairing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)

    2016-11-15

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  2. Dual origin of pairing in nuclei

    Science.gov (United States)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  3. Kramers Pairs in configuration interaction

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...

  4. Strangeness Suppression of qq ¯ Creation Observed in Exclusive Reactions

    Science.gov (United States)

    Mestayer, M. D.; Park, K.; Adhikari, K. P.; Aghasyan, M.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Forest, T. A.; Garillon, B.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Simonyan, A.; Sokhan, D.; Strauch, S.; Sytnik, V.; Tang, W.; Tian, Ye; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-10-01

    We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK+, pπ0, and nπ+, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq ¯ creation probabilities for the first time in exclusive two-body production, in which only a single qq ¯ pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.

  5. Progress toward the creation of magnetically confined pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Haruhiko [Max-Planck-Institut fuer Plasmaphysik (Germany); The University of Tokyo (Japan); Hergenhahn, Uwe; Paschkowski, Norbert; Stanja, Juliane; Stenson, Eve V. [Max-Planck-Institut fuer Plasmaphysik (Germany); Niemann, Holger; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik (Germany); Ernst-Moritz-Arndt-Universitaet Greifswald (Germany); Stoneking, Matthew R. [Max-Planck-Institut fuer Plasmaphysik (Germany); Lawrence University (United States); Hugenschmidt, Christoph; Piochacz, Christian; Vohburger, Sebastian [Technische Universitaet Muenchen (Germany); Schweikhard, Lutz [Ernst-Moritz-Arndt-Universitaet Greifswald (Germany); Danielson, James R.; Surko, Clifford M. [University of California, San Diego (United States)

    2016-07-01

    The PAX (Positron Accumulation eXperiment) and APEX (A Positron Electron eXperiment) projects aim to experimentally study the unique wave propagation and stability properties of pair plasmas. We plan to accumulate a large number of positrons in a multicell-type trap system (PAX) and to confine them with electrons in APEX, a levitated dipole or stellarator configuration, operated at the NEPOMUC facility, the world's most intense positron source. In this contribution, we report on recent results from PAX and APEX. We have conducted electron experiments with a 2.3 T Penning-Malmberg trap; confinement for more than 1 hour and observation of a collective mode were demonstrated. At NEPOMUC, we have characterized the positron beam for a wide energy range. In a prototype permanent-magnet dipole trap, efficient (38%) injection of the remoderated 5 eV positron beam was realized using E x B drifts. Based on these results, design studies on the confinement of pair-plasmas in a levitated dipole trap are ongoing.

  6. Pair creation of neutral particles in a vacuum by external electromagnetic fields in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Qiong-gui Lin; Department of Physics, Zhongshan University, Guangzhou 510275

    1999-01-01

    Neutral fermions of spin-1/2 with magnetic moment can interact with electromagnetic fields through nonminimal coupling. In 2 + 1 dimensions the electromagnetic field strength plays the same role to the magnetic moment as the vector potential to the electric charge. This duality enables one to obtain physical results for neutral particles from known ones for charged particles. We give the probability of neutral particle-antiparticle pair creation in a vacuum by non-uniform electromagnetic fields produced by constant uniform charge and current densities. (author)

  7. Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering

    Science.gov (United States)

    Breunig, Daniel; Burset, Pablo; Trauzettel, Björn

    2018-01-01

    In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.

  8. Electron-positron pair production in relativistic ion-atom collisions

    International Nuclear Information System (INIS)

    Eichler, Joerg

    2005-01-01

    The creation of electron-positron pairs constitutes an example for the conversion of energy into mass. We here give a brief outline of the various processes and theoretical approaches in a simple fashion. We point out some recent results and difficulties that have yet to be overcome

  9. Electron–Positron Pair Creation Close to a Black Hole Horizon: Redshifted Annihilation Line in the Emergent X-Ray Spectra of a Black Hole. I.

    Science.gov (United States)

    Laurent, Philippe; Titarchuk, Lev

    2018-06-01

    We consider a Compton cloud (CC) surrounding a black hole (BH) in an accreting BH system, where electrons propagate with thermal and bulk velocities. In that cloud, soft (disk) photons may be upscattered off these energetic electrons and attain energies of several MeV. They could then create pairs due to photon–photon interactions. In this paper, we study the formation of the 511 keV annihilation line due to this photon–photon interaction, which results in the creation of electron–positron pairs, followed by the annihilation of the created positrons with the CC electrons. The appropriate conditions for annihilation-line generation take place very close to a BH horizon within (103–104)m cm from it, where m is the BH hole mass in solar units. As a result, the created annihilation line should be seen by the Earth observer as a blackbody bump, or the so-called reflection bump at energies around (511/20) (20/z) keV, where z ∼ 20 is a typical gravitational redshift experienced by the created annihilation-line photons when they emerge. This transient feature should occur in any accreting BH system, either galactic or extragalactic. Observational evidences for this feature in several galactic BH systems is detailed in an accompanying paper. An extended hard tail of the spectrum up to 1 MeV may also be formed due to X-ray photons upscattering off created pairs.

  10. Potential wealth creation via nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Sabar Md Hashim; Dol Malek Md Sap

    2009-01-01

    Like any other developing nation, Malaysia aspires to be an economic force to be reckoned with. A strong opportunity may be in the form of nuclear energy as can be seen from the success stories of France and South Korea. Although nuclear is not the only common parameter that make developed nations tick, the multiplier spin-off impacts of nuclear as sources of wealth creation are deliberated. Foreseeable benefits include job creation (especially highly-skilled knowledge workers), spin-off technologies and vendor development as well as the opportunity to assume regional leadership in carefully-selected sectors. Categorically in Malaysian context, introduction of nuclear energy would yield numerous benefits, i.e. as a strong catalyst to enhance country's competitiveness by raising capacity for knowledge, cutting-edge technology, and eventually, innovation (National Mission Thrust 2) beside ensuring stable electricity generation price; as an element to move up value chain by creating high-skilled knowledge workers who could help to raise country's economic profile and plant the seed for a strong post-2020 Malaysia (National Mission Thrust 1); and as an agent to enhance sustainability and quality of life through clean energy (National Mission Thrust 4) by being environmentally benign due to its low greenhouse gas emissions with very minimal impact to global warming. Our point us that, being synergistic with national aspiration, nuclear energy is a genuine national agenda. (Author)

  11. Solar energy and job creation benefits of photovoltaics in times of high unemployment

    International Nuclear Information System (INIS)

    Hohmeyer, O.H.

    1994-01-01

    Solar energy is normally discussed under the aspects of its medium to long term contribution to the global energy supply and its present cost. The situation is characterized by the benefits of an abundant renewable energy supply option o the one side and comparatively high internal energy production costs of solar energy on the other. Besides the environmental and health benefits of renewables not taken into account in cost comparisons, solar energy has a significantly higher job creation potential as conventional energy supply options. The paper gives an introduction into the basic methodological aspects of comparing job creation effects of different energy technologies and reports on the latest results of ongoing research on the specific effects of photovoltaics as compared to conventional electricity generation

  12. Cooper-pair size and binding energy for unconventional superconducting systems

    Science.gov (United States)

    Dinóla Neto, F.; Neto, Minos A.; Salmon, Octavio D. Rodriguez

    2018-06-01

    The main proposal of this paper is to analyze the size of the Cooper pairs composed by unbalanced mass fermions from different electronic bands along the BCS-BEC crossover and study the binding energy of the pairs. We are considering an interaction between fermions with different masses leading to an inter-band pairing. In addiction to the attractive interaction we have an hybridization term to couple both bands, which in general acts unfavorable for the pairing between the electrons. We get first order phase transitions as the hybridization breaks the Cooper pairs for the s-wave symmetry of the gap amplitude. The results show the dependence of the Cooper-pair size as a function of the hybridization for T = 0 . We also propose the structure of the binding energy of the inter-band system as a function of the two-bands quasi-particle energies.

  13. Determination of the electron-hole pair creation energy for semiconductors from the spectral responsivity of photodiodes

    CERN Document Server

    Scholze, F; Kuschnerus, P; Rabus, H; Richter, M; Ulm, G

    2000-01-01

    Ionizing radiation can be detected by the measurement of the charge carriers produced in a detector. The improved semiconductor technology now allows detectors operating near the physical limits of the detector materials to be designed. The mean energy required for producing an electron-hole pair, W, is a material property of the semiconductor. Here, the determination of W from the spectral responsivity of photodiodes is demonstrated. Using spectrally dispersed synchrotron radiation, different types of semiconductor photodiodes have been examined in the UV-, VUV-, and soft X-ray spectral range. Their spectral responsivity was determined with relative uncertainties between 0.4% and 1% using a cryogenic electrical-substitution radiometer as primary detector standard. Results are presented for silicon n-on-p junction photodiodes and for GaAsP/Au Schottky diodes at room temperature. The investigations for silicon covered the complete spectral range from 3 to 1500 eV, yielding a constant value W=(3.66+-0.03) eV fo...

  14. Space-time description of particle creation in gravitational and electromagnetic fields

    International Nuclear Information System (INIS)

    Mamaev, S.G.; Trunov, N.N.

    1983-01-01

    The dynamics of the creation of pairs of particles from the vacuum in strong time-dependent external fields is studied. The space-time correlation function of the pair is determined. An analysis of the behavior of this function allows one, in particular, to study the pair-creation process, to distinguish between real and virtual particles, etc

  15. Hadronic accompaniment of free quarks creation in E+E--collisions

    International Nuclear Information System (INIS)

    Golubkov, Yu.A.

    1991-01-01

    The process of free b-quarks quarks creation in e + e - -annihilation at the Z 0 -peak is regarded. The hadronic accompaniment due to bremsstrahlung of such a process is analysed. The calculations for free bb-bar-pair production are made taking into account the energy losses on colour field. The distributions of leptons and free light quarks from weak decays of b-quark are shown. The probability to overlap of ionization signals of free light quark and charge hadron is estimated. The comparison with LEP experimental data allows to get a conclusion, that the existing experimental accuracy does not exclude the creation of free b-quarks in the Z 0 -decays. 17 refs.; 6 figs

  16. Effects of strain on the Schwinger pair creation in graphene

    International Nuclear Information System (INIS)

    Fanbanrai, P.; Hutem, A.; Boonchui, S.

    2015-01-01

    The effects of strain on mechanically deformed graphene are determined by looking at how the strain affects the amplitude of the Schwinger two particle pair state. The influences of the lattice distortions, such as isotropic tensile strain ϵ is , shear strain ϵ ss , uniaxial armchair strain ϵ as , and zigzag strain ϵ zs , on the photon emission spectrum have been analyzed. We find that the intensities of the emission increases or decreases when compared to those of the unstrained graphene, depending on the type of strain applied. Thus the structure of energy band, the frequencies of the photons and the emission spectrum can be controlled by use of the different strains

  17. Creation of high-energy phonons by four-phonon processes in anisotropic phonon system of He II

    International Nuclear Information System (INIS)

    Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Kitsenko, Yu.A.; Wyatt, A.F.G.

    2007-01-01

    The problem of the creation of high-energy phonons (h-phonons) by a pulse of low-energy phonons (I-phonons) moving from a heater to a detector in superfluid helium, is solved. The rate of h-phonon creation is obtained and it is shown that created h-phonons occupy a much smaller solid angle in momentum space, than the I-phonons. Analytical expression for the creation rate of h-phonon, along the symmetry axis of a pulse, are derived. It allows us to get useful approximate analytical expressions for creation rate of h-phonons. The time dependences of the parameters which describe the I-phonon pulse are obtained. This shows that half of the initial energy of I-phonon pulse can be transferred into h-phonons. The results of the calculations are compared with experimental data and we show that this theory explains a number of experimental results. The value of the momentum, which separates the I- and h-phonon subsystems, is found

  18. On the creation of particles in some expanding closed universe

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1978-11-01

    The purpose of this letter is to study the pair creation of particles in an expanding universe by analyzing the dynamical behavior of the Feynman propagator. To deal with the pair creation of particles in the universe under consideration, concrete information about the Feynman propagator in the asymptotic region must be obtained. The Feynman propagator is compared with the corresponding one in case of Chitre-Hartle's model-universe. (Kato, T.)

  19. Approximations for W-Pair Production at Linear-Collider Energies

    CERN Document Server

    Denner, A

    1997-01-01

    We determine the accuracy of various approximations to the O(alpha) corrections for on-shell W-pair production. While an approximation based on the universal corrections arising from initial-state radiation, from the running of alpha, and from corrections proportional to m_t^2 fails in the Linear-Collider energy range, a high-energy approximation improved by the exact universal corrections is sufficiently good above about 500GeV. These results indicate that in Monte Carlo event generators for off-shell W-pair production the incorporation of the universal corrections is not sufficient and more corrections should be included.

  20. Lepton pair production at ISR energies and QCD

    International Nuclear Information System (INIS)

    Altarelli, G.; Martinelli, G.

    1985-01-01

    Motivated by some recent results from the ISR we have considered all available data on the production of Drell-Yan pairs by high energy proton beams. We show that the lepton pair cross sections and qsub(T) distributions are correctly described by QCD using the known distributions of partons in the proton and acceptable values of the QCD scale Λ. No other free parameter is required. Within the accuracy of the data no appreciable intrinsic transverse momentum is needed. (orig.)

  1. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  2. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  3. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  4. The creation of radiation defects in lithium fluoride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Flerov, A. [Inst. of Phys. (Latvia); Flerov, V. [Nucl. Res. Center, Salaspils (Latvia)

    1997-10-01

    Frenkel pair creation occurs in LiF through the interaction of a self-trapped exciton and a free exciton. This has been confirmed by the dependence of the F center formation yield on the 4th power of the dose rate. The F center production efficiency was increased and V{sub k} center decreased by increasing the temperature from 77 to 300 K, each having an activation energy of 0.028 eV. The lifetime of the self-trapped exciton at room temperature was about 0.7 {mu}s. (orig.)

  5. Measuring top-quark polarization in top-pair + missing-energy events.

    Science.gov (United States)

    Berger, Edmond L; Cao, Qing-Hong; Yu, Jiang-Hao; Zhang, Hao

    2012-10-12

    The polarization of a top quark can be sensitive to new physics beyond the standard model. Since the charged lepton from top-quark decay is maximally correlated with the top-quark spin, it is common to measure the polarization from the distribution in the angle between the charged lepton and the top-quark directions. We propose a novel method based on the charged lepton energy fraction and illustrate the method with a detailed simulation of top-quark pairs produced in supersymmetric top squark pair production. We show that the lepton energy ratio distribution that we define is very sensitive to the top-quark polarization but insensitive to the precise measurement of the top-quark energy.

  6. Development and test of the e+e- pair spectrometer for the detection of the electromagnetic decay of the E0 giant resonance state

    International Nuclear Information System (INIS)

    Katayama, I.; Fujita, Y.; Fujiwara, M.; Morinobu, S.; Ikegami, H.

    1978-01-01

    A lens type pair spectrometer of electron and positron has been developed and tested in order to detect the electromagnetic decay (pair creation) of the E0 giant resonance state. It was found from the one day machine time test (targets: natural Mo and Pb, beam:α, 70 MeV) that the improvement of the apparatus is necessary for getting a definite information on the yield of high energy electron pairs. (author)

  7. Magnetized Anisotropic Dark Energy Models in Barber’s Second Self-Creation Theory

    Directory of Open Access Journals (Sweden)

    D. D. Pawar

    2014-01-01

    Full Text Available The present paper deals with Bianchi type IX cosmological model with magnetized anisotropic dark energy by using Barber’s self-creation theory. The energy momentum tensor consists of anisotropic fluid with EoS parameter ω and a uniform magnetic field of energy density ρB. In order to obtain the exact solution we have assumed that dark energy components and the components of magnetic field interact minimally and obey the law of conservation of energy momentum tensors. We have also used the special law of variation for the mean generalized Hubble parameter and power law relation between scalar field and scale factor. Some physical and kinematical properties of the models have been discussed.

  8. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  9. Energy demand modelling in transport for Ukrainian national energy strategy creation

    Energy Technology Data Exchange (ETDEWEB)

    Kravchuk, V A; Dounaev, V [Victoria Software developers Group (Ukraine); Perchuk, V [Inst. of Energy Saving Problems (Ukraine)

    1996-12-01

    Among the main functions of the Ukrainian Government there are creation and implementation of economy and social development strategy for Ukraine, coordination of all economy sectors` activity, including the most important long-term solutions by means of which the Government aspires to satisfy the public interests. These tasks are complicated by the current state of economy, that is characterized by the ineffective structure serviced the former Soviet Union as a whole and by the intensive decline because of separation from the USSR, breaking of old economic ties, and attempts to proceed to market relations at all levels. Fuel and energy sectors are the most important components of the Ukrainian economy and key factors of industry`s and population`s vital activity providing. (EG)

  10. Magnetized pair Bose gas: relativistic superconductor

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs

  11. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  12. Generalized quantum operators of creation and annihilation

    International Nuclear Information System (INIS)

    Kuryshkin, Vassili

    1980-01-01

    Generalized permutation relation determined by a set of coefficients μ=(μ 1 ,...,μsub(k)) are under consideration for a pair of operators a and a + conjugated to each other. The totality of operator functions of a and a + (the μ-algebra) is investigated. It is shown that a and a + can be interpreted as the annihilation and creation operators of some 'particles'. Unlike the well known types of the quantization of Bose-Einstein and Fermi-Dirac the μ-quantization generally violates the proportionality between the energy of a state and its number of 'particles', a fact which is treated as a certain interaction between the 'particles'. All the particular cases of μ-quantization free from interaction are determined [fr

  13. Isovector pairing effect on the particle-number projection two-proton separation energy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Djamila; Kerrouchi, Slimane [Laboratoire de Physique Theorique, Faculte de Physique, Algiers (Algeria); Fellah, Mohamed; Allal, Nassima-Hosni [Laboratoire de Physique Theorique, Faculte de Physique, Algiers (Algeria); Centre de Recherche Nucleaire d' Alger, Comena, Algiers (Algeria)

    2009-07-01

    The two-proton separation energy is studied by performing a particle-number projection with and without inclusion of the isovector neutron-proton (np) pairing correlations. It is numerically evaluated for even-even rare-earth nuclei such that the np pairing parameter is non-zero. It is shown that the two-proton separation energy values calculated using the two approaches join, for almost all the considered elements, for the highest values of (N-Z). However, the results including the np pairing correlations are closest to the experimental data when available. Moreover, the two methods lead to the same prediction of the two-proton drip-line position, except for the Dysprosium and the Tungsten.

  14. Financing clean energy market creation. Clean energy ventures, venture capitalists and other investors

    Energy Technology Data Exchange (ETDEWEB)

    Teppo, T. [Helsinki Univ. of Technology, Espoo (Finland). Development and Management in Industry

    2006-07-01

    Many factors have emerged for change towards cleaner and more efficient technologies and services: climate change, increasing oil demands, and rising living standards in many parts of the world are putting an ever-increasing strain on the environment. Recently, these drivers have fueled the formation of a clean energy venture capital market where both independent venture capitalists (VCs) and corporate venture capitalists (CVCs) have invested in clean energy start-ups. Financing of clean energy market creation is the focus of this dissertation. The dissertation contributes to several bodies of literature in the area of entrepreneurship, new industry creation, corporate venturing, and venture capital research. The dissertation uses a grounded theory approach. The study is guided by three data collection approaches with an emphasis on the first two. First, interviews with European and North American VC and CVC firms that have invested in the clean energy sector were carried out. Second, a clean energy venture financing survey that consisted of qualitative, essay-format questions and some quantitative questions was carried out. Third, interviews with clean energy stakeholders were carried out in order to gain a better understanding of the emerging sector. The research results consist of three main findings. First, the research results suggest that clean energy ventures face the following three main entrepreneurial challenges: financing, market education, and growth management. A further study of three clean energy industry categories revealed additional challenges that varied according to the industry development stage. Second, the results demonstrate that, from a venture capitalist perspective, clean energy venture risk characteristics can be divided into two groups: generally recognized risk characteristics and cognitive risk characteristics. The identified generally recognized risk characteristics were market demand and adaptation, incompatibility with the VC model

  15. Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production

    Science.gov (United States)

    D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko

    2017-10-01

    Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.

  16. Gravitational potential energy of a disk-sphere pair of galaxies

    International Nuclear Information System (INIS)

    Ballabh, G.M.

    1975-01-01

    Algebraic expressions are obtained for the interaction potential energy of a pair of galaxies in which one is disk shaped and the other spherical. The density distribution in the disk galaxy is represented by a polynomial in ascending powers of the distance from the centre of the disk while the density distribution in the spherical galaxy is represented by the superposition of spherical polytropes of integral indices. The basic functions required for obtaining the interaction potential energy of a coplanar disk-sphere pair of galaxies are tabulated. The forces of attraction between a coplanar disk-sphere pair of galaxies are shown graphically for two density models of disk and spherical galaxies. An overlapping coplanar disk-sphere pair of galaxies attract just like two mass-points at a certain separation, rsub(c), of their centres. The force of attraction is less than that of two mass-points having masses equal to the masses of the two galaxies, if the separation of the centres is less than rsub(c), and greater if the separation is greater than rsub(c). For a typical coplanar disk-sphere pair of galaxies (the density of the disk is represented by Model II and of the sphere by a polytropic index n=4) of equal radii, the following is noted. At a separation of 0.79 R, R being the common radius of the two galaxies, the force of attraction between the pair is the same as if the entire mass of each galaxy is concentrated at its centre. The mass-point model for the two galaxies will overestimate the force of attraction by more than a factor of 10 if the separation is less than 0.36 R. For separation greater than the radii of the galaxies the mass-point model will underestimate the force but the departure in this case is less than 33%. (Auth.)

  17. A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.; hide

    2014-01-01

    We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.

  18. Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method

    International Nuclear Information System (INIS)

    Pilla, R.P.; Shaham, J.

    1997-01-01

    A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons. These are coupled nonlinear integro-differential equations. The collision kernels for the photons as well as pairs are evaluated for Compton scattering, pair annihilation and creation, bremsstrahlung, and Coulomb collisions. They are given as multidimensional integrals which are valid for all energies. For an homogeneous and isotropic plasma with no particle escape, the equilibrium solution is expressed analytically in terms of the initial conditions. For two specific cases, for which the photon and the pair spectra are initially constant or have a power-law distribution within the given limits, the time evolution of the plasma is analyzed using the new method. The final spectra are found to be in a good agreement with the analytical solutions. The new algorithm is faster than the Monte Carlo scheme based on uniform sampling and more flexible than the numerical methods used in the past, which do not involve Monte Carlo sampling. It is also found to be very stable. Some astrophysical applications of this technique are discussed. copyright 1997 The American Astronomical Society

  19. Effects of pairing correlation on nuclear level density parameter and nucleon separation energy

    International Nuclear Information System (INIS)

    Rajesekaran, T.R.; Selvaraj, S.

    2002-01-01

    A systematic study of effects of pairing correlations on nuclear level density parameter 'a' and neutron separation energy S N is presented for 152 Gd using statistical theory of nuclei with deformation, collective and noncollective rotational degrees of freedom, shell effects, and pairing correlations

  20. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huayu

    2011-04-27

    In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)

  1. Multi-photon creation and single-photon annihilation of electron-positron pairs

    International Nuclear Information System (INIS)

    Hu, Huayu

    2011-01-01

    In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)

  2. Problems of quantum electrodynamics with external field creating pairs

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.

    1979-11-01

    This paper is a preliminary version of a review of the results obtained by the authors and their collaborators which mainly concern problems of quantum electrodynamics with the pair-creating external field. In this paper the Furry picture is constructed for quantum electrodynamics with the pair-creating external field. It is shown, that various Green functions in the external field arise in the theory in a natural way. Special features of usage of the unitarity conditions for calculating the total probabilities of transitions are discussed. Perturbation theory for determining the mean electromagnetic field is constructed. Effective Lagrangians for pair-creating fields are built. One of the possible ways to introduce external field in quantum electrodynamics is considered. All the Green functions arising in the theory suggested are calculated for a constant field and a plane wave field. For the case of the electric field the total probability of creation of pairs from the vacuum accompanied by the photon irradiation and the total probability of transition from a single-electron state accompanied by the photon irradiation and creation of pairs are obtained by using the formulated rules for calculating the total probabilities of transitions. (author)

  3. A cosmological model with particle creation

    International Nuclear Information System (INIS)

    Chatterjee, Sujit

    2001-01-01

    A higher dimensional cosmological model is proposed where an expanding universe evolves from the vacuum fluctuation and matter creation takes place out of the gravitational energy. Choosing a particular form of the matter creation function N(t) as an initial conditions it can be shown that starting from an inflationary era the cosmos enters the higher dimensional Friedmann-like phase after a time scale when the matter creation stops

  4. Creation of electron-positron plasma with superstrong laser field

    International Nuclear Information System (INIS)

    Narozhny, N.B.; Fedotov, A.M.

    2014-01-01

    We present a short review of recent progress in studying QED effects within the interaction of ultra-relativistic laser pulses with vacuum and e - e + plasma. Current development in laser technologies promises very rapid growth of laser intensities in the near future. Two exa-watt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser intensity of 10 26 W/cm 2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming compelling for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the expected field strength is still essentially less than E S = m 2 c 3 /eℎ = 1.32*10 16 V/cm, the nonlinear vacuum effects will be accessible for observation at the ELI and XCELS facilities. The most promising effect for observation is pair creation by a laser pulse in vacuum. It is shown, that at intensities of about 5*10 25 W/cm 2 , creation even of a single pair is accompanied by the development of an avalanche QED cascade. There exists a distinctive feature of the laser-induced cascades, as compared with the air showers arising due primarily to cosmic rays entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers) but is also responsible for the acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for the attainable laser intensity and, apparently, the field strength E ≅ E S is not accessible for a pair-creating electromagnetic field at all. (authors)

  5. Lepton-pair production by bremsstrahlung in central relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Lippert, T.; Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1988-03-01

    We study the production of lepton-pairs by classical bremsstrahlung in central relativistic heavy-ion collisions. For the stopping of the nuclei we assume a simple model of point charges and a deceleration time. Pair creation probabilities are calculated in first order perturbation theory. (orig.)

  6. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  7. Effects of the particle-number projection on the isovector pairing energy

    International Nuclear Information System (INIS)

    Allal, N.H.; Fellah, M.; Oudih, M.R.; Benhamouda, N.

    2006-01-01

    The usual neutron-proton BCS wave function is simultaneously projected on both the good neutron and proton numbers using a discrete projection operator. The projected energy of the system is deduced as a limit of rapidly convergent sequence. It is numerically studied for the N=Z nuclei of which ''experimental'' pairing gaps may be deduced from the experimental odd-even mass differences. It then appears that the particle-number fluctuation effect is even more important than in the case of pairing between like-particles. (orig.)

  8. Peak creation in the energy spectrum of laser-produced protons by phase rotation

    International Nuclear Information System (INIS)

    Noda, Akira; Nakamura, Shu; Iwashita, Yoshihisa; Shirai, Toshiyuki; Tongu, Hiromu; Ito, Hiroyuki; Souda, Hikaru; Yamazaki, Atsushi; Tanabe, Mikio; Daido, Hiroyuki; Mori, Michiaki; Kado, Masataka; Sagisaka, Akito; Ogura, Koichi; Nishiuchi, Mamiko; Orimo, Satoshi; Hayashi, Yukio; Yogo, Akifumi; Bulanov, Sergei; Esirkepov, Timur; Nagashima, Akira; Kimura, Toyoaki; Tajima, Toshiki; Fukumi, Atsushi; Li, Zhong

    2007-01-01

    In collaboration between JAEA, Kansai Photon Science Institute and Institute for Chemical Research, Kyoto University, proton generation from a thin foil target (Ti 3 or 5 μm in thickness) with use of 10 TW laser (JLITEX) has been performed. Proton production is optimized by real time proton energy measurement with use of TOF method. Phase rotation with use of an RF electric field phase-synchronized to the pulse laser enabled the creation of peaks with the spread of ∼7% in the energy spectrum of the produced protons, which resulted in the increase of the intensity ∼4 times at peak position. (author)

  9. Development and calibration of the tracking Compton/Pair telescope MEGA

    International Nuclear Information System (INIS)

    Kanbach, G.; Andritschke, R.; Zoglauer, A.; Ajello, M.; McConnell, M.L.; Macri, J.R.; Ryan, J.M.; Bloser, P.; Hunter, S.; DiCocco, G.; Kurfess, J.; Reglero, V.

    2005-01-01

    We describe the development and tests of the prototype for a new telescope for Medium Energy Gamma-ray Astronomy (MEGA) in the energy band 0.4-50 MeV. As a successor to COMPTEL and EGRET (at low energies), MEGA aims to improve the sensitivity for astronomical sources by at least an order of magnitude. It could thus fill the severe sensitivity gap between scheduled or operating hard-X-ray and high-energy gamma-ray missions and open the way for a future Advanced Compton Telescope. MEGA records and images γ-rays by completely tracking Compton and Pair creation events in a stack of double-sided Si-strip track detectors surrounded by a pixelated CsI calorimeter. A scaled down prototype has been built and we describe technical details of its design and properties. Results from calibrations using radioactive sources and from measurements with an accelerator generated, fully polarized, γ-ray beam are presented and an outlook to future plans with MEGA is given

  10. Screening of metal hydride pairs for closed thermal energy storage systems

    International Nuclear Information System (INIS)

    Aswin, N.; Dutta, Pradip; Murthy, S. Srinivasa

    2016-01-01

    Thermal energy storage systems based on metal/hydrides usually are closed systems composed of two beds of metal/alloy – one meant for energy storage and the other for hydrogen storage. It can be shown that a feasible operating cycle for such a system using a pair of metals/alloys operating between specified temperature values can be ensured if the equilibrium hydrogen intake characteristics satisfy certain criteria. In addition, application of first law of thermodynamics to an idealized operating cycle can provide the upper bounds of selected performance indices, namely volumetric energy storage density, energy storage efficiency and peak discharge temperature. This is demonstrated for a representative system composed of LaNi 4.7 Al 0.3 –LaNi 5 operating between 353 K and 303 K which gave values of about 56 kW h m −3 for volumetric storage density, about 85% for energy storage efficiency and 343 K for peak discharge temperature. A system level heat and mass transfer study considering the reaction kinetics, hydrogen flow between the beds and heat exchanger models is presented which gave second level estimates of about 40 kW h m −3 for volumetric energy storage density, 73% for energy storage efficiency and 334 K for peak temperature for the representative system. The results from such studies lead to identifying metal/alloy pairs which can be shortlisted for detailed studies.

  11. Bremsstrahlung and pair production in crystals at very high energies

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1981-01-01

    The probabilities for bremsstrahlung and pair production in crystals are discussed under stringent condition when the trajectory of the high-energy electron crosses very many atoms of a crystal row (or plane). It is shown that for sufficiently long path in such conditions the probabilities are described by the formulas for these processes in a strong constant magnetic field exerting on electron the same deflection as the atom row. It turns out that for lead at energy approximately 10 12 eV the radiation length is shortened many hundred times. For greater energies the decrease of probabilities per unit length with increase of energy goes as W varies as Esup(-1/3)

  12. Determination of the LEP Beam Energy using Radiative Fermion-pair Events, 2004

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, R J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    We present a determination of the LEP beam energy using "radiative return" fermion-pair events recorded at centre-of-mass energies from 183 GeV to 209 GeV. We find no evidence of a disagreement between the OPAL data and the LEP Energy Workings Group's standard calibration. Including the energy- averaged 11 MeV uncertainty in the standard determination, the beam energy we obtain from the OPAL data is higher than that obtained from the LEP calibration by 0+-34(stat.)+-27(syst.)MeV

  13. Electron-positron pairs creation in the field of two strong counterpropagating laser beams and the nonlocality of the photon-photon interaction

    International Nuclear Information System (INIS)

    Gainutdinov, R.Kh.; Khamadeev, M.A.; Mutygullina, A.A.

    2010-01-01

    Complete text of publication follows. We discuss various approaches to problem of the electron-positron pair creation in the strong external field. Special interest presents the circuit, in which the interaction of two strong counterpropagating laser beams in vacuum is considered. For the calculation of the probability of the creation the following formula is usually applied: W = 2Im(L (E-H) (ρ L )) = 2m 4 /(2π) 3 ρ L 2 Σ n=1 -∞ 1/n 2 e -nπ /ρ L where ρ L = E L / E cr and E cr = m 2 /e = 1.3 x 10 16 V/cm is the Schwinger field limit. However this expression was obtained even in pioneer works dedicated to vacuum nonlinearity and it based on some approximations. Attempt of the strict analysis has been made in work by introducing the nonlocal form-factor into the Lagrangian. But, as it is well known, such procedure leads to the loss of Lorenz invariance or unitarity. We show that the formalism of generalized quantum dynamic (GQD) opens new opportunities to solve such problems. We show also how it can be made proceeding from nonlocal interaction operator obtained earlier within the framework of the formalism of GQD. Acknowledgements. This work was supported by the Grant of Federal Agency on Education, Russia (Contract number 02.740.11.0428) and by the Grant of Russian President No. NSh 2965.2008.2.

  14. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    Energy Technology Data Exchange (ETDEWEB)

    Visser, P. J. de, E-mail: p.j.devisser@tudelft.nl [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Yates, S. J. C. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Guruswamy, T.; Goldie, D. J.; Withington, S. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Neto, A.; Llombart, N. [Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands); Baryshev, A. M. [SRON Netherlands Institute for Space Research, Landleven 12, 9747AD Groningen (Netherlands); Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Klapwijk, T. M. [Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Baselmans, J. J. A. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Faculty of Electrical Engineering, Mathematics and Computer Science, Terahertz Sensing Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft (Netherlands)

    2015-06-22

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.

  15. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    International Nuclear Information System (INIS)

    Visser, P. J. de; Yates, S. J. C.; Guruswamy, T.; Goldie, D. J.; Withington, S.; Neto, A.; Llombart, N.; Baryshev, A. M.; Klapwijk, T. M.; Baselmans, J. J. A.

    2015-01-01

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements

  16. Full transverse-momentum spectra of low-mass Drell-Yan pairs at LHC energies

    CERN Document Server

    Fái, G; Zhang, X; Fai, George; Qiu, Jianwei; Zhang, Xiaofei

    2003-01-01

    The transverse momentum distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation. We argue that at LHC energies the results should be reliable for the entire transverse momentum range. We demonstrate that the transverse momentum distribution of low-mass Drell-Yan pairs is an advantageous source of constraints on the gluon distribution and its nuclear dependence.

  17. Spontaneous hole-clump pair creation in weakly unstable plasmas

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.; Petviashvili, N.V.

    1997-03-01

    A numerical simulation of a kinetic instability near threshold shows how a hole and clump spontaneously appear in the particle distribution function. The hole and clump support a pair of Bernstein, Greene, Kruskal (BGK) nonlinear waves that last much longer than the inverse linear damping rate while they are upshifting and downshifting in frequency. The frequency shifting allows a balance between the power nonlinearly extracted from the resonant particles and the power dissipated into the background plasma. These waves eventually decay due to phase space gradient smoothing caused by collisionality

  18. Pair Production Constraints on Superluminal Neutrinos Revisited

    International Nuclear Information System (INIS)

    Brodsky, Stanley

    2012-01-01

    We revisit the pair creation constraint on superluminal neutrinos considered by Cohen and Glashow in order to clarify which types of superluminal models are constrained. We show that a model in which the superluminal neutrino is effectively light-like can evade the Cohen-Glashow constraint. In summary, any model for which the CG pair production process operates is excluded because such timelike neutrinos would not be detected by OPERA or other experiments. However, a superluminal neutrino which is effectively lightlike with fixed p 2 can evade the Cohen-Glashow constraint because of energy-momentum conservation. The coincidence involved in explaining the SN1987A constraint certainly makes such a picture improbable - but it is still intrinsically possible. The lightlike model is appealing in that it does not violate Lorentz symmetry in particle interactions, although one would expect Hughes-Drever tests to turn up a violation eventually. Other evasions of the CG constraints are also possible; perhaps, e.g., the neutrino takes a 'short cut' through extra dimensions or suffers anomalous acceleration in matter. Irrespective of the OPERA result, Lorentz-violating interactions remain possible, and ongoing experimental investigation of such possibilities should continue.

  19. The energy of a moving quark-antiquark pair in an Script N = 4 SYM plasma

    Science.gov (United States)

    Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto

    2006-09-01

    We make use of the AdS/CFT correspondence to determine the energy of an external quark-antiquark pair that moves through strongly-coupled thermal Script N = 4 super-Yang-Mills plasma, both in the rest frame of the plasma and in the rest frame of the pair. It is found that the pair feels no drag force, has an energy that reproduces the expected 1/L (or γ/L) behavior at small quark-antiquark separations, and becomes unbound beyond a certain screening length whose velocity-dependence we determine. We discuss the relation between the high-velocity limit of our results and the lightlike Wilson loop proposed recently as a definition of the jet-quenching parameter.

  20. Pair q-coherent states and their antibunching effects

    International Nuclear Information System (INIS)

    Wang Zhongqing; Li Junhong; An Guanglei; Chongqing Univ. of Posts and Telecommunications, Chongqing

    2005-01-01

    Using the properties of the q-deformed boson creation and annihilation operators and their inverse operators, two kind of q-deformed pair coherent states are introduced. Antibunching effects and correlation properties between two modes in the states are investigated. It is shown that q-deformed pair coherent states exhibit antibunching effects and the photons of the two modes are correlated. These nonclassical effects are influenced by the parameter q. These effects increase when |lnq| increases. (authors)

  1. Excitonic and electron-hole mechanisms of the creation of Frenkel defect in alkali halides

    International Nuclear Information System (INIS)

    Lushchik, A.; Kirm, M.; Lushchik, Ch.; Vasil'chenko, E.

    2000-01-01

    Excitonic and electron-hole (e-h) mechanisms of stable F centre creation by VUV radiation in alkali halide crystals are discussed. In KCl at 4.2 K, the efficiency of stable F-H pair creation is especially high at the direct optical formation of triplet excitons with n=1. At 200-400 K, the creation processes of stable F centres in KCl are especially efficient at the formation of one-halide exciton in the Urbach tail of an exciton absorption. In KCl and KBr, the decay of a cation exciton (∼20 eV) causes the formation of two e-h pairs, while in NaCl a cation exciton (33.5 eV) decays into two e-h and an anion exciton. An elastic uniaxial stress of a crystal excited by VUV radiation decreases the mean free path of excitons before their self-trapping (KI) and increases the mean free path of hot holes before self-trapping (NaCl)

  2. Space Creation Mechanism during the Expansion of Universe

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel mechanism related to the expansion of universe. Recently Verlinde’s proposal has been applied to the deformed bosons being a candidate for the dark energy constituents, since the negative pressure of the deformed bosons. The expansion of universe is dependent on the dark energy and implies a creation of space; we admit that the space creation mechanism is related to the deformed bosons and so is the dark energy. In order to relate the dark energy and the mechanism for creation of space, we consider Verlinde’s proposal including the Holographic principle for emergence of space, which was recently applied to the deformed bosons. To check the validity of our mechanism, we calculate the ratio of the size of universe before and after the expansion and compare the results with the observational data. We find that the results are consistent with each other and infer that the proposed mechanism works correctly.

  3. Effects of anomalous magnetic moment and temperature on pair production in an external magnetic field

    International Nuclear Information System (INIS)

    Dittrich, W.; Bauhoff, W.

    1981-01-01

    It is re-examined the problem of spontaneous pair creation in an external magnetic field. In contrast to earlier findings, it is shown that pair production does not occur due to the anomalous magnetic moment interaction. However, pairs may be observed in a situation of thermodynamic equilibrium at finite temperatures. (author)

  4. Effect of the temporal laser pulse asymmetry on pair production processes during intense laser-electron scattering

    Science.gov (United States)

    Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee

    2018-06-01

    We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.

  5. Statistical mechanics of magnetized pair Fermi gas

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    Following previous work on the magnetized pair Bose gas this contribution presents the statistical mechanics of the charged relativistic Fermi gas with pair creation in d spatial dimensions. Initially, the gas in no external fields is studied. As a result, expansions for the various thermodynamic functions are obtained in both the μ/m→0 (neutrino) limit, and about the point μ/m =1, where μ is the chemical potential. The thermodynamics of a gas of quantum-number conserving massless fermions is also discussed. Then a complete study of the pair Fermi gas in a homogeneous magnetic field, is presented investigating the behavior of the magnetization over a wide range of field strengths. The inclusion of pairs leads to new results for the net magnetization due to the paramagnetic moment of the spins and the diamagnetic Landau orbits. 20 refs

  6. New calculations and measurements of the Coulomb cross-section for the production of direct electron pairs by high energy nuclei

    Science.gov (United States)

    Derrickson, J. H.; Dake, S.; Dong, B. L.; Eby, P. B.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Iyono, A.; King, D. T.

    1989-01-01

    Recently, new calculations were made of the direct Coulomb pair cross section that rely less in arbitrary parameters. More accurate calculations of the cross section down to low pair energies were made. New measurements of the total direct electron pair yield, and the energy and angular distribution of the electron pairs in emulsion were made for O-16 at 60 and 200 GeV/amu at S-32 at 200 GeV/amu which give satisfactory agreement with the new calculations. These calculations and measurements are presented along with previous accelerator measurements made of this effect during the last 40 years. The microscope scanning criteria used to identify the direct electron pairs is described. Prospects for application of the pair method to cosmic ray energy measurements in the region 10 (exp 13) to 10 (exp 15) eV/amu are discussed.

  7. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.

    Science.gov (United States)

    van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  8. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation

    International Nuclear Information System (INIS)

    Aggelen, Helen van; Yang, Yang; Yang, Weitao

    2014-01-01

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H 2 , and eliminates delocalization errors in H 2 + and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R −6 asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations

  9. Effect of electromagnetic fields on the creation of scalar particles in a flat Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Haouat, S.; Chekireb, R.

    2012-01-01

    The influence of electromagnetic fields on the creation of scalar particles from vacuum in a flat Robertson-Walker space-time is studied. The Klein-Gordon equation with varying electric field and constant magnetic one is solved. The Bogoliubov transformation method is applied to calculate the pair creation probability and the number density of created particles. It is shown that the electric field amplifies the creation of scalar particles while the magnetic field minimizes it. (orig.)

  10. Creation of free excitons in solid krypton investigated by time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Kisand, Vambola; Kirm, Marco; Negodin, Evgeni; Sombrowski, Elke; Steeg, Barbara; Vielhauer, Sebastian; Zimmerer, Georg

    2003-01-01

    The creation and relaxation of secondary excitons in solid Kr was investigated using energy-and time-resolved luminescence spectroscopy in the vacuum ultraviolet region. The spectrally selected emission of the free exciton (FE) was used as a probe for an investigation of the different exciton creation processes. Delayed FE creation via electron-hole recombination and 'prompt' (in terms of the time-resolution of the experiment) creation of excitons were separated. The 'prompt' creation of a FE appears in the region above threshold energy E th , which is equal to the sum of the band gap energy and the free exciton energy. 'Prompt' creation of excitons above E th is ascribed to a superposition of two processes: (i) creation of the electronic polaron complex (one-step process) and (ii) inelastic scattering of photoelectrons described in the framework of the multiple-parabolic-branch band model (two-step process). In addition, the ratio spectrum of the time-integrated FE and self-trapped exciton (STE) emission was analysed. The behaviour of the ratio spectrum is a proof that electron-hole recombination leads to STE states through FE states as precursors

  11. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    Energy Technology Data Exchange (ETDEWEB)

    Crespillo, M.L., E-mail: mcrespil@utk.edu [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Agulló-López, F., E-mail: fal@uam.es [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain); Zucchiatti, A. [Centro de Microanálisis de Materiales, CMAM-UAM, Cantoblanco, Madrid 28049 (Spain)

    2017-03-01

    Highlights: • Extensive survey formation energies Frenkel pairs and electronic stopping thresholds. • Correlation: track formation thresholds and the energies for Frenkel pair formation. • Formation energies Frenkel pairs discussed in relation to the cumulative mechanisms. • Amorphous track formation mechanisms: defect accumulation models versus melting. • Advantages cumulative models to deal with new hot topics: nuclear-electronic synergy. - Abstract: An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO{sub 3} crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  12. The Creation of an Energy Security Society as a Way to Decrease Securitization Levels between the European Union and Russia in Energy Trade

    Directory of Open Access Journals (Sweden)

    Olga Khrushcheva

    2011-05-01

    Full Text Available The energy trade between the European Union and Russia is securitized due to a combination of factors. First, there are securitizing agents within the European Union. Second, the domestic consolidation of the energy sector under governmental control, the Gazprom monopoly on transportation networks linking Central Asian gas with European markets and the state imposed-limits on foreign direct investment may also raise concerns in the European Union. Finally, Russia is also securitizing the energy sphere by claiming that the EU is trying to impose its values on Russia (for example through the Energy Charter Treaty, which contradicts Russian interests. This article combines securitization theory and the English School of thought and argues that the creation of an Energy Security Society could help de-securitize energy trade between the European Union and Russia.

  13. Dislocation processes in quasicrystals-Kink-pair formation control or jog-pair formation control

    International Nuclear Information System (INIS)

    Takeuchi, Shin

    2005-01-01

    A computer simulation of dislocation in a model quasiperiodic lattice indicates that the dislocation feels a large Peierls potential when oriented in particular directions. For a dislocation with a high Peierls potential, the glide velocity and the climb velocity of the dislocation can be described almost in parallel in terms of the kink-pair formation followed by kink motion and the jog-pair formation followed by jog motion, respectively. The activation enthalpy of the kink-pair formation is the sum of the kink-pair formation enthalpy and the atomic jump activation enthalpy, while the activation enthalpy of the jog-pair formation involves the jog-pair enthalpy and the self-diffusion enthalpy. Since the kink-pair energy can be considerably larger than the jog-pair energy, the climb velocity can be faster than the glide velocity, so that the plastic deformation of quasicrystals can be brought not by dislocation glide but by dislocation climb at high temperatures

  14. Formation energies of local pairs in fullerene isomer mixtures

    International Nuclear Information System (INIS)

    Solecki, J.

    1996-01-01

    It is well-known that the alkali metal-doped fullerides are superconductors of type II. There were so far many trials to explain the pairing mechanism in the superconducting fullerides. A description of the superconducting mechanism in terms of the so-called local pair model has been proposed in this note. A purely electronic interaction was also considered within the resonating valence bond model (RVB). In fact, other models were not able to explain exactly why superconductivity appears for the stoichiometry of A 3 C 60 in the alkali metal-doped fullerides. An exception of this rule is, e.g., Ca 5 C 60 which is a superconductor with T c = 8.4 K. However, measurements show that electronic structures near the Fermi level of the A 3 C 60 (A = K, Rb) as well as the Ca 5 C 60 superconductors are remarkably similar although their charge carriers form energy bands of different character. Therefore, the results obtained for the stoichiometry A 3 C 60 can roughly refer to the Ca 5 C 60 case as well. (orig.)

  15. Production of magnetic monopole pairs

    International Nuclear Information System (INIS)

    Maher, R.L.

    1980-01-01

    Using a covariant photon propagator (developed by W.B. Campbell) to represent a photon exchange between a magnetic monopole and an electric charge, the first order production amplitudes in a Feynman-Dyson perturbation expansion and the resulting differential cross-sections are calculated for monopole pair creation from: (i) electron positron annihilation, (ii) photon scattering in the presence of a nucleus, and (iii) electron scattering in the presence of a nucleus. This theory does not specify the spin character of magnetic monopoles, so all processes are calculated twice: for spin zero monopoles and for spin one-half monopoles. In the first and last processes the differential cross-sections have sufficiently different dependences on the production angles (associated with the monopoles momenta), so that near threshold experiments could distinguish between whether monopoles are either spin one-half or spin zero entities. For the t'Hooft monopole mass estimate (5-8 x 10 3 GeV) very high energy particle and photon beam sources would be required to achieve threshold for these production processes

  16. Iconicity can ground the creation of vocal symbols.

    Science.gov (United States)

    Perlman, Marcus; Dale, Rick; Lupyan, Gary

    2015-08-01

    Studies of gestural communication systems find that they originate from spontaneously created iconic gestures. Yet, we know little about how people create vocal communication systems, and many have suggested that vocalizations do not afford iconicity beyond trivial instances of onomatopoeia. It is unknown whether people can generate vocal communication systems through a process of iconic creation similar to gestural systems. Here, we examine the creation and development of a rudimentary vocal symbol system in a laboratory setting. Pairs of participants generated novel vocalizations for 18 different meanings in an iterative 'vocal' charades communication game. The communicators quickly converged on stable vocalizations, and naive listeners could correctly infer their meanings in subsequent playback experiments. People's ability to guess the meanings of these novel vocalizations was predicted by how close the vocalization was to an iconic 'meaning template' we derived from the production data. These results strongly suggest that the meaningfulness of these vocalizations derived from iconicity. Our findings illuminate a mechanism by which iconicity can ground the creation of vocal symbols, analogous to the function of iconicity in gestural communication systems.

  17. Detecting W/Z pairs and Higgs at high energy pp colliders: Main experimental issues

    International Nuclear Information System (INIS)

    Alverson, G.; Bengtsson, H.U.; Hauptman, J.

    1987-03-01

    The main detection issues implied by the search for W and Z 0 pairs and Higgs in a high energy pp collider context are discussed here. It includes: precise electron identification, missing energy measurement, multilepton recognition, sophisticated jet pattern recognition, and pile-up. The study uses, as much as possible, a ''realistic simulation of life.''

  18. Feasibility Study for a Two-Energy Compact Medical Cyclotron Controlled by Two Pairs of Main Coils

    International Nuclear Information System (INIS)

    Blum, D.; Breckow, J.; Zink, K.

    2013-01-01

    At Paul Scherrer Institute, Villigen, Switzerland, protons are accelerated for the proton therapy by a 250 MeV isochronous cyclotron. As for radiotherapy less energy is required (about 70 MeV) a carbon degrader reduces the extracted beam energy. This involves the increase of emittance, decrease of transmission, more activated components and a higher dose for the staff. By extracting a lower energy beam from the cyclotron, less degrade would be necessary and the above mentioned side-effects could be minimized. A possible solution could be to extract two energies from the cyclotron, 250 MeV for very deep located tumours and 230-235 MeV for others. A technically easy and affordable solution for this problem might be a two-energy cyclotron controlled by just two pairs of main coils. The feasibility of this solution has been analysed in this study. The compounded magnetic flux density B is the sum of the coil's and the iron's flux density. The amount caused by a coil is mainly responsible for the shape of the compounded flux density. Therefore a split of the coil pair was simulated to obtain more possibilities in the adjustment of a lower-energy beam to its ideal isochronous shape. The result is a simulated isochronous 240 MeV beam which was found with an tangential split of the coil pair, their repositioning and the increasing of current in the first coil pair and decreasing in the other one. The tangential split seemed to reduce the problem of the irons linear share of B. This feasibility study is seen as a first step before using 3D-capable software which considers a higher spatial resolution and the influence of temperature.(author)

  19. Strong-field Breit–Wheeler pair production in two consecutive laser pulses with variable time delay

    Directory of Open Access Journals (Sweden)

    Martin J.A. Jansen

    2017-03-01

    Full Text Available Photoproduction of electron–positron pairs by the strong-field Breit–Wheeler process in an intense laser field is studied. The laser field is assumed to consist of two consecutive short pulses, with a variable time delay in between. By numerical calculations within the framework of scalar quantum electrodynamics, we demonstrate that the time delay exerts a strong impact on the pair-creation probability. For the case when both pulses are identical, the effect is traced back to the relative quantum phase of the interfering S-matrix amplitudes and explained within a simplified analytical model. Conversely, when the two laser pulses differ from each other, the pair-creation probability depends not only on the time delay but, in general, also on the temporal order of the pulses.

  20. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    Science.gov (United States)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  1. Creation, Its Processes, and Significance (Samkhya Evolution and Involution

    Directory of Open Access Journals (Sweden)

    Pratibha Gramann

    2015-11-01

    Full Text Available Science, religions, and cultural traditions develop theories and creative descriptions about the origin of the universe and meaning of life. These theories have both similarities and differences regarding the cause and effect of creation, and life as human beings know it. Religions and cultural traditions primarily adhere to a personal God as creator and ruler. Science has gone in the opposite direction of denying the existence of a God. A definitive cause of creation has not been scientifically found. Science may find a comparable, suitable match in the ancient thought of Samkhya, written in the 500-800 BC time. Samkhya is probably the first complete philosophical description of the origin and evolution of creation. The three basic energetics of Samkhya are comparable to the basic energies of physics. This paper addresses the hypothesis that the evolution and origin of creation stem from the 3 energies gunas of materiality prakriti described in ancient Samkhya.

  2. Measurement of Angular Correlation in b Quark Pair Production at the LHC as a Test of Perturbative QCD

    CERN Document Server

    Dorney, Brian Lee

    2013-01-01

    Beauty quarks are pair-produced by strong interactions in multi-TeV proton- proton (pp) collisions at the CERN Large Hadron Collider (LHC). Such interactions allow for a test of perturbative Quantum Chromodynamics (QCD) in a new energy regime. The primary beauty-antibeauty quark b b pair production mechanisms in perturbative QCD are referred to as avor creation, avor excitation, and gluon splitting. These three mechanisms produce b b pairs with characteristic kinematic behavior, which contribute dierently to the shape of the dierential b b production cross section with respect to the dierence in the azimuthal angle and the combined separation variable R = p 2 + 2 between the beauty and antibeauty quarks ( b and b , respectively); with being the change in the pseudorapidity = ln ( tan ( = 2)), being the polar angle. These and R variables are collectively referred to as angular correlation variables and hence forth referred to as A . By measuring the shape and absolute normalization of the dierential prod...

  3. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies

    KAUST Repository

    Chawla, Mohit

    2015-06-27

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.

  4. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies

    KAUST Repository

    Chawla, Mohit; Oliva, R.; Bujnicki, J. M.; Cavallo, Luigi

    2015-01-01

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.

  5. Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP

    CERN Document Server

    Schael, S.; Bruneliere, R.; Buskulic, D.; De Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.P.; Lucotte, A.; Martin, F.; Merle, E.; Minard, M.N.; Nief, J.Y.; Odier, P.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Comas, P.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Pacheco, A.; Park, I.C.; Perlas, J.; Riu, I.; Ruiz, H.; Sanchez, F.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Bazarko, A.; Becker, U.; Boix, G.; Bird, F.; Blucher, E.; Bonvicini, B.; Bright-Thomas, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hagelberg, R.; Halley, A.W.; Gianotti, F.; Girone, M.; Hansen, J.B.; Harvey, J.; Jacobsen, R.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Knobloch, J.; Kado, M.; Lehraus, I.; Lazeyras, P.; Maley, P.; Mato, P.; May, J.; Moutoussi, A.; Pepe-Altarelli, M.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, B.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Veenhof, R.; Valassi, A.; Wiedenmann, W.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Fayolle, D.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Bertelsen, H.; Fernley, T.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Lindahl, A.; Mollerud, R.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Tanaka, R.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Picchi, P.; Colrain, P.; ten Have, I.; Hughes, I.S.; Kennedy, J.; Knowles, I.G.; Lynch, J.G.; Morton, W.T.; Negus, P.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J.M.; Smith, K.; Thompson, A.S.; Turnbull, R.M.; Wasserbaech, S.; Buchmuller, O.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, W.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Keemer, N.R.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; Snow, S.W.; Williams, M.I.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Bauerdick, L.A.T.; Blumenschein, U.; van Gemmeren, P.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kasemann, M.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Wanke, R.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Etienne, F.; Fouchez, D.; Motsch, F.; Payre, P.; Rousseau, D.; Tilquin, A.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Buscher, V.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Seywerd, H.; Stenzel, H.; Villegas, M.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Mutz, A.M.; Schune, M.H.; Serin, L.; Veillet, J.J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Fidecaro, F.; Foa, L.; Giammanco, A.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Edwards, M.; Haywood, S.J.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Emery, S.; Fabbro, B.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Barberio, E.; Bohrer, A.; Brandt, S.; Burkhardt, H.; Feigl, E.; Grupen, C.; Hess, J.; Lutters, G.; Meinhard, H.; Minguet-Rodriguez, J.; Mirabito, L.; Misiejuk, A.; Neugebauer, E.; Ngac, A.; Prange, G.; Rivera, F.; Saraiva, P.; Schafer, U.; Sieler, U.; Smolik, L.; Stephan, F.; Trier, H.; Apollonio, M.; Borean, C.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Pitis, L.; He, H.; Kim, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Bellantoni, L.; Berkelman, K.; Cinabro, D.; Conway, J.S.; Cranmer, K.; Elmer, P.; Feng, Z.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Grahl, J.; Harton, J.L.; Hayes, O.J.; Hu, H.; Jin, S.; Johnson, R.P.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Sharma, V.; Walsh, A.M.; Walsh, J.; Wear, J.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Yamartino, J.M.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; De Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Duperrin, A.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gele, D.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S-O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Nulty, R.Mc; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolaenko, V.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Ripp-Baudot, I.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Simard, L.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M-L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, V.P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; De Asmundis, R.; D'eglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S.N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, G.; Grimm, O.; Gruenewald, M.W.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, L.W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Pirou'e, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, S.C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ackerstaff, K.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, J.; Altekamp, N.; Ametewee, K.; Anagnostou, G.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Bartoldus, R.; Batley, R.J.; Baumann, S.; Bechtle, P.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Boeriu, O.; Blobel, V.; Bloodworth, I.J.; Bloomer, J.E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Bosch, H.M.; Boutemeur, M.; Bouwens, B.T.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, R.M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Cammin, J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, M.; Dallison, S.; de Jong, S.; De Roeck, A.; Dervan, P.; De Wolf, E.A.; del Pozo, L.A.; Desch, K.; Dienes, B.; Dixit, M.S.; do Couto e Silva, E.; Donkers, M.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Edwards, J.E.G.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanti, M.; Fath, P.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Ford, M.; Foucher, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Giunta, M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Graham, K.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hart, P.A.; Hartmann, C.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hilse, T.; Hobson, P.R.; Hocker, A.; Hoffman, K.; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Hughes-Jones, R.E.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ingram, M.R.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, G.; Jones, M.; Jones, R.W.L.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; King, B.J.; Kirk, J.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, R.V.; Kramer, T.; Krasznahorkay, A., Jr.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lewis, C.; Liebisch, R.; Lillich, J.; List, B.; List, J.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, A.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Matthews, W.; Mattig, P.; McDonald, W.J.; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McNab, A.I.; McPherson, R.A.; Mendez-Lorenzo, P.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, N.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Muller, U.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nellen, B.; Nijjhar, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oldershaw, N.J.; Omori, T.; Oreglia, M.J.; Orito, S.; Pahl, C.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pearce, M.J.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Poffenberger, P.; Polok, J.; Poli, B.; Pooth, O.; Posthaus, A.; Przybycien, M.; Przysiezniak, H.; Quadt, A.; Rabbertz, K.; Rees, D.L.; Rembser, C.; Renkel, P.; Rick, H.; Rigby, D.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Ros, E.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rosvick, M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Rylko, R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sasaki, M.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schenk, P.; Schieck, J.; Schmitt, S.; Schorner-Sadenius, T.; Schroder, M.; Schultz-Coulon, H.C.; Schulz, M.; Schumacher, M.; Schutz, P.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Smith, T.J.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Springer, R.W.; Sproston, M.; Stahl, A.; Steiert, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Strohmer, R.; Strumia, F.; Stumpf, L.; Surrow, B.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Taylor, R.J.; Tasevsky, M.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsukamoto, T.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Utzat, P.; Vachon, B.; Van Kooten, R.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Vikas, P.; Vincter, M.; Vokurka, E.H.; Vollmer, C.F.; Voss, H.; Vossebeld, J.; Wackerle, F.; Wagner, A.; Waller, D.; Ward, C.P.; Ward, D.R.; Ward, J.J.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilkens, B.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wotton, S.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.; Zivkovic, L.

    2013-01-01

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3~fb$^{-1}$ collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from $130~GeV$ to $209~GeV$. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron-positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose-Einstein correlations between the two W decay systems arising ...

  6. Role of youth of city Ozyorsk in creation of positive image of nuclear energy at the population of Chelyabinsk region

    International Nuclear Information System (INIS)

    Kostareva, T.; Teslov, A.

    2001-01-01

    At present Atomic Energy was confronted with the great problem of the negative attitude of population to its development. Consequently it is necessary to reorient public opinion in the side of the valid attitude to Atomic Energy as it is the basis of the further economic growth of the region. The young specialists of the modern factory of the Atomic Industry PA 'Mayak' should carry out the active work for creation positive image of Nuclear Energy in the Chelyabinsk region. (authors)

  7. The creation of racks and nanopores creation in various allotropes of boron due to the mechanical loads

    Science.gov (United States)

    Sadeghzadeh, S.

    2017-11-01

    Two-dimensional (2D) materials have recently attracted a great attraction. This paper provides a detailed discussion on the rupture mechanisms of different allotropes of boron. As a new 2D material by using a reactive molecular dynamics model, probable types of rupture for borophene sheets were studied, among which two dominant mechanisms were observed: creation of the cracks and formation of nanopores. The results obtained are compared to those for graphene and h-BN nano sheets, although the rupture mechanism was completely different from the graphene and h-BN sheets. The simulations suggested that borophene might remain more stable against external mechanical loads than graphene and BN sheets. Cracking leads to larger strain along the loading direction, whereas the creation of local pores spends the imposed energy for breaking the internal bonds and so flowing the external energy into the various bonds increases the number of pores. For the armchair-types, cracking is a dominant mechanism while for the zigzag-type the common mechanism is the creation of nanopores. These interesting results may help to design a new class of semiconductors that remain stable even when are sustaining uncontrollable external stresses.

  8. Mesoscopic pairing without superconductivity

    Science.gov (United States)

    Hofmann, Johannes

    2017-12-01

    We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.

  9. Pair potentials in liquid metals

    International Nuclear Information System (INIS)

    Faber, T.E.

    1980-01-01

    The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)

  10. Co-Creation

    DEFF Research Database (Denmark)

    Degnegaard, Rex

    2012-01-01

    Co-creation as a concept has won terrain over the past 10 years. In practice as well as in literature, co-creation is climbing the agenda in relation to contemporary opportunities and challenges within management, organization development, and change initiatives. However, there Is very little...... research-based literature on the development of co-creation. This paper aims to build an overview of the literature on co-creation to explore what the existing literature relate to and indeed to pinpoint if any pattern or streams can be identified. A main finding from the analysis is how co-creation tends...

  11. Particle creations in the pseudoparticle gravitational fields

    International Nuclear Information System (INIS)

    Tomimatsu, Akira.

    1978-03-01

    The origin of black hole radiation seems to be of a pseudoparticle nature with a non-vanishing Euler characteristic of the Schwarzshild metric. In order to develop this idea, the particle creation in another typical pseudoparticle space-time, which was derived by rewriting the Belavin-type vector potential into a metric form through the SL(2, C) gauge theory of general relativity, is analyzed. It is shown by the path-integral approach that the particle creation can indeed occur, with an incomplete thermal energy spectrum because of its non-uniform temperature and non-zero chemical potential. Some discussions on the results and the comparisons with the cases of black hole radiation and cosmological particle creation are also made. (auth.)

  12. Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy: the case of odd-systems

    International Nuclear Information System (INIS)

    Benhamouda, N.; Oudih, M.R.

    2002-01-01

    A method of simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy, recently proposed for the even-even nuclei, is generalized to the case of odd systems. * By means of the blocked-level technique, a level density with explicit dependence on pairing correlations is defined. The microscopic corrections to the deformation energy are then determined by a procedure which is analogous to that of Strutinsky. The method is applied to the ground state of Europium isotopes using the single-particle energies of a deformed Woods-Saxon mean-field. The obtained results are in good agreement with the experimental values

  13. Electron-positron pair production and bremsstrahlung at intermediate energies in the field of heavy atoms

    International Nuclear Information System (INIS)

    Lee, R.N.; Milstein, A.I.; Strakhovenko, V.M.; Schwartz, O.Ya.

    2006-01-01

    The Coulomb corrections (CC) to the processes of bremsstrahlung and pair production are investigated. The next-to-leading term in the high-energy asymptotics is found. This term becomes very essential in the region of intermediate energies. The influence of screening for CC is small for differential cross section, spectrum, and the total cross section of pair production. The same is true for the spectrum of bremsstrahlung, but not for the differential cross section, where the influence of screening can be very large. The corresponding screening corrections as well as the modification of the differential cross section of bremsstrahlung are found. A comparison of our results for the total cross section of pair production with the experimental data available is performed. This comparison has justified our analytical results and allowed to elaborate a simple ansatz for the next-to-leading correction. The influence of the electron beam shape on CC for bremsstrahlung is investigated. It turns out that the differential cross section is very sensitive to this shape

  14. μ- and tau-pair production from relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1986-01-01

    The question is addressed of μ- and tau-pair production from the motional Coulomb fields available at the new relativistic heavy-ion accelerators. A semiclassical field theory is developed which is appropriate for families of leptons which are coupled electromagnetically. The field equations are mapped on to a lattice of collocation points using basis spline methods, and techniques for solving the resulting lattice equations are outlined. The properties of the transverse electromagnetic field near the heavy-ion beam are examined and physical arguments are given as to the feasibility of pair creation under a variety of circumstances. Using the Dirac-Hartree equations developed in part one, we shall dynamically evolve the vacuum, using the appropriate fields, and compute μ-pair and tau-pair production cross sections. 16 refs., 10 figs

  15. Pair creation by very high-energy photons in gamma-ray bursts a unified picture for the energetics of GRBs

    CERN Document Server

    Totani, T

    1999-01-01

    The extreme energetics of the gamma-ray burst (GRB) 990123 have revealed that some GRBs emit quite a large amount of energy, and the total energy release from GRBs seems to change from burst to burst by a factor of 10/sup 2/-10/sup $9 3/ as E/sub gamma , iso/~10/sup 52-55/ erg, where E/sub gamma , iso/ is the observed GRB energy when the radiation is isotropic. If all GRBs are triggered by similar events, such a wide dispersion in energy release seems odd. The $9 author proposes a unified picture for the energetics of GRBs, in which all GRB events release roughly the same amount of energy E/sub iso/~10 /sup 55-56/ erg relativistic motion, with the baryon load problem almost resolved. A mild $9 dispersion in the initial Lorentz factor ( Gamma ) results in a difference of E/sub gamma , iso/ by up to a factor of m/sub p//m/sub e/~10/sup 3/. Protons work as `a hidden energy reservoir' of the total GRB energy, and E/sub gamma , $9 iso/ depends on the energy transfer efficiency from protons into electrons (or posit...

  16. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica (Brazil)

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons. As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.

  17. Path creation in Nordic energy and road transport systems – The role of technological characteristics

    DEFF Research Database (Denmark)

    Hansen, Teis; Klitkou, Antje; Borup, Mads

    2017-01-01

    This paper reviews path-creation processes in road transport systems in the Nordic countries: e-mobility in Denmark, hydrogen and fuel-cell electrical vehicles in Norway, and advanced biofuels in Finland and Sweden. The study builds on the path creation literature, which seeks to explain the emer......This paper reviews path-creation processes in road transport systems in the Nordic countries: e-mobility in Denmark, hydrogen and fuel-cell electrical vehicles in Norway, and advanced biofuels in Finland and Sweden. The study builds on the path creation literature, which seeks to explain...... the emergence of new technological pathways. Drawing on recent insights concerning the differences between design- and manufacturing-intensive technologies, the paper analyses the influence of technological characteristics on path creation processes. The case comparison indicates that technological...... characteristics seem to have greater influence on the content of activities in the later phase rather than the early phase of path creation processes. The analysis also emphasises that barriers to path creation processes differ depending on technological characteristics. This highlights the importance...

  18. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  19. Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy: the case of odd-systems

    Energy Technology Data Exchange (ETDEWEB)

    Benhamouda, N [Laboratoire de Physique Theoique, Faculte des Sciences, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Algers (Algeria); Oudih, M R [CRNA, 2. Bd Frantz Fanon, BP 399 Alger-Gare, Algers (Algeria)

    2002-09-15

    A method of simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy, recently proposed for the even-even nuclei, is generalized to the case of odd systems. {sup *} By means of the blocked-level technique, a level density with explicit dependence on pairing correlations is defined. The microscopic corrections to the deformation energy are then determined by a procedure which is analogous to that of Strutinsky. The method is applied to the ground state of Europium isotopes using the single-particle energies of a deformed Woods-Saxon mean-field. The obtained results are in good agreement with the experimental values.

  20. Application of a Laplace transform pair model for high-energy x-ray spectral reconstruction.

    Science.gov (United States)

    Archer, B R; Almond, P R; Wagner, L K

    1985-01-01

    A Laplace transform pair model, previously shown to accurately reconstruct x-ray spectra at diagnostic energies, has been applied to megavoltage energy beams. The inverse Laplace transforms of 2-, 6-, and 25-MV attenuation curves were evaluated to determine the energy spectra of these beams. The 2-MV data indicate that the model can reliably reconstruct spectra in the low megavoltage range. Experimental limitations in acquiring the 6-MV transmission data demonstrate the sensitivity of the model to systematic experimental error. The 25-MV data result in a physically realistic approximation of the present spectrum.

  1. Multiple multi-orbit fermionic and bosonic pairing and rotational SU(3) algebras

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    2017-01-01

    In nuclei with valence nucleons that are identical nucleons and occupy r number of j-orbits, there will be 2 r-1 number of multiple pairing (quasi-spin) SU(2) algebras with the generalized pair creation operator S + being a sum of single-j pair creation operators with arbitrary phases. Also, for each set of phases there will be a corresponding Sp(2Ω) algebra in U(2Ω) ⊃ Sp(2Ω); Ω = ∑ (2j+1)/2. Using this correspondence, derived is the condition for a general one-body operator of angular momentum rank k to be a quasi-spin scalar or a vector vis-a-vis the phases in S + . These will give special seniority selection rules for electromagnetic transitions. We found that the phase choice advocated by Arvieu and Moszkowski gives pairing Hamiltonians having maximum correlation with well known effective interactions. All the results derived for identical fermion systems are shown to extend to identical boson systems such as sd, sp, sdg and sdpf interacting boson models (IBM's) with SU(2) → SU(1,1) and Sp(2/Omega) → SO(2Ω). Going beyond pairing, for a given set of oscillator orbits, there are multiple rotational SU(3) algebras both in shell model and IBM's. Different SU(3) algebras in IBM's are shown, using sdg IBM as an example, to give different geometric shapes.

  2. Energies of the ground state and first excited 0 sup + state in an exactly solvable pairing model

    CERN Document Server

    Dinh Dang, N

    2003-01-01

    Several approximations are tested by calculating the ground-state energy and the energy of the first excited 0 sup + state using an exactly solvable model with two symmetric levels interacting via a pairing force. They are the BCS approximation (BCS), Lipkin-Nogami (LN) method, random-phase approximation (RPA), quasiparticle RPA (QRPA), the renormalized RPA (RRPA), and renormalized QRPA (RQRPA). It is shown that, in the strong-coupling regime, the QRPA which neglects the scattering term of the model Hamiltonian offers the best fit to the exact solutions. A recipe is proposed using the RRPA and RQRPA in combination with the pairing gap given by the LN method. Applying this recipe, it is shown that the superfluid-normal phase transition is avoided, and a reasonably good description for both of the ground-state energy and the energy of the first excited 0 sup + state is achieved. (orig.)

  3. On the creation of scalar particles in an early stage of the Friedmann closed-universe II

    International Nuclear Information System (INIS)

    Ishihara, Hideki; Nariai, Hidekazu.

    1982-09-01

    As a sequel to the previous work, the creation of scalar particles in an expanding closed-universe is studied in terms of our Feynman propagator and of fixing a pair of particle states. It is shown that the obtained spectral law for the creation of particles is identical with the previous one derived in terms of the vacuum expectation value at an initial time eta = eta sub(i) of the number operator at late time eta = eta sub(f). (author)

  4. Coherent and noncoherent double diffractive production of QQ-bar pairs in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1999-01-01

    The coherent and noncoherent double diffractive production of heavy quark-antiquark pairs in ion scattering at the LHC energies has been considered. The total and differential cross sections for such processes featuring the production of cc-bar and bb-bar quark pairs in pp, CaCa, and PbPb collisions have been estimated. It has been shown that the fraction of heavy quark-antiquark pairs produced in double diffractive scattering amounts to a few percent of the number of QQ-bar pairs produced in hard QCD scattering; therefore, it is necessary to take into account such processes in detecting heavy quarks, in seeking Higgs bosons of intermediate mass, in investigating the suppression of heavy quarkonia in quark-gluon plasma, and so on. It has been demonstrated that the cross section for coherent scattering is so large that this process can be used to study collective effects in nuclei at high energies. Large values of the quark-antiquark invariant mass, M QQ-bar > or approx. 100 GeV, in association with a large rapidity gap between diffractive jets, Δη>5, exemplify manifestations of such nuclear interactions

  5. Direct electron-pair production by high energy heavy charged particles

    Science.gov (United States)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  6. Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma.

    Science.gov (United States)

    Hirao, Ichiro; Kimoto, Michiko

    2012-01-01

    Toward the expansion of the genetic alphabet of DNA, several artificial third base pairs (unnatural base pairs) have been created. Synthetic DNAs containing the unnatural base pairs can be amplified faithfully by PCR, along with the natural A-T and G-C pairs, and transcribed into RNA. The unnatural base pair systems now have high potential to open the door to next generation biotechnology. The creation of unnatural base pairs is a consequence of repeating "proof of concept" experiments. In the process, initially designed base pairs were modified to address their weak points. Some of them were artificially evolved to ones with higher efficiency and selectivity in polymerase reactions, while others were eliminated from the analysis. Here, we describe the process of unnatural base pair development, as well as the tests of their applications.

  7. Taking stock of project value creation: A structured literature review with future directions for research and practice

    DEFF Research Database (Denmark)

    Laursen, Markus; Svejvig, Per

    2016-01-01

    This paper aims to take stock of what we know about project value creation and to present future directions for research and practice. We performed an explorative and unstructured literature review, which was subsequently paired with a structured literature review. We join several research areas...... by adopting the project value creation perspective on literature relating to benefits, value, performance, and success in projects. Our review includes 111 contributions analyzed through both an inductive and deductive approach. We find that relevant literature dates back to the early 1980s, and the still...... developing value-centric view has been the subject of many publications in recent years. We contribute to research on project value creation through four directions for future research: rejuvenating value management through combining value, benefits, and costs; supplementing value creation with value capture...

  8. Solutions of nuclear pairing

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Pehlivan, Y.

    2007-01-01

    We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators

  9. High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J. [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); Ehm, Lars [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Zhong, Zhong; Ghose, Sanjit [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-27

    In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.

  10. FRW-type cosmologies with adiabatic matter creation

    International Nuclear Information System (INIS)

    Lima, J.A.; Germano, A.S.; Abramo, L.R.

    1996-01-01

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ * =γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. copyright 1996 The American Physical Society

  11. Electron-positron pair production in Coulomb collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Vane, C.R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Bottcher, C.; Strayer, M.; Schuch, R.; Gao, H.; Hutton, R.

    1993-01-01

    We have measured angular and momentum distributions for electrons and positrons created as pairs in peripheral collisions of 6.4 TeV bare sulfur ions with fixed targets of Al, Pd, and Au. Singly- and doubly-differential cross sections have been determined for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Integrated yields for pair production are found to vary as the square of the target nuclear charge. Relative angular and momentum differential cross sections are effectively target independent. Probability distributions for the pair total momentum, the positron fraction of the pair momentum, and the pair traverse momentum have been derived from the coincident electron-positron data

  12. Creationism in Europe

    DEFF Research Database (Denmark)

    For decades, the creationist movement was primarily situated in the United States. Then, in the 1970s, American creationists found their ideas welcomed abroad, first in Australia and New Zealand, then in Korea, India, South Africa, Brazil, and elsewhere—including Europe, where creationism plays...... an expanding role in public debates about science policy and school curricula. In this, the first comprehensive history of creationism in Europe, leading historians, philosophers, and scientists narrate the rise of—and response to—scientific creationism, creation science, intelligent design, and organized...... antievolutionism in countries and religions throughout Europe. Providing a unique map of creationism in Europe, the authors chart the surprising history of creationist activities and strategies there. Over the past forty years, creationism has spread swiftly among European Catholics, Protestants, Jews, Hindus...

  13. Suppression of bremsstrahlung and pair production due to environmental factors

    International Nuclear Information System (INIS)

    Klein, Spencer

    1999-01-01

    The environment in which bremsstrahlung and pair creation occurs can strongly affect cross sections for these processes. Because ultrarelativistic electromagnetic interactions involve very small longitudinal momentum transfers, the reactions occur gradually, spread over long distances. During this time, even relatively weak factors can accumulate enough to disrupt the interaction. In the Landau-Pomeranchuk-Migdal effect, multiple scattering reduces the bremsstrahlung and pair production cross section. This review will discuss this and a variety of other factors that can suppress bremsstrahlung and pair production, as well as related effects involving beamstrahlung and QCD processes. After surveying different theoretical approaches, experimental measurements will be covered. Recent accurate measurements by the SLAC E-146 Collaboration will be highlighted, along with several recent theoretical works relating to the experiment. (c) 1999 The American Physical Society

  14. The apparent irreversibility of particle creation: A study of time scales and of the mechanisms responsible for entropy production in quantum field theory

    International Nuclear Information System (INIS)

    Rau, J.

    1993-01-01

    In the presence of strong gravitational, electromagnetic or other gauge fields, particle-antiparticle pairs are created out of the vacuum. Creation processes of this type are responsible for, e.g., hadron production in heavy ion collisions or the radiation of black holes. They lead to an increase in entropy, thus contributing to the thermalization of the system under consideration. This suggests that particle creation in strong fields is an irreversible process. Key issues to be addressed are: (1) under which conditions particle creation is indeed irreversible, and how this can be reconciled with the time-reversal invariance of the underlying microscopic dynamics: (ii) if-and if so, how-particle creation can be described within the framework of a theory of nonequilibrium processes: (iii) how the associated entropy is defined; and (iv) how particle creation can be incorporated into a kinetic equation that also accounts for subsequent acceleration and collisions. These issues are studied by means of the projection method. After a comprehensive introduction to that method, it is applied to a simple model from quantum electrodynamics which incorporates acceleration, collisions, and pair creation due to the Schwinger mechanism. For this model, the author obtains: (1) the complete set of time scales, which furnishes a precise mathematical criterion for the irreversibility of particle creation; (2) the associated relevant entropy to which the H-theorem applies; and (3) a generalization of the quantum Boltzmann equation which includes a source term derived from first principles

  15. En route to matter-antimatter pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stenson, Eve V.; Hergenhahn, Uwe; Paschkowski, Norbert; Saitoh, Haruhiko; Stanja, Juliane [Max Planck Institute for Plasma Physics, Greifswald and Garching (Germany); Niemann, Holger; Sunn Pedersen, Thomas [Max Planck Institute for Plasma Physics, Greifswald and Garching (Germany); Ernst Moritz Arndt University of Greifswald, Greifswald (Germany); Schweikhard, Lutz [Ernst Moritz Arndt University of Greifswald, Greifswald (Germany); Hugenschmidt, Christoph [Technische Universitaet Muenchen, Garching (Germany); Danielson, James R.; Surko, Clifford M. [University of California, San Diego, La Jolla (United States)

    2015-05-01

    The APEX and PAX projects have as their overarching goal the laboratory creation and confinement of the world's first positron-electron pair plasma. Plasmas of this type have been the subject of hundreds of theoretical investigations and are also believed to play a role in various astrophysical environments. In order to achieve this goal in an experimentally accessible volume (e.g., 10 liters), a record number (≥ 10{sup 10}) of cold (∝ 1 eV) positrons are to be accumulated and combined with a corresponding population of electrons. Notable requirements include a high-intensity positron beam (such as NEPOMUC), a suitable magnetic confinement device for the pair plasma (such as a levitated dipole), high-efficiency tools for bridging the two (i.e., means by which the positrons can be efficiently cooled, trapped, and injected across flux surfaces), and diagnostics not only for the pair plasma, but also for the positron beam and for intermediary non-neutral plasmas. This talk will summarize the project as a whole and recent work by the APEX/PAX team on its various elements.

  16. Pairing gaps from nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Maruhn, J.A.

    2000-01-01

    We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei. (orig.)

  17. Free energy landscape and transition pathways from Watson–Crick to Hoogsteen base pairing in free duplex DNA

    Science.gov (United States)

    Yang, Changwon; Kim, Eunae; Pak, Youngshang

    2015-01-01

    Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson–Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine–thymine (A–T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events. PMID:26250116

  18. Measurements of Coulomb Cross Section for Production of Direct Electron-pairs by High Energy Ions at the CERN SPS

    CERN Multimedia

    2002-01-01

    QED predicts copious direct electron pair production by ultrarelativistic heavy nuclei in a high Z medium such as nuclear emulsion. First order QED calculations (combined screening and non-screening) for this process show that 1000@+32 electron pairs above 100~keV energy) should be emitted for a total |1|6O track length of 10.9~m in nuclear emulsion at 200~GeV/AMU. Emulsion exposures with oxygen (and other nuclei if available) at 60 and 200~GeV/AMU will be used to calibrate the energy dependent cross section @s~@j~(1n~E)|2|-|3, whose exponent depends on atomic screening. The oxygen tracks in the developed emulsions will be scanned with a microscope, and the number of direct electron pairs will be counted for individual tracks. The exposed stacks will contain sufficient emulsion (and CR39 plastic to check for possible interactions) that adequate path length will be available for exposures to @$>$~10|4~ions at each energy and ion species. \\\\ \\\\ If the absolute value of this cross section is confirmed as large a...

  19. Semiclassical description of soliton-antisoliton pair production in particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Levkov, D.G. [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2015-11-10

    We develop a consistent semiclassical method to calculate the probability of topological soliton-antisoliton pair production in collisions of elementary particles. In our method one adds an auxiliary external field pulling the soliton and antisoliton in the opposite directions. This transforms the original scattering process into a Schwinger pair creation of the solitons induced by the particle collision. One describes the Schwinger process semiclassically and recovers the original scattering probability in the limit of vanishing external field. We illustrate the method in (1+1)-dimensional scalar field model where the suppression exponents of soliton-antisoliton production in the multiparticle and two-particle collisions are computed numerically.

  20. Smooth and sharp creation of a Dirichlet wall in 1+1 quantum field theory: how singular is the sharp creation limit?

    International Nuclear Information System (INIS)

    Brown, Eric G.; Louko, Jorma

    2015-01-01

    We present and utilize a simple formalism for the smooth creation of boundary conditions within relativistic quantum field theory. We consider a massless scalar field in (1+1)-dimensional flat spacetime and imagine smoothly transitioning from there being no boundary condition to there being a two-sided Dirichlet mirror. The act of doing this, expectantly, generates a flux of real quanta that emanates from the mirror as it is being created. We show that the local stress-energy tensor of the flux is finite only if an infrared cutoff is introduced, no matter how slowly the mirror is created, in agreement with the perturbative results of Obadia and Parentani. In the limit of instaneous mirror creation the total energy injected into the field becomes ultraviolet divergent, but the response of an Unruh-DeWitt particle detector passing through the infinite burst of energy nevertheless remains finite. Implications for vacuum entanglement extraction and for black hole firewalls are discussed.

  1. Top quark pair production and calorimeter energy resolution studies at a future collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Katja

    2012-03-27

    This thesis is focused on detector concepts and analyses investigated at a future linear electron positron collider. For precision measurements at such a collider, the CALICE collaboration develops imaging calorimeters, which are characterized by a fine granularity. CALICE has constructed prototypes of several design options for electromagnetic and hadronic calorimeters and has successfully operated these detectors during combined test beam programs at DESY, CERN and Fermilab. To improve the hadronic energy reconstruction and energy resolution of a hadron calorimeter prototype with analog readout three software compensation techniques are presented in this thesis, of which one is a local and two are global software compensation approaches. One method is based on a neural network to optimize the energy reconstruction, while two are energy weighting techniques, depending on the energy density. Weight factors are extracted from and applied to simulated and test beam data and result in an average energy resolution improvement of 15 - 25% compared to a reconstruction without software compensation. Whether such software compensation techniques are also applicable to a detector concept for a future linear electron positron collider is studied in the second part of this thesis. Simulated data, two different hadronic detector models and a local software compensation technique are used for this study. The energy resolutions for single hadrons and for jets are presented with and without software compensation. In the third part of this thesis, a study on top quark pair production at a center-of-mass energy of 500 GeV at the proposed electron positron collider CLIC is presented. The analysis is based on full detector simulations, including realistic background contributions dominated by two photon processes. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of top quark pairs using event samples of signal and Standard Model background

  2. Top quark pair production and calorimeter energy resolution studies at a future collider experiment

    International Nuclear Information System (INIS)

    Seidel, Katja

    2012-01-01

    This thesis is focused on detector concepts and analyses investigated at a future linear electron positron collider. For precision measurements at such a collider, the CALICE collaboration develops imaging calorimeters, which are characterized by a fine granularity. CALICE has constructed prototypes of several design options for electromagnetic and hadronic calorimeters and has successfully operated these detectors during combined test beam programs at DESY, CERN and Fermilab. To improve the hadronic energy reconstruction and energy resolution of a hadron calorimeter prototype with analog readout three software compensation techniques are presented in this thesis, of which one is a local and two are global software compensation approaches. One method is based on a neural network to optimize the energy reconstruction, while two are energy weighting techniques, depending on the energy density. Weight factors are extracted from and applied to simulated and test beam data and result in an average energy resolution improvement of 15 - 25% compared to a reconstruction without software compensation. Whether such software compensation techniques are also applicable to a detector concept for a future linear electron positron collider is studied in the second part of this thesis. Simulated data, two different hadronic detector models and a local software compensation technique are used for this study. The energy resolutions for single hadrons and for jets are presented with and without software compensation. In the third part of this thesis, a study on top quark pair production at a center-of-mass energy of 500 GeV at the proposed electron positron collider CLIC is presented. The analysis is based on full detector simulations, including realistic background contributions dominated by two photon processes. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of top quark pairs using event samples of signal and Standard Model background

  3. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals

    Science.gov (United States)

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.

    2018-02-01

    We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.

  4. Calculations of energy levels and electromagnetic properties for tellurium pair isotopes, by unified method

    International Nuclear Information System (INIS)

    Teixeira, R.R.P.

    1988-01-01

    Calculations with the Unified Model (vibrator coupled to two particles), of the energy levels and the eletromagnetic properties have been performed and compared with the twelve pair isotopes from tellurium with A between 112 and 134. The results were analysed using as particles interaction: pairing and SDI (Surface Delta Interaction). The SDI and 3 fonons collective states were used in the fittings, and a syntematic comparison between the theoretical and experimental results was made. The dependence of the results with the model parameters was determined, through large variation sof them. Calculations using 4 fonons have been made, and the importance of the introduced variations in the results was discussed. Calculations have been made in the VAX Computer of the Pelletron at IFUSP. (author) [pt

  5. A geometric measure of dark energy with pairs of galaxies.

    Science.gov (United States)

    Marinoni, Christian; Buzzi, Adeline

    2010-11-25

    Observations indicate that the expansion of the Universe is accelerating, which is attributed to a ‘dark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80.

  6. Nuclear scissors mode with pairing

    International Nuclear Information System (INIS)

    Balbutsev, E. B.; Malov, L. A.; Schuck, P.; Urban, M.; Vinas, X.

    2008-01-01

    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method, taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment, and other relevant collective variables are derived on the basis of the time-dependent Hartree-Fock-Bogolyubov equations. Analytical expressions for energy centroids and transition probabilities are found for the harmonic-oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.

  7. Sharp corners as sources of spiral pairs

    International Nuclear Information System (INIS)

    Biton, Y.; Rabinovitch, A.; Braunstein, D.; Friedman, M.; Aviram, I.

    2010-01-01

    It is demonstrated that using the FitzHugh-Nagumo model, stimulation of excitable media inside a region possessing sharp corners, can lead to the appearance of sources of spiral-pairs of sustained activity. The two conditions for such source creation are: The corners should be less than 120 deg. and the range of stimulating amplitudes should be small, occurring just above the threshold value and decreasing with the corner angle. The basic mechanisms driving the phenomenon are discussed. These include: A. If the corner angle is below 120 deg., the wave generated inside cannot emerge at the corner tip, resulting in the creation of two free edges which start spiraling towards each other. B. Spiraling must be strong enough; otherwise annihilation of the rotating arms would occur too soon to create a viable source. C. The intricacies of the different radii involved are elucidated. Possible applications in heart stimulation and in chemical reactions are considered.

  8. Theoretical study of GC+/GC base pair derivatives

    International Nuclear Information System (INIS)

    Meng Fancui; Wang Huanjie; Xu Weiren; Liu Chengbu

    2005-01-01

    The geometries of R (R=CH 3 , CH 3 O, F, NO 2 ) substituted GC base pair derivatives and their cations have been optimized at B3LYP/6-31G* level and the substituent effects on the neutral and cationic geometric structures and energies have been discussed. The inner reorganization energies of various base pair derivatives and the native GC base pair have been calculated to discuss the substituent effects on the reorganization energy. NBO (natural bond orbital) analysis has been carried out on both the neutral and the cationic systems to investigate the differences of the charge distributions and the electronic structures. The outcomes indicate that 8-CH 3 O-G:C has the greatest reorganization energy and 8-NO 2 -G:C has the least, while the other substituted base pairs have a reorganization energy close to that of G:C. The one charge is mostly localized on guanine part after ionization and as high as 0.95e. The bond distances of N1-N3'andN2-O2' in the cationic base pair derivatives shortened and that of O6-N4' elongated as compared with the corresponding bond distances of the neutral GC base pair derivatives

  9. Creation of short microwave ablation zones: in vivo characterization of single and paired modified triaxial antennas.

    Science.gov (United States)

    Lubner, Meghan G; Ziemlewicz, Tim J; Hinshaw, J Louis; Lee, Fred T; Sampson, Lisa A; Brace, Christopher L

    2014-10-01

    To characterize modified triaxial microwave antennas configured to produce short ablation zones. Fifty single-antenna and 27 paired-antenna hepatic ablations were performed in domestic swine (N = 11) with 17-gauge gas-cooled modified triaxial antennas powered at 65 W from a 2.45-GHz generator. Single-antenna ablations were performed at 2 (n = 16), 5 (n = 21), and 10 (n = 13) minutes. Paired-antenna ablations were performed at 1-cm and 2-cm spacing for 5 (n = 7 and n = 8, respectively) and 10 minutes (n = 7 and n = 5, respectively). Mean transverse width, length, and aspect ratio of sectioned ablation zones were measured and compared. For single antennas, mean ablation zone lengths were 2.9 cm ± 0.45, 3.5 cm ± 0.55, and 4.2 cm ± 0.40 at 2, 5, and 10 minutes, respectively. Mean widths were 1.8 cm ± 0.3, 2.0 cm ± 0.32, and 2.5 cm ± 0.25 at 2, 5, and 10 minutes, respectively. For paired antennas, mean length at 5 minutes with 1-cm and 2-cm spacing and 10 minutes with 1-cm and 2-cm spacing was 4.2 cm ± 0.9, 4.9 cm ± 1.0, 4.8 cm ± 0.5, and 4.8 cm ± 1.3, respectively. Mean width was 3.1 cm ± 1.0, 4.4 cm ± 0.7, 3.8 cm ± 0.4, and 4.5 cm ± 0.7, respectively. Paired-antenna ablations were more spherical (aspect ratios, 0.72-0.79 for 5-10 min) than single-antenna ablations (aspect ratios, 0.57-0.59). For paired-antenna ablations, 1-cm spacing appeared optimal, with improved circularity and decreased clefting compared with 2-cm spacing (circularity, 0.85 at 1 cm, 0.78 at 2 cm). Modified triaxial antennas can generate relatively short, spherical ablation zones. Paired-antenna ablations were rounder and larger in transverse dimension than single antenna ablations, with 1-cm spacing optimal for confluence of the ablation zone. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  10. Local free energies for the coarse-graining of adsorption phenomena: The interacting pair approximation

    Science.gov (United States)

    Pazzona, Federico G.; Pireddu, Giovanni; Gabrieli, Andrea; Pintus, Alberto M.; Demontis, Pierfranco

    2018-05-01

    We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.

  11. Dissipation of the electronic excitation energy in fluorides with different type of a crystal lattice

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Grechkina, T. V.; Korepanov, V.I.; Lisitsyna, L.A.

    2004-01-01

    F-centers is revealed. Therefore, in researched crystals any of types STE is not starting for creation of the F-centers. The expenditure energy for creation of STE at 20 K and the F-centers in the field of their primary creation (300 K) in crystals LiF and MeF 2 are comparable and equal 1.5-2 eV. It means that formation of both types of defects can be only result of decay created by radiation electronic excitation. Therefore, there are two basic channels of dissipation energy of high-energy electronic excitation, i.e. the creation of two-center type configuration of STEs in triplet state and creation Frenkel pairs defects. Occupation of channels occurs during an oscillatory relaxation of high-energy electronic excitation (a precursor state), instead of a process thermally activation conversion of one type of initial defect to another (from triplet STE to F, H pair). Thus total efficiency of generation of defects on channels remains practically to a constant in all the investigated temperature range 20-500 K. It is established, that the ratio between channels of energy dissipation of a precursor state depends on many parameters: temperatures of a crystal at an irradiation, type of crystal lattice, type and concentration both primary and created the defectiveness of a material during irradiation. Thus, creation of primary radiation defects of a lattice both in crystals LiF and MgF 2 , occurs during a relaxation electronic excitation. All set of experimental results are evidence of identical character of mechanisms of generation of primary defects in these crystals in wide temperature area, as well as similarity of structure and character of behavior of primary defects, specifying on the certain universality of the considered processes in ionic crystals

  12. Effects of disorder on the electron pairing

    International Nuclear Information System (INIS)

    Oviedo-Roa, R.; Wang, C.; Navarro, O.

    1996-01-01

    The electron pairing in randomly disordered lattices is studied by using an attractive Hubbard model, and by mapping the many-body problem onto a tight-binding one in a higher dimensional space, where a diagonal disorder is considered within the coherent-potential approximation. The results show an enhancement of the pair-binding energy as the self-energy difference increases in a binary alloy A x B 1-x . This fact suggests that the pairing process is highly sensitive to the one-particle localization condition. A ground-state phase diagram for on-site interaction disorder shows regions where pairing is avoided for ordered diatomic systems but not for disordered case

  13. Coherent and non-coherent double diffractive production of QQ-bar-pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Galoyan, A.S.; Enkovskij, L.L.; Zarubin, P.I.; Malakhov, A.I.; Melkumov, G.L.; Chatrchyan, S.A.

    1999-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pairs (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc-bar and bb-bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effect in Quark-Gluon Plasma, in the search got intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherently scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ-bar pair, M QQ-bar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη >5 [ru

  14. Coherent and non-coherent double diffractive production of QQ-bar - pairs in collisions of heavy ions at high energies

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Chatrchyan, S.A.; Galoyan, A.S.; Malakhov, A.I.; Melkumov, G.L.; Zarubin, P.I.; Jenkovszky, L.L.

    1998-01-01

    The double coherent and non-coherent diffractive production of heavy quark-antiquark pair (QQ-bar) in heavy ion scattering at high energies (LHC) is considered. The total and differential cross sections of these processes with the formation of cc bar and bb bar pairs in pp, CaCa and PbPb collisions are evaluated. The contribution of the considered mechanisms is a few per cent of the number of heavy quark-antiquark pairs obtained in the processes of hard (QCD) scattering, and it will be taken into account in the registration of c, b quarks or, for instance, in the study of the heavy quarkonia suppression effects in quark-gluon plasma, in the search for intermediate mass Higgs bosons and so on. It is shown that the cross section of the coherent scattering process is great enough. This makes it suitable for studying collective effects in nuclear interactions at high energies. An example of such effects is given: large values of the invariant mass of a QQ- bar pair, M QQb ar ≥ 100 GeV, in association with a large rapidity gap between diffractive jets Δη>5

  15. Free energy landscape and transition pathways from Watson-Crick to Hoogsteen base pairing in free duplex DNA.

    Science.gov (United States)

    Yang, Changwon; Kim, Eunae; Pak, Youngshang

    2015-09-18

    Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson-Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine-thymine (A-T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Review of linear collider beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e + e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab

  17. New networks of technological creation in energy industries: reassessment of the roles of equipment suppliers and operators

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier-Roux, V. [Institut de Recherche Economique sur la Production et le Developpement -IREPD, Universite Pierre Mendes-France, 38 - Grenoble (France); Bourgeois, B. [Institut d' Economie et de Politique de l' Energie - IEPE-CNRS/ Universite Pierre Mendes-France, 38 - Grenoble (France)

    2002-12-01

    Within a financial context of selection inducing either a decrease or a drop of their home research and development expenditures, energy industries companies have succeeded to maintain and even to increase their knowledge production during the last 15 years (1985 - 1998). To understand these apparently paradoxical changes, elements of analysis are looked for within an evolutionary framework, and more specially referring to the related developments to network-firms, user-supplier relationship, and interactive nature of innovation processes. Empirical data are set on granted patents to a sample of the top 15 world largest companies on both sides of operators and equipment suppliers, and for the two industries of oil production and power generation. Interpretation of the results suggests that two dynamics ought to be distinguished. On one side, dynamics of the networks of technological creation is characterized by an upstream going-up of the head of the network towards suppliers. On the other side networks of creation of competitive advantages and bargaining power continues to be based on the operators and their strategies of adaptation to the constraints and opportunities of their institutional, financial and competitive environment. (author)

  18. Higher dimensional strange quark matter solutions in self creation cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Şen, R., E-mail: ramazansen-1991@hotmail.com [Institute for Natural and Applied Sciences, Çanakkale Onsekiz Mart University, 17020, Çanakkale (Turkey); Aygün, S., E-mail: saygun@comu.edu.tr [Department of Physics, Art and Science Faculty, Çanakkale Onsekiz Mart University, Çanakkale 17020 (Turkey)

    2016-03-25

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  19. Theories of opportunity creation and effective entrepreneurial actions in opportunity creation context

    Directory of Open Access Journals (Sweden)

    Behrooz Jamali

    2018-09-01

    Full Text Available Created opportunities are refered as the opportunities in which none of the supply and demand parties exists clearly and obviously one or both of them must be created. Therefore, several economic inventions should take place in marketing, franchising, etc. so that opportunity can be created. This perception of opportunity deals with the creation of new markets. In the meantime, identifying some entrepreneurial actions influencing on the creation of entrepreneurial opportunities can provide backgrounds for the formation and empowering the opportunity creation. In this paper, some basic ideas about the creation of entrepreneurial opportunities and the evolution of opportunity creation theories are examined. Then effective actions on the opportunity creation are identified. Finally, the structure of the investigated actions is examined using the DEMATLE Method. The results which were according to the opinions of 15 experts of entrepreneurship showed that leadership, decision making, and strategy actions influence other entrepreneurial actions.

  20. Drell-Yan lepton pair photoproduction

    International Nuclear Information System (INIS)

    Badalyan, R.G.; Grabskij, V.O.; Matinyan, S.G.

    1989-01-01

    The study of photon structure functions by spectra of massive lepton pairs (M l + l - ≥ 2 GeV) in photon fragmentation region in γp-interactions at high energies is suggested. In calculations of Drell-Yan lepton pair inclusive spectra in γp-interactions for photon structure functions there are used results obtained within QCD, data on γγ-interactions in e + e - → e + e - X on colliders as well as results from the analysis of vector meson non-diffractive photoproduction at high energies. It is shown that there exists a sufficienly wide kinematic region over variables X l + l - and M l + l - , wherein photon structure functions can be studied by spectra of Grell-Yan lepton pairs in the processes of their photoproduction. 31 refs.; 6 figs.; 1 tab

  1. e+e- Pair production from 10 GeV to 10 ZeV

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2006-01-01

    At very high energies, pair production (γ->e + e - ) exhibits many interesting features. The momentum transfer from the target is very small, so the reaction probes the macroscopic properties of the target, rather than individual nuclei. Interference between interactions with different atoms reduces the pair production cross section considerably below the Bethe-Heitler values. At very high energies, photonuclear interactions may outnumber pair production. In contrast, in crystals, the interaction amplitudes may add coherently, greatly increasing the cross sections. Pair production in matter-free magnetic fields is also possible. The highest energy pair production occurs at high-energy particle colliders. This article will compare pair production in these very different regimes

  2. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  3. English semantic word-pair norms and a searchable Web portal for experimental stimulus creation.

    Science.gov (United States)

    Buchanan, Erin M; Holmes, Jessica L; Teasley, Marilee L; Hutchison, Keith A

    2013-09-01

    As researchers explore the complexity of memory and language hierarchies, the need to expand normed stimulus databases is growing. Therefore, we present 1,808 words, paired with their features and concept-concept information, that were collected using previously established norming methods (McRae, Cree, Seidenberg, & McNorgan Behavior Research Methods 37:547-559, 2005). This database supplements existing stimuli and complements the Semantic Priming Project (Hutchison, Balota, Cortese, Neely, Niemeyer, Bengson, & Cohen-Shikora 2010). The data set includes many types of words (including nouns, verbs, adjectives, etc.), expanding on previous collections of nouns and verbs (Vinson & Vigliocco Journal of Neurolinguistics 15:317-351, 2008). We describe the relation between our and other semantic norms, as well as giving a short review of word-pair norms. The stimuli are provided in conjunction with a searchable Web portal that allows researchers to create a set of experimental stimuli without prior programming knowledge. When researchers use this new database in tandem with previous norming efforts, precise stimuli sets can be created for future research endeavors.

  4. High energy ion irradiated III-N semiconductors (AlN, GaN, InN): study of point defect and extended defect creation

    International Nuclear Information System (INIS)

    Sall, Mamour

    2013-01-01

    Nitride semiconductors III N (AlN, GaN, InN) have interesting properties for micro-and opto-electronic applications. In use, they may be subjected to different types of radiation in a wide range of energy. In AlN, initially considered insensitive to electronic excitations (Se), we have demonstrated a novel type of synergy between Se and nuclear collisions (Sn) for the creation of defects absorbing at 4.7 eV. In addition, another effect of Se is highlighted in AlN: climb of screw dislocations under the influence of Se, at high fluence. In GaN, two mechanisms can explain the creation of defects absorbing at 2.8 eV: a synergy between Se and Sn, or a creation only due to Sn but with a strong effect of the size of displacement cascades. The study, by TEM, of the effects of Se in the three materials, exhibits behaviors highly dependent on the material while they all belong to the same family with the same atomic structure. Under monoatomic ion irradiations (velocity between 0.4 and 5 MeV/u), while discontinuous tracks are observed in GaN and InN, no track is observed in AlN with the highest electronic stopping power (33 keV/nm). Only fullerene clusters produce tracks in AlN. The inelastic thermal spike model was used to calculate the energies required to produce track in AlN, GaN and InN, they are 4.2 eV/atom, 1.5 eV/atom and 0.8 eV/atom, respectively. This sensitivity difference according to Se, also occurs at high fluence. (author)

  5. Review of linear collider beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.

    1989-01-01

    Three major effects from the interaction of e/sup +/e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab.

  6. Survey < > Creation

    DEFF Research Database (Denmark)

    2017-01-01

    The project, Survey Creation suggests that point cloud models from 3D scans of an existing space can be the source for explorative drawings. By probing into the procedure of 3D laser scanning, it became possible to make use of the available point clouds to both access geometric representation......) and the creation drawing (of the anticipated)....

  7. Extending the magnetoelectric efficiency of an MFC/brass/NdFeB energy harvester by coupling a pair of movable magnets

    Science.gov (United States)

    Leung, Chung Ming; Wang, Ya

    2017-10-01

    In this letter, an MFC/brass/NdFeB tip magnet three-phase cantilever beam was coupled with a pair of movable magnets to harness energy from alternating magnetic fields. By coupling with a pair of moveable magnets, both bandwidth and magnetoelectric (ME) voltage coefficient (α\\text{V}) were largely increased by 25% and 87.5%, respectively, in comparison with the same harvester coupled with stationary magnets. Such improvements were attributed to magnetic energy introduced by the moving magnets. Experiments also revealed the boundary positions of external magnets (movable and stationary) where the repulsive magnetic forces jumped to the attractive ones, and the stiffness hardening switched to the softening process. These results provided a wide-band nonlinear approach to efficiently harvest/detect the low-frequency alternating magnetic field energies.

  8. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  9. Effect of single-particle splitting in the exact wave function of the isovectorial pairing Hamiltonian

    International Nuclear Information System (INIS)

    Lerma H, S.

    2010-01-01

    The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.

  10. Energy relaxation and separation of a hot electron-hole pair in organic aggregates from a time-dependent wavepacket diffusion method

    International Nuclear Information System (INIS)

    Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin

    2014-01-01

    The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation

  11. Top quark pair production in ATLAS

    CERN Document Server

    Moreno Llacer, M; The ATLAS collaboration

    2010-01-01

    Top-quark pairs are expected to be produced at the LHC, even at the lower beam energy and luminosity in the first years of running. Establishing the top-pair signal and measuring the production cross-section are important benchmarks for ATLAS, and will help understand the detector performance for events with high-pT leptons, high jet multiplicity, missing transverse energy. The prospects for early top physics measurements will be shown, with a particular emphasis on the progress achieved with data so far.

  12. Solar Thermal Technologies Dynamics and Strategies for Market Creation in Sindh

    Directory of Open Access Journals (Sweden)

    Asif Ali Shah

    2016-04-01

    Full Text Available In order to sketch Sindh's RE (Renewable Energy based scenario, it is vital to trace the dynamics of simplest RETs (Renewable Energy Technologies such as STTs (Solar Thermal Technologies. STTs are simple to operate, easy to maintain and requires low cost of fabrication. Due to these advantages, STTs possess scope for mass market creation in Sindh as can provide alternate energy solutions to meet daily fuel requirements of heating and cooking etc. The paper identifies that the low awareness creates a negative perception about the price and efficiency of these technologies in masses, which can be removed once the awareness increases. This paper consists of survey findings, which traces the trends for STTs utilization in Sindh by testing various hypotheses to identify the suitable tactics required for their market creation. Finally the key policy recommendations are provided at the end.

  13. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  14. Pair truncation for rotational nuclei: j=17/2 model

    International Nuclear Information System (INIS)

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1989-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j=17/2 shell of identical nucleons interacting through a quadrupole-quadrupole Hamiltonian. The ground band and a K=2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground-band levels, while G pairs are needed for those in the γ band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K=2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  15. An Application of the Direct Coulomb Electron Pair Production Process to the Energy Measurement of the "VH-Group" in the "Knee" Region of the "All-Particle" Energy Spectrum

    Science.gov (United States)

    Derrickson, J. H.; Wu, J.; Christl, M. J.; Fountain, W. F.; Parnell, T. A.

    1999-01-01

    The "all-particle" cosmic ray energy spectrum appears to be exhibiting a significant change in the spectral index just above approximately 3000 TeV. This could indicate (1) a change in the propagation of the cosmic rays in the galactic medium, and/or (2) the upper limit of the supernova shock wave acceleration mechanism, and/or (3) a new source of high-energy cosmic rays. Air shower and JACEE data indicate the spectral change is associated with a composition change to a heavier element mixture whereas DICE does not indicate this. A detector concept will be presented that utilizes the energy dependence of the production of direct Coulomb electron-positron pairs by energetic heavy ions. Monte Carlo simulations of a direct electron pair detector consisting of Pb target foils interleaved with planes of 1-mm square scintillating optical fibers will be discussed. The goal is to design a large area, non-saturating instrument to measure the energy spectrum of the individual cosmic ray elements in the "VH-group" for energies greater than 10 TeV/nucleon.

  16. Effects of field interactions upon particle creation in Robertson-Walker universes

    International Nuclear Information System (INIS)

    Birrell, N.D.; Davies, P.C.W.; Ford, L.H.

    1980-01-01

    Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length. (author)

  17. Path Creation

    DEFF Research Database (Denmark)

    Karnøe, Peter; Garud, Raghu

    2012-01-01

    This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts. Competenc......This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts....... Competencies emerged through processes and mechanisms such as co-creation that implicated multiple learning processes. The process was not an orderly linear one as emergent contingencies influenced the learning processes. An implication is that public policy to catalyse clusters cannot be based...

  18. Importance of interlayer pair tunneling: A variational perspective

    International Nuclear Information System (INIS)

    Medhi, Amal; Basu, Saurabh

    2011-01-01

    We study the effect of interlayer pair tunneling in a bilayer superconductor where each layer is described by a two dimensional t-J model and the two layers are connected by the Josephson pair tunneling term. We study this model using a grand canonical variational Monte Carlo (GVMC) method, for which we develop a new algorithm to perform Monte Carlo simulation of a system with fluctuating particle number. The variational wavefunction is taken to be the product of two Gutzwiller projected d-wave BCS wavefunctions with variable particle densities, one for each layer. We calculate the energy of the above state as a function of the d-wave superconducting gap parameter, Δ. We find that the interlayer pair tunneling energy, E perpendicular shows interesting variation with Δ. E perpendicular tends to enhance the optimal value of Δ, thereby the superconducting pairing. However the magnitude of the tunneling energy is found to be too small to have any appreciable effect on the physical properties. While the result is supported by early experiments and hence may appear known to the community, the current work presents a new approach to the problem and confirms the diminished role of interlayer pair tunneling by directly calculating its contribution to superconducting condensation energy.

  19. Creationism in Europe

    DEFF Research Database (Denmark)

    For decades, the creationist movement was primarily situated in the United States. Then, in the 1970s, American creationists found their ideas welcomed abroad, first in Australia and New Zealand, then in Korea, India, South Africa, Brazil, and elsewhere—including Europe, where creationism plays...... the teaching of creationism as a scientific discipline on an equal footing with the theory of evolution." Creationism in Europe offers a discerning introduction to the cultural history of modern Europe, the variety of worldviews in Europe, and the interplay of science and religion in a global context...

  20. Elastic atomic displacements and color center creation in LiF crystals irradiated with 3-, 9- and 12-MeV Au ions

    International Nuclear Information System (INIS)

    Sorokin, M.V.; Papaleo, R.M.; Schwartz, K.

    2009-01-01

    Creation of color centers in LiF under irradiation with 3-12-MeV Au ions was studied. Comparison of experimental data of color center creation with computer simulation of the energy deposition and elastic atomic displacements reveals the role of elastic collisions in defect creation by these ions, which have comparable magnitudes of electronic and elastic stopping. The experimentally measured efficiency of color center creation and that predicted by the simulation of elastic displacements have a similar dependence on the projectile energy. Thus, the color center creation is mainly associated with the elastic collisions, despite the relatively large values of the electronic stopping power for these ions. (orig.)

  1. Determination of the pairing-strength constants in the isovector plus isoscalar pairing case

    Science.gov (United States)

    Mokhtari, D.; Fellah, M.; Allal, N. H.

    2016-05-01

    A method for the determination of the pairing-strength constants, in the neutron-proton (n-p) isovector plus isoscalar pairing case, is proposed in the framework of the BCS theory. It is based on the fitting of these constants to reproduce the experimentally known pairing gap parameters as well as the root-mean-squared (r.m.s) charge radii values. The method is applied to some proton-rich even-even nuclei. The single-particle energies used are those of a deformed Woods-Saxon mean field. It is shown that the obtained value of the ratio GnpT=0/G npT=1 is of the same order as the ones, arbitrary chosen, of some previous works. The effect of the inclusion of the isoscalar n-p pairing in the r.m.s matter radii is then numerically studied for the same nuclei.

  2. Hybrid TLC-pair meter for the Sphinx Project

    Science.gov (United States)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  3. Hybrid TLC-pair meter for the Sphinx Project

    International Nuclear Information System (INIS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in the Sphinx Project are research on super lepton physics and new detector experiments. In the second phase of the Sphinx Project, a hybrid TLC-pair meter was designed for measuring for high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV), and measuring muon groups (E mu 1 TeV). The principle of the pair meter has been already proposed. In this TLC pair meter, electromagnetic showers induced by cosmic ray muons are detected using thermoluminescene sheets with position counters

  4. How to measure the cooper pair mass using plasmons in low-dimensional superconductor structures

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    The creation of the Cooper pair mass-spectroscopy is suggested. The plasmons in low-dimensional superconductor structures (layers or wires in dielectric background) are theoretically considered to that purpose. The Cooper pair mass m * can be determined by measurements of the Doppler shift of the plasmon frequency when a direct current is applied through the superconductor. The plasmons with frequency ω lower than the superconducting gap 2 Δ can be detected by the same fare-infrared (FIR) absorption technique and grating couplings used previously for investigation of two-dimension (2D) plasmons in semiconductor microstructures. (author). 17 refs, 2 figs

  5. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.

    Science.gov (United States)

    Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro

    2005-07-06

    To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.

  6. Energy gap in S- and D-wave pairing superconductors

    International Nuclear Information System (INIS)

    Dolgov, O.V.; Golubov, A.A.

    1988-01-01

    In this paper the ratio of 2Δ g /T c , where Δ g is the gap edge, T c is the critical temperature, is calculated in the framework of the model of strong electron-phonon coupling. Both isotropic and anisotropic pairing cases are considered. It is shown that the isotropic Eliashberg model can not account for the large values of the ratio 2Δ g /T c for the reasonable values of the electron-phonon coupling parameter λ while anisotropic pairing can resolve this problem

  7. Self-energies of octet and decuplet baryons due to the coupling to the baryon-meson continuum

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Tecocoatzi, H. [INFN, Sezione di Genova, Genova (Italy); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Bijker, R. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Ferretti, J. [Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Dipartimento di Fisica, Universita di Roma Sapienza, Roma (Italy); INFN, Roma (Italy); Santopinto, E. [INFN, Sezione di Genova, Genova (Italy)

    2017-06-15

    We present an unquenched quark model calculation of the mass shifts of ground-state octet and decuplet baryons due to the coupling to the meson-baryon continuum. All ground-state baryons and pseudoscalar mesons are included in our calculation as intermediate states. The q anti q pair creation effects are taken explicitly into account through a microscopic, QCD-inspired, quark-antiquark pair creation mechanism. (orig.)

  8. Method of the nanosecond microstructure creation of the negative ion beam

    International Nuclear Information System (INIS)

    Novikov-Borodin, A.V.

    2001-01-01

    The method of the nanosecond microstructure creation of the negative ion beam with nanosecond edge times is presented. The method of creation does not destroy the beam compensation by the residual gas,so it available for low-energy beams. Such effects as a beam divergence and,therefore,a bad beam transport are overcome. The two plate travelling wave chopper is used.The special shape of the plate deflecting voltage is needed. The estimations and a comparison with the existing methods of a beam deflection are presented

  9. Jet pairing algorithm for the 6-jet Higgs channel via energy chi-square criterion

    International Nuclear Information System (INIS)

    Magallanes, J.B.; Arogancia, D.C.; Gooc, H.C.; Vicente, I.C.M.; Bacala, A.M.; Miyamoto, A.; Fujii, K.

    2002-01-01

    Study and discovery of the Higgs bosons at JLC (Joint Linear Collider) is one of the tasks of ACFA (Asian Committee for future Accelerators)-JLC Group. The mode of Higgs production at JLC is e + e - → Z 0 H 0 . In this paper, studies are concentrated on the Higgsstrahlung process and the selection of its signals by getting the right jet-pairing algorithm of 6-jet final state at 300 GeV assuming that Higgs boson mass is 120 GeV and luminosity is 500 fb -1 . The total decay width Γ (H 0 → all) and the efficiency of the signals at the JLC are studied utilizing the 6-jet channel. Out of the 91,500 Higgsstrahlung events, 4,174 6-jet events are selected. PYTHIA Monte Carlo Generator generates the 6-jet Higgsstrahlung channel according to the Standard Model. The generated events are then simulated by Quick Simulator using the JCL parameters. After tagging all 6 quarks which correspond to the 6-jet final state of the Higgsstrahlung, the mean energy of the Z, H, and W's are obtained. Having calculated these information, the event energy chi-square is defined and it is found that the correct combination have generally smaller value. This criterion can be used to find correct jet-pairing algorithm and as one of the cuts for the background signals later on. Other chi-definitions are also proposed. (S. Funahashi)

  10. Creation of targeted inversion mutations in plants using an RNA-guided endonuclease

    Institute of Scientific and Technical Information of China (English)

    Congsheng Zhang; Changlin Liu; Jianfeng Weng; Beijiu Cheng; Fang Liu; Xinhai Li; Chuanxiao Xie

    2017-01-01

    Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutations via delivery of a pair of RNA-guided endonucleases (RGENs) of CRISPR/Cas9. The efficiencies of the targeted inversions were 2.6%and 2.2%in the Arabidopsis FLOWERING TIME (AtFT) and TERMINAL FLOWER 1 (AtTFL1) loci, respectively. Thus, we successfully established an approach that can potentially be used to introduce targeted DNA inversions of interest for functional studies and crop improvement.

  11. Value Creation in Digital Service Platforms

    DEFF Research Database (Denmark)

    Ghazawneh, Ahmad; Mansour, Osama

    2017-01-01

    Value creation is increasingly relevant for owners of digital service platforms (DSPs). These owners have two vital goals: increase their service base and sustain their service offerers. A key element in continuously accommodating these goals is value creation. While the literature on DSPs is gro...... of service offerers. As such, our study proposes and contributes a value creation framework for DSPs that identifies 8 value sources and highlights resource combination and exchange in the process of value creation.......Value creation is increasingly relevant for owners of digital service platforms (DSPs). These owners have two vital goals: increase their service base and sustain their service offerers. A key element in continuously accommodating these goals is value creation. While the literature on DSPs...... is growing, there is a paucity of knowledge on the value creation process in these platforms. Drawing on a qualitative study of Uber drivers in Denmark and Sweden, we synthesize Schumpeter’s theory of value creation to develop an understanding of the value creation process in DSPs from the perspective...

  12. Pair production by a deep potential well

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1987-01-01

    Solutions are obtained for the Dirac and Klein-Gordon equations with a one-dimensional symmetric potential well, having a flat bottom and arbitrary depth, width and field strengths at the walls. Quasi-stationary solutions describing a pair production by the well and the inverse process are obtained. It is shown that if the pair production probability is small, it is expressed in terms of the pair production probability on one wall and the particle oscillation frequency in the well. If the well has a supercritical depth, the lower continuum contains positron resonance scattering states at energies close to the real part of the quasi-stationary level energy (Zeldovich's effect). The qualitative dependence of the positron penetration coefficient through the wall on its energy and the well depth is an evidence that the solution of the so called one-particle Dirac equation describes in fact a many-particle system with a charge of 0 or 1

  13. The Future of Co-Creation

    DEFF Research Database (Denmark)

    Seppa, Marko; Tanev, Stoyan

    2011-01-01

    The objective of this article is to provide a brief summary of the key directions in value co-creation research that have emerged in the last 10 years. It points to several emerging streams in value co-creation research including: i) general management perspective; ii) new product development...... on business co-creation. The development of business co-creation frameworks integrating the participatory role of both universities and vibrantly emerging business ecosystems represents a valuable alternative to traditional technology transfer and business administration approaches....

  14. Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Ramandeep; Thompson, Christopher, E-mail: rgill@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-01

    We consider delayed, volumetric heating in a magnetized outflow that has broken out of a confining medium and expanded to a high Lorentz factor (Γ ∼ 10{sup 2}-10{sup 3}) and low optical depth to scattering (τ {sub T} ∼ 10{sup –3}-10{sup –2}). The energy flux at breakout is dominated by the magnetic field, with a modest contribution from quasi-thermal gamma rays whose spectrum was calculated in Paper I. We focus on the case of extreme baryon depletion in the magnetized material, but allow for a separate baryonic component that is entrained from a confining medium. Dissipation is driven by relativistic motion between these two components, which develops once the photon compactness drops below 4 × 10{sup 3}(Y{sub e} /0.5){sup –1}. We first calculate the acceleration of the magnetized component following breakout, showing that embedded MHD turbulence provides significant inertia, the neglect of which leads to unrealistically high estimates of flow Lorentz factor. After reheating begins, the pair and photon distributions are evolved self-consistently using a one-zone kinetic code that incorporates an exact treatment of Compton scattering, pair production and annihilation, and Coulomb scattering. Heating leads to a surge in pair creation, and the scattering depth saturates at τ {sub T} ∼ 1-4. The plasma maintains a very low ratio of particle to magnetic pressure, and can support strong anisotropy in the charged particle distribution, with cooling dominated by Compton scattering. High-energy power-law spectra with photon indices in the range observed in gamma-ray bursts (GRBs; –3 < β < –3/2) are obtained by varying the ratio of heat input to the seed energy in quasi-thermal photons. We contrast our results with those for continuous heating across an expanding photosphere, and show that the latter model produces soft-to-hard evolution that is inconsistent with observations of GRBs.

  15. 'Ethos' Enabling Organisational Knowledge Creation

    Science.gov (United States)

    Matsudaira, Yoshito

    This paper examines knowledge creation in relation to improvements on the production line in the manufacturing department of Nissan Motor Company and aims to clarify embodied knowledge observed in the actions of organisational members who enable knowledge creation will be clarified. For that purpose, this study adopts an approach that adds a first, second, and third-person's viewpoint to the theory of knowledge creation. Embodied knowledge, observed in the actions of organisational members who enable knowledge creation, is the continued practice of 'ethos' (in Greek) founded in Nissan Production Way as an ethical basis. Ethos is knowledge (intangible) assets for knowledge creating companies. Substantiated analysis classifies ethos into three categories: the individual, team and organisation. This indicates the precise actions of the organisational members in each category during the knowledge creation process. This research will be successful in its role of showing the indispensability of ethos - the new concept of knowledge assets, which enables knowledge creation -for future knowledge-based management in the knowledge society.

  16. Flash Foods' Job Creation and Petroleum Independence with E85

    Energy Technology Data Exchange (ETDEWEB)

    Walk, Steve [Protec Fuel Management LLC, Boca Raton, FL (United States)

    2016-11-21

    Protec Fuel Management project objectives are to help design, build, provide, promote and supply biofuels for the greater energy independence, national security and domestic economic growth through job creations, infrastructure projects and supply chain business stimulants.

  17. Value Creation in International Business

    DEFF Research Database (Denmark)

    The edited collection brings into focus the meanings, interpretations and the process of value creation in international business. Exploring value creation in the context of emerging and developed economies, Volume 2 takes the perspective of small and medium sized enterprises and examines various...... approaches to value creation in the process of firm internationalization. Providing theoretical and practical insights, the authors open an intellectual debate into what value is, and how it is created through the internationalization activities of firms. Value Creation in International Business...... is a pioneering two volume work intended to provoke theoretical and empirical development in International Business research. Moreover, it is intended as a bridge between concepts derived from general business firm-level research agendas such as value creation and business model, and internationalization...

  18. Pair distribution functions of carbonaceous solids, determined using energy filtered diffraction

    International Nuclear Information System (INIS)

    Petersen, T.C.; McCulloch, D.G.

    2002-01-01

    Full text: The structures of various carbonaceous solids were investigated using energy filtered diffraction patterns collected in two dimensions using a Gatan Imaging Filter (GIF). In order to reduce multiple scattering and eliminate inelastic scattering effects, the diffraction patterns were filtered using an energy -selecting slit around the zero-loss peak. Software has been developed for the extraction of radially averaged pair distributions functions from the diffraction data. This entails finding the position of the un-scattered beam, radially averaging the two dimensional intensity distributions, calibrating the resulting one dimensional intensity profiles and finally normalising the data to obtain structure factors. Techniques for improving and assessing data quality, pertaining to the methodology used here, have also been explored. Structure factors and radial distribution functions generated using this analysis will be discussed and, for the commercial V25 glassy carbon samples, compared to previous, work of one of the authors'. In order to answer questions regarding multiple scattering effects and structural homogeneity of the samples, neutron scattering was performed on the Medium Resolution Powder Diffractometer (MRPD), at the Australian Nuclear Science and Technology's (ANSTO) facility. A critical comparison of the neutron scattering and electron diffraction generated structure factors will be presented. Copyright (2002) Australian Society for Electron Microscopy Inc

  19. Energy Landscape and Pathways for Transitions between Watson-Crick and Hoogsteen Base Pairing in DNA.

    Science.gov (United States)

    Chakraborty, Debayan; Wales, David J

    2018-01-04

    The recent discovery that Hoogsteen (HG) base pairs are widespread in DNA across diverse sequences and positional contexts could have important implications for understanding DNA replication and DNA-protein recognition. While evidence is emerging that the Hoogsteen conformation could be a thermodynamically accessible conformation of the DNA duplex and provide a means to expand its functionality, relatively little is known about the molecular mechanism underlying the Watson-Crick (WC) to HG transition. In this Perspective, we describe pathways and kinetics for this transition at an atomic level of detail, using the energy landscape perspective. We show that competition between the duplex conformations results in a double funnel landscape, which explains some recent experimental observations. The interconversion pathways feature a number of intermediates, with a variable number of WC and HG base pairs. The relatively slow kinetics, with possible deviations from two-state behavior, suggest that this conformational switch is likely to be a challenging target for both simulation and experiment.

  20. Massive lepton pairs as a prompt photon surrogate

    International Nuclear Information System (INIS)

    Berger L, Edmond; Gordon E, Lionel; Klasen, Michael

    1998-01-01

    The authors discuss the transverse momentum distribution for the production of massive lepton-pairs in hadron reactions at fixed target and collider energies within the context of next-to-leading order perturbative quantum chromodynamics. For values of the transverse momentum Q T greater than the pair mass Q, Q T > Q, they show that the differential cross section is dominated by subprocesses initiated by incident gluons. Massive lepton-pair differential cross sections are an advantageous source of constraints on the gluon density, free from the experimental and theoretical complications of photon isolation that beset studies of prompt photon production. They compare calculations with data and provide predictions for the differential cross section as a function of Q T in proton-antiproton reactions at center-of-mass energies of 1.8 TeV, and in proton-nucleon reactions at fixed target and LHC energies

  1. Na Cl ion pair association in water-DMSO mixtures: Effect of ion pair ...

    Indian Academy of Sciences (India)

    The 12-6-1 potential model predicts running coordination numbers closest to experimental data. Keywords. ... value of interaction energy minimum between the Na. + and Cl. − ..... ion pair mostly remains as a CIP, a fair amount of SAIP is also ...

  2. High energy collisions with pair (e-+e+) production

    International Nuclear Information System (INIS)

    Deco, G.R.; Rivarola, R.D.

    1988-01-01

    In this work, it is investigated the mechanism of pair production (e - +e + ). It is studied the competition between the beam capture reactions compared to mechanical and radiative capture of an electron initially orbiting in the target. (A.C.A.S.) [pt

  3. Rewritable ferroelectric vortex pairs in BiFeO3

    Science.gov (United States)

    Li, Yang; Jin, Yaming; Lu, Xiaomei; Yang, Jan-Chi; Chu, Ying-Hao; Huang, Fengzhen; Zhu, Jinsong; Cheong, Sang-Wook

    2017-08-01

    Ferroelectric vortex in multiferroic materials has been considered as a promising alternative to current memory cells for the merit of high storage density. However, the formation of regular natural ferroelectric vortex is difficult, restricting the achievement of vortex memory device. Here, we demonstrated the creation of ferroelectric vortex-antivortex pairs in BiFeO3 thin films by using local electric field. The evolution of the polar vortex structure is studied by piezoresponse force microscopy at nanoscale. The results reveal that the patterns and stability of vortex structures are sensitive to the poling position. Consecutive writing and erasing processes cause no influence on the original domain configuration. The Z4 proper coloring vortex-antivortex network is then analyzed by graph theory, which verifies the rationality of artificial vortex-antivortex pairs. This study paves a foundation for artificial regulation of vortex, which provides a possible pathway for the design and realization of non-volatile vortex memory devices and logical devices.

  4. Continuous creation of matter and Tolman's modification of Einstein field equations

    International Nuclear Information System (INIS)

    Turkowski, P.

    1985-01-01

    A modification of Einstein field equations which permits processes of creation or destruction of energy, suggested by Richard C. Tolman, is presented. Brief comment is given and the cosmological consequences of the hypothesis are examined. 8 refs. (author)

  5. Seniority zero pair coupled cluster doubles theory

    International Nuclear Information System (INIS)

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-01-01

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems

  6. A Novel Clustering Model Based on Set Pair Analysis for the Energy Consumption Forecast in China

    Directory of Open Access Journals (Sweden)

    Mingwu Wang

    2014-01-01

    Full Text Available The energy consumption forecast is important for the decision-making of national economic and energy policies. But it is a complex and uncertainty system problem affected by the outer environment and various uncertainty factors. Herein, a novel clustering model based on set pair analysis (SPA was introduced to analyze and predict energy consumption. The annual dynamic relative indicator (DRI of historical energy consumption was adopted to conduct a cluster analysis with Fisher’s optimal partition method. Combined with indicator weights, group centroids of DRIs for influence factors were transferred into aggregating connection numbers in order to interpret uncertainty by identity-discrepancy-contrary (IDC analysis. Moreover, a forecasting model based on similarity to group centroid was discussed to forecast energy consumption of a certain year on the basis of measured values of influence factors. Finally, a case study predicting China’s future energy consumption as well as comparison with the grey method was conducted to confirm the reliability and validity of the model. The results indicate that the method presented here is more feasible and easier to use and can interpret certainty and uncertainty of development speed of energy consumption and influence factors as a whole.

  7. Creation-field cosmology: A possible solution to singularity, horizon, and flatness problems

    International Nuclear Information System (INIS)

    Narlikar, J.V.; Padmanabhan, T.

    1985-01-01

    A solution of Einstein's equations which admits radiation and a negative-energy massless scalar creation field as a source is presented. It is shown that the cosmological model based on this solution satisfies all the observational tests and thus is a viable alternative to the standard big-bang model. The present model is free from singularity and particle horizon and provides a natural explanation for the flatness problem. We argue that these features make the creation-field cosmological model theoretically superior to the big-bang model

  8. Space-time picture of relativistic propagation of medium energy hadrons through nuclei

    International Nuclear Information System (INIS)

    Bleszynski, M.; Jaroszewicz, T.

    1985-01-01

    Relativistic virtual pair creation effects in hadron-nucleus scattering at medium energies are discussed. A close analogy is found between these effects (particle propagation backwards in time) and some of noneikonal correlations to the Glauber theory, arising from particle propagation backwards in space. In multiple scattering both effects appear only for configurations involving overlapping scatterers and lead to the non-additivity of phase shifts. The proper-time path-integral formalism is found to provide an intuitive geometrical picture of these phenomena. The relativistic corrections are estimated to be of the order k/(aE/sup 2/), k being the particle momentum, E its energy, and a the target size. At medium energies they are comparable to noneikonal corrections, of order 1/(ak). Both effects vanish at high energy, when particle propagation in space-time can be described by means of geometrical optics

  9. The Co-creation Continuum

    DEFF Research Database (Denmark)

    Ind, Nicholas; Iglesias, Oriol; Markovic, Stefan

    2017-01-01

    -creation - from tactical market research tool to strategic collaborative innovation method, and shows that brands can be positioned along a continuum between these two polarities. This article also presents the implications for those that want to seize the potential of co-creation....

  10. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  11. Calculation of the decay rate of tachyonic neutrinos against charged-lepton-pair and neutrino-pair Cerenkov radiation

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István; Ehrlich, Robert

    2017-10-01

    We consider in detail the calculation of the decay rate of high-energy superluminal neutrinos against (charged) lepton pair Cerenkov radiation, and neutrino pair Cerenkov radiation, i.e., against the decay channels ν \\to ν {e}+ {e}- and ν \\to ν \\overline{ν } ν . Under the hypothesis of a tachyonic nature of neutrinos, these decay channels put constraints on the lifetime of high-energy neutrinos for terrestrial experiments as well as on cosmic scales. For the oncoming neutrino, we use the Lorentz-covariant tachyonic relation {E}ν =\\sqrt{{p}2-{m}ν 2}, where m ν is the tachyonic mass parameter. We derive both threshold conditions as well as on decay and energy loss rates, using the plane-wave fundamental bispinor solutions of the tachyonic Dirac equation. Various intricacies of rest frame versus lab frame calculations are highlighted. The results are compared to the observations of high-energy IceCube neutrinos of cosmological origin.

  12. Pair production in small angle Bhabha scattering

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Kuraev, Eh.A.; Merenkov, N.P.; Trentadue, L.

    1995-01-01

    The radiative corrections due to a pair production in the small angle high energy e + e - Bhabha scattering are considered. The corrections due to the production of virtual pairs as well as real soft and hard ones are calculated analytically. The collinear and semi-collinear kinematical regions of the hard pair production are taken into account. The results in the leading and next-to-leading logarithmic approximations provide the accuracy of Ο (0.1%). The results of numerical calculations show that the effects of pairs production are to be taken into account in the precise luminosity determination at LEP. 9 refs., 3 figs., 2 tabs

  13. Technical Knowledge Creation: Enabling Tacit Knowledge Use

    DEFF Research Database (Denmark)

    Søberg, Peder Veng; Chaudhuri, Atanu

    2018-01-01

    The paper investigates knowledge creation in nascent technical industries, a somewhat neglected empirical setting concerning knowledge creation. Frameworks on organizational learning and knowledge creation assume that knowledge creation depends on language creation and neglect the benefits involved...... by allowing elements of new product and process ideas to mature in a tacit form, whereas cognitive neuroscience data suggests that technical knowledge creation is largely nonlinguistic. The four case studies point to excessive reliance on group discussion, a need for more trial and error and that field tests...... and prototypes generate new learnings that save time and lowers subsequent risks. Technical knowledge creation in nascent high tech industries requires opportunities to work with and further develop knowledge in its tacit form. The paper refines frameworks on organizational learning and knowledge creation...

  14. Pair shell model description of collective motions

    International Nuclear Information System (INIS)

    Chen Hsitseng; Feng Dahsuan

    1996-01-01

    The shell model in the pair basis has been reviewed with a case study of four particles in a spherical single-j shell. By analyzing the wave functions according to their pair components, the novel concept of the optimum pairs was developed which led to the proposal of a generalized pair mean-field method to solve the many-body problem. The salient feature of the method is its ability to handle within the framework of the spherical shell model a rotational system where the usual strong configuration mixing complexity is so simplified that it is now possible to obtain analytically the band head energies and the moments of inertia. We have also examined the effects of pair truncation on rotation and found the slow convergence of adding higher spin pairs. Finally, we found that when the SDI and Q .Q interactions are of equal strengths, the optimum pair approximation is still valid. (orig.)

  15. Job Creation and Job Types

    DEFF Research Database (Denmark)

    Kuhn, Johan M.; Malchow-Møller, Nikolaj; Sørensen, Anders

    We extend earlier analyses of the job creation of start-ups vs. established firms by taking into consideration the educational content of the jobs created and destroyed. We define educationspecific measures of job creation and job destruction at the firm level, and we use these to construct...... a measure of “surplus job creation” defined as jobs created on top of any simultaneous destruction of similar jobs in incumbent firms in the same region and industry. Using Danish employer-employee data from 2002-7, which identify the start-ups and which cover almost the entire private sector......, these measures allow us to provide a more nuanced assessment of the role of entrepreneurial firms in the job-creation process than previous studies. Our findings show that while start-ups are responsible for the entire overall net job creation, incumbents account for more than a third of net job creation within...

  16. Drell-Yan lepton pair production at high energies in the k{sub T}-factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, A.V.; Malyshev, M.A.; Zotov, N.P. [M.V. Lomonosov Moscow State Univ. (Russian Federation). D.V. Skobeltsyn Inst. of Nuclear Physics

    2011-11-15

    In the framework of the k{sub T}-factorization approach, the production of unpolarized Drell-Yan lepton pair at high energies is studied. The consideration is based on the O({alpha}) and O({alpha}{alpha}{sub s}) off-shell partonic matrix elements with virtual photon {gamma}{sup *} and Z boson exchange. The calculations include leptonic decays of Z bosons with full spin correlations as well as {gamma}{sup *}-Z interference. The unintegrated parton densities in a proton are determined by the Kimber-Martin-Ryskin prescription. Our numerical predictions are compared with the data taken by the D diameter, CDF and CMS collaborations at the Tevatron and LHC energies. Special attention is put on the specific angular distributions measured very recently by the CDF collaboration for the first time. (orig.)

  17. Pair production by a superhard photon in a crystal

    International Nuclear Information System (INIS)

    Kalashnikov, N.P.; Kovalev, G.V.; Strikhanov, M.N.

    1980-01-01

    Electron-positron pair production by a hard photon moving almost parallelly to the crystallographic axis or monocrystal plane is considered. Calculation is conducted of the production differential by the energies of pair components and total cross section of pair production in the case when primary photon moved at a small angle THETA 0 m 2 /U [ru

  18. Transfer of energy between a pair of molecules near a plasmonic core-shell nanoparticle: Tunability and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Daneshfar, Nader, E-mail: ndaneshfar@gmail.com, E-mail: ndaneshfar@razi.ac.ir; Yavari, Asghar [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-05-15

    Our model is applied to the calculation of interaction energy between a pair of dipolar molecules (point dipoles) in the vicinity of a nanoshell monomer with core-shell structure, based on the dipole quasi-electrostatic theory of classical electrodynamics and using the Drude and Maxwell-Garnett model. In other words, this work discusses the intermolecular energy transfer from a donor molecule to an acceptor molecule near a spherical nanoparticle that is important for practical applications like sensing. It is shown that the proximity of plasmonic nanoparticles can have a strong effect on the energy transfer between molecules. In addition to the influence of the size, composition, embedding medium, and the filling fraction of doped particles on the interaction energy, the contribution of the dipolar, quadrupolar, octupolar, hexadecapolar, triakontadipolar, and higher order multipole interactions is presented and analyzed. Briefly, we will show that it is possible to achieve enhanced energy transfer by manipulation of different parameters as mentioned above.

  19. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates.

    Science.gov (United States)

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-03

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  20. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates

    Science.gov (United States)

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  1. Theoretical confirmation of Feynman's hypothesis on the creation of circular vortices in Bose-Einstein condensates: II

    Energy Technology Data Exchange (ETDEWEB)

    Senatorski, A; Infeld, E [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2004-09-15

    In a recent paper (Infeld and Senatorski 2003 J. Phys.: Condens. Matter 15 5865) we confirmed Feynman's hypothesis on how circular vortices can be created from an oppositely polarized linear pair in a Bose-Einstein condensate. This was done by perturbing the original pair numerically, so that a circular vortex (or array of identical circular vortices) was created as a result of reconnection. These circular vortices were then checked against known theoretical relations binding velocities and radii. Agreement to a high degree of accuracy was found. Here in part II, we give examples of the creation of several different vortices from one linear pair. All are checked as above. We also confirm the limit of separation of the line vortices below which mutual attraction, followed by annihilation, prevents the Feynman metamorphosis. Other possible modes of behaviour are illustrated.

  2. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  3. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems

    DEFF Research Database (Denmark)

    Börjesson, Karl; Preus, Søren; El-Sagheer, Afaf

    2009-01-01

    We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tCO, 1,3-diaza-2-oxophenoxazine, as an energy donor and the newly developed tC(nitro), 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors d...

  4. Pair production at GeV/u energies

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1985-01-01

    Electron and positron production in relativistic ion-atom collisions is discussed within the context of the time-dependent Dirac-Hartree approximation to a fully relativistic field theory of the collision. The time-dependent fields are treated classically, and the numerical methods employing basis splines are discussed in detail and contrasted with results obtained from the case of non-relativistic velocities. The results of a one-dimensional model are presented and show a moderately large probability for pair production followed by electron capture

  5. MEGA - A next generation mission in Medium Energy Gamma-Ray Astronomy

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2001-01-01

    A Medium Energy Gamma-Ray Astronomy (MEGA) detector is being developed and proposed for a small satellite mission. MEGA intends to improve the sensitivity at medium γ-ray energies (0.4-50 MeV) by at least an order of magnitude with respect to past instruments. Its large field of view will be especially important for the discovery of transient sources and for conducting all-sky surveys. Key science objectives for MEGA are the investigation of cosmic high-energy accelerators and of nucleosynthesis sites with γ-ray lines. The large-scale structure of the galactic and cosmic diffuse background is another important goal for this mission. MEGA records and images γ-ray events by completely tracking Compton and pair creation interactions in a stack of double sided Si-strip track detectors and 3-D resolving CsI calorimeters

  6. Role of pn-pairs in nuclear structure

    International Nuclear Information System (INIS)

    Nie, G.K.

    2003-01-01

    An α-cluster model of nuclear structure based on power of proton + neutron (pn)-pairs to bind themselves to α-clusters is proposed. The α-cluster is taken as the perfect condition of coupling of 2 pn- pairs, reminding complete electron shell in atomic physics. Pn-pairs create 2 other types of coupling of considerably less power between pn-pairs of nearby α-clusters ε α c and between pn-pair not bound into α-cluster with pn-pairs of nearby cluster ε pn c . Last two types of coupling are called covalent because of reminding similar electron coupling in chemistry. According the model nucleus is a liquid drop consisting of molecules, which are α-clusters, tied by covalent coupling with those ones which are in close vicinity. Then in case of even-even nuclei spin of the nucleus has to be zero I=0 + as sum of spinless particles. In case of nucleus has some nucleons (i) in intermolecular space, I=Σj i ; with taking into account that there is coupling of p and n in pn-pair. Therefore for 6 Li (1=0)I=2·1/2=1 + . The values ε α c , ε pn c and binding energy of the pn-pair itself ε pn have been estimated from analysis of binding energy of nuclei 6 Li, 10 B and 12 C. With the values the binding energy of the other nuclei with N=Z up to 58 Cu have been described with difference between experimental values and model ones in average less than 0.4 MeV. The structure reveals some regular forms, in which every cluster has reduced amount of covalent coupling, 3 or 4, and free pn-pair has 6 covalent coupling with 3 nearby clusters pn-pairs. Then the magic numbers are supposed to be the matter of geometry, when total amount of covalent couplings is optimal (minimal for the amount of clusters), α- clusters are placed in the same fixed distant from center of mass. It means that protons of the clusters can be considered as belonging to one shell. In the cluster model single particle effects have to be considered as single particle binding in one of the surface

  7. Creationism in Europe

    DEFF Research Database (Denmark)

    Blancke, Stefaan; Hjermitslev, Hans Henrik; Braeckman, Johan

    2013-01-01

    which material is missing from the literature (the “gaps”) and signal which gaps we think should first be filled. Third, on the basis of a forthcoming international historical study, we outline the possible factors that affect the popularity of creationism in Europe (the “prospects”). We also sketch how...... a sustained study of European creationism can contribute to other research domains such as the study of cultural evolution and the relation between science and religion....

  8. Peripheral processes 2 → 3 and 2 → 4 in QED and QCD in p-p-bar high-energy collisions

    International Nuclear Information System (INIS)

    Ahmadov, A. I.; Bystritskiy, Yu. M.; Kuraev, E. A.

    2011-01-01

    Differential cross sections of processes with high-energy p(-p)p collisions—creation of a scalar, a pseudoscalar and a lepton pair—are considered in the Weizsacker-Williams approximation in QED in the QCD framework, processes with conversion of the initial proton (antiproton) to fermionic jets accompanied with one gluon jet and the state of two gluons and a quark-antiquark pair (without a rapidity gap) are considered in the framework of the effective Regge action of Lipatov’s theory. The process of creation of a Higgs boson accompanied with two fermionic jets is considered. The azimuthal correlation in the process of two gluon jets separated by a rapidity gap is investigated. The gluon Reggeization effects are taken into account. Some distributions are illustrated by numerical calculations.

  9. Deformed nuclear state as a quasiparticle-pair

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Skalski, J.

    1988-01-01

    The deformed nuclear states, obtained in terms of the Hartree-Fock plus BCS method with the Skyrme SIII interaction, are approximated by condensates of the low-angular-momentum quasiparticle and particle pairs. The optimal pairs are determined by the variation after truncation method. The influence of the truncation on the deformation energy and the importance of the core-polarization effects are investigated

  10. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Directory of Open Access Journals (Sweden)

    Aleksandra Delplanque

    Full Text Available Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio probes in Förster Resonance Energy Transfer (FRET where trivalent lanthanide ions (La3+ act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5 modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+ and the acceptor (Cy5 with sensitivity at a nanometre scale.

  11. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Science.gov (United States)

    Delplanque, Aleksandra; Wawrzynczyk, Dominika; Jaworski, Pawel; Matczyszyn, Katarzyna; Pawlik, Krzysztof; Buckle, Malcolm; Nyk, Marcin; Nogues, Claude; Samoc, Marek

    2015-01-01

    Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.

  12. Pair production at GeV/u energies

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1985-01-01

    Electron and positron production in relativistic ion-atom collisions is discussed within the context of the time-dependent Dirac-Hartree approximation to a fully relativistic field theory of the collision. The time-dependent fields are treated classically, and the numerical methods employing basis splines are discussed in detail and contrasted with results obtained from the case of non-relativistic velocities. The results of a one-dimensional model are presented and show a moderately large probability for pair production followed by electron capture. 8 refs., 16 figs

  13. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  14. A pair spectrometer for measuring multipolarities of energetic nuclear transitions

    CERN Document Server

    Gulyás, J.; Krasznahorkay, A.J.; Csatlós, M.; Csige, L.; Gácsi, Z.; Hunyadi, M.; Krasznahorkay, A.; Vitéz, A.; Tornyi, T.G.

    2016-02-01

    A multi-detector array has been designed and constructed for the simultaneous measurement of energy- and angular correlations of electron-positron pairs. Experimental results are obtained over a wide angular range for high-energy transitions in 16O, 12C and 8Be. A comparison with GEANT simulations demonstrates that angular correlations between 50 and 180 degrees of the electron-positron pairs in the energy range between 6 and 18 MeV can be determined with sufficient resolution and efficiency.

  15. Positron creation in heavy ion collisions: The influence of the magnetic field

    International Nuclear Information System (INIS)

    Soff, G.; Reinhardt, J.

    1988-03-01

    We calculate the creation of positrons in heavy-ion collisions including the influence of the magnetic dipole field produced by the moving nuclei. Contrary to a recent claim we find no narrow structures in the positron energy spectrum. (orig.)

  16. Creationism in Europe

    DEFF Research Database (Denmark)

    For decades, the creationist movement was primarily situated in the United States. Then, in the 1970s, American creationists found their ideas welcomed abroad, first in Australia and New Zealand, then in Korea, India, South Africa, Brazil, and elsewhere—including Europe, where creationism plays....... It will be of interest to students and scholars in the history and philosophy of science, religious studies, and evolutionary theory, as well as policy makers and educators concerned about the spread of creationism in our time....

  17. Pair Formation of Hard Core Bosons in Flat Band Systems

    Science.gov (United States)

    Mielke, Andreas

    2018-05-01

    Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.

  18. An ab initio study on four low-lying electronic potential energy curves for atomic cesium and rare gas pairs

    International Nuclear Information System (INIS)

    Kobayashi, Takanori; Yuki, Kenta; Matsuoka, Leo

    2016-01-01

    Using multireference configuration interaction (MRCI) calculations with single and double excitation levels, Davidson correction, and a spin-orbit (SO) effective core potential, we have developed a series of four low-lying electronic potential energy curves (PECs) for the pairs formed between a cesium atom (Cs) and a rare gas (Rg = He, Ne, Ar, Kr, and Xe). The results obtained at the MRCI level were compared with those generated at the SOCI level, which were recently reported by Blank et al. The shapes of the PECs were essentially the same when the same basis set was used. Based on this agreement, more precise PECs for Cs-Rg pairs were calculated using a larger basis set for Rg. (author)

  19. Time-resolved statistics of photon pairs in two-cavity Josephson photonics

    Energy Technology Data Exchange (ETDEWEB)

    Dambach, Simon; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University (Germany)

    2017-06-15

    We analyze the creation and emission of pairs of highly nonclassical microwave photons in a setup where a voltage-biased Josephson junction is connected in series to two electromagnetic oscillators. Tuning the external voltage such that the Josephson frequency equals the sum of the two mode frequencies, each tunneling Cooper pair creates one additional photon in both of the two oscillators. The time-resolved statistics of photon emission events from the two oscillators is investigated by means of single- and cross-oscillator variants of the second-order correlation function g{sup (2)}(τ) and the waiting-time distribution w(τ). They provide insight into the strongly correlated quantum dynamics of the two oscillator subsystems and reveal a rich variety of quantum features of light including strong antibunching and the presence of negative values in the Wigner function. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Penerapan Pembelajaran Model Kooperatif Tipe Think-Pair-Share Dalam Materi Usaha Dan Energi Ditinjau Dari Gender Siswa Kelas Xi Ipa Sma Negeri 1 Sungai Ambawang

    Directory of Open Access Journals (Sweden)

    Ira Nofita Sari

    2016-09-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui penerapan pembelajaran model kooperatif tipe think-pair-share dalam materi usaha dan energi ditinjau dari gender siswa kelas XI IPA SMA Negeri 1 Sungai Ambawang. Adapun variabel dalam penelitian ini adalah hasil belajar siswa laki-laki dan hasil belajar siswa perempuan. Metode yang digunakan dalam peneltian ini adalah metode eksperimen dan bentuk penelitian eksperimen yang digunakan adalah Pre-Eksperimental Designs dengan rancangan penelitian The One-Shot Case Study.Sampel yang digunakan ialah kelas XI IPA 1 yang diambil secara purposive sampling.. Teknik pengumpul data yang digunakan dalam penelitian ini adalah teknik pengukuran dengan alat pengumpul data berupa tes yang berbentuk essay. Berdasarkan hasil analisis data penelitian diperoleh kesimpulan: (1 Rata-rata hasil belajar siswa laki-laki yang diajarkan model pembelajaran kooperatif tipe think-pair-share dalam materi usaha dan energi siswa kelas XI IPA SMA Negeri 1 Sungai Ambawang mencapai KKM (72 dengan nilai signifikansi lebih besar dari taraf signifikansi 5% (0,715 > 0,05. (2 Rata-rata hasil belajar siswa perempuan yang diajarkan model pembelajaran kooperatif tipe think-pair-share dalam materi usaha dan energi siswa kelas XI IPA SMA Negeri 1 Sungai Ambawang mencapai KKM (72 dengan nilai signifikansi lebih besar dari taraf signifikansi 5% (0,185 > 0,05. (3 Terdapat perbedaan antara rata-rata hasil belajar siswa laki-laki dengan rata-rata hasil belajar siswa perempuan yang diajarkan model pembelajaran kooperatif tipe Think-Pair-Share dalam materi usaha dan energi siswa kelas XI IPA SMA Negeri 1 Sungai Ambawang dengan nilai signifikansi lebih besar dari taraf signifikansi 5% (0,101 > 0,05.

  1. Plasma analog of particle-pair production

    International Nuclear Information System (INIS)

    Tsidulko, Yu.A.; Berk, H.L.

    1996-09-01

    It is shown that the plasma axial shear flow instability satisfies the Klein-Gordon equation. The plasma instability is then shown to be analogous to spontaneous particle-pair production when a potential energy is present that is greater than twice the particle rest mass energy. Stability criteria can be inferred based on field theoretical conservation laws

  2. Energy transition in France

    International Nuclear Information System (INIS)

    Grandjean, Alain

    2014-01-01

    After having recalled the main issues and stakes addressed by the French national debate on energy transition (strategic stakes, priority to a reduction of French energy consumption, options for the evolution of the French energy mix), the author comments the possible evolution of energy prices and of the energy taxing policy (evolution of oil prices, carbon price). In a second part, the author addresses the issue of financing of building and housing renovation. He shows that this operation cannot be only based on financial markets which are not efficient. This means that a public intervention is required, and different solutions are then possible. Some of them seem difficult to implement (creation of money by the central Bank, creation of a public bank which could lend money to private actors), and some others need to be further examined (creation of a financing company for energy transition, use of national savings, simplified circuits for a financing of local projects by local savings, and so on)

  3. Quantum creation of an inflationary Universe

    International Nuclear Information System (INIS)

    Linde, A.D.

    1984-01-01

    The problem of quantum creation of the Universe is discussed. It is shown that the process of quantum creation of the Universe in a wide class on elementary particle theories leads with a high probability to the creation of an exponentially expanding (inflationary) Universe. Universe size after expansion should exceed l approximately 10 28 cm

  4. Lepton-pair production and the modified Drell-Yan mechanism in high-energy unpolarized and polarized pp and p anti p collisions

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    A modified Drell-Yan mechanism for inclusive dilepton pair production in hadronic reactions is studied, and the significance of comparing high-energy unpolarized and polarized pp and p anti p collisions is discussed. The required beams are currently proposed at Fermilab and CERN

  5. (RN) pair production by photons in a hot Maxwellian plasma

    International Nuclear Information System (INIS)

    Haug, E.

    2004-01-01

    The production of electron-positron pairs by photons in the Coulomb Field of electrons and positrons (triplet production) in hot thermal plasmas is investigated. The pair production rate for this process is calculated as a function of the photon energy and compared with the rate of photon-nucleus pair production for semi-relativistic and relativistic plasma temperatures. (author)

  6. Value Creation in International Business

    DEFF Research Database (Denmark)

    is a pioneering two volume work intended to provoke theoretical and empirical development in International Business research. Moreover, it is intended as a bridge between concepts derived from general business firm-level research agendas such as value creation and business model, and internationalization......The edited collection brings into focus the meanings, interpretations and the process of value creation in international business. Exploring value creation in the context of emerging and developed economies, Volume 2 takes the perspective of small and medium sized enterprises and examines various...

  7. Gluino-pair production at the Tevatron

    International Nuclear Information System (INIS)

    Beenakker, W.; Spira, M.; Zerwas, P.M.

    1995-05-01

    The next-to-leading order QCD corrections to the production of gluino pairs at the Tevatron are presented in this paper. Similar to the production of squark-antisquark pairs, the dependence of the cross section on the renormalization/factorization scale is reduced considerably by including the higher-order corrections. The cross section increases with respect to the lowest-order calculation which, in previous experimental analyses, had been evaluated at the scale of the invariant energy of the partonic subprocesses. (orig.)

  8. Skyrmion creation and annihilation by spin waves

    International Nuclear Information System (INIS)

    Liu, Yizhou; Yin, Gen; Lake, Roger K.; Zang, Jiadong; Shi, Jing

    2015-01-01

    Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resulting from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes

  9. Conditions for formation of electron pairs in a metal

    Energy Technology Data Exchange (ETDEWEB)

    Shekhtman, A.Z., E-mail: shekhtmanalexander@gmail.com

    2015-04-15

    Highlights: • A new approach has been developed for consideration of electron pairing in metals. • Binding energy of a single pair induced by electron-phonon interaction is very small. • A new mechanism for electron pairing in metals has been considered. • Conditions for feasibility of the mechanism give conditions for electron pairing. • The mechanism gives wide opportunities to study new conditions for electron pairing. - Abstract: In an isotropic model of the electron system of metal that is presented by the Fröhlich’s initial Hamiltonian, in the approximation of a weak electron–phonon interaction at T = 0, first time, we show that the ground state of the system is the state with pairing correlations of electrons (the pair correlations of occupied electron states). In contrast to the BCS approach, the initial point in our approach is not electron pairing but is the maximum reduction of the energy of the considered system due to virtual processes of the electron–phonon interaction and to the exchange effect for the indirect electron–electron interaction (which is induced by certain phonon modes separately from others). In contrast to the BCS approach, we take into account the portion of the energy of the electron system that is connected with the above exchange effect. In the BCS approach, the corresponding portion is missed, and its role is prescribed to the portion that does not relate to the electron pairing. We show that expectation values of the above Hamiltonian for different wave functions for two interacting electrons above the Fermi sea of the non-interacting system (with interaction between the electrons that is induced by different phonon modes separately from others) are minimum for a certain structure of these functions and simultaneously for phonon modes that can induce the transitions of the interacting electrons between electron states in which they are (without violation of the Pauli exclusion principle and at everything else

  10. Value Co-creation Behaviour

    DEFF Research Database (Denmark)

    Laud, Gaurangi; Karpen, Ingo Oswald

    2017-01-01

    Purpose:The purpose of this paper is to identify antecedents and consequences ofcustomers’ value co-creation behaviour (VCB). VCB as a means to facilitatevalue realisation processes is gaining importance in service research andpractice. Encouraging such enactments can be challenging, but can also...... offercompetitive advantages. Design/methodology/approach:We empirically investigate a conceptual model by converging threecontemporary concepts of co-creation research – embeddedness, VCB and value-in-context– and examining the interdependencies between them. Data were collected in anonline forum of a leading......, the studyhighlights the significance of the nature of customer’s social constellationsto develop contexts where value outcomes are actualised. Understanding thefactors that shape VCB offers insights for firms to recognise how and wherevalue propositions can be deployed that drives on-going co-creation processes...

  11. Designing Learning for Co-Creation

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Larsen-Nielsen, Marie

    2017-01-01

    Designing learning for co-creation - conceptual and practical considerations, Dorina Gnaur and Inger Marie Larsen-Nielsen explore the practical educational point of view. The question they are posing themselves is: how can higher and further education (HE) educate for co-creation, that is, provide...... educational frameworks that respond to the societal demand for co-creation, particularly within the public welfare sector? First, they focus on which organisational and individual requirements an HE learning design should take into account in order to support the diffusion of co-creation competences....... Then they argue for the need to integrate these considerations in the learning design and demonstrate a practical application in the form of a didactical design. They call this a hybrid learning design, in that it takes advantage of technological developments to mediate co-creative learning in multiple learning...

  12. NLO-QCD corrections to Higgs pair production in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, A.; Degrassi, G. [Dipartimento di Matematica e Fisica, Università di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Gröber, R. [INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Slavich, P. [LPTHE, UPMC University Paris 06, Sorbonne Universités, 4 Place Jussieu, F-75252 Paris (France); LPTHE, CNRS, 4 Place Jussieu, F-75252 Paris (France)

    2016-04-18

    We take a step towards a complete NLO-QCD determination of the production of a pair of Higgs scalars in the MSSM. Exploiting a low-energy theorem that connects the Higgs-gluon interactions to the derivatives of the gluon self-energy, we obtain analytic results for the one- and two-loop squark contributions to Higgs pair production in the limit of vanishing external momenta. We find that the two-loop squark contributions can have non-negligible effects in MSSM scenarios with stop masses below the TeV scale. We also show how our results can be adapted to the case of Higgs pair production in the NMSSM.

  13. Pair production from nuclear collisions and cosmic ray transport

    International Nuclear Information System (INIS)

    Norbury, John W

    2006-01-01

    Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus-nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron-positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons. (brief report)

  14. Cooper pair splitters beyond the Coulomb blockade regime

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, Ehud; Tiwari, Rakesh P.; Nigg, Simon E. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Walter, Stefan [Institute for Theoretical Physics, University Erlangen Nuernberg, Staudtstrasse 7, 91058 Erlangen (Germany); Schmidt, Thomas L. [Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg (Luxembourg)

    2016-07-01

    We consider the setup of a conventional s-wave Cooper pair splitter. However, we consider the charging energies in the quantum dots to be finite and smaller than the superconducting gap. We find analytically that at low energies the superconductor mediates an inter-dot tunneling term, the spin symmetry of which is influenced by a finite Zeeman field. This effect, together with an electrical tuning scheme of the quantum dot levels, can be used to engineer a non local triplet state on the two quantum dots, thereby extending the non-local state engineering capabilities of the Cooper pair splitter system.

  15. Pair Interaction of Dislocations in Two-Dimensional Crystals

    Science.gov (United States)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.

    2005-10-01

    The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.

  16. Observation of aggregation triggered by Resonance Energy Transfer (RET) induced intermolecular pairing force.

    Science.gov (United States)

    Pan, Xiaoyong; Wang, Weizhi; Ke, Lin; Zhang, Nan

    2017-07-20

    In this report, we showed the existence of RET induced intermolecular pairing force by comparing their fluorescence behaviors under room illumination vs standing in dark area for either PFluAnt solution or PFluAnt&PFOBT mixture. Their prominent emission attenuation under room illumination brought out the critical role of photo, i.e. RET induced intermolecular pairing force in induction of polymer aggregation. Constant UV-Vis absorption and fluorescence spectra in terms of both peak shapes and maximum wavelengths implied no chemical decomposition was involved. Recoverable fluorescence intensity, fluorescence lifetime as well as NMR spectra further exclude photo induced decomposition. The controllable on/off state of RET induced intermolecular pairing force was verified by the masking effect of outside PFluAnt solution which function as filter to block the excitation of inside PFluAnt and thus off the RET induced intermolecular pairing force. Theoretical calculation suggest that magnitude of RET induced intermolecular pairing force is on the same scale as that of van der Waals interaction. Although the absolute magnitude of RET induced intermolecular pairing force was not tunable, its effect can be magnified by intentionally turn it "on", which was achieved by irradiance with 5 W desk lamp in this report.

  17. French local agencies of energy control; Agences locales francaise de maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the SAVE program, the European Commission brings financial assistance to the creation of local or regional agencies of energy control in municipalities and regions. The main criteria are the impacts on the energy demand, the reinforcement of the economic and social cohesion, the environmental quality and the contribution to the economic development and the employment creation. In this document, realized by Energie-Cites, the Ademe objective is to present a state of the art of french local agencies. Ten agencies are presented as case study. Each case deals with the following topics: the main context of the action which details the energy and the environmental policy of the municipality, the creation and the description of the agency, the implemented actions and the perspectives. (A.L.B.)

  18. Isovectorial pairing in solvable and algebraic models

    International Nuclear Information System (INIS)

    Lerma, Sergio; Vargas, Carlos E; Hirsch, Jorge G

    2011-01-01

    Schematic interactions are useful to gain some insight in the behavior of very complicated systems such as the atomic nuclei. Prototypical examples are, in this context, the pairing interaction and the quadrupole interaction of the Elliot model. In this contribution the interplay between isovectorial pairing, spin-orbit, and quadrupole terms in a harmonic oscillator shell (the so-called pairing-plus-quadrupole model) is studied by algebraic methods. The ability of this model to provide a realistic description of N = Z even-even nuclei in the fp-shell is illustrated with 44 Ti. Our calculations which derive from schematic and simple terms confirm earlier conclusions obtained by using realistic interactions: the SU(3) symmetry of the quadrupole term is broken mainly by the spin-orbit term, but the energies depends strongly on pairing.

  19. Facilitating Value Co-Creation

    DEFF Research Database (Denmark)

    Veith, Anne; Assaf, Albert; Josiassen, Alexander

    2013-01-01

    will also lead to a high rewards. According to postmodern consumerism theory, consumers are intrinsically motivated to participate (Arnould et al., 2006; Borghini & Caru, 2008; Etgar, 2008; Fisher & Smith, 2011), but may also be extrinsic motivated by, for instance, appraisal and 'autonomy' (Etgar, 2008......). Therefore, for instance, being part of the process is a key incentive for consumers. Postmodern consumers' search for unique experiences calls for individualization, personalization, etc. Although Prahalad & Ramaswamy (2004), Karpen et al. (2008), and Karpen et al. (2011) have presented S-D Logic...... as a middle range theory it is still difficult for organizations to operationalize their co-creation efforts. This paper argues that postmodern consumerism can be used to guide the operationalization of the co-creation process by identifying the key facilitators of co-creation for the postmodern consumer...

  20. Z-Z' mixing effects in W±-boson pair production processes at hadron and lepton high-energy colliders

    International Nuclear Information System (INIS)

    Bobovnikov, I.D.; Pankov, A.A.

    2016-01-01

    The potential to search for Z−Z' mixing in the W ± -boson pair production processes in proton-proton and electron-positron collisions at the Large Hadron Collider (LHC) and International Linear Collider (ILC), respectively, was studied. We found that the W ± -boson pair production processes are very sensitive to Z−Z' mixing angle, and their measurements at current and future collider experiments allow one to improve the present limits on Z−Z' mixing for the investigated models with extended gauge sector. The LHC at nominal energy and integrated luminosity, 14 TeV and 100 fb -1 , can provide a much more precise information on Z-Z' mixing and Z 2 mass, M 2 , with respect to those which can be obtained at the lepton collider ILC (0.5 TeV)

  1. Ludic Educational Game Creation Tool

    DEFF Research Database (Denmark)

    Vidakis, Nikolaos; Syntychakis, Efthimios; Kalafatis, Konstantinos

    2015-01-01

    This paper presents initial findings and ongoing work of the game creation tool, a core component of the IOLAOS(IOLAOS in ancient Greece was a divine hero famed for helping with some of Heracles’s labors.) platform, a general open authorable framework for educational and training games. The game...... creation tool features a web editor, where the game narrative can be manipulated, according to specific needs. Moreover, this tool is applied for creating an educational game according to a reference scenario namely teaching schoolers road safety. A ludic approach is used both in game creation and play....... Helping children staying safe and preventing serious injury on the roads is crucial. In this context, this work presents an augmented version of the IOLAOS architecture including an enhanced game creation tool and a new multimodality module. In addition presents a case study for creating educational games...

  2. The Job Creation Potential of Solar and Conservation: A Critical Evaluation.

    Science.gov (United States)

    Schachter, Mary

    Solar proponents claim that a solar- and conservation-oriented economy will create vastly larger numbers of jobs than the conventional and nuclear alternatives. Comparing energy alternatives in terms of job creation potential is tenuous at best due to the paucity of analysis in this area. Ideally, both the quantitative and qualitative aspects of…

  3. Creation of radiation defects in KCl crystals

    International Nuclear Information System (INIS)

    Lushchik, A.Ch.; Pung, L.A.; Khaldre, Yu.Yu.; Kolk, Yu.V.

    1981-01-01

    Optical and EPR methods were used to study the creation of anion and cation Frenkel defects in KCl crystals irradiated by X-ray and VUV-radiation. The decay of excitons with the creation of charged Frenkel defects (α and I centres) was detected and investigated at 4.2 K. The decay of excitons as well as the recombination of electrons with self-trapped holes leads to the creation of neutral Frenkel defects (F and H centres). The creation of Cl 3 - and Vsub(F) centres (cation vacancy is a component of these centres) by X-irradiation at 80 K proves the possibility of cation defects creation in KCl [ru

  4. Timing-based business models for flexibility creation in the electric power sector

    International Nuclear Information System (INIS)

    Helms, Thorsten; Loock, Moritz; Bohnsack, René

    2016-01-01

    Energy policies in many countries push for an increase in the generation of wind and solar power. Along these developments, the balance between supply and demand becomes more challenging as the generation of wind and solar power is volatile, and flexibility of supply and demand becomes valuable. As a consequence, companies in the electric power sector develop new business models that create flexibility through activities of timing supply and demand. Based on an extensive qualitative analysis of interviews and industry research in the energy industry, the paper at hand explores the role of timing-based business models in the power sector and sheds light on the mechanisms of flexibility creation through timing. In particular we distill four ideal-type business models of flexibility creation with timing and reveal how they can be classified along two dimensions, namely costs of multiplicity and intervention costs. We put forward that these business models offer ‘coupled services’, combining resource-centered and service-centered perspectives. This complementary character has important implications for energy policy. - Highlights: •Explores timing-based business models providing flexibility in the energy industry. •Timing-based business models can be classified on two dimensions. •Timing-based business models offer ‘coupled services’. • ‘Coupled services’ couple timing as a service with supply- or demand side valuables. •Policy and managerial implications for energy market design.

  5. Role of pn-pairs interaction in nuclear structure

    International Nuclear Information System (INIS)

    Nie, G.K.

    2004-01-01

    Full text: The nuclear structure approach is based on theory of interaction of pn-pairs with suggestion that proton and neutron of one pair have the same nuclear potential. In frame of this model nuclei with N=Z were analyzed in [1,2]. In [1] radii of position of last proton were estimated on difference of proton and neutron separation energies. In [2] a phenomenological formula for calculation of binding energy of alpha- cluster nuclei was found. Present work is devoted to developing the nuclear structure model. Coulomb energy of nuclei with N=Z has been found from sum of differences of separation energies of protons and neutrons belonging to one pairs. From analysis of nuclei 12 C and 16 O the value of energy of Coulomb repulsion between 2 α -clusters has been estimated equal to ε C α =1.925 MeV [3], which means that value of nuclear (meson) interaction between 2 α -clusters is expected to be ε m αα = ε cov αα + ε C α =4.350 MeV. From suggestion that energy of long range Coulomb repulsion is compensated by surface tension energy an equation has been found to calculate radius of position of last proton on value of Z. Charge radii of nuclei from 58 Ni to 208 Bi and further have been calculated with difference from experimental ones in several hundredths of fm. In the approach binding energy of excess neutrons stays beyond the consideration. Therefore, in calculation of binding energies of nuclei the experimental values of separation energies of excess neutrons are used. There is a good agreement between calculated values of binding energies of some isotopes of all known elements as well as separation energies of alpha particle and deuteron and experimental data. The difference from experimental binding energy in most of the cases is about 0.5% and less

  6. Pairing from strong repulsion in triangular lattice Hubbard model

    Science.gov (United States)

    Zhang, Shang-Shun; Zhu, Wei; Batista, Cristian D.

    2018-04-01

    We propose a pairing mechanism between holes in the dilute limit of doped frustrated Mott insulators. Hole pairing arises from a hole-hole-magnon three-body bound state. This pairing mechanism has its roots on single-hole kinetic energy frustration, which favors antiferromagnetic (AFM) correlations around the hole. We demonstrate that the AFM polaron (hole-magnon bound state) produced by a single hole propagating on a field-induced polarized background is strong enough to bind a second hole. The effective interaction between these three-body bound states is repulsive, implying that this pairing mechanism is relevant for superconductivity.

  7. Density functional approach for pairing in finite size systems

    International Nuclear Information System (INIS)

    Hupin, G.

    2011-09-01

    The combination of functional theory where the energy is written as a functional of the density, and the configuration mixing method, provides an efficient description of nuclear ground and excited state properties. The specific pathologies that have been recently observed, show the lack of a clear underlying justification associated to the breaking and the restoration of symmetries within density functional theory. This thesis focuses on alternative treatments of pairing correlations in finite many body systems that consider the breaking and the restoration of the particle number conservation. The energy is written as a functional of a projected quasi-particle vacuum and can be linked to the one obtained within the configuration mixing framework. This approach has been applied to make the projection either before or after the application of the variational principle. It is more flexible than the usual configuration mixing method since it can handle more general effective interactions than the latter. The application to the Krypton isotopes shows the feasibility and the efficiency of the method to describe pairing near closed shell nuclei. Following a parallel path, a theory where the energy is written as a functional of the occupation number and natural orbitals is proposed. The new functional is benchmarked in an exactly solvable model, the pairing Hamiltonian. The efficiency and the applicability of the new theory have been tested for various pairing strengths, single particle energy spectra and numbers of particles. (author)

  8. Experimental determination of the average energy necessary for the production of an ion pair in air

    International Nuclear Information System (INIS)

    Guiho, J.P.; Simoen, J.P.

    1975-01-01

    The determination of the average energy Wbarsub(a) necessary to form an ion pair in air in a 60 Co beam (which is one of the French primary references in dosimetry) is obtained from measurements of the exposure and absorbed doses from the beam in the center of a graphite disc. The differential flux density of the beam having been measured the experimental value of Wbarsub(a) is obtained for a mean real photon energy. The so determined value of Wbarsub(a) in dry air is: Wbarsub(a) = 33,96 +-0.34 JC -1 for Ebar = 1150 keV. This result is then compared to different published values. From this comparison the importance of different correcting terms such as the air humidity correction and the carbon/air stopping power ratio, which constitutes the main source of uncertainty, are considered. (author)

  9. Puzzles of dark energy in the Universe—phantom

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P

    2015-01-01

    This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives dominant negative pressure which acts as antigravity. We consider a phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to extraction of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same mass is impossible unless both of them are at rest and suddenly start moving with opposite velocities and kinetic energies. This effect is a classic analog of quantum mechanical particle pair creation in a strong electric field or physical vacuum. (paper)

  10. Validity of the broken-pair approximation for N = 50, even-A nuclei

    International Nuclear Information System (INIS)

    Haq, S.; Gambhir, Y.K.

    1977-01-01

    The validity of the broken-pair approximation as an approximation to the seniority shell model is investigated. The results of the broken-pair approximation and the seniority shell model, obtained by employing identical input information (single-particle levels and their energies, effective two-body matrix elements, 88 Sr inert core) for N = 50, even-A nuclei are compared. A close agreement obtained between the calculated broken-pair approximation and the seniority shell model energies for 90 Zr, 92 Mo, 94 Ru, and 96 Pd nuclei and large (95--100 %) overlaps between the broken-pair approximation and the senority shell model wave functions for 92 Mo, demonstrates the validity of the broken-pair approximation in this region and in general its usefulness as a good approximation to the seniority shell model

  11. Diagnosing holographic type dark energy models with the Statefinder hierarchy, composite null diagnostic and w- w' pair

    Science.gov (United States)

    Zhao, Ze; Wang, Shuang

    2018-03-01

    The main purpose of this work is to distinguish various holographic type dark energy (DE) models, including the ΛHDE, HDE, NADE, and RDE model, by using various diagnostic tools. The first diagnostic tool is the Statefinder hierarchy, in which the evolution of Statefinder hierarchy parmeter S (1) 3( z) and S (1) 4( z) are studied. The second is composite null diagnostic (CND), in which the trajectories of { S (1) 3, ɛ} and { S (1) 4, ɛ} are investigated, where ɛ is the fractional growth parameter. The last is w-w' analysis, where w is the equation of state for DE and the prime denotes derivative with respect to ln a. In the analysis we consider two cases: varying current fractional DE density Ω de0 and varying DE model parameter C. We find that: (1) both the Statefinder hierarchy and the CND have qualitative impact on ΛHDE, but only have quantitative impact on HDE. (2) S (1) 4 can lead to larger differences than S (1) 3, while the CND pair has a stronger ability to distinguish different models than the Statefinder hierarchy. (3) For the case of varying C, the { w,w'} pair has qualitative impact on ΛHDE; for the case of varying Ω de0, the { w, w'} pair only has quantitative impact; these results are different from the cases of HDE, RDE, and NADE, in which the {w,w'} pair only has quantitative impact on these models. In conclusion, compared with HDE, RDE, and NADE, the ΛHDE model can be easily distinguished by using these diagnostic tools.

  12. Measurements of Pair Production and Electron Capture from the Continuum in Heavy Particle Collisions

    CERN Multimedia

    2002-01-01

    % WA99 \\\\ \\\\ Large transient Coulomb fields, which are generated in collisions of high-Z systems at sufficiently high energies, lead to copious production of electron-positron pairs. It has been suggested that these lepton pairs might mask signals arising from plasma phase interaction. Pair-production cross-sections have been calculated by several authors with results that differ significantly from each other. For very heavy ions and high energies, multiple pairs are expected to be formed even in single peripheral collisions. Perturbative and nonperturbative treatments lead to various predictions for the fractions of multiple pair formation out of the total cross-sections. Some of the electrons produced will be captured into bound states of the ion, thereby, reducing its charge state by one unit. This process which has been termed $^{\\prime\\prime}$Electron Capture from Pair Production$^{\\prime\\prime}$, represents the only electron capture process which increases with energy, and as such, will dominate all oth...

  13. Particle creation during vacuum decay

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1984-01-01

    The hamiltonian approach is developed with regard to the problem of particle creation during the tunneling process, leading to the decay of the false vacuum in quantum field theory. It is shown that, to the lowest order in (h/2π), the particle creation is described by the euclidean Schroedinger equation in an external field of a bounce. A technique for solving this equation is developed in an analogy to the Bogoliubov transformation technique, in the theory of particle creation in the presence of classical background fields. The technique is illustrated by two examples, namely, the particle creation during homogeneous vacuum decay and during the tunneling process leading to the materialization of the thin-wall bubble of a new vacuum in the metastable one. The curious phenomenon of intensive particle annihilation during vacuum decay is discussed and explicitly illustrated within the former example. The non-unitary extension of the Bogoliubov u, v transformations is described in the appendix. (orig.)

  14. Measurement of pair production cross sections in Ge for the 1. 238-3. 548 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R K; Singh, K; Sahota, H S

    1985-02-28

    Pair production cross sections have been determined for the 1.238-3.548 MeV energy range in germanium (Z = 32) using a Ge(Li) gamma ray detector. The experimental results have been compared with the theoretical cross sections of previous workers. The results of the present measurements agree with the Bethe-Heitler results down to 1.771 MeV. However, at 1.238 MeV the experimental results are higher than all the theories.

  15. The new technology on creation of multiatmispheric wide aperture high power gas lasers

    International Nuclear Information System (INIS)

    Khakimovich, Kazakov Komil

    2013-01-01

    Review is presented about the series of works on creation of 10-atmospheric wide aperture (with active volume 5x5x55 cm 3 preionized by x-ray source) CO 2 -amplifier which was used as main unit of picosecond laser system Picasso [1-4]. The success was reached on putting in operation of this laser system with out put laser energy 22 J and fulfilling of the first experiments on hot plasma ignition by the train of 100 picosecond laser pulses. The new phenomenon was discovered: penetration through metallic shields by the fast (less than 1 nanosecond) magnetic field pulses generated in hot plasma in opposite to long magnetic field pulses which were unable to do this. Author is analyzing the main technologic problem on creation of such multiatmospheric wide aperture (MAWA) lasers and amplifiers – the necessity to create the large complicated window (10x70 cm 2 size in case of Picasso facility) on the glass-plastic cylindrical body of the amplifier. This window consists of the pair of metallic flanges with ∼ 300 holes (of 10 mm diameter) in every one of them and 50 µm thick aluminum foil between flanges for x-ray entrance into laser volume for its preionization. Such a system would to provide high flux of x-rays and both evacuation of the amplifier’s chamber up to 0.1 torr and its safety operation at excess pressures not less than 10 atm. However, during the all time of the system’s operation the problem was existed on amplifier’s volume pressurization and aluminum foil’s safeness. There for it was impossible to increase further the gas pressure in amplifier. Author arrived to an idea which can allow the excluding fully the use of such large complicated window system with a foil on MAWA amplifier. According calculations the application of the new proposed approach can provide at least 10-fold increase of the x-ray flux for preionization of laser active volume, - it has the principal important meaning for reaching of stabile volume self sustained discharge for

  16. Luminescence and defects creation in Ce3+-doped YAlO3 and Lu0.3Y0.7AlO3 crystals

    International Nuclear Information System (INIS)

    Blazek, K.; Nejezchleb, K.; Krasnikov, A.; Savikhina, T.; Zazubovich, S.; Nikl, M.

    2005-01-01

    Luminescence, energy transfer and defects creation processes were studied for the Ce 3+ -doped YAlO 3 and Lu x Y 1-x AlO 3 (x=0.3) crystals in the temperature range 4.2-300 K under selective photoexcitation in the energy range 3.5-11.5 eV. For the first time, defects creation spectra were measured and analyzed. Influence of the charge and ionic radii of co-doping ions on the luminescence and defects creation efficiency was considered. The origin of the defects created and possible mechanisms of their formation were discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands

    Science.gov (United States)

    Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree

    2018-05-01

    In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.

  18. French local agencies of energy control; Agences locales francaise de maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the framework of the SAVE program, the European Commission brings financial assistance to the creation of local or regional agencies of energy control in municipalities and regions. The main criteria are the impacts on the energy demand, the reinforcement of the economic and social cohesion, the environmental quality and the contribution to the economic development and the employment creation. In this document, realized by Energie-Cites, the Ademe objective is to present a state of the art of french local agencies. Ten agencies are presented as case study. Each case deals with the following topics: the main context of the action which details the energy and the environmental policy of the municipality, the creation and the description of the agency, the implemented actions and the perspectives. (A.L.B.)

  19. Job Creation and Job Types

    DEFF Research Database (Denmark)

    Kuhn, Johan Moritz; Malchow-Møller, Nikolaj; Sørensen, Anders

    2016-01-01

    We extend earlier analyses of the job creation of start-ups versus established firms by considering the educational content of the jobs created and destroyed. We define education-specific measures of job creation and job destruction at the firm level, and we use these measures to construct a meas...

  20. Job Creation and Job Types

    DEFF Research Database (Denmark)

    Kuhn, Johan M.; Malchow-Møller, Nikolaj; Sørensen, Anders

    We extend earlier analyses of the job creation of start-ups vs. established firms by taking into consideration the educational content of the jobs created and destroyed. We define educationspecific measures of job creation and job destruction at the firm level, and we use these to construct a mea...

  1. Money Creation in a Random Matching Model

    OpenAIRE

    Alexei Deviatov

    2006-01-01

    I study money creation in versions of the Trejos-Wright (1995) and Shi (1995) models with indivisible money and individual holdings bounded at two units. I work with the same class of policies as in Deviatov and Wallace (2001), who study money creation in that model. However, I consider an alternative notion of implementability–the ex ante pairwise core. I compute a set of numerical examples to determine whether money creation is beneficial. I find beneficial e?ects of money creation if indiv...

  2. Effect of pairing on nuclear dynamics

    International Nuclear Information System (INIS)

    Scamps, Guillaume

    2014-01-01

    Pairing correlations is an essential component for the description of the atomic nuclei. The effects of pairing on static property of nuclei are now well known. In this thesis, the effect of pairing on nuclear dynamics is investigated. Theories that includes pairing are benchmarked in a model case. The TDHF+BCS theory turns out to be a good compromise between the physics taken into account and the numerical cost. This TDHF+BCS theory was retained for realistic calculations. Nevertheless, the application of pairing in the BCS approximation may induce new problems due to (1) the particle number symmetry breaking, (2) the non-conservation of the continuity equation. These difficulties are analysed in detail and solutions are proposed. In this thesis, a 3 dimensional TDHF+BCS code is developed to simulate the nuclear dynamic. Applications to giant resonances show that pairing modify only the low lying peaks. The high lying collective components are only affected by the initial conditions. An exhaustive study of the giant quadrupole resonances with the TDHF+BCS theory is performed on more than 700 spherical or deformed nuclei. Is is shown that the TDHF+BCS theory reproduces well the collective energy of the resonance. After validation on the small amplitude limit problem, the approach was applied to study nucleon transfer in heavy ion reactions. A new method to extract transfer probabilities is introduced. It is demonstrated that pairing significantly increases the two-nucleon transfer probability. (author) [fr

  3. A nucleon-pair and boson coexistent description of nuclei

    Science.gov (United States)

    Dai, Lianrong; Pan, Feng; Draayer, J. P.

    2017-07-01

    We study a mixture of s-bosons and like-nucleon pairs with the standard pairing interaction outside an inert core. Competition between the nucleon-pairs and s-bosons is investigated in this scenario. The robustness of the BCS-BEC coexistence and crossover phenomena are examined through an analysis of pf-shell nuclei with realistic single-particle energies, in which two configurations with Pauli blocking of nucleon-pair orbits due to the formation of the s-bosons is taken into account. When the nucleon-pair orbits are considered to be independent of the s-bosons, the BCS-BEC crossover becomes smooth, with the number of the s-bosons noticeably more than that of the nucleon-pairs near the half-shell point, a feature that is demonstrated in the pf-shell for several values of the standard pairing interaction strength. As a further test of the robustness of the BCS-BEC coexistence and crossover phenomena in nuclei, results are given for values of even-even 102-130Sn with 100Sn taken as a core and valence neutron pairs confined within the 1d 5/2, 0g 7/2, 1d 3/2, 2s 1/2, 1h 11/2 orbits in the nucleon-pair orbit and the s-boson independent approximation. The results indicate that the B(E2) values are reproduced well. Supported by National Natural Science Foundation of China (11375080, 11675071), the U.S. National Science Foundation (OCI-0904874 and ACI-1516338), U. S. Department of Energy (DE-SC0005248), the Southeastern Universities Research Association, the China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971), and the LSU-LNNU joint research program (9961) is acknowledged

  4. Measurement of omega, the energy required to create an ion pair, for 150-MeV protons in nitrogen and argon

    International Nuclear Information System (INIS)

    Petti, P.L.

    1985-01-01

    The purpose of this thesis is to provide a 1% measurement of omega, the energy required to produce an ion pair, for 150 MeV protons in various gases. Such a measurement should improve the accuracy of proton ionization chamber dosimetry at the Harvard Cyclotron Laboratory. Currently, no measurements of omega exist in the energy range of 30 to 150 MeV, and present ionization chamber dosimetry at the Cyclotron relies on average values of measurements at lower and higher energies (i.e. for E < 3 MeV and E = 340 MeV). Contrary to theoretical expectations, these low and high energy data differ by as much as 9% in some gases. The results of this investigation demonstrate that the existing high energy data is probably in error, and current proton ionization chamber dosimetry underestimates omega, and hence the proton dose, by 5%

  5. Semiclassical pair production rate for time-dependent electrical fields with more than one component: WKB-approach and world-line instantons

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Eckhard, E-mail: eckhard.strobel@irap-phd.eu [ICRANet, Piazzale della Repubblica 10, 65122 Pescara (Italy); Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Université de Nice Sophia Antipolis, 28 Avenue de Valrose, 06103 Nice Cedex 2 (France); Xue, She-Sheng, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122 Pescara (Italy); Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy)

    2014-09-15

    We present an analytic calculation of the semiclassical electron–positron pair creation rate by time-dependent electrical fields. We use two methods, first the imaginary time method in the WKB-approximation and second the world-line instanton approach. The analytic tools for both methods are generalized to time-dependent electric fields with more than one component. For the WKB method an expansion of the momentum spectrum of produced pairs around the canonical momentum P{sup →}=0 is presented which simplifies the computation of the pair creation rate. We argue that the world-line instanton method of [1] implicitly performs this expansion of the momentum spectrum around P{sup →}=0. Accordingly, the generalization to more than one component is shown to agree with the WKB result obtained via this expansion. However the expansion is only a good approximation for the cases where the momentum spectrum is peaked around P{sup →}=0. Thus the expanded WKB result and the world-line instanton method of [1] as well as the generalized method presented here are only applicable in these cases. We study the two-component case of a rotating electric field and find a new analytic closed form for the momentum spectrum using the generalized WKB method. The momentum spectrum for this field is not peaked around P{sup →}=0.

  6. Contribution to the experimental study of excited levels of some light nuclei by using the method of angular correlation of internal conversion pairs and monopolar pairs; Contribution a l'etude experimentale de niveaux excites de quelques noyaux legers par la methode des Correlations angulaires des paires de conversion interne Et des paires monopolaires

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, Raymond

    1950-07-01

    In a first part, the author presents a brief theory of angular correlations of internal conversion pairs and monopolar pairs, and indicates the complete formulations which are used to compute all the angular correlations corresponding to the performed experiments. In a second part, he describes a beta spectrometer, outlines factors which govern the energy resolving power, and the peculiarity of summation of two pulses proportional to the energy of the electron and positron which build up an internal pair. In a third part, the author reports experiments of angular correlations, indicates the shapes of monopolar spectra for different angles between electron and positron emission directions, determines the multipolarity of gamma radiations from the first excited levels of {sup 13}C and {sup 12}C, and gives the angular moments, parity and isobaric spin of two excited levels of the {sup 12}C [French] Dans la premiere partie de notre travail, nous exposons une theorie sommaire des correlations angulaires des paires de conversion interne et des paires monopolaires. A la fin de cette premiere partie sont indiquees les formules completes, qui nous ont servi a calculer pratiquement toutes les correlations angulaires correspondant a nos experiences. Dans la deuxieme partie, nous decrivons un spectrometre beta a scintillation. Nous insistons surtout sur les elements qui determinent le pouvoir de resolution en energie et sur la particularite de sommation de deux impulsions proportionnelles a l'energie de l'electron et du positron formant une paire interne. Dans la troisieme partie, nous exposons nos experiences de correlations angulaires. Nous avons repris une mesure precise de la correlation angulaire des paires monopolaires provenant du niveau 6,05 Mev de l'Oxygene 16. Il nous a ete egalement possible de donner l'allure des spectres monopolaires pour differents angles formes par les directions d'emission de l'electron et du positron. Nous avons determine par la methode des

  7. Isominkowskian theory of Cooper Pairs in superconductors

    International Nuclear Information System (INIS)

    Animalu, A.O.E.

    1993-01-01

    Via the use of Santilli's isominkowskian space, the author presents a relativistic extension of the author's recent treatment of the Cooper Pair in superconductivity based on the Lie-isotopic lifting of quantum mechanics known as Hadronic Mechanics. The isominkowskian treatment reduces the solution of the eiganvalue problem for the quasiparticle energy spectrum to a geometric problem of specifying the metric of the isominkowskian space inside the pair in various models of ordinary high T c superconductors. The use of an intriguing realization of the metric due to Dirac reduces the dimensionality of the interior space to two yielding a spin mutation from 1/2 to zero inside a Cooper pair in two-band BCS and Hubbard models. 12 refs

  8. e+e--annihilation into baryon-antibaryon pairs

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kuroda, M.

    1976-07-01

    Using GVDM-type form factors we calculate the e + -e - production cross sections for the reactions e + e - → 1 + /2 - anti(1 +- /2), 1 + /2 - anti(3 +- /2), 1 + /2 - anti(5 + /2) and 3 + /2 - anti(3 + /2) including all prominent baryon resonances at energies of present and planned e + -e - storage ring machines. We also evaluate the cross section of charmed baryon pair production. Near their respective thresholds charmed and uncharmed baryon pair production are predicted to constitute comparable fractions of the total hadronic cross section. The calculated cross sections indicate that the interference of direct and 1-photon decay of the PSI-particles into baryon pairs is small. (orig.) [de

  9. Components of Co-creation

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2009-01-01

    , such an approach misses the advantages of an empirically driven quantitative approach that benefits from larger size samples and is more appropriate for theory building through the development and testing of hypotheses. It is important, therefore, to seek the development of a research methodology that combines...... the benefits of both qualitative and quantitative research approaches for studying the nature of value co-creation. The article provides a first attempt to identify the main research steps of such a methodology. It provides some preliminary results on the key components of value co-creation between firms...... the inner logic of the value co-creation phenomenon as well as the nature of the results reported in this article. The specific nature of the results was found to be suitable for the application of small-N techniques such as the Qualitative Comparative Analysis (QCA) technique which combines the advantages...

  10. LiCl+CaCl/sub 2//H/sub 2/O pair

    Energy Technology Data Exchange (ETDEWEB)

    Isshiki, N; Kamoshida, J

    1985-01-01

    Absorption heat pump is very useful for the utilization of new energy of low temperature difference by the following four view points. (a) possibility of using any kind of heat source of low temperature difference natural energy and industrial waste heat. (b) Possibility of being used for either of both generation of heat and power (co-generation), (c) good for long term storage and distance transportation of energy. (d) Possibility of applying any kind of chemical pair which have reversible thermo-chemical reaction with a lot of varieties. Among many thermo-chemical pairs, the pair of LiCl + CaCl/sub 2//H/sub 2/O has been selected and investigated in the R and D of developing power generation system. The reason of this selection is that this pair have been thought to be most practical, inexpensive, and powerful for our purpose. The system of heat and power cogeneration system has been selected as the object of application of the absorption system, and especially power generation has been studied. Then, in order to inquire the possibility of power generation and energy storage, a four wheeled vehicle driven by the power of the pair of L1Cl = CaCl/sub 2//H/sub 2/O has been assembled and tested with success. In this paper the general aspects of this study is reported briefly, and the future possibility of the absorption heat pump and power generation is discussed.

  11. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  12. Exploring value creation from corporate-foresight activities

    DEFF Research Database (Denmark)

    Rohrbeck, René

    2012-01-01

    This paper looks at value creation from corporate futures research. Through a literature review, potential value creation is identified. This serves as guidance for an empirical investigation in which value creation is observed and linked to methods and practices. Using data from 20 case studies......, three examples of value creation are discussed in detail. In addition, cross-case analysis allowed me to identify four success criteria for corporate foresight activities: (1) foresighters committed to creating value, (2) participation of internal stakeholders, (3) analysis that follows a systemic logic...

  13. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.

    Science.gov (United States)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-21

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  14. Electron-positron pair production by two identical photons in the nuclear field

    International Nuclear Information System (INIS)

    Smirnov, A.I.

    1977-01-01

    In the Born approximation of the perturbation theory considered is a nonlinear effect of the electron-positron pair production by two identical photons in the Coulomb field of an atomic nucleus. The kinematic version of identical photons is studied. All the particles are considered to be nonpolarized. The calculation of the differential probability of the effect has been carried out earlier by the Feynman method. The total probability of the effect in limiting energy ranges is determined by integrating the formulas of the pair component distribution over energies. The probabilities of the electron-positron pair production and fusion of two photons into one in the nucleus field have been compared for the case of identical quanta. From the comparison of the results of analyzing both the nonlinear effects it follows that in the high-energy range the electron-positron pair production by two identical photons in the nucleus field extremely predominates over the fusion of two photons into one photon in the same field

  15. Observation of charmonium pairs produced exclusively in pp collisions

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Onderwater, G.; Pellegrino, A.

    A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of 3 fb(-1) collected at centre-of-mass energies of 7 and 8 TeV, J/psi J/psi and J/psi psi (2S) pairs are observed, which have

  16. Models of charge pair generation in organic solar cells.

    Science.gov (United States)

    Few, Sheridan; Frost, Jarvist M; Nelson, Jenny

    2015-01-28

    Efficient charge pair generation is observed in many organic photovoltaic (OPV) heterojunctions, despite nominal electron-hole binding energies which greatly exceed the average thermal energy. Empirically, the efficiency of this process appears to be related to the choice of donor and acceptor materials, the resulting sequence of excited state energy levels and the structure of the interface. In order to establish a suitable physical model for the process, a range of different theoretical studies have addressed the nature and energies of the interfacial states, the energetic profile close to the heterojunction and the dynamics of excited state transitions. In this paper, we review recent developments underpinning the theory of charge pair generation and phenomena, focussing on electronic structure calculations, electrostatic models and approaches to excited state dynamics. We discuss the remaining challenges in achieving a predictive approach to charge generation efficiency.

  17. Money Creation and Destruction

    OpenAIRE

    Faure, Salomon; Gersbach, Hans

    2017-01-01

    We study money creation and destruction in today’s monetary architecture and examine the impact of monetary policy and capital regulation in a general equilibrium setting. There are two types of money created and destructed: bank deposits, when banks grant loans to firms or to other banks and central bank money, when the central bank grants loans to private banks. We show that equilibria yield the first-best level of money creation and lending when prices are flexible, regardless of the monet...

  18. Particle-number conservation in odd mass proton-rich nuclei in the isovector pairing case

    International Nuclear Information System (INIS)

    Fellah, M.; Allal, N.H.; Oudih, M.R.

    2015-01-01

    An expression of a wave function which describes odd–even systems in the isovector pairing case is proposed within the BCS approach. It is shown that it correctly generalizes the one used in the pairing between like-particles case. It is then projected on the good proton and neutron numbers using the Sharp-BCS (SBCS) method. The expressions of the expectation values of the particle-number operator and its square, as well as the energy, are deduced in both approaches. The formalism is applied to study the isovector pairing effect and the number projection one on the ground state energy of odd mass N ≈ Z nuclei using the single-particle energies of a deformed Woods–Saxon mean-field. It is shown that both effects on energy do not exceed 2%, however, the absolute deviations may reach several MeV. Moreover, the np pairing effect rapidly diminishes as a function of (N - Z). The deformation effect is also studied. It is shown that the np pairing effect, either before or after the projection, as well as the projection effect, when including or not the isovector pairing, depends upon the deformation. However, it seems that the predicted ground state deformation will remain the same in the four approaches. (author)

  19. On the non-convergence of energy intensities: evidence from a pair-wise econometric approach

    International Nuclear Information System (INIS)

    Le Pen, Yannick; Sevi, Benoit

    2008-01-01

    This paper evaluates convergence of energy intensities for a group of 97 countries in the period 1971-2003. Convergence is tested using a recent method proposed by Pesaran (2007) [M.H. Pesaran. A pair- wise approach to testing for output and growth convergence. Journal of Econometrics 138, 312-355.] based on the stochastic convergence criterion. Main advantages of this method are that results do not depend on a benchmark against which convergence is assessed, and that it is more robust. Applications of several unit-root tests as well as a stationarity test uniformly reject the global convergence hypothesis. Locally, for Middle- East, OECD and Europe sub-groups, non-convergence is less strongly rejected. The introduction of possible structural breaks in the analysis only marginally provides more support to the convergence hypothesis. (authors)

  20. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    Science.gov (United States)

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  1. Molecular dynamics simulations of the role of electronic losses in damage creation of ion irradiated Tungsten

    International Nuclear Information System (INIS)

    Maya, P.N.; Deshpande, S.P

    2014-01-01

    Damage creation due to the irradiation of 14 MeV fusion neutrons and the subsequent mechanical failure and alteration of the fuel retention properties of tungsten plasma-facing materials is one of the major concerns of the fusion reactors. In addition to nuclear reactions and the subsequent transmutations, the energetic neutron impars its kinetic energy either partly or completely to a lattice tungsten atom thereby creating a primary knock-on atom (PKA) which, is considered as the onset of damage creation in the lattice. The PKA continues to undergo collisions with the lattice atoms which eventually leads to a collision cascade. In order to understand the collision process, one often simulates such systems using surrogate ions, such as energetic W ions itself, in particle accelerators and due to the experimental constraints (such as the stability of the beam) one often has to opt for high energetic ion beams (∼ 30 MeV) which surpasses the PKA energies created by neutron (∼100s of KeV) in W. Hence it is important to distinguish how the very high energetic tungsten atoms interact with the lattice atoms in comparison with the low energy PKA created by the neutron. One of the key difference is that at higher energies the electronic losses become important which decides the collision dynamics. In this presentation the effect of electronic losses in the damage creation using molecular dynamics simulations have been discussed

  2. Electron correlation within the relativistic no-pair approximation

    Energy Technology Data Exchange (ETDEWEB)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the

  3. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    Science.gov (United States)

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  4. Pairing vibrational and isospin rotational states in a particle number and isospin projected generator coordinate method

    International Nuclear Information System (INIS)

    Chen, H.T.; Muether, H.; Faessler, A.

    1978-01-01

    Pairing vibrational and isospin rotational states are described in different approximations based on particle number and isospin projected, proton-proton, neutron-neutron and proton-neutron pairing wave functions and on the generator coordinate method (GCM). The investigations are performed in models for which an exact group theoretical solution exists. It turns out that a particle number and isospin projection is essential to yield a good approximation to the ground state or isospin yrast state energies. For strong pairing correlations (pairing force constant equal to the single-particle level distance) isospin cranking (-ωTsub(x)) yields with particle number projected pairing wave function also good agreement with the exact energies. GCM wave functions generated by particle number and isospin projected BCS functions with different amounts of pairing correlations yield for the lowest T=0 and T=2 states energies which are practically indistinguishable from the exact solutions. But even the second and third lowest energies of charge-symmetric states are still very reliable. Thus it is concluded that also in realistic cases isospin rotational and pairing vibrational states may be described in the framework of the GCM method with isospin and particle number projected generating wave functions. (Auth.)

  5. Value co-creation in healthcare through positive deviance.

    Science.gov (United States)

    Zanetti, Cole Anthony; Taylor, Natalie

    2016-12-01

    To explore how converging fields of co-creation and positive deviance may increase value in healthcare. Informed by research in positive deviance, patient engagement, value co-creation, and quality improvement, we propose a positive deviance approach to co-creation of health. Co-creation has shown to improve health outcomes with regard to multiple health conditions. Positive deviance has also shown to improve outcomes in multiple healthcare and patient community environments. A positive deviance co-creation framework may aid in achieving improved outcomes for patients, care teams and their respective healthcare organizations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Search for pair production of scalar top quarks in jets and missing transverse energy channel with the D0 detector

    International Nuclear Information System (INIS)

    Shamim, Mansoora; Kansas State U

    2008-01-01

    This dissertation describes a search for the pair production of scalar top quarks, (tilde t) 1 , using a luminosity of 995 pb -1 of data collected in p(bar p) collisions with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy √s = 1.96 TeV. Both scalar top quarks are assumed to decay into a charm quark and a neutralino, (tilde χ) 1 0 , where (tilde χ) 1 0 is the lightest supersymmetric particle. This leads to a final state with two acoplanar charm jets and missing transverse energy. The yield of such events in data is found to be consistent with the expectations from known standard model processes. Sets of (tilde t) 1 and (tilde χ) 1 0 masses are excluded at the 95% confidence level that substantially extend the domain excluded by previous searches. With the theoretical uncertainty on the (tilde t) 1 pair production cross section taken into account, the largest limit for m # tilde t# # sub 1# is m # tilde t# # sub 1# > 150 GeV, for m # tilde χ)# sub 1# # sup 0# = 65 GeV

  7. Structure of 2,4-Diaminopyrimidine - Theobromine Alternate Base Pairs

    Science.gov (United States)

    Gengeliczki, Zsolt; Callahan, Michael P.; Kabelac, Martin; Rijs, Anouk M.; deVries, Mattanjah S.

    2011-01-01

    We report the structure of clusters of 2,4-diaminopyrimidine with 3,7-dimethylxanthine (theobromine) in the gas phase determined by IR-UV double resonance spectroscopy in both the near-IR and mid-IR regions in combination with ab initio computations. These clusters represent potential alternate nucleobase pairs, geometrically equivalent to guanine-cytosine. We have found the four lowest energy structures, which include the Watson-Crick base pairing motif. This Watson-Crick structure has not been observed by resonant two-photon ionization (R2PI) in the gas phase for the canonical DNA base pairs.

  8. Nucleon-pair approximation to the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.M., E-mail: ymzhao@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Arima, A. [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533 (Japan)

    2014-12-01

    Atomic nuclei are complex systems of nucleons–protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton–proton and neutron–neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton–neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  9. Theoretical study of the recombination of Frenkel pairs in irradiated silicon carbide

    International Nuclear Information System (INIS)

    Lucas, Guillaume; Pizzagalli, Laurent

    2007-01-01

    The recombination of Frenkel pairs resulting from low-energy recoils in 3C-SiC has been investigated using first principles and nudged elastic band calculations. Several recombination mechanisms have been obtained, involving direct interstitial migration, atom exchange, or concerted displacements, with activation energies ranging from 0.65 to 1.84 eV. These results are in agreement with experimental activation energies. We have determined the lifetime of the V Si +Si TC Frenkel pair, by computing phonon frequencies and the Arrhenius prefactor. The vibrational contributions to the free-energy barrier have been shown to be negligible in that case

  10. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...

  11. Pairing in the BCS and LN approximations using continuum single particle level density

    International Nuclear Information System (INIS)

    Id Betan, R.M.; Repetto, C.E.

    2017-01-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen–Cooper–Schrieffer (BCS) and Lipkin–Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  12. Performance of the clover detector considering the effects of pair production

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    Gamma rays having sufficient energy to produce positron-electron pairs in a detector generate three peaks in the energy spectrum, corresponding to the full gamma-ray energy, and this gamma-ray energy minus 511 and 1022 keV because of the single and double escape of the 511 keV annihilation quanta. The escape peaks are frequently used to extend the precision of energy calibration, simply by providing additional spectral peaks at well-known energies. At energies around 6 MeV, the pair production process dominates over other gamma interaction processes in germanium. It has been observed that the intensity of the single and double escape peaks (SEP and DEP) for gamma-rays around these energies increases rapidly. This results in a difficulty to correctly identify new gamma-rays, which is crucial for precision gamma-ray spectroscopy that involves mostly the use of tapered cylindrical germanium detectors

  13. Leptoquark pair production in hadronic interactions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Boos, E.; Moskovskij Gosudarstvennyj Univ., Moscow; Kryukov, A.; Moskovskij Gosudarstvennyj Univ., Moscow

    1996-10-01

    The scalar and vector leptoquark pair production cross sections in hadronic collisions are calculated. In a model independent analysis we consider the most general C and P conserving couplings of gluons to both scalar and vector leptoquarks described by an effective low-energy Lagangian which obeys SU(3) c invariance. Analytrical expressions are derived for the differential and integral scattering cross sections including the case of anomalous vector leptoquark couplings, κ G and λ G , to the gluon field. Numerical predictions are given for the kinematic range of the TEVATRON and LHC. The pair production cross sections are also calculated for the resolved photon contributions to ep → e anti ΦΦX at HERA and LEP x LHC, and for the process γγ → Φ anti ΦX at possible future e + e - linear colliders and γγ colliders. Estimates of the search potential for scalar and vector leptoquarks at present and future high energy colliders are given. (orig.)

  14. Coherent Bremsstrahlung, Coherent Pair Production, Birefringence and Polarimetry in the 20-170 GeV energy range using aligned crystals

    CERN Document Server

    Apyan, A; Badelek, B; Ballestrero, S; Biino, C; Birol, I; Cenci, P; Connell, S H; Eichblatt, S; Fonseca, T; Freund, A; Gorini, B; Groess, R; Ispirian, K; Ketel, T; Kononets, Y V; López, A; Mangiarotti, A; Sellschop, J P Friedel; Shieh, M; Sona, P; Strakhovenko, V M; Uggerhøj, U; Uggerhøj, Erik; Van Rens, B; Velasco, M; Vilakazi, Z Z; Wessely, O; Ünel, G; Kononets, Yu V

    2008-01-01

    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed these phenomena as well as their polarization dependence to be evaluated under conditions where single-photon cross-sections could be measured. This proved very important as the theoretical description of CB and CPP is an area of active theoretical debate and development. The theoretical approach used in this paper predicts both the cross sections and polarization observables very well for the experimental conditions investigated, indicating that the understanding of CB and CPP is reliable up to energies of 170 GeV. A birefringence effect in CPP was studied and it was demonstrated this enabled new technologies for high energy photon beam optics, such as polarimeters (for both linear and circular polarization) and phase plates. We also present new results regarding the features of coherent high energy photon emis...

  15. Rapid creation of distant entanglement by multi-photon resonant fluorescence

    Science.gov (United States)

    Cohen, Guy Z.; Sham, L. J.

    2014-03-01

    We study a simple, effective and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multi-photon Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel (HOM) effect, to selective pairing of photon holes (photon absences in the fluorescent signals). By the HOM effect, two photon holes with the same polarization end up at the same beam splitter output. As a result, two odd photon number detections at the outgoing beams, which must correspond to two photon holes with different polarizations, herald entanglement creation. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, non-ideal and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities. This research was supported by the U.S. Army Research Office MURI award W911NF0910406, by NSF grant PHY-1104446 and by ARO (IARPA, W911NF-08-1-0487). The authors thank D. G. Steel for useful discussions.

  16. Formation of heavy quarks in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schneider, S.M.; Greiner, W.; Soff, G.

    1992-02-01

    We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation for free banti b and tanti t quark pairs and for bottomonium and toponium in the ground state are computed at RHIC, LHC and SSC energies. Central and peripheral heavy-ion collisions are discussed. For top quark creation we assumed a mass range of 90 GeV ≤ m t ≤ 250 GeV. The creation rate for top quarks on peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For m t = 130 GeV we calculated a creation rate of about 4760 top quark pairs per day at the LHC (3.5 TeV/u) for Pb-Pb collisions. (orig.)

  17. Service creation: a model-based approach

    NARCIS (Netherlands)

    Quartel, Dick; van Sinderen, Marten J.; Ferreira Pires, Luis

    1999-01-01

    This paper presents a model-based approach to support service creation. In this approach, services are assumed to be created from (available) software components. The creation process may involve multiple design steps in which the requested service is repeatedly decomposed into more detailed

  18. New energy vision of the Ehime prefecture area; 2001 nendo Ehime ken chiiki shin energy vision

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the contribution to environmental preservation and stable supply of energy, 'a new energy vision of the Ehime prefecture area' was worked out which is to be a guide for new energy introduction using photovoltaic power, wind power, etc. In the Uma area, the following were proposed: introduction of waste energy cogeneration to the paper manufacturing industry; study of introduction of small wind turbine to household and business establishment. In the Niihama/Saijo area, introduction of cogeneration to business establishment; creation of the processing/assembly industry for materials/parts of equipment of photovoltaic power generation/wind power generation. In the Imabari area, introduction of natural gas cogeneration to business establishment, creation of the industry for equipment/parts of photovoltaic power generation. In the Matsuyama area, introduction of cogeneration to business establishment; utilization of biomass energy; creation of the industry of production/processing of resin for solar module use. In the Yawatahama/Oozu area, utilization of wind energy for agriculture/forestry, fisheries and tourism fields; study of introduction of biomass energy. In the Uwajima area, utilization of wind power energy for agriculture/fisheries, fisheries and tourism fields; introduction of biomass energy. (NEDO)

  19. Broken-pair, generalized seniority and interacting boson approximations in a spectroscopic study of Sn nuclei

    International Nuclear Information System (INIS)

    Bonsignori, K.; Allaart, K.; Egmond, A. van

    1983-01-01

    A broken-pair study of Sn nuclei is reported in which the model space includes two broken pair states. It is shown that for even Sn nuclei, with a rather simple Gaussian interaction and with single-particle-energies derived from data on odd nuclei, the main features of the excitation spectra up to about 3.5 MeV may be reproduced in this way. The idea of the generalized seniority scheme, that the composition of S-pair operator and that of the D-pair operator may be independent of the total number of pairs, is confirmed by the pair structures which result from energy minimization and diagonalization for each number of pairs separately. A general procedure is described to derive IBA parameters when the valence orbits are nondegenerate. Numerical results for Sn nuclei are given. (U.K.)

  20. Electronic pairing mechanism due to band modification with increasing pair number

    International Nuclear Information System (INIS)

    Mizia, J.

    1995-01-01

    It is shown that a shift of an electron band with electron occupation number n, which is changing during the transition to the superconducting state, can lower the total energy of the system. In fact it will bring a negative contribution to the pairing potential, which is proportional to the product of the electron band shift with occupation number and the charge transfer during the transition to the superconducting state. The shift of the electron band comes from the change of stresses and the change of correlation effects in the CuO 2 plane with n, that in turn is caused by the changing oxygen concentration. This model explains the phenomenological success of Hirsch's model, which gives no explanation how the band shift in energy can give rise to superconductivity. (orig.)

  1. Bound states and Cooper pairs of molecules in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-08-15

    We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Pairing correction of particle-hole state densities for two kinds of Fermions

    International Nuclear Information System (INIS)

    Fu, C.Y.

    1985-01-01

    Pairing corrections in particle-hole (exciton) state-density formulas used in precompound nuclear reaction theories are, strictly speaking, dependent on the nuclear excitation energy U and the exciton number n. A general formula for (U,n)-dependent pairing corrections has been derived in an earlier paper for exciton state-density formulas for one kind of Fermion. In the present paper, a similar derivation is made for two kinds of Fermions. It is shown that the constant-pairing-energy correction used in standard level-density formulas, such as U 0 in Gilbert and Cameron, is a limiting case of the present general (U,n)-dependent results

  3. Decree no. 2013-490/PRN from 4 December 2013 provides for the creation, organisation, attributions and operation of the Nigerian High Authority for Atomic Energy

    International Nuclear Information System (INIS)

    Issoufou, Mahamadou; Brigi, Rafin; Gandou, Zakara

    2013-01-01

    This decree concerns the creation, attributions, organization and operation of The Nigerian High Authority Atomic Energy (HANEA). The HANEA is a public service under the Office of President of the Republic. Its main tasks of supervision, coordination and promotion of all peaceful nuclear applications, including nuclear power and ionizing radiation in relation to all departments and other structures concerned. The HANEA is headed by a President to the rank of Minister and includes the following components: a cabinet of President, Secretary General, six Departments and Private Secretary. [fr

  4. Co-creation theory.

    Science.gov (United States)

    Lynch, Elizabeth

    The Design Council is working with healthcare staff and users to reconfigure services for the 21st century. This 'co-creation approach' has focused on diabetes and motivating older people to stay healthy.

  5. Banks’ Capital and Liquidity Creation

    OpenAIRE

    Horváth, Roman; Seidler, Jakub; Weill, Laurent

    2012-01-01

    This paper examines the relation between banks’ capital and liquidity creation. This issue is of interest to determine the potential impact of higher capital requirements for banks on their liquidity creation, which may have particular importance with new Basel III reform demanding from banks higher capital. We perform Granger-causality tests in a dynamic GMM panel estimator framework on an exhaustive dataset of Czech banks from 2000 to 2010.

  6. Probing the pairing interaction through two-neutron transfer reactions

    Directory of Open Access Journals (Sweden)

    Margueron J.

    2012-12-01

    Full Text Available The treatment of the pairing interaction in mean-field-based models is addressed. In particular, the possibility to use pair transfers as A tool to better constrain this interaction is discussed. First, pairing inter-actions with various density dependencies (surface/volume mixing are used in the microscopic Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation model to generate the form factors to be used in reaction calculations. Cross sections for (p,t two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for some Tin isotopes and for incident proton energies from 15 to 35 MeV. Three different surface/volume mixings of A zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Differences among the three different theoretical predictions are found espacially for the nucleus 136Sn and they are more important at the incident proton energy of 15 MeV. We thus indicate (p,t two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed. In the second part of the manuscript, ground-state to ground-state transitions are investigated. Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A±2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A±2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis

  7. Crowdsourcing Content Creation in the Classroom

    Science.gov (United States)

    Hills, Thomas T.

    2015-01-01

    The recent growth in crowdsourcing technologies offers a new way of envisioning student involvement in the classroom. This article describes a participatory action research approach to combining crowdsourced content creation with the student as producer model, whereby students' interests are used to drive the identification and creation of…

  8. The formation of Cooper pairs and the nature of superconducting currents

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1979-12-01

    A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons to change its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (orig.)

  9. The formation of Cooper pairs and the nature of superconducting currents

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1981-01-01

    A simple physical explanation is given for the formation of Cooper pairs in a superconducting metal, for the origin of the attractive force causing the binding of the pairs, for the forming of a degenerate Bose gas by the Cooper pairs, for the finite energy gap that prevents the ensemble of electrons from changing its quantum state at low temperatures, and for the existence of permanent currents in a superconducting wire. (author)

  10. Earth 616, Earth 1610, Earth 3490—Wait, what universe is this again? The creation and evolution of the Avengers and Captain America/Iron Man fandom

    Directory of Open Access Journals (Sweden)

    Catherine Coker

    2013-06-01

    Full Text Available This essay surveys the creation and evolution of the Captain America/Iron Man or Steve/Tony ship in Avengers fandom, from its origin in comics to its reinterpretation by fandom through the recent movies, and discusses how the alternate universe trope in both canon and fanon is used to make a case for the pairing.

  11. Ecological ethics and creation faith

    Directory of Open Access Journals (Sweden)

    Ulrich Körtner

    2016-08-01

    Full Text Available Over past decades a concept of ecological ethics has taken root, which is often equated with environmental ethics. Church and theology have also responded to the environmental crisis. In the last third of the past century an intense discourse about the concerns and extent of a so called creation ethics was conducted. In connection with the question of a creation ethics, and the global responsibility of humans for the biosphere of our planet, the topic of creation has also gained new attention in dogmatics. In this way, ecology has also become a topic of systematic theology. The article focuses on the debate in the German speaking context. Occasionally, a quasi-religious elevation of ecology to the status of a doctrine of salvation is observable. Because theology always also has a function of critique of religion, it must also critically engage the sometimes open and sometimes hidden religious contents and claims of eco-ethical concepts. For this purpose, the first step of the present contribution is to more precisely determine the concepts of creation and nature. Thereafter, the problem of anthropocentrism is analysed. In a further step, the concept of sustainability is analysed. In conclusion, the main features of a responsibility-ethics model of ecological ethics are outlined.

  12. Relativistic quasiparticle random phase approximation with a separable pairing force

    International Nuclear Information System (INIS)

    Tian Yuan; Ma Zhongyu; Ring Peter

    2009-01-01

    In our previous work, we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA) with this separable pairing interaction and calculate the excitation energies of the first excited 2 + states and reduced B(E2; 0 + →2 + ) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction. (authors)

  13. [The theory of mechanical activity of lungs--a creation history, the present and development prospects].

    Science.gov (United States)

    Tetenev, F F; Tetenev, K F

    2014-01-01

    In article the history of creation of the doctrine about respiratory movements of lungs, history of classical mechanics of breathing is stated. Supervision of the paradoxical facts which became a basis for hypothesis creation, then the theory of mechanical activity of lungs are presented. The facts proving mechanical activity of lungs on an inspiration and an expiration are given. Options of interaction of intra pulmonary and extra pulmonary sources of mechanical energy are considered. Theoretical justification for development of the new direction of studying of physiology of mechanical movements of the internal which does not have own skeleton is stated.

  14. Capacity factors and solar job creation

    International Nuclear Information System (INIS)

    Croucher, Matt

    2011-01-01

    We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number. - Highlights: → Solar generation is labor intensive. → Jobs per gigawatt hour statistics are often mis-leading. → The lower the capacity factor the higher the jobs per gigawatt. → Reliance on job creation statistics may lead to inefficient deployment.

  15. Capacity factors and solar job creation

    Energy Technology Data Exchange (ETDEWEB)

    Croucher, Matt, E-mail: matthew.croucher@asu.edu [Department of Economics, L. William Seidman Research Institute, W.P. Carey School of Business, Arizona State University, P.O. Box 873806, Tempe, AZ 85287 (United States)

    2011-11-15

    We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number. - Highlights: > Solar generation is labor intensive. > Jobs per gigawatt hour statistics are often mis-leading. > The lower the capacity factor the higher the jobs per gigawatt. > Reliance on job creation statistics may lead to inefficient deployment.

  16. Pairing and deformation effects in nuclear excitation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Repko, A. [Slovak Academy of Sciences, Institute of Physics, Bratislava (Slovakia); Kvasil, J. [Charles University, Institute of Particle and Nuclear Physics, Prague (Czech Republic); Nesterenko, V.O. [Joint Institute for Nuclear Research, Laboratory of Theoretical Physics, Dubna (Russian Federation); State University ' ' Dubna' ' , Dubna (Russian Federation); Reinhard, P.G. [Universitaet Erlangen, Institut fuer Theoretische Physik II, Erlangen (Germany)

    2017-11-15

    We investigate effects of pairing and of quadrupole deformation on two sorts of nuclear excitations, γ-vibrational K{sup π} = 2{sup +} states and dipole resonances (isovector dipole, pygmy, compression, toroidal). The analysis is performed within the quasiparticle random phase approximation (QRPA) based on the Skyrme energy functional using the Skyrme parametrization SLy6. Particular attention is paid to i) the role of the particle-particle (pp) channel in the residual interaction of QRPA, ii) comparison of volume pairing (VP) and surface pairing (SP), iii) peculiarities of deformation splitting in the various resonances. We find that the impact of the pp-channel on the considered excitations is negligible. This conclusion applies also to any other excitation except for the K{sup π} = 0{sup +} states. Furthermore, the difference between VP and SP is found small (with exception of peak height in the toroidal mode). In the low-energy isovector dipole (pygmy) and isoscalar toroidal modes, the branch K{sup π} = 1{sup -} is shown to dominate over the K{sup π} = 0{sup -} one in the range of excitation energy E < 8-10 MeV. The effect becomes impressive for the toroidal resonance whose low-energy part is concentrated in a high peak of almost pure K{sup π} = 1{sup -} nature. This peculiarity may be used as a fingerprint of the toroidal mode in future experiments. The interplay between pygmy, toroidal and compression resonances is discussed, the interpretation of the observed isoscalar giant dipole resonance is partly revised. (orig.)

  17. Effect of irradiation temperature and initial crystal doping level on defect creation efficiency in silicon

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Markevich, V.P.; Medvedeva, I.F.; Murin, L.I.

    1990-01-01

    The defect creation processes in n-type silicon irradiated by 60 Co gamma-rays or fast electrons (E = 4 MeV) have been investigated. Using electrical measurements the dependences of introduction efficiencies of the main radiation defects (A-, E-centres, carbon-related complexes) on the irradiation temperature (T irr = 77-470 K) and material doping level (N h = 2 x 10 12 - 2 x 10 15 cm -3 ) are obtained. It is shown that the efficiency of these defects formation is conditioned by the probability of the Frenkel pairs separation and depends strongly on the Fermi level position in crystals being irradiated. 9 refs.; 3 figs.; 1 tab

  18. Man creation had began since the creation of the first biological ...

    African Journals Online (AJOL)

    Keywords – Man creation, Early life evolution, Montmorillonite clay, RNA oligomerization ... appearance of specific conditions when liquid hydrocarbons and water could meet each ..... Journal of Physical Chemistry B. 112, 3597–3604. Nahvi ...

  19. Contextual-Based Knowledge Creation for Agroindustrial Innovation

    Directory of Open Access Journals (Sweden)

    Elisa Anggraeni

    2017-08-01

    Full Text Available This paper discusses the knowledge creation process in one department, in a higher educational context, and the possible actions to take to improve the efficiency and effectiveness of the knowledge creation system in it. We conducted a case study at one department of a university that strives to improve its innovations, in terms of their quantity and quality.We used a soft system methodology to investigate the knowledge creation system in the chosen department. From the study, we conclude that the department can be considered as a learning organization, within which its staff continually create, acquire and transfer knowledge. This department has a learning environment which is conducive, concrete learning processes, and leadership that reinforces learning. In the context of producing agroindustry innovations, the knowledge creation system in this department is considered to be less effective since it frequently happens more at individual or small group levels. To improve its effectiveness, the management may facilitate the institutionalization of knowledge creation processes at every phase of the interactions between tacit and explicit knowledge.

  20. Optimisation of a quantum pair space thruster

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-06-01

    Full Text Available The paper addresses the problem of propulsion for long term space missions. Traditionally a space propulsion unit has a propellant mass which is ejected trough a nozzle to generate thrust; this is also the case with inert gases energized by an on-board power unit. Unconventional methods for propulsion include high energy LASERs that rely on the momentum of photons to generate thrust. Anti-matter has also been proposed for energy storage. Although the momentum of ejected gas is significantly higher, the LASER propulsion offers the perspective of unlimited operational time – provided there is a power source. The paper will propose the use of the quantum pair formation for generating a working mass, this is different than conventional anti-matter thrusters since the material particles generated are used as propellant not as energy storage.Two methods will be compared: LASER and positron-electron, quantum pair formation. The latter will be shown to offer better momentum above certain energy levels.For the demonstrations an analytical solution is obtained and provided in the form of various coefficients. The implications are, for now, theoretical however the practicality of an optimized thruster using such particles is not to be neglected for long term space missions.

  1. High energy pair production in arbitrary configuration of intense electromagnetic fields

    International Nuclear Information System (INIS)

    Ayasli, S.; Hacinliyan, A.

    1978-01-01

    The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)

  2. Scale Model Simulation of Enhanced Geothermal Reservoir Creation

    Science.gov (United States)

    Gutierrez, M.; Frash, L.; Hampton, J.

    2012-12-01

    Geothermal energy technology has successfully provided a means of generating stable base load electricity for many years. However, implementation has been spatially limited to limited availability of high quality traditional hydro-thermal resources possessing the combination of a shallow high heat flow anomaly and an aquifer with sufficient permeability and continuous fluid recharge. Enhanced Geothermal Systems (EGS) has been proposed as a potential solution to enable additional energy production from the non-conventional hydro-thermal resources. Hydraulic fracturing is considered the primary means of creating functional EGS reservoirs at sites where the permeability of the rock is too limited to allow cost effective heat recovery. EGS reservoir creation requires improved fracturing methodology, rheologically controllable fracturing fluids, and temperature hardened proppants. Although large fracture volumes (several cubic km) have been created in the field, circulating fluid through these full volumes and maintaining fracture volumes have proven difficult. Stimulation technology and methodology as used in the oil and gas industry for sedimentary formations are well developed; however, they have not sufficiently been demonstrated for EGS reservoir creation. Insufficient data and measurements under geothermal conditions make it difficult to directly translate experience from the oil and gas industries to EGS applications. To demonstrate the feasibility of EGS reservoir creation and subsequent geothermal energy production, and to improve the understanding of hydraulic and propping in EGS reservoirs, a heated true-triaxial load cell with a high pressure fluid injection system was developed to simulate an EGS system from stimulation to production. This apparatus is capable of loading a 30x30x30 cubic cm rock sample with independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degree C. Multiple orientated boreholes of 5 to 10 mm

  3. Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory?

    International Nuclear Information System (INIS)

    Hupin, G; Lacroix, D; Bender, M

    2011-01-01

    The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.

  4. DSAM lifetime measurements for the chiral pair in {sup 194}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)

    2016-02-15

    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)

  5. Edward Burne-Jones’ The Days of Creation: A Celestial Utopia

    Directory of Open Access Journals (Sweden)

    Liana De Girolami Cheney

    2014-09-01

    Full Text Available Edward Burne-Jones’ cycle of The Days of Creation of 1870-66(Fogg Art Museum, Harvard University Museums, Cambridge, MA was highly praised and elegantly described by Oscar Wilde: “The picture is divided into six compartments, each representing a day in the Creation of the World, under the symbol of an angel holding a crystal globe, within which is shown the work of a day.” This essay examines how Burne-Jones visualized an unusual celestial creation where angels holding magical spheres unveil the divine manifestation for the creation of a terrestrial realm. His The Days of Creation is an aesthetic culmination of the artistic power of invention, imitation and creation of beauty. Burne-Jones borrows the divine concept of world creation to formulate his own artist creation. Selecting God’s week of creation, he empowers a daily angel to manifest the beauty and power of divine creation. Ultimately, Burne-Jones creates a cosmic utopia, a mythical heavenly and natural realm, where angels design a world of beauty to be emulated not only by the artist, but also by most of all by the viewer.

  6. On adiabatic pair potentials of highly charged colloid particles

    Science.gov (United States)

    Sogami, Ikuo S.

    2018-03-01

    Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.

  7. Theory of antiferromagnetic pairing in cuprate superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.

    2006-01-01

    A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed

  8. Pair bond endurance promotes cooperative food defense and inhibits conflict in coral reef butterflyfishes

    KAUST Repository

    Nowicki, Jessica; Walker, Stefan; Coker, Darren James; Hoey, Andrew; Nicolet, Katia; Pratchett, Morgan

    2017-01-01

    Pair bonding is generally linked to monogamous mating systems, where the reproductive benefits of extended mate guarding and/or of bi-parental care are considered key adaptive functions. However, in some species, including coral reef butterflyfishes (f. Chaetodonitidae), pair bonding occurs in sexually immature and homosexual partners, and in the absence of parental care, suggesting there must be non-reproductive adaptive benefits of pair bonding. Here, we examined whether pair bonding butterflyfishes cooperate in defense of food, conferring direct benefits to one or both partners. Pairs of Chaetodon lunulatus and C. baronessa use contrasting cooperative strategies. In C. lunulatus, both partners mutually defend their territory, while in C. baronessa, males prioritize territory defence; conferring improvements in feeding and energy reserves in both sexes relative to solitary counterparts. We further demonstrate that partner fidelity contributes to this function by showing that re-pairing invokes intra-pair conflict and inhibits cooperatively-derived feeding benefits, and that partner endurance is required for these costs to abate. Overall, our results suggest that in butterflyfishes, pair bonding enhances cooperative defense of prey resources, ultimately benefiting both partners by improving food resource acquisition and energy reserves.

  9. Pair bond endurance promotes cooperative food defense and inhibits conflict in coral reef butterflyfishes

    KAUST Repository

    Nowicki, Jessica P

    2017-11-14

    Pair bonding is generally linked to monogamous mating systems, where the reproductive benefits of extended mate guarding and/or of bi-parental care are considered key adaptive functions. However, in some species, including coral reef butterflyfishes (f. Chaetodonitidae), pair bonding occurs in sexually immature and homosexual partners, and in the absence of parental care, suggesting there must be non-reproductive adaptive benefits of pair bonding. Here, we examined whether pair bonding butterflyfishes cooperate in defense of food, conferring direct benefits to one or both partners. Pairs of Chaetodon lunulatus and C. baronessa use contrasting cooperative strategies. In C. lunulatus, both partners mutually defend their territory, while in C. baronessa, males prioritize territory defence; conferring improvements in feeding and energy reserves in both sexes relative to solitary counterparts. We further demonstrate that partner fidelity contributes to this function by showing that re-pairing invokes intra-pair conflict and inhibits cooperatively-derived feeding benefits, and that partner endurance is required for these costs to abate. Overall, our results suggest that in butterflyfishes, pair bonding enhances cooperative defense of prey resources, ultimately benefiting both partners by improving food resource acquisition and energy reserves.

  10. Pion-pair production by two photons

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1994-07-01

    The cross section for pion-pair production by two photons is calculated approximately by using the low energy theorem previously derived from partially-conserved-axial-vector-current hypothesis and current algebra, and found to agree very well with the experimental data recently obtained by the Mark II, TPC/Two-Gamma and CLEO Collaborations. (author)

  11. Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study

    International Nuclear Information System (INIS)

    Ouyang Fang-Ping; Peng Sheng-Lin; Chen Ling-Na; Sun Shu-Yuan; Xu Hui

    2011-01-01

    By using the first-principles calculations, the electronic structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I—V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Angular distribution of W boson pairs at a heavy Z-resonance

    International Nuclear Information System (INIS)

    Nandi, S.; Rizzo, T.G.

    1987-05-01

    In theories with an extra U(1) gauge boson (Z 2 ) at low energies. W boson pairs may be produced copiously by the process e + e - → Z 2 → W + W - at the Z 2 -resonance. We show that the angular distribution of the W pairs (produced at the Z 2 -resonance) is very different from that in the standard model, at the same center of mass energy, where it is dominated by t-channel neutrino exchange. These distributions will also be useful in distinguishing among the various models containing an extra Z-boson

  13. Understanding Fomalhaut as a Cooper pair

    Science.gov (United States)

    Feng, F.; Jones, H. R. A.

    2018-03-01

    Fomalhaut is a nearby stellar system and has been found to be a triple based on astrometric observations. With new radial velocity and astrometric data, we study the association between Fomalhaut A, B, and C in a Bayesian framework, finding that the system is gravitationally bound or at least associated. Based on simulations of the system, we find that Fomalhaut C can be easily destabilized through combined perturbations from the Galactic tide and stellar encounters. Considering that observing the disruption of a triple is probably rare in the solar neighbourhood, we conclude that Fomalhaut C is a so-called `gravitational pair' of Fomalhaut A and B. Like the Cooper pair mechanism in superconductors, this phenomenon only appears once the orbital energy of a component becomes comparable with the energy fluctuations caused by the environment. Based on our simulations, we find (1) an upper limit of 8 km s-1 velocity difference is appropriate when selecting binary candidates, and (2) an empirical formula for the escape radius, which is more appropriate than tidal radius when measuring the stability of wide binaries.

  14. Time distribution of muon pairs detected at 40 m. w. e

    Energy Technology Data Exchange (ETDEWEB)

    Badino, G [CNR, Istituto di Cosmo-geofisica, Turin, Italy; Fulgione, W [CNR, Istituto di Cosmo-geofisica, Turin; Cagliari, Universita, Cagliari, Italy); Periale, L [CNR, Istituto di Cosmo-geofisica; Torino, Universita, Turin, Italy)

    1982-08-21

    Experimental results are reported on the distribution of arrival time intervals between pairs of atmospheric muons detected at 40 m.w.e. underground and generated in interactions of primary nuclei with average energy about 600 GeV. A total number of 72,220 single muons was recorded with a total frequency of 7.1 muons per second, in good agreement with previous measurements at the same depth 2 x 10 to the -6th random coincidences per second were obtained, a negligible value. The temporal analysis showed very good agreement between data and stochastic predictions. It is concluded that the overabundance of short-delayed cosmic ray particles, if real at higher energies, is not present either at the lower energies of single muons or at the intermediate energies of muon pairs detected in the experiment.

  15. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

    Science.gov (United States)

    Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J.

    2018-04-01

    This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2–4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.

  16. Measurements of Pair Production and Electron Capture from the Continuum in Heavy Particle Collisions

    CERN Multimedia

    2002-01-01

    Large transient Coulomb fields, which are generated in collisions of high-Z systems at sufficiently high energies, lead to copious production of electron-positron pairs. It has been suggested that these lepton pairs might mask signals arising from plasma phase interaction. Pair-production cross sections have been calculated by several authors with results which differ significantly from each other. Some of the electrons produced may be captured into bound states of the ion, thereby, reducing its charge state by one unit. This process which has been termed ``Electron Capture from Pair Production``, represents the only electron capture pro which increases with energy, and as such, will dominate all others in the ultrarelativistic energy regime. Ions having undergone this process would be lost from storage-type accelerators. The absolute cross sections for capture have been calculated with results which differ by as much as an order of magnitude. If as large as some of the calculations predict, Relativistic Heav...

  17. Pair plasma in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Asseo, Estelle

    2003-01-01

    The main features of radiation received from pulsars imply that they are neutron stars which contain an extremely intense magnetic field and emit coherently in the radio domain. Most recent studies attribute the origin of the coherence to plasma instabilities arising in pulsar magnetospheres; they mainly concern the linear, or the nonlinear, character of the involved unstable waves. We briefly introduce radio pulsars and specify physical conditions in pulsar emission regions: geometrical properties, magnetic field, pair creation processes and repartition of relativistic charged particles. We point to the main ingredients of the linear theory, extensively explored since the 1970s: (i) a dispersion relation specific to the pulsar case; (ii) the characteristics of the waves able to propagate in relativistic pulsar plasmas; (iii) the different ways in which a two-humped distribution of particles may arise in a pulsar magnetosphere and favour the development of a two-stream instability. We sum up recent improvements of the linear theory: (i) the determination of a 'coupling function' responsible for high values of the wave field components and electromagnetic energy available; (ii) the obtention of new dispersion relations for actually anisotropic pulsar plasmas with relativistic motions and temperatures; (iii) the interaction between a plasma and a beam, both with relativistic motions and temperatures; (iv) the interpretation of observed 'coral' and 'conal' features, associated with the presence of boundaries and curved magnetic field lines in the emission region; (v) the detailed topology of the magnetic field in the different parts of the emission region and its relation to models recently proposed to interpret drifting subpulses observed from PSR 0943+10, showing 20 sub-beams of emission. We relate the nonlinear evolution of the two-stream instability and development of strong turbulence in relativistic pulsar plasmas to the emergence of relativistic solitons, able

  18. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory

    Science.gov (United States)

    Datta, Dipayan; Kossmann, Simone; Neese, Frank

    2016-09-01

    The domain-based local pair-natural orbital coupled-cluster (DLPNO-CC) theory has recently emerged as an efficient and powerful quantum-chemical method for the calculation of energies of molecules comprised of several hundred atoms. It has been demonstrated that the DLPNO-CC approach attains the accuracy of a standard canonical coupled-cluster calculation to about 99.9% of the basis set correlation energy while realizing linear scaling of the computational cost with respect to system size. This is achieved by combining (a) localized occupied orbitals, (b) large virtual orbital correlation domains spanned by the projected atomic orbitals (PAOs), and (c) compaction of the virtual space through a truncated pair natural orbital (PNO) basis. In this paper, we report on the implementation of an analytic scheme for the calculation of the first derivatives of the DLPNO-CC energy for basis set independent perturbations within the singles and doubles approximation (DLPNO-CCSD) for closed-shell molecules. Perturbation-independent one-particle density matrices have been implemented in order to account for the response of the CC wave function to the external perturbation. Orbital-relaxation effects due to external perturbation are not taken into account in the current implementation. We investigate in detail the dependence of the computed first-order electrical properties (e.g., dipole moment) on the three major truncation parameters used in a DLPNO-CC calculation, namely, the natural orbital occupation number cutoff used for the construction of the PNOs, the weak electron-pair cutoff, and the domain size cutoff. No additional truncation parameter has been introduced for property calculation. We present benchmark calculations on dipole moments for a set of 10 molecules consisting of 20-40 atoms. We demonstrate that 98%-99% accuracy relative to the canonical CCSD results can be consistently achieved in these calculations. However, this comes with the price of tightening the

  19. Z Boson Pair-Production at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2003-01-01

    Events stemming from the pair-production of Z bosons in e^+e^- collisions are studied using 217.4 pb^-1 of data collected with the L3 detector at centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events with b quarks is also investigated. Combining these events with those collected at lower centre-of-mass energies, the Standard Model predictions for the production mechanism are verified. In addition, limits are set on anomalous couplings of neutral gauge bosons and on effects of extra space dimensions.

  20. Energy-momentum tensor in the fermion-pairing model

    International Nuclear Information System (INIS)

    Kawati, S.; Miyata, H.

    1980-01-01

    The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory

  1. Strong Neutron Pairing in core+4n Nuclei.

    Science.gov (United States)

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  2. Research of the internal electron-positron pair production

    International Nuclear Information System (INIS)

    Fenyes, Tibor

    1985-01-01

    The phenomenon of internal electron-positron pair production by excited nuclei is briefly reviewed. The advantages of this phenomenon in nuclear structure investigations are pointed. The new Si(Li)-Si(Li) electron spectrometer with superconducting magnetic transporter (SMS) built at ATOMKI, Hungary, was tested for detection of internal electron-positron pair production events. Proton beam of a Van de Graaff accelerator of 5 MV was used to excite the target nuclei of sup(27)Al, sup(42)Ca and sup(19)F. The internal pair production coefficients were measured and compared with the data of literature. The detection efficiency of SMS is calculated to be (37+-7)%. The test proved that the SMS is suitable for nuclear structure investigations producing electron-positron pairs. The SMS of ATOMKI is recently the top instrument all over the world in this field: its detection efficiency, energy resolution and applicability for multipolarity identification are much better than these properties of other detectors. (D.Gy.)

  3. Pair plasma relaxation time scales.

    Science.gov (United States)

    Aksenov, A G; Ruffini, R; Vereshchagin, G V

    2010-04-01

    By numerically solving the relativistic Boltzmann equations, we compute the time scale for relaxation to thermal equilibrium for an optically thick electron-positron plasma with baryon loading. We focus on the time scales of electromagnetic interactions. The collisional integrals are obtained directly from the corresponding QED matrix elements. Thermalization time scales are computed for a wide range of values of both the total-energy density (over 10 orders of magnitude) and of the baryonic loading parameter (over 6 orders of magnitude). This also allows us to study such interesting limiting cases as the almost purely electron-positron plasma or electron-proton plasma as well as intermediate cases. These results appear to be important both for laboratory experiments aimed at generating optically thick pair plasmas as well as for astrophysical models in which electron-positron pair plasmas play a relevant role.

  4. Soft pair excitations and double-log divergences due to carrier interactions in graphene

    Science.gov (United States)

    Lewandowski, Cyprian; Levitov, L. S.

    2018-03-01

    Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.

  5. Equation of state for electron gas in the presence of electron-positron pairs

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, D; Nomoto, K [Tokyo Univ. (Japan). Coll. of General Education

    1975-12-01

    Fermi-Dirac integrals for partially relativistic, partially degenerate, electron gas are tabulated, especially for the region of electron-positron pair-creation in equilibrium with radiation field. Electrons are treated to be non-interacting particles. Independent entries for the table are non-dimensional temperature and a degeneracy parameter which is related directly with matter density. Thermodynamical quantities and their partial derivatives with respect to density and temperature are also given in table, which are intended for use in computing stellar evolution by means of a Henyey-type technique. This table is a supplement to one published earlier, in which only electrons were taken into account explicitly.

  6. Quantum creation of fermions in a hot universe

    International Nuclear Information System (INIS)

    Gyunter, U.; Zhuk, A.I.

    1987-01-01

    The creation of spinor particles in an arbitrary external field from states described by quadratic density matrices is considered. Expressions are obtained for the spectra of the created particles. It is shown that in the case of the creation of fermions (spin 1/2) in the Friedmann universe from states described by a thermal density matrix statistical effects significantly suppress the particle creation process

  7. Creative participation: collective sentiment in online co-creation communities

    NARCIS (Netherlands)

    Lee, H.H.M.; van Dolen, W.

    2015-01-01

    Co-creation communities allow companies to utilize consumers’ creative thinking in the innovation process. This paper seeks to understand the role of sentiment in user co-creation. The results suggest that management style can affect the success of co-creation communities. Specific employees’

  8. Positron-electron pairs produced in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ahmad, I.; Austin, Sam. M.; Back, B. B.; Betts, R. R.; Calaprice, F. P.; Chan, K. C.; Chishti, A.; Conner, C. M.; Dunford, R. W.; Fox, J. D.

    1999-01-01

    The production of positron-electron pairs in collisions of 238 U+ 232 Th at 5.95 MeV/nucleon, and of 238 U+ 181 Ta at 5.95, 6.1, and 6.3 MeV/nucleon, has been studied with the APEX spectrometer at Argonne National Laboratory. Several analyses have been performed to search for sharp structures in sum-energy spectra for positron-electron pairs. Such features have been reported in previous experiments. No statistically convincing evidence for such behavior is observed in the present data. (c) 1999 The American Physical Society

  9. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    Science.gov (United States)

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  10. Electron-positron pair production in ultrarelativistic atomic collisions: 6.4 TeV S16+ with Au, Pd and Al

    International Nuclear Information System (INIS)

    Datz, S.; Vane, C.R.; Dittner, P.F.; Krause, H.F.; Schuch, R.; Gao, H.; Hutton, R.

    1994-01-01

    Angular and momentum distributions have been measured for electron-positron pairs created in peripheral collisions of 6.4 TeV bare sulfur ions with thin targets of Al, Pd, and Au. Singly- and doubly-differential cross sections are presented for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Various physical parameters are deduced from the coincident electron and positron data, including probability distributions for the pair transverse momentum, the pair total energy, and the positron fraction of the pair energy

  11. Top quark pair production beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Muselli, Claudio [TIF Lab, Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Bonvini, Marco [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, OX1 3NP, Oxford (United Kingdom); Forte, Stefano [TIF Lab, Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marzani, Simone [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova,Via Dodecaneso 33, I-16146 Genova (Italy)

    2015-08-17

    We construct an approximate expression for the total cross section for the production of a heavy quark-antiquark pair in hadronic collisions at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s}. We use a technique which exploits the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummations, previously introduced and used in the case of Higgs production. We validate our method by comparing to available exact results up to NNLO. We find that N{sup 3}LO corrections increase the predicted top pair cross section at the LHC by about 4% over the NNLO.

  12. Top quark pair production beyond NNLO

    International Nuclear Information System (INIS)

    Muselli, Claudio; Bonvini, Marco; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2015-01-01

    We construct an approximate expression for the total cross section for the production of a heavy quark-antiquark pair in hadronic collisions at next-to-next-to-next-to-leading order (N 3 LO) in α s . We use a technique which exploits the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummations, previously introduced and used in the case of Higgs production. We validate our method by comparing to available exact results up to NNLO. We find that N 3 LO corrections increase the predicted top pair cross section at the LHC by about 4% over the NNLO.

  13. The potential of shared value creation: a theoretical analysis

    Directory of Open Access Journals (Sweden)

    Victor Danciu

    2016-06-01

    Full Text Available The urgent issues economy, environment and society are facing need new approaches which allow a well-balanced sharing of value created by the economy. A step forward is the concept of shared value creation. This paper aims to analyze the main features, the content of strategy of shared value creation and to propose the social innovation as main strategic way of shared value creation. At the beginning, the drivers and challenges of shared value creation are investigated in a systematized manner, in order to better understand why this new way of doing business is needed. Then, the concept and the three levels of shared value creation are investigated as sources of economic, environmental and social benefits that a business creates. These benefits depend on how efficient and diligent the company works. We are advancing the social innovation as main strategy having the greatest potential to create value with economic, environmental and social benefits. Finally, a framework for measurement of shared value creation is included. This framework is aiming at giving a tool for checking up the potential the shared value creation has for solving environmental and social issues.

  14. Quantum creation of the universe in N = 8 supergravity

    International Nuclear Information System (INIS)

    Goncharov, Yu.P.; Bytsenko, A.A.

    1988-01-01

    We discuss the possibility of quantum creation of an inflationary universe filled with the fields of maximal extended N = 8 supergravity. If the created universe has spatial topology (S 1 ) 3 and after the creation Starobinskii's inflationary scenario through the topological Casimir effect in N = 8 supergravity is realized, the probability of creation of such a universe can be estimated in the semiclassical approximation. The estimate shows that the creation of a universe with a more isotropic topology is more probable

  15. Co-creation, Prevailing Streams and a Future Design Trajectory

    DEFF Research Database (Denmark)

    Degnegaard, Rex

    2014-01-01

    of the literature on co-creation to explore what the existing literature relates to and indeed to pinpoint if any patterns or streams can be identified. The paper illustrates how the use of the concept of co-creation suggests a necessity for focusing further on specific co-creation-related issues and challenges...... of significance to business and society. The paper highlights new co-creation-related issues and challenges. Further, the paper crystallises an emerging design trajectory in theory and practice....

  16. Money creation process in a random redistribution model

    Science.gov (United States)

    Chen, Siyan; Wang, Yougui; Li, Keqiang; Wu, Jinshan

    2014-01-01

    In this paper, the dynamical process of money creation in a random exchange model with debt is investigated. The money creation kinetics are analyzed by both the money-transfer matrix method and the diffusion method. From both approaches, we attain the same conclusion: the source of money creation in the case of random exchange is the agents with neither money nor debt. These analytical results are demonstrated by computer simulations.

  17. Search for pair production of scalar top quarks in jets and missing transverse energy channel with the D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Mansoora [Kansas State Univ., Manhattan, KS (United States)

    2008-01-01

    This dissertation describes a search for the pair production of scalar top quarks, $\\tilde{t}$1, using a luminosity of 995 pb-1 of data collected in p$\\bar{p}$ collisions with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy √s = 1.96 TeV. Both scalar top quarks are assumed to decay into a charm quark and a neutralino, $\\tilde{X}$10, where $\\tilde{X}$10 is the lightest supersymmetric particle. This leads to a final state with two acoplanar charm jets and missing transverse energy. The yield of such events in data is found to be consistent with the expectations from known standard model processes. Sets of $\\tilde{X}$1 and $\\tilde{X}$10 masses are excluded at the 95% confidence level that substantially extend the domain excluded by previous searches. With the theoretical uncertainty on the $\\tilde{t}$1 pair production cross section taken into account, the largest limit for m$\\tilde{t}$1 is m$\\tilde{t}$1 > 150 GeV, for m$\\tilde{X}$10 = 65 GeV.

  18. Neutrino signal from pair-instability supernovae

    Science.gov (United States)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙Earth from two, one-dimensional pair-instability supernova simulations which bracket the mass range of stars which explode by this mechanism taking into account the full time and energy dependence of the neutrino emission and the flavor evolution through the outer layers of the star. We calculate the neutrino signals in five different detectors chosen to represent present or near future designs. We find the more massive progenitors explode as pair-instability supernova which can easily be detected in multiple different neutrino detectors at the "standard" supernova distance of 10 kpc producing several events in DUNE, JUNO, and Super-Kamiokande, while the lightest progenitors produce only a handful of events (if any) in the same detectors. The proposed Hyper-Kamiokande detector would detect neutrinos from a large pair-instability supernova as far as ˜50 kpc allowing it to reach the Megallanic Clouds and the several very high mass stars known to exist there.

  19. High spin exotic states and new method for pairing energy

    International Nuclear Information System (INIS)

    Molique, H.

    1996-01-01

    We present a new method called 'PSY-MB', initially developed in the framework of abstract group theory for the solution of the problem of strongly interacting multi-fermionic systems with particular to systems in an external rotating field. The validity of the new method (PSY-MB) is tested on model Hamiltonians. A detailed comparison between the obtained solutions and the exact ones is performed. The new method is used in the study of realistic nuclear Hamiltonians based on the Woods-Saxon potential within the cranking approximation to study the influence of residual monopole pairing interactions in the rare-earth mass region. In parallel with this new technique we present original results obtained with the Woods-Saxon mean-field and the self-consistent Hartree-Fock approximation in order to investigate such exotic effects as octupole deformations and hexadecapole C 4 -polarizing deformations in the framework of high-spin physics. By developing these three approaches in one single work we prepare the ground for the nuclear structure calculations of the new generation - where the residual two-body interactions are taken into account also in the weak pairing limit. (author)

  20. Order no 000062/MME/DAAF from June 15, 2009 provides for the creation, attributions and organization of Regional Directions, and departmental Arlit's Direction of the Ministry of Mines and Energy

    International Nuclear Information System (INIS)

    Mohamed, Abdoullahi

    2009-01-01

    This order provides for the creation, attributions and organization of Regional Directorates, and departmental Arlit's Directorate of the Ministry of Mines and Energy. It is created Regionale Directorates of Mines and Energy into each of the following places of region: Agadez, DIFFA, Dosso, Maradi, Niamey, TAHOUA, TILLABERI and ZINDER, and a Departmental Directorate of Mines and the Energy at Arlit. Each Regional Directorate is constituted of five divisions: Division of Geology, Division of Mines, Division of Energy, Division of Administration and Financial Matters, Documentation and Archives, and a division of Small Scale Operations Minieres and Careers. Regional Directorates are responsible for monitoring and control of the provisions of the Mining Code, the petroleum code and the code of the electricity and the application of all regulatory provisions relating to the sector of Mines and Energy. The Departemental Directorate includes: a service of the Geology, a service of Energy, Mines service, and service of a Small Scale Operations Minieres and Careers. [fr

  1. How to classify the hydro power renewable energy sources

    International Nuclear Information System (INIS)

    Kalchevski, S.

    2006-01-01

    In this report various classifications of hydropower renewable energy sources (HRES) used in several countries like: USA, China, Russia, EU and Bulgaria are given and discussed. The existence of numerous differences and peculiarities in the various national classifications all over the world require the creation of a common unification. In particular the peculiarity and heterogeneity of HRES in Bulgaria demands a creation of specific regulations about. There is a necessity in a creation of a new law of RES and preparation of united EU energy policy

  2. Anomalous creation and decay of top quarks

    CERN Document Server

    Hasegawa, S; The ATLAS collaboration

    2012-01-01

    Due to the top quark’s mass of 173.5 GeV/c2 which is around the energy scale of the spon- taneous symmetry breaking, appearance of new physics can be expected in its production and decay as an anomaly from the standard model expectation. The ATLAS and the CMS experiments have accumulated about 5 fb−1 of data of proton-proton collisions with 7 TeV center of mass energy in 2011, in which 800,000 top quarks pairs are expected. With this high statistics, the ATLAS and the CMS collaborations have investigated the top quark’s production and decay precisely and have reported the results consistent with the standard model.

  3. Interactivity, Game Creation, Design, Learning, and Innovation

    DEFF Research Database (Denmark)

    This book constitutes the proceedings of two conferences: The 5th International Conference on ArtsIT, Interactivity and Game Creation (ArtsIT 2016) and the First International Conference on Design, Learning and Innovation (DLI 2016). ArtsIT is reflecting trends in the expanding field of digital art......, interactive art, and how game creation is considered an art form. The decision was made to augment the title of ArtsIT to be in future known as “The International Conference on Interactivity, Game Creation, Design, Learning, and Innovation”. The event was hosted in Esbjerg, Denmark in May 2016 and attracted...

  4. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  5. Ontario emissions trading code : emission reduction credit creation, recording and transfer rules, rules for renewable energy projects and conservation projects, and rules for the operation of the Ontario Emissions Trading Registry

    International Nuclear Information System (INIS)

    2001-12-01

    Emissions trading has been an integral part of Ontario's air quality strategy since December 31, 2001. Ontario has adopted the 'cap, credit and trade' type of emissions trading system, a hybrid that takes the best features of pure 'cap-and-trade' and 'baseline-and-credit' type systems. It covers nitric oxide and sulphur dioxide. The Ontario Emissions Trading Code supplements Ontario Regulation 397/01 and sets out rules for renewable energy projects and conservation projects for which applications for emission allowances can be made. This Code describes the rules for the creation and transfer of emission reduction credits (ERCs). It also explains the rules for the operation of the registry that has been established to provide information to the public about the emissions trading program and records decisions about credit creation and credit and allowance retirement. 3 tabs

  6. Creation / accumulation city

    NARCIS (Netherlands)

    Doevendans, C.H.; Schram, A.L.

    2005-01-01

    A distinction between basic archetypes of urban form was made by Bruno Fortier: the accumulation city as opposed to the creation city. These archetypes derive from archaeology - being based on the Roman and the Egyptian city - but are interpreted as morphological paradigms, as a set of assumptions

  7. Majorana edge States in atomic wires coupled by pair hopping.

    Science.gov (United States)

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  8. Accounting for beta-particle energy loss to cortical bone via paired-image radiation transport (PIRT)

    International Nuclear Information System (INIS)

    Shah, Amish P.; Rajon, Didier A.; Patton, Phillip W.; Jokisch, Derek W.; Bolch, Wesley E.

    2005-01-01

    Current methods of skeletal dose assessment in both medical physics (radionuclide therapy) and health physics (dose reconstruction and risk assessment) rely heavily on a single set of bone and marrow cavity chord-length distributions in which particle energy deposition is tracked within an infinite extent of trabecular spongiosa, with no allowance for particle escape to cortical bone. In the present study, we introduce a paired-image radiation transport (PIRT) model which provides a more realistic three-dimensional (3D) geometry for particle transport in the skeletal site at both microscopic and macroscopic levels of its histology. Ex vivo CT scans were acquired of the pelvis, cranial cap, and individual ribs excised from a 66-year male cadaver (BMI of 22.7 kg m -2 ). For the three skeletal sites, regions of trabecular spongiosa and cortical bone were identified and segmented. Physical sections of interior spongiosa were taken and subjected to microCT imaging. Voxels within the resulting microCT images were then segmented and labeled as regions of bone trabeculae, endosteum, active marrow, and inactive marrow through application of image processing algorithms. The PIRT methodology was then implemented within the EGSNRC radiation transport code whereby electrons of various initial energies are simultaneously tracked within both the ex vivo CT macroimage and the CT microimage of the skeletal site. At initial electron energies greater than 50-200 keV, a divergence in absorbed fractions to active marrow are noted between PIRT model simulations and those estimated under existing techniques of infinite spongiosa transport. Calculations of radionuclide S values under both methodologies imply that current chord-based models may overestimate the absorbed dose to active bone marrow in these skeletal sites by 0% to 27% for low-energy beta emitters ( 33 P, 169 Er, and 177 Lu), by ∼4% to 49% for intermediate-energy beta emitters ( 153 Sm, 186 Re, and 89 Sr), and by ∼14% to

  9. Attenuation-based kV pair selection in dual source dual energy computed tomography angiography of the chest: impact on radiation dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Renapurkar, Rahul D.; Azok, Joseph; Lempel, Jason; Karim, Wadih; Graham, Ruffin [Thoracic Imaging, L10, Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Primak, Andrew [Siemens Medical Solutions, Malvern, PA (United States); Tandon, Yasmeen [Case Western Reserve University-Metro Health Medical Center, Department of Radiology, Cleveland, OH (United States); Bullen, Jennifer [Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (United States); Dong, Frank [Section of Medical Physics, Cleveland Clinic, Cleveland, OH (United States)

    2017-08-15

    The purpose of this study was to evaluate the impact of attenuation-based kilovoltage (kV) pair selection in dual source dual energy (DSDE)-pulmonary embolism (PE) protocol examinations on radiation dose savings and image quality. A prospective study was carried out on 118 patients with suspected PE. In patients in whom attenuation-based kV pair selection selected the 80/140Sn kV pair, the pre-scan 100/140Sn CTDIvol (computed tomography dose index volume) values were compared with the pre-scan 80/140Sn CTDIvol values. Subjective and objective image quality parameters were assessed. Attenuation-based kV pair selection switched to the 80/140Sn kV pair (''switched'' cohort) in 63 out of 118 patients (53%). The mean 100/140Sn pre-scan CTDIvol was 8.8 mGy, while the mean 80/140Sn pre-scan CTDIvol was 7.5 mGy. The average estimated dose reduction for the ''switched'' cohort was 1.3 mGy (95% CI 1.2, 1.4; p < 0.001), representing a 15% reduction in dose. After adjusting for patient weight, mean attenuation was significantly higher in the ''switched'' vs. ''non-switched'' cohorts in all five pulmonary arteries and in all lobes on iodine maps. This study demonstrates that attenuation-based kV pair selection in DSDE examination is feasible and can offer radiation dose reduction without compromising image quality. (orig.)

  10. The Mayo Clinic Value Creation System.

    Science.gov (United States)

    Swensen, Stephen J; Dilling, James A; Harper, C Michel; Noseworthy, John H

    2012-01-01

    The authors present Mayo Clinic's Value Creation System, a coherent systems engineering approach to delivering a single high-value practice. There are 4 tightly linked, interdependent phases of the system: alignment, discovery, managed diffusion, and measurement. The methodology is described and examples of the results to date are presented. The Value Creation System has been demonstrated to improve the quality of patient care while reducing costs and increasing productivity.

  11. Innovation and Entrepreneurship: The Necessary Conditions of Value Creation

    Directory of Open Access Journals (Sweden)

    Brian Barnard

    2017-10-01

    Full Text Available The necessary conditions of value creation are considered from the vantage point of innovation and entrepreneurship. Both demand side (basic needs, customer perceived value, and customer satisfaction and supply side (science, technology, and knowledge considerations of value creation are examined. The relationships between value creation and basic needs, customer perceived value, and knowledge are further examined. Although a number of factors are identified that impact value, only four are seen as primary factors of value: price, benefit, satisfaction, and experience. The innovator and entrepreneur can create value, and quantify the uniqueness of their value offerings, through these four primary factors. The study concludes that, on the demand side, basic needs may be an indirect driver of value creation, and customer perceived value as concept may be useful in the context of value creation. At the same time, it is believed that the four factors – price, benefit, satisfaction, and experience – can significantly explain value creation. On the supply side, innovation as the driver of value creation, is not necessarily confined to science and technology – business knowledge and acumen is an important avenue. In addition to existing knowledge and experience, factors like orientation (interests, passion, drive and involvement also explain opportunity recognition.

  12. Generalized pairing strategies-a bridge from pairing strategies to colorings

    Directory of Open Access Journals (Sweden)

    Győrffy Lajos

    2016-12-01

    Full Text Available In this paper we define a bridge between pairings and colorings of the hypergraphs by introducing a generalization of pairs called t-cakes for t ∈ ℕ, t ≥ 2. For t = 2 the 2-cakes are the same as the well-known pairs of system of distinct representatives, that can be turned to pairing strategies in Maker-Breaker hypergraph games, see Hales and Jewett [12]. The two-colorings are the other extremity of t-cakes, in which the whole ground set of the hypergraph is one big cake that we divide into two parts (color classes. Starting from the pairings (2-cake placement and two-colorings we define the generalized t-cake placements where we pair p elements by q elements (p, q ∈ ℕ, 1 ≤ p, q < t, p + q = t.

  13. What does existing research say about value co-creation?

    DEFF Research Database (Denmark)

    Thomsen, Merethe Stjerne; Tanev, Stoyan; Pedrosa, Alex

    2010-01-01

    The paper presents a literature review on co-creation, which is summarized into emerging research areas and insights as a basis for a future research agenda for value co-creation. The search methodology is based on a keywords search on ISI Web of Knowledge, leading to 82 articles with a summary...... of four emerging subject areas within marketing science, service management, new product development & innovation and general business and management. The four subject areas lead to new key driving forces of value co-creation by involving the customers in experience networks, where both creating......-customer interaction events, which are extremely personal with unique products, services and experiences. In general the paper is starting up a conceptual refinement on value co-creation by addressing the key characteristics of current literature and driving forces of co-creation....

  14. Hard Pomeron-odderon interference effects in the production of π+π- pairs in high energy γγ collisions at the LHC

    International Nuclear Information System (INIS)

    Pire, B.; Schwennsen, F.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We estimate the production of two meson pairs in high energy photon-photon collisions produced in ultraperipheral collisions at LHC. We show that the study of charge asymmetries may reveal the existence of the perturbative Odderon and discuss the concrete event rates expected at the LHC. Sizable rates and asymmetries are expected in the case of proton-proton collisions and medium values of γγ energies √(s γγ )≅20 GeV. Proton-proton collisions will benefit from a high rate due to a large effective γγ luminosity and ion-ion collisions with a somewhat lower rate from the possibility to trigger on ultraperipheral collisions and a reduced background from strong interactions.

  15. Fluctuations in transverse energy and multiplicity, energy densities, and neutral pion spectra in nucleus-nucleus collissions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The quantity most crucial to the probability of QGP formation is the thermalized energy density attained during the heavy-ion reaction. The amount of energy radiated transverse to the beam direction is the experimental quantity which is believed to be a measure of the amount of energy deposition in the reaction, and hence to reflect the energy density attained. In this presentation we consider the systematics of transverse energy production at CERN SPS energies, and we use the results to make estimates, under various assumptions, of attained energy densities. Measurements of direct photons and lepton pairs are considered to be among the most promising methods for studies of the QGP. In contrast to hadrons, direct photons are not expected to undergo any interactions after their creation. The WA80 collaboration has undertaken the measurement of direct photons, which is a difficult task due to the presence of a high background of photons from the decay of neutral pions. The π 0 spectra themselves, however, provide us with the opportunity to study the excited reaction zone during the hadronization phase. We present here measurements of neutral pions produced in 16 O + Au collisions at 200 GeV/nucleon. 22 refs., 11 figs

  16. Luminescence and defects creation in Ce3+-doped aluminium and lutetium perovskites and garnets

    International Nuclear Information System (INIS)

    Krasnikov, A.; Savikhina, T.; Zazubovich, S.; Nikl, M.; Mares, J.A.; Blazek, K.; Nejezchleb, K.

    2005-01-01

    Luminescence, scintillation response, energy transfer and defect creation processes were studied at 4.2-300K for Ce 3+ -doped YAlO 3 , Lu x Y 1-x AlO 3 (x=0.3) and Lu 3 Al 5 O 12 crystals under excitation in the 2.5-11.5eV energy range. Influence of the charge and ionic radius of co-doping ions on the efficiency of these processes, the origin of the defects created and possible mechanisms of their formation were discussed

  17. Molecular electrostatics for probing lone pair-π interactions.

    Science.gov (United States)

    Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R

    2013-11-14

    An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.

  18. Facilitating value co-creation in networks

    DEFF Research Database (Denmark)

    Rasmussen, Mette Apollo

    participants in varied ways come to grasp the meaning of networking. The dissertation draws on insights from the Service-Dominant (S-D) Logic to explain how networks can be seen as spheres for value co-creation. Co-creation as a theoretical construct has evolved from varied streams of service marketing...... of networking. The concept of “imaginative value” (Beckert, 2011) is used to explain the oscillating behaviors observed in the two networks. Imaginative value can be defined as symbolic value that actors ascribe to an object, in this case the network. I argue that the group practices in the networks led......The dissertation investigates through two ethnographic case studies how value co-creation takes place in inter-organizational networks that have been facilitated by a municipality. The contribution of the study to business network research is the emphasis on development phases of networks...

  19. Scaling properties of the pairing problem in the strong coupling limit

    International Nuclear Information System (INIS)

    Barbaro, M.B.; Cenni, R.; Molinari, A.; Quaglia, M.R.

    2013-01-01

    We study the excited states of the pairing Hamiltonian providing an expansion for their energy in the strong coupling limit. To assess the role of the pairing interaction we apply the formalism to the case of a heavy atomic nucleus. We show that only a few statistical moments of the level distribution are sufficient to yield an accurate estimate of the energy for not too small values of the coupling G and we give the analytic expressions of the first four terms of the series. Further, we discuss the convergence radius G sing of the expansion showing that it strongly depends upon the details of the level distribution. Furthermore G sing is not related to the critical values of the coupling G crit , which characterize the physics of the pairing Hamiltonian, since it can exist even in the absence of these critical points. -- Highlights: •We study the excitation spectrum of the pairing Hamiltonian. •We provide an analytic expansion around the strong coupling limit. •We discuss the convergence radius of the expansion. •We connect the radius with the critical points of H

  20. Photoproduction of Drell-Yan lepton pairs

    International Nuclear Information System (INIS)

    Jones, L.M.; Sullivan, J.D.; Willen, D.E.; Wyld, H.W.

    1979-01-01

    We investigate the Drell-Yan reaction γp → (μ + μ - ) X with an eye to experimental determination of the photon structure functions. Contributions to the process from both the nonhadronic anomaly and the vector-dominance piece are estimated: we find that the cross section from the anomaly dominates the vector-dominance contribution at large Q 2 . The background from Bethe-Heitler pairs is also calculated; it is somewhat suppressed by going to y=0, and further suppressed relative to the Drell-Yan contribution for fixed Q 2 by looking at high center-of-mass energies and at small Q/sub perpendicular/ for the pair. Overall we find that the absolute Drell-Yan cross sections in the regions of interest are very small; experimental study of the process will be difficult

  1. Science, evolution, and creationism

    National Research Council Canada - National Science Library

    Committee on Revising Science and Creationism

    ... are more comfortable. In the book Science, Evolution, and Creationism, a group of experts assembled by the National Academy of Sciences and the Institute of Medicine explain the fundamental methods of science, document...

  2. The design and construction of a scintillation pair spectrometer for the detection of {gamma}-rays in the energy range 2-20 MeV; Realisation d'un spectrometre a scintillations et a paires pour la detection des rayonnements {gamma} d'energie comprise entre 2 et 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Longequeue, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-15

    The scintillation pair spectrometer is designed to allow the measurement of the energy of {gamma} rays in the range 2 to 20 MeV. Such an instrument is chosen because of its main features: high energy resolution and ease of working. Against this, however, the efficiency is low. It was possible to tolerate this low efficiency because of the facts that the {gamma}-rays studied emanated from (p, {gamma}) reactions and that the two electrostatic acceleration available could provide beams of 500 {mu}A having energy maxima at 300 and 600 keV. We used the {gamma} rays produced by the reactions {sup 23}Na (p, {gamma}) {sup 24}Mg, {sup 19}F (p, {alpha} {gamma}) {sup 16}O and {sup 7}Li (p, {gamma}) {sup 8}Be as well as the {gamma} rays emitted by sources of RTh and of {sup 24}Na. Under these conditions the spectrometer attained a resolving power of 6,5 {+-} 0,5 per cent at 6,1 MeV and it was able to separate the 14,8 and 17,6 MeV lines produced by the reaction {sup 7}Li (p, {gamma}) {sup 8}Be. As well as this, the efficiency which varied from 2.10{sup -4} to 1,7.10{sup -3} between 2 and 20 MeV was well above the efficiencies already obtained with this type of instrument. (author) [French] Le spectrometre a scintillations et a paires presente dans cette these a pour but de mesurer l'energie des rayonnements {gamma} dans la bande de 2 a 20 MeV. Le choix d'un tel appareil est du a ses caracteristiques essentielles: bonne resolution en energie et maniabilite. Par contre, son efficacite est faible. Nous avons pu tolerer cette faible efficacite car les rayonnements {gamma} que nous avons etudies provenaient de reactions (p, {gamma}) et les deux accelerateurs electrostatiques dont nous disposions pouvaient fournir des faisceaux de 500 {mu}A avec des energies maximum de 300 et 600 keV. Nous avons utilise les rayonnements {gamma} produits par les reactions {sup 23}Na (p, {gamma}) {sup 24}Mg, {sup 19}F (p, {alpha} {gamma}) {sup 16}O et {sup 7}Li (p, {gamma}) {sup 8}Be ainsi que les

  3. Near quantum limited amplification from inelastic Cooper-pair tunneling

    Science.gov (United States)

    Hofheinz, Max; Jebari, Salha; Blanchet, Florian; Grimm, Alexander; Hazra, Dibyendu; Albert, Romain; Portier, Fabien

    Josephson parametric amplifiers approach quantum-limited noise performance but require strong external microwave pump tones which make them more difficult to use than DC powered amplifiers: The pump tone can affect the device under test and requires expensive room-temperature equipment. Inelastic Cooper pair tunneling processes through a small DC voltage-biased Josephson junction, where a tunneling Cooper pair dissipates its energy 2 eV in the form of two photons are reminiscent of parametric down conversion. We show that these processes can be used to provide amplification near the quantum limit without external microwave pump tone. We explain the measured gain and noise based on the P (E) theory of inelastic Cooper pair tunneling and general fluctuation-dissipation relations.

  4. Pair interaction of bilayer-coated nanoscopic particles

    International Nuclear Information System (INIS)

    Qi-Yi, Zhang

    2009-01-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery. (condensed matter: structure, thermal and mechanical properties)

  5. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  6. Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair

    OpenAIRE

    Hassan, Hassan

    2014-01-01

    In the present study, dynamic analysis and performance evaluation of a solar-powered continuous operation adsorption chiller are introduced. The adsorption chiller uses silica gel and water as the working pair. The developed mathematical model represents the heat and mass transfer within the reactor coupled with the energy balance of the collector plate and the glass cover. Moreover, a non-equilibrium adsorption kinetic model is taken into account by using the linear driving force equation. T...

  7. Is co-creation really a booster for brand equity? The role of co-creation in observer-based equity (OBBE)

    NARCIS (Netherlands)

    Kristal, Samuel; Baumgarth, Carsten; Behnke, Carolin; Henseler, Jörg

    2016-01-01

    Purpose This paper aims to analyse the general effect of co-created products on the brand equity of observers (OBBE). The influence of different implementations of the co-creation approach on the OBBE is tested. It is also discussed whether co-creation can be a strategic method for companies to

  8. Measurement of W-pair production in $e^{+}e^{-}$ collisions at 183 GeV

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Morawitz, P.; Pacheco, A.; Park, I.C.; Riu, I.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Loomis, C.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Vreeswijk, M.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Raine, C.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Ward, J.J.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Nowell, J.; Sciaba, A.; Sedgbeer, J.K.; Spagnolo, P.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A.P.; Bowdery, C.K.; Buck, P.G.; Colrain, P.; Crawford, G.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Williams, M.; van Gemmeren, P.; Giehl, I.; Holldorfer, F.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Jacholkowska, A.; Kado, M.; Lefrancois, J.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Zerwas, D.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Chambers, J.T.; Coles, J.; Cowan, G.; Green, M.G.; Hutchcroft, D.E.; Jones, L.T.; Medcalf, T.; Strong, J.A.; Von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.L.; Combley, F.; Hodgson, P.N.; Kelly, M.S.; Lehto, M.H.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Foss, J.; Grupen, C.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.E.; Wasserbaech, S.; Williams, R.W.; Armstrong, S.R.; Charles, E.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Greening, T.C.; Hayes, O.J.; Hu, H.; Jin, S.; Mamier, G.; McNamara, P.A.; Nachtman, J.M.; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Vogt, M.; Walsh, J.; Wu, S.L.; Wu, X.; Zobernig, G.

    1999-01-01

    The production of W+W- pairs is analysed in a data sample collected by ALEPH at a mean centre-of-mass energy of 182.7 GeV, corresponding to an integrated luminosity of 57 pb-1. Cross sections are given for different topologies of W decays into leptons or hadrons. Under Standard Model assumptions for the W-pair production and decay, the W-pair cross section is measured to be 15.57+-0.62(stat.)+-0.29(syst.) pb. Using also the W-pair data samples collected by ALEPH at lower centre-of-mass energies, the decay branching ratio of the W boson into hadrons is measured to be B(W->hadrons)= 68.93+-1.21(stat.)+-0.51(syst.)%, allowing a determination of the CKM matrix element |Vcs|= 1.043 +- 0.058(stat.) +- 0.026(syst.). The agreement of the cross sections with the Standard Model prediction allows a limit to be set on the W decay rate to undetectable final states.

  9. Astronomy and Creationism.

    Science.gov (United States)

    Morrison, David

    1982-01-01

    Discusses the effects on astronomy courses/curriculum if equal time were given to the concept that the universe was created in its present form about ten thousand years ago. Includes the full text on a resolution concerning creationism passed by the Board of Directors of the Astronomical Society of the Pacific. (Author/JN)

  10. The Principles of Self Creation Cosmology and its Comparison with General Relativity

    OpenAIRE

    Barber, G. A.

    2002-01-01

    There are, at present, several gravitational and cosmological anomalies; the dark energy problem, the lambda problem, accelerating cosmological expansion, the anomalous Pioneer spacecraft acceleration, a spin-up of the Earth and an apparent variation of G observed from analysis of the evolution of planetary longitudes. These conundrums may be resolved in the theory of Self Creation Cosmology, in which the Principle of Mutual Interaction subsumes both Mach's Principle and the Local Conservatio...

  11. Value Creation by Process-Oriented Project Management

    NARCIS (Netherlands)

    Geijtenbeek, W.; Eekelen, van A.L.M.; Kleine, A.J.; Favie, R.; Maas, G.J.; Milford, R.

    2007-01-01

    The start of a design process based on value creation requires a different approach and new models. The aim of this study is to provide insight into how a design process based on value creation can be initiated. The intended result of the study is the design of the of a collaboration model that can

  12. Reconstruction and Identification of Boosted Tau Pair Topologies at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00524951; Kobel, Michael

    Decays that involve a pair of tau leptons in the final state are important channels for the search of heavy resonances, which are predicted by theories that go beyond the Standard Model of particle physics. With the restart of LHC in 2015 higher energies and particle masses will be reachable for these processes. Thus, in particular the understanding of highly boosted tau pairs in the high energy region is essential for the search for new physics. With the current approach of tau reconstruction it is not possible to reconstruct di-tau topologies with low spatial separation. % two tau leptons with a low distance separately. Due to the usage of anti-$k_t$-4 seed jets, tau leptons with a sum of transverse momenta of $p_\\mathrm{T} \\gtrsim 500\\,\\mathrm{GeV}$ or respectively an angular distance of $\\Delta R < 0.4$, merge into the same jet. Therefore, in this thesis a new approach of di-tau reconstruction is introduced, which extends the sensitivity to tau pair decays to up to $p_\\mathrm{T} \\approx 1200\\,\\math...

  13. NEW VENTURE CREATION: HOW START-UPS GROW?

    Directory of Open Access Journals (Sweden)

    AIDIN SALAMZADEH

    Full Text Available ABSTRACT Start-ups, often seen as sources of innovation and change, are prone to failure and accordingly they are attracting considerable attention not least from policy makers and Government officials. However, the various new venture creation studies that have emerged since the early 1980s lack cohesiveness, and the domain remains controversial. This article not only exposes the limitations of the existing body of understanding on the topic but attempts to develop a more comprehensive and comprehendible framework for start up (new venture creation. To do so it uses the frameworks proposed by Whetten, and March and Smith to develop 11 propositions. The resultant model suggests that the creation of a start up involves the identification of an idea or opportunity by an entrepreneur who subsequently organizes a series of activities, mobilizes resources and creates competence using his/her networks in an environment in order to create value. It sheds light on the start-up (new venture creation process and has relevance for entrepreneurs, policy makers and researchers.

  14. English for au pairs the au pair's guide to learning English

    CERN Document Server

    Curtis, Lucy

    2014-01-01

    English for Au Pairs has interlinked stories about a group of au pairs new to England. Marta, an 18-year-old from Poland arrives in the UK to work as an au pair. Throughout her year-long stay she has many different experiences - some bad, some good - but with the support of her host family she finds new friends and improves her English. English for Au Pairs offers insight into the joys and difficulties of being an au pair while at the same time reinforcing English language learning through grammar explanations and exercises.

  15. Calculation of nuclear moment of inertia with proper treatment of pairing interaction

    International Nuclear Information System (INIS)

    Tazaki, S.; Ando, Y.; Hasegawa, M.

    1997-01-01

    An attempt to calculate nuclear moments of inertia treating the pairing interaction exactly is reported. As usual, hamiltonian is composed of the Nilsson's singleparticle energies and the pairing interaction, but the eigenstates and the eigenvalues are calculated exactly in a realistic, sufficiently large model space. The method of calculating the moment of inertia is presented. (author)

  16. Dynamic wormholes with particle creation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Supriya; Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata (India)

    2015-01-01

    The present work deals with a spherically symmetric space-time which is asymptotically (at spatial infinity) FRW space-time and represents wormhole configuration: The matter component is divided into two parts - (a) dissipative but homogeneous and isotropic fluid, and (b) an inhomogeneous and anisotropic barotropic fluid. Evolving wormhole solutions are obtained when isotropic fluid is phantom in nature and there is a big rip singularity at the end. Here the dissipative phenomena is due to the particle creation mechanism in non-equilibrium thermodynamics. Using the process to be adiabatic, the dissipative pressure is expressed linearly to the particle creation rate. For two choices of the particle creation rate as a function of the Hubble parameter, the equation of state parameter of the isotropic fluid is constrained to be in the phantom domain, except in one choice, it is possible to have wormhole configuration with normal isotropic fluid. (orig.)

  17. Hopping ladder and power relaxation due to donor-acceptor pairs

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    Hopping between donor-acceptor pairs leads to peculiar temperature dependence of the conductivity and the photoconductivity under subband gap illumination in the form of non-linear activation energies ladder. The correlated and uncorrelated distributions of pairs are considered and the conditions for the ladder existence are determined. The relaxation of the carrier concentration fluctuations is studied and power type decay is found. The temperature dependence of the exponent is calculated in agreement with the non-exponential decay of the pulse excited luminescence observed by Dean et al. The temperature dependence of the luminescence intensity also shows variable activation energy as found here. The exponent value α=1.316 is also in agreement with the data for crystalline and amorphous materials. (author)

  18. Mobile, Collaborative Situated Knowledge Creation for Urban Planning

    Directory of Open Access Journals (Sweden)

    Nelson Baloian

    2012-05-01

    Full Text Available Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations.

  19. Examine the Role of Brand Experience in Value Co-creation.

    OpenAIRE

    Khachontantiphop, Phalida

    2011-01-01

    The previous experience with brand influences the consumer decision and consumer behavior. The brand is significant criteria in the evaluation of brand alternatives, especially co-creation of value. The co-creation offering is able to assess when the consumer participate and consume it. The consumer has the difficulty to make the purchasing decision. Moreover, the co-creation requires the higher involvement from the consumer to participate in the co-creation process with the company. The bran...

  20. Full one-loop QCD and electroweak corrections to sfermion pair production in γγ collisions

    International Nuclear Information System (INIS)

    Xing Lirong; Zhang Renyou; Jiang Yi; Han Liang; Li Gang; Ma Wengan

    2005-01-01

    We have calculated the full one-loop electroweak (EW) and QCD corrections to the third generation scalar-fermion pair production processes e + e - →γγ→f i -tildef i -tilde(f=t,b,τ) at an electron-positron linear collider(LC) in the minimal supersymmetric standard model (MSSM). We analyze the dependence of the radiative corrections on the parameters such as the colliding energy √(s-circumflex) and the SUSY fundamental parameters A f , tanβ, μ, M SUSY and so forth. The numerical results show that the EW corrections to the squark-, stau-pair production processes and QCD corrections to the squark-pair production processes give substantial contributions in some parameter space. The EW relative corrections to squark-pair production processes can be comparable with QCD corrections at high energies. Therefore, these EW and QCD corrections cannot be neglected in precise measurement of sfermion pair productions via γγ collision at future linear colliders

  1. FROM THE HISTORY OF LASER CREATION

    Directory of Open Access Journals (Sweden)

    I.M. Belousova

    2014-03-01

    Full Text Available The paper briefly describes the history of formation of a new science direction - quantum electronics, associated with the discovery of masers and lasers by scientists from the USA (Ch. Townes and the USSR (N.G. Basov and A. M. Prokhorov. The world's first ruby laser designed by T. Maiman is described. Some historical events devoted to creation and research of lasers are given in which the author of the paper as well as research workers from Vavilov State Optical Institute, ITMO University and LOMO have taken direct part in the development of solid-state and gas lasers (helium-neon, photodissociation, CO2-lasers and laser optical systems. Contribution of researchers from Vavilov State Optical Institute, LOMO and ITMO University to large-scale programs on development of lasers for laser nuclear fusion, laser weapons and “Phobos” program is shown. The paper deals in brief with new issues of development and application of lasers, mainly, within the project of laser orbital space station of the future, for the conversion of solar energy into laser radiation. Description of idea of solar energy transformation by fullerene-oxygen laser is presented. The patent for it has been taken out by Vavilov State Optical Institute. Developed fullerene-oxygen-iodine laser and laser structure models for industrial applications and solar energy conversion into laser radiation are described. Parameters for hypothetical laser-optical system of the future space station are given.

  2. Logistics potentials in business competitive advantage creation

    Directory of Open Access Journals (Sweden)

    Rafał Matwiejczuk

    2013-12-01

    Full Text Available Background: Companies constantly search for ways to achieve and sustain long-term competitive advantage. Among the factors influencing the competitive advantage creation there are so called logistics potentials, which constitute a component part of a business strategic potentials. Logistics resources, logistics capabilities and logistics competences are the main components of the logistics potentials structure and hierarchy. Methods: In order to recognize the logistics potentials which determine the competitive advantage creation one may use the assumptions and elements of contemporary management concepts, including strategic management. In particular the article deals with Resource-Based View (RBV, Dynamic Capabilities Concept (DCC and - first of all - Competence-Based Management (CBM. Results and conclusions: Several significant research projects have presented a wide scope and a large number of possibilities of logistics potentials (and logistics competences in particular influence on business competitive advantage creation. The article briefly presents the research results conducted by: (1 Michigan State University (USA, (2 European Logistics Association (ELA in cooperation with A.T. Kearney, (3 Computer Sciences Corporation and (4 Capgemini. The research results have pointed out to differentiated but at the same distinctive symptoms of logistics competences influence on competitive advantage creation. The article also refers to the results of the research carried out by the Chair of Logistics & Marketing at Opole University (Poland in companies operating in Poland. The research has been mainly dealing with the significance of logistics competences in competitive advantage creation.

  3. Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states: Non-classical and non-Gaussian properties

    Science.gov (United States)

    Xu, Xue-Xiang; Yuan, Hong-Chun; Wang, Yan

    2014-07-01

    We investigate the nonclassical properties of arbitrary number photon annihilation-then-creation operation (AC) and creation-then-annihilation operation (CA) to the thermal state (TS), whose normalization factors are related to the polylogarithm function. Then we compare their quantum characters, such as photon number distribution, average photon number, Mandel Q-parameter, purity and the Wigner function. Because of the noncommutativity between the annihilation operator and the creation operator, the ACTS and the CATS have different nonclassical properties. It is found that nonclassical properties are exhibited more strongly after AC than after CA. In addition we also examine their non-Gaussianity. The result shows that the ACTS can present a slightly bigger non-Gaussianity than the CATS.

  4. Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states: Non-classical and non-Gaussian properties

    International Nuclear Information System (INIS)

    Xu Xue-Xiang; Wang Yan; Yuan Hong-Chun

    2014-01-01

    We investigate the nonclassical properties of arbitrary number photon annihilation-then-creation operation (AC) and creation-then-annihilation operation (CA) to the thermal state (TS), whose normalization factors are related to the polylogarithm function. Then we compare their quantum characters, such as photon number distribution, average photon number, Mandel Q-parameter, purity and the Wigner function. Because of the noncommutativity between the annihilation operator and the creation operator, the ACTS and the CATS have different nonclassical properties. It is found that nonclassical properties are exhibited more strongly after AC than after CA. In addition we also examine their non-Gaussianity. The result shows that the ACTS can present a slightly bigger non-Gaussianity than the CATS. (general)

  5. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  6. Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing

    International Nuclear Information System (INIS)

    Wood, R.F.

    1993-06-01

    The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons

  7. Isoscalar and isovector pairing in a formalism of quartets

    Energy Technology Data Exchange (ETDEWEB)

    Sambataro, M., E-mail: michelangelo.sambataro@ct.infn.it [Istituto Nazionale di Fisica Nucleare – Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Sandulescu, N., E-mail: sandulescu@theory.nipne.ro [National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Magurele, Bucharest (Romania); Johnson, C.W., E-mail: cjohnson@mail.sdsu.edu [Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1233 (United States)

    2015-01-05

    Isoscalar (T=0, J=1) and isovector (T=1, J=0) pairing correlations in the ground state of self-conjugate nuclei are treated in terms of alpha-like quartets built by two protons and two neutrons coupled to total isospin T=0 and total angular momentum J=0. Quartets are constructed dynamically via an iterative variational procedure and the ground state is represented as a product of such quartets. It is shown that the quartet formalism describes accurately the ground state energies of realistic isovector plus isoscalar pairing Hamiltonians in nuclei with valence particles outside the {sup 16}O, {sup 40}Ca and {sup 100}Sn cores. Within the quartet formalism we analyze the competition between isovector and isoscalar pairing correlations and find that for nuclei with the valence nucleons above the cores {sup 40}Ca and {sup 100}Sn the isovector correlations account for the largest fraction of the total pairing correlations. This is not the case for sd-shell nuclei for which isoscalar correlations prevail. Contrary to many mean-field studies, isovector and isoscalar pairing correlations mix significantly in the quartet approach.

  8. Universality-class crossover by a nonorder field introduced to the pair contact process with diffusion

    Science.gov (United States)

    Park, Su-Chan

    2017-09-01

    The one-dimensional pair contact process with diffusion (PCPD), an interacting particle system with diffusion, pair annihilation, and creation by pairs, has defied consensus about the universality class to which it belongs. An argument by Hinrichsen [Physica A 361, 457 (2006), 10.1016/j.physa.2005.06.101] claims that freely diffusing particles in the PCPD should play the same role as frozen particles when it comes to the critical behavior. Therefore, the PCPD is claimed to have the same critical phenomena as a model with infinitely many absorbing states that belongs to the directed percolation (DP) universality class. To investigate if diffusing particles are really indistinguishable from frozen particles in the sense of the renormalization group, we study numerically a variation of the PCPD by introducing a nonorder field associated with infinitely many absorbing states. We find that a crossover from the PCPD to DP occurs due to the nonorder field. By studying a similar model, we exclude the possibility that the mere introduction of a nonorder field to one model can entail a nontrivial crossover to another model in the same universality class, thus we attribute the observed crossover to the difference of the universality class of the PCPD from the DP class.

  9. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  10. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    Science.gov (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  11. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.

    2005-01-01

    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  12. Enhancement of tunnel conductivity by Cooper pair fluctuations in electron-hole bilayer

    International Nuclear Information System (INIS)

    Efimkin, D K; Lozovik, Yu E

    2012-01-01

    Influence of Cooper pair fluctuations that are precursor of pairing of electrons and holes located on opposite surfaces of topological insulator film on tunnel conductivity between the surfaces is investigated. Due to restrictions caused by momentum and energy conservation dependence of tunnel conductivity on external bias voltage has peak that becomes more prominent with decreasing of disorder and temperature. We have shown that Cooper pair fluctuations considerably enhance tunneling and height of the peak diverges in vicinity of critical temperature with critical index ν = 2. Width of the peak tends to zero in proximity of critical temperature. Pairing of electrons and holes can be suppressed by disorder and in vicinity of quantum critical point height of the peak also diverges as function of Cooper pair damping with critical index μ = 2.

  13. Creation of particles by time-dependent gravitational fields

    International Nuclear Information System (INIS)

    Castagnino, M.; Weder, R.

    1979-01-01

    A method based on the formulation of a quantum equivalence principle is introduced in order to define particle annihilation and creation operators during the expansion of the universe. Our theory predicts the creation of a finite number of particles. (orig.)

  14. Fis protein induced λF-DNA bending observed by single-pair fluorescence resonance energy transfer

    Science.gov (United States)

    Chi-Cheng, Fu; Wunshain, Fann; Yuan Hanna, S.

    2006-03-01

    Fis, a site-specific DNA binding protein, regulates many biological processes including recombination, transcription, and replication in E.coli. Fis induced DNA bending plays an important role in regulating these functions and bending angle range from ˜50 to 95 dependent on the DNA sequence. For instance, the average bending angle of λF-DNA (26 bp, 8.8nm long, contained λF binding site on the center) measured by gel mobility shift assays was ˜ 94 . But the traditional method cannot provide information about the dynamics and the angle distribution. In this study, λF-DNA was labeled with donor (Alexa Fluor 546) and acceptor (Alexa Fluor 647) dyes on its two 5' ends and the donor-acceptor distances were measured using single-pair fluorescence resonance energy transfer (sp-FRET) with and without the present of Fis protein. Combing with structure information of Fis-DNA complex, the sp-FRET results are used to estimate the protein induced DNA bending angle distribution and dynamics.

  15. The mechanism of producing energy-polarization entangled photon pairs in the cavity-quantum electrodynamics scheme

    International Nuclear Information System (INIS)

    Shu Chang-Gan; Xin Xia; Liu Yu-Min; Yu Zhong-Yuan; Yao Wen-Jie; Wang Dong-Lin; Cao Gui

    2012-01-01

    We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in the strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of the system is analysed by employing the Born—Markov master equation, through which the spectra for the system are computed as a function of various parameters. By means of this analysis the photon-reabsorption process in the strong-coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Order no 058/MME/DAAF from June 13, 2003 provides for the creation, attributions and organization of Departmental Directorates, Direction of urban Niamey's communauty and Arlit's Arrondissement Service of the Ministry of Mines and Energy

    International Nuclear Information System (INIS)

    Rabiou Hassane, Yari

    2003-01-01

    This order provides for the creation, attributions and organization of Departemental Directorates, Direction of urban Niamey's communauty and Arlit's Arrondissement Service of the Ministry of Mines and Energy. It is created a Departmental Directorate of Mines and Energy into each of the following places of region: AGADEZ, DIFFA, , MARADI, TAHOUA, TILLABERI and ZINDER, and Direction of urban Niamey's communauty and Arlit's Arrondissement Service of the Ministry of Mines and Energy. Each Departmental and communal Directorate is constitued of: a service of the Geology's Research and Mining, Mines service, a Service of Electricity and new Energies and renewlables, a Service of hydrocarbures and an Administrative and Financial Service. Arrondissement Service includes: a Division of Mines and Geology, a Division of Energy and an admistrative and Financial Division. [fr

  17. Entrepreneuring as Organisation-Creation

    DEFF Research Database (Denmark)

    Hjorth, Daniel

    2014-01-01

    This chapter aims at making a contribution to the study of entrepreneurship and creativity by developing a processual conceptualisation of a form of entrepreneurial creativity called entrepreneuring or organisation-creation. Such a processual conceptualisation of entrepreneuring will answer...

  18. On the Creation of Solitons in Amplifying Optical Fibers

    Directory of Open Access Journals (Sweden)

    Christoph Mahnke

    2018-01-01

    Full Text Available We treat the creation of solitons in amplifying fibers. Strictly speaking, solitons are objects in an integrable setting while in real-world systems loss and gain break integrability. That case usually has been treated in the perturbation limit of low loss or gain. In a recent approach fiber-optic solitons were described beyond that limit, so that it became possible to specify how and where solitons are eventually destroyed. Here we treat the opposite case: in the presence of gain, new solitons can arise from an initially weak pulse. We find conditions for that to happen for both localized and distributed gain, with no restriction to small gain. By tracing the energy budget we show that even when another soliton is already present and copropagates, a newly created soliton takes its energy from radiation only. Our results may find applications in amplified transmission lines or in fiber lasers.

  19. Search for Resonances in the Photoproduction of Proton-Antiproton Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, Burnham [Florida State Univ., Tallahassee, FL (United States)

    2006-01-01

    Results are reported on the reaction γp → p$\\bar{p}$p with beam energy in the range 4.8-5.5 GeV. The data were collected at the Thomas Jefferson National Accelerator Facility in CLAS experiment E01-017(G6C). The focus of this study is an understanding of the mechanisms of photoproduction of proton-antiproton pairs, and to search for intermediate resonances, both narrow and broad, which decay to p$\\bar{p}$. The total measured cross section in the photon energy range 4.8-5.5 GeV is σ = 33 ± 2 nb. Measurement of the cross section as a function of energy is provided. An upper limit on the production of a narrow resonance state previously observed with a mass of 2.02 GeV/c2 is placed at 0.35 nb. No intermediate resonance states were observed. Meson exchange production appears to dominate the production of the proton-antiproton pairs.

  20. Making Sense of Value and Value Co-Creation in Service Logic

    OpenAIRE

    Grönroos, Christian; Voima, Päivi

    2012-01-01

    In order to further develop the logic of service, value creation, value co-creation and value have to be formally and rigorously defined, so that the nature, content and locus of value and the roles of service providers and customers in value creation can be unambiguously assessed. In the present article, following the underpinning logic of value-in-use, it is demonstrated that in order to achieve this, value creation is best defined as the customer’s creation of value-in-use. The analysis sh...

  1. Measurement of W-pair production in $e^{+}e^{-}$ collisions at 189 GeV

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Alemany, R.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Gilardoni, Simone S.; Ragusa, F.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Hutchcroft, D.E.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Loomis, C.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2000-01-01

    The production of W-pairs is analysed in a data samplecollected by ALEPH at a mean centre-of-mass energy of 188.6 GeV,corresponding to an integrated luminosity of 174.2 pb^-1. Crosssections are given for different topologies of W decays intoleptons or hadrons. Combining all final states and assumingStandard Model branching fractions, the total W-pair cross sectionis measured to be 15.71 +- 0.34 (stat) +- 0.18 (syst) pb.Using also the W-pair data samples collected by ALEPH at lowercentre-of-mass energies, the decay branching fraction of the W bosoninto hadrons is measured to be BR (W > hadrons) = 66.97+- 0.65 (stat) +- 0.32 (syst) %, allowing a determination of theCKM matrix element |V(cs)|= 0.951 +- 0.030 (stat) +- 0.015 (syst).

  2. Communication: Potentials of mean force study of ionic liquid ion pair aggregation in polar covalent molecule solvents

    Science.gov (United States)

    Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.

    2018-05-01

    Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.

  3. Distinctive Dynamic Capabilities for New Business Creation

    DEFF Research Database (Denmark)

    Rosenø, Axel; Enkel, Ellen; Mezger, Florian

    2013-01-01

    This study examines the distinctive dynamic capabilities for new business creation in established companies. We argue that these are very different from those for managing incremental innovation within a company's core business. We also propose that such capabilities are needed in both slow...... and fast-paced industries, and that similarities exist across industries. Hence, the study contributes to dynamic capabilities literature by: 1) identifying the distinctive dynamic capabilities for new business creation; 2) shifting focus away from dynamic capabilities in environments characterised by high...... clock-speed and uncertainty towards considering dynamic capabilities for the purpose of developing new businesses, which also implies a high degree of uncertainty. Based on interviews with 33 companies, we identify distinctive dynamic capabilities for new business creation, find that dynamic...

  4. Small and Medium Enterprises, Job Creation, and Sustainability ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Small and Medium Enterprises, Job Creation, and Sustainability: Maximizing ... job creation, human capital, and green production and technologies will only materialize if ... IWRA/IDRC webinar on climate change and adaptive water management. International Water Resources Association, in close collaboration with IDRC, ...

  5. Pairing in hadron structure

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1981-08-01

    A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)

  6. Theory of superconductivity. II. Excited Cooper pairs. Why does sodium remain normal down to 0 K?

    International Nuclear Information System (INIS)

    Fujita, S.

    1992-01-01

    Based on a generalized BCS Hamiltonian in which the interaction strengths (V 11 , V 22 , V 12 ) among and between electron (12) and hole (2) Cooper pairs are differentiated, the thermodynamic properties of a type-I superconductor below the critical temperature T c are investigated. An expression for the ground-state energy, W - W 0 , relative to the unperturbed Block system is obtained. The usual BCS formulas are obtained in the limits: (all) V jl = V 0 , N 1 (0) = N 2 (0). Any excitations generated through the BCS interaction Hamiltonian containing V jl must involve Cooper pairs of antiparallel spins and nearly opposite momenta. The nonzero momentum or excited Cooper pairs below T c are shown to have an excitation energy band minimum lower than the quasi-electrons, which were regarded as the elementary excitations in the original BCS theory. The energy gap var-epsilon g (T) defined relative to excited and zero-momentum Copper pairs (when V jl > 0) decreases from var-epsilon g (0) to 0 as the temperature T is raised from 0 to T c . If electrons only are available as in a monovalent metal like sodium (V 12 = 0), the energy constant Δ 1 is finite but the energy gap vanishes identically for all T. In agreement with the BCS theory, the present theory predicts that a pure nonmagnetic metal in any dimensions should have a Cooper-pair ground state whose energy is lower than that of the Bloch ground state. Additionally it predicts that a monovalent metal should remain normal down to 0 K, and that there should be no strictly one-dimensional superconductor

  7. Pairing-induced kinetic energy lowering in doped antiferromagnets

    International Nuclear Information System (INIS)

    Wrobel, P; Eder, R; Fulde, P

    2003-01-01

    We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap

  8. Higher-order nonclassical effects generated by multiple-photon annihilation-then-creation and creation-then-annihilation coherent states

    International Nuclear Information System (INIS)

    Yuan Hong-Chun; Xiao Jin; Xiong Chao; Zhu Xi-Fang; Xu Xue-Xiang

    2016-01-01

    We explore two observable nonclassical properties of quantum states generated by repeatedly operating annihilation-then-creation (AC) and creation-then-annihilation (CA) on the coherent state, respectively, such as higher-order sub-Poissonian statistics and higher-order squeezing-enhanced effect. The corresponding analytical expressions are derived in detail depending on m . By numerically comparing those quantum properties, it is found that these states above have very different nonclassical properties and nonclassicality is exhibited more strongly after AC operation than after CA operation. (paper)

  9. Statistical effect of interactions on particle creation in expanding universe

    International Nuclear Information System (INIS)

    Kodama, Hideo

    1982-01-01

    The statistical effect of interactions which drives many-particle systems toward equilibrium is expected to change the qualitative and quantitative features of particle creation in expanding universe. To investigate this problem a simplified model called the finite-time reduction model is formulated and applied to the scalar particle creation in the radiation dominant Friedmann universe. The number density of created particles and the entropy production due to particle creation are estimated. The result for the number density is compared with that in the conventional free field theory. It is shown that the statistical effect increases the particle creation and lengthens the active creation period. As for the entropy production it is shown that it is negligible for scalar particles in the Friedmann universe. (author)

  10. Job creation due to nuclear power resurgence in the United States

    International Nuclear Information System (INIS)

    Kenley, C.R.; Klingler, R.D.; Plowman, C.M.; Soto, R.; Turk, R.J.; Baker, R.L.; Close, S.A.; McDonnell, V.L.; Paul, S.W.; Rabideau, L.R.; Rao, S.S.; Reilly, B.P.

    2009-01-01

    The recent revival of global interest in the next generation of nuclear power reactors is causing a re-examination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current US industries to support a renewal of nuclear power plant deployment. Key among the many questions currently being asked is what potential exists for the creation of new jobs as a result of developing and operating these new plants? Idaho National Laboratory and Bechtel Power Corporation collaborated to perform a Department of Energy-sponsored study that evaluated the potential for job creation in the United States should these new next generation nuclear power plants be built. The study focused primarily on providing an initial estimate of the numbers of new manufacturing jobs that could be created, including those that could be repatriated from overseas, resulting from the construction of these new reactors. In addition to the growth in the manufacturing sector, the study attempted to estimate the potential increase in construction trades necessary to accomplish the new construction. (author)

  11. Excitation and recombination of donor-acceptor pairs in ZnTe

    International Nuclear Information System (INIS)

    Nakashima, S.; Yasuda, S.

    1979-01-01

    The photoluminescence spectra and its excitation spectra of the donor-acceptor pairs are observed in ZnTe crystals doped with Li and As in the region below the bandgap energy. The relaxation of electrons and holes into the first excited state of d-a pairs is studied for the three excitation processes: (1) bound-to-bound transitions, (2) bound-to-free transitions, and (3) free-to-free transitions. It is concluded that most of the electrons and holes at the excited states of each impurity level are relaxed rapidly into their ground states before the occurrence of the recombination involving the excited states. For the excitation process (2), conduction electrons are preferentially trapped by positively charged pairs. The redistribution of bound holes by hopping is suggested to explain the broad d-a emission band observed for the bound-to-free excitation for very distant pairs. (author)

  12. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  13. Electron-hole pair effects in methane dissociative chemisorption on Ni(111)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xuan; Jiang, Bin, E-mail: bjiangch@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Juaristi, J. Iñaki [Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-07-28

    The dissociative chemisorption of methane on metal surfaces has attracted much attention in recent years as a prototype of gas-surface reactions in understanding the mode specific and bond selective chemistry. In this work, we systematically investigate the influence of electron-hole pair excitations on the dissociative chemisorption of CH{sub 4}/CH{sub 3}D/CHD{sub 3} on Ni(111). The energy dissipation induced by surface electron-hole pair excitations is modeled as a friction force introduced in the generalized Langevin equation, in which the independent atomic friction coefficients are determined within the local-density friction approximation. Quasi-classical trajectory calculations for CH{sub 4}/CH{sub 3}D/CHD{sub 3} have been carried out on a recently developed twelve-dimensional potential energy surface. Comparing the dissociation probabilities obtained with and without friction, our results clearly indicate that the electron-hole pair effects are generally small, both on absolute reactivity of each vibrational state and on the mode specificity and bond selectivity. Given similar observations in both water and methane dissociation processes, we conclude that electron-hole pair excitations would not play an important role as long as the reaction is direct and the interaction time between the molecule and metal electrons is relatively short.

  14. Study on adsorption refrigeration performance of MIL-101-isobutane working pair

    International Nuclear Information System (INIS)

    Ma, Liejun; Yang, Huan; Wu, Qi; Yin, Yu; Liu, Zongjian; Cui, Qun; Wang, Haiyan

    2015-01-01

    Rising concerns about pro-environment and energy conservation bring about the escalating interests in adsorption cooling systems using renewable energy. Adsorption chillers with common refrigerants (water, ethanol, methanol, etc.) face the problem that advanced technologies and intricate design considerations are required to maintain high vacuum. This paper aims at the parameters optimization of adsorption system being operated with the novel working pair, MIL-101-isobutane, under typical conditions of ice making and air-condition. Adsorption isotherms and dynamic of isobutane on MIL-101 are discussed simultaneously. When the hot water inlet temperature, cooling water temperature and desorption time are 95 °C, 30 °C and 30 min, respectively, the cooling capacity is 45.7 kJ/kg, which is 1.7 times as much as that of activated carbon–isobutane pair. Structural stability of MIL-101 subjected to 500 times adsorption/desorption cycles has been successfully verified by XRD (X-ray diffraction). - Highlights: • Adsorption isotherms and kinetic of isobutane on MIL-101 were studied. • A single bed adsorption chiller with MIL-101-isobutane pair was built. • System performed better than that using activated carbon–isobutane pair. • Stability of MIL-101 subjected to 500 ad/desorption cycles has been verified.

  15. Electron-pair production in Pb - Au collisions at 40 AGeV

    CERN Document Server

    Damjanovic, Sanja

    2002-01-01

    This thesis contains the first experimental results on electron-pair production from the CERES/NA45 experiment at the CERN SPS after the upgrade with a Time Projection Chamber (TPC). The data were taken in late 1999 with a Pb-beam on a Au-target at a beam energy of 40 AGeV. Out of about 8 Million events with a 30$$ centrality selection, 249$pm$28 $e^{+}e^{-}$ pairs for masses $le$0.2 GeV/c$^{2}$ with a S/B ratio of 1/1, and 185$pm$48 $e^{+}e^{-}$ pairs for masses $>$0.2 GeV/c$^{2}$ with a S/B ratio of 1/6 were reconstructed. The low-mass sample agrees with the expectation from hadronic decays. The high-mass sample shows an excess of a factor of 5.1$pm$1.3(stat)$pm$1.0(syst) above that expectation, considerably more than the values around 2.5-3.5 observed before at the higher beam energy of 160 AGeV. The excess yield is dominantly associated with pair transverse momenta $<$0.5 GeV/c, consistent with the findings at 160 AGeV. The theoretical relevance of the results is discussed in some detail. The dilepton ...

  16. Accurate interaction energies of base pairing and base stacking. The final chapter

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Jurečka, Petr; Hobza, Pavel

    2005-01-01

    Roč. 22, č. 6 (2005), s. 767 ISSN 0739-1102. [Albany 2005. Conversation /14./. 14.06.2005-18.06.2005, Albany] Institutional research plan: CEZ:AV0Z50040507 Keywords : base pairing * base stacking * nucleic acids Subject RIV: BO - Biophysics

  17. Changing public service delivery: learning in co-creation

    NARCIS (Netherlands)

    Voorberg, William; Bekkers, Victor; Timeus, Krista; Tonurist, Piret; Tummers, L.G.

    2017-01-01

    Co-creation – where citizens and public organizations work together to deal with societal issues – is increasingly considered as a fertile solution for various public service delivery problems. During co-creation, citizens are not mere consumers, but are actively engaged in building resilient

  18. SMEs’ Wealth Creation Model of an Emerging Economy

    Directory of Open Access Journals (Sweden)

    Olalekan Usiobaifo ASIKHIA

    2016-05-01

    Full Text Available This article synthesizes the evidence on SMEs’ wealth creation in an emerging economy, paying particular attention to human resource/expertise, technology adoption, innovation and creativity, unit economies, organizational infrastructure and strategy as determinants of SMEs’ wealth creation. A survey of 581 Nigerian SMEs was conducted and the data was analysed and tested using multiple regression and structural equation modelling. The findings revealed Human resource/CEOs expertise as the highest contributory factor to wealth creation within the firm in the industrial and the commercial sectors. The relevant domains were modelled and relevant policy adjustments were suggested.

  19. Mahonian pairs

    OpenAIRE

    Sagan, Bruce E.; Savage, Carla D.

    2012-01-01

    We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...

  20. Measurement of the top-quark pair production cross section in the dilepton channel at a center of mass energy of 13 TeV with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, Till; Aldaya, Maria; Diez Pardos, Carmen; Grohsjean, Alexander; Harb, Ali; Hauk, Johannes; Kieseler, Jan; Meyer, Andreas; Ntomari, Eleni; Savitskyi, Mykola [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg (Germany)

    2016-07-01

    Since the discovery of the top quark in 1995 at the Fermilab Tevatron collider, the top-quark pair production cross section has been measured with ever higher precision. Until now, no deviation from the standard model prediction has been found. However, the t anti t cross section remains one of the most important parameters to be measured in top physics. We present results for the top-quark pair production cross section at a center of mass energy of √(s)=13 TeV using data taken by the CMS detector in 2015. Special attention is given to the discussion of experimental uncertainties.