WorldWideScience

Sample records for packet switched networks

  1. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  2. All-optical signal processing for optical packet switching networks

    NARCIS (Netherlands)

    Liu, Y.; Hill, M.T.; Calabretta, N.; Tangdiongga, E.; Geldenhuys, R.; Zhang, S.; Li, Z.; Waardt, de H.; Khoe, G.D.; Dorren, H.J.S.; Iftekharuddin, K.M.; awwal, A.A.S.

    2005-01-01

    We discuss how all-optical signal processing might play a role in future all-optical packet switched networks. We introduce a concept of optical packet switches that employ entirely all-optical signal processing technology. The optical packet switch is made out of three functional blocks: the

  3. Novel approach for all-optical packet switching in wide-area networks

    Science.gov (United States)

    Chlamtac, Imrich; Fumagalli, Andrea F.; Wedzinga, Gosse

    1998-09-01

    All-optical Wavelength Division Multiplexing (WDM) networks are believed to be a fundamental component in future high speed backbones. However, while wavelength routing made circuit switching in WDM feasible the reality of extant optical technology does not yet provide the necessary devices to achieve individual optical packet switching. This paper proposes to achieve all-optical packet switching in WDM Wide Area Networks (WANs) via a novel technique, called slot routing. Using slot routing, entire slots, each carrying multiple packets on distinct wavelengths, are switched transparently and individually. As a result packets can be optically transmitted and switched in the network using available fast and wavelength non-sensitive devices. The proposed routing technique leads to an optical packet switching solution, that is simple, practical, and unique as it makes it possible to build a WDM all-optical WAN with optical devices based on proven technologies.

  4. Feasibility of Optical Packet Switched WDM Networks without Packet Synchronisation Under Bursty Traffic Conditions

    DEFF Research Database (Denmark)

    Fjelde, Tina; Hansen, Peter Bukhave; Kloch, Allan

    1999-01-01

    We show that complex packet synchronisation may be avoided in optical packetswitched networks. Detailed traffic analysis demonstrates that packet lossratios of 1e-10 are feasible under bursty traffic conditions for a highcapacity network consisting of asynchronously operated add-drop switch...

  5. A microcomputer for a packet switched network

    International Nuclear Information System (INIS)

    Seller, P.; Bairstow, R.; Barlow, J.; Waters, M.

    1982-12-01

    The Bubble Chamber Research Group of the Rutherford and Appleton Laboratory has a large film analysis facility. This comprises 16 digitising tables used for the measurement of bubble chamber film. Each of these tables has an associated microcomputer. These microcomputers are linked by a star structured packet switched local area network (LAN) to a VAX 11/780. The LAN, and in particular a microcomputer of novel architecture designed to act as the central switch of the network, is described. (author)

  6. Analysis of the packet formation process in packet-switched networks

    Science.gov (United States)

    Meditch, J. S.

    Two new queueing system models for the packet formation process in packet-switched telecommunication networks are developed, and their applications in process stability, performance analysis, and optimization studies are illustrated. The first, an M/M/1 queueing system characterization of the process, is a highly aggregated model which is useful for preliminary studies. The second, a marked extension of an earlier M/G/1 model, permits one to investigate stability, performance characteristics, and design of the packet formation process in terms of the details of processor architecture, and hardware and software implementations with processor structure and as many parameters as desired as variables. The two new models together with the earlier M/G/1 characterization span the spectrum of modeling complexity for the packet formation process from basic to advanced.

  7. Node design in optical packet switched networks

    DEFF Research Database (Denmark)

    Nord, Martin

    2006-01-01

    The thesis discusses motivation, realisation and performance of the Optical Packet Switching (OPS) network paradigm. The work includes proposals for designs and methods to efficiently use both the wavelength- and time domain for contention resolution in asynchronous operation. The project has also......S parameter. Finally, the thesis includes a proposal for a node design and associated MAC protocol for an OPS ring topology metropolitan area network with high throughput and fairness, also for unbalanced traffic....... proposed parallel designs to overcome scalability constraints and to support migration scenarios. Furthermore, it has proposed and demonstrated optical input processing schemes for hybrids networks to simultaneously support OPS and Optical Circuit Switching. Quality of Service (QoS) differentiation enables...

  8. Self-Management of Hybrid Optical and Packet Switching Networks

    NARCIS (Netherlands)

    Fioreze, Tiago; Pras, Aiko

    Hybrid optical and packet switching networks enable data to be forwarded at multiple levels. Large IP flows at the IP level may be therefore moved to the optical level bypassing the per hop routing decisions of the IP level. Such move could be beneficial since congested IP networks could be

  9. Architectures of electro-optical packet switched networks

    DEFF Research Database (Denmark)

    Berger, Michael Stubert

    2004-01-01

    and examines possible architectures for future high capacity networks with high capacity nodes. It is assumed that optics will play a key role in this scenario, and in this respect, the European IST research project DAVID aimed at proposing viable architectures for optical packet switching, exploiting the best...... from optics and electronics. An overview of the DAVID network architecture is given, focusing on the MAN and WAN architecture as well as the MPLS based network hierarchy. A statistical model of the optical slot generation process is presented and utilised to evaluate delay vs. efficiency. Furthermore...... architecture for a buffered crossbar switch is presented. The architecture uses two levels of backpressure (flow control) with different constraints on round trip time. No additional scheduling complexity is introduced, and for the actual example shown, a reduction in memory of 75% was obtained at the cost...

  10. 40 Gbit/s NRZ Packet-Length Insensitive Header Extraction for Optical Label Switching Networks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Kehayas, E; Avramopoulos, H.

    2006-01-01

    A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively......A simple method for 40 Gbit/s NRZ header extraction based on envelope detection for optical label switching networks is presented. The scheme is insensitive to packet length and spacing and can be single-chip integrated cost-effectively...

  11. Self-Management of Hybrid Optical and Packet Switching Networks

    NARCIS (Netherlands)

    Fioreze, Tiago

    2010-01-01

    Hybrid optical and packet switching networks are composed of multi-service hybrid devices that enable forwarding of data at multiple levels. Large IP flows at the IP level may be therefore moved to the optical level bypassing therefore the per hop routing decisions of the IP level. Such move could

  12. Hybrid Wavelength Routed and Optical Packet Switched Ring Networks for the Metropolitan Area Network

    DEFF Research Database (Denmark)

    Nord, Martin

    2005-01-01

    Increased data traffic in the metropolitan area network calls for new network architectures. This paper evaluates optical ring architectures based on optical packet switching, wavelength routing, and hybrid combinations of the two concepts. The evaluation includes overall throughput and fairness...... attractive when traffic is unbalanced....

  13. Combining SDM-Based Circuit Switching with Packet Switching in a Router for On-Chip Networks

    Directory of Open Access Journals (Sweden)

    Angelo Kuti Lusala

    2012-01-01

    Full Text Available A Hybrid router architecture for Networks-on-Chip “NoC” is presented, it combines Spatial Division Multiplexing “SDM” based circuit switching and packet switching in order to efficiently and separately handle both streaming and best-effort traffic generated in real-time applications. Furthermore the SDM technique is combined with Time Division Multiplexing “TDM” technique in the circuit switching part in order to increase path diversity, thus improving throughput while sharing communication resources among multiple connections. Combining these two techniques allows mitigating the poor resource usage inherent to circuit switching. In this way Quality of Service “QoS” is easily provided for the streaming traffic through the circuit-switched sub-router while the packet-switched sub-router handles best-effort traffic. The proposed hybrid router architectures were synthesized, placed and routed on an FPGA. Results show that a practicable Network-on-Chip “NoC” can be built using the proposed router architectures. 7 × 7 mesh NoCs were simulated in SystemC. Simulation results show that the probability of establishing paths through the NoC increases with the number of sub-channels and has its highest value when combining SDM with TDM, thereby significantly reducing contention in the NoC.

  14. Traffic analysis and signal processing in optical packet switched networks

    DEFF Research Database (Denmark)

    Fjelde, Tina

    2002-01-01

    /s optical packet switched network exploiting the best of optics and electronics, is used as a thread throughout the thesis. An overview of the DAVID network architecture is given, focussing on the MAN and WAN architecture as well as the MPLS-based network hierarchy. Subsequently, the traffic performance...... of the DAVID core optical packet router, which exploits wavelength conversion and fibre delay-line buffers for contention resolution, is analysed using a numerical model developed for that purpose. The robustness of the shared recirculating loop buffer with respect to´bursty traffic is demonstrated...... the injection of an additional clock signal into the IWC is presented. Results show very good transmission capabilities combined with a high-speed response. It is argued that signal regeneration is an inherent attribute of the IWC employed as a wavelength converter due to the sinusoidal transfer function...

  15. Optimal design of mixed-media packet-switching networks - Routing and capacity assignment

    Science.gov (United States)

    Huynh, D.; Kuo, F. F.; Kobayashi, H.

    1977-01-01

    This paper considers a mixed-media packet-switched computer communication network which consists of a low-delay terrestrial store-and-forward subnet combined with a low-cost high-bandwidth satellite subnet. We show how to route traffic via ground and/or satellite links by means of static, deterministic procedures and assign capacities to channels subject to a given linear cost such that the network average delay is minimized. Two operational schemes for this network model are investigated: one is a scheme in which the satellite channel is used as a slotted ALOHA channel; the other is a new multiaccess scheme we propose in which whenever a channel collision occurs, retransmission of the involved packets will route through ground links to their destinations. The performance of both schemes is evaluated and compared in terms of cost and average packet delay tradeoffs for some examples. The results offer guidelines for the design and optimal utilization of mixed-media networks.

  16. High-speed packet switching network to link computers

    CERN Document Server

    Gerard, F M

    1980-01-01

    Virtually all of the experiments conducted at CERN use minicomputers today; some simply acquire data and store results on magnetic tape while others actually control experiments and help to process the resulting data. Currently there are more than two hundred minicomputers being used in the laboratory. In order to provide the minicomputer users with access to facilities available on mainframes and also to provide intercommunication between various experimental minicomputers, CERN opted for a packet switching network back in 1975. It was decided to use Modcomp II computers as switching nodes. The only software to be taken was a communications-oriented operating system called Maxcom. Today eight Modcomp II 16-bit computers plus six newer Classic minicomputers from Modular Computer Services have been purchased for the CERNET data communications networks. The current configuration comprises 11 nodes connecting more than 40 user machines to one another and to the laboratory's central computing facility. (0 refs).

  17. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  18. Packet-switched data communication system of the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Szuegyi, M.

    1991-01-01

    Data communication systems are inherent components of the computer network of nuclear power plants. In the PNPP, Hungary, a new packet-switched network has been installed, based on the X25 protocol. It was developed in the framework of the Information Infrastructure Development project of the country. The most important system and software components of the new packet-switched communication system and computer network installed at PNPP are described. (R.P.) 4 refs.; 1 fig

  19. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  20. An integrated circuit/packet switched video conferencing system

    Energy Technology Data Exchange (ETDEWEB)

    Kippenhan Junior, H.A.; Lidinsky, W.P.; Roediger, G.A. [Fermi National Accelerator Lab., Batavia, IL (United States). HEP Network Resource Center; Waits, T.A. [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    1996-07-01

    The HEP Network Resource Center (HEPNRC) at Fermilab and the Collider Detector Facility (CDF) collaboration have evolved a flexible, cost-effective, widely accessible video conferencing system for use by high energy physics collaborations and others wishing to use video conferencing. No current systems seemed to fully meet the needs of high energy physics collaborations. However, two classes of video conferencing technology: circuit-switched and packet-switched, if integrated, might encompass most of HEPS's needs. It was also realized that, even with this integration, some additional functions were needed and some of the existing functions were not always wanted. HEPNRC with the help of members of the CDF collaboration set out to develop such an integrated system using as many existing subsystems and components as possible. This system is called VUPAC (Video conferencing Using Packets and Circuits). This paper begins with brief descriptions of the circuit-switched and packet-switched video conferencing systems. Following this, issues and limitations of these systems are considered. Next the VUPAC system is described. Integration is accomplished primarily by a circuit/packet video conferencing interface. Augmentation is centered in another subsystem called MSB (Multiport MultiSession Bridge). Finally, there is a discussion of the future work needed in the evolution of this system. (author)

  1. An integrated circuit/packet switched video conferencing system

    International Nuclear Information System (INIS)

    Kippenhan Junior, H.A.; Lidinsky, W.P.; Roediger, G.A.; Waits, T.A.

    1996-01-01

    The HEP Network Resource Center (HEPNRC) at Fermilab and the Collider Detector Facility (CDF) collaboration have evolved a flexible, cost-effective, widely accessible video conferencing system for use by high energy physics collaborations and others wishing to use video conferencing. No current systems seemed to fully meet the needs of high energy physics collaborations. However, two classes of video conferencing technology: circuit-switched and packet-switched, if integrated, might encompass most of HEPS's needs. It was also realized that, even with this integration, some additional functions were needed and some of the existing functions were not always wanted. HEPNRC with the help of members of the CDF collaboration set out to develop such an integrated system using as many existing subsystems and components as possible. This system is called VUPAC (Video conferencing Using Packets and Circuits). This paper begins with brief descriptions of the circuit-switched and packet-switched video conferencing systems. Following this, issues and limitations of these systems are considered. Next the VUPAC system is described. Integration is accomplished primarily by a circuit/packet video conferencing interface. Augmentation is centered in another subsystem called MSB (Multiport MultiSession Bridge). Finally, there is a discussion of the future work needed in the evolution of this system. (author)

  2. A packet switched communications system for GRO

    Science.gov (United States)

    Husain, Shabu; Yang, Wen-Hsing; Vadlamudi, Rani; Valenti, Joseph

    1993-11-01

    This paper describes the packet switched Instrumenters Communication System (ICS) that was developed for the Command Management Facility at GSFC to support the Gamma Ray Observatory (GRO) spacecraft. The GRO ICS serves as a vital science data acquisition link to the GRO scientists to initiate commands for their spacecraft instruments. The system is ready to send and receive messages at any time, 24 hours a day and seven days a week. The system is based on X.25 and the International Standard Organization's (ISO) 7-layer Open Systems Interconnection (OSI) protocol model and has client and server components. The components of the GRO ICS are discussed along with how the Communications Subsystem for Interconnection (CSFI) and Network Control Program Packet Switching Interface (NPSI) software are used in the system.

  3. 160-Gb/s Silicon All-Optical Packet Switch for Buffer-less Optical Burst Switching

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Pu, Minhao

    2015-01-01

    We experimentally demonstrate a 160-Gb/s Ethernet packet switch using an 8.6-mm-long silicon nanowire for optical burst switching, based on cross phase modulation in silicon. One of the four packets at the bit rate of 160 Gb/s is switched by an optical control signal using a silicon based 1 × 1 all......-optical packet switch. Error free performance (BER silicon packet switch based optical burst switching, which might be desirable for high-speed interconnects within a short...

  4. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  5. Novel Scheme for Packet Forwarding without Header Modifications in Optical Networks

    DEFF Research Database (Denmark)

    Wessing, Henrik; Christiansen, Henrik Lehrmann; Fjelde, Tina

    2002-01-01

    We present a novel scheme for packet forwarding in optical packet-switched networks and we further demonstrate its good scalability through simulations. The scheme requires neither header modification nor any label distribution protocol, thus reducing component cost while simplifying network...

  6. Q FUNCTION AWARE OPTICAL PACKET SWITCH WITH LOW PACKET LOSS RATE

    Directory of Open Access Journals (Sweden)

    OMPAL SINGH

    2017-03-01

    Full Text Available Optical packet switching (OPS is a very promising technology for the next generation data transfer due to the very large bandwidth of the optical fiber. The success of the OPS relies heavily on design of the node architecture which supports comparatively larger buffering capacity without detiorating signal quality too much and it should provide very low packet loss probability with reasonably low average delay. In this paper, a design analysis of low complexity OPS node architecture is discussed along-with its advantages. The presented architecture support both fixed and variable length packets. The packets are stored in a single piece of fiber using the WDM technology. Physical layer analysis presented in this paper is to obtain the Q function (Bit Error Rate. Finally, the Monte Carlo simulation is done to obtain the packet loss. The average delay performance of the switch and effect of Q values on packet loss rates are discussed.

  7. All-optical devices for ultrafast packet switching

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; HerreraDorren, J.; Raz, O.

    2007-01-01

    We discuss integrated devices for all-optical packet switching. We focus on monolithically integrated all-optical flip-flops, ultra-fast semiconductor based wavelength converters and explain the operation principles. Finally, a 160 Gb/s all-optical packet switching experiment over 110 km of field...

  8. 160 Gbit/s optical packet switching using a silicon chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2012-01-01

    We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet.......We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet....

  9. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    Science.gov (United States)

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  10. Quality of service in optical packet switched networks

    CERN Document Server

    Rahbar, Akbar G

    2015-01-01

    This book is a comprehensive study on OPS networks, its architectures, and developed techniques for improving its quality of switching and managing quality of service.  The book includes: Introduction to OPS networks, OOFDM networks, GMPLS-enabled optical networks, QoS in OPS networks Hybrid contention avoidance/resolution schemes in both long-haul and metro optical networks Hybrid optical switching schemes

  11. 160 Gb/s all-optical packet switching field experiment

    DEFF Research Database (Denmark)

    Dorren, H.J.S.; Herrera, J.; Raz, O.

    2007-01-01

    We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits.......We discus an all-optical packet switching experiment over 110 km of field installed optical fiber. The switching node is controlled by solely photonic control circuits....

  12. Performance of highly connected photonic switching lossless metro-access optical networks

    Science.gov (United States)

    Martins, Indayara Bertoldi; Martins, Yara; Barbosa, Felipe Rudge

    2018-03-01

    The present work analyzes the performance of photonic switching networks, optical packet switching (OPS) and optical burst switching (OBS), in mesh topology of different sizes and configurations. The "lossless" photonic switching node is based on a semiconductor optical amplifier, demonstrated and validated with experimental results on optical power gain, noise figure, and spectral range. The network performance was evaluated through computer simulations based on parameters such as average number of hops, optical packet loss fraction, and optical transport delay (Am). The combination of these elements leads to a consistent account of performance, in terms of network traffic and packet delivery for OPS and OBS metropolitan networks. Results show that a combination of highly connected mesh topologies having an ingress e-buffer present high efficiency and throughput, with very low packet loss and low latency, ensuring fast data delivery to the final receiver.

  13. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    Science.gov (United States)

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  14. Novel scheme for efficient and cost-effective forwarding of packets in optical networks without header modification

    DEFF Research Database (Denmark)

    Wessing, Henrik; Fjelde, Tina; Christiansen, Henrik Lehrmann

    2001-01-01

    We present a novel scheme for addressing the outputs in optical packet switches and demonstrate its good scalability. The scheme requires neither header modification nor distribution of routing information to the packet switches, thus reducing optical component count while simplifying network...

  15. All-optical header recognizer for optical packet switched networks : exploiting nonlinear gain and index dynamics in semiconductor optical amplifiers for low power operation and photonic integration device

    NARCIS (Netherlands)

    Calabretta, N.; Dorren, H.J.S.

    2009-01-01

    The increase of the internet traffic leads to future optical networks requiring tens of Tb/s of capacity. Current electronic circuit switches are limited by the scalability of the electronic switching fabrics, power consumption and dissipation in the opto- electronic conversion. All-optical packet

  16. A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    Science.gov (United States)

    Cui, Zhenqian

    1999-01-01

    In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis.

  17. NEBULAS A High Performance Data-Driven Event-Building Architecture based on an Asynchronous Self-Routing Packet-Switching Network

    CERN Multimedia

    Costa, M; Letheren, M; Djidi, K; Gustafsson, L; Lazraq, T; Minerskjold, M; Tenhunen, H; Manabe, A; Nomachi, M; Watase, Y

    2002-01-01

    RD31 : The project is evaluating a new approach to event building for level-two and level-three processor farms at high rate experiments. It is based on the use of commercial switching fabrics to replace the traditional bus-based architectures used in most previous data acquisition sytems. Switching fabrics permit the construction of parallel, expandable, hardware-driven event builders that can deliver higher aggregate throughput than the bus-based architectures. A standard industrial switching fabric technology is being evaluated. It is based on Asynchronous Transfer Mode (ATM) packet-switching network technology. Commercial, expandable ATM switching fabrics and processor interfaces, now being developed for the future Broadband ISDN infrastructure, could form the basis of an implementation. The goals of the project are to demonstrate the viability of this approach, to evaluate the trade-offs involved in make versus buy options, to study the interfacing of the physics frontend data buffers to such a fabric, a...

  18. Packet Tracer network simulator

    CERN Document Server

    Jesin, A

    2014-01-01

    A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.

  19. 1×4 Optical packet switching of variable length 640 Gbit/s data packets using in-band optical notch-filter labeling

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Kamchevska, Valerija; Galili, Michael

    2014-01-01

    We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation.......We experimentally perform 1×4 optical packet switching of variable length 640 Gbit/s OTDM data packets using in-band notch-filter labeling with only 2.7-dB penalty. Up to 8 notches are employed to demonstrate scalability of the labeling scheme to 1×256 switching operation....

  20. On the fly all-optical packet switching based on hybrid WDM/OCDMA labeling scheme

    Science.gov (United States)

    Brahmi, Houssem; Giannoulis, Giannis; Menif, Mourad; Katopodis, Vasilis; Kalavrouziotis, Dimitrios; Kouloumentas, Christos; Groumas, Panos; Kanakis, Giannis; Stamatiadis, Christos; Avramopoulos, Hercules; Erasme, Didier

    2014-02-01

    We introduce a novel design of an all-optical packet routing node that allows for the selection and forwarding of optical packets based on the routing information contained in hybrid wavelength division multiplexing/optical code division multiple access (WDM/OCDMA) labels. A stripping paradigm of optical code-label is adopted. The router is built around an optical-code gate that consists in an optical flip-flop controlled by two fiber Bragg grating correlators and is combined with a Mach-Zehnder interferometer (MZI)-based forwarding gate. We experimentally verify the proof-of-principle operation of the proposed self-routing node under NRZ and OCDMA packet traffic conditions. The successful switching of elastic NRZ payload at 40 Gb/s controlled by DS-OCDMA coded labels and the forwarding operation of encoded data using EQC codes are presented. Proper auto-correlation functions are obtained with higher than 8.1 dB contrast ratio, suitable to efficiently trigger the latching device with a contrast ratio of 11.6 dB and switching times below 3.8 ns. Error-free operation is achieved with 1.5 dB penalty for 40 Gb/s NRZ data and with 2.1 dB penalty for DS-OCDMA packets. The scheme can further be applied to large-scale optical packet switching networks by exploiting efficient optical coders allocated at different WDM channels.

  1. Dynamic optical fiber delivery of Ka-band packet transmissions for wireless access networks

    DEFF Research Database (Denmark)

    Rodríguez Páez, Juan Sebastián; Madsen, Peter; Tafur Monroy, Idelfonso

    2017-01-01

    A Reconfigurable Radio Access Unit is presented and experimentally demonstrated. In the unit, an optical switching system is set to dynamically deliver different packets to different points in the network. The packets are transmitted wirelesslty on the Ka-band (26–40 GHz), achieving BER values...

  2. Dynamics of Number of Packets in Transit in Free Flow State of Data Network

    International Nuclear Information System (INIS)

    Shengkun Xie; Lawniczak, A.T.

    2011-01-01

    We study how the dynamics of Number of Packets in Transit (NPT) is affected by the coupling of a routing type with a volume of incoming packet traffic in a data network model of packet switching type. The NPT is a network performance indicator of an aggregate type that measures in '' real time '', how many packets are in the network on their routes to their destinations. We conduct our investigation using a time-discrete simulation model that is an abstraction of the Network Layer of the ISO OSI Seven Layer Reference Model. This model focuses on packets and their routing. We consider a static routing and two different types of dynamic routings coupled with different volumes of incoming packet traffic in the network free flow state. Our study shows that the order of the values of the NPT mean value time series depends on the coupling of a routing type with a volume of incoming packet traffic and changes when the volume of incoming packet traffic increases and is closed to the critical source load values, i.e. when it is closed to the phase transition points from the network free flow state to its congested states. (authors)

  3. First Field Trial of Optical Label-Based Switching and Packet Drop on a 477km NTON/Sprint Link

    International Nuclear Information System (INIS)

    Hernandez, V J; Pan, Z; Cao, J; Tsui, V K; Bansal, Y; Fong, S K H; Zhang, Y; Jeon, M Y; Yoo, S J B; Bodtker, B; Bond, S; Lennon, W J; Higashi, H; Lyles, B; McDonald, R

    2001-01-01

    We demonstrate the first field trial of optical label-based wavelength switching and packet drop on 476.8km of the National Transparent Optical Network. Subcarrier multiplexed labels control a switch fabric that includes a tunable wavelength converter and arrayed waveguide grating router

  4. Scalable In-Band Optical Notch-Filter Labeling for Ultrahigh Bit Rate Optical Packet Switching

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    We propose a scalable in-band optical notch-filter labeling scheme for optical packet switching of high-bit-rate data packets. A detailed characterization of the notch-filter labeling scheme and its effect on the quality of the data packet is carried out in simulation and verified by experimental...... demonstrations. The scheme is able to generate more than 91 different labels that can be applied to 640-Gb/s optical time division multiplexed packets causing an eye opening penalty of $1.2-dB. Experimental demonstration shows that up to 256 packets can be uniquely labeled by employing up to eight notch filters...... with only 0.9-dB power penalty to achieve BER of 1E-9. Using the proposed labeling scheme, optical packet switching of 640 Gb/s data packets is experimentally demonstrated in which two data packets are labeled by making none and one spectral hole using a notch filter and are switched using a LiNbO$_3...

  5. Controllable thousand-port low-latency optical packet switch architecture for short link applications

    NARCIS (Netherlands)

    Di Lucente, S.; Nazarathy, J.; Raz, O.; Calabretta, N.; Dorren, H.J.S.; Bienstman, P.; Morthier, G.; Roelkens, G.; et al., xx

    2011-01-01

    The implementation of a low-latency optical packet switch architecture that is controllable while scaling to over thousand ports is investigated in this paper. Optical packet switches with thousand of input/output ports are promising devices to improve the performance of short link applications in

  6. Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques

    Science.gov (United States)

    Hooke, A. J.

    1983-01-01

    Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.

  7. Optical packet switching in HPC : an analysis of applications performance

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Miao, Wang; Calabretta, Nicola

    2018-01-01

    Optical Packet Switches (OPS) could provide the needed low latency transmissions in today large data centers. OPS can deliver lower latency and higher bandwidth than traditional electrical switches. These features are needed for parallel High Performance Computing (HPC) applications. For this

  8. Packet Guide to Routing and Switching

    CERN Document Server

    Hartpence, Bruce

    2011-01-01

    Go beyond layer 2 broadcast domains with this in-depth tour of advanced link and internetwork layer protocols, and learn how they enable you to expand to larger topologies. An ideal follow-up to Packet Guide to Core Network Protocols, this concise guide dissects several of these protocols to explain their structure and operation. This isn't a book on packet theory. Author Bruce Hartpence built topologies in a lab as he wrote this guide, and each chapter includes several packet captures. You'll learn about protocol classification, static vs. dynamic topologies, and reasons for installing a pa

  9. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem; El-Ferik, Sami; Ho, Pin-Han

    2013-01-01

    congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets

  10. A Performance Analysis for UMTS Packet Switched Network Based on Multivariate KPIS

    OpenAIRE

    Ouyang, Ye; Fallah, M. Hosein

    2010-01-01

    Mobile data services are penetrating mobile markets rapidly. The mobile industry relies heavily on data service to replace the traditional voice services with the evolution of the wireless technology and market. A reliable packet service network is critical to the mobile operators to maintain their core competence in data service market. Furthermore, mobile operators need to develop effective operational models to manage the varying mix of voice, data and video traffic on a single network. Ap...

  11. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    Science.gov (United States)

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  12. 640 Gbit/s Optical Packet Switching using a Novel In-Band Optical Notch-Filter Labeling Scheme

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2014-01-01

    Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved.......Optical packet switching of 640 Gbit/s data packets is reported using an in-band optical labeling technique based on notch-filtering of the data spectrum and extracting the label using a bandpass filter. BER 10􀀀9 is achieved....

  13. A packet-switched network for data readout from the LHC inner detector

    International Nuclear Information System (INIS)

    Ostby, J.M.; Sorasen, O.

    1994-01-01

    This paper presents a network which can be used for data fusion in the planned LHC (Large Hadron Collider) ATLAS experiment at CERN. The network named SWIPP (SWitched Interconnection of Parallel Processors), is built of 16 x 16 star switches and protocol engines connected by pairs of optical fibers. Each channel is designed to carry up to 1 Gbps in each direction. The paper will give a brief introduction to SWIPP principles and ASIC implementation. Some of the advantages offered by the network will be mentioned

  14. Design and implementation considerations of a MSAT packet data network

    Science.gov (United States)

    Karam, Fouad G.; Hearn, Terry; Rohr, Doug; Guibord, Arthur F.

    1993-01-01

    The Mobile Data System, which is intended to provide for packet switched data services is currently under development. The system is based on a star network topology consisting of a centralized Data Hub (DH) serving a large number of mobile terminals. Through the Data Hub, end-to-end connections can be established between terrestrial users on public or private data networks and mobile users. The MDS network will be capable of offering a variety of services some of which are based on the standard X.25 network interface protocol, and others optimized for short messages and broadcast messages. A description of these services and the trade-offs in the DH design are presented.

  15. Optical packet networks - conclusions from the IST DAVID project

    DEFF Research Database (Denmark)

    Dittmann, Lars

    2004-01-01

    This work outlines the result from the European research project DAVID working with optical packet switch solutions for both WAN and MAN. The project started July 2000 and has been completed successfully by the end of 2003.......This work outlines the result from the European research project DAVID working with optical packet switch solutions for both WAN and MAN. The project started July 2000 and has been completed successfully by the end of 2003....

  16. Deterministic bound for avionics switched networks according to networking features using network calculus

    Directory of Open Access Journals (Sweden)

    Feng HE

    2017-12-01

    Full Text Available The state of the art avionics system adopts switched networks for airborne communications. A major concern in the design of the networks is the end-to-end guarantee ability. Analytic methods have been developed to compute the worst-case delays according to the detailed configurations of flows and networks within avionics context, such as network calculus and trajectory approach. It still lacks a relevant method to make a rapid performance estimation according to some typically switched networking features, such as networking scale, bandwidth utilization and average flow rate. The goal of this paper is to establish a deterministic upper bound analysis method by using these networking features instead of the complete network configurations. Two deterministic upper bounds are proposed from network calculus perspective: one is for a basic estimation, and another just shows the benefits from grouping strategy. Besides, a mathematic expression for grouping ability is established based on the concept of network connecting degree, which illustrates the possibly minimal grouping benefit. For a fully connected network with 4 switches and 12 end systems, the grouping ability coming from grouping strategy is 15–20%, which just coincides with the statistical data (18–22% from the actual grouping advantage. Compared with the complete network calculus analysis method for individual flows, the effectiveness of the two deterministic upper bounds is no less than 38% even with remarkably varied packet lengths. Finally, the paper illustrates the design process for an industrial Avionics Full DupleX switched Ethernet (AFDX networking case according to the two deterministic upper bounds and shows that a better control for network connecting, when designing a switched network, can improve the worst-case delays dramatically. Keywords: Deterministic bound, Grouping ability, Network calculus, Networking features, Switched networks

  17. Impact of Bimodal Traffic on Latency in Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Yuhua Chen

    2008-01-01

    Full Text Available This paper analyzes the impact of bimodal traffic composition on latency in optical burst switching networks. In particular, it studies the performance degradation to short-length packets caused by longer packets, both of which are part of a heterogeneous traffic model. The paper defines a customer satisfaction index for each of the classes of traffic, and a composite satisfaction index. The impact of higher overall utilization of the network as well as that of the ratio of the traffic mix on each of the customer satisfaction indices is specifically addressed.

  18. A Lossless Switch for Data Acquisition Networks

    CERN Document Server

    Jereczek, Grzegorz Edmund; The ATLAS collaboration

    2015-01-01

    The recent trends in software-defined networking (SDN) and network function virtualization (NFV) are boosting the advance of software-based packet processing and forwarding on commodity servers. Although performance has traditionally been the challenge of this approach, this situation changes with modern server platforms. High performance load balancers, proxies, virtual switches and other network functions can be now implemented in software and not limited to specialized commercial hardware, thus reducing cost and increasing the flexibility. In this paper we design a lossless software-based switch for high bandwidth data acquisition (DAQ) networks, using the ATLAS experiment at CERN as a case study. We prove that it can effectively solve the incast pathology arising from the many-to-one communication pattern present in DAQ networks by providing extremely high buffering capabilities. We evaluate this on a commodity server equipped with twelve 10 Gbps Ethernet interfaces providing a total bandwidth of 120 Gbps...

  19. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  20. Software Switching for High Throughput Data Acquisition Networks

    CERN Document Server

    AUTHOR|(CDS)2089787; Lehmann Miotto, Giovanna

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. The problem arising from this pattern is widely known in the literature as \\emph{incast} and can be observed as TCP throughput collapse. It is a result of overloading the switch buffers, when a specific node in a network requests data from multiple sources. This will become even more demanding for future upgrades of the experiments at the Large Hadron Collider at CERN. It is questionable whether commodity TCP/IP and Ethernet technologies in their current form will be still able to effectively adapt to bursty traffic without losing packets due to the scarcity of buffers in the networking hardware. This thesis provides an analysis of TCP/IP performance in data acquisition networks and presents a novel approach to incast congestion in these networks based on software-based packet forwarding. Our first contribution lies in confirming the strong analogies bet...

  1. Description and Simulation of a Fast Packet Switch Architecture for Communication Satellites

    Science.gov (United States)

    Quintana, Jorge A.; Lizanich, Paul J.

    1995-01-01

    The NASA Lewis Research Center has been developing the architecture for a multichannel communications signal processing satellite (MCSPS) as part of a flexible, low-cost meshed-VSAT (very small aperture terminal) network. The MCSPS architecture is based on a multifrequency, time-division-multiple-access (MF-TDMA) uplink and a time-division multiplex (TDM) downlink. There are eight uplink MF-TDMA beams, and eight downlink TDM beams, with eight downlink dwells per beam. The information-switching processor, which decodes, stores, and transmits each packet of user data to the appropriate downlink dwell onboard the satellite, has been fully described by using VHSIC (Very High Speed Integrated-Circuit) Hardware Description Language (VHDL). This VHDL code, which was developed in-house to simulate the information switching processor, showed that the architecture is both feasible and viable. This paper describes a shared-memory-per-beam architecture, its VHDL implementation, and the simulation efforts.

  2. A distributed, hardware reconfigurable and packet switched real-time control and data acquisition system

    International Nuclear Information System (INIS)

    Batista, A.J.N.; Combo, A.; Sousa, J.; Varandas, C.A.F.

    2002-01-01

    The architecture of a synchronized event-based control and data acquisition system that aims to improve significantly the performance of actual systems is presented. The design explores recent developments in data transport, signal processing and system synchronization. Data transport between the acquisition, processing and storing devices and at backplane level will be performed by InfiniBand, a low latency packet switched network standard. Data processing algorithms will be performed in a mixture of digital signal processors and reconfigurable field programmable gate arrays. Both devices will be programmed from a descriptive high-level mathematical language. Acquisition synchronization, data stamping and event management will be performed through a specialized low latency synchronous optical network for the time critical signals

  3. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  4. Review of Rateless-Network-Coding-Based Packet Protection in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    A. S. Abdullah

    2015-01-01

    Full Text Available In recent times, there have been many developments in wireless sensor network (WSN technologies using coding theory. Fast and efficient protection schemes for data transfer over the WSN are some of the issues in coding theory. This paper reviews the issues related to the application of the joint rateless-network coding (RNC within the WSN in the context of packet protection. The RNC is a method in which any node in the network is allowed to encode and decode the transmitted data in order to construct a robust network, improve network throughput, and decrease delays. To the best of our knowledge, there has been no comprehensive discussion about RNC. To begin with, this paper briefly describes the concept of packet protection using network coding and rateless codes. We therefore discuss the applications of RNC for improving the capability of packet protection. Several works related to this issue are discussed. Finally, the paper concludes that the RNC-based packet protection scheme is able to improve the packet reception rate and suggests future studies to enhance the capability of RNC protection.

  5. Lambda network having 2.sup.m-1 nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    Science.gov (United States)

    Napolitano, Jr., Leonard M.

    1995-01-01

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.

  6. Packet-aware transport for video distribution [Invited

    Science.gov (United States)

    Aguirre-Torres, Luis; Rosenfeld, Gady; Bruckman, Leon; O'Connor, Mannix

    2006-05-01

    We describe a solution based on resilient packet rings (RPR) for the distribution of broadcast video and video-on-demand (VoD) content over a packet-aware transport network. The proposed solution is based on our experience in the design and deployment of nationwide Triple Play networks and relies on technologies such as RPR, multiprotocol label switching (MPLS), and virtual private LAN service (VPLS) to provide the most efficient solution in terms of utilization, scalability, and availability.

  7. Doubly differential star-16-QAM for fast wavelength switching coherent optical packet transceiver.

    Science.gov (United States)

    Liu, Fan; Lin, Yi; Walsh, Anthony J; Yu, Yonglin; Barry, Liam P

    2018-04-02

    A coherent optical packet transceiver based on doubly differential star 16-ary quadrature amplitude modulation (DD-star-16-QAM) is presented for spectrally and energy efficient reconfigurable networks. The coding and decoding processes for this new modulation format are presented, simulations and experiments are then performed to investigate the performance of the DD-star-16-QAM in static and dynamic scenarios. The static results show that the influence of frequency offset (FO) can be cancelled out by doubly differential (DD) coding and the correction range is only limited by the electronic bandwidth of the receivers. In the dynamic scenario with a time-varying FO and linewidth, the DD-star-16-QAM can overcome the time-varying FO, and the switching time of around 70 ns is determined by the time it takes the dynamic linewidth to reach the requisite level. This format can thus achieve a shorter waiting time after switching tunable lasers than the commonly used square-16-QAM, in which the transmission performance is limited by the frequency transients after the wavelength switch.

  8. Effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks

    Science.gov (United States)

    Jiang, Zhong-Yuan; Ma, Jian-Feng

    Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.

  9. Lambda network having 2{sup m{minus}1} nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    Science.gov (United States)

    Napolitano, L.M. Jr.

    1995-11-28

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.

  10. Field trial of 160 Gb/s all-optical packet switching

    NARCIS (Netherlands)

    Liu, Y.; Herrera Llorente, J.; Raz, O.; Tangdiongga, E.; Marti, J.; Ramos, F.; Maxwell, G.D.; Poustie, A.; Mulvad, H.C.H.; Hill, M.T.; Waardt, de H.; Khoe, G.D.; Koonen, A.M.J.; Dorren, H.J.S.; Nakano, Y.

    2007-01-01

    We present the results of a transmission experiment, over 110 km of field installed fiber, for an all-optical 160 Gb/s packet switching system. The system uses in-band optical labels which are processed entirely in the optical domain using a narrow-band all-optical filter. The label decision

  11. Multi-planed unified switching topologies

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    2017-07-04

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.

  12. Analysis Of Packets Delay In Wireless Data Networks

    Directory of Open Access Journals (Sweden)

    Krivchenkov Aleksandr

    2015-12-01

    Full Text Available The networks with wireless links for automation control applications traffic transmission when packets have small size and application payload is predictable are under consideration. Analytical model for packets delay on their propagation path through the network is proposed. Estimations for network architectures based on WiFi and Bluetooth wireless technologies are made. The specifications for physical layer 802.11 a/b/g/n and 802.15.1 are under consideration. Analytical and experimental results for delivered network bandwidth for different network architecture, traffic structure and wireless technologies were compared to validate that basic mechanisms are correctly taken into account in the model. It is shown that basic effects are taken into account and further accuracy “improvement” of the model will give not more than 5%. As a result that is important for automation control applications we have reliably received the lowest possible level for packets delay in one wireless link. For 802.11 it is of order of 0.2 ms, for 802.15.1 it is 1.25 ms and is true when application packet can be transferred by one data frame.

  13. Call for Papers: Photonics in Switching

    Science.gov (United States)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching Guest Editors: Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks. Scope of Submission The scope of the papers includes, but is not limited to, the following topics: WDM node architectures Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion Routing protocols WDM switching and routing Quality of service Performance measurement and evaluation Next-generation optical networks: architecture, signaling, and control Traffic measurement and field trials Optical burst and packet switching OBS/OPS node architectures Burst/Packet scheduling and routing algorithms Contention resolution/avoidance strategies Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.) Burst assembly and ingress traffic shaping Hybrid OBS/TDM or OBS/wavelength routing Manuscript Submission To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online

  14. Optical switching and detection of 640 Gb/s OTDM data packets transmitted over 50 km of fibre

    NARCIS (Netherlands)

    Gomez-Agis, F.; Hu, H.; Luo, J.; Mulvad, H.C.H.; Galili, M.; Calabretta, N.; Oxenløwe, L.K.; Dorren, H.J.S.; Jeppesen, P.

    2011-01-01

    We demonstrate 1×4 optical-packet switching with error-free transmission of 640 Gb/s single-wavelength OTDM data-packets including instantaneous clock extraction and short pulse generation for optical time-demultiplexing based on a cavity-less pulse source.

  15. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem

    2013-04-01

    FAST TCP is important for promoting data-intensive applications since it can cleverly react to both packet loss and delay for detecting network congestion. This paper provides a continuous time model and extensive stability analysis of FAST TCP congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets from a single round is dropped. Second, it shows that FAST TCP is vulnerable to burst delay and fails to detect network congestion due to the little variation of round-trip time, thus unstable. Finally it shows that introducing extra delays by implementing burst retransmission stabilizes FAST TCP over OBS. The paper proves that FAST TCP is not stable over barebone OBS. However, it is locally, exponentially, and asymptotically stable over OBS with burst retransmission.

  16. A first packet processing subdomain cluster model based on SDN

    Science.gov (United States)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.

  17. Efficient IP Traffic over Optical Network Based on Wavelength Translation Switching

    DEFF Research Database (Denmark)

    Jha, Vikas; Kalia, Kartik; Chowdhary, Bhawani Shankar

    2016-01-01

    With the advent of TCP/IP protocol suite the overall era of communication technologies had been redefined. Now, we can’t ignore the presence of huge amount of IP traffic; data, voice or video increasing day by day creating more pressure on existing communicating media and supporting back bone....... With the humongous popularity of Internet the overall traffic on Internet has the same story. Focusing on transmission of IP traffic in an optical network with signals remaining in their optical nature generated at particular wavelength, proposed is the switching of optically generated IP packets through optical...... cross connects based on translation of wavelength when an IP packet is crossing the optical cross connect. Adding the concepts of layer 3 routing protocols along with the wavelength translation scheme, will help in spanning the overall optical network for a larger area....

  18. Advanced optical components for next-generation photonic networks

    Science.gov (United States)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies

  19. Compact wireless control network protocol with fast path switching

    Directory of Open Access Journals (Sweden)

    Yasutaka Kawamoto

    2017-08-01

    Full Text Available Sensor network protocol stacks require the addition or adjustment of functions based on customer requirements. Sensor network protocols that require low delay and low packet error rate (PER, such as wireless control networks, often adopt time division multiple access (TDMA. However, it is difficult to add or adjust functions in protocol stacks that use TDMA methods. Therefore, to add or adjust functions easily, we propose NES-SOURCE, a compact wireless control network protocol with a fast path-switching function. NES-SOURCE is implemented using carrier sense multiple access/collision avoidance (CSMA/CA rather than TDMA. Wireless control networks that use TDMA prevent communication failure by duplicating the communication path. If CSMA/CA networks use duplicate paths, collisions occur frequently, and communication will fail. NES-SOURCE switches paths quickly when communication fails, which reduces the effect of communication failures. Since NES-SOURCE is implemented using CSMA/CA rather than TDMA, the implementation scale is less than one-half that of existing network stacks. Furthermore, since NES-SOURCE’s code complexity is low, functions can be added or adjusted easily and quickly. Communication failures occur owing to changes in the communication environment and collisions. Experimental results demonstrate that the proposed NES-SOURCE’s path-switching function reduces the amount of communication failures when the communication environment changes owing to human movement and others. Furthermore, we clarify the relationships among the probability of a changing communication environment, the collision occurrence rate, and the PER of NES-SOURCE.

  20. Random linear network coding for streams with unequally sized packets

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2016-01-01

    State of the art Random Linear Network Coding (RLNC) schemes assume that data streams generate packets with equal sizes. This is an assumption that results in the highest efficiency gains for RLNC. A typical solution for managing unequal packet sizes is to zero-pad the smallest packets. However, ...

  1. The performance analysis of linux networking - packet receiving

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenji; Crawford, Matt; Bowden, Mark; /Fermilab

    2006-11-01

    The computing models for High-Energy Physics experiments are becoming ever more globally distributed and grid-based, both for technical reasons (e.g., to place computational and data resources near each other and the demand) and for strategic reasons (e.g., to leverage equipment investments). To support such computing models, the network and end systems, computing and storage, face unprecedented challenges. One of the biggest challenges is to transfer scientific data sets--now in the multi-petabyte (10{sup 15} bytes) range and expected to grow to exabytes within a decade--reliably and efficiently among facilities and computation centers scattered around the world. Both the network and end systems should be able to provide the capabilities to support high bandwidth, sustained, end-to-end data transmission. Recent trends in technology are showing that although the raw transmission speeds used in networks are increasing rapidly, the rate of advancement of microprocessor technology has slowed down. Therefore, network protocol-processing overheads have risen sharply in comparison with the time spent in packet transmission, resulting in degraded throughput for networked applications. More and more, it is the network end system, instead of the network, that is responsible for degraded performance of network applications. In this paper, the Linux system's packet receive process is studied from NIC to application. We develop a mathematical model to characterize the Linux packet receiving process. Key factors that affect Linux systems network performance are analyzed.

  2. Fair packet scheduling in Wireless Mesh Networks

    KAUST Repository

    Nawab, Faisal

    2014-02-01

    In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol called Timestamp-ordered MAC (TMAC), aiming to alleviate the unfairness problem in WMNs. TMAC extends CSMA/CA by scheduling data packets based on their age. Prior to transmitting a data packet, a transmitter broadcasts a request control message appended with a timestamp to a selected list of neighbors. It can proceed with the transmission only if it receives a sufficient number of grant control messages from these neighbors. A grant message indicates that the associated data packet has the lowest timestamp of all the packets pending transmission at the local transmit queue. We demonstrate that a loose ordering of timestamps among neighboring nodes is sufficient for enforcing local fairness, subsequently leading to flow rate fairness in a multi-hop WMN. We show that TMAC can be implemented using the control frames in IEEE 802.11, and thus can be easily integrated in existing 802.11-based WMNs. Our simulation results show that TMAC achieves excellent resource allocation fairness while maintaining over 90% of maximum link capacity across a large number of topologies.

  3. Position-Based Packet Forwarding for Vehicular Ad-Hoc Networks

    OpenAIRE

    Füßler, Holger

    2007-01-01

    Mobile Ad-Hoc Networks, or MANETs, are data communication networks between (potentially) mobile computer systems equipped with wireless communication devices and — in their purest form — in complete absence of communication infrastructure. Usage scenarios for these systems include communication during disaster recovery or battlefield communications. One of the great research challenges concerning MANETs is the Packet Forwarding Problem, i.e., the question to which neighbor node a data packet ...

  4. Performance evaluation of packet video transfer over local area networks

    OpenAIRE

    Lu, Jie

    1993-01-01

    This research investigates the implementation and performance of packet video transfer over local area networks. A network architecture is defined for packet video such that most of the processing is performed by the higher layers of the Open Systems Interconnection (OSI) reference model, while the lower layers provide real-time services. Implementation methods are discussed for coding schemes, including data compression, the network interface unit, and the underlying local are...

  5. MODEL OF FUNCTIONING OF TELECOMMUNICATION EQUIPMENT FOR SOFTWARE-CONFIGURATED NETWORKS

    Directory of Open Access Journals (Sweden)

    Konstantin E. Samouylov

    2018-03-01

    Full Text Available A mathematical model of the functioning of the switch of a software defined networks is constructed in the form of a queuing network consisting of two queuing systems: the first simulates an input data buffer and a device for reading information from the header of the packet; the second is a table for addressing the switch of a software defined networks. The receipt of data in software defined networks has a probabilistic character in their deterministic processing in communication channels and switching nodes. Therefore, this mathematical model of the functioning of the switch of a software defined networks was built on the basis of queuing systems and networks. The stream of requests flowing into the network was divided into two Poisson streams of various types of applications, the first of which corresponded to the packets that came to the control port of the switch (from the controller, and the second flow to the remaining packets arriving on the switch. The flow corresponding to the packets arriving at the switch from the controller has a relative priority over the flow from the remaining arriving packets As a result, formulas were obtained for calculating the performance indicators of this telecommunications equipment such as average waiting queues for priority and non-priority applications, the probability of loss of applications for each phase of the switch. Based on the received quality of service indicators for this telecommunications equipment, it is possible to assess the stability of switches in software defined networks for various information impacts.

  6. Synchronous Ethernet- Considerations and Implementation of the Packet Network Management Scheme

    Science.gov (United States)

    Gundale, A. S.; Aradhye, Ashwini

    2010-11-01

    Packet technologies were designed to work in asynchronous mode, where the oscillators in the equipment are free running. Although this allows the underlying infrastructure to operate, many applications exist that require frequency synchronization. Also, the ability to distribute synchronization from center to edge of network declines as infrastructure evolves toward a packet-based architecture. Synchronous Ethernet (SyncE) is a key development of the evolution of Ethernet into a carrier grade technology suitable for the WAN environment where frequency synchronization is required. The time of the day distribution in synchronized network at the physical layer enables many useful propositions in packet handling policies and other network management aspects.

  7. Dimensioning of 10 Gbit/s all-optical packet switched networks based on optical label swapping routers with multistage 2R regeneration.

    Science.gov (United States)

    Puerto, G; Ortega, B; Manzanedo, M D; Martínez, A; Pastor, D; Capmany, J; Kovacs, G

    2006-10-30

    This paper describes both the experimental and theoretical investigations on the cascadability of all-optical routers in optical label swapping networks incorporating a multistage wavelength conversion with 2R regeneration. A full description of a novel experimental setup allows the packet by packet measurement up to 16 hops with 10 Gb/s payload showing 1 dB penalty with 10(-12) bit error rate. Similarly, the simulations on the system allow a prediction on the cascadability of the router up to 64 hops.

  8. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Science.gov (United States)

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  9. WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Jørgensen, Carsten

    1997-01-01

    A detailed analytical traffic model for a photonic wavelength division multiplexing (WDM) packet switch block is presented and the requirements to the buffer size is analyzed. Three different switch architectures are considered, each of them representing different complexities in terms of component.......e., the possibility of several outlets sharing the same physical buffer. For the three architectures presented here, a tradeoff in the buffer architectures is addressed: a buffer physically shared among an outlets requires many wavelengths internally in the switch block, whereas, architectures with buffers dedicated...

  10. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  11. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    Science.gov (United States)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  12. Packetized Predictive Control for Rate-Limited Networks via Sparse Representation

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    controller and the plant input. To achieve robustness with respect to dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. In our formulation, we design sparse packets for rate-limited networks, by adopting an an ℓ0 optimization...

  13. Host based internet protocol (IP) packet analysis to enhance network security

    International Nuclear Information System (INIS)

    Ahmad, T.; Ahmad, S.Z.; Yasin, M.M.

    2007-01-01

    Data communication in a computer network environment is facing serious security threats from numerous sources such as viruses, worms, Zombies etc. These threats can be broadly characterized as internal or external security threats. Internal threats are mainly attributed to sneaker-nets, utility modems and unauthorized users, which can be minimized by skillful network administration, password management and optimum usage policy definition. The external threats need more serious attention as these attacks are mostly coming from public networks such as Internet. Frequency and complexity of such attacks is much higher as compared to internal attacks. This paper presents a host based network layer screening of external and internal IP packets for logging, analyzing and real-time detection of possible IP spoofing and Denial of Service attacks. This work can also be used in tuning security rules definition for gateway firewalls. Software has been developed which intercepts IP traffic and analyses it with respect to integrity and origin of I P packet. The received IP packets are parsed and analyzed for possible signs of intrusion. The results show that by watching and categorizing composition of various transport protocol such as TCP, UDP, ICMP and others along with verifying the origin of received IP packet can help in devising real-time firewall rule and blocking possible external attack. This is highly desirable for fighting against zero day attacks and can result in a better Mean Time between Failures (MTBF) to increase the survivability of computer network. Used in a right context, packet screening and filtering can be a useful tool for provision of reliable and stable network services. (author)

  14. Method and allocation device for allocating pending requests for data packet transmission at a number of inputs to a number of outputs of a packet switching device in successive time slots

    Science.gov (United States)

    Abel, Francois [Rueschlikon, CH; Iliadis, Ilias [Rueschlikon, CH; Minkenberg, Cyriel J. A. [Adliswil, CH

    2009-02-03

    A method for allocating pending requests for data packet transmission at a number of inputs to a number of outputs of a switching system in successive time slots, including a matching method including the steps of providing a first request information in a first time slot indicating data packets at the inputs requesting transmission to the outputs of the switching system, performing a first step in the first time slot depending on the first request information to obtain a first matching information, providing a last request information in a last time slot successive to the first time slot, performing a last step in the last time slot depending on the last request information and depending on the first matching information to obtain a final matching information, and assigning the pending data packets at the number of inputs to the number of outputs based on the final matching information.

  15. H-Infinity Control Design Considering Packet Loss as a Disturbance for Networked Control Systems

    OpenAIRE

    OGURA, Takashi; KOBAYASHI, Kentaro; OKADA, Hiraku; KATAYAMA, Masaaki

    2017-01-01

    This paper studies H∞ control for networked control systems with packet loss. In networked control systems, packet loss is one of major weakness because the control performance deteriorates due to packet loss. H∞ control, which is one of robust control, can design a controller to reduce the influence of disturbances acting on the controlled object. This paper proposes an H∞ control design that considers packet loss as a disturbance. Numerical examples show that the proposed H∞ control design ...

  16. Throughput performance analysis of multirate, multiclass S-ALOHA OFFH-CDMA packet networks

    DEFF Research Database (Denmark)

    Raddo, Thiago R.; Sanches, Anderson L.; Borges, Ben Hur V

    2015-01-01

    In this paper, we propose a new throughput expression for multirate, multiclass slotted-ALOHA optical fast frequency hopping code-division multiple-access (OFFH-CDMA) packet networks considering a Poisson distribution for packet composite arrivals. We analyze the packet throughput performance...... of a three-class OFFH-CDMA network, where multirate transmissions are achieved via manipulation of the user's code parameters. It is shown that users transmitting at low rates interfere considerably in the performance of high rate users. Finally, we perform a validation procedure to demonstrate...

  17. Switch-connected HyperX network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2018-02-13

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane, other of the N ports are connected to at least one of the global switches.

  18. The Optimization of the Data Packet Length in Adaptive Radio Networks

    Directory of Open Access Journals (Sweden)

    Anatolii P. Voiter

    2017-10-01

    Full Text Available Background. Development of methods and means of the adaptive management of the radio networks bandwidth with competitive access to the radio channel. Objective. The aim of the paper is to determine the packet length effect on the effective radio networks transmission rate with taking into account the parameters, formats, and procedures of the physical and link levels at using the MAC protocol with a rigid strategy of competitive access to the radio channel. Methods. The goal is achieved by creating and analyzing the mathematical model of the effective transmission rate in radio networks. The model is described by the equation for the effective transmission rate, which is the function of both the probability of the conflict-free transmission of the MAC protocol and the coefficient of the data packet size deviation from the optimal for LLC protocol. Results. It is proved that there is the optimal deviation of the data packet length for each MAC protocol traffic intensity value, which provides the most effective transfer rate. This makes the possibility for adaptive management of the radio bandwidth by applying a pre-calculated deviation of the data packet size in dependence on the traffic intensity. Conclusions. The proposed mathematical model is the tool for calculation of both the radio bandwidth network capacity and the optimal deviation of the data packet length at adaptive management of competitive access to a radio channel with a rigid strategy at conditions of the significant fluctuation in traffic intensity.

  19. An effective implementation scheme of just-in-time protocol for optical burst switching networks

    Science.gov (United States)

    Wu, Guiling; Li, Xinwan; Chen, Jian-Ping; Wang, Hui

    2005-02-01

    Optical burst switching (OBS) has been emerging as a promising technology that can effectively support the next generation IP-oriented transportation networks. JIT signaling protocol for OBS is relatively simple and easy to be implemented by hardware. This paper presented an effective scheme to implement the JIT protocol, which not only can effectively implement reservation and release of optical channels based on JIT, but also can process the failure of channel reservation and release due to loss of burst control packets. The scheme includes: (1) a BHP (burst head packet) path table is designed and built at each OBS node. It is used to guarantee the corresponding burst control packet, i.e. BHP, BEP (burst end packet) and BEP_ACK (BEP acknowledgement), to be transmitted in the same path. (2) The timed retransmission of BEP and the reversed deletion of the item in BHP path tables triggered by the corresponding BEP_ACK are combined to solve the problems caused by the loss of the signaling messages in channel reservation and release process. (3) Burst head packets and BEP_ACK are transmitted using "best-effort" method. Related signaling messages and their formats for the proposed scheme are also given.

  20. Performance Analysis and Optimization for Cognitive Radio Networks with Classified Secondary Users and Impatient Packets

    Directory of Open Access Journals (Sweden)

    Yuan Zhao

    2017-01-01

    Full Text Available A cognitive radio network with classified Secondary Users (SUs is considered. There are two types of SU packets, namely, SU1 packets and SU2 packets, in the system. The SU1 packets have higher priority than the SU2 packets. Considering the diversity of the SU packets and the real-time need of the interrupted SU packets, a novel spectrum allocation strategy with classified SUs and impatient packets is proposed. Based on the number of PU packets, SU1 packets, and SU2 packets in the system, by modeling the queue dynamics of the networks users as a three-dimensional discrete-time Markov chain, the transition probability matrix of the Markov chain is given. Then with the steady-state analysis, some important performance measures of the SU2 packets are derived to show the system performance with numerical results. Specially, in order to optimize the system actions of the SU2 packets, the individually optimal strategy and the socially optimal strategy for the SU2 packets are demonstrated. Finally, a pricing mechanism is provided to oblige the SU2 packets to follow the socially optimal strategy.

  1. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-19

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  2. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2016-01-01

    Full Text Available Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.

  3. Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang

    2016-01-01

    Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616

  4. Energy-saving scheme based on downstream packet scheduling in ethernet passive optical networks

    Science.gov (United States)

    Zhang, Lincong; Liu, Yejun; Guo, Lei; Gong, Xiaoxue

    2013-03-01

    With increasing network sizes, the energy consumption of Passive Optical Networks (PONs) has grown significantly. Therefore, it is important to design effective energy-saving schemes in PONs. Generally, energy-saving schemes have focused on sleeping the low-loaded Optical Network Units (ONUs), which tends to bring large packet delays. Further, the traditional ONU sleep modes are not capable of sleeping the transmitter and receiver independently, though they are not required to transmit or receive packets. Clearly, this approach contributes to wasted energy. Thus, in this paper, we propose an Energy-Saving scheme that is based on downstream Packet Scheduling (ESPS) in Ethernet PON (EPON). First, we design both an algorithm and a rule for downstream packet scheduling at the inter- and intra-ONU levels, respectively, to reduce the downstream packet delay. After that, we propose a hybrid sleep mode that contains not only ONU deep sleep mode but also independent sleep modes for the transmitter and the receiver. This ensures that the energy consumed by the ONUs is minimal. To realize the hybrid sleep mode, a modified GATE control message is designed that involves 10 time points for sleep processes. In ESPS, the 10 time points are calculated according to the allocated bandwidths in both the upstream and the downstream. The simulation results show that ESPS outperforms traditional Upstream Centric Scheduling (UCS) scheme in terms of energy consumption and the average delay for both real-time and non-real-time packets downstream. The simulation results also show that the average energy consumption of each ONU in larger-sized networks is less than that in smaller-sized networks; hence, our ESPS is better suited for larger-sized networks.

  5. FAS: Using FPGA to Accelerate and Secure SDN Software Switches

    Directory of Open Access Journals (Sweden)

    Wenwen Fu

    2018-01-01

    Full Text Available Software-Defined Networking (SDN promises the vision of more flexible and manageable networks but requires certain level of programmability in the data plane to accommodate different forwarding abstractions. SDN software switches running on commodity multicore platforms are programmable and are with low deployment cost. However, the performance of SDN software switches is not satisfactory due to the complex forwarding operations on packets. Moreover, this may hinder the performance of real-time security on software switch. In this paper, we analyze the forwarding procedure and identify the performance bottleneck of SDN software switches. An FPGA-based mechanism for accelerating and securing SDN switches, named FAS (FPGA-Accelerated SDN software switch, is proposed to take advantage of the reconfigurability and high-performance advantages of FPGA. FAS improves the performance as well as the capacity against malicious traffic attacks of SDN software switches by offloading some functional modules. We validate FAS on an FPGA-based network processing platform. Experiment results demonstrate that the forwarding rate of FAS can be 44% higher than the original SDN software switch. In addition, FAS provides new opportunity to enhance the security of SDN software switches by allowing the deployment of bump-in-the-wire security modules (such as packet detectors and filters in FPGA.

  6. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  7. Application of Cisco Packet Trace in the Inter-VLAN Communication Teaching%浅析Cisco Packet Tracer在Vlan间通信教学的应用

    Institute of Scientific and Technical Information of China (English)

    郑耿凡

    2014-01-01

    Cisco Packet Tracer is a network simulation platform developed by Cisco Company. And Cisco packet tracer 5.3 allows three layer switch vlan communication in the experimental teaching. Real equipment is replaced by the analog simulation software, which solves the problem of lacking teaching experimental equipment in practice and im-proves the quality of teaching.%Cisco packet tracer是由思科公司开发的一个网络模拟辅助平台,在实验教学中可以借助Cisco packet tracer5.3实现三层交换机Vlan间通信,通过模拟防真软件来代替现实的设备,以解决在实践教学中实验设备缺乏的问题,提高教学质量。

  8. A Wave-guide Model for Packetized Media Streaming in Lossless Networks

    NARCIS (Netherlands)

    Konstantas, D.; Widya, I.A.

    2002-01-01

    Optimal operation of network based multimedia applications requires a precise specification of the network parameters. Different models have been used in the past in calculating the behavior of the network and defining parameters like throughput and delays of packets, using among others fluid

  9. Content-Adaptive Packetization and Streaming of Wavelet Video over IP Networks

    Directory of Open Access Journals (Sweden)

    Chien-Peng Ho

    2007-03-01

    Full Text Available This paper presents a framework of content-adaptive packetization scheme for streaming of 3D wavelet-based video content over lossy IP networks. The tradeoff between rate and distortion is controlled by jointly adapting scalable source coding rate and level of forward error correction (FEC protection. A content dependent packetization mechanism with data-interleaving and Reed-Solomon protection for wavelet-based video codecs is proposed to provide unequal error protection. This paper also tries to answer an important question for scalable video streaming systems: given extra bandwidth, should one increase the level of channel protection for the most important packets, or transmit more scalable source data? Experimental results show that the proposed framework achieves good balance between quality of the received video and level of error protection under bandwidth-varying lossy IP networks.

  10. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.

    1981-01-01

    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  11. Synchronization challenges in packet-based Cloud-RAN fronthaul for mobile networks

    DEFF Research Database (Denmark)

    Checko, Aleksandra; Juul, Anders Christian; Christiansen, Henrik Lehrmann

    2015-01-01

    In this paper, we look at reusing existing packet-based network (e.g. Ethernet) to possibly decrease deployment costs of fronthaul Cloud Radio Access Network (C-RAN) network and cost of Baseband Unit (BBU) resources. The challenge of this solution is that it requires mobile traffic (until now...... transmitted over synchronous protocols) to traverse the asynchronous Ethernet without losing synchronization. We analyze synchronization requirements of mobile networks and present an overview of solutions that fulfill them in traditional mobile networks. Then we elaborate on challenges that packet-based...... fronthaul imposes. We analyze possible contributions to frequency and phase error. We verify the feasibility of using the IEEE 1588v2 also know as Precision Time Protocol (PTP) for providing accurate phase and frequency synchronization. The study is based on simulations made in OPNET modeler. Thereby we...

  12. On the Effects of Heterogeneous Packet Lengths on Network Coding

    DEFF Research Database (Denmark)

    Compta, Pol Torres; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2014-01-01

    Random linear network coding (RLNC) has been shown to provide increased throughput, security and robustness for the transmission of data through the network. Most of the analysis and the demonstrators have focused on the study of data packets with the same size (number of bytes). This constitutes...

  13. Binary Systematic Network Coding for Progressive Packet Decoding

    OpenAIRE

    Jones, Andrew L.; Chatzigeorgiou, Ioannis; Tassi, Andrea

    2015-01-01

    We consider binary systematic network codes and investigate their capability of decoding a source message either in full or in part. We carry out a probability analysis, derive closed-form expressions for the decoding probability and show that systematic network coding outperforms conventional net- work coding. We also develop an algorithm based on Gaussian elimination that allows progressive decoding of source packets. Simulation results show that the proposed decoding algorithm can achieve ...

  14. Network Layer Protocol Activation for Packet Data Access in UMTS WCDMA Laboratory Network

    OpenAIRE

    Lakkisto, Erkka

    2011-01-01

    The purpose of this Bachelor’s Thesis was to set up the UMTS WCDMA network in the laboratory environment of Helsinki Metropolia University of Applied Sciences and to study the network layer protocol activation for packet data access. The development of 3G technology has been very rapid and it can be considered as one of the main technologies in telecommunication. Implementing the laboratory network in Metropolia enables teaching and researching of the modern network technology. Labora...

  15. A Scheduling Algorithm for Minimizing the Packet Error Probability in Clusterized TDMA Networks

    Directory of Open Access Journals (Sweden)

    Arash T. Toyserkani

    2009-01-01

    Full Text Available We consider clustered wireless networks, where transceivers in a cluster use a time-slotted mechanism (TDMA to access a wireless channel that is shared among several clusters. An approximate expression for the packet-loss probability is derived for networks with one or more mutually interfering clusters in Rayleigh fading environments, and the approximation is shown to be good for relevant scenarios. We then present a scheduling algorithm, based on Lagrangian duality, that exploits the derived packet-loss model in an attempt to minimize the average packet-loss probability in the network. Computer simulations of the proposed scheduling algorithm show that a significant increase in network throughput can be achieved compared to uncoordinated scheduling. Empirical trials also indicate that the proposed optimization algorithm almost always converges to an optimal schedule with a reasonable number of iterations. Thus, the proposed algorithm can also be used for bench-marking suboptimal scheduling algorithms.

  16. Forwarding techniques for IP fragmented packets in a real 6LoWPAN network.

    Science.gov (United States)

    Ludovici, Alessandro; Calveras, Anna; Casademont, Jordi

    2011-01-01

    Wireless Sensor Networks (WSNs) are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over) focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under.

  17. Forwarding Techniques for IP Fragmented Packets in a Real 6LoWPAN Network

    Directory of Open Access Journals (Sweden)

    Jordi Casademont

    2011-01-01

    Full Text Available Wireless Sensor Networks (WSNs are attracting more and more interest since they offer a low-cost solution to the problem of providing a means to deploy large sensor networks in a number of application domains. We believe that a crucial aspect to facilitate WSN diffusion is to make them interoperable with external IP networks. This can be achieved by using the 6LoWPAN protocol stack. 6LoWPAN enables the transmission of IPv6 packets over WSNs based on the IEEE 802.15.4 standard. IPv6 packet size is considerably larger than that of IEEE 802.15.4 data frame. To overcome this problem, 6LoWPAN introduces an adaptation layer between the network and data link layers, allowing IPv6 packets to be adapted to the lower layer constraints. This adaptation layer provides fragmentation and header compression of IP packets. Furthermore, it also can be involved in routing decisions. Depending on which layer is responsible for routing decisions, 6LoWPAN divides routing in two categories: mesh under if the layer concerned is the adaptation layer and route over if it is the network layer. In this paper we analyze different routing solutions (route over, mesh under and enhanced route over focusing on how they forward fragments. We evaluate their performance in terms of latency and energy consumption when transmitting IP fragmented packets. All the tests have been performed in a real 6LoWPAN implementation. After consideration of the main problems in forwarding of mesh frames in WSN, we propose and analyze a new alternative scheme based on mesh under, which we call controlled mesh under.

  18. Interception and modification of network authentication packets with the purpose of allowing alternative authentication modes

    Science.gov (United States)

    Kent, Alexander Dale [Los Alamos, NM

    2008-09-02

    Methods and systems in a data/computer network for authenticating identifying data transmitted from a client to a server through use of a gateway interface system which are communicately coupled to each other are disclosed. An authentication packet transmitted from a client to a server of the data network is intercepted by the interface, wherein the authentication packet is encrypted with a one-time password for transmission from the client to the server. The one-time password associated with the authentication packet can be verified utilizing a one-time password token system. The authentication packet can then be modified for acceptance by the server, wherein the response packet generated by the server is thereafter intercepted, verified and modified for transmission back to the client in a similar but reverse process.

  19. Green partial packet recovery in wireless sensor networks

    KAUST Repository

    Daghistani, Anas

    2015-08-18

    Partial packet recovery is well known for increasing network throughput and reducing frame retransmissions. However, partial packet recovery methods in the literature are not energy-aware and hence they are not suitable for the battery powered wireless sensor motes. We propose Green-Frag, a novel adaptive partial packet recovery mechanism that is energy friendly. It can help prolonging the battery life of wireless sensor motes that are usually resource constrained. It dynamically partitions the frame into smaller blocks to avoid dropping the whole frame due to a single bit error. Also, Green-Frag is able to tolerate high interference and save energy by varying the transmit power based on channel quality and interference pattern. We experimentally evaluate the energy efficiency as well as goodput and delay of Green-Frag using our TelosB sensor mote testbed. We find that Green-Frag reduces energy consumption by 33% on average compared to the state of the art partial packet recovery scheme in the literature in the presence of Wi-Fi interference. In the worst case, this reduction in energy consumption comes at the cost of 10% reduction in goodput. Finally, Green-Frag reduces the latency by 22% on average compared to other static frame fragmentation schemes.

  20. Performance analysis of multi-hop wireless packet networks

    Directory of Open Access Journals (Sweden)

    Lim J.-T.

    1997-01-01

    Full Text Available In this paper, a unified analytical framework for performance analysis of multi-hop wireless packet networks is developed. The effect of coupling between the hops on the degradation of the delay-throughput characteristics and the probability of blocking is investigated. The issue of hop decoupling is addressed.

  1. Synchronous optical packet switch architecture with tunable single and multi-channels wavelength converters

    Science.gov (United States)

    Hamza, Haitham S.; Adel, Reham

    2017-07-01

    In this paper, we propose a bufferless synchronous optical packet switch (OPS) architecture named the Limited-range wavelength conversion with Dynamic Pump-wavelength Selection (LDPS) architecture. LDPS is equipped with a dedicated limited-range wavelength converters (LRWCs, and a shared pool of parametric wavelength converters (PWCs) with dynamic pump-wavelength selection (DPS). The adoption of hybrid conversion types in the proposed architecture aims at improving the packet loss rate (PLR) compared to conventional architecture with single conversion types, while reducing (or at least maintaining) the conversion distance (d) of used wavelength converters. Packet contention in the proposed architecture is resolved using the first available algorithm (FAA) and the dynamic pump-wavelength selection algorithm (DPSA). The performance of the proposed architecture is compared to two well-known conventional architectures; namely, the LRWC architecture that uses dedicated LRWCS for each input wavelength, and the DPS architecture that uses a shared pool of dynamic pump-wavelength converters (PWCs). Simulation results show that, for the same value of d, the new architecture reduces the PLR compared to the LRWC architecture by up to 40 % and 99.7 % for traffic loads, 0.5 and 1; respectively. In addition, for d = 1 , the new architecture reduces the PLR compared to the DPS architecture by up to 10 % and 99.3 % for traffic loads, 0.5 and 1; respectively.

  2. Languages for Software-Defined Networks

    Science.gov (United States)

    2013-02-01

    switches, firewalls, and middleboxes) with closed and proprietary configuration inter- faces. Software - Defined Networks ( SDN ) are poised to change...how- ever, have seen growing interest in software - defined networks ( SDNs ), in which a logically-centralized controller manages the packet-processing...switches, firewalls, and middleboxes) with closed and proprietary configuration interfaces. Software - Defined Networks ( SDN ) are poised to change this

  3. A microcomputer network for the control of digitising machines

    International Nuclear Information System (INIS)

    Seller, P.

    1981-01-01

    A distributed microcomputing network operates in the Bubble Chamber Research Group Scanning Laboratory at the Rutherford and Appleton Laboratories. A microcomputer at each digitising table buffers information, controls the functioning of the table and enhances the machine/operator interface. The system consists of fourteen microcomputers together with a VAX 11/780 computer used for data analysis. These are inter-connected via a packet switched network. This paper will describe the features of the combined system, including the distributed computing architecture and the packet switched method of communication. This paper will also describe in detail a high speed packet switching controller used as a central node of the network. This controller is a multiprocessor microcomputer system with eighteen central processor units, thirty-four direct memory access channels and thirty-four prioritorised and vectored interrupt channels. This microcomputer is of general interest as a communications controller due to its totally programmable nature. (orig.)

  4. Efficient Radio Resource Allocation in a GSM and GPRS Cellular Network

    Directory of Open Access Journals (Sweden)

    David Vannucci

    2004-10-01

    Full Text Available This paper investigates the effect of various radio resource allocation strategies in a GSM/GPRS cellular network. The most efficient resource allocation is analysed as a function of the proportion of circuit switched voice and packet switched data load. The Grade of Service and average packet delay is investigated as a function of the load, packet size and call duration. Additionally, the feasibility of using voice over Internet Protocol as opposed to circuit switched voice is investigated as a means to increase subscriber capacity per base station. The work is motivated firstly by the complexity of having both circuit switched and packet switched connectivity on GSM/GPRS mobile cellular system and secondly that an exclusively packet based access on GSM/GPRS has the potential to increase the efficiency of resource utilisation by suitably varying the channel allocation to exploit the characteristics of voice and data traffic.

  5. Opportunistic Nonorthogonal Packet Scheduling in Fixed Broadband Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed H

    2006-01-01

    Full Text Available In order to mitigate high cochannel interference resulting from dense channel reuse, the interference management issues are often considered as essential part of scheduling schemes in fixed broadband wireless access (FBWA networks. To that end, a series of literature has been published recently, in which a group of base stations forms an interferer group (downlink transmissions from each base station become dominant interference for the users in other in-group base stations, and the scheduling scheme deployed in the group allows only one base station to transmit at a time. As a result of time orthogonality in transmissions, the dominant cochannel interferers are prevented, and hence the packet error rate can be improved. However, prohibiting concurrent transmissions in these orthogonal schemes introduces throughput penalty as well as higher end-to-end packet delay which might not be desirable for real-time services. In this paper, we utilize opportunistic nonorthogonality among the in-group transmissions whenever possible and propose a novel transmission scheduling scheme for FBWA networks. The proposed scheme, in contrast to the proactive interference avoidance techniques, strives for the improvements in delay and throughput efficiency. To facilitate opportunistic nonorthogonal transmissions in the interferer group, estimation of signal-to-interference-plus-noise ratio (SINR is required at the scheduler. We have observed from simulations that the proposed scheme outperforms the reference orthogonal scheme in terms of spectral efficiency, mean packet delay, and packet dropping rate.

  6. A Case Study of IPv6 Network Performance: Packet Delay, Loss, and Reordering

    Directory of Open Access Journals (Sweden)

    Fuliang Li

    2017-01-01

    Full Text Available Internet Protocol (IP is used to identify and locate computers on the Internet. Currently, IPv4 still routes most Internet traffic. However, with the exhausting of IPv4 addresses, the transition to IPv6 is imminent, because, as the successor of IPv4, IPv6 can provide a larger available address space. Existing studies have addressed the notion that IPv6-centric next generation networks are widely deployed and applied. In order to gain a deep understanding of IPv6, this paper revisits several critical IPv6 performance metrics. Our extensive measurement shows that packet delay and loss rate of IPv6 are similar to IPv4 when the AS-level paths are roughly the same. Specifically, when the link utilization exceeds a threshold, for example, 0.83 in our study, variation of packet delay presents a similar pattern with the variation of link utilization. If packet delay of a path is large, packet-loss rate of that path is more likely to fluctuate. In addition, we conduct a first-ever analysis of packet reordering in IPv6 world. Few IPv6 probe packets are out-of-order and the reordering rate is 2.3⁎10-6, which is much lower than that of 0.79% in IPv4 world. Our analysis consolidates an experimental basis for operators and researchers of IPv6 networks.

  7. Study of the Subjective Visibility of Packet Loss Artifacts in Decoded Video Sequences

    DEFF Research Database (Denmark)

    Korhonen, Jari

    2018-01-01

    Packet loss is a significant cause of visual impairments in video broadcasting over packet-switched networks. There are several subjective and objective video quality assessment methods focused on the overall perception of video quality. However, less attention has been paid on the visibility...... of packet loss artifacts appearing in spatially and temporally limited regions of a video sequence. In this paper, we present the results of a subjective study, using a methodology where a video sequence is displayed on a touchscreen and the users tap it in the positions where they observe artifacts. We...... also analyze the objective features derived from those artifacts, and propose different models for combining those features into an objective metric for assessing the noticeability of the artifacts. The practical results show that the proposed metric predicts visibility of packet loss impairments...

  8. Towards Effective Trust-Based Packet Filtering in Collaborative Network Environments

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam-For

    2017-01-01

    compromised by insider attacks. In this paper, we adopt the existing CIDN framework and aim to apply a collaborative trust-based approach to reduce unwanted packets. More specifically, we develop a collaborative trust-based packet filter, which can be deployed in collaborative networks and be robust against...... typical insider attacks (e.g., betrayal attacks). Experimental results in various simulated and practical environments demonstrate that our filter can perform effectively in reducing unwanted traffic and can defend against insider attacks through identifying malicious nodes in a quick manner, as compared...

  9. Compensation of position errors in passivity based teleoperation over packet switched communication networks

    NARCIS (Netherlands)

    Secchi, C; Stramigioli, Stefano; Fantuzzi, C.

    Because of the use of scattering based communication channels, passivity based telemanipulation systems can be subject to a steady state position error between master and slave robots. In this paper, we consider the case in which the passive master and slave sides communicate through a packet

  10. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  11. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    Science.gov (United States)

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Improved algorithms for circuit fault diagnosis based on wavelet packet and neural network

    International Nuclear Information System (INIS)

    Zhang, W-Q; Xu, C

    2008-01-01

    In this paper, two improved BP neural network algorithms of fault diagnosis for analog circuit are presented through using optimal wavelet packet transform(OWPT) or incomplete wavelet packet transform(IWPT) as preprocessor. The purpose of preprocessing is to reduce the nodes in input layer and hidden layer of BP neural network, so that the neural network gains faster training and convergence speed. At first, we apply OWPT or IWPT to the response signal of circuit under test(CUT), and then calculate the normalization energy of each frequency band. The normalization energy is used to train the BP neural network to diagnose faulty components in the analog circuit. These two algorithms need small network size, while have faster learning and convergence speed. Finally, simulation results illustrate the two algorithms are effective for fault diagnosis

  13. Modified Aggressive Packet Combining Scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2010-06-01

    In this letter, a few schemes are presented to improve the performance of aggressive packet combining scheme (APC). To combat error in computer/data communication networks, ARQ (Automatic Repeat Request) techniques are used. Several modifications to improve the performance of ARQ are suggested by recent research and are found in literature. The important modifications are majority packet combining scheme (MjPC proposed by Wicker), packet combining scheme (PC proposed by Chakraborty), modified packet combining scheme (MPC proposed by Bhunia), and packet reversed packet combining (PRPC proposed by Bhunia) scheme. These modifications are appropriate for improving throughput of conventional ARQ protocols. Leung proposed an idea of APC for error control in wireless networks with the basic objective of error control in uplink wireless data network. We suggest a few modifications of APC to improve its performance in terms of higher throughput, lower delay and higher error correction capability. (author)

  14. Cybersecurity and Network Forensics: Analysis of Malicious Traffic towards a Honeynet with Deep Packet Inspection

    Directory of Open Access Journals (Sweden)

    Gabriel Arquelau Pimenta Rodrigues

    2017-10-01

    Full Text Available Any network connected to the Internet is subject to cyber attacks. Strong security measures, forensic tools, and investigators contribute together to detect and mitigate those attacks, reducing the damages and enabling reestablishing the network to its normal operation, thus increasing the cybersecurity of the networked environment. This paper addresses the use of a forensic approach with Deep Packet Inspection to detect anomalies in the network traffic. As cyber attacks may occur on any layer of the TCP/IP networking model, Deep Packet Inspection is an effective way to reveal suspicious content in the headers or the payloads in any packet processing layer, excepting of course situations where the payload is encrypted. Although being efficient, this technique still faces big challenges. The contributions of this paper rely on the association of Deep Packet Inspection with forensics analysis to evaluate different attacks towards a Honeynet operating in a network laboratory at the University of Brasilia. In this perspective, this work could identify and map the content and behavior of attacks such as the Mirai botnet and brute-force attacks targeting various different network services. Obtained results demonstrate the behavior of automated attacks (such as worms and bots and non-automated attacks (brute-force conducted with different tools. The data collected and analyzed is then used to generate statistics of used usernames and passwords, IP and services distribution, among other elements. This paper also discusses the importance of network forensics and Chain of Custody procedures to conduct investigations and shows the effectiveness of the mentioned techniques in evaluating different attacks in networks.

  15. OTDM Networking for Short Range High-Capacity Highly Dynamic Networks

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros

    This PhD thesis aims at investigating the possibility of designing energy-efficient high-capacity (up to Tbit/s) optical network scenarios, leveraging on the effect of collective switching of many bits simultaneously, as is inherent in high bit rate serial optical data signals. The focus...... is on short range highly dynamic networks, catering to data center needs. The investigation concerns optical network scenarios, and experimental implementations of high bit rate serial data packet generation and reception, scalable optical packet labeling, simple optical label extraction and stable ultra...

  16. A novel implementation of TCP Vegas for optical burst switched networks

    KAUST Repository

    Shihada, Basem

    2010-07-01

    TCP performance over bufferless Optical Burst Switched (OBS) networks could be significantly degraded due to the misinterpretation of network congestion status (referred to as false congestion detection). It has been reported that burst retransmission in the OBS domain can improve the TCP throughput by hiding burst loss events from the upper TCP layer, which can effectively reduce the congestion window fluctuation at the expense of introducing additional delay. However, the additional delay may cause performance degradation for delay-based TCP implementations that are sensitive to packet round trip time in estimating the network congestion status. In this paper, a novel implementation of TCP Vegas that adopts a threshold-based mechanism is proposed for identifying the network congestion status in OBS networks. Analytical models are developed to evaluate the throughput of conventional TCP Vegas and threshold-based Vegas over OBS networks with burst retransmission. Simulation is conducted to validate the analytical model and to compare threshold-based Vegas with a number of legacy TCP implementations, such as TCP Sack and TCP Reno. The analytical model can be used to obtain a proper threshold value that results in an optimal steady state TCP throughput.

  17. 40-Gbps optical backbone network deep packet inspection based on FPGA

    Science.gov (United States)

    Zuo, Yuan; Huang, Zhiping; Su, Shaojing

    2014-11-01

    In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.

  18. QoS Differentiated and Fair Packet Scheduling in Broadband Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Zhang Yan

    2009-01-01

    Full Text Available This paper studies the packet scheduling problem in Broadband Wireless Access (BWA networks. The key difficulties of the BWA scheduling problem lie in the high variability of wireless channel capacity and the unknown model of packet arrival process. It is difficult for traditional heuristic scheduling algorithms to handle the situation and guarantee satisfying performance in BWA networks. In this paper, we introduce learning-based approach for a better solution. Specifically, we formulate the packet scheduling problem as an average cost Semi-Markov Decision Process (SMDP. Then, we solve the SMDP by using reinforcement learning. A feature-based linear approximation and the Temporal-Difference learning technique are employed to produce a near optimal solution of the corresponding SMDP problem. The proposed algorithm, called Reinforcement Learning Scheduling (RLS, has in-built capability of self-training. It is able to adaptively and timely regulate its scheduling policy according to the instantaneous network conditions. Simulation results indicate that RLS outperforms two classical scheduling algorithms and simultaneously considers: (i effective QoS differentiation, (ii high bandwidth utilization, and (iii both short-term and long-term fairness.

  19. Performance analysis of signaling protocols on OBS switches

    Science.gov (United States)

    Kirci, Pinar; Zaim, A. Halim

    2005-10-01

    In this paper, Just-In-Time (JIT), Just-Enough-Time (JET) and Horizon signalling schemes for Optical Burst Switched Networks (OBS) are presented. These signaling schemes run over a core dWDM network and a network architecture based on Optical Burst Switches (OBS) is proposed to support IP, ATM and Burst traffic. In IP and ATM traffic several packets are assembled in a single packet called burst and the burst contention is handled by burst dropping. The burst length distribution in IP traffic is arbitrary between 0 and 1, and is fixed in ATM traffic at 0,5. Burst traffic on the other hand is arbitrary between 1 and 5. The Setup and Setup ack length distributions are arbitrary. We apply the Poisson model with rate λ and Self-Similar model with pareto distribution rate α to identify inter-arrival times in these protocols. We consider a communication between a source client node and a destination client node over an ingress and one or more multiple intermediate switches.We use buffering only in the ingress node. The communication is based on single burst connections in which, the connection is set up just before sending a burst and then closed as soon as the burst is sent. Our analysis accounts for several important parameters, including the burst setup, burst setup ack, keepalive messages and the optical switching protocol. We compare the performance of the three signalling schemes on the network under as burst dropping probability under a range of network scenarios.

  20. Adaptive sampling rate control for networked systems based on statistical characteristics of packet disordering.

    Science.gov (United States)

    Li, Jin-Na; Er, Meng-Joo; Tan, Yen-Kheng; Yu, Hai-Bin; Zeng, Peng

    2015-09-01

    This paper investigates an adaptive sampling rate control scheme for networked control systems (NCSs) subject to packet disordering. The main objectives of the proposed scheme are (a) to avoid heavy packet disordering existing in communication networks and (b) to stabilize NCSs with packet disordering, transmission delay and packet loss. First, a novel sampling rate control algorithm based on statistical characteristics of disordering entropy is proposed; secondly, an augmented closed-loop NCS that consists of a plant, a sampler and a state-feedback controller is transformed into an uncertain and stochastic system, which facilitates the controller design. Then, a sufficient condition for stochastic stability in terms of Linear Matrix Inequalities (LMIs) is given. Moreover, an adaptive tracking controller is designed such that the sampling period tracks a desired sampling period, which represents a significant contribution. Finally, experimental results are given to illustrate the effectiveness and advantages of the proposed scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A Novel Approach to Detect Network Attacks Using G-HMM-Based Temporal Relations between Internet Protocol Packets

    Directory of Open Access Journals (Sweden)

    Han Kyusuk

    2011-01-01

    Full Text Available This paper introduces novel attack detection approaches on mobile and wireless device security and network which consider temporal relations between internet packets. In this paper we first present a field selection technique using a Genetic Algorithm and generate a Packet-based Mining Association Rule from an original Mining Association Rule for Support Vector Machine in mobile and wireless network environment. Through the preprocessing with PMAR, SVM inputs can account for time variation between packets in mobile and wireless network. Third, we present Gaussian observation Hidden Markov Model to exploit the hidden relationships between packets based on probabilistic estimation. In our G-HMM approach, we also apply G-HMM feature reduction for better initialization. We demonstrate the usefulness of our SVM and G-HMM approaches with GA on MIT Lincoln Lab datasets and a live dataset that we captured on a real mobile and wireless network. Moreover, experimental results are verified by -fold cross-validation test.

  2. Network speech systems technology program

    Science.gov (United States)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  3. Networked Estimation for Event-Based Sampling Systems with Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Young Soo Suh

    2009-04-01

    Full Text Available This paper is concerned with a networked estimation problem in which sensor data are transmitted over the network. In the event-based sampling scheme known as level-crossing or send-on-delta (SOD, sensor data are transmitted to the estimator node if the difference between the current sensor value and the last transmitted one is greater than a given threshold. Event-based sampling has been shown to be more efficient than the time-triggered one in some situations, especially in network bandwidth improvement. However, it cannot detect packet dropout situations because data transmission and reception do not use a periodical time-stamp mechanism as found in time-triggered sampling systems. Motivated by this issue, we propose a modified event-based sampling scheme called modified SOD in which sensor data are sent when either the change of sensor output exceeds a given threshold or the time elapses more than a given interval. Through simulation results, we show that the proposed modified SOD sampling significantly improves estimation performance when packet dropouts happen.

  4. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  5. Packets distribution in a tree-based topology wireless sensor networks

    CSIR Research Space (South Africa)

    Akpakwu, GA

    2016-07-01

    Full Text Available The concept of data distribution within cluster of sensor nodes to the source sink has resulted to intense research in Wireless Sensor Networks (WSNs). In this paper, in order to determine the scheduling length of packet distribution, a tree...

  6. Computer-communication networks

    CERN Document Server

    Meditch, James S

    1983-01-01

    Computer- Communication Networks presents a collection of articles the focus of which is on the field of modeling, analysis, design, and performance optimization. It discusses the problem of modeling the performance of local area networks under file transfer. It addresses the design of multi-hop, mobile-user radio networks. Some of the topics covered in the book are the distributed packet switching queuing network design, some investigations on communication switching techniques in computer networks and the minimum hop flow assignment and routing subject to an average message delay constraint

  7. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  8. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  9. Voice Quality Measuring Setup with Automatic Voice over IP Call Generator and Lawful Interception Packet Analyzer

    Directory of Open Access Journals (Sweden)

    PLEVA Matus

    Full Text Available This paper describes the packet measuring laboratory setup, which could be used also for lawful interception applications, using professional packet analyzer, Voice over IP call generator, free call server (Asterisk linux setup and appropriate software and hardware described below. This setup was used for measuring the quality of the automatically generated VoIP calls under stressed network conditions, when the call manager server was flooded with high bandwidth traffic, near the bandwidth limit of the connected switch. The call generator realizes 30 calls simultaneously and the packet capturer & analyzercould decode the VoIP traffic, extract RTP session data, automatically analyze the voice quality using standardized MOS (Mean Opinion Score values and describe also the source of the voice degradation (jitter, packet loss, codec, delay, etc..

  10. End to end adaptive congestion control in TCP/IP networks

    CERN Document Server

    Houmkozlis, Christos N

    2012-01-01

    This book provides an adaptive control theory perspective on designing congestion controls for packet-switching networks. Relevant to a wide range of disciplines and industries, including the music industry, computers, image trading, and virtual groups, the text extensively discusses source oriented, or end to end, congestion control algorithms. The book empowers readers with clear understanding of the characteristics of packet-switching networks and their effects on system stability and performance. It provides schemes capable of controlling congestion and fairness and presents real-world app

  11. Time-optimum packet scheduling for many-to-one routing in wireless sensor networks

    Science.gov (United States)

    Song, W.-Z.; Yuan, F.; LaHusen, R.; Shirazi, B.

    2007-01-01

    This paper studies the wireless sensor networks (WSN) application scenario with periodical traffic from all sensors to a sink. We present a time-optimum and energy-efficient packet scheduling algorithm and its distributed implementation. We first give a general many-to-one packet scheduling algorithm for wireless networks, and then prove that it is time-optimum and costs [image omitted], N(u0)-1) time slots, assuming each node reports one unit of data in each round. Here [image omitted] is the total number of sensors, while [image omitted] denotes the number of sensors in a sink's largest branch subtree. With a few adjustments, we then show that our algorithm also achieves time-optimum scheduling in heterogeneous scenarios, where each sensor reports a heterogeneous amount of data in each round. Then we give a distributed implementation to let each node calculate its duty-cycle locally and maximize efficiency globally. In this packet-scheduling algorithm, each node goes to sleep whenever it is not transceiving, so that the energy waste of idle listening is also mitigated. Finally, simulations are conducted to evaluate network performance using the Qualnet simulator. Among other contributions, our study also identifies the maximum reporting frequency that a deployed sensor network can handle.

  12. Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinde Cao

    2013-01-01

    Full Text Available This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application, the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

  13. Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    We study packetized predictive control, known to be robust against packet dropouts in networked systems. To obtain sparse packets for rate-limited networks, we design control packets via an ℓ0 optimization, which can be eectively solved by orthogonal matching pursuit. Our formulation ensures...

  14. Multistage switching hardware and software implementations for student experiment purpose

    Science.gov (United States)

    Sani, A.; Suherman

    2018-02-01

    Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.

  15. Packet reversed packet combining scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2006-07-01

    The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)

  16. Monitoring Agent for Detecting Malicious Packet Drops for Wireless Sensor Networks in the Microgrid and Grid-Enabled Vehicles

    Directory of Open Access Journals (Sweden)

    Jongbin Ko

    2012-05-01

    Full Text Available Of the range of wireless communication technologies, wireless sensor networks (WSN will be one of the most appropriate technologies for the Microgrid and Grid-enabled Vehicles in the Smartgrid. To ensure the security of WSN, the detection of attacks is more efficient than their prevention because of the lack of computing power. Malicious packet drops are the easiest means of attacking WSNs. Thus, the sensors used for constructing a WSN require a packet drop monitoring agent, such as Watchdog. However, Watchdog has a partial drop problem such that an attacker can manipulate the packet dropping rate below the minimum misbehaviour monitoring threshold. Furthermore, Watchdog does not consider real traffic situations, such as congestion and collision, and so it has no way of recognizing whether a packet drop is due to a real attack or network congestion. In this paper, we propose a malicious packet drop monitoring agent, which considers traffic conditions. We used the actual traffic volume on neighbouring nodes and the drop rate while monitoring a sending node for specific period. It is more effective in real network scenarios because unlike Watchdog it considers the actual traffic, which only uses the Pathrater. Moreover, our proposed method does not require authentication, packet encryption or detection packets. Thus, there is a lower likelihood of detection failure due to packet spoofing, Man-In-the Middle attacks or Wormhole attacks. To test the suitability of our proposed concept for a series of network scenarios, we divided the simulations into three types: one attack node, more than one attack nodes and no attack nodes. The results of the simulations meet our expectations.

  17. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    Science.gov (United States)

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-07-09

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  18. Energy Model of Networks-on-Chip and a Bus

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jürgen; Nurmi, J.; Takala, J.; Hamalainen, T.D.

    2005-01-01

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  19. System-Level Demonstration of a Dynamically Reconfigured Burst-Mode Link Using a Nanosecond Si-Photonic Switch

    DEFF Research Database (Denmark)

    Forencich, Alex; Kamchevska, Valerija; Dupuis, Nicolas

    2018-01-01

    Using a novel FPGA-based network emulator, microsecond-scale packets with 12.5-20-Gb/s data are generated, routed through a nanosecond Si-photonic switch, and received in a fast-locking burst-mode receiver. Error-free links with <382-ns system-level switching are shown....

  20. SDRAM-based packet buffer model for high speed switches

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2011-01-01

    based on the specifications of a real-life DDR3-SDRAM chip. Based on this model the performance of different schemes for optimizing the performance of such a packet buffer can be evaluated. The purpose of this study is to find efficient schemes for memory mapping of the packet queues and I/O traffic...

  1. Technology Corner: Internet Packet Sniffers

    Directory of Open Access Journals (Sweden)

    Nick Flor

    2011-03-01

    Full Text Available A packet sniffer is a piece of software that allows a person to eavesdrop on computer communications over the internet.  A packet sniffer can be used as a diagnostic tool by network administrators or as a spying tool by hackers who can use it to steal passwords and other private information from computer users.  Whether you are a network administrator or information assurance specialist, it helps to have a detailed understanding of how packet sniffers work.  And one of the best ways to acquire such an understanding is to build and modify an actual packet sniffer.

  2. Path Diversity Media Streaming over Best Effort Packet Switched Networks

    Science.gov (United States)

    2003-01-01

    intolerable sounds of my violin practice, but my mom was always there to defend and encourage her young violinist. When I left my full-time job for graduate...information can be incomplete or inaccurate. For exam - ple, traceroute can only differentiate between routers and not switches. Two paths with completely

  3. Optical Multidimensional Switching for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija

    2017-01-01

    . Software controlled switching using an on-chip integrated fiber switch is demonstrated and enabling of additional network functionalities such as multicast and optical grooming is experimentally confirmed. Altogether this work demonstrates the potential of optical switching technologies...... for the purpose of deploying optical switching within the network. First, the Hi-Ring data center architecture is proposed. It is based on optical multidimensional switching nodes that provide switching in hierarchically layered space, wavelength and time domain. The performance of the Hi-Ring architecture...... is evaluated experimentally and successful switching of both high capacity wavelength connections and time-shared subwavelengthconnections is demonstrated. Error-free performance is also achieved when transmitting 7 Tbit/s using multicore fiber, confirming the ability to scale the network. Moreover...

  4. Application of Cellular Automata to Detection of Malicious Network Packets

    Science.gov (United States)

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  5. Error rate degradation due to switch crosstalk in large modular switched optical networks

    DEFF Research Database (Denmark)

    Saxtoft, Christian; Chidgey, P.

    1993-01-01

    A theoretical model of an optical network incorporating wavelength selective elements, amplifiers, couplers and switches is presented. The model is used to evaluate a large modular switch optical network that provides the capability of adapting easily to changes in network traffic requirements. T....... The network dimensions are shown to be limited by the optical crosstalk in the switch matrices and by the polarization dependent loss in the optical components...

  6. Buffer Management and Hybrid Probability Choice Routing for Packet Delivery in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Daru Pan

    2012-01-01

    Full Text Available Due to the features of long connection delays, frequent network partitions, and topology unsteadiness, the design of opportunistic networks faces the challenge of how to effectively deliver data based only on occasional encountering of nodes, where the conventional routing schemes do not work properly. This paper proposes a hybrid probability choice routing protocol with buffer management for opportunistic networks. A delivery probability function is set up based on continuous encounter duration time, which is used for selecting a better node to relay packets. By combining the buffer management utility and the delivery probability, a total utility is used to decide whether the packet should be kept in the buffer or be directly transmitted to the encountering node. Simulation results show that the proposed routing outperforms the existing one in terms of the delivery rate and the average delay.

  7. Leo satellite-based telecommunication network concepts

    Science.gov (United States)

    Aiken, John G.; Swan, Peter A.; Leopold, Ray J.

    1991-01-01

    Design considerations are discussed for Low Earth Orbit (LEO) satellite based telecommunications networks. The satellites are assumed to be connected to each other via intersatellite links. They are connected to the end user either directly or through gateways to other networks. Frequency reuse, circuit switching, packet switching, call handoff, and routing for these systems are discussed by analogy with terrestrial cellular (mobile radio) telecommunication systems.

  8. Concave switching in single-hop and multihop networks

    NARCIS (Netherlands)

    Walton, N.

    2015-01-01

    Switched queueing networks model wireless networks, input-queued switches, and numerous other networked communications systems. We consider an (\\(\\alpha ,g\\))-switch policy; these policies provide a generalization of the MaxWeight policies of Tassiulas and Ephremides (IEEE Trans Autom Control

  9. Future optical communication networks beyond 160 Gbit/s based on OTDM

    Science.gov (United States)

    Prati, Giancarlo; Bogoni, Antonella; Poti, Luca

    2005-01-01

    The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services such as distance learning, video-conferencing and peer to peer applications. For this reason data traffic is exceeding telephony traffic, and this trend is driving the convergence of telecommunications and computer communications. In this scenario Internet Protocol (IP) is becoming the dominant protocol for any traffic, shifting the attention of the network designers from a circuit switching approach to a packet switching approach. A role of paramount importance in packet switching networks is played by the router that must implement the functionalities to set up and maintain the inter-nodal communications. The main functionalities a router must implement are routing, forwarding, switching, synchronization, contention resolution, and buffering. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal before routing that to the right output port. However, when the single channel bit rate increases beyond electronic speed limit, Optical Time Division Multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper enabling techniques for ultra-fast all-optical network will be addressed. First a 160 Gbit/s complete transmission system will be considered. As enabling technique, an overview for all-optical logics will be discussed and experimental results will be presented using a particular reconfigurable NOLM based on Self-Phase-Modulation (SPM) or Cross-Phase-Modulation (XPM). Finally, a rough experiment on label extraction, all-optical switching and packet forwarding is shown.

  10. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks

    Science.gov (United States)

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  11. Experimental demonstrations of all-optical networking functions for WDM optical networks

    Science.gov (United States)

    Gurkan, Deniz

    The deployment of optical networks will enable high capacity links between users but will introduce the problems associated with transporting and managing more channels. Many network functions should be implemented in optical domain; main reasons are: to avoid electronic processing bottlenecks, to achieve data-format and data-rate independence, to provide reliable and cost efficient control and management information, to simultaneously process multiple wavelength channel operation for wavelength division multiplexed (WDM) optical networks. The following novel experimental demonstrations of network functions in the optical domain are presented: Variable-bit-rate recognition of the header information in a data packet. The technique is reconfigurable for different header sequences and uses optical correlators as look-up tables. The header is processed and a signal is sent to the switch for a series of incoming data packets at 155 Mb/s, 622 Mb/s, and 2.5 Gb/s in a reconfigurable network. Simultaneous optical time-slot-interchange and wavelength conversion of the bits in a 2.5-Gb/s data stream to achieve a reconfigurable time/wavelength switch. The technique uses difference-frequency-generation (DFG) for wavelength conversion and fiber Bragg gratings (FBG) as wavelength-dependent optical time buffers. The WDM header recognition module simultaneously recognizing two header bits on each of two 2.5-Gbit/s WDM packet streams. The module is tunable to enable reconfigurable look-up tables. Simultaneous and independent label swapping and wavelength conversion of two WDM channels for a multi-protocol label switching (MPLS) network. Demonstration of label swapping of distinct 8-bit-long labels for two WDM data channels is presented. Two-dimensional code conversion module for an optical code-division multiple-access (O-CDMA) local area network (LAN) system. Simultaneous wavelength conversion and time shifting is achieved to enable flexible code conversion and increase code re

  12. Deep Packet/Flow Analysis using GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Qian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wu, Wenji [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-11-12

    Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Since the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.

  13. Architecture and evaluation of software-defined optical switching matrix for hybrid data centers

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    A software architecture is proposed for hybrid packet/optical data centers employing programmable NETCONF-enabled optical switching matrix, and a performance evaluation is presented comparing hybrid and electrical-only architectures for elephant flows under different traffic patterns. Network...

  14. IP- -: A Reduced Internet Protocol for Optical Packet Networking

    Science.gov (United States)

    Ohta, Masataka; Fujikawa, Kenji

    IP- - is proposed as an Internet Protocol suitable for optical packet networking. As optical routers require much faster control than electric ones and lack of optical buffers other than those by fiber delay lines requires fixed time control, Internet Protocols must be at least as simple as IPv4 and much simpler than IPv6. IP- - also addresses issues of IP address space exhaustion and IP routing table explosion.

  15. Data communications and computer communications network

    International Nuclear Information System (INIS)

    Kim, Jang Gwon; Gu, Chang Hoe

    2005-03-01

    This textbook is composed of twelve chapters, which are communication network introduction, foundation of data communication, data link control, circuit switching system, packet switching system, multiple access communication system, protocol and architecture, LAN, MAN communication network, integrated service digital network, internet and Asymmetric digital subscriber Line and Wireless Local Loop. Each chapter has the introduction of the technique, structure, function and practice problems. It also has the appendix on electricity and communication standards organization, characteristic table and glossary.

  16. Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    OpenAIRE

    Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed

    2013-01-01

    This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchroniza...

  17. OpenFlow Switching Performance using Network Simulator - 3

    OpenAIRE

    Sriram Prashanth, Naguru

    2016-01-01

    Context. In the present network inventive world, there is a quick expansion of switches and protocols, which are used to cope up with the increase in customer requirement in the networking. With increasing demand for higher bandwidths and lower latency and to meet these requirements new network paths are introduced. To reduce network load in present switching network, development of new innovative switching is required. These required results can be achieved by Software Define Network or Trad...

  18. SDN-enabled OPS with QoS guarantee for reconfigurable virtual data center networks

    NARCIS (Netherlands)

    Miao, W.; Agraz, F.; Peng, S.; Spadaro, S.; Bernini, G.; Perelló, J.; Zervas, G.; Nejabati, R.; Ciulli, Nicola; Simeonidou, D.; Dorren, H.; Calabretta, N.

    2015-01-01

    Optical packet switching (OPS) can enhance the performance of data center networks (DCNs)by providing fast and large-capacity switching capability. Benefiting from the software-defined networking (SDN) control plane, which could update the look-up-table (LUT) of the OPS, virtual DCNs can be flexibly

  19. Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    OpenAIRE

    Al-Azzawi, Waleed

    2013-01-01

    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefo...

  20. A hybrid optical switch architecture to integrate IP into optical networks to provide flexible and intelligent bandwidth on demand for cloud computing

    Science.gov (United States)

    Yang, Wei; Hall, Trevor J.

    2013-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users. As a consequence, the nature of the Internet traffic has been fundamentally transformed from a pure packet-based pattern to today's predominantly flow-based pattern. Cloud computing has also brought about an unprecedented growth in the Internet traffic. In this paper, a hybrid optical switch architecture is presented to deal with the flow-based Internet traffic, aiming to offer flexible and intelligent bandwidth on demand to improve fiber capacity utilization. The hybrid optical switch is capable of integrating IP into optical networks for cloud-based traffic with predictable performance, for which the delay performance of the electronic module in the hybrid optical switch architecture is evaluated through simulation.

  1. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    Science.gov (United States)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  2. TCP Packet Trace Analysis. M.S. Thesis

    Science.gov (United States)

    Shepard, Timothy J.

    1991-01-01

    Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.

  3. Utilization of OFDM for efficient packet forwarding in wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2011-12-01

    Beaconless position-based forwarding protocols have recently evolved as a promising solution for packet forwarding in wireless sensor networks. However, as the network density grows, the overhead incurred grows significantly. As such, end-to-end energy and delay performance is adversely impacted. Motivated by the need for a forwarding mechanism that is more tolerant to growth in node density, an alternative position-based protocol is proposed in this paper. The protocol is designed such that it completely eliminates the need for potential relays to undergo a relay election process. Rather, any eligible relay may decide to forward the packet ahead, thus significantly reducing the overhead. The operation of the proposed protocol is empowered by exploiting favorable features of orthogonal frequency division multiplexing (OFDM) at the physical layer. End-to-end performance is evaluated here against existing beaconless protocols. It is demonstrated that the proposed protocol is more efficient since it is able to offer lower end-to-end delay for the same amount of energy consumption. © 2011 IEEE.

  4. Mixture block coding with progressive transmission in packet video. Appendix 1: Item 2. M.S. Thesis

    Science.gov (United States)

    Chen, Yun-Chung

    1989-01-01

    Video transmission will become an important part of future multimedia communication because of dramatically increasing user demand for video, and rapid evolution of coding algorithm and VLSI technology. Video transmission will be part of the broadband-integrated services digital network (B-ISDN). Asynchronous transfer mode (ATM) is a viable candidate for implementation of B-ISDN due to its inherent flexibility, service independency, and high performance. According to the characteristics of ATM, the information has to be coded into discrete cells which travel independently in the packet switching network. A practical realization of an ATM video codec called Mixture Block Coding with Progressive Transmission (MBCPT) is presented. This variable bit rate coding algorithm shows how a constant quality performance can be obtained according to user demand. Interactions between codec and network are emphasized including packetization, service synchronization, flow control, and error recovery. Finally, some simulation results based on MBCPT coding with error recovery are presented.

  5. An On-Demand Emergency Packet Transmission Scheme for Wireless Body Area Networks.

    Science.gov (United States)

    Al Ameen, Moshaddique; Hong, Choong Seon

    2015-12-04

    The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN). A BAN can manage devices in, on and around the human body. Major requirements of such a network are energy efficiency, long lifetime, low delay, security, etc. Traffic in a BAN can be scheduled (normal) or event-driven (emergency). Traditional media access control (MAC) protocols use duty cycling to improve performance. A sleep-wake up cycle is employed to save energy. However, this mechanism lacks features to handle emergency traffic in a prompt and immediate manner. To deliver an emergency packet, a node has to wait until the receiver is awake. It also suffers from overheads, such as idle listening, overhearing and control packet handshakes. An external radio-triggered wake up mechanism is proposed to handle prompt communication. It can reduce the overheads and improve the performance through an on-demand scheme. In this work, we present a simple-to-implement on-demand packet transmission scheme by taking into considerations the requirements of a BAN. The major concern is handling the event-based emergency traffic. The performance analysis of the proposed scheme is presented. The results showed significant improvements in the overall performance of a BAN compared to state-of-the-art protocols in terms of energy consumption, delay and lifetime.

  6. An On-Demand Emergency Packet Transmission Scheme for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Moshaddique Al Ameen

    2015-12-01

    Full Text Available The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN. A BAN can manage devices in, on and around the human body. Major requirements of such a network are energy efficiency, long lifetime, low delay, security, etc. Traffic in a BAN can be scheduled (normal or event-driven (emergency. Traditional media access control (MAC protocols use duty cycling to improve performance. A sleep-wake up cycle is employed to save energy. However, this mechanism lacks features to handle emergency traffic in a prompt and immediate manner. To deliver an emergency packet, a node has to wait until the receiver is awake. It also suffers from overheads, such as idle listening, overhearing and control packet handshakes. An external radio-triggered wake up mechanism is proposed to handle prompt communication. It can reduce the overheads and improve the performance through an on-demand scheme. In this work, we present a simple-to-implement on-demand packet transmission scheme by taking into considerations the requirements of a BAN. The major concern is handling the event-based emergency traffic. The performance analysis of the proposed scheme is presented. The results showed significant improvements in the overall performance of a BAN compared to state-of-the-art protocols in terms of energy consumption, delay and lifetime.

  7. Quality of service on Linux for the Atlas TDAQ event building network

    International Nuclear Information System (INIS)

    Yasu, Y.; Manabe, A.; Fujii, H.; Watase, Y.; Nagasaka, Y.; Hasegawa, Y.; Shimojima, M.; Nomachi, M.

    2001-01-01

    Congestion control for packets sent on a network is important for DAQ systems that contain an event builder using switching network technologies. Quality of Service (QoS) is a technique for congestion control. Recent Linux releases provide QoS in the kernel to manage network traffic. The authors have analyzed the packet-loss and packet distribution for the event builder prototype of the Atlas TDAQ system. The authors used PC/Linux with Gigabit Ethernet network as the testbed. The results showed that QoS using CBQ and TBF eliminated packet loss on UDP/IP transfer while the UDP/IP transfer in best effort made lots of packet loss. The result also showed that the QoS overhead was small. The authors concluded that QoS on Linux performed efficiently in TCP/IP and UDP/IP and will have an important role of the Atlas TDAQ system

  8. Synchronization in slowly switching networks of coupled oscillators

    Science.gov (United States)

    Zhou, Jie; Zou, Yong; Guan, Shuguang; Liu, Zonghua; Boccaletti, S.

    2016-01-01

    Networks whose structure of connections evolves in time constitute a big challenge in the study of synchronization, in particular when the time scales for the evolution of the graph topology are comparable with (or even longer than) those pertinent to the units’ dynamics. We here focus on networks with a slow-switching structure, and show that the necessary conditions for synchronization, i.e. the conditions for which synchronization is locally stable, are determined by the time average of the largest Lyapunov exponents of transverse modes of the switching topologies. Comparison between fast- and slow-switching networks allows elucidating that slow-switching processes prompt synchronization in the cases where the Master Stability Function is concave, whereas fast-switching schemes facilitate synchronization for convex curves. Moreover, the condition of slow-switching enables the introduction of a control strategy for inducing synchronization in networks with arbitrary structure and coupling strength, which is of evident relevance for broad applications in real world systems. PMID:27779253

  9. Enhancing a network coding security scheme to avoid packet dropping in wireless mesh networks / H.L.H.C. Terblanche.

    OpenAIRE

    Terblanche, Heila Levina Helena Catharina

    2013-01-01

    With the increase of mobile and smart device usage, the interest in dynamically forming networks is rising. One such type of network isWireless Mesh Networks (WMNs). WMNs are multi-hop networks, with a decentralised nature that can dynamically form into mesh topologies. Network Coding (NC) is a method that is used to increase the efficiency of networks by encoding and decoding data on packet level by means of an XOR operation. NC works well with WMNs because it can exploit WMNs broadcast a...

  10. Adaptive Control of the Packet Transmission Period with Solar Energy Harvesting Prediction in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kideok Kwon

    2015-04-01

    Full Text Available A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  11. Adaptive control of the packet transmission period with solar energy harvesting prediction in wireless sensor networks.

    Science.gov (United States)

    Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan

    2015-04-24

    A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  12. Using Self-management for Establishing Light Paths in Optical Networks: an Overview

    NARCIS (Netherlands)

    Fioreze, Tiago; Pras, Aiko

    2006-01-01

    Current optical networks are generally composed of multi-service optical switches, which enable forwarding of data at multiple levels. Huge flows at the packet-level (IP-level) may be moved to the optical-level, which is faster than the packet-level. Such move could be beneficial since congested IP

  13. Event-Driven Control for Networked Control Systems With Quantization and Markov Packet Losses.

    Science.gov (United States)

    Yang, Hongjiu; Xu, Yang; Zhang, Jinhui

    2016-05-23

    In this paper, event-driven is used in a networked control system (NCS) which is subjected to the effect of quantization and packet losses. A discrete event-detector is used to monitor specific events in the NCS. Both an arbitrary region quantizer and Markov jump packet losses are also considered for the NCS. Based on zoom strategy and Lyapunov theory, a complete proof is given to guarantee mean square stability of the closed-loop system. Stabilization of the NCS is ensured by designing a feedback controller. Lastly, an inverted pendulum model is given to show the advantages and effectiveness of the proposed results.

  14. Optical burst switching based satellite backbone network

    Science.gov (United States)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  15. Average contraction and synchronization of complex switched networks

    International Nuclear Information System (INIS)

    Wang Lei; Wang Qingguo

    2012-01-01

    This paper introduces an average contraction analysis for nonlinear switched systems and applies it to investigating the synchronization of complex networks of coupled systems with switching topology. For a general nonlinear system with a time-dependent switching law, a basic convergence result is presented according to average contraction analysis, and a special case where trajectories of a distributed switched system converge to a linear subspace is then investigated. Synchronization is viewed as the special case with all trajectories approaching the synchronization manifold, and is thus studied for complex networks of coupled oscillators with switching topology. It is shown that the synchronization of a complex switched network can be evaluated by the dynamics of an isolated node, the coupling strength and the time average of the smallest eigenvalue associated with the Laplacians of switching topology and the coupling fashion. Finally, numerical simulations illustrate the effectiveness of the proposed methods. (paper)

  16. Limiting Energy Consumption by Decreasing Packets Retransmissions in 5G Network

    Directory of Open Access Journals (Sweden)

    Łukasz Apiecionek

    2017-01-01

    Full Text Available This article presents the potential of using Multipath Transmission Control Protocol for limiting the energy consumption in 5G network. The number of errors occurring during packet transmissions and in effect the number of retransmissions affect the consumption of energy by the devices in the network. The paper analyzes the potential energy savings from implementing an algorithm for detecting problems and predicting the future retransmissions. Although this is the main object of the paper, it must be emphasized that the proposed method also allows increasing the speed of transmission and improving the security of the data and it is easy to implement in 5G networks.

  17. Stateless multicast switching in software defined networks

    OpenAIRE

    Reed, Martin J.; Al-Naday, Mays; Thomos, Nikolaos; Trossen, Dirk; Petropoulos, George; Spirou, Spiros

    2016-01-01

    Multicast data delivery can significantly reduce traffic in operators' networks, but has been limited in deployment due to concerns such as the scalability of state management. This paper shows how multicast can be implemented in contemporary software defined networking (SDN) switches, with less state than existing unicast switching strategies, by utilising a Bloom Filter (BF) based switching technique. Furthermore, the proposed mechanism uses only proactive rule insertion, and thus, is not l...

  18. Highly Efficient Multi Channel Packet Forwarding with Round Robin Intermittent Periodic Transmit for Multihop Wireless Backhaul Networks

    Science.gov (United States)

    Furukawa, Hiroshi

    2017-01-01

    Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164

  19. Towards transparent all-optical label-swapped networks: 40 Gbit/s ultra-fast dynamic wavelength routing using integrated devices

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Jeppesen, Palle

    2006-01-01

    All-optical routing of 40 Gbit/s 1.6 ns packets is demonstrated employing integrated devices based on SOA-MZIs. The scheme allows wavelength transparent operation and sub-nanosecond dynamic wavelength selection for future packet/label switched networks....

  20. Adaptable System Increasing the Transmission Speed and Reliability in Packet Network by Optimizing Delay

    Directory of Open Access Journals (Sweden)

    Zbynek Kocur

    2014-01-01

    Full Text Available There is a great diversity in the transmission technologies in current data networks. Individual technologies are in most cases incompatible at physical and partially also at the link layer of the reference ISO/OSI model. Network compatibility, as the ability to transmit data, is realizable through the third layer, which is able to guarantee the operation of the different devices across their technological differences. The proposed inverse packet multiplexer addresses increase of the speed and reliability of packet transmission to the third layer, and at the same time it increases the stability of the data communication by the regulation of the delay value during the transmission. This article presents implementation of a communication system and its verification in real conditions. The conclusion compares the strengths and weaknesses of the proposed control system.

  1. Mobile location services over the next generation IP core network

    DEFF Research Database (Denmark)

    Thongthammachart, Saowanee; Olesen, Henning

    2003-01-01

    network is changing from circuit-switched to packet-switched technology and evolving to an IP core network based on IPv6. The IP core network will allow all IP devices to be connected seamlessly. Due to the movement detection mechanism of Mobile IPv6, mobile terminals will periodically update....... The concept of mobile location services over the next generation IP networks is described. We also discuss the effectiveness of the short-range wireless network regarding a mobile user's position inside buildings and hotspot areas....

  2. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  3. Packet Duplication in Dual Connectivity Enabled 5G Wireless Networks: Overview and Challenges

    OpenAIRE

    Aijaz, Adnan

    2018-01-01

    Enabling ultra-reliable low latency communications (uRLLC) over 5G wireless networks creates challenging design requirements, particularly on the air-interface. The stringent latency and reliability targets require enhancements at different layers of the protocol stack. On the other hand, the parallel redundancy protocol (PRP), wherein each data packet is duplicated and transmitted concurrently over two independent networks, provides a simple solution for improving reliability and reducing la...

  4. Analysing efficiency of IPv6 packet transmission over 6LoWPAN network

    Science.gov (United States)

    Kozłowski, Adam; Sosnowski, Janusz

    2017-08-01

    Practical proliferation of Internet of Things (IoT) concept depends upon communication efficiency in the related network. In the paper we outline basic features of wireless communication protocols used in IoT and concentrate on analysing communication overheads. In particular, we discuss the impact of IPv6 packet length on 6LoWPAN network operation with physical and MAC layer defined by IEEE 802.15.4 standard. The presented analysis methodology is useful in estimation of the total goodput (throughput at the application level) and energy consumptions within the whole traffic model which are the crucial features of IoT networks.

  5. Best Practices Handbook: Traffic Engineering in Range Networks

    Science.gov (United States)

    2016-03-01

    Cisco ) .................................................................................................. 4-7 4.4.2 Vendor 2 (Brocade...by Cisco Systems for collecting OAM information. NetFlow functions similarly to sFlow, using packet sampling technology embedded in switches and...transport and entry to the network core. In the merchant market this function is typically designated by the following products:  Aggregation Switch

  6. Modular Neural Tile Architecture for Compact Embedded Hardware Spiking Neural Network

    NARCIS (Netherlands)

    Pande, Sandeep; Morgan, Fearghal; Cawley, Seamus; Bruintjes, Tom; Smit, Gerardus Johannes Maria; McGinley, Brian; Carrillo, Snaider; Harkin, Jim; McDaid, Liam

    2013-01-01

    Biologically-inspired packet switched network on chip (NoC) based hardware spiking neural network (SNN) architectures have been proposed as an embedded computing platform for classification, estimation and control applications. Storage of large synaptic connectivity (SNN topology) information in

  7. Monitor Network Traffic with Packet Capture (pcap) on an Android Device

    Science.gov (United States)

    2015-09-01

    administrative privileges . Under the current design Android development requirement, an Android Graphical User Interface (GUI) application cannot directly...build an Android application to monitor network traffic using open source packet capture (pcap) libraries. 15. SUBJECT TERMS ELIDe, Android , pcap 16...Building Application with Native Codes 5 8.1 Calling Native Codes Using JNI 5 8.2 Calling Native Codes from an Android Application 8 9. Retrieve Live

  8. Asymptotic stability and disturbance attenuation properties for a class of networked control systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, stability and disturbance attenuation issues for a class of Networked Control Systems (NCSs)under uncertain access delay and packet dropout effects are considered. Our aim is to find conditions on the delay and packet dropout rate, under which the system stability and H∞ disturbance attenuation properties are preserved to a desired level. The basic idea in this paper is to formulate such Networked Control System as a discrete-time switched system. Then the NCSs' stability and performance problems can be reduced to the corresponding problems for switched systems, which have been studied for decades and for which a number of results are available in the literature. The techniques in this paper are based on recent progress in the discrete-time switched systems and piecewise Lyapunov functions.

  9. Cybersecurity and Network Forensics: Analysis of Malicious Traffic towards a Honeynet with Deep Packet Inspection

    OpenAIRE

    Gabriel Arquelau Pimenta Rodrigues; Robson de Oliveira Albuquerque; Flávio Elias Gomes de Deus; Rafael Timóteo de Sousa Jr.; Gildásio Antônio de Oliveira Júnior; Luis Javier García Villalba; Tai-Hoon Kim

    2017-01-01

    Any network connected to the Internet is subject to cyber attacks. Strong security measures, forensic tools, and investigators contribute together to detect and mitigate those attacks, reducing the damages and enabling reestablishing the network to its normal operation, thus increasing the cybersecurity of the networked environment. This paper addresses the use of a forensic approach with Deep Packet Inspection to detect anomalies in the network traffic. As cyber attacks may occur on any laye...

  10. Ising model for packet routing control

    International Nuclear Information System (INIS)

    Horiguchi, Tsuyoshi; Takahashi, Hideyuki; Hayashi, Keisuke; Yamaguchi, Chiaki

    2004-01-01

    For packet routing control in computer networks, we propose an Ising model which is defined in order to express competition among a queue length and a distance from a node with a packet to its destination node. By introducing a dynamics for a mean-field value of an Ising spin, we show by computer simulations that effective control of packet routing through priority links is possible

  11. Bipolar resistive switching behaviors of ITO nanowire networks

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2016-02-01

    Full Text Available We have fabricated indium tin oxide (ITO nanowire (NW networks on aluminum electrodes using electron beam evaporation. The Ag/ITO-NW networks/Al capacitor exhibits bipolar resistive switching behavior. The resistive switching characteristics of ITO-NW networks are related to the morphology of NWs. The x-ray photoelectron spectroscopy was used to obtain the chemical nature from the NWs surface, investigating the oxygen vacancy state. A stable switching voltages and a clear memory window were observed in needle-shaped NWs. The ITO-NW networks can be used as a new two-dimensional metal oxide material for the fabrication of high-density memory devices.

  12. Research and development of a NYNEX switched multi-megabit data service prototype system

    Science.gov (United States)

    Maman, K. H.; Haines, Robert; Chatterjee, Samir

    1991-02-01

    Switched Multi-megabit Data Service (SMDS) is a proposed high-speed packet-switched service which will support broadband applications such as Local Area Network (LAN) interconnections across a metropolitan area and beyond. This service is designed to take advantage of evolving Metropolitan Area Network (MAN) standards and technology which will provide customers with 45-mbps and 1 . 5-mbps access to high-speed public data communications networks. This paper will briefly discuss SMDS and review its architecture including the Subscriber Network Interface (SNI) and the SMDS Interface Protocol (SIP). It will review the fundamental features of SMDS such as address screening addressing scheme and access classes. Then it will describe the SMDS prototype system developed in-house by NYNEX Science Technology.

  13. An improved packet structure

    KAUST Repository

    Bader, Ahmed

    2014-01-01

    A multihop network transmits a packet including a RACH area and a hop number. The RACH area includes a list of subcarriers. A source node in the network dynamically determines the size of the RACH area. A node in the network performs an open-loop transmit power control.

  14. An improved packet structure

    KAUST Repository

    Bader, Ahmed

    2014-05-22

    A multihop network transmits a packet including a RACH area and a hop number. The RACH area includes a list of subcarriers. A source node in the network dynamically determines the size of the RACH area. A node in the network performs an open-loop transmit power control.

  15. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    Science.gov (United States)

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  16. Packet Header Compression for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2016-01-01

    Full Text Available Due to the extensive growth of Internet of Things (IoT, the number of wireless devices connected to the Internet is forecasted to grow to 26 billion units installed in 2020. This will challenge both the energy efficiency of wireless battery powered devices and the bandwidth of wireless networks. One solution for both challenges could be to utilize packet header compression. This paper reviews different packet compression, and especially packet header compression, methods and studies the performance of Robust Header Compression (ROHC in low speed radio networks such as XBEE, and in high speed radio networks such as LTE and WLAN. In all networks, the compressing and decompressing processing causes extra delay and power consumption, but in low speed networks, energy can still be saved due to the shorter transmission time.

  17. Analyses of resource reservation schemes for optical burst switching networks

    Science.gov (United States)

    Solanska, Michaela; Scholtz, Lubomir; Ladanyi, Libor; Mullerova, Jarmila

    2017-12-01

    With growing demands of Internet Protocol services for transmission capacity and speed, the Optical Burst Switching presents the solution for future high-speed optical networks. Optical Burst Switching is a technology for transmitting large amounts of data bursts through a transparent optical switching network. To successfully transmit bursts over OBS network and reach the destination node, resource reservation schemes have to be implemented to allocate resources and configure optical switches for that burst at each node. The one-way resource reservation schemes and the performance evaluation of reservation schemes are presented. The OBS network model is performed using OMNeT++ simulation environment. During the reservation of network resources, the optical cross-connect based on semiconductor optical amplifier is used as the core node. Optical switches based on semiconductor optical amplifiers are a promising technology for high-speed optical communication networks.

  18. Intelligent Packet Shaper to Avoid Network Congestion for Improved Streaming Video Quality at Clients

    DEFF Research Database (Denmark)

    Kaul, Manohar; Khosla, Rajiv; Mitsukura, Y

    2003-01-01

    of this intelligent traffic-shaping algorithm on the underlying network real time packet traffic and the eradication of unwanted abruption in the streaming video qualiy. This paper concluded from the end results of the simulation that neural networks are a very superior means of modeling real-time traffic......This paper proposes a traffic shaping algorithm based on neural networks, which adapts to a network over which streaming video is being transmitted. The purpose of this intelligent shaper is to eradicate all traffic congestion and improve the end-user's video quality. It possesses the capability...

  19. Analysis of Cisco Open Network Environment (ONE) OpenFlow Controller Implementation

    Science.gov (United States)

    2014-08-01

    Software - Defined Networking ( SDN ), when fully realized, offer many improvements over the current rigid and...functionalities like handshake, connection setup, switch management, and security. 15. SUBJECT TERMS OpenFlow, software - defined networking , Cisco ONE, SDN ...innovating packet-forwarding technologies. Network device roles are strictly defined with little or no flexibility. In Software - Defined Networks ( SDNs ),

  20. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  1. Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.

    Science.gov (United States)

    Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen

    In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function

  2. Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams

    Science.gov (United States)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2013-02-01

    The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the

  3. A study on Optical Labelling Techniques for All-Optical Networks

    DEFF Research Database (Denmark)

    Holm-Nielsen, Pablo Villanueva

    2005-01-01

    Optical switching has been proposed as an effective solution to overcoming the potential electronic bottleneck in all-optical network nodes carrying IP over WDM. The solution builds on the use of optical labelling as a mean to route packets or bursts of packets through the network. In addition...... of an intermediate wavelength between label erasure and label insertion. The above mentioned functionalities are assembled in whole network systems experiments that validates the different labelling schemes with respect to transmission, wavelength conversion, label swapping and retransmission. Optical labelling...... and specially the orthogonal schemes for optical labelling, are thus shown to be an effective solution to all-optical networks....

  4. Comparison of Ring-Buffer-Based Packet Capture Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Steven Andrew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.

  5. InP monolithically integrated label swapper device for spectral amplitude coded optical packet networks

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Doménech, J.D.; Rius, M.; Sancho, J.C.; Capmany, J.; Chen, L.R.; Habib, C.; Leijtens, X.J.M.; Vries, de T.; Heck, M.J.R.; Augustin, L.M.; Nötzel, R.; Robbins, D.J.

    2010-01-01

    In this paper a label swapping device, for spectral amplitude coded optical packet networks, fully integrated using InP technology is presented. Compared to previous demonstrations using discrete component assembly, the device footprint is reduced by a factor of 105 and the operation speed is

  6. E-model MOS Estimate Improvement through Jitter Buffer Packet Loss Modelling

    Directory of Open Access Journals (Sweden)

    Adrian Kovac

    2011-01-01

    Full Text Available Proposed article analyses dependence of MOS as a voice call quality (QoS measure estimated through ITU-T E-model under real network conditions with jitter. In this paper, a method of jitter effect is proposed. Jitter as voice packet time uncertainty appears as increased packet loss caused by jitter memory buffer under- or overflow. Jitter buffer behaviour at receiver’s side is modelled as Pareto/D/1/K system with Pareto-distributed packet interarrival times and its performance is experimentally evaluated by using statistic tools. Jitter buffer stochastic model is then incorporated into E-model in an additive manner accounting for network jitter effects via excess packet loss complementing measured network packet loss. Proposed modification of E-model input parameter adds two degrees of freedom in modelling: network jitter and jitter buffer size.

  7. Integrated DoD Voice and Data Networks and Ground Packet Radio Technology

    Science.gov (United States)

    1976-08-01

    as the traffic requirement level increases. Moreover, the satellite switch selection problem is only meaningful over a limited traffic range. When...5: CPU TIMES VS. NUMBER OF SWITCHES SATELLITE SWITCH SELECTION ALGORITHM Computer Used: PDP-10 ♦O’S" means 0 minutes and 5 seconds. 5.30...Saturation Algorithm for Topo\\ogical Design of Parket-Switched Communications Networks," National Te3 ecommunications Conference Proceed- ings, San

  8. Adaptive Conflict-Free Optimization of Rule Sets for Network Security Packet Filtering Devices

    Directory of Open Access Journals (Sweden)

    Andrea Baiocchi

    2015-01-01

    Full Text Available Packet filtering and processing rules management in firewalls and security gateways has become commonplace in increasingly complex networks. On one side there is a need to maintain the logic of high level policies, which requires administrators to implement and update a large amount of filtering rules while keeping them conflict-free, that is, avoiding security inconsistencies. On the other side, traffic adaptive optimization of large rule lists is useful for general purpose computers used as filtering devices, without specific designed hardware, to face growing link speeds and to harden filtering devices against DoS and DDoS attacks. Our work joins the two issues in an innovative way and defines a traffic adaptive algorithm to find conflict-free optimized rule sets, by relying on information gathered with traffic logs. The proposed approach suits current technology architectures and exploits available features, like traffic log databases, to minimize the impact of ACO development on the packet filtering devices. We demonstrate the benefit entailed by the proposed algorithm through measurements on a test bed made up of real-life, commercial packet filtering devices.

  9. Channel Bonding in Linux Ethernet Environment using Regular Switching Hub

    Directory of Open Access Journals (Sweden)

    Chih-wen Hsueh

    2004-06-01

    Full Text Available Bandwidth plays an important role for quality of service in most network systems. There are many technologies developed to increase host bandwidth in a LAN environment. Most of them need special hardware support, such as switching hub that supports IEEE Link Aggregation standard. In this paper, we propose a Linux solution to increase the bandwidth between hosts with multiple network adapters connected to a regular switching hub. The approach is implemented as two Linux kernel modules in a LAN environment without modification to the hardware and operating systems on host machines. Packets are dispatched to bonding network adapters for transmission. The proposed approach is backward compatible, flexible and transparent to users and only one IP address is needed for multiple bonding network adapters. Evaluation experiments in TCP and UDP transmission are shown with bandwidth gain proportionally to the number of network adapters. It is suitable for large-scale LAN systems with high bandwidth requirement, such as clustering systems.

  10. Identification method of gas-liquid two-phase flow regime based on image wavelet packet information entropy and genetic neural network

    International Nuclear Information System (INIS)

    Zhou Yunlong; Chen Fei; Sun Bin

    2008-01-01

    Based on the characteristic that wavelet packet transform image can be decomposed by different scales, a flow regime identification method based on image wavelet packet information entropy feature and genetic neural network was proposed. Gas-liquid two-phase flow images were captured by digital high speed video systems in horizontal pipe. The information entropy feature from transformation coefficients were extracted using image processing techniques and multi-resolution analysis. The genetic neural network was trained using those eigenvectors, which was reduced by the principal component analysis, as flow regime samples, and the flow regime intelligent identification was realized. The test result showed that image wavelet packet information entropy feature could excellently reflect the difference between seven typical flow regimes, and the genetic neural network with genetic algorithm and BP algorithm merits were with the characteristics of fast convergence for simulation and avoidance of local minimum. The recognition possibility of the network could reach up to about 100%, and a new and effective method was presented for on-line flow regime. (authors)

  11. An adaptive routing strategy for packet delivery in complex networks

    International Nuclear Information System (INIS)

    Zhang, Huan; Liu, Zonghua; Tang, Ming; Hui, P.M.

    2007-01-01

    We present an efficient routing approach for delivering packets in complex networks. On delivering a message from a node to a destination, a node forwards the message to a neighbor by estimating the waiting time along the shortest path from each of its neighbors to the destination. This projected waiting time is dynamical in nature and the path through which a message is delivered would be adapted to the distribution of messages in the network. Implementing the approach on scale-free networks, we show that the present approach performs better than the shortest-path approach and another approach that takes into account of the waiting time only at the neighboring nodes. Key features in numerical results are explained by a mean field theory. The approach has the merit that messages are distributed among the nodes according to the capabilities of the nodes in handling messages

  12. Congestion control and routing over satellite networks

    Science.gov (United States)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE

  13. Enhancing the Quality of Service for Real Time Traffic over Optical Burst Switching (OBS Networks with Ensuring the Fairness for Other Traffics.

    Directory of Open Access Journals (Sweden)

    Mohammed A Al-Shargabi

    Full Text Available Optical burst switching (OBS networks have been attracting much consideration as a promising approach to build the next generation optical Internet. A solution for enhancing the Quality of Service (QoS for high priority real time traffic over OBS with the fairness among the traffic types is absent in current OBS' QoS schemes. In this paper we present a novel Real Time Quality of Service with Fairness Ratio (RT-QoSFR scheme that can adapt the burst assembly parameters according to the traffic QoS needs in order to enhance the real time traffic QoS requirements and to ensure the fairness for other traffic. The results show that RT-QoSFR scheme is able to fulfill the real time traffic requirements (end to end delay, and loss rate ensuring the fairness for other traffics under various conditions such as the type of real time traffic and traffic load. RT-QoSFR can guarantee that the delay of the real time traffic packets does not exceed the maximum packets transfer delay value. Furthermore, it can reduce the real time traffic packets loss, at the same time guarantee the fairness for non real time traffic packets by determining the ratio of real time traffic inside the burst to be 50-60%, 30-40%, and 10-20% for high, normal, and low traffic loads respectively.

  14. SECURE SERVICE DISCOVERY BASED ON PROBE PACKET MECHANISM FOR MANETS

    Directory of Open Access Journals (Sweden)

    S. Pariselvam

    2015-03-01

    Full Text Available In MANETs, Service discovery process is always considered to be crucial since they do not possess a centralized infrastructure for communication. Moreover, different services available through the network necessitate varying categories. Hence, a need arises for devising a secure probe based service discovery mechanism to reduce the complexity in providing the services to the network users. In this paper, we propose a Secure Service Discovery Based on Probe Packet Mechanism (SSDPPM for identifying the DoS attack in MANETs, which depicts a new approach for estimating the level of trust present in each and every routing path of a mobile ad hoc network by using probe packets. Probing based service discovery mechanisms mainly identifies a mobile node’s genuineness using a test packet called probe that travels the entire network for the sake of computing the degree of trust maintained between the mobile nodes and it’s attributed impact towards the network performance. The performance of SSDPPM is investigated through a wide range of network related parameters like packet delivery, throughput, Control overhead and total overhead using the version ns-2.26 network simulator. This mechanism SSDPPM, improves the performance of the network in an average by 23% and 19% in terms of packet delivery ratio and throughput than the existing service discovery mechanisms available in the literature.

  15. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  16. Modeling and performance analysis of an improved movement-based location management scheme for packet-switched mobile communication systems.

    Science.gov (United States)

    Chung, Yun Won; Kwon, Jae Kyun; Park, Suwon

    2014-01-01

    One of the key technologies to support mobility of mobile station (MS) in mobile communication systems is location management which consists of location update and paging. In this paper, an improved movement-based location management scheme with two movement thresholds is proposed, considering bursty data traffic characteristics of packet-switched (PS) services. The analytical modeling for location update and paging signaling loads of the proposed scheme is developed thoroughly and the performance of the proposed scheme is compared with that of the conventional scheme. We show that the proposed scheme outperforms the conventional scheme in terms of total signaling load with an appropriate selection of movement thresholds.

  17. Clustering promotes switching dynamics in networks of noisy neurons

    Science.gov (United States)

    Franović, Igor; Klinshov, Vladimir

    2018-02-01

    Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.

  18. OPSquare : assessment of a novel flat optical data center network architecture under realistic data center traffic

    NARCIS (Netherlands)

    Miao, W.; Yan, F.; Raz, O.; Calabretta, N.

    2016-01-01

    The performances of OPSquare flat data-center network based on flow-controlled optical switches are investigated. Results show <1E-6 packet loss and <2µs end-to-end latency for 0.3 load when scaling to 40960 servers with 32×32 optical switches.

  19. An Intrinsic Encoding of a Subset of C and its Application to TLS Network Packet Processing

    Directory of Open Access Journals (Sweden)

    Reynald Affeldt

    2014-09-01

    Full Text Available TLS is such a widespread security protocol that errors in its implementation can have disastrous consequences. This responsibility is mostly borne by programmers, caught between specifications with the ambiguities of natural language and error-prone low-level parsing of network packets. We report here on the construction in the Coq proof-assistant of libraries to model, specify, and verify C programs to process TLS packets. We provide in particular an encoding of the core subset of C whose originality lies in its use of dependent types to guarantee statically well-formedness of datatypes and correct typing. We further equip this encoding with a Separation logic that enables byte-level reasoning and also provide a logical view of data structures. We also formalize a significant part of the RFC for TLS, again using dependent types to capture succinctly constraints that are left implicit in the prose document. Finally, we apply the above framework to an existing implementation of TLS (namely, PolarSSL of which we specify and verify a parsing function for network packets. Thanks to this experiment, we were able to spot ambiguities in the RFC and to correct bugs in the C source code.

  20. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  1. Impulsive Controller Design for Complex Nonlinear Singular Networked Systems with Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Xian-Lin Zhao

    2013-01-01

    Full Text Available Globally exponential stability of Complex (with coupling Nonlinear Singular Impulsive Networked Control Systems (CNSINCS with packet dropouts and time-delay is investigated. Firstly, the mathematic model of CNSINCS is established. Then, by employing the method of Lyapunov functional, exponential stability criteria are obtained and the impulsive controller design method is given. Finally, some simulation results are provided to demonstrate the effectiveness of the proposed method.

  2. A metropolitan optical network with support for multicasting in the optical domain

    NARCIS (Netherlands)

    Dey, D.; Koonen, A.M.J.; Bochove, van A.C.; Geuzebroek, D.; Salvador, M.R.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We present the FLAMINGO1 network architecture, an all-optical wavelength-and-timeslotted Metropolitan Optical Network based on a multiple-ring topology. A couple of important aspects of this architecture include all-optical packet switching at intermediate nodes on a ring and the ability to put IP

  3. A Metropolitan Optical Network with support for multicasting in the optical domain

    NARCIS (Netherlands)

    Dey, D.; Koonen, A.M.J.; van Bochove, A.C.; Geuzebroek, D.H.; Salvador, M.R.; Thienpont, H.; Berghmans, F.; Danckaert, J.; Desmet, L.

    2001-01-01

    We present the FLAMINGO1 network architecture, an all-optical wavelength-and-timeslotted Metropolitan Optical Network based on a multiple-ring topology. A couple of important aspects of this architecture include all-optical packet switching at intermediate nodes on a ring and the ability to put IP

  4. Power Minimization through Packet Retention in Cognitive Radio Sensor Networks under Interference and Delay Constraints: An Optimal Stopping Approach

    Directory of Open Access Journals (Sweden)

    Amr Y. Elnakeeb

    2016-04-01

    Full Text Available The aim of this article is twofold: First, we study the problem of packets retention in a queue with the aim of minimizing transmission power in delay-tolerant applications. The problem is classified as an optimal stopping problem. The optimal stopping rule has been derived as well. Optimal number of released packets is determined in each round through an Integer Linear Programming (ILP optimization problem. This transmission paradigm is tested via simulations in an interference-free environment leading to a significant reduction in transmission power (at least 55%. Second, we address the problem of applying the scheme of packets retention through the Optimal Stopping Policy (OSP to underlay Cognitive Radio Sensor Networks (CRSNs where strict interference threshold does exist. Simulations proved that our scheme outperforms traditional transmission method as far as dropped packet rate and Average Power per Transmitted Packet (APTP are concerned.

  5. Performance of the L3 second level trigger implemented for the LEP II with the SGS Thomson C104 packet switch

    International Nuclear Information System (INIS)

    Blaising, J.J.; Chollet-Le Flour, F.; Cai, X.

    1998-01-01

    The L3 experiment is one of the four experiments collecting data at LEP. For the LEP phase 2, the second level trigger has been upgraded to a network of 28 ST T9000 transputers and 2 ST C104 asynchronous packet switches interconnected by IEEE1355 links. It collects trigger data at each LEP crossing (22 micros), builds-up the trigger data block, processes it and rejects online the background events in a few milliseconds. The L3 data acquisition has been running with this system since July 1995. In the data-taking environment and for different hardware and software implementations, the event building throughput rate has been measured. A bandwidth of 5.9 Mbytes per second per link has been measured in a configuration with 12 sources and one processing unit connected with 2 links. The expected global throughput of 70 Mbytes per second has been measured in a farm of 6 processing units. While varying the number of sources and destinations, the authors didn't observe any significant bandwidth loss. Nevertheless performance relies strongly on some software implementation choices, which are presented and discussed

  6. Improving Energy Efficiency of Cooperative Femtocell Networks via Base Station Switching Off

    Directory of Open Access Journals (Sweden)

    Woongsup Lee

    2016-01-01

    Full Text Available Recently, energy efficiency (EE of cellular networks has become an important performance metric, and several techniques have been proposed to increase the EE. Among them, turning off base stations (BSs when not needed is considered as one of the most powerful techniques due to its simple operation and effectiveness. Herein, we propose a novel BS switching-off technique for cooperative femtocell networks where multiple femtocell BSs (FBSs simultaneously send packets to the same mobile station (MS. Unlike conventional schemes, cooperative operation of FBSs, also known as coordinated multipoint (CoMP transmission, is considered to determine which BSs are turned off in the proposed technique. We first formulate the optimization problem to find the optimal set of FBSs to be turned off. Then, we propose a suboptimal scheme operating in a distributed manner in order to reduce the computational complexity of the optimal scheme. The suboptimal scheme is based on throughput ratio (TR which specifies the importance of a particular FBS for the cooperative transmission. Through simulations, we show that the energy consumption can be greatly reduced with the proposed technique, compared with conventional schemes. Moreover, we show that the suboptimal scheme also achieves the near-optimal performance even without the excessive computations.

  7. NETWORK SECURITY ATTACKS. ARP POISONING CASE STUDY

    Directory of Open Access Journals (Sweden)

    Luminiţa DEFTA

    2010-12-01

    Full Text Available Arp poisoning is one of the most common attacks in a switched network. A switch is a network device that limits the ability of attackers that use a packet sniffer to gain access to information from internal network traffic. However, using ARP poisoning the traffic between two computers can be intercepted even in a network that uses switches. This method is known as man in the middle attack. With this type of attack the affected stations from a network will have invalid entries in the ARP table. Thus, it will contain only the correspondence between the IP addresses of the stations from the same network and a single MAC address (the station that initiated the attack. In this paper we present step by step the initiation of such an attack in a network with three computers. We will intercept the traffic between two stations using the third one (the attacker.

  8. Zero Trust Cloud Networks using Transport Access Control and High Availability Optical Bypass Switching

    Directory of Open Access Journals (Sweden)

    Casimer DeCusatis

    2017-04-01

    Full Text Available Cyberinfrastructure is undergoing a radical transformation as traditional enterprise and cloud computing environments hosting dynamic, mobile workloads replace telecommunication data centers. Traditional data center security best practices involving network segmentation are not well suited to these new environments. We discuss a novel network architecture, which enables an explicit zero trust approach, based on a steganographic overlay, which embeds authentication tokens in the TCP packet request, and first-packet authentication. Experimental demonstration of this approach is provided in both an enterprise-class server and cloud computing data center environment.

  9. Synchronization Control for a Class of Discrete-Time Dynamical Networks With Packet Dropouts: A Coding-Decoding-Based Approach.

    Science.gov (United States)

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2017-09-06

    The synchronization control problem is investigated for a class of discrete-time dynamical networks with packet dropouts via a coding-decoding-based approach. The data is transmitted through digital communication channels and only the sequence of finite coded signals is sent to the controller. A series of mutually independent Bernoulli distributed random variables is utilized to model the packet dropout phenomenon occurring in the transmissions of coded signals. The purpose of the addressed synchronization control problem is to design a suitable coding-decoding procedure for each node, based on which an efficient decoder-based control protocol is developed to guarantee that the closed-loop network achieves the desired synchronization performance. By applying a modified uniform quantization approach and the Kronecker product technique, criteria for ensuring the detectability of the dynamical network are established by means of the size of the coding alphabet, the coding period and the probability information of packet dropouts. Subsequently, by resorting to the input-to-state stability theory, the desired controller parameter is obtained in terms of the solutions to a certain set of inequality constraints which can be solved effectively via available software packages. Finally, two simulation examples are provided to demonstrate the effectiveness of the obtained results.

  10. Quantifying the dynamics of coupled networks of switches and oscillators.

    Directory of Open Access Journals (Sweden)

    Matthew R Francis

    Full Text Available Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.

  11. Satcom access in the Evolved Packet Core

    NARCIS (Netherlands)

    Cano Soveri, M.D.; Norp, A.H.J.; Popova, M.P.

    2011-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  12. Satcom access in the evolved packet core

    NARCIS (Netherlands)

    Cano, M.D.; Norp, A.H.J.; Popova, M.P.

    2012-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  13. Stabilization of a Wireless Networked Control System with Packet Loss and Time Delay: An ADS Approach

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2012-01-01

    Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.

  14. Developing a New HSR Switching Node (SwitchBox for Improving Traffic Performance in HSR Networks

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-01-01

    Full Text Available High availability is crucial for industrial Ethernet networks as well as Ethernet-based control systems such as automation networks and substation automation systems (SAS. Since standard Ethernet does not support fault tolerance capability, the high availability of Ethernet networks can be increased by using redundancy protocols. Various redundancy protocols for Ethernet networks have been developed and standardized, such as rapid spanning tree protocol (RSTP, media redundancy protocol (MRP, parallel redundancy protocol (PRP, high-availability seamless redundancy (HSR and others. RSTP and MRP have switchover delay drawbacks. PRP provides zero recovery time, but requires a duplicate network infrastructure. HSR operation is similar to PRP, but HSR uses a single network. However, the standard HSR protocol is mainly applied to ring-based topologies and generates excessively unnecessary redundant traffic in the network. In this paper, we develop a new switching node for the HSR protocol, called SwitchBox, which is used in HSR networks in order to support any network topology and significantly reduce redundant network traffic, including unicast, multicast and broadcast traffic, compared with standard HSR. By using the SwitchBox, HSR not only provides seamless communications with zero switchover time in case of failure, but it is also easily applied to any network topology and significantly reduces unnecessary redundant traffic in HSR networks.

  15. High Performance Gigabit Ethernet Switches for DAQ Systems

    CERN Document Server

    Barczyk, Artur

    2005-01-01

    Commercially available high performance Gigabit Ethernet (GbE) switches are optimized mostly for Internet and standard LAN application traffic. DAQ systems on the other hand usually make use of very specific traffic patterns, with e.g. deterministic arrival times. Industry's accepted loss-less limit of 99.999% may be still unacceptably high for DAQ purposes, as e.g. in the case of the LHCb readout system. In addition, even switches passing this criteria under random traffic can show significantly higher loss rates if subject to our traffic pattern, mainly due to buffer memory limitations. We have evaluated the performance of several switches, ranging from "pizza-box" devices with 24 or 48 ports up to chassis based core switches in a test-bed capable to emulate realistic traffic patterns as expected in the readout system of our experiment. The results obtained in our tests have been used to refine and parametrize our packet level simulation of the complete LHCb readout network. In this paper we report on the...

  16. Circuit switched optical networks

    DEFF Research Database (Denmark)

    Kloch, Allan

    2003-01-01

    Some of the most important components required for enabling optical networking are investigated through both experiments and modelling. These all-optical components are the wavelength converter, the regenerator and the space switch. When these devices become "off-the-shelf" products, optical cross......, it is expected that the optical solution will offer an economical benefit for hight bit rate networks. This thesis begins with a discussion of the expected impact on communications systems from the rapidly growing IP traffic, which is expected to become the dominant source for traffic. IP traffic has some...... characteristics, which are best supported by an optical network. The interest for such an optical network is exemplified by the formation of the ACTS OPEN project which aim was to investigate the feasibility of an optical network covering Europe. Part of the work presented in this thesis is carried out within...

  17. STUDY THE EFFECTIVENESS APPLICATIONS OF FUZZY CONTROLLER WITH TWO ENTRANCES IN THE SYSTEM OF ACTIVE QUEUE MANAGEMENT THE PACKETS IN TCP/IP NETWORKS

    Directory of Open Access Journals (Sweden)

    O. V. Nevdachyna

    2016-01-01

    Full Text Available The paper presents an approach to solving the overloading problem in TCP/IP networks. Offered fuzzy controller with two inputs for system of active queue management packages in TCP/IP networks, and investigated its use in these systems with a random change of traffic load. Proposed controller has two inputs, one of which is the value of the difference between the current queue length and the second – the difference between the current level of usage of the buffer. The output of the fuzzy controller calculates the probability of discarding packet.Mathematical model system of active queue management that is studied is presented in an interactive MATLAB system, in wherein also is demonstrated the processes occurring in the system with a random change of traffic load. The research results show that the AQM-system with fuzzy controller with two entrances stable enough maintains the desired current length the queue for sufficiently small values of the probability of dropping/marking packets (at acceptable size of queue q0= 200 packets, the average probability of dropping / marking is not more than 3,5×10–3 or less 0,35% packets is discarded or marked from the total number of incoming packets. The results obtained will help improve the efficiency of the functioning and operation of TCP / IP networks by increasing data transmission quality. this happens due introduction of the proposed controller at the design of new, more efficient routers for networks to minimize the delay of information.

  18. Column Generation for Transmission Switching of Electricity Networks with Unit Commitment

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, Andy B.

    2011-01-01

    This paper presents the problem of finding the minimum cost dispatch and commitment of power generation units in a transmission network with active switching.We use the term active switching to denote the use of switches to optimize network topology in an operational context. We propose a Dantzig...

  19. Energy efficiency benefits of introducing optical switching in Data Center Networks

    DEFF Research Database (Denmark)

    Pilimon, Artur; Zeimpeki, Alexandra; Fagertun, Anna Manolova

    2017-01-01

    layers of the network topology. The analysis is based on network-level simulations using a transport network planning tool applied to small-scale setups of the considered DCNs. The obtained results show that introducing all-optical switching within the DCN leads to reduced power consumption in all......In this paper we analyze the impact of WDM-enhanced optical circuit switching on the power consumption of multiple Data Center Network (DCN) architectures. Traditional three-tier Tree, Fat-Tree and a ring-based structure are evaluated and optical switching is selectively introduced on different...... an optically switched core benefits most the ring-based network. For the latter, the core ring nodes need fewer long-reach transponders at the trunk interfaces and benefit from more efficient traffic grooming in the access part....

  20. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert

    2017-01-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...

  1. An efficient multi-carrier position-based packet forwarding protocol for wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2012-01-01

    Beaconless position-based forwarding protocols have recently evolved as a promising solution for packet forwarding in wireless sensor networks. However, as the node density grows, the overhead incurred in the process of relay selection grows significantly. As such, end-to-end performance in terms of energy and latency is adversely impacted. With the motivation of developing a packet forwarding mechanism that is tolerant to variation in node density, an alternative position-based protocol is proposed in this paper. In contrast to existing beaconless protocols, the proposed protocol is designed such that it eliminates the need for potential relays to undergo a relay selection process. Rather, any eligible relay may decide to forward the packet ahead, thus significantly reducing the underlying overhead. The operation of the proposed protocol is empowered by exploiting favorable features of orthogonal frequency division multiplexing (OFDM) at the physical layer. The end-to-end performance of the proposed protocol is evaluated against existing beaconless position-based protocols analytically and as well by means of simulations. The proposed protocol is demonstrated in this paper to be more efficient. In particular, it is shown that for the same amount of energy the proposed protocol transports one bit from source to destination much quicker. © 2012 IEEE.

  2. Energy efficient SDN commodity switch based practical flow forwarding method

    KAUST Repository

    AlGhadhban, Amer

    2016-07-04

    Recent SDN researches suffer from over-accumulation of unhealthy flow-load. Instead, we leverage the SDN controller network view to encode the end-to-end path information into the packet address. Our solution EncPath significantly reduces the flow-table size and the number of control messages. Consequently, the power consumption of network switches is in orders of magnitude less than other evaluated solutions. It also provides flow management flexibility and scalability. We compare EncPath with single and multipath routing solutions and single path solution. Also, we operated them in proactive and reactive modes. We find that EncPath flow entries in core switches in a multihomed fat-tree with 144 hosts is approximately 1000 times smaller than Equal-Cost MultiPath (ECMP) and random routing. Additionally, the number of control messages to setup the network is reduced by a factor of 200×. This, consequently, affords data-plane and control-plane devices space to process other tasks. © 2016 IEEE.

  3. Comparison of Available Bandwidth Estimation Techniques in Packet-Switched Mobile Networks

    DEFF Research Database (Denmark)

    López Villa, Dimas; Ubeda Castellanos, Carlos; Teyeb, Oumer Mohammed

    2006-01-01

    The relative contribution of the transport network towards the per-user capacity in mobile telecommunication systems is becoming very important due to the ever increasing air-interface data rates. Thus, resource management procedures such as admission, load and handover control can make use...... of information regarding the available bandwidth in the transport network, as it could end up being the bottleneck rather than the air interface. This paper provides a comparative study of three well known available bandwidth estimation techniques, i.e. TOPP, SLoPS and pathChirp, taking into account...

  4. Sensitivity of the optimal parameter settings for a LTE packet scheduler

    NARCIS (Netherlands)

    Fernandez-Diaz, I.; Litjens, R.; van den Berg, C.A.; Dimitrova, D.C.; Spaey, K.

    Advanced packet scheduling schemes in 3G/3G+ mobile networks provide one or more parameters to optimise the trade-off between QoS and resource efficiency. In this paper we study the sensitivity of the optimal parameter setting for packet scheduling in LTE radio networks with respect to various

  5. Investment in electricity networks with transmission switching

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, A.B.

    2012-01-01

    allows the solution of large problem instances. The methodology is illustrated by its application to a problem of determining the optimal investment in switching equipment and transmission capacity for an existing network. Computational tests on IEEE test networks with 73 nodes and 118 nodes confirm...

  6. Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty

    International Nuclear Information System (INIS)

    Huang He; Qu Yuzhong; Li Hanxiong

    2005-01-01

    With the development of intelligent control, switched systems have been widely studied. Here we try to introduce some ideas of the switched systems into the field of neural networks. In this Letter, a class of switched Hopfield neural networks with time-varying delay is investigated. The parametric uncertainty is considered and assumed to be norm bounded. Firstly, the mathematical model of the switched Hopfield neural networks is established in which a set of Hopfield neural networks are used as the individual subsystems and an arbitrary switching rule is assumed; Secondly, robust stability analysis for such switched Hopfield neural networks is addressed based on the Lyapunov-Krasovskii approach. Some criteria are given to guarantee the switched Hopfield neural networks to be globally exponentially stable for all admissible parametric uncertainties. These conditions are expressed in terms of some strict linear matrix inequalities (LMIs). Finally, a numerical example is provided to illustrate our results

  7. A novel scalable and low latency hybrid data center network architecture based on flow controlled fast optical switches

    NARCIS (Netherlands)

    Yan, Fulong; Guelbenzu, Gonzalo; Calabretta, Nicola

    2018-01-01

    We present a novel hybrid DCN based on flow-controlled fast optical switches. Results show packet loss < 1.4E-5 and latency < 2.4μs for 100,000 servers (0.3 load). Costs and power consumptions are also compared with current technologies.

  8. Wavelet Entropy-Based Traction Inverter Open Switch Fault Diagnosis in High-Speed Railways

    Directory of Open Access Journals (Sweden)

    Keting Hu

    2016-03-01

    Full Text Available In this paper, a diagnosis plan is proposed to settle the detection and isolation problem of open switch faults in high-speed railway traction system traction inverters. Five entropy forms are discussed and compared with the traditional fault detection methods, namely, discrete wavelet transform and discrete wavelet packet transform. The traditional fault detection methods cannot efficiently detect the open switch faults in traction inverters because of the low resolution or the sudden change of the current. The performances of Wavelet Packet Energy Shannon Entropy (WPESE, Wavelet Packet Energy Tsallis Entropy (WPETE with different non-extensive parameters, Wavelet Packet Energy Shannon Entropy with a specific sub-band (WPESE3,6, Empirical Mode Decomposition Shannon Entropy (EMDESE, and Empirical Mode Decomposition Tsallis Entropy (EMDETE with non-extensive parameters in detecting the open switch fault are evaluated by the evaluation parameter. Comparison experiments are carried out to select the best entropy form for the traction inverter open switch fault detection. In addition, the DC component is adopted to isolate the failure Isolated Gate Bipolar Transistor (IGBT. The simulation experiments show that the proposed plan can diagnose single and simultaneous open switch faults correctly and timely.

  9. Scalable optical packet switch architecture for low latency and high load computer communication networks

    NARCIS (Netherlands)

    Calabretta, N.; Di Lucente, S.; Nazarathy, Y.; Raz, O.; Dorren, H.J.S.

    2011-01-01

    High performance computer and data-centers require PetaFlop/s processing speed and Petabyte storage capacity with thousands of low-latency short link interconnections between computers nodes. Switch matrices that operate transparently in the optical domain are a potential way to efficiently

  10. ADAPTIVE GOSSIP BASED PROTOCOL FOR ENERGY EFFICIENT MOBILE ADHOC NETWORK

    Directory of Open Access Journals (Sweden)

    S. Rajeswari

    2012-03-01

    Full Text Available In Gossip Sleep Protocol, network performance is enhanced based on energy resource. But energy conservation is achieved with the reduced throughput. In this paper, it has been proposed a new Protocol for Mobile Ad hoc Network to achieve reliability with energy conservation. Based on the probability (p values, the value of sleep nodes is fixed initially. The probability value can be adaptively adjusted by Remote Activated Switch during the transmission process. The adaptiveness of gossiping probability is determined by the Packet Delivery Ratio. For performance comparison, we have taken Routing overhead, Packet Delivery Ratio, Number of dropped packets and Energy consumption with the increasing number of forwarding nodes. We used UDP based traffic models to analyze the performance of this protocol. We analyzed TCP based traffic models for average end to end delay. We have used the NS-2 simulator.

  11. Six-port optical switch for cluster-mesh photonic network-on-chip

    Science.gov (United States)

    Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2018-05-01

    Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.

  12. Delayed switching applied to memristor neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Frank Z.; Yang Xiao; Lim Guan [Future Computing Group, School of Computing, University of Kent, Canterbury (United Kingdom); Helian Na [School of Computer Science, University of Hertfordshire, Hatfield (United Kingdom); Wu Sining [Xyratex, Havant (United Kingdom); Guo Yike [Department of Computing, Imperial College, London (United Kingdom); Rashid, Md Mamunur [CERN, Geneva (Switzerland)

    2012-04-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  13. Delayed switching applied to memristor neural networks

    International Nuclear Information System (INIS)

    Wang, Frank Z.; Yang Xiao; Lim Guan; Helian Na; Wu Sining; Guo Yike; Rashid, Md Mamunur

    2012-01-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  14. Using Alloy to Formally Model and Reason About an OpenFlow Network Switch

    OpenAIRE

    Mirzaei, Saber; Bahargam, Sanaz; Skowyra, Richard; Kfoury, Assaf; Bestavros, Azer

    2016-01-01

    Openflow provides a standard interface for separating a network into a data plane and a programmatic control plane. This enables easy network reconfiguration, but introduces the potential for programming bugs to cause network effects. To study OpenFlow switch behavior, we used Alloy to create a software abstraction describing the internal state of a network and its OpenFlow switches. This work is an attempt to model the static and dynamic behaviour a network built using OpenFlow switches.

  15. Experience with PACS in an ATM/Ethernet switched network environment.

    Science.gov (United States)

    Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U

    1998-03-01

    Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.

  16. Packet throughput performance of multiservice, multirate OCDMA in elastic networks

    DEFF Research Database (Denmark)

    Raddo, Thiago R.; Sanches, Anderson L.; Tafur Monroy, Idelfonso

    2016-01-01

    the multiple-access interference (MAI) as binomially distributed. The packet throughput expression, by its turn, is derived considering a Poisson distribution for the composite packet arrivals. Numerical results show that the multicode technique is a good candidate for future multiservice, multirate OCDMA...

  17. Towards effective and robust list-based packet filter for signature-based network intrusion detection: an engineering approach

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Kwok, Lam For

    2017-01-01

    Network intrusion detection systems (NIDSs) which aim to identify various attacks, have become an essential part of current security infrastructure. In particular, signature-based NIDSs are being widely implemented in industry due to their low rate of false alarms. However, the signature matching...... this problem, packet filtration is a promising solution to reduce unwanted traffic. Motivated by this, in this work, a list-based packet filter was designed and an engineering method of combining both blacklist and whitelist techniques was introduced. To further secure such filters against IP spoofing attacks...... in traffic filtration as well as workload reduction, and is robust against IP spoofing attacks....

  18. Packet Payload Monitoring for Internet Worm Content Detection Using Deterministic Finite Automaton with Delayed Dictionary Compression

    Directory of Open Access Journals (Sweden)

    Divya Selvaraj

    2014-01-01

    Full Text Available Packet content scanning is one of the crucial threats to network security and network monitoring applications. In monitoring applications, payload of packets in a network is matched against the set of patterns in order to detect attacks like worms, viruses, and protocol definitions. During network transfer, incoming and outgoing packets are monitored in depth to inspect the packet payload. In this paper, the regular expressions that are basically string patterns are analyzed for packet payloads in detecting worms. Then the grouping scheme for regular expression matching is rewritten using Deterministic Finite Automaton (DFA. DFA achieves better processing speed during regular expression matching. DFA requires more memory space for each state. In order to reduce memory utilization, decompression technique is used. Delayed Dictionary Compression (DDC is applied for achieving better speeds in the communication links. DDC achieves decoding latency during compression of payload packets in the network. Experimental results show that the proposed approach provides better time consumption and memory utilization during detection of Internet worm attacks.

  19. On the Coded Packet Relay Network in the Presence of Neighbors

    DEFF Research Database (Denmark)

    Khamfroush, Hana; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani

    2014-01-01

    This paper studies the problem of optimal use of a relay for reducing the transmission time of data packets from a source to a destination using network coding. More importantly, we address an effect that is typically overlooked in previous studies: the presence of active transmitting nodes...... in the neighborhood of such devices, which is typical in wireless mesh networks. We show that in systems with a fair medium access control mechanism (MAC), the use of a relay in a crowded medium brings forth considerable and unforeseen improvements, including up to 3.5x gains in terms of throughput compared to using...... only the direct link in some of our examples, and a considerable extension of the operating region where using a relay is beneficial. The problem is formulated as a Markov Decision Process (MDP) and numerical results are provided comparing simple, close–to–optimal heuristics to the optimal scheme....

  20. The Fragility of Interdependency: Coupled Networks Switching Phenomena

    Science.gov (United States)

    Stanley, H. Eugene

    2013-03-01

    Recent disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify the fact that the most dangerous vulnerability is hiding in the many interdependencies among different networks. In the past year, we have quantified failures in model of interconnected networks, and demonstrated the need to consider mutually dependent network properties in designing resilient systems. Specifically, we have uncovered new laws governing the nature of switching phenomena in coupled networks, and found that phenomena that are continuous ``second order'' phase transitions in isolated networks become discontinuous abrupt ``first order'' transitions in interdependent networks [S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, ``Catastrophic Cascade of Failures in Interdependent Networks,'' Nature 464, 1025 (2010); J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ``Novel Behavior of Networks Formed from Interdependent Networks,'' Nature Physics 8, 40 (2012). We conclude by discussing the network basis for understanding sudden death in the elderly, and the possibility that financial ``flash crashes'' are not unlike the catastrophic first-order failure incidents occurring in coupled networks. Specifically, we study the coupled networks that are responsible for financial fluctuations. It appears that ``trend switching phenomena'' that we uncover are remarkably independent of the scale over which they are analyzed. For example, we find that the same laws governing the formation and bursting of the largest financial bubbles also govern the tiniest finance bubbles, over a factor of 1,000,000,000 in time scale [T. Preis, J. Schneider, and H. E. Stanley, ``Switching Processes in Financial Markets,'' Proc. Natl. Acad. Sci. USA 108, 7674 (2011); T. Preis and H. E. Stanley, ``Bubble Trouble: Can a Law Describe Bubbles and Crashes in Financial Markets?'' Physics World 24, No. 5, 29 (May 2011

  1. Novel Optical Labeling Scheme for Ultra-High Bit Rate Data Packets

    DEFF Research Database (Denmark)

    Medhin, Ashenafi Kiros; Galili, Michael; Oxenløwe, Leif Katsuo

    2013-01-01

    We propose and verify by simulations an optical in-band labeling scheme for ultra-fast optical switching. The scheme is able to label more than 60 different 640-Gbit/s OTDM packets with eye opening penalty <1 dB....

  2. A novel lost packets recovery scheme based on visual secret sharing

    Science.gov (United States)

    Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao

    2017-08-01

    In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).

  3. Scalable Packet Classification with Hash Tables

    Science.gov (United States)

    Wang, Pi-Chung

    In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.

  4. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  5. Impact of Packet Sampling on Link Dimensioning

    NARCIS (Netherlands)

    Schmidt, R.D.O.; Sadre, R.; Sperotto, A.; Berg, H. van den; Pras, A.

    2015-01-01

    Link dimensioning is used by network operators to properly provision the capacity of their network links. Proposed methods for link dimensioning often require statistics, such as traffic variance, that need to be calculated from packet-level measurements. In practice, due to increasing traffic

  6. Impact of packet sampling on link dimensioning

    NARCIS (Netherlands)

    de Oliveira Schmidt, R.; Stadler, R.; Sadre, R.; Sperotto, Anna; van den Berg, Hans Leo; Pras, Aiko

    Link dimensioning is used by network operators to properly provision the capacity of their network links. Proposed methods for link dimensioning often require statistics, such as traffic variance, that need to be calculated from packet-level measurements. In practice, due to increasing traffic

  7. An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks

    Directory of Open Access Journals (Sweden)

    Joseph Oyewale

    2013-06-01

    Full Text Available With high speed access network technology like WIMAX, there is the need for efficient management of radio resources where the throughput and Qos requirements for Multicasting Broadcasting Services (MBS for example TV are to be met. An enhanced  feedback-base downlink Packet scheduling algorithm  that can be used in IEEE 802.16d/e networks for mobile TV “one way traffic”(MBS is needed to support many users utilizing multiuser diversity of the  broadband of WIMAX systems where a group of users(good/worst channels share allocated resources (bandwidth. This paper proposes a WIMAX framework feedback-base (like a channel-awareness downlink packet scheduling algorithm for Mobile TV traffics in IEEE806.16, in which network Physical Timing Slots (PSs resource blocks are allocated in a dynamic way to mobile TV subscribers based on the Channel State information (CSI feedback, and then considering users with worst channels with the aim of improving system throughput while system coverage is being guaranteed. The algorithm was examined by changing the PSs bandwidth allocation of the users and different number of users of a cell. Simulation results show our proposed algorithm performed better than other algorithms (blind algorithms in terms of improvement in system throughput performance. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso

  8. Modified weighted fair queuing for packet scheduling in mobile WiMAX networks

    Science.gov (United States)

    Satrya, Gandeva B.; Brotoharsono, Tri

    2013-03-01

    The increase of user mobility and the need for data access anytime also increases the interest in broadband wireless access (BWA). The best available quality of experience for mobile data service users are assured for IEEE 802.16e based users. The main problem of assuring a high QOS value is how to allocate available resources among users in order to meet the QOS requirement for criteria such as delay, throughput, packet loss and fairness. There is no specific standard scheduling mechanism stated by IEEE standards, which leaves it for implementer differentiation. There are five QOS service classes defined by IEEE 802.16: Unsolicited Grant Scheme (UGS), Extended Real Time Polling Service (ertPS), Real Time Polling Service (rtPS), Non Real Time Polling Service (nrtPS) and Best Effort Service (BE). Each class has different QOS parameter requirements for throughput and delay/jitter constraints. This paper proposes Modified Weighted Fair Queuing (MWFQ) scheduling scenario which was based on Weighted Round Robin (WRR) and Weighted Fair Queuing (WFQ). The performance of MWFQ was assessed by using above five QoS criteria. The simulation shows that using the concept of total packet size calculation improves the network's performance.

  9. Optical Multidimensional Switching for Data Center Networks

    OpenAIRE

    Kamchevska, Valerija; Galili, Michael; Oxenløwe, Leif Katsuo; Berger, Michael Stübert

    2017-01-01

    Optical switches are known for the ability to provide high bandwidth connectivity at a relatively low power consumption and low latency. Several recent demonstrations on optical data center architectures confirm the potential for introducing all-optical switching within the data center, thus avoiding power hungry optical-electrical-optical conversions at each node. This Ph.D. thesis focuses precisely on the application of optical technologies in data center networks where optics is not only u...

  10. Optical packet switched design with relaxed maximum hardware parameters and high service-class granularity for flexible switch node dimensioning

    DEFF Research Database (Denmark)

    Nord, Martin

    2004-01-01

    This work proposes a quality of service differentiation algorithm, improving the service class granularity and isolation of our recently presented waveband plane based design. The design aims at overcoming potential hardware limitations and increasing the switch node dimensioning flexibility...... in core networks. Exploiting the wavelength dimension for contention resolution, using partially shared wavelength converter pools, avoids optical buffers and reduces wavelength converter count. These benefits are illustrated by numerical simulations, and are highlighted in a dimensioning study with three...

  11. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  12. Atomic switch networks as complex adaptive systems

    Science.gov (United States)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  13. Validating User Flows to Protect Software Defined Network Environments

    Directory of Open Access Journals (Sweden)

    Ihsan H. Abdulqadder

    2018-01-01

    Full Text Available Software Defined Network is a promising network paradigm which has led to several security threats in SDN applications that involve user flows, switches, and controllers in the network. Threats as spoofing, tampering, information disclosure, Denial of Service, flow table overloading, and so on have been addressed by many researchers. In this paper, we present novel SDN design to solve three security threats: flow table overloading is solved by constructing a star topology-based architecture, unsupervised hashing method mitigates link spoofing attack, and fuzzy classifier combined with L1-ELM running on a neural network for isolating anomaly packets from normal packets. For effective flow migration Discrete-Time Finite-State Markov Chain model is applied. Extensive simulations using OMNeT++ demonstrate the performance of our proposed approach, which is better at preserving holding time than are other state-of-the-art works from the literature.

  14. Stabilization Strategies of Supply Networks with Stochastic Switched Topology

    Directory of Open Access Journals (Sweden)

    Shukai Li

    2013-01-01

    Full Text Available In this paper, a dynamical supply networks model with stochastic switched topology is presented, in which the stochastic switched topology is dependent on a continuous time Markov process. The goal is to design the state-feedback control strategies to stabilize the dynamical supply networks. Based on Lyapunov stability theory, sufficient conditions for the existence of state feedback control strategies are given in terms of matrix inequalities, which ensure the robust stability of the supply networks at the stationary states and a prescribed H∞ disturbance attenuation level with respect to the uncertain demand. A numerical example is given to illustrate the effectiveness of the proposed method.

  15. Noise-induced polarization switching in complex networks

    Science.gov (United States)

    Haerter, Jan O.; Díaz-Guilera, Albert; Serrano, M. Ángeles

    2017-04-01

    The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions, and has important implications for their functioning and resilience. Here we use a simple three-state dynamical process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes, where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes, which cannot be explained by a simple mean-field description.

  16. SynUTC - high precision time synchronization over ethernet networks

    CERN Document Server

    Höller, R; Horauer, M; Kerö, N; Schmid, U; Schossmaier, K

    2002-01-01

    This article describes our SynUTC (Synchronized Universal Time Coordinated) technology, which enables high-accuracy distribution of GPS time and time synchronization of network nodes connected via standard Ethernet LANs. By means of exchanging data packets in conjunction with moderate hardware support at nodes and switches, an overall worst-case accuracy in the range of some 100 ns can be achieved, with negligible communication overhead. Our technology thus improves the 1 ms-range accuracy achievable by conventional, software-based approaches like NTP by 4 orders of magnitude. Applications can use the high-accuracy global time provided by SynUTC for event timestamping and event generation both at hardware and software level. SynUTC is based upon inserting highly accurate time information into dedicated data packets at the media-independent interface (MII) between the physical layer transceiver and the network controller upon packet transmission and reception, respectively. As a consequence, every node has acc...

  17. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah

    2011-06-01

    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  18. Proceedings of a Conference on Telecommunication Technologies, Networkings and Libraries

    Science.gov (United States)

    Knight, N. K.

    1981-12-01

    Current and developing technologies for digital transmission of image data likely to have an impact on the operations of libraries and information centers or provide support for information networking are reviewed. Technologies reviewed include slow scan television, teleconferencing, and videodisc technology and standards development for computer network interconnection through hardware and software, particularly packet switched networks computer network protocols for library and information service applications, the structure of a national bibliographic telecommunications network; and the major policy issues involved in the regulation or deregulation of the common communications carriers industry.

  19. Multiwavelet packet entropy and its application in transmission line fault recognition and classification.

    Science.gov (United States)

    Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge

    2014-11-01

    Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.

  20. Ad hoc networks telecommunications and game theory

    CERN Document Server

    Benslama, Malek; Batatia, Hadj

    2015-01-01

    Random SALOHA and CSMA protocols that are used to access MAC in ad hoc networks are very small compared to the multiple and spontaneous use of the transmission channel. So they have low immunity to the problems of packet collisions. Indeed, the transmission time is the critical factor in the operation of such networks. The simulations demonstrate the positive impact of erasure codes on the throughput of the transmission in ad hoc networks. However, the network still suffers from the intermittency and volatility of its efficiency throughout its operation, and it switches quickly to the satura

  1. New hybrid frequency reuse method for packet loss minimization in LTE network.

    Science.gov (United States)

    Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H

    2015-11-01

    This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.

  2. Improved Robust Stability Criterion of Networked Control Systems with Transmission Delays and Packet Loss

    Directory of Open Access Journals (Sweden)

    Shenping Xiao

    2014-01-01

    Full Text Available The problem of stability analysis for a class of networked control systems (NCSs with network-induced delay and packet dropout is investigated in this paper. Based on the working mechanism of zero-order holder, the closed-loop NCS is modeled as a continuous-time linear system with input delay. By introducing a novel Lyapunov-Krasovskii functional which splits both the lower and upper bounds of the delay into two subintervals, respectively, and utilizes reciprocally convex combination technique, a new stability criterion is derived in terms of linear matrix inequalities. Compared with previous results in the literature, the obtained stability criterion is less conservative. Numerical examples demonstrate the validity and feasibility of the proposed method.

  3. A Taxonomy for Software Defined Networking, Man In The Middle Attacks

    Science.gov (United States)

    2016-09-01

    that separates it from the networks of today’s world . As Stallings (2013) describes, “current networks are vertically integrated, meaning that the data...cause overpopulation of flow tables increasing processing rate on the switch (Zarek, 2012). More specifically, premature evictions result 16 in...Mininet demonstrated our proof of concept but was not sufficient for real world implementation. Our overall goal was to grab an HTTP response packet

  4. Scalable Active Optical Access Network Using Variable High-Speed PLZT Optical Switch/Splitter

    Science.gov (United States)

    Ashizawa, Kunitaka; Sato, Takehiro; Tokuhashi, Kazumasa; Ishii, Daisuke; Okamoto, Satoru; Yamanaka, Naoaki; Oki, Eiji

    This paper proposes a scalable active optical access network using high-speed Plumbum Lanthanum Zirconate Titanate (PLZT) optical switch/splitter. The Active Optical Network, called ActiON, using PLZT switching technology has been presented to increase the number of subscribers and the maximum transmission distance, compared to the Passive Optical Network (PON). ActiON supports the multicast slot allocation realized by running the PLZT switch elements in the splitter mode, which forces the switch to behave as an optical splitter. However, the previous ActiON creates a tradeoff between the network scalability and the power loss experienced by the optical signal to each user. It does not use the optical power efficiently because the optical power is simply divided into 0.5 to 0.5 without considering transmission distance from OLT to each ONU. The proposed network adopts PLZT switch elements in the variable splitter mode, which controls the split ratio of the optical power considering the transmission distance from OLT to each ONU, in addition to PLZT switch elements in existing two modes, the switching mode and the splitter mode. The proposed network introduces the flexible multicast slot allocation according to the transmission distance from OLT to each user and the number of required users using three modes, while keeping the advantages of ActiON, which are to support scalable and secure access services. Numerical results show that the proposed network dramatically reduces the required number of slots and supports high bandwidth efficiency services and extends the coverage of access network, compared to the previous ActiON, and the required computation time for selecting multicast users is less than 30msec, which is acceptable for on-demand broadcast services.

  5. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks.

    Science.gov (United States)

    Huang, Tao; Yan, Siyu; Yang, Fan; Liu, Jiang

    2016-11-06

    Wireless sensor networks (WSNs) have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs) have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs). However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  6. Multi-Domain SDN Survivability for Agricultural Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tao Huang

    2016-11-01

    Full Text Available Wireless sensor networks (WSNs have been widely applied in agriculture field; meanwhile, the advent of multi-domain software-defined networks (SDNs have improved the wireless resource utilization rate and strengthened network management. In recent times, multi-domain SDNs have been applied to agricultural sensor networks, namely multi-domain software-defined wireless sensor networks (SDWSNs. However, when the SDNs controlling agriculture networks suddenly become unavailable, whether intra-domain or inter-domain, sensor network communication is abnormal because of the loss of control. Moreover, there are controller and switch info-updating problems even if the controller becomes available again. To resolve these problems, this paper proposes a new approach based on an Open vSwitch extension for multi-domain SDWSNs, which can enhance agriculture network survivability and stability. We achieved this by designing a connection-state mechanism, a communication mechanism on both L2 and L3, and an info-updating mechanism based on Open vSwitch. The experimental results show that, whether it is agricultural inter-domain or intra-domain during the controller failure period, the sensor switches can enter failure recovery mode as soon as possible so that the sensor network keeps a stable throughput, a short failure recovery time below 300 ms, and low packet loss. Further, the domain can smoothly control the domain network again once the controller becomes available. This approach based on an Open vSwitch extension can enhance the survivability and stability of multi-domain SDWSNs in precision agriculture.

  7. Next generation satellite communications networks

    Science.gov (United States)

    Garland, P. J.; Osborne, F. J.; Streibl, I.

    The paper introduces two potential uses for new space hardware to permit enhanced levels of signal handling and switching in satellite communication service for Canada. One application involves increased private-sector services in the Ku band; the second supports new personal/mobile services by employing higher levels of handling and switching in the Ka band. First-generation satellite regeneration and switching experiments involving the NASA/ACTS spacecraft are described, where the Ka band and switching satellite network problems are emphasized. Second-generation satellite development is outlined based on demand trends for more packet-based switching, low-cost earth stations, and closed user groups. A demonstration mission for new Ka- and Ku-band technologies is proposed, including the payload configuration. The half ANIK E payload is shown to meet the demonstration objectives, and projected to maintain a fully operational payload for at least 10 years.

  8. Polling-Based High-Bit-Rate Packet Transfer in a Microcellular Network to Allow Fast Terminals

    Science.gov (United States)

    Hoa, Phan Thanh; Lambertsen, Gaute; Yamada, Takahiko

    A microcellular network will be a good candidate for the future broadband mobile network. It is expected to support high-bit-rate connection for many fast mobile users if the handover is processed fast enough to lessen its impact on QoS requirements. One of the promising techniques is believed to use for the wireless interface in such a microcellular network is the WLAN (Wireless LAN) technique due to its very high wireless channel rate. However, the less capability of mobility support of this technique must be improved to be able to expand its utilization for the microcellular environment. The reason of its less support mobility is large handover latency delay caused by contention-based handover to the new BS (base station) and delay of re-forwarding data from the old to new BS. This paper presents a proposal of multi-polling and dynamic LMC (Logical Macro Cell) to reduce mentioned above delays. Polling frame for an MT (Mobile Terminal) is sent from every BS belonging to the same LMC — a virtual single macro cell that is a multicast group of several adjacent micro-cells in which an MT is communicating. Instead of contending for the medium of a new BS during handover, the MT responds to the polling sent from that new BS to enable the transition. Because only one BS of the LMC receives the polling ACK (acknowledgement) directly from the MT, this ACK frame has to be multicast to all BSs of the same LMC through the terrestrial network to continue sending the next polling cycle at each BS. Moreover, when an MT hands over to a new cell, its current LMC is switched over to a newly corresponding LMC to prevent the future contending for a new LMC. By this way, an MT can do handover between micro-cells of an LMC smoothly because the redundant resource is reserved for it at neighboring cells, no need to contend with others. Our simulation results using the OMNeT++ simulator illustrate the performance achievements of the multi-polling and dynamic LMC scheme in eliminating

  9. Development of the network architecture of the Canadian MSAT system

    Science.gov (United States)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-05-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  10. Delay-Dependent Stability Criteria of Uncertain Periodic Switched Recurrent Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xing Yin

    2011-01-01

    uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.

  11. Controlled perturbation-induced switching in pulse-coupled oscillator networks

    International Nuclear Information System (INIS)

    Schittler Neves, Fabio; Timme, Marc

    2009-01-01

    Pulse-coupled systems such as spiking neural networks exhibit nontrivial invariant sets in the form of attracting yet unstable saddle periodic orbits where units are synchronized into groups. Heteroclinic connections between such orbits may in principle support switching processes in these networks and enable novel kinds of neural computations. For small networks of coupled oscillators, we here investigate under which conditions and how system symmetry enforces or forbids certain switching transitions that may be induced by perturbations. For networks of five oscillators, we derive explicit transition rules that for two cluster symmetries deviate from those known from oscillators coupled continuously in time. A third symmetry yields heteroclinic networks that consist of sets of all unstable attractors with that symmetry and the connections between them. Our results indicate that pulse-coupled systems can reliably generate well-defined sets of complex spatiotemporal patterns that conform to specific transition rules. We briefly discuss possible implications for computation with spiking neural systems.

  12. Controlled perturbation-induced switching in pulse-coupled oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Schittler Neves, Fabio; Timme, Marc [Network Dynamics Group, Max Planck Institute for Dynamics and Self-Organization, Goettingen, D-37073 (Germany); Bernstein Center for Computational Neuroscience (BCCN), Goettingen (Germany)], E-mail: neves@nld.ds.mpg.de, E-mail: timme@nld.ds.mpg.de

    2009-08-28

    Pulse-coupled systems such as spiking neural networks exhibit nontrivial invariant sets in the form of attracting yet unstable saddle periodic orbits where units are synchronized into groups. Heteroclinic connections between such orbits may in principle support switching processes in these networks and enable novel kinds of neural computations. For small networks of coupled oscillators, we here investigate under which conditions and how system symmetry enforces or forbids certain switching transitions that may be induced by perturbations. For networks of five oscillators, we derive explicit transition rules that for two cluster symmetries deviate from those known from oscillators coupled continuously in time. A third symmetry yields heteroclinic networks that consist of sets of all unstable attractors with that symmetry and the connections between them. Our results indicate that pulse-coupled systems can reliably generate well-defined sets of complex spatiotemporal patterns that conform to specific transition rules. We briefly discuss possible implications for computation with spiking neural systems.

  13. Internal Backpressure for Terabit Switch Fabrics

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Ruepp, Sarah Renée; Rytlig, Andreas

    2012-01-01

    This paper proposes and analyzes the efficiency of novel backpressure schemes for Terabit switch fabrics. The proposed schemes aim at buffer optimization under uniform traffic distribution with Bernoulli packet arrival process. Results show that a reduction of the needed maximum buffer capacity w...... with up to 47% can be achieved with switch-internal backpressure mechanisms at the expense of a small control overhead....

  14. High-speed packet filtering utilizing stream processors

    Science.gov (United States)

    Hummel, Richard J.; Fulp, Errin W.

    2009-04-01

    Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar benefits with a significantly reduced latency due to locality. This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with a latency less than 82 μ-seconds. Performance depends on how well the packet filtering process is translated to the unique stream processor architecture. For example the method used for transmitting data and control messages among the pseudo-independent processor cores has a significant impact on performance. Experimental results will also show the current limitations of a CBE operating system when used to process packets. Possible solutions to these issues will be discussed.

  15. An analytical model for perpetual network codes in packet erasure channels

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Crisostomo, Sergio; Roetter, Daniel Enrique Lucani

    2016-01-01

    is highly dependent on a parameter called the width (ωω), which represents the number of consecutive non-zero coding coefficient present in each coded packet after a pivot element. We provide a mathematical analysis based on the width of the coding vector for the number of transmitted packets and validate...

  16. Synchronization in a Random Length Ring Network for SDN-Controlled Optical TDM Switching

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    . In addition, we propose a novel synchronization algorithm that enables automatic synchronization of software defined networking controlled all-optical TDM switching nodes connected in a ring network. Besides providing synchronization, the algorithm also can facilitate dynamic slot size change and failure......In this paper we focus on optical time division multiplexed (TDM) switching and its main distinguishing characteristics compared with other optical subwavelength switching technologies. We review and discuss in detail the synchronization requirements that allow for proper switching operation...... detection. We experimentally validate the algorithm behavior and achieve correct operation for three different ring lengths. Moreover, we experimentally demonstrate data plane connectivity in a ring network composed of three nodes and show successful wavelength division multiplexing space division...

  17. Pump-dump iterative squeezing of vibrational wave packets.

    Science.gov (United States)

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  18. Effective Packet Number for 5G IM WeChat Application at Early Stage Traffic Classification

    Directory of Open Access Journals (Sweden)

    Muhammad Shafiq

    2017-01-01

    Full Text Available Accurate network traffic classification at early stage is very important for 5G network applications. During the last few years, researchers endeavored hard to propose effective machine learning model for classification of Internet traffic applications at early stage with few packets. Nevertheless, this essential problem still needs to be studied profoundly to find out effective packet number as well as effective machine learning (ML model. In this paper, we tried to solve the above-mentioned problem. For this purpose, five Internet traffic datasets are utilized. Initially, we extract packet size of 20 packets and then mutual information analysis is carried out to find out the mutual information of each packet on n flow type. Thereafter, we execute 10 well-known machine learning algorithms using crossover classification method. Two statistical analysis tests, Friedman and Wilcoxon pairwise tests, are applied for the experimental results. Moreover, we also apply the statistical tests for classifiers to find out effective ML classifier. Our experimental results show that 13–19 packets are the effective packet numbers for 5G IM WeChat application at early stage network traffic classification. We also find out effective ML classifier, where Random Forest ML classifier is effective classifier at early stage Internet traffic classification.

  19. Buffer Management of Multi-Queue QoS Switches with Class Segregation

    OpenAIRE

    Itoh, Toshiya; Yoshimoto, Seiji

    2013-01-01

    In this paper, we focus on buffer management of multi-queue QoS switches in which packets of different values are segregated in different queues. Our model consists of $m$ queues and $m$ packet values $0 < v_{1} < v_{2} < ... < v_{m}$. Recently, Al-Bawani and Souza [IPL 113(4), pp.145-150, 2013] presented an online algorithm GREEDY for buffer management of multi-queue QoS switches with class segregation and showed thatif $m$ queues have the same size, then the competitive ratio of GREEDY is $...

  20. Optimal Switch Configuration in Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Béla GENGE

    2016-06-01

    Full Text Available The emerging Software-Defined Networks (SDN paradigm facilitates innovative applications and enables the seamless provisioning of resilient communications. Nevertheless, the installation of communication flows in SDN requires careful planning in order to avoid configuration errors and to fulfill communication requirements. In this paper we propose an approach that installs automatically and optimally static flows in SDN switches. The approach aims to select high capacity links and shortest path routing, and enforces communication link and switch capacity limitations. Experimental results demonstrate the effectiveness and scalability of the developed methodology.

  1. Mobile networks architecture

    CERN Document Server

    Perez, Andre

    2013-01-01

    This book explains the evolutions of architecture for mobiles and summarizes the different technologies:- 2G: the GSM (Global System for Mobile) network, the GPRS (General Packet Radio Service) network and the EDGE (Enhanced Data for Global Evolution) evolution;- 3G: the UMTS (Universal Mobile Telecommunications System) network and the HSPA (High Speed Packet Access) evolutions:- HSDPA (High Speed Downlink Packet Access),- HSUPA (High Speed Uplink Packet Access),- HSPA+;- 4G: the EPS (Evolved Packet System) network.The telephone service and data transmission are the

  2. Estimation of Frame Independent and Enhancement Components for Speech Communication over Packet Networks

    DEFF Research Database (Denmark)

    Giacobello, Daniele; Murthi, Manohar N.; Christensen, Mads Græsbøll

    2010-01-01

    In this paper, we describe a new approach to cope with packet loss in speech coders. The idea is to split the information present in each speech packet into two components, one to independently decode the given speech frame and one to enhance it by exploiting interframe dependencies. The scheme...... is based on sparse linear prediction and a redefinition of the analysis-by-synthesis process. We present Mean Opinion Scores for the presented coder with different degrees of packet loss and show that it performs similarly to frame dependent coders for low packet loss probability and similarly to frame...

  3. An Underlay Communication Channel for 5G Cognitive Mesh Networks: Packet Design, Implementation, Analysis, and Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid; Taylor Sibbett; Daryl Leon Wasden; Brandon F Lo; Lloyd Landon; David Couch; Hussein Moradi; Behrouz Farhang-Boroujeny

    2016-04-01

    This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellular and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.

  4. Observability of Automata Networks: Fixed and Switching Cases.

    Science.gov (United States)

    Li, Rui; Hong, Yiguang; Wang, Xingyuan

    2018-04-01

    Automata networks are a class of fully discrete dynamical systems, which have received considerable interest in various different areas. This brief addresses the observability of automata networks and switched automata networks in a unified framework, and proposes simple necessary and sufficient conditions for observability. The results are achieved by employing methods from symbolic computation, and are suited for implementation using computer algebra systems. Several examples are presented to demonstrate the application of the results.

  5. An absorptive single-pole four-throw switch using multiple-contact MEMS switches and its application to a monolithic millimeter-wave beam-forming network

    International Nuclear Information System (INIS)

    Lee, Sanghyo; Kim, Jong-Man; Kim, Yong-Kweon; Kwon, Youngwoo

    2009-01-01

    In this paper, a new absorptive single-pole four-throw (SP4T) switch based on multiple-contact switching is proposed and integrated with a Butler matrix to demonstrate a monolithic beam-forming network at millimeter waves (mm waves). In order to simplify the switching driving circuit and reduce the number of unit switches in an absorptive SP4T switch, the individual switches were replaced with long-span multiple-contact switches using stress-free single-crystalline-silicon MEMS technology. This approach improves the mechanical stability as well as the manufacturing yield, thereby allowing successful integration into a monolithic beam former. The fabricated absorptive SP4T MEMS switch shows insertion loss less than 1.3 dB, return losses better than 11 dB at 30 GHz and wideband isolation performance higher than 39 dB from 20 to 40 GHz. The absorptive SP4T MEMS switch is integrated with a 4 × 4 Butler matrix on a single chip to implement a monolithic beam-forming network, directing beam into four distinct angles. Array factors from the measured data show that the proposed absorptive SPnT MEMS switch can be effectively used for high-performance mm-wave beam-switching systems. This work corresponds to the first demonstration of a monolithic beam-forming network using switched beams

  6. Research on Matrix-type Packet Loss Compensation Scheme for Wireless Video Transmission on Subway

    Directory of Open Access Journals (Sweden)

    Fan Qing-Wu

    2017-01-01

    Full Text Available As the mainstream wireless LAN technology, Wi-Fi can achieve fast data transfer. With the subway moving in a high speed, video data transmission between the metro and the ground is achieved through Wi-Fi technology. This paper aims at solving the Caton problem caused by switching packet loss in the process of playing real-time video on the train terminal, and proposes matrix-type packet loss compensation scheme. Finally, the feasibility of the scheme is verified by experiments.

  7. Detecting P2P Botnet in Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Shang-Chiuan Su

    2018-01-01

    Full Text Available Software Defined Network separates the control plane from network equipment and has great advantage in network management as compared with traditional approaches. With this paradigm, the security issues persist to exist and could become even worse because of the flexibility on handling the packets. In this paper we propose an effective framework by integrating SDN and machine learning to detect and categorize P2P network traffics. This work provides experimental evidence showing that our approach can automatically analyze network traffic and flexibly change flow entries in OpenFlow switches through the SDN controller. This can effectively help the network administrators manage related security problems.

  8. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.

    Directory of Open Access Journals (Sweden)

    Chun-Liang Lee

    Full Text Available The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.

  9. Green partial packet recovery in wireless sensor networks

    KAUST Repository

    Daghistani, Anas; Ben Khalifa, Abderrahman; Showail, Ahmad; Shihada, Basem

    2015-01-01

    wireless sensor motes. We propose Green-Frag, a novel adaptive partial packet recovery mechanism that is energy friendly. It can help prolonging the battery life of wireless sensor motes that are usually resource constrained. It dynamically partitions

  10. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    Science.gov (United States)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  11. Unsupervised Ensemble Anomaly Detection Using Time-Periodic Packet Sampling

    Science.gov (United States)

    Uchida, Masato; Nawata, Shuichi; Gu, Yu; Tsuru, Masato; Oie, Yuji

    We propose an anomaly detection method for finding patterns in network traffic that do not conform to legitimate (i.e., normal) behavior. The proposed method trains a baseline model describing the normal behavior of network traffic without using manually labeled traffic data. The trained baseline model is used as the basis for comparison with the audit network traffic. This anomaly detection works in an unsupervised manner through the use of time-periodic packet sampling, which is used in a manner that differs from its intended purpose — the lossy nature of packet sampling is used to extract normal packets from the unlabeled original traffic data. Evaluation using actual traffic traces showed that the proposed method has false positive and false negative rates in the detection of anomalies regarding TCP SYN packets comparable to those of a conventional method that uses manually labeled traffic data to train the baseline model. Performance variation due to the probabilistic nature of sampled traffic data is mitigated by using ensemble anomaly detection that collectively exploits multiple baseline models in parallel. Alarm sensitivity is adjusted for the intended use by using maximum- and minimum-based anomaly detection that effectively take advantage of the performance variations among the multiple baseline models. Testing using actual traffic traces showed that the proposed anomaly detection method performs as well as one using manually labeled traffic data and better than one using randomly sampled (unlabeled) traffic data.

  12. Hardware Realization of an Ethernet Packet Analyzer Search Engine

    Science.gov (United States)

    2000-06-30

    specific for the home automation industry. This analyzer will be at the gateway of a network and analyze Ethernet packets as they go by. It will keep... home automation and not the computer network. This system is a stand-alone real-time network analyzer capable of decoding Ethernet protocols. The

  13. A low-latency optical switch architecture using integrated μm SOI-based contention resolution and switching

    Science.gov (United States)

    Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.

  14. On the Coded Packet Relay Network in the Presence of Neighbors:Benefits of Speaking in a Crowded Room

    OpenAIRE

    Khamfroush, Hana; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Hundebøll, Martin; Fitzek, Frank

    2014-01-01

    This paper studies the problem of optimal use of a relay for reducing the transmission time of data packets from a source to a destination using network coding. More importantly, we address an effect that is typically overlooked in previous studies: the presence of active transmitting nodes in the neighborhood of such devices, which is typical in wireless mesh networks. We show that in systems with a fair medium access control mechanism (MAC), the use of a relay in a crowded medium brings for...

  15. Distributed parallel messaging for multiprocessor systems

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  16. IPv6: The Next Generation Internet Protocol

    Indian Academy of Sciences (India)

    emphasis on wireless networks, distributed ... their own processing power, memory and other resources. The interconnection may be ... Networks that transfer data in the form of packets are called packet switched networks. Here, the data to.

  17. Performance evaluation of a high-speed switched network for PACS

    Science.gov (United States)

    Zhang, Randy H.; Tao, Wenchao; Huang, Lu J.; Valentino, Daniel J.

    1998-07-01

    We have replaced our shared-media Ethernet and FDDI network with a multi-tiered, switched network using OC-12 (622 Mbps) ATM for the network backbone, OC3 (155 Mbps) connections to high-end servers and display workstations, and switched 100/10 Mbps Ethernet for workstations and desktop computers. The purpose of this research was to help PACS designers and implementers understand key performance factors in a high- speed switched network by characterizing and evaluating its image delivery performance, specifically, the performance of socket-based TCP (Transmission Control Protocol) and DICOM 3.0 communications. A test network within the UCLA Clinical RIS/PACS was constructed using Sun UltraSPARC-II machines with ATM, Fast Ethernet, and Ethernet network interfaces. To identify performance bottlenecks, we evaluated network throughput for memory to memory, memory to disk, disk to memory, and disk to disk transfers. To evaluate the effect of file size, tests involving disks were further divided using sizes of small (514 KB), medium (8 MB), and large (16 MB) files. The observed maximum throughput for various network configurations using the TCP protocol was 117 Mbps for memory to memory and 88 MBPS for memory to disk. For disk to memory, the peak throughput was 98 Mbps using small files, 114 Mbps using medium files, and 116 Mbps using large files. The peak throughput for disk to disk became 64 Mbps using small files and 96 Mbps using medium and large files. The peak throughput using the DICOM 3.0 protocol was substantially lower in all categories. The measured throughput varied significantly among the tests when TCP socket buffer was raised above the default value. The optimal buffer size was approximately 16 KB or the TCP protocol and around 256 KB for the DICOM protocol. The application message size also displayed distinctive effects on network throughput when the TCP socket buffer size was varied. The throughput results for Fast Ethernet and Ethernet were expectedly

  18. Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Weekrakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-10-23

    Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. With the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.

  19. Modelling switching-time effects in high-frequency power conditioning networks

    Science.gov (United States)

    Owen, H. A.; Sloane, T. H.; Rimer, B. H.; Wilson, T. G.

    1979-01-01

    Power transistor networks which switch large currents in highly inductive environments are beginning to find application in the hundred kilohertz switching frequency range. Recent developments in the fabrication of metal-oxide-semiconductor field-effect transistors in the power device category have enhanced the movement toward higher switching frequencies. Models for switching devices and of the circuits in which they are imbedded are required to properly characterize the mechanisms responsible for turning on and turning off effects. Easily interpreted results in the form of oscilloscope-like plots assist in understanding the effects of parametric studies using topology oriented computer-aided analysis methods.

  20. Coordination and Lock-In: Competition with Switching Costs and Network Effects

    OpenAIRE

    Farrell, Joseph; Klemperer, Paul

    2006-01-01

    Switching costs and network effects bind customers to vendors if products are incompatible, locking customers or even markets in to early choices. Lock-in hinders customers from changing suppliers in response to (predictable or unpredictable) changes in efficiency, and gives vendors lucrative ex post market power—over the same buyer in the case of switching costs (or brand loyalty), or over others with network effects. Firms compete ex ante for this ex post power, using penetration ...

  1. Packet Classification by Multilevel Cutting of the Classification Space: An Algorithmic-Architectural Solution for IP Packet Classification in Next Generation Networks

    Directory of Open Access Journals (Sweden)

    Motasem Aldiab

    2008-01-01

    Full Text Available Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.

  2. Packetized Media Streaming with Comprehensive Exploitation of Feedback Information

    OpenAIRE

    De Vleeschouwer, C.; Frossard, P.

    2005-01-01

    This paper addresses the problem of streaming packetized media over a lossy packet network, with sender-driven (re)transmission using acknowledgement feedback. The different transmission scenarios associated to a group of interdependent media data units are abstracted in terms of a finite alphabet of policies, for each single data unit. A rate-distortion optimized markovian framework is proposed, which supports the use of comprehensive feedback information. Contrarily to previous works in rat...

  3. Optical multicast system for data center networks.

    Science.gov (United States)

    Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren

    2015-08-24

    We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

  4. Event-triggered control systems under packet losses

    NARCIS (Netherlands)

    Dolk, V.S.; Heemels, W.P.M.H.

    2017-01-01

    Networked control systems (NCSs) offer many benefits in terms of increased flexibility and maintainability but might also suffer from inevitable imperfections such as packet dropouts and limited communications resources. In this paper, (static and dynamic) event-triggered control (ETC) strategies

  5. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing.

    Science.gov (United States)

    Sillin, Henry O; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V; Aono, Masakazu; Stieg, Adam Z; Gimzewski, James K

    2013-09-27

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  6. Extensible packet processing architecture

    Science.gov (United States)

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  7. 3-5 modulation and switching devices for optical systems applications

    Science.gov (United States)

    Singh, Jasprit; Bhattacharya, Pallab

    1995-04-01

    The thrust for this three year program has been to develop novel devices and systems applications for multiple quantum well based devices. We have investigated architectures based upon the quantum confined Stark effect (QCSE), a means by which excitonic resonances in a quantum well are electric field tuned to shift the peaked absorption spectrum of the material. The devices based upon this concept have been used, in the past, to realize switching structures employing the characteristic negative differential resistance available in PIN-MQW diodes under illumination. We have focuses, primarily on three schemes based upon the QCSE, to extend the utility of quantum well based devices. Firstly, we have developed, tested and optimized a novel tunable optical filter for wavelength selective applications. Secondly, we have demonstrated an MQW based scheme for optical pattern recognition which we have applied towards header recognition in a packet switching network environment. Thirdly, we have extended previous MQW based switching schemes to implement an optical read only memory (ROM) which can store two bits of information on a single sight, read by two different probe wavelengths of light.

  8. The Control Packet Collision Avoidance Algorithm for the Underwater Multichannel MAC Protocols via Time-Frequency Masking

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2016-01-01

    Full Text Available Establishing high-speed and reliable underwater acoustic networks among multiunmanned underwater vehicles (UUVs is basic to realize cooperative and intelligent control among different UUVs. Nevertheless, different from terrestrial network, the propagation speed of the underwater acoustic network is 1500 m/s, which makes the design of the underwater acoustic network MAC protocols a big challenge. In accordance with multichannel MAC protocols, data packets and control packets are transferred through different channels, which lowers the adverse effect of acoustic network and gradually becomes the popular issues of underwater acoustic networks MAC protocol research. In this paper, we proposed a control packet collision avoidance algorithm utilizing time-frequency masking to deal with the control packets collision in the control channel. This algorithm is based on the scarcity of the noncoherent underwater acoustic communication signals, which regards collision avoiding as separation of the mixtures of communication signals from different nodes. We first measure the W-Disjoint Orthogonality of the MFSK signals and the simulation result demonstrates that there exists time-frequency mask which can separate the source signals from the mixture of the communication signals. Then we present a pairwise hydrophones separation system based on deep networks and the location information of the nodes. Consequently, the time-frequency mask can be estimated.

  9. Controllability of switched singular mix-valued logical control networks with constraints

    Science.gov (United States)

    Deng, Lei; Gong, Mengmeng; Zhu, Peiyong

    2018-03-01

    The present paper investigates the controllability problem of switched singular mix-valued logical control networks (SSMLCNs) with constraints on states and controls. First, using the semi-tenser product (STP) of matrices, the SSMLCN is expressed in an algebraic form, based on which a necessary and sufficient condition is given for the uniqueness of solution of SSMLCNs. Second, a necessary and sufficient criteria is derived for the controllability of constrained SSMLCNs, by converting a constrained SSMLCN into a parallel constrained switched mix-valued logical control network. Third, an algorithm is presented to design a proper switching sequence and a control scheme which force a state to a reachable state. Finally, a numerical example is given to demonstrate the efficiency of the results obtained in this paper.

  10. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit

    2016-11-02

    Programmable switches make it easier to perform flexible network monitoring queries at line rate, and scalable stream processors make it possible to fuse data streams to answer more sophisticated queries about the network in real-time. Unfortunately, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have network monitoring in the context of streaming; yet, previous work has not closed the loop in a way that allows network operators to perform streaming analytics for network monitoring applications at scale. To achieve this objective, Sonata allows operators to express a network monitoring query by considering each packet as a tuple and efficiently partitioning each query between the switches and the stream processor through iterative refinement. Sonata extracts only the traffic that pertains to each query, ensuring that the stream processor can scale traffic rates of several terabits per second. We show with a simple example query involving DNS reflection attacks and traffic traces from one of the world\\'s largest IXPs that Sonata can capture 95% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude. Copyright 2016 ACM.

  11. H-Seda: Partial Packet Recovery with Heterogeneous Block Sizes for Wireless Sensor Networks

    KAUST Repository

    Meer, Ammar M.

    2012-12-08

    Wireless sensor networks (WSN) have been largely used in various applications due to its ease of deployment and scalability. The throughput of such networks, however, suffers from high bit error rates mainly because of medium characteristics. Maximizing bandwidth utilization while maintaining low frame error rate has been an interesting problem. Frame fragmentation into small blocks with dedicated error detection codes per block can reduce the unnecessary retransmission of the correctly received blocks. The optimal block size, however, varies based on the wireless channel conditions. In addition, blocks within a frame can have different optimal sizes based on the variations on interference patterns. This thesis studies two dynamic partial packet recovery approaches experimentally over several interference intensities with various transmission-power levels. It also proposes a dynamic data link layer protocol: Hybrid Seda (H-Seda). H-Seda effectively addresses the challenges associated with dynamic partitioning of blocks while taking the observed error patterns into consideration. The design of H-Seda is discussed in details and compared to other previous approaches, namely Seda+ and Seda. The implementation of H-Seda shows substantial enhancements over fixed-size partial packet recovery protocols, achieving up to 2.5x improvement in throughput when the channel condition is noisy, while delay experienced decreases to only 14 % of the delay observed in Seda. On average, it shows 35% gain in goodput across all channel conditions used in our experiments. This significant improvement is due to the selective nature of H-Seda which minimizes retransmission overhead by selecting the appropriate number of blocks in each data frame. Additionally, H-Seda successfully reduces block overhead by 50% through removing block number field reaching to better performance when channel conditions are identical.

  12. A novel implementation of TCP Vegas for optical burst switched networks

    KAUST Repository

    Shihada, Basem; Zhang, Qiong; Ho, Pin-Han; Jue, Jason P.

    2010-01-01

    TCP performance over bufferless Optical Burst Switched (OBS) networks could be significantly degraded due to the misinterpretation of network congestion status (referred to as false congestion detection). It has been reported that burst

  13. Packet models revisited: tandem and priority systems

    NARCIS (Netherlands)

    M.R.H. Mandjes (Michel)

    2004-01-01

    textabstractWe examine two extensions of traditional single-node packet-scale queueing models: tandem networks and (strict) priority systems. Two generic input processes are considered: periodic and Poisson arrivals. For the two-node tandem, an exact expression is derived for the joint distribution

  14. Collective network routing

    Science.gov (United States)

    Hoenicke, Dirk

    2014-12-02

    Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.

  15. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  16. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    A. M. Balamurugan

    2014-01-01

    Full Text Available The optical burst switching (OBS is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS. This paper deals with employing RC4 (stream cipher to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  17. Sonata: Query-Driven Network Telemetry

    KAUST Repository

    Gupta, Arpit; Harrison, Rob; Pawar, Ankita; Birkner, Rü diger; Canini, Marco; Feamster, Nick; Rexford, Jennifer; Willinger, Walter

    2017-01-01

    Operating networks depends on collecting and analyzing measurement data. Current technologies do not make it easy to do so, typically because they separate data collection (e.g., packet capture or flow monitoring) from analysis, producing either too much data to answer a general question or too little data to answer a detailed question. In this paper, we present Sonata, a network telemetry system that uses a uniform query interface to drive the joint collection and analysis of network traffic. Sonata takes the advantage of two emerging technologies---streaming analytics platforms and programmable network devices---to facilitate joint collection and analysis. Sonata allows operators to more directly express network traffic analysis tasks in terms of a high-level language. The underlying runtime partitions each query into a portion that runs on the switch and another that runs on the streaming analytics platform iteratively refines the query to efficiently capture only the traffic that pertains to the operator's query, and exploits sketches to reduce state in switches in exchange for more approximate results. Through an evaluation of a prototype implementation, we demonstrate that Sonata can support a wide range of network telemetry tasks with less state in the network, and lower data rates to streaming analytics systems, than current approaches can achieve.

  18. Sonata: Query-Driven Network Telemetry

    KAUST Repository

    Gupta, Arpit

    2017-05-02

    Operating networks depends on collecting and analyzing measurement data. Current technologies do not make it easy to do so, typically because they separate data collection (e.g., packet capture or flow monitoring) from analysis, producing either too much data to answer a general question or too little data to answer a detailed question. In this paper, we present Sonata, a network telemetry system that uses a uniform query interface to drive the joint collection and analysis of network traffic. Sonata takes the advantage of two emerging technologies---streaming analytics platforms and programmable network devices---to facilitate joint collection and analysis. Sonata allows operators to more directly express network traffic analysis tasks in terms of a high-level language. The underlying runtime partitions each query into a portion that runs on the switch and another that runs on the streaming analytics platform iteratively refines the query to efficiently capture only the traffic that pertains to the operator\\'s query, and exploits sketches to reduce state in switches in exchange for more approximate results. Through an evaluation of a prototype implementation, we demonstrate that Sonata can support a wide range of network telemetry tasks with less state in the network, and lower data rates to streaming analytics systems, than current approaches can achieve.

  19. Exact analysis of Packet Reversed Packet Combining Scheme and Modified Packet Combining Scheme; and a combined scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-07-01

    Packet combining scheme is a well defined simple error correction scheme for the detection and correction of errors at the receiver. Although it permits a higher throughput when compared to other basic ARQ protocols, packet combining (PC) scheme fails to correct errors when errors occur in the same bit locations of copies. In a previous work, a scheme known as Packet Reversed Packet Combining (PRPC) Scheme that will correct errors which occur at the same bit location of erroneous copies, was studied however PRPC does not handle a situation where a packet has more than 1 error bit. The Modified Packet Combining (MPC) Scheme that can correct double or higher bit errors was studied elsewhere. Both PRPC and MPC schemes are believed to offer higher throughput in previous studies, however neither adequate investigation nor exact analysis was done to substantiate this claim of higher throughput. In this work, an exact analysis of both PRPC and MPC is carried out and the results reported. A combined protocol (PRPC and MPC) is proposed and the analysis shows that it is capable of offering even higher throughput and better error correction capability at high bit error rate (BER) and larger packet size. (author)

  20. A Method for Routing Packets Across Multiple Paths in NoCs with In-Order Delivery and Fault-Tolerance Gaurantees

    Directory of Open Access Journals (Sweden)

    Srinivasan Murali

    2007-01-01

    Full Text Available Networks on Chips (NoCs are required to tackle the increasing delay and poor scalability issues of bus-based communication architectures. Many of today's NoC designs are based on single path routing. By utilizing multiple paths for routing, congestion in the network is reduced significantly, which translates to improved network performance or reduced network bandwidth requirements and power consumption. Multiple paths can also be utilized to achieve spatial redundancy, which helps in achieving tolerance against faults or errors in the NoC. A major problem with multipath routing is that packets can reach the destination in an out-of-order fashion, while many applications require in-order packet delivery. In this work, we present a multipath routing strategy that guarantees in-order packet delivery for NoCs. It is based on the idea of routing packets on partially nonintersecting paths and rebuilding packet order at path reconvergent nodes. We present a design methodology that uses the routing strategy to optimally spread the traffic in the NoC to minimize the network bandwidth needs and power consumption. We also integrate support for tolerance against transient and permanent failures in the NoC links in the methodology by utilizing spatial and temporal redundancy for transporting packets. Our experimental studies show large reduction in network bandwidth requirements (36.86% on average and power consumption (30.51% on average compared to single-path systems. The area overhead of the proposed scheme is small (a modest 5% increase in network area. Hence, it is practical to be used in the on-chip domain.

  1. Packet-Scheduling Algorithm by the Ratio of Transmit Power to the Transmission Bits in 3GPP LTE Downlink

    Directory of Open Access Journals (Sweden)

    Gil Gye-Tae

    2010-01-01

    Full Text Available Packet scheduler plays the central role in determining the overall performance of the 3GPP long-term evolution (LTE based on packet-switching operation. In this paper, a novel minimum transmit power-based (MP packet-scheduling algorithm is proposed that can achieve power-efficient transmission to the UEs while providing both system throughput gain and fairness improvement. The proposed algorithm is based on a new scheduling metric focusing on the ratio of the transmit power per bit and allocates the physical resource block (PRB to the UE that requires the least ratio of the transmit power per bit. Through computer simulation, the performance of the proposed MP packet-scheduling algorithm is compared with the conventional packet-scheduling algorithms by two primary criteria: fairness and throughput. The simulation results show that the proposed algorithm outperforms the conventional algorithms in terms of the fairness and throughput.

  2. Survival of the Fittest: An Active Queue Management Technique for Noisy Packet Flows

    Directory of Open Access Journals (Sweden)

    Shirish S. Karande

    2007-01-01

    Full Text Available We present a novel active queue management (AQM technique to demonstrate the efficacy of practically harnessing the predictive utility of SSR indications for improved video communication. We consider a network within which corrupted packets are relayed over multiple hops, but a certain percentage of packets needs to be dropped at an intermediate node due to congestion. We propose an AQM technique, survival of the fittest (SOTF, to be employed at the relay node, within which we use packet state information, available from SSR indications and checksums, to drop packets with the highest corruption levels. On the basis of actual 802.11b measurements we show that such a side information (SI aware processing within the network can provide significant performance benefits over an SI-unaware scheme, random queue management (RQM, which is forced to randomly discard packets. With trace-based simulations, we show the utility of the proposed AQM technique in improving the error recovery performance of cross-layer FEC schemes. Finally, with the help of H.264-based video simulations these improvements are shown to translate into a significant improvement in video quality.

  3. Packet-Based Control Algorithms for Cooperative Surveillance and Reconnaissance

    National Research Council Canada - National Science Library

    Murray, Richard M

    2007-01-01

    ..., and repeated transmissions. Results include analysis and design of estimation and control algorithms in the presence of packet loss and across multi-hop data networks, distributed estimation and sensor fusion algorithms...

  4. Co-ordination and Lock-in: Competition with Switching Costs and Network Effects

    OpenAIRE

    Joseph Farrell; Paul Klemperer

    2006-01-01

    Switching costs and network effects bind customers to vendors if products are incompatible, locking customers or even markets in to early choices. Lock-in hinders customers from changing suppliers in response to (predictable or unpredictable) changes in effciency, and gives vendors lucrative ex post market power-over the same buyer in the case of switching costs (or brand loyalty), or over others with network effects. Firms compete ex ante for this ex post power, using penetration pricing, in...

  5. A Formal Model and Verification Problems for Software Defined Networks

    Directory of Open Access Journals (Sweden)

    V. A. Zakharov

    2013-01-01

    Full Text Available Software-defined networking (SDN is an approach to building computer networks that separate and abstract data planes and control planes of these systems. In a SDN a centralized controller manages a distributed set of switches. A set of open commands for packet forwarding and flow-table updating was defined in the form of a protocol known as OpenFlow. In this paper we describe an abstract formal model of SDN, introduce a tentative language for specification of SDN forwarding policies, and set up formally model-checking problems for SDN.

  6. The Design of the M-B-Quadro Optical Switch and Its Access Control Strategies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper proposes a new simple contention resolution switching architecture, M-B-Quadro, and its underlying access control strategies. By incorporating delay and buffer lines, the switching node can effectively obtain very low packet deflection probability.

  7. Using RBF to Enable Circuit Emulation Service over Internet%采用RBF来支撑互联网络上的电路模拟服务

    Institute of Scientific and Technical Information of China (English)

    金涬; 张斌; 赵阳; 王庆波; 陈滢

    2009-01-01

    Circuit Emulation Service(CES)aims to enable packet switched networks to provide guaranteed services with comparable qualities of circuit switched networks.Our paper addresses the key issue of QoS of CES flows over Internet.Enlightened by the time division idea popularly used in circuit switched networks,we propose a time division based control mechanism to provide guaranteed QoS for the constant-rate CES flows.The control mechanism is able to estimate the arrival times of the coming packets in CES flows,and reserve the time slots for them.ACCOrdingly.it enables the packets to consume the reserved time slots of their own,so the CES flows are guaranteed to be processed.Refreshing Bloom Filter(RBF),an efficient data representation structure,is proposed to support the time division control mechanism.It consists of multiple bloom filters,and can efficiently record the arrival time slots of millions of packets.The proposed control system model could be a practical tool to support Circuit Emulation Services over Intemet.

  8. Performance Evaluation of Concurrent Multipath Video Streaming in Multihomed Mobile Networks

    Directory of Open Access Journals (Sweden)

    James Nightingale

    2013-01-01

    Full Text Available High-quality real-time video streaming to users in mobile networks is challenging due to the dynamically changing nature of the network paths, particularly the limited bandwidth and varying end-to-end delay. In this paper, we empirically investigate the performance of multipath streaming in the context of multihomed mobile networks. Existing schemes that make use of the aggregated bandwidth of multiple paths can overcome bandwidth limitations on a single path but suffer an efficiency penalty caused by retransmission of lost packets in reliable transport schemes or path switching overheads in unreliable transport schemes. This work focuses on the evaluation of schemes to permit concurrent use of multiple paths to deliver video streams. A comprehensive streaming framework for concurrent multipath video streaming is proposed and experimentally evaluated, using current state-of-the-art H.264 Scalable Video Coding (H.264/SVC and the next generation High Efficiency Video Coding (HEVC standards. It provides a valuable insight into the benefit of using such schemes in conjunction with encoder specific packet prioritisation mechanisms for quality-aware packet scheduling and scalable streaming. The remaining obstacles to deployment of concurrent multipath schemes are identified, and the challenges in realising HEVC based concurrent multipath streaming are highlighted.

  9. Final Report - Dynamic Path Scheduling through Extensions to Generalized Multiprotocol Label Switching (GMPLS)

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Dr. Abdella Battou

    2009-05-22

    The major accomplishments of the project are the successful software implementation of the Phase I scheduling algorithms for GMPLS Label Switched Paths (LSPs) and the extension of the IETF Path Computation Element (PCE) Protocol to support scheduling extensions. In performing this work, we have demonstrated the theoretical work of Phase I, analyzed key issues, and made relevant extensions. Regarding the software implementation, we developed a proof of concept prototype as part of our Algorithm Evaluation System (AES). This implementation uses the Linux operating system to provide software portability and will be the foundation for our commercial software. To demonstrate proof of concept, we have implemented LSP scheduling algorithms to support two of the key GMPLS switching technologies (Lambda and Packet) and support both Fixed Path (FP) and Switched Path (SP) routing. We chose Lambda and Packet because we felt it was essential to include both circuit and packet switching technologies as well as to address all-optical switching in the study. As conceptualized in Phase I, the FP algorithms use a traditional approach where the LSP uses the same physical path for the entire service duration while the innovative SP algorithms allow the physical path to vary during the service duration. As part of this study, we have used the AES to conduct a performance analysis using metro size networks (up to 32 nodes) that showed that these algorithms are suitable for commercial implementation. Our results showed that the CPU time required to compute an LSP schedule was small compared to expected inter-arrival time between LSP requests. Also, when the network size increased from 7 to 15 to 32 nodes with 10, 26, and 56 TE links, the CPU processing time showed excellent scaling properties. When Fixed Path and Switched Path routing were compared, SP provided only modestly better performance with respect to LSP completion rate, service duration, path length, and start time deviation

  10. Packet loss replacement in voip using a recursive low-order autoregressive modelbased speech

    International Nuclear Information System (INIS)

    Miralavi, Seyed Reza; Ghorshi, Seyed; Mortazavi, Mohammad; Choupan, Jeiran

    2011-01-01

    In real-time packet-based communication systems one major problem is misrouted or delayed packets which results in degraded perceived voice quality. When some speech packets are not available on time, the packet is known as lost packet in real-time communication systems. The easiest task of a network terminal receiver is to replace silence for the duration of lost speech segments. In a high quality communication system in order to avoid quality reduction due to packet loss a suitable method and/or algorithm is needed to replace the missing segments of speech. In this paper, we introduce a recursive low order autoregressive (AR) model for replacement of lost speech segment. The evaluation results show that this method has a lower mean square error (MSE) and low complexity compared to the other efficient methods like high-order AR model without any substantial degradation in perceived voice quality.

  11. Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks.

    Science.gov (United States)

    Wan, Tao; Pan, Ying; Du, Haiwei; Qu, Bo; Yi, Jiabao; Chu, Dewei

    2018-01-24

    Silver nanowire (Ag NW) networks have been widely studied because of a great potential in various electronic devices. However, nanowires usually undergo a fragmentation process at elevated temperatures due to the Rayleigh instability that is a result of reduction of surface/interface energy. In this case, the nanowires become completely insulating due to the formation of randomly distributed Ag particles with a large distance and further applications are hindered. Herein, we demonstrate a novel concept based on the combination of ultraviolet/ozone irradiation and a low-temperature annealing process to effectively utilize and control the fragmentation behavior to realize the resistive switching performances. In contrast to the conventional fragmentation, the designed Ag/AgO x interface facilitates a unique morphology of short nanorod-like segments or chains of tiny Ag nanoparticles with a very small spacing distance, providing conduction paths for achieving the tunneling process between the isolated fragments under the electric field. On the basis of this specific morphology, the Ag NW network has a tunable resistance and shows volatile threshold switching characteristics with a high selectivity, which is the ON/OFF current ratio in selector devices. Our concept exploits a new function of Ag NW network, i.e., resistive switching, which can be developed by designing a controllable fragmentation.

  12. A Secure Network Coding Based on Broadcast Encryption in SDN

    Directory of Open Access Journals (Sweden)

    Yue Chen

    2016-01-01

    Full Text Available By allowing intermediate nodes to encode the received packets before sending them out, network coding improves the capacity and robustness of multicast applications. But it is vulnerable to the pollution attacks. Some signature schemes were proposed to thwart such attacks, but most of them need to be homomorphic that the keys cannot be generated and managed easily. In this paper, we propose a novel fast and secure switch network coding multicast (SSNC on the software defined networks (SDN. In our scheme, the complicated secure multicast management was separated from the fast data transmission based on the SDN. Multiple multicasts will be aggregated to one multicast group according to the requirements of services and the network status. Then, the controller will route aggregated multicast group with network coding; only the trusted switch will be allowed to join the network coding by using broadcast encryption. The proposed scheme can use the traditional cryptography without homomorphy, which greatly reduces the complexity of the computation and improves the efficiency of transmission.

  13. Modelling the Probability Density Function of IPTV Traffic Packet Delay Variation

    Directory of Open Access Journals (Sweden)

    Michal Halas

    2012-01-01

    Full Text Available This article deals with modelling the Probability density function of IPTV traffic packet delay variation. The use of this modelling is in an efficient de-jitter buffer estimation. When an IP packet travels across a network, it experiences delay and its variation. This variation is caused by routing, queueing systems and other influences like the processing delay of the network nodes. When we try to separate these at least three types of delay variation, we need a way to measure these types separately. This work is aimed to the delay variation caused by queueing systems which has the main implications to the form of the Probability density function.

  14. Global Robust Stability of Switched Interval Neural Networks with Discrete and Distributed Time-Varying Delays of Neural Type

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2012-01-01

    Full Text Available By combing the theories of the switched systems and the interval neural networks, the mathematics model of the switched interval neural networks with discrete and distributed time-varying delays of neural type is presented. A set of the interval parameter uncertainty neural networks with discrete and distributed time-varying delays of neural type are used as the individual subsystem, and an arbitrary switching rule is assumed to coordinate the switching between these networks. By applying the augmented Lyapunov-Krasovskii functional approach and linear matrix inequality (LMI techniques, a delay-dependent criterion is achieved to ensure to such switched interval neural networks to be globally asymptotically robustly stable in terms of LMIs. The unknown gain matrix is determined by solving this delay-dependent LMIs. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

  15. Default mode network abnormalities during state switching in attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sidlauskaite, J; Sonuga-Barke, E; Roeyers, H; Wiersema, J R

    2016-02-01

    Individuals with attention deficit hyperactivity disorder (ADHD) display excess levels of default mode network (DMN) activity during goal-directed tasks, which are associated with attentional disturbances and performance decrements. One hypothesis is that this is due to attenuated down-regulation of this network during rest-to-task switching. A second related hypothesis is that it may be associated with right anterior insula (rAI) dysfunction - a region thought to control the actual state-switching process. These hypotheses were tested in the current fMRI study in which 19 adults with ADHD and 21 typically developing controls undertook a novel state-to-state switching paradigm. Advance cues signalled upcoming switches between rest and task periods and switch-related anticipatory modulation of DMN and rAI was measured. To examine whether rest-to-task switching impairments may be a specific example of a more general state regulation deficit, activity upon task-to-rest cues was also analysed. Against our hypotheses, we found that the process of down-regulating the DMN when preparing to switch from rest to task was unimpaired in ADHD and that there was no switch-specific deficit in rAI modulation. However, individuals with ADHD showed difficulties up-regulating the DMN when switching from task to rest. Rest-to-task DMN attenuation seems to be intact in adults with ADHD and thus appears unrelated to excess DMN activity observed during tasks. Instead, individuals with ADHD exhibit attenuated up-regulation of the DMN, hence suggesting disturbed re-initiation of a rest state.

  16. An Esprit Project: A Local Integrated Optical Network

    Science.gov (United States)

    Rey, J.-C.; Luvison, A.; Maaloe, J.; Toft, Fl.

    1986-10-01

    The paper describes a fibreoptical wideband local area network, (LION) which is being developed under the European ESPRIT (European Strategic Programme for Research and Development in Information Technology) programme. The consortium consists of Thomson-TITN, CSELT and NKT Elektronik. The network will carry both real-time voice and compressed video traffic, and it will also offer a Transport Service for packet-switched data transmission. The network is composed by a number of subnets operating on 140 Mbit/s and an interconnecting backbone network operating on 565 Mbit/s. In large organisations the total network may span more than 10 miles and it can handle more than 10,000 users. The network will have gateways to ISDN and other public services, and interfaces to host computers and other common resources.

  17. Traction Inverter Open Switch Fault Diagnosis Based on Choi–Williams Distribution Spectral Kurtosis and Wavelet-Packet Energy Shannon Entropy

    Directory of Open Access Journals (Sweden)

    Shuangshuang Lin

    2017-09-01

    Full Text Available In this paper, a new approach for fault detection and location of open switch faults in the closed-loop inverter fed vector controlled drives of Electric Multiple Units is proposed. Spectral kurtosis (SK based on Choi–Williams distribution (CWD as a statistical tool can effectively indicate the presence of transients and locations in the frequency domain. Wavelet-packet energy Shannon entropy (WPESE is appropriate for the transient changes detection of complex non-linear and non-stationary signals. Based on the analyses of currents in normal and fault conditions, SK based on CWD and WPESE are combined with the DC component method. SK based on CWD and WPESE are used for the fault detection, and the DC component method is used for the fault localization. This approach can diagnose the specific locations of faulty Insulated Gate Bipolar Transistors (IGBTs with high accuracy, and it requires no additional devices. Experiments on the RT-LAB platform are carried out and the experimental results verify the feasibility and effectiveness of the diagnosis method.

  18. PcapDB: Search Optimized Packet Capture, Version 0.1.0.0

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-04

    PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components are written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.

  19. Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets.

    Science.gov (United States)

    Kang, Byungseok; Anh, Khuong Quoc; Choo, Hyunseung

    2017-01-01

    Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN) registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6) is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6) protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP) problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN) to an MN. Since the problem affects the quality of service (QoS) of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG) can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently.

  20. Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets.

    Directory of Open Access Journals (Sweden)

    Byungseok Kang

    Full Text Available Mobile IP allows for location-independent routing of IP datagrams on the Internet. Mobile IP specifies how a mobile node (MN registers with its home agent and how the home agent routes datagrams to the MN through the tunnel. Current Mobile IP protocols have difficulties meeting the stringent handover delay requirements of future wireless networks. Fast handover for Proxy Mobile IPv6 (FPMIPv6 is used to resolve handover latency and packet loss problems that occur in the Proxy Mobile IPv6 (PMIPv6 protocol. However, while implementing the FPMIPv6 scheme in a testbed, we encounter the out-of-order packet (OoOP problem. The cause of this problem is the existence of two paths for data transmitted from a correspondent node (CN to an MN. Since the problem affects the quality of service (QoS of the network and the performance of the MN, we propose a new scheme using the last packet marker and packet buffering to solve this problem in FPMIPv6. The new Mobile Access Gateway (MAG can control and deliver the data transmitted via the old path or the new path to an MN in order, using the last packet marker to notify the end of the data delivery in the old path and the packet buffering for holding the data delivered in the new path. We implement both the proposed scheme and FPMIPv6 in a testbed as a real network environment to demonstrate the correctness, cost effectiveness, and performance of the proposed scheme. A performance evaluation reveals that the proposed scheme can handle the OoOP problem efficiently.

  1. Modeling and Analysis of Modal Switching in Networked Transport Systems

    International Nuclear Information System (INIS)

    Hante, Falk M.; Leugering, Guenter; Seidman, Thomas I.

    2009-01-01

    We consider networked transport systems defined on directed graphs: the dynamics on the edges correspond to solutions of transport equations with space dimension one. In addition to the graph setting, a major consideration is the introduction and propagation of discontinuities in the solutions when the system may discontinuously switch modes, naturally or as a hybrid control. This kind of switching has been extensively studied for ordinary differential equations, but not much so far for systems governed by partial differential equations. In particular, we give well-posedness results for switching as a control, both in finite horizon open loop operation and as feedback based on sensor measurements in the system

  2. The Swiss Education and Research Network - SWITCH - Upgrades Optical Network to Transport 10 Gbps Using Sorrento Networks DWDM Platform

    CERN Multimedia

    2003-01-01

    "Sorrento Networks, a supplier of optical transport networking equipment for carriers and enterprises worldwide, today announced that SWITCH successfully completed 10 Gbps BER tests on the 220 km Zurich to Manno and 360 km Zurich to Geneva links in September and November 2003, using Sorrento's GigaMux DWDM system" (1/2 page).

  3. Fast Packet forwarding Engine Based on Software Circuits

    NARCIS (Netherlands)

    Makkes, M.X.; Varabanescu, A.; Laat, C. de; Meijer, R.J.

    2015-01-01

    Forwarding packets is part of the performance critical path of routing devices, and affects the network performance at any scale. This operation is typically performed by dedicated routing boxes, which are fast, but expensive and inflexible. Recent work has shown that in many cases commodity

  4. Switching performance of OBS network model under prefetched real traffic

    Science.gov (United States)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  5. A multicast tree aggregation algorithm in wavelength-routed WDM networks

    Science.gov (United States)

    Cheng, Hsu-Chen; Kuo, Chin-Chun; Lin, Frank Y.

    2005-02-01

    Wavelength division multiplexing (WDM) has been considered a promising transmission technology in optical communication networks. With the continuous advance in optical technology, WDM network will play an important role in wide area backbone networks. Optical wavelength switching, compared with optical packet switching, is a more mature and more cost-effective choice for optical switching technologies. Besides, the technology of time division multiplexing in optical communication networks has been working smoothly for a long time. In the proposed research, the problem of multicast groups aggregation and multicast routing and wavelength assignment in wavelength-routed WDM network is studied. The optical cross connect switches in the problem are assumed to have limited optical multicast/splitting and TDM functionalities. Given the physical network topology and capacity, the objective is to maximize the total revenue by means of utmost merging multicast groups into larger macro-groups. The groups in the same macro-group will share a multicast tree to conduct data transmission. The problem is formulated as an optimization problem, where the objective function is to maximize the total revenue subject to capacity constraints of components in the optical network, wavelength continuity constraints, and tree topology constraints. The decision variables in the formulations include the merging results between groups, multicast tree routing assignment and wavelength assignment. The basic approach to the algorithm development for this model is Lagrangean relaxation in conjunction with a number of optimization techniques. In computational experiments, the proposed algorithms are evaluated on different network topologies and perform efficiently and effectively according to the experiment results.

  6. Revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior

  7. Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching

    Science.gov (United States)

    Takesue, H.

    2018-02-01

    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.

  8. revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also described. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field, i.e., the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behaviour

  9. Lightness : a function-virtualizable software defined data center network with all-optical circuit/packet switching

    NARCIS (Netherlands)

    Saridis, G.; Peng, S.; Yan, Y.; Aguado, A.; Guo, B.; Arslan, M.; Jackson, C.; Miao, W.; Calabretta, N.; Agraz, F.; Spadaro, S.; Bernini, G.; Ciulli, N.; Zervas, G.; Nejabati, R.; Simeonidou, D.

    2016-01-01

    Modern high-performance Data Centers are responsible for delivering a huge variety of cloud applications to the end-users, which are increasingly pushing the limits of currently deployed computing and network infrastructure. All-optical dynamic data center network (DCN) architectures are strong

  10. I/O routing in a multidimensional torus network

    Science.gov (United States)

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    2018-04-24

    A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.

  11. A Novel Congestion Detection Scheme in TCP Over OBS Networks

    KAUST Repository

    Shihada, Basem

    2009-02-01

    This paper introduces a novel congestion detection scheme for high-bandwidth TCP flows over optical burst switching (OBS) networks, called statistical additive increase multiplicative decrease (SAIMD). SAIMD maintains and analyzes a number of previous round-trip time (RTTs) at the TCP senders in order to identify the confidence with which a packet loss event is due to network congestion. The confidence is derived by positioning short-term RTT in the spectrum of long-term historical RTTs. The derived confidence corresponding to the packet loss is then taken in the developed policy for TCP congestion window adjustment. We will show through extensive simulation that the proposed scheme can effectively solve the false congestion detection problem and significantly outperform the conventional TCP counterparts without losing fairness. The advantages gained in our scheme are at the expense of introducing more overhead in the SAIMD TCP senders. Based on the proposed congestion control algorithm, a throughput model is formulated, and is further verified by simulation results.

  12. Random Shift and XOR of Unequal-sized Packets (RaSOR) to Shave off Transmission Overhead

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Fitzek, Frank Hanns Paul

    2017-01-01

    We propose the design of a novel coding scheme of unequal-sized packets. Unlike the conventional wisdom that consists of brute-force zero-padding in Random Linear Network Coding (RLNC), we exploit this heterogeneity to shave off this trailing overhead and transmit considerably less coded packets....

  13. Minimizing The Completion Time Of A Wireless Cooperative Network Using Network Coding

    DEFF Research Database (Denmark)

    Roetter, Daniel Enrique Lucani; Khamfroush, Hana; Barros, João

    2013-01-01

    We consider the performance of network coding for a wireless cooperative network in which a source wants to transmit M data packets to two receivers. We assume that receivers can share their received packets with each other or simply wait to receive the packets from the source. The problem of fin...

  14. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition......-level advantages of these all-optical subsystems combined with their realization with compact integrated devices, suggest that they are strong candidates for future packet/label switched optical networks....... by interconnecting two optical gates that perform xor operation on incoming optical labels. We also demonstrate 40-Gb/s all-optical wavelength-switching through an optically controlled wavelength converter, consisting of an integrated flip-flop prototype device driven by an integrated optical gate. The system...

  15. Enhancing Sensor Network Data Quality via Collaborated Circuit and Network Operations

    Directory of Open Access Journals (Sweden)

    Lucas Vespa

    2013-04-01

    Full Text Available In many applications, the quality of data gathered by sensor networks is directly related to the signal-to-noise ratio (SNR of the sensor data being transmitted in the networks. Different from the SNR that is often used in measuring the quality of communication links, the SNR used in this work measures how accurately the data in the network packets represent the physical parameters being sensed. Hence, the signal here refers to the physical parameters that are being monitored by sensor networks; the noise is due to environmental interference and circuit noises at sensor nodes, and packet loss during network transmission. While issues affecting SNR at sensor nodes have been intensively investigated, the impact of network packet loss on data SNR has not attracted significant attention in sensor network design. This paper investigates the impact of packet loss on sensor network data SNR and shows that data SNR is dramatically affected by network packet loss. A data quality metric, based on data SNR, is developed and a cross-layer adaptive scheme is presented to minimize data quality degradation in congested sensor networks. The proposed scheme consists of adaptive downsampling and bit truncation at sensor nodes and intelligent traffic management techniques at the network level. Simulation results are presented to demonstrate the validity and effectiveness of the proposed techniques.

  16. Manipulating the Shape of Electronic Non-Dispersive Wave-Packets in the Hydrogen Atom: Numerical Tests in Realistic Experimental Conditions

    International Nuclear Information System (INIS)

    Delande, D.; Sacha, K.; Zakrzewski, J.

    2002-01-01

    We show that combination of a linearly polarized resonant microwave field and a parallel static electric field may be used to create a non-dispersive electronic wave packet in Rydberg atoms. The static electric field allows for manipulation of the shape of the elliptical trajectory the wave packet is propagating on. Exact quantum numerical calculations for realistic experimental parameters show that the wave packet evolving on a linear orbit can be very easily prepared in a laboratory either by a direct optical excitation or by preparing an atom in an extremal Stark state and then slowly switching on the micro wave field. The latter scheme seems to be very resistant to experimental imperfections. Once the wave packet on the linear orbit is excited, the static field may be used to manipulate the shape of the orbit. (author)

  17. Potential energy landscape and robustness of a gene regulatory network: toggle switch.

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2007-03-01

    Full Text Available Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is general and can be applied to explore the potential energy landscape of the gene networks.

  18. A programmable Si-photonic node for SDN-enabled Bloom filter forwarding in disaggregated data centers

    Science.gov (United States)

    Moralis-Pegios, M.; Terzenidis, N.; Vagionas, C.; Pitris, S.; Chatzianagnostou, E.; Brimont, A.; Zanzi, A.; Sanchis, P.; Marti, J.; Kraft, J.; Rochracher, K.; Dorrestein, S.; Bogdan, M.; Tekin, T.; Syrivelis, D.; Tassiulas, L.; Miliou, A.; Pleros, N.; Vyrsokinos, K.

    2017-02-01

    Programmable switching nodes supporting Software-Defined Networking (SDN) over optical interconnecting technologies arise as a key enabling technology for future disaggregated Data Center (DC) environments. The SDNenabling roadmap of intra-DC optical solutions is already a reality for rack-to-rack interconnects, with recent research reporting on interesting applications of programmable silicon photonic switching fabrics addressing board-to-board and even on-board applications. In this perspective, simplified information addressing schemes like Bloom filter (BF)-based labels emerge as a highly promising solution for ensuring rapid switch reconfiguration, following quickly the changes enforced in network size, network topology or even in content location. The benefits of BF-based forwarding have been so far successfully demonstrated in the Information-Centric Network (ICN) paradigm, while theoretical studies have also revealed the energy consumption and speed advantages when applied in DCs. In this paper we present for the first time a programmable 4x4 Silicon Photonic switch that supports SDN through the use of BF-labeled router ports. Our scheme significantly simplifies packet forwarding as it negates the need for large forwarding tables, allowing for its remote control through modifications in the assigned BF labels. We demonstrate 1x4 switch operation controlling the Si-Pho switch by a Stratix V FPGA module, which is responsible for processing the packet ID and correlating its destination with the appropriate BF-labeled outgoing port. DAC- and amplifier-less control of the carrier-injection Si-Pho switches is demonstrated, revealing successful switching of 10Gb/s data packets with BF-based forwarding information changes taking place at a time-scale that equals the duration of four consecutive packets.

  19. Hardware Accelerators Targeting a Novel Group Based Packet Classification Algorithm

    Directory of Open Access Journals (Sweden)

    O. Ahmed

    2013-01-01

    Full Text Available Packet classification is a ubiquitous and key building block for many critical network devices. However, it remains as one of the main bottlenecks faced when designing fast network devices. In this paper, we propose a novel Group Based Search packet classification Algorithm (GBSA that is scalable, fast, and efficient. GBSA consumes an average of 0.4 megabytes of memory for a 10 k rule set. The worst-case classification time per packet is 2 microseconds, and the preprocessing speed is 3 M rules/second based on an Xeon processor operating at 3.4 GHz. When compared with other state-of-the-art classification techniques, the results showed that GBSA outperforms the competition with respect to speed, memory usage, and processing time. Moreover, GBSA is amenable to implementation in hardware. Three different hardware implementations are also presented in this paper including an Application Specific Instruction Set Processor (ASIP implementation and two pure Register-Transfer Level (RTL implementations based on Impulse-C and Handel-C flows, respectively. Speedups achieved with these hardware accelerators ranged from 9x to 18x compared with a pure software implementation running on an Xeon processor.

  20. Congestion Control for a Fair Packet Delivery in WSN: From a Complex System Perspective

    Directory of Open Access Journals (Sweden)

    Daniela Aguirre-Guerrero

    2014-01-01

    Full Text Available In this work, we propose that packets travelling across a wireless sensor network (WSN can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN.

  1. Cisco Router and Switch Forensics Investigating and Analyzing Malicious Network Activity

    CERN Document Server

    Liu, Dale

    2009-01-01

    Cisco IOS (the software that runs the vast majority of Cisco routers and all Cisco network switches) is the dominant routing platform on the Internet and corporate networks. This widespread distribution, as well as its architectural deficiencies, makes it a valuable target for hackers looking to attack a corporate or private network infrastructure. Compromised devices can disrupt stability, introduce malicious modification, and endanger all communication on the network. For security of the network and investigation of attacks, in-depth analysis and diagnostics are critical, but no book current

  2. MPEG-compliant joint source/channel coding using discrete cosine transform and substream scheduling for visual communication over packet networks

    Science.gov (United States)

    Kim, Seong-Whan; Suthaharan, Shan; Lee, Heung-Kyu; Rao, K. R.

    2001-01-01

    Quality of Service (QoS)-guarantee in real-time communication for multimedia applications is significantly important. An architectural framework for multimedia networks based on substreams or flows is effectively exploited for combining source and channel coding for multimedia data. But the existing frame by frame approach which includes Moving Pictures Expert Group (MPEG) cannot be neglected because it is a standard. In this paper, first, we designed an MPEG transcoder which converts an MPEG coded stream into variable rate packet sequences to be used for our joint source/channel coding (JSCC) scheme. Second, we designed a classification scheme to partition the packet stream into multiple substreams which have their own QoS requirements. Finally, we designed a management (reservation and scheduling) scheme for substreams to support better perceptual video quality such as the bound of end-to-end jitter. We have shown that our JSCC scheme is better than two other two popular techniques by simulation and real video experiments on the TCP/IP environment.

  3. An asynchronous data-driven event-building scheme based on ATM switching fabrics

    International Nuclear Information System (INIS)

    Letheren, M.; Christiansen, J.; Mandjavidze, I.; Verhille, H.; De Prycker, M.; Pauwels, B.; Petit, G.; Wright, S.; Lumley, J.

    1994-01-01

    The very high data rates expected in experiments at the next generation of high luminosity hadron colliders will be handled by pipelined front-end readout electronics and multiple levels (2 or 3) of triggering. A variety of data acquisition architectures have been proposed for use downstream of the first level trigger. Depending on the architecture, the aggregate bandwidths required for event building are expected to be of the order 10--100 Gbit/s. Here, an Asynchronous Transfer Mode (ATM) packet-switching network technology is proposed as the interconnect for building high-performance, scalable data acquisition architectures. This paper introduces the relevant characteristics of ATM and describes components for the construction of an ATM-based event builder: (1) a multi-path, self-routing, scalable ATM switching fabric, (2) an experimental high performance workstation ATM-interface, and (3) a VMEbus ATM-interface. The requirement for traffic shaping in ATM-based event-builders is discussed and an analysis of the performance of several such schemes is presented

  4. Information transmission on hybrid networks

    Science.gov (United States)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  5. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application

    Directory of Open Access Journals (Sweden)

    Jaco Marais

    2016-01-01

    Full Text Available This paper presents several proposed and existing smart utility meter systems as well as their communication networks to identify the challenges of creating scalable smart water meter networks. Network simulations are performed on 3 network topologies (star, tree, and mesh to determine their suitability for smart water meter networks. The simulations found that once a number of nodes threshold is exceeded the network’s delay increases dramatically regardless of implemented topology. This threshold is at a relatively low number of nodes (50 and the use of network topologies such as tree or mesh helps alleviate this problem and results in lower network delays. Further simulations found that the successful transmission of application layer packets in a 70-end node tree network can be improved by 212% when end nodes only transmit data to their nearest router node. The relationship between packet success rate and different packet sizes was also investigated and reducing the packet size with a factor of 16 resulted in either 156% or 300% increases in the amount of successfully received packets depending on the network setup.

  6. A note on the consensus finding problem in communication networks with switching topologies

    KAUST Repository

    Haskovec, Jan

    2014-01-01

    In this note, we discuss the problem of consensus finding in communication networks of agents with dynamically switching topologies. In particular, we consider the case of directed networks with unbalanced matrices of communication rates. We

  7. The Study of MSADQ/CDMA Protocol in Voice/Data Integration Packet Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new packet medium access protocol, namely, minislot signalingaccess based on distributed queues(MSADQ/CDMA), is proposed in voice and data intergration CDMA networks. The MSADQ protocol is based on distributed queues and collision resolution algorithm. Through proper management of the PN codes, the number of random competition collision reduces greatly, the multiple access interference (MAI) decreases. It has several special access signaling channels to carry the voice and data access request. Each slot is devided into several control minislots (CMSs), in which the Data Terminals (DT) or Voice Terminals (VT) transmit their request. According to the voice and data traffic character, the signaling access structure is proposed. The code assign rules and queue managing rules are also proposed to ensure the QoS requirement of each traffic. Comparisions with other three protocol are developed by simulation, which shows that MSADQ/CDMA protocol occupies less PN codes, but still has very good performance.

  8. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    International Nuclear Information System (INIS)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M.

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules

  9. nDPI: Open-Source High-Speed Deep Packet Inspection

    DEFF Research Database (Denmark)

    Deri, Luca; Martinelli, Maurizio; Bujlow, Tomasz

    2014-01-01

    protocols became increasingly challenging, thus creating a motivation for creating tools and libraries for network protocol classification. This paper covers the design and implementation of nDPI, an open-source library for protocol classification using both packet header and payload. nDPI was extensively...

  10. A Time-Varied Probabilistic ON/OFF Switching Algorithm for Cellular Networks

    KAUST Repository

    Rached, Nadhir B.; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim

    2018-01-01

    In this letter, we develop a time-varied probabilistic on/off switching planning method for cellular networks to reduce their energy consumption. It consists in a risk-aware optimization approach that takes into consideration the randomness of the user profile associated with each base station (BS). The proposed approach jointly determines (i) the instants of time at which the current active BS configuration must be updated due to an increase or decrease of the network traffic load, and (ii) the set of minimum BSs to be activated to serve the networks’ subscribers. Probabilistic metrics modeling the traffic profile variation are developed to trigger this dynamic on/off switching operation. Selected simulation results are then performed to validate the proposed algorithm for different system parameters.

  11. A Time-Varied Probabilistic ON/OFF Switching Algorithm for Cellular Networks

    KAUST Repository

    Rached, Nadhir B.

    2018-01-11

    In this letter, we develop a time-varied probabilistic on/off switching planning method for cellular networks to reduce their energy consumption. It consists in a risk-aware optimization approach that takes into consideration the randomness of the user profile associated with each base station (BS). The proposed approach jointly determines (i) the instants of time at which the current active BS configuration must be updated due to an increase or decrease of the network traffic load, and (ii) the set of minimum BSs to be activated to serve the networks’ subscribers. Probabilistic metrics modeling the traffic profile variation are developed to trigger this dynamic on/off switching operation. Selected simulation results are then performed to validate the proposed algorithm for different system parameters.

  12. Burst switching without guard interval in all-optical software-define star intra-data center network

    Science.gov (United States)

    Ji, Philip N.; Wang, Ting

    2014-02-01

    Optical switching has been introduced in intra-data center networks (DCNs) to increase capacity and to reduce power consumption. Recently we proposed a star MIMO OFDM-based all-optical DCN with burst switching and software-defined networking. Here, we introduce the control procedure for the star DCN in detail for the first time. The timing, signaling, and operation are described for each step to achieve efficient bandwidth resource utilization. Furthermore, the guidelines for the burst assembling period selection that allows burst switching without guard interval are discussed. The star all-optical DCN offers flexible and efficient control for next-generation data center application.

  13. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system

    NARCIS (Netherlands)

    Miao, W.; Luo, J.; Di Lucente, S.; Dorren, H.J.S.; Calabretta, N.

    2013-01-01

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. 4×4 dynamic switch operation at 40 Gb/s reported 300ns minimum end-to-end latency (including 25m transmission link) and

  14. Rotating quantum Gaussian packets

    International Nuclear Information System (INIS)

    Dodonov, V V

    2015-01-01

    We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)

  15. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  16. Parametric packet-based audiovisual quality model for IPTV services

    CERN Document Server

    Garcia, Marie-Neige

    2014-01-01

    This volume presents a parametric packet-based audiovisual quality model for Internet Protocol TeleVision (IPTV) services. The model is composed of three quality modules for the respective audio, video and audiovisual components. The audio and video quality modules take as input a parametric description of the audiovisual processing path, and deliver an estimate of the audio and video quality. These outputs are sent to the audiovisual quality module which provides an estimate of the audiovisual quality. Estimates of perceived quality are typically used both in the network planning phase and as part of the quality monitoring. The same audio quality model is used for both these phases, while two variants of the video quality model have been developed for addressing the two application scenarios. The addressed packetization scheme is MPEG2 Transport Stream over Real-time Transport Protocol over Internet Protocol. In the case of quality monitoring, that is the case for which the network is already set-up, the aud...

  17. A feasibility study of stateful automaton packet inspection for streaming application detection systems

    Science.gov (United States)

    Tseng, Kuo-Kun; Lo, Jiao; Liu, Yiming; Chang, Shih-Hao; Merabti, Madjid; Ng, Felix, C. K.; Wu, C. H.

    2017-10-01

    The rapid development of the internet has brought huge benefits and social impacts; however, internet security has also become a great problem for users, since traditional approaches to packet classification cannot achieve satisfactory detection performance due to their low accuracy and efficiency. In this paper, a new stateful packet inspection method is introduced, which can be embedded in the network gateway and used by a streaming application detection system. This new detection method leverages the inexact automaton approach, using part of the header field and part of the application layer data of a packet. Based on this approach, an advanced detection system is proposed for streaming applications. The workflow of the system involves two stages: the training stage and the detection stage. In the training stage, the system initially captures characteristic patterns from a set of application packet flows. After this training is completed, the detection stage allows the user to detect the target application by capturing new application flows. This new detection approach is also evaluated using experimental analysis; the results of this analysis show that this new approach not only simplifies the management of the state detection system, but also improves the accuracy of data flow detection, making it feasible for real-world network applications.

  18. Energy Efficient, Cross-Layer Enabled, Dynamic Aggregation Networks for Next Generation Internet

    Science.gov (United States)

    Wang, Michael S.

    monitoring capabilities to include real-time monitoring of OSNR and polarization mode dispersion (PMD) to enable dynamic wavelength switching and selective restoration. Chapter 4 explains the author?s contributions in designing dynamic networking at the sub-wavelength switching granularity, which can provide greater network efficiency due to its finer granularity. To support dynamic switching, regeneration, adding/dropping, and control decisions on each individual packet, the cross-layer enabled node architecture is enhanced with a FPGA controller that brings much more precise timing and control to the switching, OPM, and control planes. Furthermore, QoS-aware packet protection and dynamic switching, dropping, and regeneration functionalities were experimentally demonstrated in a multi-node network. Chapter 5 describes a technique to perform optical grooming, a process of optically combining multiple incoming data streams into a single data stream, which can simultaneously achieve greater bandwidth utilization and increased spectral efficiency. In addition, an experimental demonstration highlighting a fully functioning multi-node, agile optical networking platform is detailed. Finally, a summary and discussion of future work is provided in Chapter 6. The future of the Internet is very exciting, filled with not-yet-invented applications and services driven by cloud computing and Internet-of-Things. The author is cautiously optimistic that agile, dynamically reconfigurable optical networking is the solution to realizing this future.

  19. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier.

    Science.gov (United States)

    Raghu, S; Sriraam, N; Kumar, G Pradeep

    2017-02-01

    Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.

  20. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  1. Capture and playback synchronization in video conferencing

    Science.gov (United States)

    Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song

    1995-03-01

    Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.

  2. Network Coding for Wireless Cooperative Networks

    DEFF Research Database (Denmark)

    Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Barros, João

    2014-01-01

    We consider the problem of finding an optimal packet transmission policy that minimizes the total cost of transmitting M data packets from a source S to two receivers R1,R2 over half-duplex, erasure channels. The source can either broadcast random linear network coding (RLNC) packets to the recei......We consider the problem of finding an optimal packet transmission policy that minimizes the total cost of transmitting M data packets from a source S to two receivers R1,R2 over half-duplex, erasure channels. The source can either broadcast random linear network coding (RLNC) packets...... to the receivers or transmit using unicast sessions at each time slot. We assume that the receivers can share their knowledge with each other by sending RLNC packets using unicast transmissions. We model this problem by using a Markov Decision Process (MDP), where the actions include the source of and type...... of transmission to be used in a given time slot given perfect knowledge of the system state. We study the distribution of actions selected by the MDP in terms of the knowledge at the receivers, the channel erasure probabilities, and the ratio between the cost of broadcast and unicast. This allowed us to learn...

  3. Event-Triggered Fault Estimation for Stochastic Systems over Multi-Hop Relay Networks with Randomly Occurring Sensor Nonlinearities and Packet Dropouts.

    Science.gov (United States)

    Li, Yunji; Peng, Li

    2018-02-28

    Wireless sensors have many new applications where remote estimation is essential. Considering that a remote estimator is located far away from the process and the wireless transmission distance of sensor nodes is limited, sensor nodes always forward data packets to the remote estimator through a series of relays over a multi-hop link. In this paper, we consider a network with sensor nodes and relay nodes where the relay nodes can forward the estimated values to the remote estimator. An event-triggered remote estimator of state and fault with the corresponding data-forwarding scheme is investigated for stochastic systems subject to both randomly occurring nonlinearity and randomly occurring packet dropouts governed by Bernoulli-distributed sequences to achieve a trade-off between estimation accuracy and energy consumption. Recursive Riccati-like matrix equations are established to calculate the estimator gain to minimize an upper bound of the estimator error covariance. Subsequently, a sufficient condition and data-forwarding scheme are presented under which the error covariance is mean-square bounded in the multi-hop links with random packet dropouts. Furthermore, implementation issues of the theoretical results are discussed where a new data-forwarding communication protocol is designed. Finally, the effectiveness of the proposed algorithms and communication protocol are extensively evaluated using an experimental platform that was established for performance evaluation with a sensor and two relay nodes.

  4. Analysis and implementation of packet preemption for Time Sensitive Networks

    DEFF Research Database (Denmark)

    Zhou, Zifan; Yan, Ying; Ruepp, Sarah Renée

    2017-01-01

    level simulation in Riverbed Modeler. The simulation is complemented by numerical analysis which provides the average queuing delay for both types of traffic (preemptable and express). Furthermore, the paper describes an approach to implement the packet preemption solution on an FPGA in VHDL, which...... illustrates the complexity of hardware implementation....

  5. Switching Fuzzy Guaranteed Cost Control for Nonlinear Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Linqin Cai

    2014-01-01

    Full Text Available This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs with time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented. Simulation results show that the proposed method is effective to guarantee system’s global asymptotic stability and quality of service (QoS.

  6. Experimental demonstration of time- and mode-division multiplexed passive optical network

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-07-01

    A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.

  7. Engineering Silver Nanowire Networks: From Transparent Electrodes to Resistive Switching Devices.

    Science.gov (United States)

    Du, Haiwei; Wan, Tao; Qu, Bo; Cao, Fuyang; Lin, Qianru; Chen, Nan; Lin, Xi; Chu, Dewei

    2017-06-21

    Metal nanowires (NWs) networks with high conductance have shown potential applications in modern electronic components, especially the transparent electrodes over the past decade. In metal NW networks, the electrical connectivity of nanoscale NW junction can be modulated for various applications. In this work, silver nanowire (Ag NW) networks were selected to achieve the desired functions. The Ag NWs were first synthesized by a classic polyol process, and spin-coated on glass to fabricate transparent electrodes. The as-fabricated electrode showed a sheet resistance of 7.158 Ω □ -1 with an optical transmittance of 79.19% at 550 nm, indicating a comparable figure of merit (FOM, or Φ TC ) (13.55 × 10 -3 Ω -1 ). Then, two different post-treatments were designed to tune the Ag NWs for not only transparent electrode but also for threshold resistive switching (RS) application. On the one hand, the Ag NW film was mechanically pressed to significantly improve the conductance by reducing the junction resistance. On the other hand, an Ag@AgO x core-shell structure was deliberately designed by partial oxidation of Ag NWs through simple ultraviolet (UV)-ozone treatment. The Ag core can act as metallic interconnect and the insulating AgO x shell acts as a switching medium to provide a conductive pathway for Ag filament migration. By fabricating Ag/Ag@AgO x /Ag planar structure, a volatile threshold switching characteristic was observed and an on/off ratio of ∼100 was achieved. This work showed that through different post-treatments, Ag NW network can be engineered for diverse functions, transforming from transparent electrodes to RS devices.

  8. Path selection and bandwidth allocation in MPLS networks: a nonlinear programming approach

    Science.gov (United States)

    Burns, J. E.; Ott, Teunis J.; de Kock, Johan M.; Krzesinski, Anthony E.

    2001-07-01

    Multi-protocol Label Switching extends the IPv4 destination-based routing protocols to provide new and scalable routing capabilities in connectionless networks using relatively simple packet forwarding mechanisms. MPLS networks carry traffic on virtual connections called label switched paths. This paper considers path selection and bandwidth allocation in MPLS networks in order to optimize the network quality of service. The optimization is based upon the minimization of a non-linear objective function which under light load simplifies to OSPF routing with link metrics equal to the link propagation delays. The behavior under heavy load depends on the choice of certain parameters: It can essentially be made to minimize maximal expected utilization, or to maximize minimal expected weighted slacks (both over all links). Under certain circumstances it can be made to minimize the probability that a link has an instantaneous offered load larger than its transmission capacity. We present a model of an MPLS network and an algorithm to find and capacitate optimal LSPs. The algorithm is an improvement of the well-known flow deviation non-linear programming method. The algorithm is applied to compute optimal LSPs for several test networks carrying a single traffic class.

  9. SpaceWire model development technology for satellite architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  10. Mitigating Receiver’s Buffer Blocking by Delay Aware Packet Scheduling in Multipath Data Transfer

    OpenAIRE

    Sarwar, Golam; Boreli, Roksana; Lochin, Emmanuel; Mifdaoui, Ahlem; Smith, Guillaume

    2013-01-01

    Reliable in-order multi-path data transfer under asymmetric heterogeneous network conditions has known problems related to receiver's buffer blocking, caused by out of order packet arrival. Consequently, the aggregate capacity from multiple paths, which theoretically should be available to and achievable by the multi-path transport protocol, is practically severely underutilized. Several mitigation techniques have been proposed to address this issue mostly by using various packet retransmissi...

  11. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  12. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    Science.gov (United States)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  13. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Yu, Jinyi; Mo, Qi; Wang, Jianping; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-04-01

    We propose and experimentally demonstrate an all-fiber optical mode switching structure supporting independent switching, exchanging, adding, and dropping functionalities in which each mode can be switched individually. The mode switching structure consists of cascaded mode selective couplers (MSCs) capable of exciting and selecting specific higher order modes in few-mode fibers with high efficiency and one multiport optical switch routing the independent spatial modes to their destinations. The data carried on three different spatial modes can be switched, exchanged, added, and dropped through this all-fiber structure. For this experimental demonstration, optical on-off-keying (OOK) signals at 10-Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. The mode switch exhibits power penalties of less than 3.1 dB after through operation, less than 2.7 dB after exchange operation, less than 2.8 dB after switching operation, and less than 1.6 dB after mode adding and dropping operations at the bit-error rate (BER) of 10-3, while all three channels carried on three spatial modes are simultaneously routed. The proposed structure, compatible with current optical switching networks based on single-mode fibers, can potentially be used to expand the switching scalability in advanced and flexible short-reach mode-division multiplexing-based networks.

  14. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    Directory of Open Access Journals (Sweden)

    Huan Chen

    Full Text Available This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN. Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  15. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    Science.gov (United States)

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  16. Switch and examine transmit diversity for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.

    2011-06-01

    In this paper, we develop a switch and examine transmit diversity algorithm for spectrum sharing cognitive networks. We consider a cognitive network composed of a primary link that employs constant rate and constant power transmission scheme with automatic-and-repeat request (ARQ) protocol, while the secondary link is composed of a fixed power multiple-antenna secondary transmitter and a single antenna receiver. Our objective is to develop a low complex transmit diversity algorithm at the secondary transmitter that maximizes the performance of the secondary link in terms of the effective throughput while maintaining a predetermined maximum loss in the packet rate of the primary link. In achieving this objective, we develop an algorithm that selects the best antenna, which maintains the quality of the secondary link in terms of signal-to-noise ratio above a specific threshold, based on overhearing the acknowledgment (ACK) and negative acknowledgment (NACK) feedback messages transmitted over the primary link. We also develop closed form expressions for the bit error rates and the effective throughput of the secondary link. © 2011 IEEE.

  17. Revivals of Quantum Wave Packets

    OpenAIRE

    Bluhm, Robert; Kostelecky, Alan; Porter, James; Tudose, Bogdan

    1997-01-01

    We present a generic treatment of wave-packet revivals for quantum-mechanical systems. This treatment permits a classification of certain ideal revival types. For example, wave packets for a particle in a one-dimensional box are shown to exhibit perfect revivals. We also examine the revival structure of wave packets for quantum systems with energies that depend on two quantum numbers. Wave packets in these systems exhibit quantum beats in the initial motion as well as new types of long-term r...

  18. Hardware packet pacing using a DMA in a parallel computer

    Science.gov (United States)

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  19. Dual branch transmit switch-and-stay diversity for underlay cognitive networks

    KAUST Repository

    Sayed, Mostafa M.; Abdallah, Mohamed M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2011-01-01

    In this paper, we study applying dual branch transmit switch-and-stay combining (SSC) technique for underlay cognitive radio (UCR) networks. In UCR, the secondary user is allowed to share the spectrum with the primary (licensed) user under the condition that interference at the primary receiver is below a predetermined threshold. Assuming binary phaseshift keying (BPSK) modulation and Rayleigh fading channels, we develop a closed form expression for the average bit error rate (BER) of the secondary link as a function of the switching threshold. We then find a closed form expression for the optimal switching threshold in the sense of minimizing the average BER. For the sake of comparison we derive an expression for the average BER of the dual branch transmit selection combining (SC) technique. We finally investigate the effect of correlation between secondary and interference channels on the average BER and the associated optimal switching threshold. © 2011 IEEE.

  20. Dual branch transmit switch-and-stay diversity for underlay cognitive networks

    KAUST Repository

    Sayed, Mostafa M.

    2011-05-01

    In this paper, we study applying dual branch transmit switch-and-stay combining (SSC) technique for underlay cognitive radio (UCR) networks. In UCR, the secondary user is allowed to share the spectrum with the primary (licensed) user under the condition that interference at the primary receiver is below a predetermined threshold. Assuming binary phaseshift keying (BPSK) modulation and Rayleigh fading channels, we develop a closed form expression for the average bit error rate (BER) of the secondary link as a function of the switching threshold. We then find a closed form expression for the optimal switching threshold in the sense of minimizing the average BER. For the sake of comparison we derive an expression for the average BER of the dual branch transmit selection combining (SC) technique. We finally investigate the effect of correlation between secondary and interference channels on the average BER and the associated optimal switching threshold. © 2011 IEEE.

  1. A Lossless Network for Data Acquisition

    CERN Document Server

    AUTHOR|(SzGeCERN)698154; The ATLAS collaboration; Lehmann Miotto, Giovanna

    2016-01-01

    The planned upgrades of the experiments at the Large Hadron Collider at CERN will require higher bandwidth networks for their data acquisition systems. The network congestion problem arising from the bursty many-to-one communication pattern, typical for these systems, will become more demanding. It is questionable whether commodity TCP/IP and Ethernet technologies in their current form will be still able to effectively adapt to the bursty traffic without losing packets due to the scarcity of buffers in the networking hardware. We continue our study of the idea of lossless switching in software running on commercial-off-the-shelf servers for data acquisition systems, using the ATLAS experiment as a case study. The flexibility of design in software, performance of modern computer platforms, and buffering capabilities constrained solely by the amount of DRAM memory are a strong basis for building a network dedicated to data acquisition with commodity hardware, which can provide reliable transport in congested co...

  2. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet.

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Wang, Fuan; Wang, Yanan

    2017-07-01

    Automatic and accurate identification of rolling bearing fault categories, especially for the fault severities and compound faults, is a challenge in rotating machinery fault diagnosis. For this purpose, a novel method called adaptive deep belief network (DBN) with dual-tree complex wavelet packet (DTCWPT) is developed in this paper. DTCWPT is used to preprocess the vibration signals to refine the fault characteristics information, and an original feature set is designed from each frequency-band signal of DTCWPT. An adaptive DBN is constructed to improve the convergence rate and identification accuracy with multiple stacked adaptive restricted Boltzmann machines (RBMs). The proposed method is applied to the fault diagnosis of rolling bearings. The results confirm that the proposed method is more effective than the existing methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Link reliability based hybrid routing for tactical mobile ad hoc network

    Institute of Scientific and Technical Information of China (English)

    Xie Xiaochuan; Wei Gang; Wu Keping; Wang Gang; Jia Shilou

    2008-01-01

    Tactical mobile ad hoc network (MANET) is a collection of mobile nodes forming a temporary network,without the aid of pre-established network infrastructure. The routing protocol has a crucial impact on the networkperformance in battlefields. Link reliability based hybrid routing (LRHR) is proposed, which is a novel hybrid routing protocol, for tactical MANET. Contrary to the traditional single path routing strategy, multiple paths are established between a pair of source-destination nodes. In the hybrid routing strategy, the rate of topological change provides a natural mechanism for switching dynamically between table-driven and on-demand routing. The simulation results indicate that the performances of the protocol in packet delivery ratio, routing overhead, and average end-to-end delay are better than the conventional routing protocol.

  4. Design of Active Queue Management for Robust Control on Access Router for Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Åhlund Christer

    2011-01-01

    Full Text Available The Internet architecture is a packet switching technology that allows dynamic sharing of bandwidth among different flows with in an IP network. Packets are stored and forwarded from one node to the next until reaching their destination. Major issues in this integration are congestion control and how to meet different quality of service requirements associated with various services. In other words streaming media quality degrades with increased packet delay and jitter caused by network congestion. To mitigate the impact of network congestion, various techniques have been used to improve multimedia quality and one of those techniques is Active Queue Management (AQM. Access routers require a buffer to hold packets during times of congestion. A large buffer can absorb the bursty arrivals, and this tends to increase the link utilizations but results in higher queuing delays. Traffic burstiness has a considerable negative impact on network performance. AQM is now considered an effective congestion control mechanism for enhancing transport protocol performance over wireless links. In order to have good link utilization, it is necessary for queues to adapt to varying traffic loads. This paper considers a particular scheme which is called Adaptive AQM (AAQM and studies its performance in the presence of feedback delays and its ability to maintain a small queue length as well as its robustness in the presence of traffic burstiness. The paper also presents a method based on the well-known Markov Modulated Poisson Process (MPP to capture traffic burstiness and buffer occupancy. To demonstrate the generality of the presented method, an analytic model is described and verified by extensive simulations of different adaptive AQM algorithms. The analysis and simulations show that AAQM outperforms the other AQMs with respect to responsiveness and robustness.

  5. Nondispersive Wave Packets.

    Science.gov (United States)

    Shaarawi, Amr Mohamed

    In this work, nondispersive wavepacket solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs' Airy packet, MacKinnon's wave packet and Brittingham's Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in a infinite acoustic waveguide and to the launchability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young's two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.

  6. Investigation on network utilization efficiency and image transmission time for the PACS network

    International Nuclear Information System (INIS)

    Tawara, K.; Nishihara, E.; Komatsu, K.I.

    1987-01-01

    The authors investigated the following features of a PACS network: (1) network utilization efficiency and (2) image transmission time. They changed the following parameters, which the two items shown above depend on: (1) transfer rate between imaging equipment and network (10 kB/econd-8 MB/second), (2) network transmission speed (100 kB/second-50 MB/second), (3) packet length (10 kB-4 MB), and (4) message length (image data) (64 kB-4 MB). As a result, a conventional-type network cannot meet a need for PACS. To solve this problem, the authors propose a multiplexed network that consists of the high-speed network for image transmission and the conventional speed of control network for commands and shorter messages. If the packet length of the image network is designed to be variable, they can choose an optimum packet length for image transmission

  7. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    Science.gov (United States)

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  8. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    Directory of Open Access Journals (Sweden)

    Yoshiaki Taniguchi

    2016-01-01

    Full Text Available Software-Defined Networking (SDN has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator’s configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  9. Zone routing in a torus network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Kumar, Sameer

    2013-01-29

    A system for routing data in a network comprising a network logic device at a sending node for determining a path between the sending node and a receiving node, wherein the network logic device sets one or more selection bits and one or more hint bits within the data packet, a control register for storing one or more masks, wherein the network logic device uses the one or more selection bits to select a mask from the control register and the network logic device applies the selected mask to the hint bits to restrict routing of the data packet to one or more routing directions for the data packet within the network and selects one of the restricted routing directions from the one or more routing directions and sends the data packet along a link in the selected routing direction toward the receiving node.

  10. Scattering of accelerated wave packets

    Science.gov (United States)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  11. Adaptive approach to global synchronization of directed networks with fast switching topologies

    International Nuclear Information System (INIS)

    Qin Buzhi; Lu Xinbiao

    2010-01-01

    Global synchronization of directed networks with switching topologies is investigated. It is found that if there exists at least one directed spanning tree in the network with the fixed time-average topology and the time-average topology is achieved sufficiently fast, the network will reach global synchronization for appreciate coupling strength. Furthermore, this appreciate coupling strength may be obtained by local adaptive approach. A sufficient condition about the global synchronization is given. Numerical simulations verify the effectiveness of the adaptive strategy.

  12. Path searching in switching networks using cellular algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Koczy, L T; Langer, J; Legendi, T

    1981-01-01

    After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.

  13. Studi Migrasi Public Switched Telephone Network (Pstn) Menuju Jaringan Telekomunikasi Berbasis Paket Next Generation Network (Ngn) Dengan Teknologi Softswitch

    OpenAIRE

    Suseno, Andrias Danang; Najib, Warsun; Samiyono, -

    2009-01-01

    Public Switched Telephone Network (PSTN) adalah sistem telekomunikasi berbasis circuit-switched. Pada awalnya PSTN hanya menyediakan layanan voice. PSTN sekarang telah berkembang ke arah pelayanan komunikasi data yang didorong oleh berkembangnya dunia internet dengan Internet Protokol (IP)-nya. Telah muncul teknologi Voice over IP (VoIP) yang mampu melewatkan trafik voice pada jaringan data dengan mengubah voice menjadi paket. VoIP telah mendorong trend/kecenderungan terjadinya konvergensi an...

  14. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Gavler, Anders; Wessing, Henrik

    2012-01-01

    of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches...... are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers.......End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part...

  15. A source-controlled data center network model.

    Science.gov (United States)

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  16. A source-controlled data center network model

    Science.gov (United States)

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  17. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate...

  18. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  19. Collaborative Multi-Layer Network Coding For Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2014-05-01

    In this thesis, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other’s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network’s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network’s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. Furthermore, with the use of fractional cooperation, the average recovery overhead is further reduced by around 5% for the primary network and around 10% for the secondary network when a high fractional cooperation probability is used.

  20. Guaranteed cost control of mobile sensor networks with Markov switching topologies.

    Science.gov (United States)

    Zhao, Yuan; Guo, Ge; Ding, Lei

    2015-09-01

    This paper investigates the consensus seeking problem of mobile sensor networks (MSNs) with random switching topologies. The network communication topologies are composed of a set of directed graphs (or digraph) with a spanning tree. The switching of topologies is governed by a Markov chain. The consensus seeking problem is addressed by introducing a global topology-aware linear quadratic (LQ) cost as the performance measure. By state transformation, the consensus problem is transformed to the stabilization of a Markovian jump system with guaranteed cost. A sufficient condition for global mean-square consensus is derived in the context of stochastic stability analysis of Markovian jump systems. A computational algorithm is given to synchronously calculate both the sub-optimal consensus controller gains and the sub-minimum upper bound of the cost. The effectiveness of the proposed design method is illustrated by three numerical examples. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. The Network Protocol Analysis Technique in Snort

    Science.gov (United States)

    Wu, Qing-Xiu

    Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.

  2. Quasi-Optical Network Analyzers and High-Reliability RF MEMS Switched Capacitors

    Science.gov (United States)

    Grichener, Alexander

    The thesis first presents a 2-port quasi-optical scalar network analyzer consisting of a transmitter and receiver both built in planar technology. The network analyzer is based on a Schottky-diode mixer integrated inside a planar antenna and fed differentially by a CPW transmission line. The antenna is placed on an extended hemispherical high-resistivity silicon substrate lens. The LO signal is swept from 3-5 GHz and high-order harmonic mixing in both up- and down- conversion mode is used to realize the 15-50 GHz RF bandwidth. The network analyzer resulted in a dynamic range of greater than 40 dB and was successfully used to measure a frequency selective surface with a second-order bandpass response. Furthermore, the system was built with circuits and components for easy scaling to millimeter-wave frequencies which is the primary motivation for this work. The application areas for a millimeter and submillimeter-wave network analyzer include material characterization and art diagnostics. The second project presents several RF MEMS switched capacitors designed for high-reliability operation and suitable for tunable filters and reconfigurable networks. The first switched-capacitor resulted in a digital capacitance ratio of 5 and an analog capacitance ratio of 5-9. The analog tuning of the down-state capacitance is enhanced by a positive vertical stress gradient in the the beam, making it ideal for applications that require precision tuning. A thick electroplated beam resulted in Q greater than 100 at C to X-band frequencies, and power handling of 0.6-1.1 W. The design also minimized charging in the dielectric, resulting in excellent reliability performance even under hot-switched and high power (1 W) conditions. The second switched-capacitor was designed without any dielectric to minimize charging. The device was hot-switched at 1 W of RF power for greater than 11 billion cycles with virtually no change in the C-V curve. The final project presents a 7-channel

  3. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  4. All-optical packet/circuit switching-based data center network for enhanced scalability, latency and throughput

    NARCIS (Netherlands)

    Perelló, J.; Spadaro, S.; Ricciardi, S.; Careglio, D.; Peng, S.; Nejabati, R.; Zervas, G.; Simeonidou, D.; Predieri, A.; Biancani, M.; Dorren, H.J.S.; Di Lucente, S.; Luo, J.; Calabretta, N.; Bernini, G.; Ciulli, N.; Sancho, J.C.; Iordache, S.; Farreras, M.; Becerra, Y.; Liou, C.; Hussain, I.; Yin, Y.; Liu, L.; Proietti, R.

    2013-01-01

    Applications running inside data centers are enabled through the cooperation of thousands of servers arranged in racks and interconnected together through the data center network. Current DCN architectures based on electronic devices are neither scalable to face the massive growth of DCs, nor

  5. Service Creation and Deployment in Converged Networks

    DEFF Research Database (Denmark)

    Soler, José

    for these experiences is the transition of telecommunication (telephony) networks from circuit switched based systems towards packet based ones. The text of this monograph proceeds, unaltered for the most, from the author’s PhD thesis “Framework for Deployment of Advanced Telecommunication Services in Current......This monograph (Early Experiences related to Service Creation & Deployment in Converged Networks) presents different experiences related to architectures and mechanisms for deployment of telephony services, understood as especial features complementing the basic voice service. The context...... and Future Converged Networks”, carried out at the Technical University of Denmark in the period [April 2002-April 2005]. Even though the technologies presented in the text have evolved from that period until now, the presented scenarios and setups are still valid as interesting initial steps in the realm....

  6. Data Aggregation and Packet Bundling of Uplink Small Packets for Monitoring Applications in LTE

    DEFF Research Database (Denmark)

    Kim, Dong Min; Sørensen, René Brandborg; Mahmood, Kashif

    2017-01-01

    topic. In this article we analyze the deployment scenarios in which aggregators can perform cellular access on behalf of multiple MTC devices. We study the effect of packet bundling at the aggregator, which alleviates overhead and resource waste when sending small packets. The aggregators give rise...... of aggregators and packet bundle size. Our results show that, in general, data aggregation can benefit the uplink massive MTC in LTE by reducing the signaling overhead....

  7. Detection Performance of Packet Arrival under Downclocking for Mobile Edge Computing

    Directory of Open Access Journals (Sweden)

    Zhimin Wang

    2018-01-01

    Full Text Available Mobile edge computing (MEC enables battery-powered mobile nodes to acquire information technology services at the network edge. These nodes desire to enjoy their service under power saving. The sampling rate invariant detection (SRID is the first downclocking WiFi technique that can achieve this objective. With SRID, a node detects one packet arrival at a downclocked rate. Upon a successful detection, the node reverts to a full-clocked rate to receive the packet immediately. To ensure that a node acquires its service immediately, the detection performance (namely, the miss-detection probability and the false-alarm probability of SRID is of importance. This paper is the first one to theoretically study the crucial impact of SRID attributes (e.g., tolerance threshold, correlation threshold, and energy ratio threshold on the packet detection performance. Extensive Monte Carlo experiments show that our theoretical model is very accurate. This study can help system developers set reasonable system parameters for WiFi downclocking.

  8. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Directory of Open Access Journals (Sweden)

    Min-Joo Kang

    Full Text Available A novel intrusion detection system (IDS using a deep neural network (DNN is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN, therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN bus.

  9. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    Science.gov (United States)

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  10. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    Science.gov (United States)

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  11. On-Chip SDM Switching for Unicast, Multicast and Traffic Grooming in Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Ding, Yunhong; Dalgaard, Kjeld

    2017-01-01

    This paper reports on the use of a novel photonic integrated circuit that facilitates multicast and grooming in an optical data center architecture. The circuit allows for on-chip spatial multiplexing and demultiplexing as well as fiber core switching. Using this device, we experimentally verify...... that multicast and/or grooming can be successfully performed along the full range of output ports, for different group size and different power ratio. Moreover, we experimentally demonstrate SDM transmission and 5 Tbit/s switching using the on-chip fiber switch with integrated fan-in/fan-out devices and achieve...... errorfree performance (BER≤10-9) for a network scenario including simultaneous unicast/multicast switching and traffic grooming....

  12. Controlling Depth of Cellular Quiescence by an Rb-E2F Network Switch

    Directory of Open Access Journals (Sweden)

    Jungeun Sarah Kwon

    2017-09-01

    Full Text Available Quiescence is a non-proliferative cellular state that is critical to tissue repair and regeneration. Although often described as the G0 phase, quiescence is not a single homogeneous state. As cells remain quiescent for longer durations, they move progressively deeper and display a reduced sensitivity to growth signals. Deep quiescent cells, unlike senescent cells, can still re-enter the cell cycle under physiological conditions. Mechanisms controlling quiescence depth are poorly understood, representing a currently underappreciated layer of complexity in growth control. Here, we show that the activation threshold of a Retinoblastoma (Rb-E2F network switch controls quiescence depth. Particularly, deeper quiescent cells feature a higher E2F-switching threshold and exhibit a delayed traverse through the restriction point (R-point. We further show that different components of the Rb-E2F network can be experimentally perturbed, following computer model predictions, to coarse- or fine-tune the E2F-switching threshold and drive cells into varying quiescence depths.

  13. Voice over IP in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam; Prasad, Ramjee

    with the deployment of wireless heterogeneous systems, both speech and data traffic are carrried over wireless links by the same IP-based packet-switched infrastructure. However, this combination faces some challenges due to the inherent properties of the wireless network. The requirements for good quality VoIP...... communications are difficult to achieve in a time-varying environment due to channel errors and traffic congestion and across different systems. The provision of VoIP in wireless heterogeneous networks requires a set of time-efficient control mechanisms to support a VoIP session with acceptable quality....... The focus of Voice over IP in Wierless Heterogeneous Networks is on mechanisms that affect the VoIP user satisfaction  while not explicitly involved in the media session. This relates to the extra delays introduced by the security and the signaling protocols used to set up an authorized VoIP session...

  14. RESEARCH OF ENGINEERING TRAFFIC IN COMPUTER UZ NETWORK USING MPLS TE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    V. M. Pakhomovа

    2014-12-01

    Full Text Available Purpose. In railway transport of Ukraine one requires the use of computer networks of different technologies: Ethernet, Token Bus, Token Ring, FDDI and others. In combined computer networks on the railway transport it is necessary to use packet switching technology in multiprotocol networks MPLS (MultiProtocol Label Switching more effectively. They are based on the use of tags. Packet network must transmit different types of traffic with a given quality of service. The purpose of the research is development a methodology for determining the sequence of destination flows for the considered fragment of computer network of UZ. Methodology. When optimizing traffic management in MPLS networks has the important role of technology traffic engineering (Traffic Engineering, TE. The main mechanism of TE in MPLS is the use of unidirectional tunnels (MPLS TE tunnel to specify the path of the specified traffic. The mathematical model of the problem of traffic engineering in computer network of UZ technology MPLS TE was made. Computer UZ network is represented with the directed graph, their vertices are routers of computer network, and each arc simulates communication between nodes. As an optimization criterion serves the minimum value of the maximum utilization of the TE-tunnel. Findings. The six options destination flows were determined; rational sequence of flows was found, at which the maximum utilization of TE-tunnels considered a simplified fragment of a computer UZ network does not exceed 0.5. Originality. The method of solving the problem of traffic engineering in Multiprotocol network UZ technology MPLS TE was proposed; for different classes its own way is laid, depending on the bandwidth and channel loading. Practical value. Ability to determine the values of the maximum coefficient of use of TE-tunnels in computer UZ networks based on developed software model «TraffEng». The input parameters of the model: number of routers, channel capacity, the

  15. Length-Bounded Hybrid CPU/GPU Pattern Matching Algorithm for Deep Packet Inspection

    Directory of Open Access Journals (Sweden)

    Yi-Shan Lin

    2017-01-01

    Full Text Available Since frequent communication between applications takes place in high speed networks, deep packet inspection (DPI plays an important role in the network application awareness. The signature-based network intrusion detection system (NIDS contains a DPI technique that examines the incoming packet payloads by employing a pattern matching algorithm that dominates the overall inspection performance. Existing studies focused on implementing efficient pattern matching algorithms by parallel programming on software platforms because of the advantages of lower cost and higher scalability. Either the central processing unit (CPU or the graphic processing unit (GPU were involved. Our studies focused on designing a pattern matching algorithm based on the cooperation between both CPU and GPU. In this paper, we present an enhanced design for our previous work, a length-bounded hybrid CPU/GPU pattern matching algorithm (LHPMA. In the preliminary experiment, the performance and comparison with the previous work are displayed, and the experimental results show that the LHPMA can achieve not only effective CPU/GPU cooperation but also higher throughput than the previous method.

  16. Quantum wave packet revivals

    International Nuclear Information System (INIS)

    Robinett, R.W.

    2004-01-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems

  17. Collaborative multi-layer network coding for cellular cognitive radio networks

    KAUST Repository

    Sorour, Sameh

    2013-06-01

    In this paper, we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in underlay cellular cognitive radio networks. This scheme allows the collocated primary and cognitive radio base-stations to collaborate with each other, in order to minimize their own and each other\\'s packet recovery overheads, and thus improve their throughput, without any coordination between them. This non-coordinated collaboration is done using a novel multi-layer instantly decodable network coding scheme, which guarantees that each network\\'s help to the other network does not result in any degradation in its own performance. It also does not cause any violation to the primary networks interference thresholds in the same and adjacent cells. Yet, our proposed scheme both guarantees the reduction of the recovery overhead in collocated primary and cognitive radio networks, and allows early recovery of their packets compared to non-collaborative schemes. Simulation results show that a recovery overhead reduction of 15% and 40% can be achieved by our proposed scheme in the primary and cognitive radio networks, respectively, compared to the corresponding non-collaborative scheme. © 2013 IEEE.

  18. Framework for Development of Advanced Telecommunication Services in Current and Future Converged Networks

    DEFF Research Database (Denmark)

    Soler-Lucas, José

    2006-01-01

    switched based systems towards packet based ones. Service deployment in a specific hybrid PSTN/IN/VoIP architecture is presented as well as a description of the enabling technologies. Discussion on service implementation examples is provided. The convenience of network neutral service invocation......This thesis presents different experiences related to architectures and mechanisms for deployment of telephony services, understood as especial features complementing the basic voice service. The context for these experiences is the transition of telecommunication (telephony) networks from circuit...... is introduced and how this has been achieved, by means of Web Services-based mechanisms. A single-request / single response protocol for invocation of a specific set of services is presented and a decoupling mechanism between signalling network protocols and service logic invocation demonstrated. Services, have...

  19. Analytical Performance Evaluation of Different Switch Solutions

    Directory of Open Access Journals (Sweden)

    Francisco Sans

    2013-01-01

    Full Text Available The virtualization of the network access layer has opened new doors in how we perceive networks. With this virtualization of the network, it is possible to transform a regular PC with several network interface cards into a switch. PC-based switches are becoming an alternative to off-the-shelf switches, since they are cheaper. For this reason, it is important to evaluate the performance of PC-based switches. In this paper, we present a performance evaluation of two PC-based switches, using Open vSwitch and LiSA, and compare their performance with an off-the-shelf Cisco switch. The RTT, throughput, and fairness for UDP are measured for both Ethernet and Fast Ethernet technologies. From this research, we can conclude that the Cisco switch presents the best performance, and both PC-based switches have similar performance. Between Open vSwitch and LiSA, Open vSwitch represents a better choice since it has more features and is currently actively developed.

  20. A novel SDN enabled hybrid oiptical packet/circuit switched data centre network - The LIGHTNESS approach

    NARCIS (Netherlands)

    Peng, S.; Simeonidou, D.; Zervas, G.; Nejabati, R.; Yan, Y; Shu, Yi; Spadaro, S.; Perelló, J.; Agraz, F.; Careglio, D.; Dorren, H.J.S.; Miao, W.; Calabretta, N.; Bernini, G.; Ciulli, N.; Sancho, J.C.; Iordache, S.; Becerra, Y.; Farreras, M.; Biancani, M.; Predieri, A.; Proietti, R.; Cao, Z.; Liu, L.; Yoo, S.J.B.

    2014-01-01

    Current over-provisioned and multi-tier data centre networks (DCN) deploy rigid control and management platforms, which are not able to accommodate the ever-growing workload driven by the increasing demand of high-performance data centre (DC) and cloud applications. In response to this, the EC FP7

  1. Attractor switching in neuron networks and Spatiotemporal filters for motion processing

    NARCIS (Netherlands)

    Subramanian, Easwara Naga

    2008-01-01

    From a broader perspective, we address two important questions, viz., (a) what kind of mechanism would enable a neuronal network to switch between various tasks or stored patterns? (b) what are the properties of neurons that are used by the visual system in early motion detection? To address (a) we

  2. Implementation of a network level protocol on a GIXINET type local network

    International Nuclear Information System (INIS)

    Loeuillet, J.L.

    1987-11-01

    The installation of a communication system for transferring results from several experiment laboratories to a computing center is described. The objectives of a useful bit rate of 24 kbs, low connection cost and simple infrastructure, extension of the network to 4 buildings situated within a radius of 300m, and connection in the most standardized fashion possible are attained by using the GIXINET local network and adopting the X25 packet protocol. Bit rates of 17.2 kbs for standard 128 octet packets, and 44 kbs for nonstandard packets (776 octets in this case) [fr

  3. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  4. Enhanced just-in-time plus protocol for optical burst switching networks

    Science.gov (United States)

    Rodrigues, Joel J. P. C.; Gregório, José M. B.; Vasilakos, Athanasios V.

    2010-07-01

    We propose a new one-way resource reservation protocol for optical burst switching (OBS) networks, called Enhanced Just-in-Time Plus (E-JIT+). The protocol is described in detail, and its formal specification is presented, following an extended finite state machine approach. The performance evaluation of E-JIT+ is analyzed in comparison with other proposed OBS protocols (JIT+ and E-JIT) for the following network topologies: rings; degree-two, degree-three, and degree-four chordal rings; mesh-torus; NSFNET; ARPANET; FCCN-NET; and the European Optical Network. We evaluate and compare the performance of the different protocols in terms of burst loss probability, taking into account the most important OBS network parameters. It was shown that E-JIT+ performs better than available one-way resource reservation protocols for all the evaluated network topologies. Moreover, the scalability of E-JIT+ was observed, and when the network traffic increases, the burst loss probability also increases, leading to a worse network performance.

  5. A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks.

    Science.gov (United States)

    Dao, Thi-Nga; Yoon, Seokhoon; Kim, Jangyoung

    2016-01-05

    Many applications in wireless sensor networks (WSNs) require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E) packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR) is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF) algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR.

  6. A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thi-Nga Dao

    2016-01-01

    Full Text Available Many applications in wireless sensor networks (WSNs require energy consumption to be minimized and the data delivered to the sink within a specific delay. A usual solution for reducing energy consumption is duty cycling, in which nodes periodically switch between sleep and active states. By increasing the duty cycle interval, consumed energy can be reduced more. However, a large duty cycle interval causes a long end-to-end (E2E packet delay. As a result, the requirement of a specific delay bound for packet delivery may not be satisfied. In this paper, we aim at maximizing the duty cycle while still guaranteeing that the packets arrive at the sink with the required probability, i.e., the required delay-constrained success ratio (DCSR is achieved. In order to meet this objective, we propose a novel scheduling and forwarding scheme, namely the deadline-aware scheduling and forwarding (DASF algorithm. In DASF, the E2E delay distribution with the given network model and parameters is estimated in order to determine the maximum duty cycle interval, with which the required DCSR is satisfied. Each node independently selects a wake-up time using the selected interval, and packets are forwarded to a node in the potential forwarding set, which is determined based on the distance between nodes and the sink. DASF does not require time synchronization between nodes, and a node does not need to maintain neighboring node information in advance. Simulation results show that the proposed scheme can satisfy a required delay-constrained success ratio and outperforms existing algorithms in terms of E2E delay and DCSR.

  7. An intelligent switch with back-propagation neural network based hybrid power system

    Science.gov (United States)

    Perdana, R. H. Y.; Fibriana, F.

    2018-03-01

    The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.

  8. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  9. Data Network Equipment Energy Use and Savings Potential in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  10. On the theory of wave packets

    International Nuclear Information System (INIS)

    Naumov, D.V.

    2013-01-01

    In this paper we discuss some aspects of the theory of wave packets. We consider a popular non-covariant Gaussian model used in various applications and show that it predicts too slow a longitudinal dispersion rate for relativistic particles. We revise this approach by considering a covariant model of Gaussian wave packets, and examine our results by inspecting a wave packet of an arbitrary form. A general formula for the time dependence of the dispersion of a wave packet of an arbitrary form is found. Finally, we give a transparent interpretation of the disappearance of the wave function over time due to the dispersion - a feature often considered undesirable, but which is unavoidable for wave packets. We find, starting with simple examples, proceeding with their generalizations and finally by considering the continuity equation, that the integral over time of both the flux and probability densities is asymptotically proportional to the factor 1/|x| 2 in the rest frame of the wave packet, just as in the case of an ensemble of classical particles

  11. Introduction to communications technologies a guide for non-engineers

    CERN Document Server

    Jones, Stephan; Groom, Frank M

    2008-01-01

    Systems and Models of Communications Technologies:Shannon-Weaver, von Neumann, and the OSI ModelBasic Concepts of Electricity Current Modulation Schemes Signaling Formats, Multiplexing, and Digital Transmissions Multiplexing PSTN to CPE Circuit Switching Mobile Wireless Technologies Packet Switching and Local Area Network TechnologyThe Language of the Internet: TCP/IP Network Security and Management Voice-Over-IP Wireless Local Area Networks Video Basics Digital Media The Basics of MPLS Networking.

  12. Multiple descriptions for packetized predictive control

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2016-01-01

    be reliably reconstructed at the plant side. For the particular case of LTI plant models and i.i.d. channels, we show that the overall system forms a Markov jump linear system. We provide conditions for mean square stability and derive upper bounds on the operational bit rate of the quantizer to guarantee......In this paper, we propose to use multiple descriptions (MDs) to achieve a high degree of robustness towards random packet delays and erasures in networked control systems. In particular, we consider the scenario, where a data-rate limited channel is located between the controller and the plant...

  13. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Ilow Jacek

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of information packets to construct redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  14. Asymmetric Modulation Gains in Network Coded Relay Networks

    DEFF Research Database (Denmark)

    Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2015-01-01

    Wireless relays have usually been considered in two ways. On the one hand, a physical layer approach focused on per-packet reliability and involving the relay on each packet transmission. On the other, recent approaches have relied on the judicious activation of the relay at the network level to ...

  15. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    Science.gov (United States)

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  16. Cooperative and Adaptive Network Coding for Gradient Based Routing in Wireless Sensor Networks with Multiple Sinks

    Directory of Open Access Journals (Sweden)

    M. E. Migabo

    2017-01-01

    Full Text Available Despite its low computational cost, the Gradient Based Routing (GBR broadcast of interest messages in Wireless Sensor Networks (WSNs causes significant packets duplications and unnecessary packets transmissions. This results in energy wastage, traffic load imbalance, high network traffic, and low throughput. Thanks to the emergence of fast and powerful processors, the development of efficient network coding strategies is expected to enable efficient packets aggregations and reduce packets retransmissions. For multiple sinks WSNs, the challenge consists of efficiently selecting a suitable network coding scheme. This article proposes a Cooperative and Adaptive Network Coding for GBR (CoAdNC-GBR technique which considers the network density as dynamically defined by the average number of neighbouring nodes, to efficiently aggregate interest messages. The aggregation is performed by means of linear combinations of random coefficients of a finite Galois Field of variable size GF(2S at each node and the decoding is performed by means of Gaussian elimination. The obtained results reveal that, by exploiting the cooperation of the multiple sinks, the CoAdNC-GBR not only improves the transmission reliability of links and lowers the number of transmissions and the propagation latency, but also enhances the energy efficiency of the network when compared to the GBR-network coding (GBR-NC techniques.

  17. Effect of latency and packet loss on achievable bandwidth

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Following an incident with a slow database replication between CERN's data centers, we discovered that even a very low rate packet loss in the network can induce significant penalties to long distance single stream TCP transfers. We explore the behaviour of multiple congestion control algorithms in a controlled loss environment in order to understand what is the achievable throughput of TCP data transfers between the Meyrin and Wigner data centres.

  18. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  19. On-the-fly Packet Error Recovery in a Cooperative Cluster of Mobile Devices

    DEFF Research Database (Denmark)

    Vingelmann, Peter; Heide, Janus; Pedersen, Morten Videbæk

    2011-01-01

    This paper investigates the possibility of packet error recovery in a cooperative cluster of mobile devices. We assume that these devices receive data from a broadcast transmission on their primary network interface (e.g. LTE network), and they are using a secondary network interface (e.g. ad hoc....... We also introduce a demo application that implements this technique on Nokia phones. Then we present our testbed and the collected measurement results in order to evaluate the performance of our protocol....

  20. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity...... a mechanism to perform efficient Gaussian elimination over sparse matrices going beyond belief propagation but maintaining low decoding complexity. Supporting simulation results are provided showing the trade-off between decoding complexity and completion time....