WorldWideScience

Sample records for pahr

  1. PAHR experiments in the MELUSINE reactor

    International Nuclear Information System (INIS)

    Rousseau, D.; Dereymez, P.; Guyon, H.; Junod, E.; Ploujoux, M.; Tournebize, F.; Backs, H.

    1983-01-01

    After a hypothetical accident in a fast neutron reactor core, the nuclear fuel and construction materials melt partially. In several out-of-pile devices, the melting materials and the sodium coolant come to interact thermodynamically. In short, a few seconds after the accident a bed of debris immersed in sodium is formed on a plane of steel. The PAHR program has as principal objective to study the thermodynamic behaviour of this bed in the MELUSINE reactor, taking into account the most crucial parameters that rule the phenomena. More particularly, the aim is to draw attention to the bed behaviour beyond the fusion point of the steel up to the partial fusion of the fuel. The authors describe the CELIA capsule and its instrumentation; the operation conditions of the reactor and the coupling factor; the out-of-pile materials and their operation conditions. (Auth.)

  2. Evaluation of molten lead mixing in sodium coolant by diffusion for application to PAHR

    International Nuclear Information System (INIS)

    Chawla, T.C.; Pedersen, D.R.; Leaf, G.; Minkowycz, W.J.

    1983-01-01

    In post-accident heat removal (PAHR) applications the use of a lead slab is being considered for protecting a porous bed of steel shots in ex-vessel cavity from direct impingement of molten steel or fuel upon vessel failure following a hypothetical core dissembly accident in an LMFBR. The porous bed is provided to increase coolability of the fuel debris by the sodium coolant. The objectives of the present study are (1) to determine melting rates of lead slabs of various thicknesses in contact with sodium coolant and (2) to evaluate the extent of penetration and mixing rates of molten lead into sodium coolant by molecular diffusion alone

  3. Models for dryout in debris beds. Review and application to the analysis of PAHR

    International Nuclear Information System (INIS)

    Yamakoshi, Yoshinori

    2000-03-01

    There are many models for dryout in debiris beds and various conditions under which these models are applicable. For a reliable analysis of post-accident heat removal (PAHR), it is important that characteristics and applicability of each model should be made clear. In this report, formulation of the models for dryout and applicability of them are studied through comparing with experimental data. A new model for dryout prediction is also discussed here. It is difficult to predict the dryout power especially for a relatively shallow bed using a conventional model for channeled beds. The new model, which is based on the one-dimensional model derived by Lipinski, has permeability of channels in the governing equation, and enables us to predict the dryout power for relatively shallow beds. The following conclusions are derived from comparing the predicted dryout power with experimental data. The model for series heat removal is applicable to a packed bed while the DEBRIS-MD underestimates the dryout power for it. Either the original model assuming channel formation on the top of the bed or the modified model is applicable to a relatively deep bed with channels. For a relatively shallow bed with channels, the dryout power predicted by the modified model agrees with the experimental data in comparison with other models. (author)

  4. Considerations on a PAHR test facility

    International Nuclear Information System (INIS)

    Boenisch, G.; Groetzbach, G.; Heinzel, V.; Kleefeld, K.; Kuechle, M.; Mueller, R.A.; Royl, P.; Schramm, K.; Smidt, D.; Werle, H.

    1976-01-01

    On the basis of a hypothetical core disruptive accident (HCDA) analysis the phenomena of the post accident phase are first identified which require experimental investigations and can only be studied in pile. Then the experimental requests for both debris bed and molten fuel pool studies are specified and grouped into three categories. For two of the categories the requests can be satisfied with loop experiments in thermal reactors. For the third category a 70 cm diameter test bed is needed and here the proposal is to use a flat core fast reactor with the test bed located below the core heated by axial leakage neutrons. Finally a conceptual design for such a reactor is presented where the test bed is loaded into an ex-vessel device and is removable on a carriage to a hot cell building. Maintenance and safety problems are briefly discussed and alternative solutions are mentioned

  5. Fast Reactor Safety Research Program. Quarterly report, January--March 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Progress is summarized in the following study areas: (1) prompt burst excursion, (2) post-accident heat removal (PAHR) debris bed, (3) fuel motion detection, (4) PAHR molten pool behavior, (5) equation-of-state high-temperature fuel vapor data, and (6) fuel motion detection equipment for the upgraded Annular Core Pulsed Reactor

  6. Post-accident heat removal research: A state of the art review

    International Nuclear Information System (INIS)

    Mueller, U.; Schulenberg, T.

    1983-11-01

    For a realistic assessment of the consequence of extremely unlikely reactor accidents resulting in core degradation or core meltdown key questions are how to remove the decay heat from the reactor system and how to retain the radioactive core debris within the containment. Usually, this complex of questions is referred to as Post-Accident Heat Removal (PAHR). In this article the research work on PAHR performed by various institutions during the last decade has been reviewed. The main results have been summarized under the chapter headings ''Accident Scenarios,'' - ''Core Debris Accommodation Concepts,'' and ''PAHR Topics.'' Particular emphasis has been placed on the presentation of the following problems: characteristics and coolability of solid core debris in the vector vessel, heat removal from molten pools of core material, and core-melt interaction with structural materials. Some unresolved or insufficiently answered questions relating to special ''PAHR Topics'' have been mentioned or discussed at the end of the particular Chapter. Problem areas of major uncertainty have been identified and listed at the end of the review article. They include the following subjects: formation of debris beds and bed characteristics, post dryout behaviour of particle beds, long-term availability and proper location of heat sinks, creep rupture of structures under high thermal loads. (orig.) [de

  7. PIRAMID 1: a prime European CEC experiment in BR2 at Mol, Belgium

    International Nuclear Information System (INIS)

    Joly, C.; Simoni, O.

    1987-01-01

    In the event of a core disruptive accident in a Liquid Metal Fast Breeder Reactor (LMFBR), molten core materials interacting with liquid sodium may form debris beds to settle on the retention structures or on the reactor vessel. The decay heat of retained fission products can induce high temperatures or high thermal loads on the retention structures or the reactor vessel with consequent fission product release. To assess the long-term coolability of core debris beds the Commission of the European Communities (CEC) decided to coordinate and fund the European PAHR (Post-Accident Heat Removal) program. The first work carried out for the program resulted in PIRAMID 1 (Pahr IRradiation According to a Mol Integrated Device), a unique irradiation device, designed, constructed and tested at Mol

  8. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  9. Feasibility study for a postaccident heat removal facility

    International Nuclear Information System (INIS)

    Barts, E.W.; Apperson, C.E. Jr.; Dunwoody, W.E.; Bennett, J.G.

    1978-01-01

    An initial feasibility investigation for PAHRTEF, a Postaccident Heat Removal Test Facility, is presented. The facility would provide an experimental capability for PAHR experiments beyond that available in any currently existing or proposed U.S. safety test facility. The facility design presented in this report is based upon the technology developed for the ROVER nuclear rocket propulsion program. The core is a graphite-moderated, helium-cooled, epithermal core with radial reflector control. The PAHR experiments are located just below the reactor containment vessel, very near the bottom of the core. The experiments (up to 55% enriched) are driven and controlled by neutrons leaking axially from the core such that the PAHRTEF core and the experiment form a coupled reactor system. The experiment can be designed so that it is extremely unlikely that the test fuel by itself could form a critical system. The investigation indicates that adequate fission heating of large PAHR experiments could be provided at low driver core power levels. Both the reactor and the experiment handling and examination equipment can use available technology and, whenever possible, existing equipment and buildings

  10. Visualization of interfacial behavior of liquid jet in pool

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Abe, Yutaka; Fujiwara, Akiko; Nariai, Hideki; Matsuo, Eiji; Chitose, Keiko; Koyama, Kazuya; Itoh, Kazuhiro

    2008-01-01

    For the safety design of the Fast Breeder Reactor (FBR), it is strongly required that the post accident heat removal (PAHR) is achieved after a postulated core disruptive accident (CDA). In the PAHR, it is important that the molten core material is quenched (breakup) in sodium coolant. In the previous studies, it is pointed out that the jet breakup behavior is significantly influenced by the fragmentation behavior on the jet surface in the coolant. However, the process from interfacial instability to fragmentation on the jet surface to jet breakup is not elucidated in detail yet. In the present study, the jet breakup behavior is observed to obtain the fragmentation behavior on the jet surface in coolant in detail. The transparent fluid is used as the core material and is injected into the water as the coolant. The velocity distribution of internal flow of the jet is measured by PIV technique and shear stress is calculated from PIV results. From experimental results, unstable interfacial wave is confirmed as upstream and grown up toward downstream. The fragments are torn apart at the end of developed wave. Shear stress is strongly acted on jet surface. From the results, the correlation between the interfacial behavior of the jet and the generation process of fragments are discussed. (author)

  11. Break-up and quench behavior of molten material in coolant

    International Nuclear Information System (INIS)

    Abe, Y.; Kizu, T.; Arai, T.; Nariai, H.; Chitose, K.; Koyama, K.

    2003-01-01

    In a Core Disruptive Accident (CDA) of a Fast Breeder Reactor, the Post Accident Heat Removal(PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. The material, being fragmented while solidification and forming debris bed, will be cooled in the coolant. In the experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation and boiling phenomena during PAHR in CDA. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The experimental results are compared with the existing theories. Consequently, the marginal wavelength on the surface of a water jet is close to the value estimated based on the Rayleigh-Taylor instability. Moreover, the fragmented droplet diameter obtained from the interaction of molten material and water is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass of the molten particle with some appropriate heat transfer model

  12. Numerical simulation of passive heat removal under severe core meltdown scenario in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    David, Dijo K.; Mangarjuna Rao, P., E-mail: pmr@igcar.gov.in; Nashine, B.K.; Selvaraj, P.; Chellapandi, P.

    2015-09-15

    Highlights: • PAHR in SFR under large core relocation to in-vessel core catcher is numerically analyzed. • A 1-D thermal conduction model and a 2-D axisymmetric CFD model are developed for turbulent natural convection phenomenon. • The side pool (cold pool) was found out to be instrumental in storing heat and dissipating it to the heat sink. • Single tray type in-vessel core catcher is found to be thermally effective under one-fourth core relocation. - Abstract: A sequence of highly unlikely events leading to significant meltdown of the Sodium cooled Fast Reactor (SFR) core can cause the failure of reactor vessel if the molten fuel debris settles at the bottom of the reactor main vessel. To prevent this, pool type SFRs are usually provided with an in-vessel core catcher above the bottom wall of the main vessel. The core catcher should collect, retain and passively cool these debris by facilitating decay heat removal by natural convection. In the present work, the heat removal capability of the existing single tray core catcher design has been evaluated numerically by analyzing the transient development of natural convection loops inside SFR pool. A 1-D heat diffusion model and a simplified 2-D axi-symmetric CFD model are developed for the same. Maximum temperature of the core catcher plate evaluated for different core meltdown scenarios using these models showed that there is much higher heat removal potential for single tray in-vessel SFR core catcher compared to the design basis case of melting of 7 subassemblies under total instantaneous blockage of a subassembly. The study also revealed that the side pool of cold sodium plays a significant role in decay heat removal. The maximum debris bed temperature attained during the initial hours of PAHR does not depend much on when the Decay Heat Exchanger (DHX) gets operational, and it substantiates the inherent safety of the system. The present study paves the way for better understanding of the thermal

  13. Simulation of heat and mass transfer processes in molten core debris-concrete systems. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D K

    1979-01-01

    The heat and mass transport phenomena taking place in volumetrically-heated fluids have become of interest in recent years due to their significance in assessments of fast reactor safety and post-accident heat removal (PAHR). Following a hypothetical core disruptive accident (HCDA), the core and reactor internals may melt down. The core debis melting through the reactor vessel and guard vessel may eventually contact the concrete of the reactor cell floor. The interaction of the core debris with the concrete as well as the melting of the debris pool into the concrete will significantly affect efforts to prevent breaching of the containment and the resultant release of radioactive effluents to the environment.

  14. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    Science.gov (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  15. Investigation of safety measures to severe accident of Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    So as to plan the accident management to severe accident of Fast Breeder Reactor (FBR), it is primary important to understand the progression of severe accident (SA) precisely. In this study, it has been aimed to reveal two items that work as keys in the evaluation of SA in sodium cooled FBR. One is the cool-ability of degraded core on the core support plate by sodium natural circulation in the post accident heat removal (PAHR) phase. An obstacle that hinders the smooth heat transfer from fuel debris to coolant is the formation of sodium-uranate by chemical reaction between sodium and fuel. Following the measurement of physical values of sodium-uranate in FY 2011, experiments has been performed to reveal the conditions for sodium-uranate formation on fuel debris in sodium pool simulating the actual situation of the degraded core. The cool-ability of the debris bed was analyzed using the Lipinski 1-D model. Another research performed in this study is the measurement of fission product (cesium and antimony) evaporation rates from FBR fuel as a function of temperature, because presently the fission product evaporation rates data for LWR is also temporarily used for FBR SA analysis. The measurement was performed using the irradiated fuels in the Test Reactor JOYO. (author)

  16. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

    Science.gov (United States)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Bioremediation of PAH-contamined soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance.

    Science.gov (United States)

    Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre

    2017-05-05

    A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  19. Interaction and penetration of heated UO2 with limestone concrete

    International Nuclear Information System (INIS)

    Farhadieh, R.; Pedersen, D.R.; Purviance, R.; Carlson, N.

    1982-01-01

    To safeguard the environment against radiological releases, the major question of concern in PAHR safety assessment, following an HCDA, involves confinement and dilution of the molten core-debris. Significant to the study is the directional growth of the core-debris in the concrete foundation of the reactor building or the concrete below the reactor cavity. The real material experiments were carried out in the test apparatus shown. Casts of CRBRP limestone concrete were prepared in graphite cylinders, each having an internal diameter of 8.9 cm and a depth of 30.5 cm. The 17.8-cm-deep concrete samples were allowed to cure for at least 28 days. Experiments were conducted within two months of curing time. The cavity above concrete was packed with 3 kg of pure UO 2 particles (1 to 3 mm). A uranothermic mixture was placed on the top of UO 2 powder. Heating and possible melting of UO 2 was achieved resistively after the ignition of the thermite. Total experimental time was about 60 minutes, during which time a maximum electrical power input of 1.8 watts/gr was applied to the UO 2 . Three gas samples were taken at temperatures of 100, 600, and 950 0 C, measured in the plane of the No. 2 thermocouple. Selection of three temperatures were to study the amount and the type of gases released from different phases of concrete

  20. Transient natural convection in an internally heated fluid layer. Topical report, June 1975--June 1976

    International Nuclear Information System (INIS)

    Kulacki, F.A.; Emara, A.A.

    1976-06-01

    An experimental study of the transient response of a horizontal fluid layer subjected to a step change in internal energy generation has been conducted to determine the time scales for the development and decay of natural convection driven solely by the internal heat release. The layer is bounded from above by a rigid, constant temperature surface and from below by a rigid, insulated surface. Two types of unsteady convection processes are considered. In the first, the layer is brought to a motionless, isothermal state, and internal energy generation is suddenly started. In the second, steady natural convection is the initial state, and internal energy generation is suddenly stopped. For both cases, the time required for the development of the final steady state is determined by measuring the temperature response of the fluid with a small thermocouple probe. The time required for the development of the maximum temperature difference in the layer with internal generation and the time required for the complete decay of the maximum temperature difference of steady convection at a given Rayleigh number when internal energy generation is suddenly stopped are correlated with the Rayleigh number in equations which will find general application in PAHR problems in nuclear power reactors and particularly in the analysis of the small-time thermal response of in-vessel and ex-vessel molten core retention devices

  1. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Bacosa, Hernando Pactao, E-mail: hernando.bacosa@utexas.edu [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373 (United States); Inoue, Chihiro [Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-02-11

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.

  2. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River.

    Science.gov (United States)

    Xia, Xinghui; Xia, Na; Lai, Yunjia; Dong, Jianwei; Zhao, Pujun; Zhu, Baotong; Li, Zhihuang; Ye, Wan; Yuan, Yue; Huang, Junxiong

    2015-06-01

    The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan

    International Nuclear Information System (INIS)

    Bacosa, Hernando Pactao; Inoue, Chihiro

    2015-01-01

    Highlights: • Most bacterial consortia from tsunami sediment degraded PAH mixture and pyrene. • The consortia were dominated by known and unknown PAHs-degrading bacteria. • Dokdonella clone is a potential new species and PAH degrader from tsunami sediment. • PAH-RHDα is better than nidA gene for estimating pyrene-degraders in the consortia. • First report on the PAH degradation and PAH-degrading bacteria from tsunami sediment. - Abstract: The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils

  4. Review of activities of the Commission of the European Communities relating to fast reactors in 1988

    International Nuclear Information System (INIS)

    Balz, W.

    1989-01-01

    The Commission of the European Communities (CEC) is performing fast reactor activities in two areas: (1) co-ordination and harmonization and (2) research. Co-ordination and harmonization activities are essentially carried out in the frame of the Fast Reactor Co-ordinating Committee (FRCC). At present CEC is examining possible support schemes which include a contribution to R-D and/or to a EFR design effort. In line with the current CEC R-D activities a possible research support would be in the field of safety. Round robins on the determination of residual stress in cold worked materials and on the stress relaxation properties of austenitic stainless steels were accomplished. Studies were performed on high cycle fatigue of austenitic stainless and on stress rupture properties of 9-12 Cr steels. The work performed at the Ispra establishment is related to LMFBR safety, while the activities carried out at Karlsruhe concern essentially fast breeder fuels. Safety research at Ispra comprises essentially the investigation and analysis of severe accident phenomena under three main projects: FARO, EAC and PAHR in-pile. The short-term nitride irradiation experiments NILOC 1 and 2 were analysed in detail and compared with the previous short-term carbide irradiations CARLO and CARRO which had been performed under partly identical conditions as NILOC 2. In the context of an industrial project to transmute long-lived actinides in nuclear waste into short-lived fission products in a dedicated fast reactor, a study was launched to determine the thermodynamics and the metallurgical characteristics of alloys of uranium-plutonium-zirconium with various amounts of the minor actinides neptunium, americium, and curium. First experimental data on the specific heat of refractory metals and UO 2 at and above their melting temperatures were obtained with newly developed equipment using laser pulse heating and ultra fast multi-wavelength pyrometry. The results thus obtained will be input data

  5. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  6. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  7. Numerical investigation on turbulent natural convection in partially connected cylindrical enclosures for analysing SFR safety under core meltdown scenario

    International Nuclear Information System (INIS)

    David, Dijo K.; Mangarjuna Rao, P.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Under the unlikely event of severe core meltdown accident in pool type SFR, the molten core materials may rupture the grid plate which supports the fuel subassemblies and it can get relocated in to the lower pool. These debris may eventually settle on the debris collector (i.e., core catcher) installed above the bottom wall of the lower pool. The bed thus formed generates heat due to radioactive decay which has to be passively removed for maintaining the structural integrity of main vessel. By means of natural convection, the heat generated in the debris bed will be transferred to the top pool where the heat sink (i.e., Decay heat exchanger (DHX)) is installed. Heat transfer to the DHX (which is a part of safety grade decay heat removal system) can take place through the opening created in the grid plate which connects the two liquid pools (i.e., the top pool and the lower pool). Heat transfer can also take place through the lateral wall of the lower cylindrical pool to the side pool and eventually to the top pool, and thus to the DHX. This study numerically investigates the effectiveness of heat transfer between lower pool and top pool during PARR by considering them as partially connected cylindrical enclosures. The governing equations have been numerically solved using finite volume method in cylindrical co-ordinates using SIMPLE algorithm. Turbulence has been modeled using k-ω model and the model is validated against benchmark problems of natural convection found in literature. The effect of parameters such as the heat generation rate in the bed and the size of the grid plate opening are evaluated. Also PAHR in SFR pool is modeled using an axi-symmetric model to fund out the influence of grid plate opening on heat removal from core catcher. The results obtained are useful for improving the cooling capability of in-vessel tray type core catcher for handling the whole core meltdown scenarios in SFR. (author)