WorldWideScience

Sample records for pack cementation process

  1. Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.

    Science.gov (United States)

    Knop, Yaniv; Peled, Alva

    2018-04-18

    This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.

  2. New manufacturing method for Fe-Si magnetic powders using modified pack-cementation process

    Science.gov (United States)

    Byun, Ji Young; Kim, Jang Won; Han, Jeong Whan; Jang, Pyungwoo

    2013-03-01

    This paper describes a new method for making Fe-Si magnetic powders using a pack-cementation process. It was found that Fe-Si alloy powders were formed by a reaction of the pack mixture of Fe, Si, NaF, and Al2O3 powders at 900 °C for 24 h under a hydrogen atmosphere. Separation of the Fe-Si alloy powders was dependent on the particle size of the Fe powders in the pack. For small Fe powders, magnetic separation in a medium of strong alkali solution was recommended. But, for relatively larger Fe powders, the Fe-Si alloy powders were easily separated from Al2O3 powders using a magnet in air atmosphere. The Si content in the Fe-Si magnetic powders were easily controlled by changing the weight ratio of Si to (Si+Fe) in the pack.

  3. MeCrAl coatings obtained by arc PVD and pack cementation processes on nickel base superalloys

    International Nuclear Information System (INIS)

    Swadzba, L.; Maciejny, A.; Formanek, B.; Mendala, B.

    1997-01-01

    The paper presents the results of researches on obtaining and structure of high temperature resistance coatings on superalloys. The coatings were deposited on nickel and nickel base superalloys in two stages. During the first stage, the NiCr and NiCrHf coatings were obtained by arc-PVD method. Basic technology, bias, arc current, rotation, parameters of deposition of NiCr and MeCrHf coatings were defined. The high efficiency of deposition of both single and two sources was observed. The targets were made by vacuum melting and machining. An influence of targets chemical composition on coating structure and chemical coatings composition was described. The second stage was made by pack cementation HTLA (high temperature low activity) on 1323 K chromoaluminizing process. These arc-PVD and diffusion (pack cementation) connected processes permitted to obtain MeCrAl and MeCrAlHf type of coatings. The morphology, structure and microchemical composition were characterized by scanning electron microscopy, X-ray microanalysis, energy dispersive X-ray spectroscopy and X-ray diffraction methods. (orig.)

  4. Development and design of a cementation process

    International Nuclear Information System (INIS)

    Vicente, R.

    1986-01-01

    The conceptual design of a facility for the immobilization of intermediate level liquid waste in cement is presented. The cementation process adopted a vibration assisted mixing process. The solidified waste is packed in 200 litres drum with barite concrete lining. The waste package is classified as Type A package for transport. (Author) [pt

  5. Development and design of a cementation process

    International Nuclear Information System (INIS)

    Vicente, R.

    1987-01-01

    The conceptual design of a facility for the immobilization of intermediate-level liquid wastes in cement is presented. The cementation process adopted a vibration assisted mixing process. The solidified waste is packed in 200 litres drum with barite concrete lining. The waste package is classified as Type A package for transport. (Author) [pt

  6. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    Directory of Open Access Journals (Sweden)

    Fauzi F. A.

    2016-01-01

    Full Text Available The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on the substrate of steel by pack cementation process for two hours at the temperature of 850ºC, 950ºC and 1050ºC, respectively. XRD analysis indicated that chromium was successfully deposited at all temperatures. Somehow, SEM cross sectional image showed that continuous layer of chromium was not continuously formed at 850oC. Therefore, this research clarify that chromium enrichment by pack cementation may be conducted at the temperature above 950°C.

  7. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    Science.gov (United States)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  8. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  9. Ni-Al phase transformation of dual layer coating prepared by pack cementation and electrodeposition

    Science.gov (United States)

    Afandi, A.; Sugiarti, E.; Ekaputra, R.; Sudiro, T.; Thosin, K. A. Z.

    2018-03-01

    In this work, Fe-Cr alloys were coated via Aluminum (Al) pack cementation, followed by Nickel (Ni) electrodeposition. The process of pack cementation was done with mixing powders of Al, Al203 and NH4Cl with weight percentage of 15%, 85%, and 5% respectively. To control successful Al diffusion to the substrate, pack cementation was conducted for 7 hours with two holding temperatures treatment at 400 °C for 4 hours, and 800 ° C hours for 2 hours. Subsequently, the electrodeposition of Ni was applied with the solution consisting of NiSO4, H3BO3, and NiCl2. The samples were placed in the cathode, and then dipped in the solutions, while Ni plate used as anode. Successfully the samples were coated by dual Al-Ni layers, the samples were slowly heat treated at 900 °C for 10 hours. The inter-diffusion of Al and Ni were characterized with SEM/EDX to investigate the distribution of the elements. Mechanical properties of the coated substrates were analyzed with Hardness Vickers (HV). It was found the hardness of the substrate increased significantly, from originally 255 HV to the 1177 HV after pack cementation. The hardness of the substrates has decreased to 641 HV after Ni plating, but subsequent heat treatment has been able to increase the hardness to 842 HV. This phenomenon can be correlated to the inward Al diffusion, and outward Fe, Cr diffusion. The formation of intermetallic compounds due to Al inward and Fe, Cr outward diffusion were discussed in details.

  10. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation

    International Nuclear Information System (INIS)

    He Yirong

    1997-01-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on Cr-Cr 2 Nb alloys in a single processing step. The morphology and composition of the coating depended both on the pack composition and processing schedule and also on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi 2 and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. Under cyclic and isothermal oxidation conditions, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation and from pesting by the formation of a Ge-doped silica film. (orig.)

  11. Formation and oxidation resistance of NbSi2 coatings on niobium by pack cementation

    International Nuclear Information System (INIS)

    Li Ming; Song Lixin; Le Jun; Zhang Xiaowei; Pei Baogen; Hu Xingfang

    2005-01-01

    NbSi 2 coatings were formed on niobium by halide-activated pack cementation process. The as-coated niobium samples were oxidized in air up to 1723 K by thermogravimetry method. The surface and cross-sectional morphology, phase composition and element distribution of the NbSi 2 coatings before and after oxidation were characterized by SEM, XRD and EPMA. The results show that the as-formed coatings consist of single phase of hexagonal NbSi 2 and the oxidation resistance of pure niobium can be greatly improved by pack siliconizing. (orig.)

  12. Influence of particle packing density on the rheology of low cement content concrete

    NARCIS (Netherlands)

    Fennis-Huijben, S.A.A.M.; Grunewald, S.; Walraven, J.C.; Den Uijl, J.A.

    2012-01-01

    Optimizing concrete mixtures with regard to cement content is one of the most important solutions in sustainable concrete design. Workability o f these low cement content or ecological mixtures is very important. Eleven mortar mixtures are presented, which show how a higher packing density can be

  13. Influence of packing and dispersion of particles on the cement content of concretes

    Directory of Open Access Journals (Sweden)

    B. L. DAMINELI

    Full Text Available Abstract Due to environmental issues, the concrete chain seeks to reduce CO2 emissions. However, growing demand from developing countries causes the increase of CO2 emissions in production to exceed decreases generated by industrial actions, such as improving kilns and clinker replacement. New strategies are important. Changes in the concrete formulation, making it more efficient, can help if these changes produce concrete with the same performance and lower cement consumption. In this regard, the improvement of packing and dispersion of particles increases this efficiency. The better the packing, the lower the volume of voids between particles, thereby requiring lower fluid content (water to permit flow. The dispersion of the particles also decreases the water content for the same fluidity. The less the water content, the smaller the water/cement (w/c ratio, and the greater the resistance. Thus, both strategies increase the efficiency by uncoupling obtaining fluidity from the water content. This study investigated the influence of packing and dispersion on the efficiency of cement use in concrete. The increase of packing and the complete dispersion of fine particles has been shown to improve efficiency, as measured by the ratio between binder consumption and compressive strength (the performance parameter used in most practical applications.

  14. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  15. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  16. Synthesis and characterisation of pack cemented aluminide coatings on metals

    International Nuclear Information System (INIS)

    Houngninou, C.; Chevalier, S.; Larpin, J.P.

    2004-01-01

    The exposition of metallic materials to high temperature environments leads to their corrosion because of oxidation or sulphidation. One way to protect such materials is to produce an Al 2 O 3 layer which needs to be continuous enough to limit diffusion of oxygen or metallic elements, and withstand this corrosion. Since a few years, it has been proved that aluminide compounds are one of the most effective materials to achieve this goal. Indeed, they possess sufficient Al and many beneficial mechanical properties when exposed to high temperature conditions to make possible the formation of a protective Al 2 O 3 scale. This study is aimed at the elaboration of iron, nickel and molybdenum aluminides by modification of the surface of the base materials by a pack cementation process. The as-cemented alloys were analysed by means of SEM coupled with EDX and by XRD. Cross-section examinations showed, in each case, a progressive diffusion of aluminium through the substrates. The diffusion thickness layer was more or less important depending on the base material and on the coating conditions

  17. The effect of Al and Cr additions on pack cementation zinc coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Papazoglou, M.; Tsipas, S.; Pavlidou, E.; Skolianos, S.; Stergioudis, G.; Vourlias, G.

    2010-01-01

    Zinc is widely used as a protective coating material due to its corrosion resistant properties. The structure and oxidation resistance of Al and Cr mixed zinc coatings, deposited by pack cementation process, is thoroughly examined in this work. The morphology and chemical composition of the as-deposited and oxidized samples was accomplished by electron microscopy while the phase identification was performed by XRD diffraction analysis. The experimental results showed that the addition of aluminum or chromium in the pack mixture forms only Al and Cr rich phases on the surface of the specimens without affecting significantly the phase composition of the rest zinc coatings. In the case of Zn-Al coatings, the overlying layer contains high concentrations of Al together with lower amounts of zinc and iron and in Zn-Cr coatings this layer contains Cr, Fe and Zn atoms and has much smaller thickness. The presence of these additional layers promotes significantly the oxidation resistance of the zinc pack coatings and they preserve most of their initial thickness and chemical content when exposed to an aggressive environment while their oxidation mass gain was measured at low levels during the oxidation tests.

  18. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Science.gov (United States)

    Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.

  19. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Chemistry and Materials Science and Engineering, Chung Cheng Institute of Technology, National Defense University, Tau-Yuan 335 (China); Wen, Tse-Min [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China); Hou, Kung-Hsu [Department of Power Vehicles and System Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China)

    2010-02-01

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 x 10{sup -8} A cm{sup -2}, and the smallest interfacial contact resistance, 5.9 m{omega} cm{sup 2}, at 140 N cm{sup -2} among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC. (author)

  20. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    Science.gov (United States)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the

  1. Cementation process study

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Ahn, S.J.; Choi, K.S.; Lee, M.W.; Ryu, Y.K.

    1985-01-01

    In the cementation process study, in 1984, design of the waste treatment simulator was finished for the first step. We can experience not only the operation of solidification system but the design and construction of comming large scale plant through the design of cementation process. (Author)

  2. Hot corrosion of pack cementation aluminized carbon steel

    International Nuclear Information System (INIS)

    Waheed, A.F.; Mohamed, K.E.; Abd El-Azim, M.E.; Soliman, H.M.

    1998-01-01

    Low carbon steel was aluminized by the pack cementation technique at various aluminizing temperatures and times in or der to have different aluminide coatings. The aluminized specimens were sprayed at the beginning of the hot corrosion experiments with Na C 1+Na 2 SO 4 solution. The hot corrosion tests were carried out by thermal cycling at 850 degree C in air. The results were evaluated by, corrosion kinetics based on weight change measurements, scanning electron microscopy and energy dispersive X-ray analysis. It was found that the maximum corrosion resistance to this corrosive environment is achieved by aluminizing at 900 degree C for 19 h or 950 degree C for >4 h. These aliminizing conditions lead to formation of thick aluminide coatings with sufficient aluminium concentration (>15 wt%) at their outer surface necessary for continuous formation of protective Al 2 O 3 scale. The tested materials are used in protection of some components used in electric power stations (conventional or nuclear)

  3. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation.

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-12-15

    To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.

  4. Oxidation behavior of Mo-based alloys coated with silicide using the halide-activated pack cementation method

    International Nuclear Information System (INIS)

    Ito, K.; Hayashi, T.; Yamaguchi, M.; Murakami, T.

    2003-01-01

    This article summarizes recent progress in research on oxidation behavior of pack-cemented Mo-9Si-18B alloys with a Mo 5 SiB 2 /Mo two-phase eutectic microstructure. The deposited layer of as-cemented Mo-9Si-18B alloy consists of MoSi 2 . Upon heating to temperatures above 1500 C, the deposited layer is transformed into B-doped Mo 5 Si 3 through a reaction between the deposited layer and the matrix containing B. Steady-state oxidation is observed at 1300-1500 C and its rates are almost equal to those of MoSi 2 . No significant increase in weight loss was observed in a short-term cyclic oxidation test, since the columnar structure with orientation preference in B-doped Mo 5 Si 3 coating layer must be reduced thermal stress in the cyclic oxidation test. (orig.)

  5. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  6. Boundary conditions for diffusion in the pack-aluminizing of nickel.

    Science.gov (United States)

    Sivakumar, R.; Seigle, L. L.; Menon, N. B.

    1973-01-01

    The surface compositions of nickel specimens coated for various lengths of time in aluminizing packs at 2000 F were studied, in order to obtain information about the kinetics of the pack-cementation process in the formation of aluminide coatings. The results obtained indicate that the surface compositions of the coated nickel specimens are independent of time, at least for time between 0.5 and 20 hrs. Another important observation is that the specimens gained weight during the coating process.

  7. Processes and Equipment for the Cementation of Radioactive Waste

    International Nuclear Information System (INIS)

    Schaefer, S.; Studenski, J.

    2012-01-01

    In this article a short selection of different cement mixer types provided by NUKEM Technologies is given. The variety stems on one hand from historical development, but more especially from specific customer demands to meet their local and technical requirements. The Slant Batch Mixer is successfully installed in several Waste Treatment Centers (WTC). NUKEM Technologies set up these mixers with necessary auxiliary systems to facilitate all the cementation tasks of a WTC. By the slant design of the mixer a homogeneous intermixing and a rapid and comprehensive emptying is achieved. The High Shear Mixer is a batch mixer producing a thixotropic, fast flowing colloidal cement slurry. NUKEM Technologies uses this cement slurry to bubble-free/ empty space-free grouting of pre-packed solid waste items in container. The High Throughput Continuous Mixer is a continuously operating screw mixer that provides a high throughput. One or more dry components are continuously fed to the mixer where liquid waste or water is added. The High Performance In-Drum Mixer is a combination of planetary mixer with double helical mixer. NUKEM Technologies recently has developed a new High Capacity Mixer (HCM) based on a well proven conventional concrete mixer. The HCM is the successor of the slant mixer and will expend NUKEM Technologies' portfolio of cementation units. (A.C.)

  8. Process of preparing hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-12-11

    A process of preparing hydraulic cement from oil shale or shale coke is characterized in that the oil shale or shale coke after the distillation is burned long and hot to liberate the usual amount of carbonic acid and then is fine ground to obtain a slow hardening hydraulic cement.

  9. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  10. The asbestos cement container and its characterization program

    International Nuclear Information System (INIS)

    Kertesz, C.; Oliver, J.; Jaouen, C.

    1986-01-01

    A new type of packing container is designed in France, by SGN, for the reprocessing wastes conditioning: the asbestos cement container (CAC) made by the industrial process for pipes fabrication. Two types of CAC are studied, differing from each other by their wall thickness. The technology of which SGN is in charge is presented. A characterization program is operated by CEA in view of satisfying to regulatory requirements. Emphasis is placed upon the radionuclides migration study, through different asbestos cement samples

  11. Method of processing radioactive liquid wastes by solidification with cement

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki.

    1975-01-01

    Object: To subject radioactive liquid wastes to a cement solidification treatment after heating and drying it by a thin film scrape-off drier to render it into the form of power, and then molding it into pellets for the treatment. Structure: Radioactive liquid wastes discharged from a nuclear power plant or nuclear reactor are supplied through a storage tank into a thin film scrape-off drier. In the drier, the radioactive liquid wastes are heated to separate the liquid, and the residue is taken out as dry powder from the scrape-off apparatus. The powder obtained in this way is molded into pellets of a desired form. These pellets are then packed in a drum can or similar container, into which cement paste is then poured for solidification. (Moriyama, K.)

  12. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  13. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  14. Sulphur cement pre-composition and process for preparing such sulphur cement pre-composition

    NARCIS (Netherlands)

    2013-01-01

    The invention provides a process for the preparation of a sulphur cement pre-composition comprising reacting sulphur modifier with polysulphide-containing organosilane to obtain in the presence of sulphur the sulphur cement pre-composition, wherein the organosilane has the general molecular formula:

  15. Evaluation of pulp and mortar to pack bitumen radioactive waste

    International Nuclear Information System (INIS)

    Gregorio, Marina da S.; Vieira, Vanessa M.; Tello, Cledola C.O.

    2013-01-01

    According to international experience, for the deposition of cement in surface repository, is necessary the use of cement mortar pastes to immobilize the product. Determining the most efficient folder or for the packed mortar, as well as its ideal formulation, is the goal of this study. To do various experiments with samples of cement paste and mortar, with presence of fluxing and / or clay were performed. Viscosity, density, setting time and compressive strength were evaluated. This study will be presented only the results found in testing of compressive strength to be an essential parameter in the transport, storage and disposal of the product. From the results found will be selected the best formulations for use in packed bitumen tailings from the National Radioactive Waste Repository

  16. The use of particle packing models to design ecological concrete

    NARCIS (Netherlands)

    Fennis, S.A.A.M.; Walraven, J.C.; Den Uijl, J.A.

    2009-01-01

    Ecological concrete can be designed by replacing cement with fillers. With low amounts of cement it becomes increasingly important to control the water demand of concrete mixtures. In this paper a cyclic design method based on particle packing is presented and evaluated on the basis of experiments

  17. Halting of the calcium aluminate cement hydration process

    International Nuclear Information System (INIS)

    Luz, A.P.; Borba, N.Z; Pandolfelli, V.C.

    2011-01-01

    The calcium aluminate cement reactions with water lead to the anhydrous phases dissolution resulting a saturated solution, followed by nucleation and crystal growth of the hydrate compounds. This is a dynamic process, therefore, it is necessary to use suitable methods to halt the hydration in order to study the phase transformations kinetics of such materials. In this work two methods are evaluated: use of acetone and microwave drying, aiming to withdraw the free water and inhibit further reactions. X ray diffraction and thermogravimetric tests were used to quantify the phases generated in the cement samples which were kept at 37 deg C for 1 to 15 days. The advantages and disadvantages of those procedures are presented and discussed. The use of microwave to halt the hydration process seems to be effective to withdraw the cement free water, and it can further be used in researches of the refractory castables area, endodontic cements, etc. (author)

  18. In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM

    International Nuclear Information System (INIS)

    Sun Wei; Zhang Yunsheng; Lin Wei; Liu Zhiyong

    2004-01-01

    Environmental scanning electron microscope (ESEM) was used to in situ quantitatively study the hydration process of K-PS geopolymer cement under an 80% RH environment. An energy dispersion X-ray analysis (EDXA) was also employed to distinguish the chemical composition of hydration product. The ESEM micrographs showed that metakaolin particles pack loosely at 10 min after mixing, resulting in the existence of many large voids. As hydration proceeds, a lot of gels were seen and gradually precipitated on the surfaces of these particles. At later stage, these particles were wrapped by thick gel layers and their interspaces were almost completely filled. The corresponding EDXA results illustrated that the molar ratios of K/Al increase while Si/Al decrease with the development of hydration. As a result, the molar ratios of K/Al and Si/Al of hydration products at an age of 4 h amounted to 0.99 and 1.49, respectively, which were close to the theoretical values (K/Al=1.0, Si/Al=1.0 for K-PS geopolymer cement paste). In addition, well-developed crystals could not been found at any ages; instead, spongelike amorphous gels were always been observed

  19. The density of cement phases

    International Nuclear Information System (INIS)

    Balonis, M.; Glasser, F.P.

    2009-01-01

    The densities of principal crystalline phases occurring in Portland cement are critically assessed and tabulated, in some cases with addition of new data. A reliable and self-consistent density set for crystalline phases was obtained by calculating densities from crystallographic data and unit cell contents. Independent laboratory work was undertaken to synthesize major AFm and AFt cement phases, determine their unit cell parameters and compare the results with those recorded in the literature. Parameters were refined from powder diffraction patterns using CELREF 2 software. A density value is presented for each phase, showing literature sources, in some cases describing limitations on the data, and the weighting attached to numerical values where an averaging process was used for accepted data. A brief discussion is made of the consequences of the packing of water to density changes in AFm and AFt structures.

  20. Mechanised packing for longwall coal faces. Monolithic packing and powered supports for the packhole

    Energy Technology Data Exchange (ETDEWEB)

    Carr, F; Kitching, F

    1978-11-01

    If full advantage is to be taken of the great advances that have taken place in power loading and powered support at the coalface, other operations in that vicinity must be similarly mechanised and automated. The gateside packing is one of the most important of these ancillary operations on the longwall face, and in previous articles F. Carr and F. Kitching, National Coal Board Headquarters, Coalface Operations Mining Engineers have given a very comprehensive resume of the present situation. Subjects covered include the requirements of mechanised packing, the parameters involved, the various working arrangements, the different systems of gate-ends, the types of equipment that are being used, their characteristics, the spread of their application, and the results obtained from them. In this article the authors conclude their survey by dealing with dirt/cement and anhydrite packing, by taking a hard look at powered supports for the packhole, and by expressing their views on the way mechanised packing may be expected to develop in the future.

  1. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  2. Decontamination of Chlorpyrifos packing using ionizing radiation: processing optimization

    International Nuclear Information System (INIS)

    Mori, Manoel Nunes; Sampa, Maria Helena de Oliveira; Duarte, Celina Lopes

    2007-01-01

    The discharge of empty plastic packing of pesticide can be an environmental concern causing problems to human health, animals and plants if done without inspection and monitoring. Among the commercial pesticides, chlorpyrifos, o, o- Diethyl - o- (3,5,6 - trichloro - 2 - pyridyl) phosphorothioate, has significant importance because of its wide distribution, extensive use and persistence. The most commonly used formulations include the emulsified concentrate, granule, wet powder and dispersible granule has significant importance because of its wide distribution and extensive use and persistence. The hydroxyl .OH attack is the most efficient process of chemical oxidation. The degradation-induced of chlorpyrifos by gamma radiolysis was studied in packaging of high-density polyethylene tree layer coextruded, named COEX, irradiated intact and fragments. The intact packing was irradiated with water and the fragmented packing was irradiated with water and with a solution of 50% of water and 50% of acetonitrile. An AECL 'Gammacell 2201 60 Co source and a multipurpose gamma irradiator were used in the processing. The chemical analysis of the chlorpyrifos and by-products were made using a gas chromatography associated to the mass spectrometry (MSGC-Shimadzu QP5000. Radiation processing of packing in pieces showed higher efficiency in removing chlorpyrifos than whole packing. The presence of water showed fundamental to promote the formation of frees radicals and acetonitrile facilitate the dissolution of chlorpyrifos and consequently its removal. (author)

  3. Decontamination of Chlorpyrifos packing using ionizing radiation: processing optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Manoel Nunes; Sampa, Maria Helena de Oliveira; Duarte, Celina Lopes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: mnmori@ipen.br; mhosampa@ipen.br; clduarte@ipen.br

    2007-07-01

    The discharge of empty plastic packing of pesticide can be an environmental concern causing problems to human health, animals and plants if done without inspection and monitoring. Among the commercial pesticides, chlorpyrifos, o, o- Diethyl - o- (3,5,6 - trichloro - 2 - pyridyl) phosphorothioate, has significant importance because of its wide distribution, extensive use and persistence. The most commonly used formulations include the emulsified concentrate, granule, wet powder and dispersible granule has significant importance because of its wide distribution and extensive use and persistence. The hydroxyl .OH attack is the most efficient process of chemical oxidation. The degradation-induced of chlorpyrifos by gamma radiolysis was studied in packaging of high-density polyethylene tree layer coextruded, named COEX, irradiated intact and fragments. The intact packing was irradiated with water and the fragmented packing was irradiated with water and with a solution of 50% of water and 50% of acetonitrile. An AECL 'Gammacell 2201 {sup 60}Co source and a multipurpose gamma irradiator were used in the processing. The chemical analysis of the chlorpyrifos and by-products were made using a gas chromatography associated to the mass spectrometry (MSGC-Shimadzu QP5000. Radiation processing of packing in pieces showed higher efficiency in removing chlorpyrifos than whole packing. The presence of water showed fundamental to promote the formation of frees radicals and acetonitrile facilitate the dissolution of chlorpyrifos and consequently its removal. (author)

  4. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  5. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  6. Acoustic probing of elastic behavior and damage in weakly cemented granular media

    Science.gov (United States)

    Langlois, V.; Jia, X.

    2014-02-01

    We investigate the elastic behavior and damage of weakly cemented granular media under external load with ultrasound. The cementation controlled experiments are performed by freezing the capillary liquid at the bead contact in a dense glass or polymeric [poly(methyl methacrylate)] bead pack wet by tetradecane of volume fraction ϕ = 0.1%-4%. When the pendular rings are solidified, an abrupt increase by a factor of 2 in the compressional wave velocity is observed. We interpret the data in terms of effective medium models in which the contact stiffnesses are derived by either a bonded contact model [P. J. Digby, J. Appl. Mech. 48, 803 (1981), 10.1115/1.3157738] or a cemented contact model [J. Dvorkin, A. Nur, and H. Yin, Mech. Mater. 18, 351 (1994), 10.1016/0167-6636(94)90044-2]. The former fails to quantitatively account for the results with a soft cement relative to the grain, whereas the latter considering the mechanical properties of the cement does apply. Moreover, we monitor the irreversible behavior of the cemented granular packs under moderate uniaxial loading (cemented materials is accompanied by a compressional wave velocity decrease up to 60%, likely due to the fractures induced at the grain-cement interfaces.

  7. INVESTIGATION OF CEMENT CONCRETE CONGLOMERATE SOLIDIFICATION PROCESS BY IMPEDANCE SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    S. N. Bandarenka

    2015-01-01

    Full Text Available One of the most prospective directions in preservation  and increase of service live of  road pavements is a construction of  automobile roads with cement concrete surface. Modern tendencies for provision of road construction quality presuppose a necessity to control processes of solidification and subsequent destruction of the material while forming and using cement concrete conglomerate being considered as a basic element of the road surface.  Multiyear practical experience of  automobile road operation using cement concrete pavements reveals an importance for monitoring  such processes as formation and destruction of cement concrete materials. An impedance spectroscopy method has been tried out and proposed as a tool for solution of the given problem.Experimental samples of cement concrete have been prepared for execution of tests, graded silica sand and granite chippings with particle size from 0.63 to 2.5 mm have been used as a fine aggregate in the samples. Dependencies of resistance (impedance on AC-current frequency  have been studied for samples of various nature and granulometric composition. The Gamry  G300 potentiostat has been used for measurement of complex impedance value. A spectrum analysis and calculation of equivalent circuit parameters calculation have been carried out while using EIS Spectrum Analyzer program.Comparison of impedance spectra for the prepared cement concrete samples have made it possible to reveal tendencies in changing spectrum parameters during solidification and subsequent contact with moisture in respect of every type of the sample. An equivalent electrical circuit has been developed that  characterizes physical and chemical processes which are accompanied by charge transfer in cement concrete conglomerate. The paper demonstrates a possibility to use an impedance spectroscopy for solution of a number of actual problems in the field of cement concrete technology problems. Particularly, the problems

  8. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    International Nuclear Information System (INIS)

    Faria, Érica R.; Tello, Clédola C.O.; Costa, Bruna S.

    2017-01-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  9. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Érica R.; Tello, Clédola C.O., E-mail: erica.engqui@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte/MG (Brazil); Costa, Bruna S., E-mail: brusilveirac@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2017-07-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  10. VUJE experience with cementation of liquid and wet radioactive waste

    International Nuclear Information System (INIS)

    Kravarik, Kamil; Holicka, Zuzana; Pekar, Anton; Zatkulak, Milan

    2011-01-01

    Liquid and wet LLW generated during operation as well as decommissioning of NPPs is treated with different methods and fixed in a suitable fixation matrix so that a final product meets required criteria for its disposal in a final repository. Cementation is an important process used for fixation of liquid and wet radioactive waste such as concentrate, spent resins and sludge. Active cement grout is also used for fixation of low level solid radioactive waste loaded in final packing containers. VUJE Inc. has been engaged in research of cementation for long. The laboratory for analyzing radioactive waste properties, prescription of cementation formulation and estimation of final cement product properties has been established. Experimental, semi-production cementation plant has been built to optimize operation parameters of cementation. VUJE experience with cementation of liquid and wet LLW is described in the presented paper. VUJE has assisted in commissioning of Jaslovske Bohunice Treatment Centre. Cement formulations for treatment of concentrate, spent resins and sludge have been developed. Research studies on the stability of a final concrete packaging container for disposal in repository have been performed. Gained experience has been further utilized for design and manufacture of several cementation plants for treatment of various liquid and wet LLW. Their main technological and technical parameters as well as characterization of treated waste are described in the paper. Applications include the Mochovce Final Treatment Centre, Movable Cementation Facility utilizing in-drum mixing for treatment of sludge, Cementation Facility for treatment of tritiated water in Latvia and Cementation Facility for fixation of liquid and solid institutional radioactive waste in Bulgaria, which utilizes lost stirrer mixer. (author)

  11. Microwave processing of cement and concrete materials – towards an industrial reality?

    International Nuclear Information System (INIS)

    Buttress, Adam; Jones, Aled; Kingman, Sam

    2015-01-01

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

  12. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2015-01-01

    Full Text Available The development of the packaging industry has promoted indiscriminately the use of disposable packing as Tetra Pak, which after a very short useful life turns into garbage, helping to spoil the environment. One of the known processes that can be used for achievement of the compatibility between waste materials and the environment is the gamma radiation, which had proved to be a good tool for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete. Concrete specimens were elaborated with waste cellulose at concentrations of 3, 5, and 7 wt% and irradiated at 200, 250, and 300 kGy of gamma dose. The results show highest improvement on the mechanical properties for concrete with 3 wt% of waste cellulose and irradiated at 300 kGy; such improvements were related with the surface morphology of fracture zones of cement concrete observed by SEM microscopy.

  13. Cement-based processes for the immobilization of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Brown, D.J.; Lee, D.J.; Price, M.S.T.; Smith, D.L.G.

    1985-01-01

    Increasing attention is being paid to the use of cement-based materials for the immobilisation of intermediate level wastes. Various cementitious materials are surveyed and the use of blast furnace slag is shown to be advantageous. The properties of cemented wastes are surveyed both during processing and as solid products. The application of Winfrith Cementation Laboratory technology to plant and flowsheet development for Winfrith Reactor sludge immobilisation is described. (author)

  14. Methods and Production of Cementation Materials for Immobilisation into Waste Form. Research of Cementation Processes for Specific Liquid Radioactive Waste Streams of Radiochemical Plants

    International Nuclear Information System (INIS)

    Sukhanov, L.P.

    2013-01-01

    In the near future Russian Federation is planning to use industrial cementation facilities at two radiochemical combines - PA 'Mayak' and Mountain Chemical Combine. Scope of the research within the IAEA CRP contact No. 14176 included the development of cementation processes for specfic liquid radioactive waste streams that are present in these enterprisers. The research on cementation of liquid waste from spent nuclear fuel reprocessing at PA 'Mayak' allowed obtaining experimental data characterizing the technological process and basic characteristics of the produced cement compounds (e.g. mechanical strength, water resistance, frost resistance, flowability, etc.) immobilizing different streams of waste (e.g. hydrated-salt sludges, filter material pulps, mixture of hydrated salt slurries and filter material pulps, tritium liquid waste). Determined optimum technological parameters will allow industrial scale production of cement compound with required quality and higher flowability that is necessary for providing uniform filling of compartments of storage facilities at these sites. The research has been also carried out for the development of cementation technology for immobilization of pulps from storage tanks of Mountain Chemical Combine radiochemical plant. Cementation of such pulps is a difficult technological task because pulps are of complex chemical composition (e.g. hydroxides of manganese, iron, nickel, etc., as well as silicon oxide) and a relatively high activity. The research of cementation process selection for these pulps included studies of the impact of sorbing additive type and content on cement compounds leachability, flowability, impact of cement compound age to its mechanical strength, heat generation of cement compounds and others. The research results obtained allowed testing of cementation facility with a pulse type mixer on the full-scale. Use of such mixer for pulp cementation makes possible to prepare a homogeneous cement compound with the

  15. Packing Density Approach for Sustainable Development of Concrete

    Directory of Open Access Journals (Sweden)

    Sudarshan Dattatraya KORE

    2017-12-01

    Full Text Available This paper deals with the details of optimized mix design for normal strength concrete using particle packing density method. Also the concrete mixes were designed as per BIS: 10262-2009. Different water-cement ratios were used and kept same in both design methods. An attempt has been made to obtain sustainable and cost effective concrete product by use of particle packing density method. The parameters such as workability, compressive strength, cost analysis and carbon di oxide emission were discussed. The results of the study showed that, the compressive strength of the concrete produced by packing density method are closer to that of design compressive strength of BIS code method. By adopting the packing density method for design of concrete mixes, resulted in 11% cost saving with 12% reduction in carbon di oxide emission.

  16. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  17. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  18. Experimental study on the properties of drum-packed, cement solidified waste package of pre and after sea dumping test of sea depth 30m and 100m

    International Nuclear Information System (INIS)

    Maki, Yasuro; Abe, Hirotoshi; Hattori, Seiichi

    1976-01-01

    Japan Marine Science and Technology Center has been tackling with the development of the monitoring system to confirm the soundness of drum-packed, cement-solidified low level radioactive waste (the package) during falling and after reaching at sea bed when it is dumped into sea. The test was carried out at Sagami Bay of 30 m and 100 m sea depth using non-radioactive packages. The observation of the falling behaviour of packages in sea was carried out by taking photographs of the motion of packages with an underwater 16 mm movie camera and an underwater industrial TV (ITV), and the observation of the soundness and the area of packages scattered on sea bed was carried out with an underwater ITV and an underwater 70 mm snap camera which were set up on the frame. The proportion of cement-solidified waste was decided so that the uni-axial compressive strength of the cement-solidified waste satisfies the condition of ''The tentative guideline''. Prior to tests at sea, hydrostatic pressure test of packages are carried out on land. After that, core specimens were sampled to obtain the uniaxial compressive strength from packages and were tested. After sea dumping tests, 6 packages were recovered from sea bed, and the soundness were tested. As the results, the deformation and damage of drums and cement solidified waste packages did not occur at all. (Kako, I.)

  19. Sustainability of cement kiln co-processing of wastes in India: a pilot study.

    Science.gov (United States)

    Baidya, Rahul; Ghosh, Sadhan Kumar; Parlikar, Ulhas V

    2017-07-01

    Co-processing in cement kiln achieves effective utilization of the material and energy value present in the wastes, thereby conserving the natural resources by reducing the use of virgin material. In India, a number of multifolded initiatives have been taken that take into account the potential and volume of waste generation. This paper studies the factors which might influence the sustainability of co-processing of waste in cement kilns as a business model, considering the issues and challenges in the supply chain framework in India in view of the four canonical pillars of sustainability. A pilot study on co-processing was carried out in one of the cement plant in India to evaluate the environmental performance, economical performance, operational performance and social performance. The findings will help India and other developing countries to introduce effective supply chain management for co-processing while addressing the issues and challenges during co-processing of different waste streams in the cement kilns.

  20. Modeling and simulation of cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    Chen, Hanmin

    2014-01-01

    This article describes a mathematical model of the thermodynamic process for Cement Clinkering Process with Compact Internal Burning of Carbon. Using simplifying assumptions, results of calculations are presented based on relevant computerized numerical simulation for a set of typical process parameters obtained from the existing cement shaft kiln operation and the electrical furnace test on the mechanical and chemical performance of the compact coal containing cement raw meal pellets. It is revealed that, the carbon internal burning mode, combining fuel combustion and gas solid heat transfer together as well as preheating, calcining, clinkering and cooling of the raw pellets together, is the origin of the process superiority in respect of equipment simplicity, process enhancement, high energy efficiency and low pollution. Important process details are determined, e.g. the features and lengths of the process zones, the material residence time and the burning mode of carbon in each zone, the clinkering reaction course and the maximum burning temperature. It is concluded that numerical simulations could be useful tool for understanding the new process ideas, as well as conducting the technical development and optimizing the process design. - Highlights: • Twin subsystem model is used to simulate a new type of cement shaft kiln process. • Grain-particle structural model is used to describe the pellet solid gas reactions. • The process superiority resulted from the carbon internal burning mode is revealed. • A series of important process details are determined. • An unprecedented comprehensive picture for cement clinkering process is depicted

  1. Effect of process variables on the preparation of artificial bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Santos Junior, J.G.F.; Melo, P.A.; Pinto, J.C., E-mail: pinto@peq.coppe.ufrj.br, E-mail: jjunior@peq.coppe.ufrj.br, E-mail: melo@peq.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Quimica; Pita, V.J.R.R., E-mail: vjpita@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas; Nele, M., E-mail: nele@eq.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2013-10-15

    The present work concerns the preparation of bone cements based on poly(methyl methacrylate) (PMMA), used mainly for prosthesis fixation and cavity filling for correction of human bone failures. A typical bone cement recipe contains methyl methacrylate, which polymerizes in situ during cement application. An inherent problem of this reaction is the large amount of heat released during the cement preparation, which may lead to irreparable damage of living tissues. Optimization of PMMA-based bone cement recipes is thus an important step towards safe and reliable clinical usage of these materials. Important process variables related to the reaction temperature profile and the mixing of the recipe constituents were studied in order to allow for the adequate production of bone cements. It is shown that the average molar mass and size of the PMMA particles used in the production of the bone cement, as well as incorporation of radiopaque contrast, co-monomers and fillers into the bone recipe play fundamental roles in the course of the polymerization reaction. Furthermore, the injection vessel geometry may interfere dramatically with the temperature profile and the time for its occurrence. Finally, it has been observed that the morphology of the PMMA particles strongly affects the mixing of the bone cement components. (author)

  2. Effect of process variables on the preparation of artificial bone cements

    Directory of Open Access Journals (Sweden)

    J. G. F. Santos Jr.

    2013-12-01

    Full Text Available The present work concerns the preparation of bone cements based on poly(methyl methacrylate (PMMA, used mainly for prosthesis fixation and cavity filling for correction of human bone failures. A typical bone cement recipe contains methyl methacrylate, which polymerizes in situ during cement application. An inherent problem of this reaction is the large amount of heat released during the cement preparation, which may lead to irreparable damage of living tissues. Optimization of PMMA-based bone cement recipes is thus an important step towards safe and reliable clinical usage of these materials. Important process variables related to the reaction temperature profile and the mixing of the recipe constituents were studied in order to allow for the adequate production of bone cements. It is shown that the average molar mass and size of the PMMA particles used in the production of the bone cement, as well as incorporation of radiopaque contrast, co-monomers and fillers into the bone recipe play fundamental roles in the course of the polymerization reaction. Furthermore, the injection vessel geometry may interfere dramatically with the temperature profile and the time for its occurrence. Finally, it has been observed that the morphology of the PMMA particles strongly affects the mixing of the bone cement components.

  3. Spectroscopy of Loose and Cemented Sulfate-Bearing Soils: Implications for Duricrust on Mars

    Science.gov (United States)

    Cooper, Christopher D.; Mustard, John F.

    2002-07-01

    The goal of this work is to determine the spectroscopic properties of sulfate in martian soil analogs over the wavelength range 0.3 to 25 μm (which is relevant to existing and planned remotely sensed data sets for Mars). Sulfate is an abundant component of martian soil (up to 9% SO 3 by weight) and apparently exists as a particulate in the soil but also as a cement. Although previous studies have addressed the spectroscopic identity of sulfates on Mars, none have used laboratory mixtures of materials with sulfates at the abundances measured by landed spacecraft, nor have any works considered the effect of salt-cementation on spectral properties of soil materials. For this work we created mixtures of a palagonitic soil (JSC Mars-1) and sulfates (MgSO 4 and CaSO 4·2H 2O). The effects of cementation were determined and separated from the effects of packing and hydration by measuring the samples as loose powders, packed powders, cemented materials, and disaggregated materials. The results show that the presence of particulate sulfate is best observed in the 4-5 μm region. Soils cemented with sulfate exhibit a pronounced restrahlen band between 8 and 9 μm as well as well-defined absorptions in the 4-5 μm region. Cementation effects are distinct from packing effects and disaggregation of cemented samples rapidly diminishes the strength of the restrahlen bands. The results of this study show that sulfate in loose materials is more detectable in the near infrared (4-5 μm) than in the thermal infrared (8-9 μm). However, cemented materials are easily distinguished from loose mixtures in the thermal infrared because of the high values of their absorption coefficient in this region. Together these results suggest that both wavelength regions are important for determining the spatial extent and physical form of sulfates on the surface of Mars.

  4. The effects of large scale processing on caesium leaching from cemented simulant sodium nitrate waste

    International Nuclear Information System (INIS)

    Lee, D.J.; Brown, D.J.

    1982-01-01

    The effects of large scale processing on the properties of cemented simulant sodium nitrate waste have been investigated. Leach tests have been performed on full-size drums, cores and laboratory samples of cement formulations containing Ordinary Portland Cement (OPC), Sulphate Resisting Portland Cement (SRPC) and a blended cement (90% ground granulated blast furnace slag/10% OPC). In addition, development of the cement hydration exotherms with time and the temperature distribution in 220 dm 3 samples have been followed. (author)

  5. Technical benefit and risk analysis on cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    Chen, Hanmin

    2015-01-01

    This article demonstrates the potential technical benefit and risk for cement clinkering process with compact internal burning of carbon, a laboratory-phase developing technique, from 9 aspects, including the heat consumption of clinkering and exhaust heat utilization, clinker quality, adaptability to alternative fuels, the disposal ability of industrial offal and civil garbage, adaptability to the raw materials and fuels with high content of chlorine, sulphur and alkali, the feasibility of process scale up, the briquetting process of the coal-containing cement raw meal pellet, NO x emission and the capital cost and benefit of conversion project. It is concluded that it will be able to replace the modern precalciner rotary kiln process and to become the main stream technique of cement clinkering process in low carbon economy times. - Highlights: • Compact internal burning of carbon enables cement shaft kiln to run stably. • Compact internal burning of carbon enables cement shaft kiln to scale up. • New process triples energy efficiency with excellent environmental performance. • It will be able to compete with and replace the existing precalciner kiln process. • It will become the mainstream clinkering process in low carbon economy

  6. The improved heat integration of cement production under limited process conditions: A case study for Croatia

    International Nuclear Information System (INIS)

    Boldyryev, Stanislav; Mikulčić, Hrvoje; Mohorović, Zoran; Vujanović, Milan; Krajačić, Goran; Duić, Neven

    2016-01-01

    Given that cement is the most widely used material for housing and modern infrastructure needs, this paper analyses the energy efficiency of the cement manufacturing processes for a particular cement plant. The cement industry is one of the largest consumers of carbon-containing primary energy sources and one of the primary polluters of the environment, emitting approximately 5% of global pollution. Energy consumption represents the largest part of the production cost for cement factories and has a significant influence on product prices. Given that it is realised in modern society that infrastructural projects lead to a higher level of economy and sustainability for countries, reducing the production cost in the cement industry is a very important problem. The authors analysed the energy consumption of a particular cement factory in Croatia to determine the minimum energy targets of production and proposed pathways to improve energy efficiency. The Process Integration approach was used in this study. Nevertheless, the features of the cement factory forced the research to update its methodological steps to propose real pathways for a retrofit project with the aim of achieving the optimal minimum temperature difference between process streams. There are various streams, including those that contain solid particles, gas and air streams, and streams, that should be cooled down rapidly; these facts become more complicated by the special construction of the process equipment, which causes heat transfer between some streams to be impossible. The main objective of this paper is to determine the potential of real energy savings and propose a solution for a new concept of heat exchanger network (HEN) that avoids the process traps and provides a feasible retrofit. The maximum heat recovery of that production of a particular type of cement was determined and improved when a HEN was built. The authors conclude that the energy consumption of the cement factory can be reduced by

  7. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  8. Air-Cured Fiber-Cement Composite Mixtures with Different Types of Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Ali Murat Soydan

    2018-01-01

    Full Text Available This present study was carried out to check the feasibility of different cellulose fibers obtained from cropped virgin cellulose, blenched eucalyptus, and araucaria pulps through different new environmentally friendly curing processes for fiber-cement production. The aim is to introduce the different sources of cellulose fibers with lower cost to produce the “fiber-cement without autoclave” (FCWA. The slurries used in the experiments contain approximately 8% wt. of cellulose. The influence of the waste marble powder addition to the cement mixture was also studied. The physical and mechanical properties of the products which were prepared with this method under different curing conditions were investigated. The mechanical properties of eucalyptus cellulose appear to offer the best combination, especially after longer air-cure cycles. The results showed that the production of FCWA is very economical by using waste marble powders. And moreover, two new types of cellulose fibers (eucalyptus and araucaria celluloses; EuC and ArC, resp., which provide a better density and packing in the fiber-cement leading to better modulus of rupture (MOR and modulus of elasticity (MOE values as virgin cellulose (ViC, are very usable for production of the fiber-cement in industrial scale.

  9. Front line of cement technolgy and control. Part 5. ; Baking process and chemical reactions. Cement saisentan sono gijutsu to kanri 5. ; Shosei katei to kagaku hanno

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M. (Ube Industries, Ltd., Yamaguchi (Japan))

    1990-06-01

    The baking process in cement production means the process that the raw materials which were mixed and pulverized in the raw material preparation process are charged into a reaction furnace which is called kiln, and clinders (intermediate product of cement) are generated. It is the process which affects quality as well as production cost of cement more significantly than anything else. In this article, an outline of the above baking facilities, how the raw materials change and clinkers are generated therein, and how they are controlled are introduced. Clinkers are composed of such products as alite, belite, aluminate and ferrite, etc. which were generated after decomposition reactions of such raw materials as lime stone, clay, silica rock and iron oxide in the above kiln. The essential ponts of the process control which makes the generation reactions of clinker compounds efficiently are such two points as well balanced raw materials to be charged into the baking facilities and stable operation of such facilities. The quality of cement which is required as finished goods is achieved by the quality control at each intermediate process and the quality tests of cement. 5 refs., 10 figs., 2 tabs.

  10. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  11. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten

    2015-01-01

    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...

  12. A analysis of cementation technology for liquid radioactive-waste in PWR NPPs

    International Nuclear Information System (INIS)

    Chen Liang; Chen Li; Li Junhua

    2009-01-01

    Cementation is one of the most popular solidification technology for the low-and-intermediate level liquid radioactive waste. It has been applied in all of domestic PWR NPPs. The process characteristics and operation of the cementations in the different NPPs are introduced,and the advantage and disadvantage of the cementation are analyzed in this paper. A drum and a cask are compared as a package of the solidified waste, the drum can decrease over 50% final volume of the waste, furthermore the cost for manufacture and transportation for this drum is more cheaper than the cask, but an additional shielding may be necessary for the waste with higher level radioactivity that is packed in drum. More waste can be contained if an appropriate in-drum mixer is used while secondary waste will be unavoidable if the out-drum mixing is adopted. A carriage can make it easier to decontaminate on the surface of equipment and on the floor, furthermore the carriage is more economical than a roller conveyor in manufacture and maintenance. The cementation recipe for the waste should be optimized and additive material should be as less as possible to increase the containing rate of the waste. (authors)

  13. Replacement of the cooling tower packing at the Goesgen-Daeniken AG nuclear power plant; Ersatz der Kuehlturmeinbauten im Kernkraftwerk Goesgen-Daeniken

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Hans Walter [Kernkraftwerk Goesgen-Daeniken AG, Daeniken (Switzerland)

    2012-07-01

    In 2005 the asbestos cement cooling tower packing was replaced by plastic material. Two years later, the packing showed strong deformations, deposits of solids and weight gain. At the end of 2007 parts of the packing collapsed into the cooling tower basin. Investigations were made, revealing that the thickness of the packing foil was too low and that packing geometry and biofilms on the surface of the packing favoured deposition of solids. Successful measures were taken to solve the problems. (orig.)

  14. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  15. Application of experiment planning during investigation of cementation process in solid carburizers

    International Nuclear Information System (INIS)

    Lisenkov, A.N.; Denisov, V.M.; Prigozhina, E.L.

    1981-01-01

    A mathematical model of cementation process in solid carburizirs is obtained, the most effective contents of carburizers are chosen. Specimens are produced out of St20, 12KhN3A, 40Kh13, KhVG steels. It is shown that specimens of St20 and 12KhN3A steels have the higher depth of cementated layer, specimens made of 40Kh13 and KhVG steels-the lower depth. It is shown that the quality of cementated layer structure at recommended regimes improved, cementated layer depth for low-carbon steels changed a little and for tool steels increased infficiently: for KhVG steel in 2-3 times for 40Kh13 steel in 1.5-2.5 times

  16. Reactive transport modeling of interaction processes between clay stone and cement

    International Nuclear Information System (INIS)

    Windt, L. de; van der Lee, J.; Pellegrini, D.

    2001-01-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement. The chemical interactions between these industrial materials and the host rock are modeled with the reactive transport code HYTEC for time scales and a geometry representative of disposal projects. The pH evolution, a key parameter in element mobility, is studied more specifically. It depends on several interdependent processes: i) diffusion of highly alkaline cement pore solution, ii) strong buffering related to important mineral transformations both in the cement and in the clay, and iii) cation exchange processes, beyond the zone of intense mineral transformations. In addition, precipitation of secondary minerals may lead to a partial or complete clogging of the pore space, almost stopping the propagation of the high pH plume. In a second step, preliminary results on the migration of strontium and uranium in these strongly coupled systems are presented as an example of transport parameter derivation. (authors)

  17. Evaluation of pulp and mortar to pack bitumen radioactive waste; Avaliacao de pastas e argamassas para o embalado de rejeitos radioativos betuminizados

    Energy Technology Data Exchange (ETDEWEB)

    Gregorio, Marina da S.; Vieira, Vanessa M.; Tello, Cledola C.O., E-mail: msg@cdtn.br, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    According to international experience, for the deposition of cement in surface repository, is necessary the use of cement mortar pastes to immobilize the product. Determining the most efficient folder or for the packed mortar, as well as its ideal formulation, is the goal of this study. To do various experiments with samples of cement paste and mortar, with presence of fluxing and / or clay were performed. Viscosity, density, setting time and compressive strength were evaluated. This study will be presented only the results found in testing of compressive strength to be an essential parameter in the transport, storage and disposal of the product. From the results found will be selected the best formulations for use in packed bitumen tailings from the National Radioactive Waste Repository.

  18. NanoPack: visualizing and processing long read sequencing data.

    Science.gov (United States)

    De Coster, Wouter; D'Hert, Svenn; Schultz, Darrin T; Cruts, Marc; Van Broeckhoven, Christine

    2018-03-14

    Here we describe NanoPack, a set of tools developed for visualization and processing of long read sequencing data from Oxford Nanopore Technologies and Pacific Biosciences. The NanoPack tools are written in Python3 and released under the GNU GPL3.0 License. The source code can be found at https://github.com/wdecoster/nanopack, together with links to separate scripts and their documentation. The scripts are compatible with Linux, Mac OS and the MS Windows 10 subsystem for Linux and are available as a graphical user interface, a web service at http://nanoplot.bioinf.be and command line tools. wouter.decoster@molgen.vib-ua.be. Supplementary tables and figures are available at Bioinformatics online.

  19. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  20. The cement recycling of the earthquake disaster debris by Hachinohe Cement Co., Ltd

    International Nuclear Information System (INIS)

    Kataoka, Masayuki

    2015-01-01

    A tremendous quantity of earthquake disaster debris and tsunami sediment was resulted by the Great East Japan Earthquake on March 11, 2011. Hachinohe Cement Co., Ltd., a Sumitomo Osaka Cement subsidiary, was the first cement industry company to receive and process such waste materials outside of their usual prefecture area, while the company is performing their treatment and recycling services locally in Hachinohe City and Aomori Prefecture. This report provides an explanation about the recycling mechanism of waste materials and by-products in cement manufacturing process, and introduces an example of actual achievements for the disaster debris treatment by utilizing the cement recycling technologies at the Hachinohe Cement Plant. (author)

  1. Solidification process for toxic and hazardous wastes. Second part: Cement solidification matrices

    International Nuclear Information System (INIS)

    Donato, A.; Arcuri, L.; Dotti, M.; Pace, A.; Pietrelli, L.; Ricci, G.; Basta, M.; Cali, V.; Pagliai, V.

    1989-05-01

    This paper reports the second part of a general study carried out at the Nuclear Fuel Division aiming at verifying the possible application of the radioactive waste solidification processes to industrial hazardous wastes (RTN). The cement solidification of several RTN types has been taken into consideration, both from the technical and from the economic point of view. After a short examination of the Italian juridical and economical situation in the field, which demonstrates the need of the RTN solidification, the origin and characteristics of the RTN considered in the study and directly provided by the producing industries are reviewed. The laboratory experimental results of the cementation of RTN produced by gold manufacturing industries and by galvanic industries are reported. The cementation process can be considered a very effective mean for reducing both the RTN management costs and the environmental impact of RTN disposal. (author)

  2. Feasibility of large volume casting cementation process for intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Chen Zhuying; Chen Baisong; Zeng Jishu; Yu Chengze

    1988-01-01

    The recent tendency of radioactive waste treatment and disposal both in China and abroad is reviewed. The feasibility of the large volume casting cementation process for treating and disposing the intermediate level radioactive waste from spent fuel reprocessing plant in shallow land is assessed on the basis of the analyses of the experimental results (such as formulation study, solidified radioactive waste properties measurement ect.). It can be concluded large volume casting cementation process is a promising, safe and economic process. It is feasible to dispose the intermediate level radioactive waste from reprocessing plant it the disposal site chosen has resonable geological and geographical conditions and some additional effective protection means are taken

  3. INVESTIGATION OF DENTURE REMOVAL PROCESS BY MEANS OF DESTRUCTION OF FIXING CEMENT BY ULTRASOUND ACTION

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2007-01-01

    Full Text Available The paper contains results of experimental investigations in respect of denture removal processes using as models so natural teeth as well and this removal process presupposes destruction of fixing cement by ultrasound action. It has been established that the best conditions for separation of a denture from a tooth body are ensured while ultrasound is acting on non-removable denture structure in liquid phase (water. At the expense of sound-capillary effect water fills in porous structure of fixing cement at high speed and a cavitation that appears in it leads to intensive cement destruction (dispersion.

  4. Hydration process for calcium-aluminate cement within EVA emulsion by SPring-8 synchrotron radiation x-ray diffraction method

    International Nuclear Information System (INIS)

    Kotera, Masaru; Matsuda, Ikuyo; Miyashita, Keiko; Adachi, Nobuyuki; Tamura, Hisayuki

    2005-01-01

    Polymer-modified mortars which consist of a polymer emulsion and cement materials have been widely developed in the construction materials fields. Forming process of the polymer-modified cement membrane simultaneously involves evaporation of water within the polymer emulsion and hydration of cement. It is important for the polymer-modified cement paste that the hydrate crystal of cement is generating by the hydration during the setting process under existence of the polymer emulsion. In this study, hydration process for calcium-aluminate cement under existence of poly (ethylene-vinyl acetate) (EVA) emulsion (polymer-cement ratio=100%) was investigated by X-ray diffraction method using synchrotron radiation (SPring-8). The diffraction peaks of calcium aluminate (CA) disappeared after the hardening, on the other hand, the peaks of hydrate crystals of calcium-aluminate cement (C 2 AH 8 and C 3 AH 6 ) could be observed. This polymer-modified cement paste hydrated using the water within the polymer emulsion. The hydration of C 2 AH 8 from CA started at around 300 min, and then C 3 AH 6 hydrate crystal increased after 700 min at ambient temperature. This implies that the conversion from C 2 AH 8 to C 3 AH 6 occurred to be more stable phase. The setting temperature affected the reaction rate. In case of hydration at 35degC, the start time of the hydration for calcium-aluminate cement was quicker than that in the ambient temperature four or more times. (author)

  5. Westinghouse integrated cementation facility. Smart process automation minimizing secondary waste

    International Nuclear Information System (INIS)

    Fehrmann, H.; Jacobs, T.; Aign, J.

    2015-01-01

    The Westinghouse Cementation Facility described in this paper is an example for a typical standardized turnkey project in the area of waste management. The facility is able to handle NPP waste such as evaporator concentrates, spent resins and filter cartridges. The facility scope covers all equipment required for a fully integrated system including all required auxiliary equipment for hydraulic, pneumatic and electric control system. The control system is based on actual PLC technology and the process is highly automated. The equipment is designed to be remotely operated, under radiation exposure conditions. 4 cementation facilities have been built for new CPR-1000 nuclear power stations in China

  6. STUDY ON POZZOLANA ACTIVITY OF WHEAT STRAW ASH AS POTENTIAL ADMIXTURE FOR BLENDED CEMENTS

    Directory of Open Access Journals (Sweden)

    Ondrej Jankovsky

    2017-09-01

    Full Text Available Wheat straw ash coming from combustion of packed wheat straw was studied as a potential pozzolana active admixture for blended cements. X-Ray fluorescence, X-Ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were used to examine chemical and mineralogical composition, morphology and elemental distribution of a raw untreated ash. Due to high carbon content, the wheat straw ash was thermally treated for 2 hours at 700 °C and analyzed again using the same analytic techniques. Thermal treatment process was monitored using simultaneous thermal analysis and Fourier Transform infrared spectroscopy. The pozzolana activity was assessed using Chapelle and Frattini tests. In the next step, wheat straw ash was used for preparation of blended cement pastes. The content of ash in the blends was 10, 15, and 20% by mass. For the hardened pastes, basic physical properties, mechanical parameters, and pore size distribution were measured. For fresh past mixes, workability was tested. Moreover, leachability of chlorides, nitrates, sulfates and alkalis from paste samples was studied. The experimentally obtained data pointed to the high pozzolana activity of wheat straw ash and sufficient mechanical properties of cement pastes with the ash content up to 20 mass% of cement. In summary, the analyzed waste product from biomass combustion was found to be applicable as a part of cement-based blended binder providing economic and environmental benefits for concrete industry.

  7. The Specification of Cement Powders for Waste Encapsulation Processes at Sellafield site

    International Nuclear Information System (INIS)

    Angus, M.; Borwick, J.; Cann, G.; Hayes, M.; McLuckie, B.; Jowsey, J.

    2012-01-01

    Requirements are described for Portland Cement (CEM I), Ground Granulated Blast-furnace Slag (GGBS) and Fly Ash (FA) powders used for the encapsulation of Intermediate Level Radioactive Waste (ILW) in UK, with particular reference to Sellafield site encapsulation processes. Differences between the powders used by the UK nuclear industry and the equivalent British and European cement standards are explained. Research over the last 20 years to respond to changes in the performance of these powders is summarised and options for dealing with potential future changes are discussed. These include the use of special blends of GGBS to achieve the desired flow properties or alternatively poly-carboxylate super-plasticizers to produce grouts with consistent performance using cement powders with a wide range of composition. (authors)

  8. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    OpenAIRE

    Choi, Yun-Wang; Oh, Sung-Rok; Choi, Byung-Keol

    2017-01-01

    We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite m...

  9. Matrix model of the grinding process of cement clinker in the ball mill

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  10. Increase in the strength characteristics of Portland cement due to introduction of the compound mineral supplements

    Science.gov (United States)

    Il'ina, Liliia; Gichko, Nikolai; Mukhina, Irina

    2016-01-01

    At the initial phase of hardening it is the limestone component that plays a major role in the hardening process, which acts as the substrate for the crystallization of hydrate tumors due to its chemical affinity with the products of Portland cement hydration. After 7 days, the diopside supplement influences the processes more significantly. Diopside has a high modulus of elasticity compared to the cement paste. As a result, stresses are redistributed within the cement paste and the whole composition is hardened. An increase in the quantity of diopside in the compound supplement to more than 66.7% does not provide a substantial increase in the strength of the cement paste. As the hardness of diopside is higher than the hardness of limestone, much more energy is required to grind it down to a usable component. Therefore, a further increase in the quantity of diopside in the compound supplement is not economically feasible. An evaluation of the optimum quantity of input compound mineral supplements can be made based on the ideas of close packing of spherical particles and the Pauling rules. The optimum content of the supplement is 8-8.5% provided that its dispersion and density are close to the dispersion and density of the binder. An increase in the dispersion of the supplement reduces its optimal quantity.

  11. Energetic and exergetic assessment of a trass mill process in a cement plant

    International Nuclear Information System (INIS)

    Sogut, M.Z.; Oktay, Z.; Hepbasli, A.

    2009-01-01

    Cement production has become one of the most intensive energy industries in the world. For producing it, addition materials have been widely used in cement factories. The main objective of this study is to assess the performance of a trass mill in a cement plant based on the actual operational data using energy and exergy analysis method. In this regard, the values for energy consumption and losses throughout the production process are described. In the process, the overall exergy efficiencies are found to be slightly less than the corresponding energy efficiencies; e.g. 74% and 10.68% for energy and exergy efficiency, respectively. Using energy recovery systems, waste heat energy may be captured, while energy and exergy efficiency values can be improved to 84% and 48%, respectively. It may also be concluded that the analyses reported here will provide the investigators with knowledge about how effectively and efficiently a sector uses its energy resources.

  12. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    Science.gov (United States)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  13. Chemical processes causing cementation in heat-affected smectite - the Kinnekulle bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Takase, Hiroyasu; Benbow, S. [Quantisci Ltd., Oxfordshire (United Kingdom)

    1998-12-01

    Numerical calculation of silica migration and precipitation that can cause cementation of smectite buffer clay has been made using the Grindrod/Takase chemical model. It is used here to investigate whether the silicification of the bentonite and surrounding sediments at Kinnekulle, southwestern Sweden, can be explained by the heat pulse caused by the diabase intrusion that took place in Permian time. Compilation of data concerning silica cementation and associated microstructural and rheological changes showed that significant silica precipitation should have occurred in the Kinnekulle case and this is also documented. Thus, precipitation of quartz has taken place to an extent that can be explained by the chemical model, which also showed conversion of smectite to illite by neoformation of the latter mineral but only for the 3000 years long heating period. Introduction of a criterion for non-reversible illitization is hence a necessary improvement of the model for explaining the actual presence of neoformed illite, which may in fact be wholly or partly responsible for the cementation. (The report is made up of two articles: `Cementation processes in smectite clay associated with conversion of smectite to illite as exemplified by the Kinnekulle bentonites` and `Nonisothermal modelling of geochemical evolution in the Kinnekulle bentonite layer. Mathematical modelling and simulation`) 33 refs, 40 figs.

  14. Chemical processes causing cementation in heat-affected smectite - the Kinnekulle bentonite

    International Nuclear Information System (INIS)

    Pusch, R.; Takase, Hiroyasu; Benbow, S.

    1998-12-01

    Numerical calculation of silica migration and precipitation that can cause cementation of smectite buffer clay has been made using the Grindrod/Takase chemical model. It is used here to investigate whether the silicification of the bentonite and surrounding sediments at Kinnekulle, southwestern Sweden, can be explained by the heat pulse caused by the diabase intrusion that took place in Permian time. Compilation of data concerning silica cementation and associated microstructural and rheological changes showed that significant silica precipitation should have occurred in the Kinnekulle case and this is also documented. Thus, precipitation of quartz has taken place to an extent that can be explained by the chemical model, which also showed conversion of smectite to illite by neoformation of the latter mineral but only for the 3000 years long heating period. Introduction of a criterion for non-reversible illitization is hence a necessary improvement of the model for explaining the actual presence of neoformed illite, which may in fact be wholly or partly responsible for the cementation. (The report is made up of two articles: 'Cementation processes in smectite clay associated with conversion of smectite to illite as exemplified by the Kinnekulle bentonites' and 'Nonisothermal modelling of geochemical evolution in the Kinnekulle bentonite layer. Mathematical modelling and simulation')

  15. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  16. A Study on the Manufacturing Properties of Crack Self-Healing Capsules Using Cement Powder for Addition to Cement Composites

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2017-01-01

    Full Text Available We fabricated crack self-healing capsules using cement powder for mixing into cement composites and evaluated the properties of the capsule manufacturing process in this study. The manufacture of the self-healing capsules is divided into core production processing of granulating cement in powder form and a coating process for creating a wall on the surfaces of the granulated cement particles. The produced capsules contain unhardened cement and can be mixed directly with the cement composite materials because they are protected from moisture by the wall material. Therefore, the untreated cement is present in the form of a capsule within the cement composite, and hydration can be induced by moisture penetrating the crack surface in the event of cracking. In the process of granulating the cement, it is important to obtain a suitable consistency through the kneading agent and to maintain the moisture barrier performance of the wall material. We can utilize the results of this study as a basis for advanced self-healing capsule technology for cement composites.

  17. Natural cement as the precursor of Portland cement: Methodology for its identification

    International Nuclear Information System (INIS)

    Varas, M.J.; Alvarez de Buergo, M.; Fort, R.

    2005-01-01

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements

  18. Method for qualification of cementation processes and its application to a vibration mixer

    International Nuclear Information System (INIS)

    Vicente, R.; Rzyski, B.M.; Suarez, A.A.

    1987-01-01

    In this paper the definition of homogeneneity is discussed and methods to measure the 'degree of heterogeneity' of waste forms are proposed. These measurements are important as aids for mixing process qualification, and as tools in quality assurance procedures and in the development of waste management standards. Homogeneity is a basic quality requirement for waste forms to be accepted in final sites. It do not depend on the matrix immmobilization, rather it is one mean for qualification of the immobilization process. The proposed methods were applied to a vibration assisted mixing process and has proved to an useful mean to judge process improvements. There are many conceivable methods to evaluate homogeneity of waste forms. Some were selected as screening tests aiming at quickly reaching a promising set of process variables. Others were selected to evaluate the degree of excellence of the process in respect to product quality. These envisaged methods were: visual inspection, the use of cement dye as tracer, scanning of radioactive tracers, and measurements of variations of density, water absorption, porosity and mechanical strength across the waste form sample. The process variables were: waste-cement and water-cement ratios, mixer geometry, mixing time and vibration intensity. Some of the apparatus details were change during the experimental work in order to improve product quality. Experimental methods and results statistically analysed and compared with data obtained from samples prepared with a planetary paddle mixer, which were adopted as the homogeneity standard. (Author) [pt

  19. HYDRATION PROCESS AND MECHANICAL PROPERTIES OF CEMENT PASTE WITH RECYCLED CONCRETE POWDER AND SILICA SAND POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-11-01

    Full Text Available Recycled concrete powder (RCP mostly consisting of cement paste could be reused as partial cement replacement. The aim of this paper is to compare hydration and mechanical properties of RCP and two types of silica sand powder (SSP. Comparison of those materials combined with cement can highlight the binder properties of recycled concrete powder. Using of two types of SSP also show an influence of their fines on hydration process and mechanical properties. Particle size analysis and calorimetric measurement were carried out and mechanical properties such as bulk density, dynamic Young’s modulus and compression strength were examine. Calorimetric measurement proves the presence of exposed non-hydrated particles in RCP that can react again. However lower density of old cement paste in RCP overweight the mentioned potential of RCP and mechanical properties are decreasing compared with reference cement paste and cement paste SSP.

  20. Evaluation by discrete element method (DEM) of gap-graded packing potentialities for green concrete design

    NARCIS (Netherlands)

    Stroeven, P.; Le, L.B.N.

    2013-01-01

    Partial replacement of Portland cement by pozzolanic mineral admixtures exerts direct positive effects on CO2 emissions. The green character is reinforced by making use of incinerated vegetable waste, such as rice husk ash (RHA). Gap-grading leads to improved particle packing density with RHA as the

  1. Influence of Ba2+ and Sr2+ ions on the hydration process of portland cement and blended cements

    OpenAIRE

    Živanović, B. M.; Petrašinović, Lj.; Milovanović, T.; Karanović, Lj.; Krstanović, I.

    1987-01-01

    This study concerns the influence of the concentration of Sr2+ and Ba2+ ions in mortar batch waters upon the hydration process of various Portland and additive cements. An increase in the mechanical resistence of said cements is observed, after 28 days, when the concentration of Ba2+ and Sr2+ ions in the mortar batch waters increases. This suggests a possible microstructural explanation of said phenomenon.En el presente trabajo se estudia la influencia de la concentración de los iones Sr2+ y...

  2. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  3. Influence of HAp on the polymerization processes of a possible radioactive bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Montaño, Carlos J.; Campos, Tarcísio P.R., E-mail: carlmont@ucm.es, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Lab. de Radiações Ionizantes; Silva, Adolfo H.M.; Araujo, Maria H., E-mail: adolfohmoraes@ufmg.br, E-mail: mharaujo1993@gmail.com [Universidade Federal de Minas Gerais (RMN/UFMG), Belo Horizonte (Brazil). Dept. de Ressonância Magnética Nuclear

    2017-07-01

    Polymethylmethacrylate PMMA is an acrylic that has been already proposed as a composite to adhere together the fractured bone structures. Subsequently, augmentation bone cements have incorporated Calcium Biophosphonates as vital part of its components to increase the biocompatibility with osseous tissues. Minimally invasive percutaneous techniques such as Vertebroplasty and Kyphoplasty have been developed to reduce surgical impact on patients, but in turn have been reported undesirable effects as extravasation of the cement outside of the planning target volume due to the compression of the internal bone fluids or other tissues. An in situ variable that helps favoring of the PMMA polymerization process is the temperature; however, it may bring deleterious effects. On the methodology, an assay was addressed varying the Hydroxyapatite HAp concentration. Also the cement processing was modified by setting water as a vehicle for particle dispersion. The ratios of HAp/PMMA concentrations were: 0.00000, 0.02167, 0.09062, 0.16619 and 0.50000 mixed in PMMA and liquid catalyst and monomer. The thermal profiles were measured during polymerization and analyzed. Nuclear magnetic resonance NMR analysis was carried out on the polymerization process in an aqueous state to monitor the H-H{sub 2}O proton signal. As results, an increasing in the cement hardness time was found in the proportion of the HAp concentration. The highest τ polymerization time was found for the x{sub 5} concentration and the signal from the water trapped in the HAp amorphous lattice was determined around ∼5 ppm in the {sup 1}H NMR spectra. (author)

  4. Influence of HAp on the polymerization processes of a possible radioactive bone cement

    International Nuclear Information System (INIS)

    Montaño, Carlos J.; Campos, Tarcísio P.R.; Silva, Adolfo H.M.; Araujo, Maria H.

    2017-01-01

    Polymethylmethacrylate PMMA is an acrylic that has been already proposed as a composite to adhere together the fractured bone structures. Subsequently, augmentation bone cements have incorporated Calcium Biophosphonates as vital part of its components to increase the biocompatibility with osseous tissues. Minimally invasive percutaneous techniques such as Vertebroplasty and Kyphoplasty have been developed to reduce surgical impact on patients, but in turn have been reported undesirable effects as extravasation of the cement outside of the planning target volume due to the compression of the internal bone fluids or other tissues. An in situ variable that helps favoring of the PMMA polymerization process is the temperature; however, it may bring deleterious effects. On the methodology, an assay was addressed varying the Hydroxyapatite HAp concentration. Also the cement processing was modified by setting water as a vehicle for particle dispersion. The ratios of HAp/PMMA concentrations were: 0.00000, 0.02167, 0.09062, 0.16619 and 0.50000 mixed in PMMA and liquid catalyst and monomer. The thermal profiles were measured during polymerization and analyzed. Nuclear magnetic resonance NMR analysis was carried out on the polymerization process in an aqueous state to monitor the H-H 2 O proton signal. As results, an increasing in the cement hardness time was found in the proportion of the HAp concentration. The highest τ polymerization time was found for the x 5 concentration and the signal from the water trapped in the HAp amorphous lattice was determined around ∼5 ppm in the 1 H NMR spectra. (author)

  5. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  6. Effect of rheology on flow displacement during cementing process in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Braghini, Andre; Naccache, Monica F.; Fonseca, Marcos I. [Dept. Mechanical Engineering. Pontificia Universidade Catolica (PUR-Rio), Rio de Janeiro, RJ (Brazil)], e-mails: mnaccache@puc-rio.br; Miranda, Cristiane R. de; Martins, Andre L.; Aranha, Pedro E. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)], e-mails: crisrichard@petrobras.com.br, aleibsohn@petrobras.com.br, pearanha@petrobras.com.br

    2010-07-01

    This paper describes a set of numerical simulations of the displacement flow of three non-Newtonian fluids through annular eccentric wells. The main application of this work is the studying of drilling and completion processes of oil wells where a cement slurry pushes the drilling mud, used in the drilling process to lubricate the drill and to remove the produced drilling cuts. To avoid contamination, a spacer fluid is usually inserted between them. Both drilling mud and cement slurry behave as non-Newtonian fluids, and the spacer fluid can be Newtonian or non-Newtonian. The analysis of flow and interface configuration between these fluids helps to determine contamination, and is an important tool for the process optimization. The numerical solution of the governing conservation equations of mass and momentum is obtained with the Fluent software, using the finite volume technique and the volume of fluid method. The effects of rheological parameters, density ratios and pumped volume of the spacer fluid are investigated. The results obtained show that the displacement is better when a more viscous spacer fluid is used. The results also show that using lower amounts of the spacer fluid can lead to contamination, which is worse in the smaller gap region of the annular space, in the case of non-rectilinear well. It was also observed that the density ratios play a major role in the cementing operation. (author)

  7. Packing issue in cement blending for sustainability developments - Approach by discrete element method

    NARCIS (Netherlands)

    Le, L.B.N.; Stroeven, P.

    2014-01-01

    Common cement blending materials for concrete like fly ashes, blast furnace slag, silica fume, metakaolin and rice husk ash have been investigated experimentally as to their impact on concrete’s mechanical, physical and sustainability capabilities. Such efforts offer but case-related information on

  8. Labor processes within a commodity system :a comparative study of workers in apple packing houses

    OpenAIRE

    Bello Barros, Rosario

    1993-01-01

    This study is a comparative analysis of how two forms of capitalist production intersect with gender to shape the labor process in apple packing houses of Virginia, United States and the VI Region, Chile. It illustrates how differences in growers' production systems, as well as traditional undervaluation of women's work, shape the organization of the apple-packing workplace. A theoretical framework based on the notion of labor processes was developed to study growers' farming systems and t...

  9. Process development of continuous glycerolysis in an immobilized enzyme-packed reactor for industrial monoacylglycerol production

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Kiil, Søren; Jensen, Anker Degn

    2007-01-01

    Continuous and easily operated glycerolysis was studied in different lipase-packed columns to evaluate the most potential process set-ups for industrial monoacylglycerol (MAG) production. Practical design-related issues such as enzyme-filling degree, required reaction time, mass transfer investig......Continuous and easily operated glycerolysis was studied in different lipase-packed columns to evaluate the most potential process set-ups for industrial monoacylglycerol (MAG) production. Practical design-related issues such as enzyme-filling degree, required reaction time, mass transfer...

  10. Nanotechnological applied tasks of the increase in the efficiency of the hardening processes of cement concrete

    Directory of Open Access Journals (Sweden)

    Chernishov Evgeny Mihalovich

    2017-02-01

    Full Text Available The scientific basis of the solution to the applied tasks of concrete technology through the use of «nano» tools, which provide the organization of the heterogeneous process of cement hydration and hardening, has been characterized. It is shown that the introduction of nanoadditives enables the direct regulation of the processes of structure formation in cement systems at the nanolevel. The effectiveness of the use of «nano» tools has been proposed to evaluate by means of complex criteria characterizing quantitatively the change in the activation energy, the rate of the process and time of its completion τ, the size and power consumption of the technology E while ensuring quality levels specified by R. According to the criteria, the monitoring of the results of the research has been made. Moreover, the most effective nanomodifying admixtures of two types have been identified. Type I is a compound nanoadditive based on nanoparticles SiO2 in combination with a superplasticizer, which mechanism of action is associated and also characterized by the increase in specific strength per unit measure the degree of cement hydration by 1.25–1.35 times. Engineering problems have been formulated. Moreover, the solutions are indicated for increasing the energy efficiency of the factory production of reinforced concrete products and structures. These solutions predetermine the reduction in the value of the maximum temperature for the curing of concrete, the reduction of the duration of the achievement of the required degree of cement hydration while concrete hardens, the reduction of time of cement concrete hardening to reach the regulated values of its strength, the increase in concrete strength per unit of cement consumption per m3 and energy efficiency of concrete hardening process in the preparation of reinforced concrete products. with the catalytic role in the processes of phase formation of nanoparticles of hydrated compounds. Type II is a

  11. Is it cement to be? Downhole cement that uses zeolite additive may offer lightweight alternative

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-05-01

    C2C Zeolite Corporation produces zeolites from a large deposit near Cache Creek, British Columbia, and processes them for use as an additive in downhole cement well casings. Early research indicates that zeolites can significantly improve the way downhole cement is made in the oil industry. Zeolites are made up mostly of silicates of aluminum and calcium. They have a great ability to absorb water, resulting in a lighter and more fluid cement than is currently available. C2C claims that zeolites will reduce cement weight, column pressure and operator costs. The cost benefits of using lighter cement downhole includes easier moving, processing and handling of the mix. Initial research suggests that zeolites might prove to be viable alternatives to other cement lighteners such as silica fumes or flyash. Zeolite-based cement also performed reasonably well in freeze-thaw tests and showed good adhesion and no evidence of shrinkage in downhole tests. 3 figs.

  12. Techno-economic study of CO2 capture process for cement plants. Paper no. IGEC-1-107

    International Nuclear Information System (INIS)

    Nazmul Hassan, S.M.; Douglas, P.L.; Croiset, E.

    2005-01-01

    Carbon dioxide is considered to be the major source of GHG responsible for global warming; man-made CO 2 contributes approximately 63.5% to all greenhouse gases. The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO 2 for every 1000 kg of cement produced. Amine absorption processes, in particular the monoethanolamine (MEA) based process, is considered to be a viable technology for capturing CO 2 from low-pressure flue gas streams because of its fast reaction rate with CO 2 and low cost of raw materials compared to other amines. However, the MEA absorption process is associated with high capital and operating costs because a significant amount of energy is required for solvent regeneration and because of severe operating problems such as corrosion, solvent loss and solvent degradation. This research was motivated by the need to design, size and cost a CO 2 capture process from the cement industry. The MEA based absorption process was used as a potential technique to model CO 2 capture from cement plants. In this research four cases were considered all to reach a CO 2 purity of 98%: i) the plant operates at the highest capacity; ii) the plant operates at average load; iii) the plant operates at minimum operating capacity; and iv) switching to a lower carbon content fuel at average plant load. A comparison among the four cases were performed to determine the best operating conditions for capturing CO 2 from cement plants. A sensitivity analysis of the economics to the lean loading and percent recovery were carried out as well as the different absorber and striper tray combinations. (author)

  13. Processing of concentrated radioactive wastes into cement and bitumens following calcination

    International Nuclear Information System (INIS)

    Napravnik, J.; Sazavsky, P.; Ditl, P.; Prikryl, P.

    1985-01-01

    A brief characteristic is presented of the most frequently used processes of solidification of liquid radioactive wastes, viz., bituminization, cementation and their combination with calcination. The effect of individual parameters is assessed on the choice of the type of solidification process as is their importance in the actual process, in temporary storage, during transportation and under conditions of long-term storage. It has been found that a combination of the procedures could lead to a modular system of methods and equipment. This would allow to approach optimal solidification of wastes in the present period and to establish a research reserve for the development of more modern, economically advantageous and safer procedures. A rough estimate is made of the costs of the solidification of 1 m 3 of radioactive concentrate from the V-1 power plant at a production of 380 m 3 /year, this for the cementation-calcination and bituminization-calcination procedures. The said rough economic analysis only serves to identify the major operating components which have the greatest effect on the economic evaluation of the solidification procedures. (Z.M.)

  14. Cement dust exposure and acute lung function: A cross shift study

    Directory of Open Access Journals (Sweden)

    Moen Bente E

    2010-04-01

    Full Text Available Abstract Background Few studies have been carried out on acute effects of cement dust exposure. This study is conducted to investigate the associations between current "total" dust exposure and acute respiratory symptoms and respiratory function among cement factory workers. Methods A combined cross-sectional and cross-shift study was conducted in Dire Dawa cement factory in Ethiopia. 40 exposed production workers from the crusher and packing sections and 20 controls from the guards were included. Personal "total" dust was measured in the workers' breathing zone and peak expiratory flow (PEF was measured for all selected workers before and after the shift. When the day shift ended, the acute respiratory symptoms experienced were scored and recorded on a five-point Likert scale using a modified respiratory symptom score questionnaire. Results The highest geometric mean dust exposure was found in the crusher section (38.6 mg/m3 followed by the packing section (18.5 mg/m3 and the guards (0.4 mg/m3. The highest prevalence of respiratory symptoms for the high exposed workers was stuffy nose (85% followed by shortness of breath (47% and "sneezing" (45%. PEF decreased significantly across the shift in the high exposed group. Multiple linear regression showed a significant negative association between the percentage cross-shift change in PEF and total dust exposure. The number of years of work in high-exposure sections and current smoking were also associated with cross-shift decrease in PEF. Conclusions Total cement dust exposure was related to acute respiratory symptoms and acute ventilatory effects. Implementing measures to control dust and providing adequate personal respiratory protective equipment for the production workers are highly recommended.

  15. 21 CFR 108.12 - Manufacturing, processing, or packing without a permit, or in violation of a permit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Manufacturing, processing, or packing without a permit, or in violation of a permit. 108.12 Section 108.12 Food and Drugs FOOD AND DRUG ADMINISTRATION... General Provisions § 108.12 Manufacturing, processing, or packing without a permit, or in violation of a...

  16. Using dehydrated cement paste as new type of cement additive

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.; Dong, J

    2013-01-01

    This paper presents an experimental study, including evaluation and modification, on using dehydrated cement paste (DCP) as a new type of cement additive. After a series of processes, normal DCP (N-DCP) was produced as before and a modified form of DCP (M-DCP) was produced as well. The cementitious

  17. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  18. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  19. Water demand of amorphous nano silica and their impact on the workability of cement paste

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Hüsken, G.; Brouwers, H.J.H.

    2012-01-01

    This paper addresses the characterization of six different amorphous silica samples with respect to their application in cement paste. Different mixes are compared and analyzed using the mini spread-flow test method. Also the granular properties, different void fraction states of packing and

  20. Environmental Assessment of Different Cement Manufacturing ...

    Science.gov (United States)

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy and Ecological Footprint of different cement manufacturing processes for a particular cement plant. There are several mitigation measures that can be incorporated in the cement manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 emissions. The mitigation measures considered in this paper were the use of alternative fuels and a more energy efficient kiln process. In order to estimate the sustainability effect of the aforementioned measures, Emergy and Ecological Footprint were calculated for four different scenarios. The results show that Emergy, due to the high input mass of raw material needed for clinker production, stays at about the same level. However, for the Ecological Footprint, the results show that by combining the use of alternative fuels together with a more energy efficient kiln process, the environmental impact of the cement manufacturing process can be lowered. The research paper presents an analysis of the sustainability of cement production , a major contributor to carbon emissions, with respect to using alternative fuels and a more efficient kiln. It show

  1. Characterization of waste products prepared from radioactive contaminated clayey soil cemented according to the GEODUR process

    International Nuclear Information System (INIS)

    Brodersen, K.; Vinther, A.

    1990-11-01

    Radioactive contaminated soil may arise due to accidents of various types or may be detected during decommisioning of nuclear installations. Ordinary surface soil cannot normally be conditioned using conventional cementation processes since the content of humic materials retards or prevents the solidification. An additive available from the Danish firm Geodur A/S makes it possible to circumvent this difficulty and to produce a monolithic, nondusting waste type using rather small amounts of cement. The report describes work on characterization of such a cemented waste product prepared on basis of clayey top soil from the Risoe area. The claimed advantages of the process was verified, and data for the compression strength (low), hydraulic conductivity (satisfactory) and other pore structure-related properties are given for the obtained products. Unfortunately the behaviour of cesium and strontium, representing two of the most relevant radionuclides, was not too promising. The retention of cesium is satisfactory, but less good than for the untreated soil. Greatly improved cesium retention after drying of the materials was noticed. Good retention of strontium is only obtained after reaction of the material with carbon dioxide from the atmosphere. The behaviour of the two isotopes in other types of cemented waste is somewhat similar, but the decrease in retention compared with untreated soil makes the process less interesting as a possibility for remedial actions after accidents, etc. Some further studies of the cemented soil waste are beeing made within the frame of the Nordic Nuclear Safety Studies. Elements forming low solublity components in the high pH environment in the cemented soil will probably be retained quite efficiently. This was demonstrated in case of Zn. (author) 11 tabs., 22 ills., 8 refs

  2. Low force cementation.

    Science.gov (United States)

    Wilson, P R

    1996-07-01

    The marginal adaptation of full coverage restorations is adversely affected by the introduction of luting agents of various minimum film thicknesses during the cementation process. The increase in the marginal opening may have long-term detrimental effects on the health of both pulpal and periodontal tissues. The purpose of this study was to determine the effects of varying seating forces (2.5, 12.5, 25 N), venting, and cement types on post-cementation marginal elevation in cast crowns. A standardized cement space of 40 microns was provided between a machined gold crown and a stainless steel die. An occlusal vent was placed that could be opened or closed. The post-cementation crown elevation was measured, following the use of two commercially available capsulated dental cements (Phosphacap, and Ketac-cem Applicap). The results indicate that only the combination of Ketac-Cem Applicap and crown venting produced post-cementation crown elevation of less than 20 microns when 12.5 N seating force was used. Higher forces (25 N) and venting were required for comparable seating when using Phosphacap (19 microns). The amount of force required to allow maximum seating of cast crowns appears to be cement specific, and is reduced by effective venting procedures.

  3. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  4. Evaluation of pH at the Bacteria–Dental Cement Interface

    Science.gov (United States)

    Mayanagi, G.; Igarashi, K.; Washio, J.; Nakajo, K.; Domon-Tawaraya, H.; Takahashi, N.

    2011-01-01

    Physiochemical assessment of the parasite-biomaterial interface is essential in the development of new biomaterials. The purpose of this study was to develop a method to evaluate pH at the bacteria-dental cement interface and to demonstrate physiochemical interaction at the interface. The experimental apparatus with a well (4.0 mm in diameter and 2.0 mm deep) was made of polymethyl methacrylate with dental cement or polymethyl methacrylate (control) at the bottom. Three representative dental cements (glass-ionomer, zinc phosphate, and zinc oxide-eugenol cements) were used. Each specimen was immersed in 2 mM potassium phosphate buffer for 10 min, 24 hrs, 1 wk, or 4 wks. The well was packed with Streptococcus mutans NCTC 10449, and a miniature pH electrode was placed at the interface between bacterial cells and dental cement. The pH was monitored after the addition of 1% glucose, and the fluoride contained in the cells was quantified. Glass-ionomer cement inhibited the bacteria-induced pH fall significantly compared with polymethyl methacrylate (control) at the interface (10 min, 5.16 ± 0.19 vs. 4.50 ± 0.07; 24 hrs, 5.20 ± 0.07 vs. 4.59 ± 0.11; 1 wk, 5.34 ± 0.14 vs. 4.57 ± 0.11; and 4 wks, 4.95 ± 0.27 vs. 4.40 ± 0.14), probably due to the fluoride released from the cement. This method could be useful for the assessment of pH at the parasite-biomaterial interface. PMID:21933936

  5. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A.

    2012-01-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  6. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions

    Directory of Open Access Journals (Sweden)

    S. P. Dunuweera

    2018-01-01

    Full Text Available We first discuss cement production and special nomenclature used by cement industrialists in expressing the composition of their cement products. We reveal different types of cement products, their compositions, properties, and typical uses. Wherever possible, we tend to give reasons as to why a particular cement type is more suitable for a given purpose than other types. Cement manufacturing processes are associated with emissions of large quantities of greenhouse gases and environmental pollutants. We give below quantitative and qualitative analyses of environmental impact of cement manufacturing. Controlling pollution is a mandatory legal and social requirement pertinent to any industry. As cement industry is one of the biggest CO2 emitters, it is appropriate to discuss different ways and means of CO2 capture, which will be done next. Finally, we give an account of production of nanocement and advantages associated with nanocement. Nanofillers such as nanotitania, nanosilica, and nanoalumina can be produced in large industrial scale via top-down approach of reducing size of naturally available bulk raw materials to those in the nanorange of 1 nm–100 nm. We mention the preparation of nanotitania and nanosilica from Sri Lankan mineral sands and quartz deposits, respectively, for the use as additives in cement products to improve performance and reduce the amount and cost of cement production and consequent environmental impacts. As of now, mineral sands and other treasures of minerals are exported without much value addition. Simple chemical modifications or physical treatments would add enormous value to these natural materials. Sri Lanka is gifted with highly pure quartz and graphite from which silica and graphite nanoparticles, respectively, can be prepared by simple size reduction processes. These can be used as additives in cements. Separation of constituents of mineral sands is already an ongoing process.

  7. Development and demonstration of calculation tool for industrial drying processes ''DryPack''; Udvikling og demonstration af beregningsvaerktoej til industrielle toerreprocesser ''DryPack''

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Weinkauff Kristoffersen, J.; Blazniak Andreasen, M. [Teknologisk Institut, Aarhus (Denmark); Elmegaard, B.; Kaern, M. [Danmarks Tekniske Univ.. DTU Mekanik, Kgs. Lyngby (Denmark); Monrad Andersen, C. [Lokal Energi, Viby J. (Denmark); Grony, K. [SE Big Blue, Kolding (Denmark); Stihoej, A. [Enervision, Kolding (Denmark)

    2013-03-15

    In this project we have developed a calculation tool for calculating energy consumption in different drying processes - primarily drying processes with air. The program can be used to determine the energy consumption of a current drying process, after which it can be calculated how much energy can be saved by various measures. There is also developed a tool for the simulation of a batch drier, which calculates the drying of a batch depending on the time. The programs have demonstrated their usefulness in connection with three cases that are reviewed in the report. In the project measurements on four different dryers have been carried out, and energy consumption is calculated using ''DryPack''. With ''DryPack'' it is possible to find potential savings by optimizing the drying processes. The program package includes utilities for the calculation of moist air: 1) Calculation of the thermodynamic properties of moist air; 2) Device operation with moist air (mixing, heating, cooling and humidification); 3) Calculation of the relative change of the drying time by changing the process parameters; 4) IX-diagram at a temperature above 100 deg. C. (LN)

  8. Characterization of monolith block of spent resin cementation

    International Nuclear Information System (INIS)

    Prayitno; Endro-Kismolo; Isman MT

    1996-01-01

    Spent resin immobilization process with cement was done to prevent release of radionuclide in the ultimate storage or disposal. The varied Composition of water/cement ratio in the cementation process were 0.3; 0.4; 0.5 and the various weight of resin waste are 25 g, 37.5 g and 50 gram. The compressive strength of the various water/cement ratio without spent resin was bigger than 0.3. This investigation proved that the compressive strength of Tiga Roda cement was bigger than those of Gresik cement or Nusantara cement. The compressive of the cement block of were the spent resin cementation was influenced by the water/cement ratio and the total spent resin addition. The best condition reached at the water/cement ratio of 0.3 and 25 gram spent resin, was compressive strength of 17.86 N/mm 2 . Leaching rate of the various weight composition of spent resin cementation for 91 days were between 10 -2 - 10 -4 gram.cm -2 .day -1

  9. Carbon dioxide capture from a cement manufacturing process

    Science.gov (United States)

    Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  10. Anticorrosion performance of chromized coating prepared by pack cementation in simulated solution with H2S and CO2

    Science.gov (United States)

    Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li

    2017-10-01

    A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.

  11. The cement solidification systems at LANL

    International Nuclear Information System (INIS)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing

  12. Preparation of hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement by the use of oil-shale residues is characterized in that the oil-shale refuse is mixed with granular basic blast-furnace slag and a small amount of portland cement and ground together.

  13. Packing Degenerate Graphs Greedily

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  14. Influence of Ba2+ and Sr2+ ions on the hydration process of portland cement and blended cements

    Directory of Open Access Journals (Sweden)

    Živanović, B. M.

    1987-12-01

    Full Text Available This study concerns the influence of the concentration of Sr2+ and Ba2+ ions in mortar batch waters upon the hydration process of various Portland and additive cements. An increase in the mechanical resistence of said cements is observed, after 28 days, when the concentration of Ba2+ and Sr2+ ions in the mortar batch waters increases. This suggests a possible microstructural explanation of said phenomenon.En el presente trabajo se estudia la influencia de la concentración de los iones Sr2+ y Ba2+ en las aguas de amasado sobre el proceso de hidratación de varios cementos portland y de adición. Se comprueba un incremento de las resistencias mecánicas de dichos cementos, a los 28 días, cuando aumenta la concentración de los iones Ba2+ y Sr2+ en las aguas de amasado, lo cual sugiere una posible explicación microestructural a dicho fenómeno.

  15. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  16. Substantial global carbon uptake by cement carbonation

    OpenAIRE

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn

    2016-01-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 20131, 2. Considerable attention has been paid to quantifying these industrial process emissions from cement production2, 3, but the natural reversal of the process—carbonation—has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondar...

  17. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  18. Analysis of the influence of two different milling processes in the properties of precursor powder and [Beta]-TCP cement

    International Nuclear Information System (INIS)

    Cardoso, H.A.I.; Pereira, C.H.R.; Zavaglia, C.A.C.; Motisuke, M.

    2011-01-01

    There are several characteristics that put calcium phosphate cements in evidence, like its bioactivity and in vivo resorption. The influence of two milling processes in the morphological properties of the [beta]-tricalcium phosphate powder, [beta]-TCP, and in the mechanical properties of the cement were analyzed. The powder was obtained by solid state reaction of CaCO_3 and CaHPO_4 at 1050 ° C. It showed high phase purity and absence of toxic elements. The powder was processed in ball mill (A) and high-energy vibratory mill (B), with posterior analyze by SEM and particle size distribution. The powders showed different average and distribution of grain size. Finally, the cement obtained by the process (B) showed values of axial tensile strength significantly greater than that obtained by the process (A). The milling process (B) is much more efficient than the process (A). (author)

  19. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.

    2015-01-01

    This paper addresses the development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses are investigated. The modified Andreasen & Andersen particle packing model is utilized to achieve a densely compacted cementitious matrix. Fly ash (FA),

  20. The function of packing materials in a high-level nuclear waste repository and some candidate materials: Salt Repository Project

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Shade, J.W.

    1987-03-01

    Packing materials should be included in waste package design for a high-level nuclear waste repository in salt. A packing material barrier would increase confidence in the waste package by alleviating possible shortcomings in the present design and prolonging confinement capabilities. Packing materials have been studied for uses in other geologic repositories; appropriately chosen, they would enhance the confinement capabilities of salt repository waste packages in several ways. Benefits of packing materials include retarding or chemically modifying brines to reduce corrosion of the waste package, providing good thermal conductivity between the waste package and host rock, retarding or absorbing radionuclides, and reducing the massiveness of the waste package. These benefits are available at low percentage of total repository cost, if the packing material is properly chosen and used. Several candidate materials are being considered, including oxides, hydroxides, silicates, cement-based mixtures, and clay mixtures. 18 refs

  1. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    Science.gov (United States)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  2. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    Science.gov (United States)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  3. Effect of the sterilization process on physical and mechanical properties of the bonacryl bone cement

    International Nuclear Information System (INIS)

    Morejon, L.; Delgado, J.A.; Aguero, L.; Rapado, M.; Ginebra, M.P.; Gil, F.J.; Mendizabal, E.

    2008-01-01

    The use of bone cements of poly(methyl methacrylate) (PMMA) to fix artificial prosthesis to the human body is a habitual method in orthopedic surgery. The hip and the knee joints have a very complex biomechanics and support high loads, for these reasons, acrylic bone cements have to comply with international standards in order to secure the biofuncionality and durability of the implant. In this work we report the effect of sterilization by ethylene oxide or gamma radiation on the BONACRYL Cuban cement. We determined how sterilization methods affect the molecular weight of the polymer as well as its quasi-static mechanical properties. The results demonstrated that the gamma radiation modifies the molecular weight of the PMMA although the compression and bending strength were not affected by the sterilization process applied. (authors)

  4. Structured packing: an opportunity for energy savings

    International Nuclear Information System (INIS)

    Chavez T, R.H.; Guadarrama G, J.J.

    1996-01-01

    This work emphasizes the advantages about the use of structured packing. This type of packings allows by its geometry to reduce the processing time giving energy savings and throw down the production costs in several industries such as heavy water production plants, petrochemical industry and all industries involved with separation processes. There is a comparative results of energy consumption utilizing the structured vs. Raschig packings. (Author)

  5. Joint Cementation of liquid and solid radioactive waste in decommissioning of atomic objects

    International Nuclear Information System (INIS)

    Varlakov, A.; Varlakova, G.; Germanov, A.; Sukhanov, L.

    2015-01-01

    Joint cementation of liquid and solid radioactive waste (RW) directly in the containers that serve as the final packaging allows the reduction of waste amounts sent for storage and disposal. In the A.A. Bochvar Research Institute we have created a mobile unit and conducted tests on joint grouting of solid RW with the use of cement mixtures prepared on the basis of liquid RW. Two variants of void filling between the fragments of solid RW in a container: pouring and impregnation were examined. Impregnation is the so-called method suggested to be used for the solid RW with small fragments and dense filling layer. In this case the gaps between the waste are filled with the cement compound by using special technological procedures, in particular, the vibration action on the container filled with waste and the use of cement mixture with high level of penetration. It was observed that the pouring method is right for the cementation of solid RW with fragment sizes not exceeding 100-150 mm. Impregnation method can be used for the joint grouting of practically all types of solid RW regardless their size and fragments homogeneity. Cementation of densely packed and large size solid RW by impregnation guarantees the joint grouting of the lower layers of the waste in the container and can be controlled by determination of the impregnation degree and density of the cement mixture that passed through the waste layer

  6. Experimental study on intermediate level radioactive waste processing

    International Nuclear Information System (INIS)

    Nagakura, Tadashi; Abe, Hirotoshi; Okazawa, Takao; Hattori, Seiichi; Maki, Yasuro

    1977-01-01

    In the disposal of intermediate level radioactive wastes, multilayer package will be adopted. The multilayer package consists of cement-solidified waste and a container such as a drum - can with concrete liner or a concrete container. So, on the waste to be cement-solidified in such container, experimental study was carried out as follows. (1) Cement-solidification method. (2) Mechanical behaviour of cement-solidified waste. The mechanical behaviour of the containers was studied by the finite element method and experiment, and the function of pressure-balancing valves was also studied. The following data on processing intermediate level radioactive wastes were obtained. (1) In the case of cement-solidified waste, the data to select the suitable solidifying material and the standard mixing proportion were determined. (2) The basic data concerning the uniaxial compressive strength of cement-solidified waste, the mechanical behaviour of cement-solidified waste packed in a drum under high hydrostatic pressure, the shock response of cement-solidified waste at the time of falling and so on were obtained. (3) The pressure-balancing valves worked at about 0.5 Kg/cm 2 pressure difference inside and outside a container, and the deformation of a drum cover was 10 to 13 mm. In case of the pressure difference less than 0,5 Kg/cm 2 , the valves shut, and water flow did occur. (auth.)

  7. Test of 134Cs, 85,89Sr leaching rate in a resemble vitrifiable cement waste form

    International Nuclear Information System (INIS)

    Lin Meiqiong; Wei Feng; Yin Qi; Fan Xianhua; Xu Shengli; Li Yongde

    2003-01-01

    A novel material--resemble vitrifiable cement for conditioning low and mediate level radioactive waste has been developed. Waste form has been characterized for their physical and chemical performance, phase composition. The cement formulation has been patented. In this experiment the cement is mixed with simulated wastes spiked with 134 Cs and 85,89 Sr by 5 min at least. The Ratio of the waste to the cement is 0.45-0.55. The mixture is packed into cylindrical molds which has the same dimension of diameter and height . The grouts are cured for a period of 28 d in a room temperature curing chamber at an atmospheric pressure. The cured waste form is then completely immersed into deionized water. According to standard GB7023-86, leaching rate of 134 Cs and 85,89 Sr are measured. The result shows that the leaching rate of the species 134 Cs and 85,89 Sr is to be on the order 10 -4 and 10 -5 on the 42 d immersion, respectively and is better than that of commercial cement

  8. Diffusion behavior of anion in hardened low-heat portland cement paste containing fly ash. Dependence of effective diffusion coefficient on pore structure

    International Nuclear Information System (INIS)

    Chida, Taiji; Yoshida, Takahiro

    2012-01-01

    In the sub-surface disposal system, the closely packed concrete layer is expected the low diffusivity to retard the migration of radionuclides. Low-heat portland cement containing 30 wt% fly ash (FAC) is a candidate cement material for the construction of sub-surface repository because of its high dense structure and its resistance to cracking. Previously, we reported that FAC has lower diffusivity than Ordinary Portland Cement (OPC) for acetic acid and iodine. However, the mechanism for low diffusivity of FAC was not clear. In this study, the diffusion of multiple trace ions (chlorine, bromine and iodine) in hardened cement pastes was examined by through-diffusion experiments. The effective diffusion coefficients, D e , of the trace ions for hardened OPC cement pastes were on the order of 10 -12 m 2 s -1 for trace ions, and D e for hardened FAC cement pastes were on the order of 10 -13 m 2 s -1 for chlorine, 10 -14 m 2 s -1 for bromine and 10 -15 m 2 s -1 for iodine. Additionally, the pore size distribution and porosity of FAC changed to more closely packed structure for 13 months by the pozzolanic reaction, and the pore size distribution of FAC (mainly 3-10 nm) were an order of magnitude smaller than that of OPC. These results suggest that the low diffusivity of FAC is based on the continuous change in the pore structure and the nano-scale pore size retarding the migration of trace ions. (author)

  9. Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed.

    Science.gov (United States)

    Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi

    2017-09-19

    A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.

  10. Improved energy efficiency in the process industries

    Energy Technology Data Exchange (ETDEWEB)

    Pilavachi, P A [Commission of the European Communities, Brussels (Belgium)

    1992-12-31

    The European Commission, through the JOULE Programme, is promoting energy efficient technologies in the process industries; the topics of the various R and D activities are: heat exchangers (enhanced evaporation, shell and tube heat exchangers including distribution of fluids, and fouling), low energy separation processes (adsorption, melt-crystallization and supercritical extraction), chemical reactors (methanol synthesis and reactors with integral heat exchangers), other unit operations (evaporators, glass-melting furnaces, cement kilns and baking ovens, dryers and packed columns and replacements for R12 in refrigeration), energy and system process models (batch processes, simulation and control of transients and energy synthesis), development of advanced sensors.

  11. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  12. Immobilisation of shredded waste in a cement monolith

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1987-11-01

    During 1983/84 work was continued on the development of the process for the encapsulation of shredded waste in cement. Using simulant shredded waste the conditions for operating the process on the 500 litres scale have been established. Evaluation of the cemented product showed that it was satisfactorily infilled with cement grout with no significant voidage. (author)

  13. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Rahman, A.A.; Glasser, F.P.

    1987-01-01

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  14. Radioactivity evaluation method for pre-packed concrete packages of low-level dry active wastes

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Funahashi, Tetsuo; Watabe, Kiyomi; Ozawa, Yukitoshi; Kashiwagi, Makoto

    1998-01-01

    Low-level dry active wastes of nuclear power plants are grouted with cement mortal in a container and planned to disposed into the shallow land disposal site. The characteristics of radionuclides contained in dry active wastes are same as homogeneous solidified wastes. In the previous report, we reported the applicability of the radioactivity evaluation methods established for homogeneous solidified wastes to pre-packed concrete packages. This report outlines the developed radioactivity evaluation methods for pre-packed concrete packages based upon recent data. Since the characteristics of dry active wastes depend upon the plant system in which dry active wastes originate and the types of contamination, sampling of wastes and activity measurement were executed to derive scaling factors. The radioactivity measurement methods were also verified. The applicability of non-destructive methods to measure radioactivity concentration of pre-packed concrete packages was examined by computer simulation. It is concluded that those methods are accurate enough to measure actual waste packages. (author)

  15. Impact of Fuel Selection on Techno-environmental Performance of Post-combustion Calcium Looping Process Applied to a Cement Plant

    NARCIS (Netherlands)

    Schakel, Wouter; Orregioni, Gabriel; Strømman, Anders; Ramirez, Andrea

    Calcium looping CO2 capture is a promising technology to reduce CO2 emissions from cement production. Coal is generally considered the fuel used to drive the calcium looping process as coal is already used as feedstock for cement production. This study assesses the impact of different fuels (coal,

  16. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  17. Energy audit and conservation opportunities for pyroprocessing unit of a typical dry process cement plant

    International Nuclear Information System (INIS)

    Kabir, G.; Abubakar, A.I.; El-Nafaty, U.A.

    2010-01-01

    Cement production process has been highly energy and cost intensive. The cement plant requires 8784 h per year of the total operating hours to produce 640,809 tonnes of clinker. To achieve effective and efficient energy management scheme, thermal energy audit analysis was employed on the pyroprocessing unit of the cement plant. Fuel combustion generates the bulk of the thermal energy for the process, amounting to 95.48% (4164.02 kJ/kg cl ) of the total thermal energy input. Thermal efficiency of the unit stands at 41%, below 50-54% achieved in modern plants. The exhaust gases and kiln shell heat energy losses are in significant quantity, amounting to 27.9% and 11.97% of the total heat input respectively. To enhance the energy performance of the unit, heat losses conservation systems are considered. Waste heat recovery steam generator (WHRSG) and Secondary kiln shell were studied. Power and thermal energy savings of 42.88 MWh/year and 5.30 MW can be achieved respectively. Financial benefits for use of the conservation methods are substantial. Environmental benefit of 14.10% reduction in Greenhouse gases (GHG) emissions could be achieved.

  18. Energy audit and conservation opportunities for pyroprocessing unit of a typical dry process cement plant

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, G.; Abubakar, A.I.; El-Nafaty, U.A. [Chemical Engineering Programme, Abubakar Tafawa Balewa University, P. M. B. 0248, Bauchi (Nigeria)

    2010-03-15

    Cement production process has been highly energy and cost intensive. The cement plant requires 8784 h per year of the total operating hours to produce 640,809 tonnes of clinker. To achieve effective and efficient energy management scheme, thermal energy audit analysis was employed on the pyroprocessing unit of the cement plant. Fuel combustion generates the bulk of the thermal energy for the process, amounting to 95.48% (4164.02 kJ/kg{sub cl}) of the total thermal energy input. Thermal efficiency of the unit stands at 41%, below 50-54% achieved in modern plants. The exhaust gases and kiln shell heat energy losses are in significant quantity, amounting to 27.9% and 11.97% of the total heat input respectively. To enhance the energy performance of the unit, heat losses conservation systems are considered. Waste heat recovery steam generator (WHRSG) and Secondary kiln shell were studied. Power and thermal energy savings of 42.88 MWh/year and 5.30 MW can be achieved respectively. Financial benefits for use of the conservation methods are substantial. Environmental benefit of 14.10% reduction in Greenhouse gases (GHG) emissions could be achieved. (author)

  19. Enhancement of cemented waste forms by supercritical CO2 carbonation of standard portland cements

    International Nuclear Information System (INIS)

    Rubin, J.B.; Carey, J.; Taylor, C.M.V.

    1997-01-01

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented

  20. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks.

    Science.gov (United States)

    Agnolin, Ivana; Roux, Jean-Noël

    2007-12-01

    This is the first paper of a series of three, in which we report on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. The influence of various assembling processes on packing microstructures is investigated. It is accurately checked that frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, higher solid fractions corresponding to more ordered configurations with traces of crystallization. Specific properties directly related to isostaticity of the force-carrying structure in the rigid limit are discussed. With frictional grains, different preparation procedures result in quite different inner structures that cannot be classified by the sole density. If partly or completely lubricated they will assemble like frictionless ones, approaching the RCP solid fraction Phi_{RCP} approximately 0.639 with a high coordination number: z* approximately =6 on the force-carrying backbone. If compressed with a realistic coefficient of friction mu=0.3 packings stabilize in a loose state with Phi approximately 0.593 and z* approximately =4.5 . And, more surprisingly, an idealized "vibration" procedure, which maintains an agitated, collisional regime up to high densities results in equally small values of z* while Phi is close to the maximum value Phi_{RCP}. Low coordination packings have a large proportion (>10%) of rattlers--grains carrying no force--the effect of which should be accounted for on studying position correlations, and also contain a small proportion of localized "floppy modes" associated with divalent grains. Low-pressure states of frictional packings retain a finite level of force indeterminacy even when assembled with the slowest compression rates simulated, except in the case when the friction coefficient tends to infinity. Different microstructures are characterized in terms of near

  1. Cement conditioning of waste materials and polluted soil using the GEODUR process

    International Nuclear Information System (INIS)

    Brocdersen, K.; Hjelmar, O.; Mortonsen, S.

    1991-01-01

    In this paper two areas of application of the GEODUR additive in cement stabilization of waste materials have been investigated: stabilization of radioactive contaminated soil and stabilization of municipal solid waste incinerator ash. Preliminary experimental work on a clayey soil contaminated with radioactive cesium and strontium has indicated that the GEODUR process is a technically feasible method for soil solidification. The retarding effects of humic materials in the soil are eliminated by the additive even at low cement contents. The solidified soil is not particularly strong, but that satisfactory water permeability. Retention of cesium is reasonably good, but not as good as for the untreated soil. Retention of strontium is not good but is considerably improved by carbonation. The volume stability during permanent immersion of the solidified products in water is satisfactory, but crack formation during dryout cannot be excluded

  2. New Structured Packing CUB for Purification of Exhaust Gases

    Directory of Open Access Journals (Sweden)

    Irina Novikova

    2016-10-01

    Full Text Available New structured packing for heat and mass transfer processes named CUB is presented in our article. The packing can be applied in packed towers for exhaust gas cleaning instead random packing, for example, rings type that are the most used in such processes. The advantages of the new packing over random packing are lower pressure drop, capability of purification and as a consequence long-term service of the packing. The researches of intensity of liquid-phase mass-transfer in packed bed depending on liquid spray rate and gas velocity were carried out. Obtained data show that packing CUB is more effective than the most popular type of structured packing under all other conditions being equal. As experimental data shown heat transfer coefficient was up by 17% and mass transfer coefficient was up by 51%. We found out optimal geometry of cross section of the new packing, namely, number of elements and parameters of one element. The new construction of structured packing is applicable for both type of column cross-section round and square.

  3. Review of technologies for mercury removal from flue gas from cement production processes

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    sources of mercury in the cement kiln flue gas. Cement plants are quite different from power plants and waste incinerators regarding the flue gas composition, temperature, residence time, and material circulation. Cement kiln systems have some inherent ability to retain mercury in the solid materials due...... to the adsorption of mercury on the solids in the cold zone. However, recirculation of the kiln dust to the kiln will cause release of the captured mercury. The mercury chemistry in cement kiln systems is complicated and knowledge obtained from power plants and incinerators cannot be directly applied in cement...

  4. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  5. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  6. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those...... of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  7. Carbonate Looping for De-Carbonization of Cement Plants

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Andersen, Maria Friberg; Lin, Weigang

    2011-01-01

    Cement industry is one of the largest emitter of CO2 other than power generation plants, which includes the emissions from combustion of fuel and also from calcination of limestone for clinker production. In order to reduce CO2 emissions from the cement industry an effective an economically...... feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of CO2. Integration of carbonate looping process into cement pyroprocess has two advantages: 1...... integrated into cement pyro-process. The energy required for regeneration in the calciner increases with increase in average conversion of calcined limestone and energy that can be extracted from carbonator decreases with increasing average conversion. Further the influence of type of limestone...

  8. Freezing process in unsaturated packed beds; Fuhowa ryushi sonai ni okeru suibun toketsu

    Energy Technology Data Exchange (ETDEWEB)

    Akahori, M; Aoki, K; Hattori, M [Nagaoka University of Technology, Niigata (Japan); Tani, T [Oji Paper Co. Ltd., Tokyo (Japan)

    1998-04-25

    The freezing process in unsaturated packed beds has been investigated experimentally and theoretically. Water transport to the frozen front plays an important part on freezing. The rate of the absorption of water into frozen layer depended on the freezing heat flux and the water saturation at the freezing front. As a result, ice content in the frozen layer was related to the rate of the absorption of water and the freezing heat flux. A one-dimensional freezing model in unsaturated packed beds has been presented, accounting for the water transport. The predicted water saturation and temperature distributions in the body and the thickness of frozen layer were compared with the experimental results using a porous bed composed of glass beads. 12 refs., 10 figs., 1 tab.

  9. Cement stabilization of hazardous and radioactive electroplating sludge

    International Nuclear Information System (INIS)

    Langton, C.A.; Pickett, J.B.; Martin, M.L.

    1991-01-01

    Cement stabilization was evaluated for treatment of nickel and uranium in electroplating sludge at the Savannah River Site. Waste forms were prepared by pretreating the sludge and the solidifying it in a variety of cement, cement plus flyash, and cement-flyash-slag mixes. The sludge was also treated by one-step filtration-solidification. Leaching results and processing data indicate the cement solidification is an effective method of treating hazardous-low-level electroplating waste

  10. Nasal packing with ventilated nasal packs; a comparison with traditional vaseline nasal pack

    International Nuclear Information System (INIS)

    Alam, J.; Siddiqui, M.W.; Abbas, A.; Sami, M.; Ayub, Z.

    2017-01-01

    To compare the benefits of ventilated nasal packing with traditional vaseline guaze nasal packing. Study Design: Randomized controlled trial. Place and Duration of Study: This study was conducted at CMH Multan, from Jun 2014 to Dec 2014. Material and Methods: In this study, sample size of 80 patients was calculated using WHO calculator. Patients were divided in two groups using lottery method endotracheal tube and piece of surgical glove filled with ribbon guaze was utilized for fabricated ventilated nasal pack and compared with traditional nasal packs. Nasal obstruction and sleep disturbance were studied at eight hours and twenty-four hours following surgery using visual analog scale. Results: Mean nasal obstruction with ventilated nasal pack was 45.62 +- 6.17 and with Vaseline nasal pack was 77.67 +- 4.85 which was statistically significant (p=0.001) in both the groups. Mean sleep disturbance in both the groups was 46.32 +- 5.23 and 68.75 +- 2.70 respectively which was statistically significant (p=0.001) in both the groups. Conclusion: Patients with ventilated nasal packs were found to have better tolerance to nasal packs due to less nasal obstruction and sleep disturbance

  11. A Novel Active Online State of Charge Based Balancing Approach for Lithium-Ion Battery Packs during Fast Charging Process in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiudong Cui

    2017-11-01

    Full Text Available Abstract: Non-uniformity of Lithium-ion cells in a battery pack is inevitable and has become the bottleneck to the pack capacity, especially in the fast charging process. Therefore, a balancing approach is essentially required. This paper proposes an active online cell balancing approach in a fast charging process using the state of charge (SOC as balancing criterion. The goal of this approach is to complete pack balancing within the limited charging time. An adaptive extended Kalman filter (AEKF is applied to estimate the pack cell SOC during the charging process to obtain accurate results under modeling errors and measurement noises. To implement the proposed AEKF, only one additional current sensor is required to obtain the current of each cell required for the SOC estimation. An experimental platform is established to verify the effectiveness of the proposed approach. The results show that the proposed balancing approach with the SOC as a balancing criterion can overcome the challenges of non-uniformity and flat voltage plateau and charge more capacity into a LiFePO4 battery pack than those with the terminal voltage as a balancing criterion in the fast charging process.

  12. Improved cement solidification of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Cementation was the first and is still the most widely applied technique for the conditioning of low and intermediate level radioactive wastes. Compared with other solidification techniques, cementation is relatively simple and inexpensive. However, the quality of the final cemented waste forms depends very much on the composition of the waste and the type of cement used. Different kinds of cement are used for different kinds of waste and the compatibility of a specific waste with a specific cement type should always be carefully evaluated. Cementation technology is continuously being developed in order to improve the characteristics of cemented waste in accordance with the increasing requirements for quality of the final solidified waste. Various kinds of additives and chemicals are used to improve the cemented waste forms in order to meet all safety requirements. This report is meant mainly for engineers and designers, to provide an explanation of the chemistry of cementation systems and to facilitate the choice of solidification agents and processing equipment. It reviews recent developments in cementation technology for improving the quality of cemented waste forms and provides a brief description of the various cement solidification processes in use. Refs, figs and tabs

  13. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations

    International Nuclear Information System (INIS)

    Cisneros-Pineda, Olga G.; Herrera Kao, Wilberth; Loría-Bastarrachea, María I.; Veranes-Pantoja, Yaymarilis; Cauich-Rodríguez, Juan V.; Cervantes-Uc, José M.

    2014-01-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone–water than that obtained for methanol–water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol–water system containing MPS at 3 wt.% provides the better results during silanization process of HA. - Highlights: • Effect of MPS concentration and solvents during HA silanization was studied. • Silanization rendered HA has lower crystallinity compared to untreated HA. • Silicon concentration was higher for acetone than that obtained using methanol. • Methanol–water system containing MPS at 3 wt.% provides the better results

  14. Towards optimization of the silanization process of hydroxyapatite for its use in bone cement formulations

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros-Pineda, Olga G.; Herrera Kao, Wilberth; Loría-Bastarrachea, María I. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Veranes-Pantoja, Yaymarilis [Centro de Biomateriales, Universidad de la Habana, Avenida Universidad, s/n, e/G y Ronda, C.P. 10600 C. de La Habana (Cuba); Cauich-Rodríguez, Juan V. [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Cervantes-Uc, José M., E-mail: manceruc@cicy.mx [Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico)

    2014-07-01

    The aim of this work was to provide some fundamental information for optimization of silanization of hydroxyapatite intended for bone cement formulations. The effect of 3-(trimethoxysilyl) propyl methacrylate (MPS) concentration and solvent system (acetone/water or methanol/water mixtures) during HA silanization was monitored by X-ray diffraction (XRD), FTIR spectroscopy and EDX analysis. The effect of silanized HA on the mechanical properties of acrylic bone cements is also reported. It was found that the silanization process rendered hydroxyapatite with lower crystallinity compared to untreated HA. Through EDX, it was observed that the silicon concentration in the HA particles was higher for acetone–water than that obtained for methanol–water system, although the mechanical performance of cements prepared with these particles exhibited the opposite behavior. Taking all these results together, it is concluded that methanol–water system containing MPS at 3 wt.% provides the better results during silanization process of HA. - Highlights: • Effect of MPS concentration and solvents during HA silanization was studied. • Silanization rendered HA has lower crystallinity compared to untreated HA. • Silicon concentration was higher for acetone than that obtained using methanol. • Methanol–water system containing MPS at 3 wt.% provides the better results.

  15. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  16. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Optimization and characterization of a cemented ultimate-storage product

    Science.gov (United States)

    Brunner, H.

    1981-12-01

    The U- and Pu-containing packaging wastes can be homogeneously cemented after a washing and fragmentation process. Both finely crushed and coarsely fragmented raw wastes yield products with sufficient mechanical stability. The processability limit of the coarsely fragmented raw waste using cement paste or mortar is largely determined by the cellulose content, which is not to exceed 1.3% by weight in the end waste. Of 9 binders studied, the most corrosion-resistant products were obtained with blast-furnace slag cement, whereas poured concrete and Maxit are much less resistant in five-component brine. In the cemented product, hydrolysis of plasticizers (DOP) from plastics (PVC) occurs, leading to release of 2-ethyl-hexanol. This reaction occurs to a much lower degree with blast-furnace slag cement than with all other binders studied. The binder chosen for further tests consists of blast-furnace slag cement, concrete fluidizer and a stabilizer, and is processed at a W/C ratio of 0.43.

  18. Soft sensor for real-time cement fineness estimation.

    Science.gov (United States)

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. PENGARUH POROSITAS PACKING STEEL WOOL TERHADAP PRESSURE DROP DIDALAM PACKED BED COLUMN PADA DISTILASI CAMPURAN ETANOL-AMIL-ALKOHOL-AIR

    Directory of Open Access Journals (Sweden)

    Trisna Kumala Dhaniswara

    2016-08-01

    Full Text Available Inventories of petroleum fuels are increasingly depleted and will someday run out. These shortcomings can be overcome by using alternative fuels, such as ethanol. Based on this, it is necessary to research and development of ethanol as a fuel. One way is with a separation in a packed distillation column. This study aims to assess the mass transfer phenomena that occur in the process of distilling a mixture of ethanol-water-amyl alcohol packed in column. In addition, this study aims to optimize temperature and reflux to obtain the highest levels of ethanol. This research method uses packed bed distillation system with the batch process. Feed used is synthetic ethanol, water, and solvent. Solvent used were amyl alcohol. Doing distillation with heating temperature is maintained. Distillation is done in the packing of stainless steel wool. Research carried out in a batch process with a variable temperature of  79°C; 84°C; 91°C; and porosity packing 20%; 30%; 40%; 50%; 60%; 70%; 80%.

  20. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  1. Application of precise MPD & pressure balance cementing technology

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2018-03-01

    Full Text Available The precise managed pressure drilling (MPD technology is mainly used to deal with the difficulties encountered when oil and gas open hole sections with multiple pressure systems and the strata with narrow safety density window are drilled through. If its liner cementing is carried out according to the conventional method, lost circulation is inevitable in the process of cementing while the displacement efficiency of small-clearance liner cementing is satisfied. If the positive and inverse injection technology is adopted, the cementing quality cannot meet the requirements of later well test engineering of ultradeep wells. In this paper, the cementing operation of Ø114.3 mm liner in Well Longgang 70 which was drilled in the Jiange structure of the Sichuan Basin was taken as an example to explore the application of the cementing technology based on the precise MPD and pressure balancing method to the cementing of long open-hole sections (as long as 859 m with both high and low pressures running through multiple reservoirs. On the one hand, the technical measures were taken specifically to ensure the annulus filling efficiency of slurry and the pressure balance in the whole process of cementing. And on the other hand, the annulus pressure balance was precisely controlled by virtue of precise MPD devices and by injecting heavy weight drilling fluids through central pipes, and thus the wellbore pressure was kept steady in the whole process of cementing in the strata with narrow safety density window. It is indicated that Ø114.3 mm liner cementing in this well is good with qualified pressure tests and no channeling emerges at a funnel during the staged density reduction. It is concluded that this method can enhance the liner cementing quality of complex ultradeep gas wells and improve the wellbore conditions for the later safe well tests of high-pressure gas wells. Keywords: Ultradeep well, Liner cementing, Narrow safety density window, Precise

  2. Planned investigations for packing materials for a waste package in a salt repository: [Final report

    International Nuclear Information System (INIS)

    Shade, J.W.; Bunnell, L.R.; Thornton, T.A.

    1987-10-01

    A considerable number of materials have been either proposed or investigated as packing materials for nuclear waste package systems. Almost always the expandable clays, such as the smectites contained in commercial bentonites, have received the most attention when their primary function is to retard groundwater flow. Other materials including zeolites, metals, and dessicants are considered as special-purpose additives. Materials that tend to hydrolyze and lead to porosity reduction, such as silicates, oxides, and sulfates, have also been suggested as packing materials. All these types of materials are also considered as components of tailored mixtures to achieve a broad range of packing material performance. Some of these materials are reviewed, along with proposed candidate materials, with respect to the properties required to function in a salt repository. The investigation of packing materials is composed of five studies which are discussed below. Initial candidates will consist of calcium hydroxide, a sodium silicate, and a cement-gypsum mixture in addition to the reference crushed salt. Consequently these tests will be necessary to determine properties of individual components and to optimize properties of mixtures. 13 refs., 7 figs., 1 tab

  3. To Pack or Not to Pack? A Randomized Trial of Vaginal Packing After Vaginal Reconstructive Surgery.

    Science.gov (United States)

    Westermann, Lauren B; Crisp, Catrina C; Oakley, Susan H; Mazloomdoost, Donna; Kleeman, Steven D; Benbouajili, Janine M; Ghodsi, Vivian; Pauls, Rachel N

    2016-01-01

    Placement of vaginal packing after pelvic reconstructive surgery is common; however, little evidence exists to support the practice. Furthermore, patients have reported discomfort from the packs. We describe pain and satisfaction in women treated with and without vaginal packing. This institutional review board-approved randomized-controlled trial enrolled patients undergoing vaginal hysterectomy with prolapse repairs. The primary outcome was visual analog scales (VASs) for pain on postoperative day 1. Allocation to "packing" ("P") or "no-packing" ("NP") arms occurred intraoperatively at the end of surgery. Visual analog scales regarding pain and satisfaction were completed early on postoperative day 1 before packing removal. Visual analog scale scores for pain, satisfaction, and bother attributable to packing were recorded before discharge. All packing and perineal pads were weighed to calculate a "postoperative vaginal blood loss." Perioperative data were collected from the hospital record. Our sample size estimation required 74 subjects. Ninety-three women were enrolled. After exclusions, 77 were randomized (P, 37; NP, 40). No differences were found in surgical information, hemoglobin levels, or narcotic use between groups. However, "postoperative vaginal blood loss" was greater in packed subjects (P discharge (P, 35.0 vs NP, 40.0; P = 0.43] were not significantly different between treatment arms. Likewise, VAS scores for satisfaction before removal of packing (P, 81.0 vs NP, 90.0; P = 0.08] and before discharge (P, 90.0 vs NP, 90.5; P = 0.60] were not significantly different. Packed patients noted lower nursing verbal pain scores (P = 0.04) and used less ketorolac (P = 0.01). Bother from packing was low overall. Although there was no difference based on VAS, women receiving vaginal packing had lower nursing documented pain and used less ketorolac than packed women. Vaginal packing may provide benefit and can remain part of the surgical practice.

  4. THEORETICAL AND EXPERIMENTAL STUDIES OF ENERGY-EFFICIENT GRINDING PROCESS OF CEMENT CLINKER IN A BALL MILL

    Directory of Open Access Journals (Sweden)

    Kuznetsova M.M.

    2014-08-01

    Full Text Available The article presents results of theoretical and experimental research of grinding process of bulk materials in a ball mill. The new method of determination of energy efficiently mode of operation of ball mills in a process of a cement clinker grinding is proposed and experimentally tested.

  5. Performance of a desiccant assisted packed bed passive solar dryer for copra processing

    Directory of Open Access Journals (Sweden)

    Padmanaban Govindarajulu

    2017-01-01

    Full Text Available In this paper, the performance of a novel desiccant assisted packed bed passive solar dryer was evaluated for copra processing and compared with conventional passive solar dryer. This novel solar dryer consists of a desiccant assisted packed bed solar air heater attached with a dryer cabin. The desiccant and phase change materials packed in the solar air heater has control the humidity and retains the heat for longer duration, respectively. The performance of the dryer was evaluated (in terms of drying time to attain the final equilibrium moisture content, drying rate, specific moisture extraction rate, pick-up efficiency, and dryer efficiency under the meteorological conditions of Coimbatore city in India during March and April 2016. The copra was dried from initial moisture content (wet basis of about 52% to the final moisture content (wet basis of about 8% in 62 hours with specific moisture extraction rate of 0.82 kg/kWh. The drying time was reduced by about 44 hours when compared to the conventional passive solar dryer. The dryer pick-up efficiency was varied between about 10% and 65%. The average dryer thermal efficiency was calculated to be about 32%. The quality of final dried product was found to be good.

  6. Analysis of rheological properties of bone cements.

    Science.gov (United States)

    Nicholas, M K D; Waters, M G J; Holford, K M; Adusei, G

    2007-07-01

    The rheological properties of three commercially available bone cements, CMW 1, Palacos R and Cemex ISOPLASTIC, were investigated. Testing was undertaken at both 25 and 37 degrees C using an oscillating parallel plate rheometer. Results showed that the three high viscosity cements exhibited distinct differences in curing rate, with CMW 1 curing in 8.7 min, Palacos R and Cemex ISOPLASTIC in 13 min at 25 degrees C. Furthermore it was found that these curing rates were strongly temperature dependent, with curing rates being halved at 37 degrees C. By monitoring the change of viscosity with time over the entire curing process, the results showed that these cements had differing viscosity profiles and hence exhibit very different handling characteristics. However, all the cements reached the same maximum viscosity of 75 x 10(3) Pa s. Also, the change in elastic/viscous moduli and tan delta with time, show the cements changing from a viscous material to an elastic solid with a clear peak in the viscous modulus during the latter stages of curing. These results give valuable information about the changes in rheological properties for each commercial bone cement, especially during the final curing process.

  7. Cementation unit for radioactive wastes

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto; Lima, Jose Rodrigues de

    2001-01-01

    This communication describes the waste cementation process and facility developed at Instituto de Pesquisas Energeticas e Nucleares - IPEN. The process is based on 200 litres batch operation, in drum mixing, with continuous cement feeding. The equipment is a single recoverable helicoidal mixer and a turning table that allows the drum to rotate during the mixing operation, simulating a planetary mixer. The facility was designed to treat contact handled liquids and wet solid wastes, but can be adapted for shielded equipment and remote operation. (author)

  8. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  9. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  10. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  11. Evaluation by discrete element method (DEM) of gap-graded packing potentialities for green concrete design

    OpenAIRE

    Stroeven, P.; Le, L.B.N.

    2013-01-01

    Partial replacement of Portland cement by pozzolanic mineral admixtures exerts direct positive effects on CO2 emissions. The green character is reinforced by making use of incinerated vegetable waste, such as rice husk ash (RHA). Gap-grading leads to improved particle packing density with RHA as the fine component, so that high strength concrete can be produced. Characteristics of the capillary pores developed in the hydrating binder have impact on the transport-based durability properties. Y...

  12. Preparing hydraulic cement from oil-shale residue

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for preparation of hydraulic cement from oil-shale residue is characterized in that, as flux is used, rich-in-lime poor-in-sulfur portland-cement clinker, by which the usual gypsum addition, is avoided.

  13. Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement

    Science.gov (United States)

    Xu, Wenbin; Tian, Xichun; Cao, Peiwang

    2018-04-01

    Cemented paste backfill (CPB) is an emerging mine backfill technique that allows environmentally hazardous tailings to return to the underground openings or stopes, thereby maximising the safety, efficiency and productivity of operation. Uniaxial compressive strength (UCS) is one of the most commonly used parameters for evaluating the mechanical performance of CPB; the prediction of the UCS of CPB structures from early to advanced ages is of great practical importance. This study aims to investigate the predictability of the UCS of CPB during the hydration process based on electrical resistivity (ER) measurement. For this purpose, the samples prepared at different cement-to-tailing ratios and solid contents were subjected to the ER test during the whole hydration process and UCS tests at 3, 7, 28 days of curing periods. The effect of cement-to-tailing ratio and solid content on the ER and UCS of CPB samples was obtained; the UCS values were correlated with the corresponding ER data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the ER data. The result shows that the ER of CPB decreases first and then increases with the speed which is faster in the previous part than the latter. The ER and UCS of CPB samples increased with increasing cement-to-tailing ratio and solid content and curing periods. A logarithmic relationship is established for each mixture in order to predict the UCS of CPB based on ER. Scanning electron microscope analyses have revealed that the microstructure of the CPB changes with the age from the initial floc to honeycomb, and eventually to the compact clumps. The ER properties of CPB samples were highly associated with their respective microstructural properties. The major output of this study is that ER test is effectively capable for a preliminary prediction of the UCS of CPB.

  14. Cementation of wastes with boric acid

    International Nuclear Information System (INIS)

    Tello, Cledola C.O.; Haucz, Maria Judite A.; Alves, Lilian J.L.; Oliveira, Arno H.

    2000-01-01

    In nuclear power plants (PWR) are generated wastes, such as concentrate, which comes from the evaporation of liquid radioactive wastes, and spent resins. Both have boron in their composition. The cementation process is one of the options to solidify these wastes, but the boron has a negative effect on the setting of the cement mixture. In this paper are presented the experiments that are being carried out in order to overcome this problem and also to improve the efficiency of the process. Simulated wastes were cemented using additives (clays, admixtures etc.). In the process and product is being evaluated the effect of the amount, type and addition order of the materials. The mixtures were selected in accordance with their workability and incorporated waste. The solidified products are monolithic without free water with a good mechanical resistance. (author)

  15. Studies of the setting behavior of cement suspensions

    International Nuclear Information System (INIS)

    Rudolph, G.; Luo, S.; Vejmelka, P.; Koester, R.

    1983-10-01

    The design of process for cementation of radioactive waste solutions is determined not only by the quality of the final product but also by the behavior of the cement grout before and during setting. For these reasons quantitative investigations were performed on the characteristics of the cement suspensions considered for solidification of intermediate-level liquid wastes which are composed mainly of cement, bentonite, simulated waste solution, and water. Particular interest was given to the differences in behavior of the various types of cement. The parameters investigated include viscosity, bleeding, volume change during setting, influence of compacting by vibration, time of setting, heat of hydration. At the end of the report the merits and drawbacks of the different cements are tabulated. These data may serve as a decision aid in selecting an appropriate type of cement

  16. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  17. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  18. Supplier selection in supply chain management using analytical network process for Indonesian cement industry

    Science.gov (United States)

    Ismail, A. H.; Mahardika, R. Z. Z.

    2017-12-01

    Supply chain management has increased more significance with the impact of globalization. In the present worldwide market, well-managed supply chain is a standout amongst the most vital requirement to be more competitive in the market. For any organization incorporate cement industry, the most critical decision in initial process of supply chain management is to buy products, materials or services from suppliers. So the role of suppliers is irrefutable important in the global aggressive markets. Appropriate decision of supplier selection can lead to reducing cost in supply chain management. However, it is becoming more complex because of existing various criteria and involving the suitable experts in the company to make valid decision in accordance with its criteria. In this study, the supplier selection of an Indonesia’s leading cement company is analyzed by using one of the popular multi-criteria decision making method, Saaty’s analytical network process (ANP). It is employed for the selection of the best alternative among three suppliers of pasted bag. Supplier with the highest rank comes from several major steps from building the relationship between various criteria to rating the alternatives with the help of experts from the company. The results show that, Communication capability, Flexible payment terms, Ability to meet delivery quantities are the most important criteria in the pasted bag supplier selection in Indonesian cement industry with 0.155, 0.110 and 0.1 ANP coefficient respectively. And based on the ANP coefficient values in limit supermatrix, the A2 or supplier 2 had the highest score with 64.7% or 0.13 ANP coefficient.

  19. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  20. Cermet cements.

    Science.gov (United States)

    McLean, J W

    1990-01-01

    Cermet ionomer cements are sintered metal/glass powders, which can be made to react with poly(acids). These new cements are significantly more resistant to abrasion than regular glass ionomer cements and are widely accepted as core build-up materials and lining cements. They can strengthen teeth and provide the clinician with an opportunity to treat early dental caries.

  1. Development of a biodegradable bone cement

    International Nuclear Information System (INIS)

    Yusof Abdullah; Nurhaslinda Ee Abdullah; Wee Pee Chai; Norita Mohd Zain

    2002-01-01

    Biodegradable bone cement is a newly developed bone repair material, which is able to give immediate support to the implant area, and does not obstruct the bone repairing and regeneration process through appropriate biodegradation rate, which is synchronized with the mechanical load it should bear. The purpose of this study is to locally produce biodegradable bone cement using HA as absorbable filler. The cement is composed of an absorbable filler and unsaturated polyester for 100% degradation. Cross-linking effect is achieved through the action of poly (vinyl pyrrol lidone) (PVP) and an initiator. On the other hand, PPF was synthesized using direct esterification method. Characteristics of the bone cement were studied; these included the curing time, cross-linking effect and curing temperature. The products were characterized using X-Ray diffraction (XRD) to perform phase analysis and Scanning Electrons Microscopes to determine the morphology. The physical and mechanical properties of the bone cement were also investigated. The biocompatibility of the bone cement was tested using simulated body physiological solution. (Author)

  2. Macro-defect free cements. State of art

    International Nuclear Information System (INIS)

    Holanda, J.N.F.; Povoa, G.E.A.M.; Souza, G.P.; Pinatti, D.G.

    1998-01-01

    The purpose of this work is to prevent a state of art about macro-defect-free cement pastes (MDF cement ) of high mechanical strength. This new type of cement paste is obtained through addition of a water-soluble polymer, followed by intense shear mixing and application of low compacting pressure. It is presented fundamental aspects related to the processing of this MDF paste, as well as its main properties and applications are discussed. (author)

  3. Comparison of temperature change among different adhesive resin cement during polymerization process

    Directory of Open Access Journals (Sweden)

    Murat Alkurt

    2017-01-01

    Full Text Available Purpose: The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Materials and Methods: Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200 were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change (n = 7. The temperature data were recorded (0.0001 sensible and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05. Results: Significant differences were found among the time points and resin cements (P < 0.05. Temperature values of the Pan SA group were significantly higher than Pan F and RelyX (P < 0.05. Conclusion: Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  4. Effect of fabrication pressure on the fatigue performance of Cemex XL acrylic bone cement.

    Science.gov (United States)

    Lewis, Gladius; Janna, S I

    2004-01-01

    During a cemented arthroplasty, the prepared polymerizing dough of acrylic bone cement is subjected to pressurization in a number of ways; first, during delivery into the freshly prepared bone bed, second, during packing in that bed (either digitally or with the aid of a mechanical device), and, third, during the insertion of the prosthesis. Only a few studies have reported on the influence of the level of pressurization experienced during these events (which, depending on the cementing technique used, has been put at between 8 and 273 kPa) on various properties of the cement. That was the focus of the present study, in which the fully reversed tension-compression (+/-15 MPa; 5 Hz) fatigue lives (expressed as number of cycles to fracture, N(f)) of rectangular cross-sectioned "dog-bone" specimens (Type V, per ASTM D 638) fabricated from Cemex XL cement, at pressure applied continuously to the cement dough during curing in the specimen mold, p=75,150, and 300 kPa, were determined. The N(f) results were analyzed using the linearized transformation of the three-parameter Weibull relationship to obtain estimates of the Weibull mean, N(WM), which was taken to be the index of fatigue performance of the specimen set. Over the range of p studied, N(WM) increased as p increased (for example, from 329,118 cycles when p was 75 kPa to 388,496 cycles when p was 300 kPa); however, the increase was not significant over any pair of p increment steps (Mann-Whitney U-test; alpha<0.05).

  5. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  6. Photoactive glazed polymer-cement composite

    Science.gov (United States)

    Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.

    2018-04-01

    Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.

  7. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  8. Compatibility of vegetable fibers with Portland cement and its relationship with the physical properties

    Directory of Open Access Journals (Sweden)

    Maria L. Marques

    2016-05-01

    Full Text Available ABSTRACT The use of vegetable fiber residue in cementitious matrices can be a sustainable technological alternative; however, it still has problems related to the chemical compatibility between the cement and the fibers. The present study evaluated the compatibility of vegetable fibers with cement using three methods of calculation and determined certain physical properties of the fibers and the curve of the temporal evolution of temperature for each composite. The surfaces of the composites were evaluated through atomic force microscope images and the results showed that the pretreatment of fiber washing significantly favors the compatibility with cement for fibers of eucalyptus, coconut and cocoa, with no influence for water hyacinth fiber. Bivariate correlation analyses showed that the compatibility of the composites is favored by the reduction in the degree of swelling, packing density and specific mass. The results showed that there is a potential use of plant fiber in civil construction and that the physical properties of each type of fiber can offer elements for its selection and pretreatment.

  9. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  10. Development of nanosilica bonded monetite cement from egg shells

    International Nuclear Information System (INIS)

    Zhou, Huan; Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri; Agarwal, Anand K.; Goel, Vijay K.; Bhaduri, Sarit B.

    2015-01-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement

  11. Statistical study of chemical additives effects in the waste cementation

    International Nuclear Information System (INIS)

    Tello, Cledola C.O. de; Diniz, Paula S.; Haucz, Maria J.A.

    1997-01-01

    This paper presents the statistical study, that was carried out to analyse the chemical additives effect in the waste cementation process. Three different additives from two industries were tested: set accelerator, set retarder and super plasticizers, in cemented pates with and without bentonite. The experiments were planned in accordance with the 2 3 factorial design, so that the effect of each type of additive, its quantity and manufacturer in cemented paste and specimens could be evaluated. The results showed that the use of these can improve the cementation process and the product. The admixture quantity and the association with bentonite were the most important factors affecting the process and product characteristics. (author). 4 refs., 9 figs., 4 tabs

  12. Influence of Superplasticizer-Microsilica Complex on Cement Hydration, Structure and Properties of Cement Stone

    Science.gov (United States)

    Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.

    2017-11-01

    According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.

  13. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  14. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter

  15. Using bio-based polymers for curing cement-based materials

    NARCIS (Netherlands)

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying

  16. Heat treatment of processing sludge of ornamental rocks: application as pozzolan in cement matrices

    Directory of Open Access Journals (Sweden)

    J.G. Uliana

    Full Text Available The sector of ornamental rocks produces significant volume of waste during the sawing of the blocks and demand to find ways to recycle, given its environmental impact. Considering the possibilities of use of industrial by-products as mineral admixtures, aiming at sustainable development in the construction industry, this paper aims to study the performance of the processing sludge of ornamental rocks and grinding after heat treatment, based on their potential application as partial substitute for cement. The residue was characterized, cast and milled to produce glassy material. Was analyzed the mechanical performance and pozzolanic activity with partial replacement of cement by waste in natural condition and after heat treatment in mortars for comparison. The results were promising, so it was possible to verify that after heat treatment, the treated waste is presented as a material with pozzolanic characteristics.

  17. Development of an immobilisation technique by cementation for non-radioactive simulated liquid waste, from Mo-99 production process

    International Nuclear Information System (INIS)

    Arva, E A; Marabini, S G; Varani, J L

    2012-01-01

    The Argentine Atomic Energy Commission (CNEA) is the responsible for developing a management nuclear waste disposal programme. This programme contemplates the strictly environmental safe and efficient management of the radioactive waste from different sources. Since 1985, CNEA has been producing commercially Mo-99 for medical use. In this process two types of liquid waste are produced. One of them has high alkaline (NaOH 3,5M) and aluminate contents. Since Mo-99 production started, such liquid waste was stored in specially designed containers during production, and after a decay period in smaller containers in interim storage conditions. As this waste is still a liquid, development of an immobilisation technique is required. Immobilisation of radioactive liquid waste by cementation is a frequently used technique, and will be studied in the present work using Mo-99 non-radioactive simulated liquid waste. In this second stage, a full scale (200 liters drum) cementation test using simulated non radioactive waste was carried out. Such test included: using the BEBA 201 mixing machine - the same that will be used with real waste in the future for 'tuning up' the process, construction of a specially designed temperature sensor for measuring the maximum temperature value (five different positions, four inside the drum and one outside) and the time elapsed after all components mixing. Finally, standard specimens (IRAM 1622) were made for mechanical resistance tests after cement setting at 28 days. The results show values of temperature not above 40 o C with the maximum at 12 hours before component mixing and compression strength of 14 MPa. Such values are compatible for a waste immobilisation process by cementation (author)

  18. Strength properties of sandy soil-cement admixtures

    OpenAIRE

    Sara Rios; António Joaquim Pereira Viana Da Fonseca

    2009-01-01

    This paper will focus on the sensitivity of strength and stiffness properties of silty-sands, from granitic residual soil, which can be converted to a highly improved material if stabilized with cement. The study of soil stabilization with cement demands to quantify the influence of the cement percentage, porosity and water content adopted in the admixing process for different stresses and physical states. Firstly, this influence was quantified in terms of the unconfined strength and maximum ...

  19. Cementation of the solid radioactive waste with polymer-cement solutions using the method of impregnation

    International Nuclear Information System (INIS)

    Gorbunova, O.

    2015-01-01

    Cementation of solid radioactive waste (SRW), i.e. inclusion of solid radioactive waste into cement matrix without cavities - is one of the main technological processes used for conditioning low and intermediate level radioactive waste. At FSUE 'Radon' the industrialized method of impregnation has been developed and since 2003 has been using for cementation of solid radioactive waste. The technology is that the polymer-cement solution, having high penetrating properties, is supplied under pressure through a tube to the bottom of the container in which solid radioactive waste has preliminarily been placed. The polymer-cement solution is evenly moving upwards through the channels between the particles of solid radioactive waste, fills the voids in the bulk volume of the waste and hardens, forming a cement compound, the amount of which is equal to the original volume. The aim of the investigation was a selection of a cement solution suitable for SRW impregnation (including fine particles) without solution depletion and bottom layers stuffing. It has been chosen a polymer: PHMG (polyhexamethylene-guanidine), which is a stabilizing and water-retaining component of the cement solution. The experiments confirm that the polymer increases the permeability of the cement solution by a 2-2.5 factor, the viscosity by a 1.2 factor, the stability of the consistency by a 1.5-1.7 factor, and extends the operating range of the W/C ratio to 0.5-1.1. So it is possible to penetrate a volume of SRW bigger by a 1.5-2.0 factor. It has been proved, that PHMG polymer increases strength and frost-resistance of the final compounds by a 1.8-2.7 factor, and contributes to fast strength development at the beginning of hardening and it decreases Cs-137 leashing rate by a 1.5-2 factor

  20. Controls on Cementation in a Chalk Reservoir

    DEFF Research Database (Denmark)

    Meireles, Leonardo Teixeira Pinto; Hussein, A.; Welch, M.J.

    2017-01-01

    In this study, we identify different controls on cementation in a chalk reservoir. Biot’s coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot’s coefficient is correlated...... that some degree of pore filling cementation occurred in Kraka (Alam, 2010). Lack of correlation between Biot’s coefficient and Gamma Ray (GR) indicates that the small amount of clay present is generally located in the pore space, thus not contributing to frame stiffness. While there was no compositional...... control on cementation via clay, we could infer that stratigraphy impacts on the diagenetic process....

  1. Cement-latex grouting mortar for cementing boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Kateev, I S; Golyshkina, L A; Gorbunova, I V; Kurochkin, B M; Vakula, Ya V

    1980-01-01

    The need for the development of cement-latex grouting mortar for the purpose of separating strata when reinforcing boreholes at deposits in the Tatar Associated SSR is evaluated. Results of studies of the physical and mechanical properties of cement-latex grouting mortar systems (mortar plus brick) are presented. Formulas for preparing cement-latex grouting mortor are evaluated and results of industrial tests of such mortars shown.

  2. Solidification and performance of cement doped with phenol

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Krishnan, S.

    1991-01-01

    Treating mixed hazardous wastes using the solidification/stabilization technology is becoming a critical element in waste management planning. The effect of phenol, a primary constituent in many hazardous wastes, on the setting and solidification process of Type I Portland cement was evaluated. The leachability of phenol from solidified cement matrix (TCLP test) and changes in mechanical properties were studied after curing times up to 28 days. The changes in cement hydration products due to phenol were studied using the X-ray diffraction (XRD) powder technique. Results show that phenol interferes with initial cement hydration by reducing the formation of calcium hydroxide and also reduces the compressive strength of cement. A simple model has been proposed to quantify the phenol leached from the cement matrix during the leachate test

  3. Study on Cr(VI) Leaching from Cement and Cement Composites

    Science.gov (United States)

    Palascakova, Lenka; Kanuchova, Maria

    2018-01-01

    This paper reports an experimental study on hexavalent chromium leaching from cement samples and cement composites containing silica fume and zeolite additions that were subjected to various leaching agents. The water-soluble Cr(VI) concentrations in cements ranged from 0.2 to 3.2 mg/kg and represented only 1.8% of the total chromium content. The presence of chromium compounds with both chromium oxidation states of III and VI was detected in the cement samples by X-ray photoelectron spectroscopy (XPS). Leaching tests were performed in a Britton-Robinson buffer to simulate natural conditions and showed increased dissolution of Cr(VI) up to 6 mg/kg. The highest amount of leached hexavalent chromium was detected after leaching in HCl. The findings revealed that the leaching of chromium from cements was higher by 55–80% than that from the cement composites. A minimum concentration was observed for all cement samples when studying the relationship between the soluble Cr(VI) and the cement storage time. PMID:29690550

  4. Early-age monitoring of cement structures using FBG sensors

    Science.gov (United States)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  5. Feasibility of backfilling mines using cement kiln dust, fly ash, and cement blends

    OpenAIRE

    Beltagui, Hoda; Sonebi, Mohammed; Maguire, K.; Taylor, Susan

    2018-01-01

    Cement kiln dust (CKD) is an industrial by-product of the cement manufacturing process, the composition of which can vary widely. Recent years of using alternative fuels have resulted in higher chloride and alkali contents within CKDs; as such, this limits the applications in which CKDs can be utilised. Using a CKD containing a high free lime content of 29.5%, it is shown that this CKD is capable of activating pulverized fuel ash (PFA) due to its high alkalinity, which can be utilised in low ...

  6. A New Biphasic Dicalcium Silicate Bone Cement Implant

    Directory of Open Access Journals (Sweden)

    Fausto Zuleta

    2017-07-01

    Full Text Available This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23 obtained higher bone-to-implant contact (BIC percentage values (better quality, closer contact in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic. The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.

  7. The Performance of the Trickle Bed Reactor Packed with the Pt/SDBC Catalyst Mixture for the CECE Process

    International Nuclear Information System (INIS)

    Seungwoo Paek; Do-Hee Ahn; Heui-Joo Choi; Kwang-Rag Kim; Hongsuk Chung; Sung-Paal Yim; Minsoo Lee; Kyu-Min Song; Soon Hwan Sohn

    2006-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE process is composed of an electrolysis cell and a LPCE (Liquid Phase Catalytic Exchange) column. This paper describes the experimental results of the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst for the development of the LPCE column of the CECE process. The hydrophobic Pt/SDBC (Styrene Divinyl Benzene Copolymer) catalyst has been developed by Korean researchers for the LPCE column of WTRF (Wolsong Tritium Removal Facility). An experimental apparatus was constructed for the various experiments with the different parameters, such as hydrogen flow rate, temperature, and the structure of the mixed catalyst column. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring). The performance of the catalyst bed was expressed as an overall rate constant Kya. To improve the performance of the trickle bed, the modification of the catalyst bed design (changing the shape of the catalyst complex and diluting with inert) has been investigated. (author)

  8. Characterization of surrogate radioactive cemented waste: a laboratory study

    International Nuclear Information System (INIS)

    Fiset, J.F.; Lastra, R.; Bilodeau, A.; Bouzoubaa

    2011-01-01

    Portland cement is commonly used to stabilize intermediate and low level of radioactive wastes. The stabilization/solidification process needs to be well understood as waste constituents can retard or activate cement hydration. The objectives of this project were to prepare surrogate radioactive cemented waste (SRCW), develop a comminution strategy for SRCW, determine its chemical characteristics, and develop processes for long term storage. This paper emphasizes on the characterization of surrogate radioactive cemented waste. The SRCW produced showed a high degree of heterogeneity mainly due to the method used to add the solution to the host cement. Heavy metals such as uranium and mercury were not distributed uniformly in the pail. Mineralogical characterization (SEM, EDS) showed that uranium is located around the rims of hydrated cement particles. In the SRCW, uranium occurs possibly in the form of a hydrated calcium uranate.The SEM-EDS results also suggest that mercury occurs mainly in the form of HgO although some metallic mercury may be also present as a result of partial decomposition of the HgO. (author)

  9. Cement-in-cement acetabular revision with a constrained tripolar component.

    Science.gov (United States)

    Leonidou, Andreas; Pagkalos, Joseph; Luscombe, Jonathan

    2012-02-17

    Dislocation of a total hip replacement (THR) is common following total hip arthroplasty (THA). When nonoperative management fails to maintain reduction, revision surgery is considered. The use of constrained acetabular liners has been extensively described. Complete removal of the old cement mantle during revision THA can be challenging and is associated with significant complications. Cement-in-cement revision is an established technique. However, the available clinical and experimental studies focus on femoral stem revision. The purpose of this study was to present a case of cement-in-cement acetabular revision with a constrained component for recurrent dislocations and to investigate the current best evidence for this technique. This article describes the case of a 74-year-old woman who underwent revision of a Charnley THR for recurrent low-energy dislocations. A tripolar constrained acetabular component was cemented over the primary cement mantle following removal of the original liner by reaming, roughening the surface, and thoroughly irrigating and drying the primary cement. Clinical and radiological results were good, with the Oxford Hip Score improving from 11 preoperatively to 24 at 6 months postoperatively. The good short-term results of this case and the current clinical and biomechanical data encourage the use of the cement-in-cement technique for acetabular revision. Careful irrigation, drying, and roughening of the primary surface are necessary. Copyright 2012, SLACK Incorporated.

  10. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  11. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  12. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    Science.gov (United States)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  13. Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model

    Directory of Open Access Journals (Sweden)

    Azad Rahman

    2017-12-01

    Full Text Available Cement manufacturing is one of the most energy intensive processes and is accountable for substantial pollutant emissions. Increasing energy costs compel stakeholders and researchers to search for alternative options to improve energy performance and reduce CO2 emissions. Alternative fuels offer a realistic solution towards the reduction of the usage of fossil fuels and the mitigation of pollutant emissions. This paper developed a process model of a precalciner kiln system in the cement industry using Aspen Plus software to simulate the effect of five alternative fuels on pollutant emissions and energy performance. The alternatives fuels used were tyre, municipal solid waste (MSW, meat and bone meal (MBM, plastic waste and sugarcane bagasse. The model was developed on the basis of energy and mass balance of the system and was validated against data from a reference cement plant. This study also investigated the effect of these alternative fuels on the quality of the clinker. The results indicated that up to a 4.4% reduction in CO2 emissions and up to a 6.4% reduction in thermal energy requirement could be achieved using these alternative fuels with 20% mix in coal. It was also found that the alternative fuels had minimum influence on the clinker quality except in the case of MSW. Overall, MBM was found to be a better option as it is capable on reducing energy requirement and CO2 emissions more than others. The outcomes of the study offer better understanding of the effects of solid alternative fuels to achieve higher energy performance and on mitigating pollutant emissions in cement industry.

  14. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    Science.gov (United States)

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  15. The influence of clay drilling grout on the quality of well cementation

    Energy Technology Data Exchange (ETDEWEB)

    Romic, L; Martinko, B

    1979-01-01

    The influence of clay drilling grout on the behavior of the cement mixture during the cementing of casings is described. Experimental results are given which demonstrate that clay drill grout slows down the setting of the cement mixture, lowers the durability of cement stone and its adherence to the well's walls, and changes the rheological properties and viscosity of the cement mixture. Separating devices, which prevent the mixing of the clay drilling grout and the cement solutions during the cementation process, are recommended.

  16. Effects of Co-Processing Sewage Sludge in the Cement Kiln on PAHs, Heavy Metals Emissions and the Surrounding Environment.

    Science.gov (United States)

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Li, Xinghua; Zhao, Yuan; Sun, Ye; Wang, Hongmei; Zhang, Fan; Zhao, Qinglin

    2018-04-08

    To understand the effects of co-processing sewage sludge in the cement kiln on non-criterion pollutants emissions and its surrounding environment, the flue gas from a cement kiln stack, ambient air and soil from the background/downwind sites were collected in the cement plant. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals of the samples were analyzed. The results show that PAHs in flue gas mainly exist in the gas phase and the low molecular weight PAHs are the predominant congener. The co-processing sewage sludge results in the increase in PAHs and heavy metals emissions, especially high molecular weight PAHs and low-volatile heavy metals such as Cd and Pb in the particle phase, while it does not change their compositions and distribution patterns significantly. The concentrations and their distributions of the PAHs and heavy metals between the emissions and ambient air have a positive correlation and the co-processing sewage sludge results in the increase of PAHs and heavy metals concentrations in the ambient air. The PAHs concentration level and their distribution in soil are proportional to those in the particle phase of flue gas, and the co-processing sewage sludge can accelerate the accumulation of the PAHs and heavy metals in the surrounding soil, especially high/middle molecular weight PAHs and low-volatile heavy metals.

  17. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu, E-mail: zhenggq@zjut.edu.cn

    2015-12-15

    Highlights: • Antimony can be efficiently removed by cementation with copper powder. • Cemented antimony is in the form of Cu{sub 2}Sb. • Consumed copper powder is transformed to CuCl. • The cementation is a chemically controlled step. • No toxic stibine generates during the cementation process. - Abstract: A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu{sub 2}Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L{sup −1} HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol{sup −1}, indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process.

  18. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  19. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  20. Cement encapsulation of low-level radioactive slurries of complex chemistry

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.

    2000-01-01

    Investigations have been carried out to solidify in cement a low-level radioactive waste of complex chemistry which should be produced in a new plant designed to process radioactive effluents from CEA Cadarache Research Center. Direct cementation comes up against a major problem: a very long setting time of cement due to strong inhibition by borates from the waste. A two-stage process, including a chemical treatment prior to immobilization, has been elaborated and the resulted material characterized. (authors)

  1. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  2. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  3. Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement.

    Science.gov (United States)

    Wang, Yan-Shuai; Dai, Jian-Guo; Wang, Lei; Tsang, Daniel C W; Poon, Chi Sun

    2018-01-01

    Inorganic binder-based stabilization/solidification (S/S) of Pb-contaminated soil is a commonly used remediation approach. This paper investigates the influences of soluble Pb species on the hydration process of two types of inorganic binders: ordinary Portland cement (OPC) and magnesium potassium phosphate cement (MKPC). The environmental leachability, compressive strength, and setting time of the cement products are assessed as the primary performance indicators. The mechanisms of Pb involved in the hydration process are analyzed through X-ray diffraction (XRD), hydration heat evolution, and thermogravimetric analyses. Results show that the presence of Pb imposes adverse impact on the compressive strength (decreased by 30.4%) and the final setting time (prolonged by 334.7%) of OPC, but it exerts much less influence on those of MKPC. The reduced strength and delayed setting are attributed to the retarded hydration reaction rate of OPC during the induction period. These results suggest that the OPC-based S/S of soluble Pb mainly depends on physical encapsulation by calcium-silicate-hydrate (CSH) gels. In contrast, in case of MKPC-based S/S process, chemical stabilization with residual phosphate (pyromorphite and lead phosphate precipitation) and physical fixation of cementitious struvite-K are the major mechanisms. Therefore, MKPC is a more efficient and chemically stable inorganic binder for the Pb S/S process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optimization of Packing Density of M30 Concrete With Steel Slag As Coarse Aggregate Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Arivoli M.

    2017-09-01

    Full Text Available Concrete plays a vital role in the design and construction of the infrastructure. To meet the global demand of concrete in future, it is becoming a challenging task to find suitable alternatives to natural aggregates. Steel slag is a by-product of steel making process. The steel slag aggregates are characterized by studying particle size and shape, physical and chemical properties, and mechanical properties as per IS: 2386-1963. The characterization study reveals the better performance of steel slag aggregate over natural coarse aggregate. M30 grade of concrete is designed and natural coarse aggregate is completely replaced by steel slag aggregate. Packing density of aggregates affects the characteristics of concrete. The present paper proposes a fuzzy system for concrete mix proportioning which increases the packing density. The proposed fuzzy system have four sub fuzzy system to arrive compressive strength, water cement ratio, ideal grading curve and free water content for concrete mix proportioning. The results show, the concrete mix proportion of the given fuzzy model agrees with IS method. The comparison of results shows that both proposed fuzzy system and IS method, there is a remarkable increase in compressive strength and bulk density, with increment in the percentage replacement of steel slag.

  5. Process engineering and optimization of glycerol separation in a packed-bed reactor for enzymatic biodiesel production.

    Science.gov (United States)

    Hama, Shinji; Tamalampudi, Sriappareddy; Yoshida, Ayumi; Tamadani, Naoki; Kuratani, Nobuyuki; Noda, Hideo; Fukuda, Hideki; Kondo, Akihiko

    2011-11-01

    A process model for efficient glycerol separation during methanolysis in an enzymatic packed-bed reactor (PBR) was developed. A theoretical glycerol removal efficiency from the reaction mixture containing over 30% methyl esters was achieved at a high flow rate of 540 ml/h. To facilitate a stable operation of the PBR system, a batch reaction prior to continuous methanolysis was conducted using oils with different acid values and immobilized lipases pretreated with methyl esters. The reaction system successfully attained the methyl ester content of over 30% along with reduced viscosity and water content. Furthermore, to obtain a high methyl ester content above 96% continuously, long-term lipase stability was confirmed by operating a bench-scale PBR system for 550 h, in which the intermediates containing methyl esters and residual glycerides were fed into the enzyme-packed columns connected in series. Therefore, the developed process model is considered useful for industrial biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    Vejmelka, P.; Rudolph, G.; Kluger, W.; Koester, R.

    1992-02-01

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG) [de

  7. Effects of Coal Gangue on Cement Grouting Material Properties

    Science.gov (United States)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  8. Advanced technologies of production of cemented carbides and composite materials based on them

    International Nuclear Information System (INIS)

    Bondarenko, V.; Pavlotskaya, E.; Martynova, L.; Epik, I.

    2001-01-01

    The paper presents new technological processes of production of W, WC and (Ti, W)C powders, cemented carbides having a controlled carbon content, high-strength nonmagnetic nickel-bonded cemented carbides, cemented carbide-based composites having a wear-resistant antifriction working layer as well as processes of regeneration of cemented carbide waste. It is shown that these technological processes permit radical changes in the production of carbide powders and products of VK, TK, VN and KKhN cemented carbides. The processes of cemented carbide production become ecologically acceptable and free of carbon black, the use of cumbersome mixers is excluded, the power expenditure is reduced and the efficiency of labor increases. It becomes possible to control precisely the carbon content within a two-phase region -carbide-metal. A high wear resistance of parts of friction couples which are lubricated with water, benzine, kerosene, diesel fuel and other low-viscosity liquids, is ensured with increased strength and shock resistance. (author)

  9. Probabilistic analysis of the influence of the bonding degree of the stem-cement interface in the performance of cemented hip prostheses.

    Science.gov (United States)

    Pérez, M A; Grasa, J; García-Aznar, J M; Bea, J A; Doblaré, M

    2006-01-01

    The long-term behavior of the stem-cement interface is one of the most frequent topics of discussion in the design of cemented total hip replacements, especially with regards to the process of damage accumulation in the cement layer. This effect is analyzed here comparing two different situations of the interface: completely bonded and debonded with friction. This comparative analysis is performed using a probabilistic computational approach that considers the variability and uncertainty of determinant factors that directly compromise the damage accumulation in the cement mantle. This stochastic technique is based on the combination of probabilistic finite elements (PFEM) and a cumulative damage approach known as B-model. Three random variables were considered: muscle and joint contact forces at the hip (both for walking and stair climbing), cement damage and fatigue properties of the cement. The results predicted that the regions with higher failure probability in the bulk cement are completely different depending on the stem-cement interface characteristics. In a bonded interface, critical sites appeared at the distal and medial parts of the cement, while for debonded interfaces, the critical regions were found distally and proximally. In bonded interfaces, the failure probability was higher than in debonded ones. The same conclusion may be established for stair climbing in comparison with walking activity.

  10. Energy efficiency technologies in cement and steel industry

    Science.gov (United States)

    Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo

    2018-02-01

    In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.

  11. Encapsulation of ILW raffinate in the Dounreay cementation plant

    International Nuclear Information System (INIS)

    Sinclair, G.F.

    1998-01-01

    The Dounreay Cementation Plant has been designed and constructed to encapsulate the first cycle liquid raffinate arising from the reprocessing of irradiated Research Reactor fuel into a cementitious matrix. The acidic liquid waste is conditioned with sodium hydroxide prior to mixing with the cement powders (a 9:1 ratio of Blast Furnace Slag / Ordinary Portland Cement with 5% Lime). The complete cement mixing process is performed within the 500-liter drum, which provides the waste package primary containment. The plant has recently been commissioned and has commenced routine operation, processing stocks of existing raffinate that has been stored at Dounreay for up to 30 years. The waste loading per drum has been optimised within the constraints of the chemical composition of the raffinate, with an expected plant throughput of 2.5 m 3 /week. (author)

  12. Evaluation of the amount of excess cement around the margins of cement-retained dental implant restorations: the effect of the cement application method.

    Science.gov (United States)

    Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza

    2013-04-01

    Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the

  13. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...

  14. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  15. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  16. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  17. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  18. Optimization and validation of a chemical process for uranium, mercury and cesium leaching from cemented radioactive wastes

    International Nuclear Information System (INIS)

    Reynier, N.; Riveros, P.; Lastra, R.; Laviolette, C.; Bouzoubaa, N.; Chapman, M.

    2015-01-01

    Atomic Energy of Canada Limited (AECL) is developing a treatment and long-term management strategy for a legacy cemented radioactive waste that contains uranium, mercury and fission products. Extracting the uranium would be advantageous for decreasing the waste classification and reducing the cost of long-term management. Consequently, there are safety and economic and environmental incentives for the extraction of uranium, mercury and cesium before subjecting the cemented waste to a stabilization process. The mineralogical analysis of the surrogate cemented waste (SCW) indicated that uranium forms calcium uranate, CaUO 4 , occurring as layers of several millimeters or as grains of 20 μm. Hg is found mostly as large (∼50 μm) and small grains (5-8 μm) of HgO. The chemical leachability of three key elements (U, Hg, and Cs) from a SCW was studied with several leaching materials. The results showed that the most promising approach to leach and recover U, Hg, and Cs is the direct leaching of the SCW with H 2 SO 4 in strong saline media. Operating parameters such as particle size, temperature, pulp density, leaching time, acid and salt concentrations, number of leaching/rinsing step, etc. were optimized to improve key elements solubilization. Sulfuric leaching in saline media of a SCW (U5) containing 1182 ppm of U, 1598 ppm of Hg, and 7.9 ppm of Cs in the optimized conditions allows key elements recovery of 98.5 ± 0.4%, 96.6 ± 0.1%, and 93.8 ± 1.1% of U, Hg, and Cs respectively. This solubilization process was then applied in triplicate to seven other SCW prepared with different cement, liquid ratio and at different aging time and temperature. Concentrated sulfuric acid is added to the slurry until the pH is about 2, which causes the complete degradation of cement and the formation of CaSO 4 . At this pH, the acid consumption is moderate and the formation of amorphous silica gel is avoided. Sulfuric acid is particularly useful because it produces a leachate that

  19. Tunable random packings

    International Nuclear Information System (INIS)

    Lumay, G; Vandewalle, N

    2007-01-01

    We present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing η RLP ≅0.56 to the upper limit of random close packing η RCP ≅0.64. This broad range of packing fraction values is obtained under normal gravity in air, by adjusting a magnetic cohesion between the grains during the formation of the pile. Attractive and repulsive magnetic interactions are found to affect stongly the internal structure and the stability of sphere packing. After the formation of the pile, the induced cohesion is decreased continuously along a linear decreasing ramp. The controlled collapse of the pile is found to generate various and reproducible values of the random packing fraction η

  20. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  1. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  2. Assessment of Physical and Solubility & Disintegration Properties of Zinc Cements Used for Operative Dentistry and the Comparison with the Standard

    Directory of Open Access Journals (Sweden)

    A. Zargar

    2005-02-01

    Full Text Available Statement of Problem: Zinc contained cements are so important among dental material as they have many indications and used in different ways therefore evaluation of their physical properties is so important in dentistry.Purpose: The purpose of this research was to measure some physical properties of zinc-contained cementsused in restorative dentistry. These cements included: Zinc oxide-eugenol, Zinc phosphate and Zinc polycarboxylate. Physical properties measured in this research were compressive strength, and setting timealso Solubility & Disintegration were evaluated.Materials and Methods: To perform this research two packs of each cement type were provided from an Iranian company products as prototypes and German HARVARD Dental GmbH company products as proofsamples. For compressive strength 11 samples provided from any type of cement. For setting time test, 16 samples provided from Zinc oxide-eugenol and 11 samples from two other types. For solubility &disintegration beet, 11 samples provided only from Zinc oxide-eugenol cement. The results compared with standard.Results: The results of Iranian product showed that compressive strength of Zinc oxide-eugenol- is I2.58±3 MPa, of Zinc phosphate cement is 37.2I±5.0 MPa and of Zinc polycarboxylate cement is 35.86±2.1 MPa.Setting time of Zinc oxide-eugenol cement is 2 9.04 ±0.7 1 min, of Zinc phosphate cement is 5.41 ±0.55 min and of Zinc polycarboxylate cement is 2.5±0.6 min. Solubility & disintegration of Zinc oxide-eugenol cement is 8.44±i.l%. None of these findings are in standard limit.Conclusion: By the use of standard charts it is concluded that: Only compressive strength of Zinc oxide-eugenol cement is between standard limits and compressive strengths of two other types of the cements are less than standard limits. Also only setting time -of Zincoxide eugenol cement is in standard limit and setting times of two other types of the cements aren't in standard limit. The German samples

  3. Feasibility of producing nano cement in a traditional cement factory in Iraq

    Directory of Open Access Journals (Sweden)

    Sada Abdalkhaliq Hasan Alyasri

    2017-12-01

    Full Text Available This study investigates the economic feasibility of producing nano cement through the establishment of a production line within an existing cement factory. Creating a nano cement production line within the Alkufa Cement factory in Iraq is selected as a case study. Evaluation measures including internal rate of return (IRR, net present value (NPV and breakeven point (BEP are used to evaluate the possible gain that can be achieved from this option. The results demonstrated a positive NPV. The IRR is found to be 26.8% and BEP is reached within 3 years after the establishment of the line. This indicates that producing nano cement in the existing cement factory is economically feasible and can be more advantageous than the ordinary cement.

  4. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    Science.gov (United States)

    Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Feasibility of backfilling mines using cement kiln dust, fly ash, and cement blends

    Directory of Open Access Journals (Sweden)

    Beltagui H.

    2018-01-01

    Full Text Available Cement kiln dust (CKD is an industrial by-product of the cement manufacturing process, the composition of which can vary widely. Recent years of using alternative fuels have resulted in higher chloride and alkali contents within CKDs; as such, this limits the applications in which CKDs can be utilised. Using a CKD containing a high free lime content of 29.5%, it is shown that this CKD is capable of activating pulverized fuel ash (PFA due to its high alkalinity, which can be utilised in low strength un-reinforced applications. One potential application involves the backfill of mines, reducing the need for continuous maintenance of the mine. This study focuses on the compressive strength achieved by various blends of CKD, PFA, and cement. Samples were hand mixed and compacted in 100 mm x 50 mm diameter cylinders, and unconfined compressive strength measurements taken at 28 and 56 days. The hydration products were assessed through the use of x-ray diffraction and thermogravimetric analysis. Aiming to maximise the use of CKD at a water to binder (w/b ratio of 0.2, it was found that the maximum CKD content possible to achieve the required strength was 90% CKD blended with 10% cement.

  6. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  7. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  8. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  9. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  10. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    For Portland cement to qualify as oil well cement, the chemical and physical properties must meet ..... Reservoir Engineering, Stanford University,. Stanford, California, pp. ... Construction”, PhD Thesis, Kwame Nkrumah. University of Science ...

  11. Cement solidification method for miscellaneous radioactive solid, processing device and processing tool therefor

    International Nuclear Information System (INIS)

    Mihara, Shigeru; Suzuki, Kazunori; Hasegawa, Akira.

    1994-01-01

    A basket made of a metal net and a lid with a spacer constituting a processing tool for processing miscellaneous radioactive solid wastes is formed as a mesh which scarcely passes the miscellaneous solids but pass mortars. The size of the mesh is usually from about 10 to 30mm. Since this mesh allows fine solids approximate to powders such as burning ashes and heat insulation materials, they fall to the bottom of a dram can, to cause corrosion. Then, the corners of the bottom and the bottom of the dram can are coated with cement. The miscellaneous solid wastes are contained, and the lid of a metal net having a spacer at the upper portion thereof is set, a provisional lid is put on, and it is evacuated, and mortars are injected. Since there is a possibility that light and fine radioactive powders are exposed on the surface of the mortars coagulated and hardened by curing, conditioning for further adding mortars is applied for securing the mortars in order to prevent scattering of the radioactive powders. With such procedures, a satisfactory safe solidified products can be formed. (T.M.)

  12. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  13. Assessing the value of retrofitting cement plants for carbon capture: A case study of a cement plant in Guangdong, China

    International Nuclear Information System (INIS)

    Liang Xi; Li Jia

    2012-01-01

    Highlights: ► A techno-economic analysis on retrofitting cement plants to CO 2 capture is conducted. ► A list of criteria is suggested to investigate the CO 2 capture retrofit potential in cement plants. ► The baseline estimated cost of CO 2 avoidance for retrofitting a cement plant is US$70/tCO 2 e. ► The value of retrofit option is US$1.2 million with a 7.3% probability of economic viability. ► The retrofit option value reaches US$20 m with 67% probability under a high carbon price growth. - Abstract: The cement manufacturing sector is the second largest source of anthropogenic greenhouse gas emissions in the world. Carbon Capture and Storage (CCS) is one of the most important technologies to decarbonise the cement manufacturing process. China has accounted for more than half of global cement production since 2008. This study suggests criteria to assess the potential to retrofit cement plants and analyses the economics of retrofitting cement plants for CCS with a case study of a modern dry process cement plant locating in Guangdong province, China. The study assumes the extra heat and power for CO 2 capture and compression is provided by a new 200 MW combined heat and power unit (CHP) (US$17.5/MW h thermal for the cost of coal). The estimated cost of CO 2 avoidance by retrofitting a cement plant for carbon capture in 2012 is US$70/tonne at a 14% discount rate with 25 years remaining lifetime. Through a stochastic cash flow analysis with a real option model and Monte Carlo simulation, the study found the value of an option to retrofit to be US$1.2 million with a 7.3% probability of economic viability. The estimate is very sensitive to the assumptions in the carbon price model (i.e. base carbon price is US$12.00/tCO 2 e in 2012 and the mean growth rate is 8%). The option value and the probability can reach US$20 million and 67% respectively, if a 10% mean carbon price growth is assumed. Compared with post-combustion carbon capture retrofitting prospect in

  14. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  15. Solidification of metallic aluminum on magnesium phosphate cements

    International Nuclear Information System (INIS)

    Lahalle, Hugo

    2016-01-01

    This work deals with the stabilization/solidification of radioactive waste using cement. More particularly, it aims at assessing the chemical compatibility between metallic aluminum and mortars based on magnesium phosphate cement. The physical and chemical processes leading to setting and hardening of the cement are first investigated. X-ray diffraction (XRD), thermogravimetry (TGA) and nuclear magnetic resonance spectroscopy ("3"1P and "1"1B MAS-NMR) are first used to characterize the solid phases formed during hydration, while inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES), electrical conductometry and pH measurements provide information on the pore solution composition. Then, the corrosion of metallic aluminum in magnesium phosphate mortars is studied by monitoring the equilibrium potential and by electrochemical impedance spectroscopy (EIS). Magnesium phosphate cement is prepared from a mix of magnesium oxide (MgO) and potassium dihydrogen orthophosphate (KH_2PO_4). In the presence of water, hydration occurs according to a dissolution - precipitation process. The main hydrate is K-struvite (MgKPO_4.6H_2O). Its precipitation is preceded by that of two transient phases: phosphorrosslerite (MgHPO_4.7H_2O) and Mg_2KH(PO_4)_2.15H_2O. Boric acid retards cement hydration by delaying the formation of cement hydrates. Two processes may be involved in this retardation: the initial precipitation of amorphous or poorly crystallized minerals containing boron and phosphorus atoms, and/or the stabilization of cations (Mg"2"+, K"+) in solution. As compared with a Portland cement-based matrix, corrosion of aluminum is strongly limited in magnesium phosphate mortar. The pore solution pH is close to neutrality and falls within the passivation domain of aluminum. Corrosion depends on several parameters: it is promoted by a water-to-cement ratio (w/c) significantly higher than the chemical water demand of cement (w/c = 0.51), and by the addition of boric

  16. An Investigation into the Effects of Process Conditions on the Tribological Performance of Pack Carburized Titanium with Limited Oxygen Diffusion

    Science.gov (United States)

    Bailey, R.; Sun, Y.

    2018-04-01

    In the present study, a new pack carburization technique for titanium has been investigated. The aim of this treatment is to produce a titanium carbide/oxycarbide layer atop of an extended oxygen diffusion zone [α-Ti(O)]. The effects of treatment temperature and pack composition have been investigated in order to determine the optimal conditions required to grant the best tribological response. The resulting structural features were investigated with particular interest in the carbon and oxygen concentrations across the samples cross section. The optimization showed that a temperature of 925 °C with a pack composition of 1 part carbon to 1 part energizer produced surface capable of withstanding a contact pressure of ≈ 1.5 GPa for 1 h. The process resulted in TiC surface structure which offers enhanced hardness (2100 HV) and generates a low friction coefficient (μ ≈ 0.2) when in dry sliding contact with an alumina (Al2O3) ball. The process also produced an extended oxygen diffusion zone that helps to improve the load bearing capacity of the substrate.

  17. Micropore characteristics of organic matter pools in cemented and non-cemented podzolic horizons

    NARCIS (Netherlands)

    Catoni, M.; D'amico, M.E.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Bonifacio, E.

    2014-01-01

    In Podzols, organic matter (OM) is stabilized mainly by interaction with minerals, as a direct consequence of pedogenic processes. Metal-organic associations strongly affect OM surface features, particularly microporosity. Cemented ortstein horizons (CM) may form during podzolization, accompanied by

  18. Effects of the gas-liquid ratio on the optimum catalyst quantity for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Sugiyama, T.; Ushida, A.; Yamamoto, I.

    2008-01-01

    In order to improve the separative performance of a combined electrolysis catalytic exchange (CECE) process, we have carried out experimental studies on hydrogen isotope separation by a CECE process using a liquid phase catalytic exchange (LPCE) column of trickle-type packed beds. Two types of trickle beds were tested in our previous study. One was the layered bed, where layers of Kogel catalysts and Dixon gauze rings were alternately filled in the column. The other was the homogeneous bed, where Kogel catalysts and Dixon gauze rings were homogeneously mixed and filled in the column. We found that (1) the homogeneously packed bed was more efficient than the layered packed bed, and (2) the catalyst quantity was optimal, which resulted in the highest separative performance. In this study, the effect of the gas-liquid ratio (G/L) on the optimum catalyst quantity was studied experimentally in a homogeneously packed bed. When the value of G/L was 1.7, total separation factors were relatively small and the optimum catalyst quantity could not be determined. On the other hand, when the values of G/L were 0.9 and 0.7, the values of the total separation factors had maximums and the optimal quantities of the catalyst were clearly obtained

  19. Solidification of liquid radioactive concentrates by fixation with cement

    International Nuclear Information System (INIS)

    Pekar, A.; Breza, M.; Timulak, J.; Krajc, T.

    1985-01-01

    In testing the technology of liquid radioactive wastes cementation, the effect was mainly studied of the content of boric acid and its salts on cement solidification, the effect of additives on radionuclide leachability and the effect of the salt content on the cementation product. On the basis of experimental work carried out on laboratory scale with model samples and samples of radioactive concentrate from the V-1 nuclear power plant, the following suitable composition of the cementation mixture was determined: 40% Portland cement, 40% zeolite containing material and 20% power plant ash. The most suitable ratio of liquid radioactive wastes and the cementation mixture is 0.5. As long as in such case the salt content of the concentrate ranges between 20 and 25%, the cementation product will have a maximum salt content of 10% and a leachability of the order of 10 -3 to 10 -4 g/cm 2 per day with a mechanical strength allowing safe handling. It was also found that the quality processing of the cement paste with degassing, e.g., by vibration, is more effective for the production of a pore-free cementation product than the application of various additives which are supposed to eliminate pore formation. (Z.M.)

  20. A Study of Metal-Cement Composites with Additives

    Directory of Open Access Journals (Sweden)

    Mironov Victor

    2014-12-01

    Full Text Available The application of small-sized metal fillers (SMF provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction. Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers.

  1. Radionuclide and metal sorption on cement and concrete

    CERN Document Server

    Ochs, Michael; Wang, Lian

    2016-01-01

    Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitativ...

  2. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  3. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  4. Experimental study with domestic bone cement in the percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Ni Caifang; Liu Xisheng; Chen Long; Yang Huilin; Tang Tiansi; Ding Yi

    2004-01-01

    Objective: To study the feasibility of injecting domestic bone cement in the process of the percutaneous vertebroplasty. Methods: (1) Various types cement were disposed with domestic PMMA. The concretionary phases of cement were observed according to the stages and holding time. Then the most ideal ratio of the mixed cement was selected and ten cement columns were made with this ratio, which was taken as the trial group. The other ten referring to was taken as the contrast one. The biological mechanics was measured with a load and the data of the results were compared. (2) Twenty thoracic and lumbar adjacent bodies were removed intact from five human corpses. These bodies were divided into two groups, in one group PMMA were injected, the other was severed as the contrast one. Then in these twenty vertebral bodies the biological mechanics was measured and the treatment effect was evaluated. (3) In 12 healthy dogs PVP in lumber was tried so as to observe the operational difficulty during the process of injected this bone cement and CT was used to evaluate the result of PMMA, diffusion and the complications caused by it. Results: The most ideal ratio was 4:2.6:1 (g, ml, ml) between powder, monome and contrast. After injecting this kind of cement, the loading strength of these vertebral bodies was increased remarkably (P<0.01). Conclusion: Injecting domestic bone cement provides the theoretical foundations for the clinical application of PVP. (author)

  5. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  6. Radioactive waste cementation

    International Nuclear Information System (INIS)

    Soriano B, A.

    1996-01-01

    This research was carried out to develop the most adequate technique to immobilize low and medium-activity radioactive waste. different brands of national cement were used, portland and pozzolanic cement. Prismatic and cylindrical test tubes were prepared with different water/cement (W/C) relationship. Additives such a as clay and bentonite were added in some other cases. Later, the properties of these test tubes were evaluated. Properties such as: mechanical resistance, immersion resistance, lixiviation and porosity resistance. Cement with the highest mechanical resistance values, 62,29 MPa was pozzolanic cement for a W/C relationship of 0,35. It must be mentioned that the other types of cements reached a mechanical resistance over 10 MPa, a value indicated by the international standards for transportation and storage of low and medium-activity radioactive waste at a superficial level. However, in the case of immersion resistance, Sol cement (portland type I) with a W/C relationship of 0,35 reached a compression resistance over 61,92 MPa; as in the previous cases, the other cements reached a mechanical resistance > 10 MPa. Regarding porosity, working with W/C relationships = 0,35 0,40 and 0,45, without additives and with additives, the percentage of porosity found for all cements is lower than 40% percentage indicated by international standards. With regard to the lixiviation test, pozzolanic cement best retained Cesium-137 and Cobalt-60, and increased its advantages when bentonite was added, obtaining a lixiviation rate of 2,02 x E-6 cm/day. Sol cement also improved its properties when bentonite was added and obtained a lixiviation rate of 2,84 x E-6 cm/day for Cesium-137. However, Cobalt-60 is almost completely retained with the 3 types of cement with or without additives, reaching the limits indicated by the international standards for the lixiviation rate of beta-gamma emitter < 5,00E-4 cm/day. Characterizing the final product involves the knowledge of its

  7. Preparation of iron-modified portland cement adsorbent and the investigation of its decolorization performance

    Science.gov (United States)

    Jiang, Bo; Wang, Huifeng; Li, Yang; Li, Zhen

    2018-02-01

    The ordinary portland cement was modified by ferric salt impregnation method. Through the technologies of x-ray diffraction, scanning electron microscope and energy dispersive spectroscopy, the physicochemical properties of modified cement were detected and analyzed. It was found that after the modification, the main constituents of raw cement, tricalcium silicate and dicalcium silicate had been depleted, and the new crystal mineral of antarcticite replaced them. The iron precipitates and cement hydration products calcium silicate hydrate gel mainly existed in the form of amorphous on modified cement. The results of BET specific surface determination showed that the modified cement particles had mesoporous distribution. The results of adsorption experiment revealed modified cement exhibited excellent adsorption performance on reactive brilliant blue KNR. The combination mechanism between modified cement and adsorbate was mainly electrostatic interaction. The adsorption process satisfied with the pseudo-second order kinetics model, and the adsorption reaction was a spontaneous endothermic process.

  8. Evaluation of brazilian bentonites as additive in the radwaste cementation

    International Nuclear Information System (INIS)

    Tello, C.C.O. de.

    1988-01-01

    The behavior of some Brazilian bentonites has been evaluated, concerning to their use as additive in the radwaste cementation. The purpose of the bentonite is to retain the radioelements in the final product in leaching process. Experiments to determine properties such as compressive strenght, viscosity, set time leaching and cesium sorption have been carried out to this evaluation. After one-year test, the results show that the bentonites greatly reduce the cesium release. A literature survey about cementation process and plants and about the cement product characteristics has been made in order to obtain a reliable final product, able to be transported and storaged. Some leaching test methods and mathematical models, that could be applied in the evaluation of cement products with bentonite have been evaluated. (author) [pt

  9. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    Science.gov (United States)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  10. Environmental Assessment of Different Cement Manufacturing Processes Based on Emergy and Ecological Footprint Analysis

    Science.gov (United States)

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housin...

  11. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Obeid, Farah; Zeaiter, Joseph; Al-Muhtaseb, Ala’a H.; Bouhadir, Kamal

    2014-01-01

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C 10 –C 28 . • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C 44 ), olefins (⩽C 22 ), aromatics (⩽C 14 ) and alcohols (C 16 and C 17 ) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical

  12. Cement solidification of spent ion exchange resins produced by the nuclear industry

    International Nuclear Information System (INIS)

    Jaouen, C.; Vigreux, B.

    1988-01-01

    Cement solidification technology has been applied to spent ion exchange resins for many years in countries throughout the world (at reactors, research centers and spent fuel reprocessing plants). Changing specifications for storage of radioactive waste have, however, confronted the operators of such facilities with a number of problems. Problems related both to the cement solidification process (water/cement/resin interactions and chemical interactions) and to its utilization (mixing, process control, variable feed composition, etc.) have often led waste producers to prefer other, polymer-based processes, which are very expensive and virtually incompatible with water. This paper discusses research on cement solidification of ion exchange resins since 1983 and the development of application technologies adapted to nuclear service conditions and stringent finished product quality requirements

  13. Parameters of Alumina Cement and Portland Cement with Addition of Chalcedonite Meal

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Aluminous cement is a quick binder with special properties. It is used primarily to make non-standard monolithic components exposed to high temperatures, + 1300°C. It is also a component of adhesives and mortars. It has a very short setting time. It is characterized by rapid increase in mechanical strength and resistance to aggressive sulphates. It can be used in reinforced concrete structures. Laying of concrete, construction mortar made of alumina cement can be carried out even at temperatures of -10°C. This article discusses a comparison of the parameters of hardened mortar made of alumina cement GÓRKAL 40 and Portland cement CEM I 42.5R. The mortars contain an addition of chalcedonite meal with pozzolanic properties, with particle size of less than 0.063μm. The meal was added in amounts of 5% and 20% of cement weight. Chalcedonite meal used in the laboratory research is waste material, resulting from chalcedonite aggregate mining. It has the same properties as the rock from which it originates. We have compared the parameters of hardened mortar i.e. compressive strength, water absorption and capillarity. The addition of 20% chalcedonite meal to mortars made from aluminous cement will decrease durability by 6.1% relative to aluminous cement mortar without addition of meal. Considering the results obtained during the absorbency tests, it can be stated that the addition of chalcedonite meal reduces weight gains in mortars made with cement CEM I 42.5 R and alumina cement. Use of alumina cement without addition of meal in mortars causes an increase of mass by 248% compared to Portland cement mortars without additions, in the absorption tests. The addition of chalcedonite meal did not cause increased weight gain in the capillary action tests. For the alumina cement mortars, a lesser weight gains of 24.7% was reported, compared to the Portland cement mortar after 28 days of maturing.

  14. Data acquisition and monitoring of radwaste cementation plants

    International Nuclear Information System (INIS)

    Cable, A.S.; Lee, D.J.; Samways, J.; Weller, F.C.; Williams, J.R.A.

    1988-03-01

    This paper summarises the progress made in the two years to June 1987 on the DOE funded programme for Data acquisition and monitoring of Radwaste Cementation Plants. The results of the computer based data logging and processing system fitted to an in-drum mixing station, cement powder plant and sludge handling plant are reported. (author)

  15. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per

  16. Modified sulfur cement solidification of low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  17. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  18. FUZZY LOGIC CONTROLLER AS MODELING TOOL FOR THE BURNING PROCESS OF A CEMENT PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    P.B. Osofisan

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A comprehensive optimisation of the cement production process presents a problem since the input variables as well as the output variables are non-linear, interdependent and contain uncertainties. To arrive at a solution, a Fuzzy Logic controller has been designed to achieve a well-defined relationship between the main and vital variables through the instrumentality of a Fuzzy Model. The Fuzzy Logic controller has been simulated on a digital computer using MATLAB 5.0 Fuzzy Logic Tool Box, using data from a local cement production plant.

    AFRIKAANSE OPSOMMING: Die omvattende optimisering van 'n proses wat sement vervaardig, word beskryf deur nie-linieêre inset- en uitsetveranderlikes wat onderling afhanklik is, en ook van onsekere aard is. Om 'n optimum oplossing te verkry, word 'n Wasigheidsmodel gebruik. Die model word getoets deur gebruik te maak van die MATLAB 5.0 Fuzzy Logic Tool Box en data vanaf 'n lokale sementvervaardigingsaanleg.

  19. Identifying improvement potentials in cement production with life cycle assessment.

    Science.gov (United States)

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  20. The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis

    Directory of Open Access Journals (Sweden)

    Qin Xiaochun

    2017-11-01

    Full Text Available The main technical requirements of road pavement concrete are high flexural strength and fatigue durability. Adding glass fiber into concrete could greatly increase flexural strength and wearing resistance of concrete. However, glass fiber has the great potential of corrosion during the cement hydration, which will directly affect the long-term performance and strength stability. In this paper, accelerated corrosion experiments have been done to find out the corrosion mechanism and property of alkali-resistant glass fiber in cement mortar. The applicability and practicability of alkaline-resistant glass fiber in road concrete have been illustrated in the analysis of flexural strength changing trend of cement mortar mixed with different proportions of activated additives to protect the corrosion of glass fiber by cement mortar. The results have shown that a 30% addition of fly ash or 10% addition of silica fume to cement matrix could effectively improve the corrosion resistance of alkali-resistant glass fiber. The optimal mixing amount of alkali-resistant glass fiber should be about 1.0 kg/m3 in consideration of ensuring the compressive strength of reinforced concrete in road pavement. The closest-packing method has been adopted in the mixture ratio design of alkali-resistant glass fiber reinforced concrete, not only to reduce the alkalinity of the cement matrix through large amount addition of activated additives but also to greatly enhance the flexural performance of concrete with the split pressure ratio improvement of 12.5–16.7%. The results suggested a prosperous application prospect for alkaline-resistant glass fiber reinforced concrete in road pavement.

  1. Integral migration and source term experiments on cement and bitumen waste forms

    International Nuclear Information System (INIS)

    Ewart, F.T.; Howse, R.M.; Sharpe, B.M.; Smith, A.J.; Thomason, H.P.; Williams, S.J.; Young, M.

    1986-01-01

    This is the final report of a programme of research which formed a part of the CEC joint research project into radionuclide migration in the geosphere (MIRAGE). This study addressed the aspects of integral migration and source term. The integral migration experiment simulated, in the laboratory, the intrusion of water into the repository, the leaching of radionuclides from two intermediate level wasteforms and the subsequent migration through the geosphere. The simulation consisted of a source of natural ground water which flowed over a sample of wasteform, at a controlled redox potential, and then through backfill and geological material packed in columns. The two wasteforms used here were cemented waste from the WAK plant at Karlsruhe, W. Germany and bitumenised intermediate concentrates from the Marcoule plant in France. The soluble fission products such as caesium wire rapidly released from the cemented waste but the actinides, and technetium in the reduced state, were retained in the wasteform. The release of all nuclides from the bitumenised waste was very low. (author)

  2. Integral migration and source-term experiments on cement and bitumen waste forms

    International Nuclear Information System (INIS)

    Ewart, F.T.; Howse, R.M.; Sharpe, B.M.; Smith, A.J.; Thomason, H.P.; Williams, S.J.; Young, M.

    1986-01-01

    This is the final report of a programme of research which formed a part of the CEC joint research project into radionuclide migration in the geosphere (MIRAGE). This study addressed the aspects of integral migration and source term. The integral migration experiment simulated, in the laboratory, the intrusion of water into the repository, the leaching of radionuclides from two intermediate-level waste-forms and the subsequent migration through the geosphere. The simulation consisted of a source of natural ground water which flowed over a sample of waste-form, at a controlled redox potential, and then through backfill and geological material packed in columns. The two waste forms used here were cemented waste from the WAK plant at Karlsruhe in the Federal Republic of Germany and bitumenized intermediate concentrates from the Marcoule plant in France. The soluble fission products such as caesium were rapidly released from the cemented waste but the actinides, and technetium in the reduced state, were retained in the waste-form. The released of all nuclides from the bitumenized waste was very low

  3. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties.

    Science.gov (United States)

    Frutos, Gloria; Pastor, José Ygnacio; Martínez, Noelia; Virto, María Rosa; Torrado, Susana

    2010-03-01

    The purpose of this study was to characterize a poly(methyl methacrylate) bone cement that was loaded with the antibiotic gentamicin sulphate (GS) and lactose, which served to modulate the release of GS from cement specimens. The release of GS when the cement specimens were immersed in phosphate-buffered saline at 37 degrees Celsius was determined spectrophotometrically. The microstructure, porosity, density, tensile properties and flexural properties of the cements were determined before and after release of GS. A kinetics model of the release of GS from the cement that involved a coupled mechanism based on dissolution/diffusion processes and an initial burst effect was proposed. Dissolution assay results showed that drug elution was controlled by a diffusion mechanism which can be modulated by lactose addition. Density values and mechanical properties (tensile strength, flexural strength, elastic modulus and fracture toughness) were reduced by the increased porosity resulting from lactose addition, but maintained acceptable values for the structural functions of bone cement. The present results suggest that lactose-modified, gentamicin-loaded acrylic bone cements are potential candidates for use in various orthopaedic and dental applications. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. In vitro bioactivity of a tricalcium silicate cement

    Energy Technology Data Exchange (ETDEWEB)

    Morejon-Alonso, L.; Bareiro, O.; Santos, L.A. dos, E-mail: loreley.morejon@ufrgs.b [Universidade Federal do Rio Grande do Sul (UFRG), Porto Alegre, RS (Brazil). Escola de Engenharia. Dep. de Materiais; Carrodeguas R, Garcia [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Ceramica y Vidrio. Dept. de Ceramica

    2009-07-01

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca{sub 3}SiO{sub 5}, obtained by sol-gel process, and a Na{sub 2}HPO{sub 4} solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca{sub 3}SiO{sub 5} would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  5. Immobilization of citric acid solutions in portland cement

    International Nuclear Information System (INIS)

    Lopes, Valdir M.; Rzyski, Barbara M.

    1997-01-01

    Decontamination processes by using citric acid on certain items used in the nuclear area, can result in large volumes of liquid wastes with low activity or effluents, contaminated with uranium and some elements dangerous to the environment. A great number of installations that have decontamination processes adopt the zero discharge philosophy. So, one of the forms to isolate the solutions is by reducing its volume through the evaporation process. The generated must can be neutralized and encapsulated or immobilized in Portland cement. This work propose a chemical technique to destroy the citric acid in the decontamination solutions instead of neutralization and, depending on the installation convenience, a direct cement immobilization of these solutions or of the evaporation mud. The results obtained in this work involve data about the workability, setting time and mechanical resistance, after 28 days of sealed cure, for samples with water-cement ratios of 4, 0.5 and 0.6, by weight. (author). 5 refs., 2 tabs

  6. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  7. Generalized network improvement and packing problems

    CERN Document Server

    Holzhauser, Michael

    2016-01-01

    Michael Holzhauser discusses generalizations of well-known network flow and packing problems by additional or modified side constraints. By exploiting the inherent connection between the two problem classes, the author investigates the complexity and approximability of several novel network flow and packing problems and presents combinatorial solution and approximation algorithms. Contents Fractional Packing and Parametric Search Frameworks Budget-Constrained Minimum Cost Flows: The Continuous Case Budget-Constrained Minimum Cost Flows: The Discrete Case Generalized Processing Networks Convex Generalized Flows Target Groups Researchers and students in the fields of mathematics, computer science, and economics Practitioners in operations research and logistics The Author Dr. Michael Holzhauser studied computer science at the University of Kaiserslautern and is now a research fellow in the Optimization Research Group at the Department of Mathematics of the University of Kaiserslautern.

  8. A positron annihilation study on the hydration of cement pastes

    International Nuclear Information System (INIS)

    Consolati, G.; Quasso, F.

    2007-01-01

    Positron annihilation lifetime spectroscopy experiments were carried out in various ordinary Portland cement pastes, in an attempt to monitor the porosity of the pastes. It is found that positronium intensity is well correlated to the time evolution of the total porosity and it is influenced by the water-to-cement ratio. This parameter is also sensitive to the delayed hydration process induced by adding methanol to the water-cement mixture

  9. Successful field implementation of novel cementing solution for ISC wells : case histories

    Energy Technology Data Exchange (ETDEWEB)

    Meher, R.K.; Suyan, K.M.; Dasgupta, D. [Society of Petroleum Engineers, Dubai (United Arab Emirates)]|[Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India); Deodhar, S.; Sharma, V.; Jain, V.K. [Oil and Natural Gas Corp. Ltd., Tel Bhavan, Dehradun (India)

    2008-10-15

    Cementation of in-situ combustion (ISC) wells is challenging since wells are frequently associated with weak and unconsolidated formation. However, cement rise up to surface is desired to prevent casing failure. Moreover, the cement sheath is also required to withstand extreme stresses due to high temperature cycling experienced during in-situ combustion process. In response to the problem of inadequate placement time and flash setting, Portland cement-silica blends were used for cementation of ISC wells in India instead of alumina cement blends. However, the use of the cement-silica blends has resulted in insufficient cement rise because of losses during cementation. The cured cement failed to contain the strength and permeability in course of ISC process causing charge of sub-surface shallower layers. This paper discussed the development and implementation of a non-alumina based thermally stable lightweight lead slurry and a ductile high temperature resistance tail slurry for mitigating these problems. The paper provided details of the study as well as four successful case histories. The cementing practice for ISC wells around the world was first described and illustrated. Next, the paper outlined the formulation of thermally stable tail slurry through laboratory studies. Slurry parameters of the tail slurry were presented, including slurry weight; thickening time; fluid loss; free fluid; and rheology. The paper also reviewed a study of compressive strength and permeability of thermal slurry; slurry parameters of the lightweight lead slurry; and study of compressive strength and permeability of lightweight thermal slurry. 8 refs., 4 tabs., 12 figs.

  10. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.; Patzek, Tadeusz; van Oort, Eric

    2017-01-01

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  11. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  12. Novel application of DEM to modelling comminution processes

    International Nuclear Information System (INIS)

    Delaney, Gary W; Cleary, Paul W; Sinnott, Matt D; Morrison, Rob D

    2010-01-01

    Comminution processes in which grains are broken down into smaller and smaller sizes represent a critical component in many industries including mineral processing, cement production, food processing and pharmaceuticals. We present a novel DEM implementation capable of realistically modelling such comminution processes. This extends on a previous implementation of DEM particle breakage that utilized spherical particles. Our new extension uses super-quadric particles, where daughter fragments with realistic size and shape distributions are packed inside a bounding parent super-quadric. We demonstrate the flexibility of our approach in different particle breakage scenarios and examine the effect of the chosen minimum resolved particle size. This incorporation of the effect of particle shape in the breakage process allows for more realistic DEM simulations to be performed, that can provide additional fundamental insights into comminution processes and into the behaviour of individual pieces of industrial machinery.

  13. Setting temperature evolution of nitrate radwaste immobilized in ordinary portland cement

    International Nuclear Information System (INIS)

    Rzyski, B.M.; Suarez, A.A.

    1988-01-01

    Materials based on hydraulic cements such as ordinary Portland cement (OPC) have many applications in the radioactive waste disposal field. Cement hydration process is an exothermic reaction and can cause a considerable temperature rise in the cemented waste form. Specially when large blocks of waste forms are produced it is necessary to have some information about the temperature build up which occurs inside the mass, because this effect may have some influences on the ultimate properties of the hardened cement paste. This temperature rise cause expansion while the cement paste is hardening. When the cooling process takes place, to the surrounding temperature, crackings and contractions may then occur. Whether cracking arise it depends both on the magnitude of the temperature induced stress and on the capacity of the mixture to accommodate the strain. This paper compares the temperature growth in pastes into two different geometries: one uses a waste container with 3.8 dm 3 (one US gallon) capacity placed inside a 0.21 m 3 (55 gallons) concrete lined drum, which acts as a radiation shielding, and the other the same container placed in ambient at room temperature. Correlations between the time of temperature occurrence, maximum temperature, the water to cement ratio and salt content were observed

  14. Study of P-350 cement setting kinetic by nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Duque Fernández, Gabriel L.

    1993-12-01

    Full Text Available A kinetic study of cement setting process is presented in this paper A new method which allows the microscopic research of the evolution of the cement hydration applied to the study of three P-350 cuban cements is used. The initial and final values of the specific surfaces of the hydration products and cement were obtained, and the different periods of the hydration process of cement pastes were characterized. The influence of the cement phase composition on the surface development of the hydrated cement stone is discussed.

    En el presente trabajo se presenta el estudio de la cinética del proceso de fraguado del cemento empleando un método novedoso que permite investigar microscópicamente la evolución de la hidratación del cemento, el cual fue aplicado al estudio de tres cementos cubanos P-350. Se obtuvieron los valores iniciales y finales de las superficies específicas de los productos de hidratación y del cemento. Se caracterizaron los diferentes períodos del proceso de hidratación de las pastas de cemento. Se muestra la influencia de la composición fásica del cemento sobre el desarrollo superficial de la pasta hidratada.

  15. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag...... (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  16. Thermal analysis of cement pastes with superabsorbent polymers

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede; Lukosiute, Irena

    2013-01-01

    Thermal analysis of cement systems is very helpful in the understanding of many different properties of cementitious compounds, both for the original reacting compounds, and also for the resulting hydration products. Superabsorbent polymers can be added to cement systems with many different reasons......, so it is relevant that fundamental knowledge of this new compound on the development of hydration is well understood [1-3]. This paper reports research on thermal analysis of cement pastes with superabsorbent polymers. We have studied several parameters: the concentration of SAP in the system......, the effect of particle size distribution, and their influence on the hydration process with focus on cement-silica systems. This is done at different thermodynamic conditions, so the energy of activation in the different systems can be accessed. This paper provides information relevant to hydration modelling...

  17. Clay-cement suspensions - rheological and functional properties

    Science.gov (United States)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  18. LL/ILW: Post-Qualification of Old Waste through Non-Destructive Extraction of Barrels from Cement Shields - 13535

    International Nuclear Information System (INIS)

    Oehmigen, Steffen; Ambos, Frank

    2013-01-01

    Currently there is a large number of radioactive waste drums entombed in cement shields at German nuclear power plants. These concrete containers used in the past for the waste are not approved for the final repository. Compliance with current acceptance criteria of the final repository has to be proven by qualification measures on the waste. To meet these criteria, a new declaration and new packing is necessary. A simple non-destructive extraction of about 2000 drums from their concrete shields is not possible. So different methods were tested to find a way of non-destructive extraction of old waste drums from cement shields and therefore reduce the final repository volume and final repository costs by using a container accepted and approved for Konrad. The main objective was to build a mobile system to offer this service to nuclear plant stations. (authors)

  19. Corrosion of metal containers containing cemented radioactive wastes

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.; Marotta, F

    2010-01-01

    Nuclear activities generate different kinds of radioactive wastes. In the case of Argentina, wastes classified as low and medium level are conditioned in metal drums for final disposal in a repository whose design is based on the use of multiple and independent barriers. Nuclear energy plants generate a large volume of mid-level radioactive wastes, consisting mainly of ion-exchange resins contaminated by fission products. Other contaminated products such as gloves, papers, clothing, rubber and plastic tubing, can be incinerated and the ashes from the combustion also constitute wastes that must be disposed of. These wastes (resins and ashes) must be immobilized in order to avoid the release of radionuclides into the environment. The wastes usually undergo a process of cementing to immobilize them. This work aims to systematically study the process of degradation by corrosion of the steel drums in contact with the cemented resins and with the ashes cemented with the addition of different types and concentrations of aggressive compounds (chloride and sulfate). The specimens are configured so that the parameters of interest for the steel in contact with the cemented materials can be measured. The variables of corrosion potential, electric resistivity of the matrix and polarization resistance (PR) were monitored and show that the presence of chloride increases the susceptibility to corrosion of the drum steel that is in contact with the cement resin matrix

  20. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs

    International Nuclear Information System (INIS)

    Chmllowski, W.; Kondratoff, L.B.

    1992-01-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations

  1. Device for two-stage cementing of casing

    Energy Technology Data Exchange (ETDEWEB)

    Kudimov, D A; Goncharevskiy, Ye N; Luneva, L G; Shchelochkov, S N; Shil' nikova, L N; Tereshchenko, V G; Vasiliev, V A; Volkova, V V; Zhdokov, K I

    1981-01-01

    A device is claimed for two-stage cementing of casing. It consists of a body with lateral plugging vents, upper and lower movable sleeves, a check valve with axial channels that's situated in the lower sleeve, and a displacement limiting device for the lower sleeve. To improve the cementing process of the casing by preventing overflow of cementing fluids from the annular space into the first stage casing, the limiter is equipped with a spring rod that is capable of covering the axial channels of the check valve while it's in an operating mode. In addition, the rod in the upper part is equipped with a reinforced area under the axial channels of the check valve.

  2. Pressure cycling induced modification of a cemented carbide

    International Nuclear Information System (INIS)

    Beste, U.; Engqvist, H.; Jacobson, S.

    2001-01-01

    The wear of cemented carbide rock drill buttons is due to a complex mixture of mechanisms. One important of such mechanism is the surface fatigue that occurs due to the percussive conditions of rock drilling. To isolate the effects of this mechanism, a mechanical pressure cycling test has been performed on a cemented carbide with 11 % Co and 2 μm WC grain size. The test was ended after 60000 pressure cycles. No signs of fatigue crack nucleation were found. The changes in hardness, fracture toughness, erosion resistance, magnetical coercivity and thermal shock resistance were measured. The microstructure of the sample was investigated with x-ray diffraction, plus scanning and transmission electron microscopy. The fracture toughness decreased 14 % due to the pressure cycling while the hardness did not change. In addition, the thermal shock resistance and the erosion resistance decreased. The magnetical coercivity increased 90 % indicating significant phase transformations or high defect density in the Co binder phase. The TEM revealed no deformation of the WC phase, but important alterations of the Co phase. The Co phase was transformed from fcc into a new unidentified phase, characterized by atomic inter planar distance present in fcc and hcp plus an unfamiliar distance of 2.35 Aa. This phase is suggested to be due to a more complex stacking sequence of the close-packed planes than in hcp or fcc. (author)

  3. Radioactivity analysis of local and imported cement in Sudan

    International Nuclear Information System (INIS)

    Ahmed, Shimaa Nasr Eldeen Mohamed.

    2016-04-01

    In this study 10 cement samples were collected from local market. 2 sample taken from each type were samples labeled by A, B, C, D, E, F, G, H, I, J, were A and B is Atbara cement C, D, Sakher Elsudan cement E, F, barber cement , G, H, black massy, I,J white hallway. 500 grams of cement sample was weighed and closed in plastic containers for four weeks so as to have secular equilibrium for uranium. Our goal of this study was estimate investigation of uranium-238, potassium-40, and thorium-232 level in cement samples. Natural radioactivity concentration in cement samples were measured by gamma ray spectrometry using Nal (TI). Calibration process carried out for gamma spectroscopy using MW652 as a reference source which recommended by the International Atomic Energy Agency (IAEA) including-source-Cs-137 and Co-60 with two energy levels. The mean ± standard deviation concentration of k-40 was found 77.601±26.20 Bq/kg. The concentration of U-238 was found 25.19±9.142/kg and the concentration of Th-232 was found 08.94±04.23 Bq/kg. (Author)

  4. Nanoparticles usage tendencies in cementing systems for hydrocarbon wells

    NARCIS (Netherlands)

    Balza, A.; Perera, Y.; Brito, J.; Hurtado, A.; Quercia Bianchi, G.; Corona, O.; Colina, A.; Blanco, A.; Palomo, A.; Zaragoza, A.; Lopez, J.C.

    2011-01-01

    In oil and gas wells construction, one of the most critical processes is oil well cementing, whose function is to provide a zonal isolation between the pipe and sedimentary formation. For these reasons, one of the needs in the oil industry, specifically in cementing wells area, is the use of

  5. The suitability of a supersulfated cement for nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Collier, N.C.; Milestone, N.B.; Gordon, L.E.; Ko, S.-C.

    2014-01-01

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste

  6. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  7. Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.

  8. Radiotracer application in determining changes in cement mix homogeneity

    International Nuclear Information System (INIS)

    Breda, M.

    1979-01-01

    A small amount of cement labelled with 24 Na is added to the concrete mix and the relative activity of the mix is measured using a scintillation detector in preset points at different time intervals of the mixing process. The detector picks up information from a volume of 10 to 15 litres. The values characterize the degree of homogeneity of the cement component in the mix. Mathematical statistics methods are used for assessing mixing or the homogeneity changes. The technique is quick and simple and is used to advantage in determining the effect of the duration and method of transport of the cement mix on its homogeneity, and in monitoring the mixing process and determining the minimum mixing time for all types of concrete mix. (M.S.)

  9. Glottotecnologie didattiche per i migranti L’italiano fra le altre lingue nel progetto L-Pack (Citizenship Language Pack for Migrants in Europe

    Directory of Open Access Journals (Sweden)

    Pierangela Diadori

    2017-01-01

    Full Text Available Teaching languages to migrants through ICT L-Pack Project for Italian and other languages (Citizenship Language Pack for Migrants in EuropeThe most recent trends in technology and the internet, commonly called Web 2.0., have determined new concepts in teaching and learning that involve autonomy, multimodality and flexibility. New approaches to ‘knowledge by technology’ are changing both teachers’ and learners’ roles, responding to their different aims and needs. At the same time, nearly 4 million people are presently involved in massive migration processes all over Europe, coming either from outside Europe or from another EU member state. The EU policies on migrants state the importance of a basic knowledge of the host country’s language, history and institutions for an effective integration process, and EU governments are expected to contribute to this aim. This paper describes the European Project ‘L-PACK: Citizenship Language Pack For Migrants in Europe’ (2011-2016, whose main aim consisted in developing a series of internet video texts, accompanied with materials and resources to lead adult migrants to A2 level (according to QCER levels scale in different EU languages. The project has been developed in two main stages. In the first part of the programme, called L-Pack 1, from 2011 to 2013, the languages were Italian, Spanish, German, Lithuanian, Greek and Czech. In the second part, called L-Pack 2 extended, from 2014 to 2016, the project added English and French and was integrated with new resources and tools. The L-PACK course, which consists of 60 short video dialogues from everyday life, supported by comprehension activities and linguistic explanation and rules, is totally free and available through Youtube, Wikibooks and Soundcloud. The dedicated website http://www.l-pack.eu was visited by 120.000 users from 146 countries in the period 2011-2016. L-Pack teaching materials have also been used by teachers in classroom

  10. Comparison of the leachability of three TRU cement waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Westsik, J.H. Jr.; Roberts, F.P.; Harvey, C.O.

    1982-11-01

    Cement waste forms prepared by three processes, casting, cold pressing, and FUETAP (Formed Under Elevated Temperatures and Pressure) have been compared for their leachability by using the MCC-1 leach test. The results indicate that releases of plutonium are not controlled by the waste form matrix and that there is no significant overall advantage to any of the three cement processes from a leachability viewpoint

  11. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  12. 3.4. Chemical additives and granulometric composition influence on soils armed by cement

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Purpose of this work was to evaluate an influence of various chemical additives on soils armed by portland cement. Experimental research of kinetics of soil cements structure formation after adding the chemicals was carried out. According to the investigations it was determined that structure formation process of soil cements depended on granulometric composition of armed soil, cement quantity, type and quantity of chemical additives.

  13. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    Science.gov (United States)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  14. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-09-01

    To evaluate the chemical activity of Portland cement and two other cement types with similar chemical composition to mineral trioxide aggregate with the aim of developing these cements for further applications in dentistry. The chemical composition of the three cement types namely Portland cement, calcium sulpho-aluminate cement and calcium fluoro-aluminate cement was evaluated by elemental analysis using energy dispersive analysis with X-ray under the scanning electron microscope and by X-ray diffraction analysis (XRD) to determine the phases. The constituents of the hydration reaction by-products were evaluated by XRD analysis of the set cements at 1, 7, 28 and 56 days and by analysis of the leachate by ion chromatography. The pH of both cements and leachate was determined at different time intervals. Cements admixed with micro-silica were also tested to determine the effect of micro-silica on the reaction by-products. All three cement types were composed of tricalcium silicate as the main constituent phase. The hydration reaction of Portland cement produced calcium hydroxide. However, this was not present in the other cements tested at all ages. Admixed micro-silica had little or no effect on the cements with regard to reaction by-products. The pH of all cements tested was alkaline. Both the experimental calcium sulpho-aluminate cement and calcium fluoro-aluminate cement had different hydration reactions to that of Portland cement even though calcium silicate was the major constituent element of both cement types. No calcium hydroxide was produced as a by-product to cement hydration. Micro-silica addition to the cement had no effect on the hydration reaction.

  15. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  16. Towards optimal packed string matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2014-01-01

    -size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string...

  17. Mass transfer models analysis for the structured packings

    International Nuclear Information System (INIS)

    Suastegui R, A.O.

    1997-01-01

    The models that have been developing, to understand the mechanism of the mass transfer through the structured packings, present limitations for their application, existing then uncertainty in order to use them in the chemical industrial processes. In this study the main parameters used in the mass transfer are: the hydrodynamic of the bed of the column, the geometry of the bed, physical-chemical properties of the mixture and the flow regime of the operation between the flows liquid-gas. The sensibility of each one of these parameters generate an arduous work to develop right proposals and good interpretation of the phenomenon. With the purpose of showing the importance of these parameters mentioned in the mass transfer, this work is analyzed the process of absorption for the system water-air, using the models to the structured packings in packed columns. The models selected were developed by Bravo and collaborators in 1985 and 1992, in order to determine the parameters previous mentioned for the system water-air, using a structured packing built in the National Institute of Nuclear Research. In this work is showed the results of the models application and their discussion. (Author)

  18. Marginal adaptation of lithium disilicate ceramic crowns cemented with three different resin cements.

    Science.gov (United States)

    Peroz, Ingrid; Mitsas, Triantafyllos; Erdelt, Kurt; Kopsahilis, Niko

    2018-04-17

    The cementation process and cementation materials have an influence on the marginal adaptation of restorations. The gap could be affected by thermal and mechanical loading (TCML). The computerized x-ray microtomography (μCT) method offers the possibility of measuring the marginal gap without destruction of the restoration. The aim of this study was to evaluate the marginal gap (MG) and the absolute marginal discrepancy (AMD) before and after TCML. Thirty-nine human premolars were prepared for full ceramic crowns made of lithium disilicate. The crowns were cemented by three different resins-Panavia F 2.0, Variolink II, and Relyx Unicem. The MG and AMD were evaluated by μCT before and after TCML. Panavia F 2.0 had the lowest MG (before 118 μm-after TMCL 124 μm) and AMD (before 145 μm-after TMCL 154 μm), followed by Relyx Unicem (MG: before 164 μm-after TCML 155 μm; AMD: before 213 μm-after TMCL 209 μm) and Variolink II (MG: before 317 μm-after TMCL 320 μm; AMD: before 412 μm-after TMCL 406 μm). The differences were statistically significant before and after TCML. Rather than TCML, it appeared the resin cement was responsible for differences between the MG and AMD before and after TCML. μCT is an accurate technique for assessing cemented restorations. Panavia F 2.0 has the lowest MG and AMD before and after TCML. The resin material that features a three-step protocol (Variolink II) produced higher MG and AMG values than the Panavia or Relyx Unicem varieties with less or no intermediate steps at all.

  19. Simultaneous sand control and liner cement system: keeping well productivity by optimizing drilling and completion operations in mature fields

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Andrea Nicolino de; Silva, Dayana Nunes e; Calderon, Agostinho [Petroleo Brasileiro S.A. (PETROBRAS), Rio de janeiro, RJ (Brazil)

    2012-07-01

    The need to reduce oil extraction costs by increasing the recovery factor in mature fields unconsolidated sandstone reservoirs motivated the development of drilling and completion techniques that integrate the various interfaces of engineering the well, resulting in a final well configuration that provides maximum oil production at a lower cost. Due to the continued growth of drilling and completion of new wells or deviation of old wells in the design of mesh density field with an advanced degree of exploitation, PETROBRAS took the challenge to seek options for projects well, in order to maintain productivity and reduce their construction time, with the optimization of drilling and sand control systems. To achieve these goals, PETROBRAS developed the SCARS - Simultaneous Sand Control and Liner Cementing System, a pioneer technique in the global oil industry, which consists of a one trip sequence of operations in which sand control screens and liner are installed followed by the open hole gravel pack operation performed with the alpha and beta waves deposition technique, using a non aqueous system as a carrier fluid. The sequence is completed by liner cementing in the same trip. The great success of this project was based on the definition of a specific application scenario and demands allowing optimization of the system. This project started with the development of a non aqueous system as a gravel pack carrier fluid in order to perform an open hole gravel pack with the alpha/beta wave deposition technique along with the development and optimization of SCARS procedures. This article details the planning and execution phases of this project and also presents a broad description of the technical aspects. (author)

  20. Percolation behavior of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Takeishi, T. [Faculty of Engineering, Kyushu University, Motooka Nishi-ku, Fukuoka (Japan)

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  1. Percolation behavior of tritiated water into a soil packed bed

    International Nuclear Information System (INIS)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-01-01

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  2. Effects of cement particle size distribution on performance properties of Portland cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M.

    1999-10-01

    The original size, spatial distribution, and composition of Portland cement particles have a large influence on hydration kinetics, microstructure development, and ultimate properties of cement-based materials. In this paper, the effects of cement particle size distribution on a variety of performance properties are explored via computer simulation and a few experimental studies. Properties examined include setting time, heat release, capillary porosity percolation, diffusivity, chemical shrinkage, autogenous shrinkage, internal relative humidity evolution, and interfacial transition zone microstructure. The effects of flocculation and dispersion of the cement particles in the starting microstructures on resultant properties are also briefly evaluated. The computer simulations are conducted using two cement particle size distributions that bound those commonly in use today and three different water-to-cement ratios: 0.5, 0.3, and 0.246. For lower water-to-cement ratio systems, the use of coarser cements may offer equivalent or superior performance, as well as reducing production costs for the manufacturer.

  3. The Mechanism of Disintegration of Cement Concrete at High Temperatures

    Directory of Open Access Journals (Sweden)

    Jocius Vytautas

    2016-10-01

    Full Text Available Concrete is a composite material composed of a binder, aggregates, water and additives. Mixing of cement with water results in a number of chemical reactions known as cement hydration. Heating of concrete results in dehydration processes of cement minerals and new hydration products, which disintegrate the microstructure of concrete. This article reviews results of research conducted with Portland and alumina cement with conventional and refractory concrete aggregates. In civic buildings such common fillers as gravel, granite, dolomite or expanded clay are usually used. It is important to point out the differences between fillers because they constitute the majority of the concrete volume.

  4. Spectroscopic investigation of Ni speciation in hardened cement paste.

    Science.gov (United States)

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  5. Innovative process routes for a high-quality concrete recycling in the aggregates and cement industries

    OpenAIRE

    Bru , Kathy; Menard , Yannick; Touzé , Solène; Le Moign , Alain; Poirier , Jean Eric; Ruffié , Gilles; Bonnaudin , Fabrice; Von Der Weid , Frédéric

    2011-01-01

    International audience; Hardened concrete is a composite material that contains two main phases: the matrix (hardened cement paste, 20 %) and aggregates (gravels and sand, 80 %). The liberation and the recycling of these constituents can provide an answer to i) the exploration of new aggregates supply sources imposed by the depletion of natural deposit and the faced difficulties when trying to open new quarries and ii) the reduction of CO2 emissions in the clinker manufacturing process throug...

  6. Influence of the processed sunflower oil on the cement properties

    Science.gov (United States)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  7. Cement-Polymer Composite Containers for Radioactive Wastes Disposal

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.; Bayoumi, T.A.; Saleh, H.M.

    2009-01-01

    Improving cement-composite containers using polymer as organic additives was studied extensively. Both unsaturated styrenated polyester (SPE) and polymethyl methacrylate (PMMA) were used to fill the pores in cement containers that used for disposal of radioactive wastes. Two different techniques were adopted for the addition of organic polymers based on their viscosity. The low density PMMA was added using impregnation technique. On the other hand high density SPE was mixed with cement paste as a premix process. Predetermined weight of dried borate radioactive powder waste simulate was introduced into the Cement-polymer composite (CPC) container and then closed before subjecting it to leaching characterization. The effect of the organic polymers on the hydration of cement matrix and on the properties of the obtained CPC container has been studied using X-ray diffraction, IR-analysis, thermal effects and weight loss. Porosity, pore parameters and rate of release were also determined. The results obtained showed that for the candidate CPC container positive effect of polymer dominates and an improvement in the retardation rate of PMMA release radionuclides was observed

  8. A comprehensive model to describe radiolytic processes in cement medium

    DEFF Research Database (Denmark)

    Bouniol, P.; Bjergbakke, Erling

    2008-01-01

    Basic mechanisms controlling the radiolysis in cementitious matrices are reviewed in the specific context of the gamma irradiation, in closed system without upper vapour space, at 25 degrees C, with a pore solution representative of a Portland cement paste. A general survey of data corresponding...

  9. Optimization and validation of a chemical process for uranium, mercury and cesium leaching from cemented radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Reynier, N.; Lastra, R.; Laviolette, C.; Bouzoubaa, N., E-mail: nicolas.reynier@canada.ca [Natural Resources Canada, CanmetMINING, Ottawa, Ontario (Canada); Chapman, M. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Canadian Nuclear Laboratories (CNL) is developing a treatment and long-term management strategy for a legacy cemented radioactive waste that contains uranium, mercury, and fission products. Extracting the uranium would be advantageous for decreasing the waste classification and reducing the cost of long-term management. The chemical leachability of 3 key elements (U, Hg, and Cs) from a surrogate cemented waste (SCW) was studied with several lixiviants. The results showed that the most promising approach to leach and recover U, Hg, and Cs is the direct leaching of the SCW with H{sub 2}SO{sub 4} in strong saline media. Operating parameters such as particle size, temperature, pulp density, leaching time, acid and salt concentrations, number of leaching/washing steps, etc. were optimized to improve key elements solubilization. Sulfuric leaching in saline media of a SCW (U5) containing 1182 ppm of U, 1598 ppm of Hg, and 7.9 ppm of Cs in the optimized conditions allows key elements solubilisation of 98.5 ± 0.4%, 96.6 ± 0.1%, and 93.8 ± 1.1% of U, Hg, and Cs, respectively. This solubilization process was then applied in triplicate to 7 other SCWs prepared with different cements, liquid ratios, and at different aging times and temperatures. Concentrated sulfuric acid is added to the slurry until the pH is about 2, which causes the complete degradation of cement and the formation of CaSO{sub 4}. Sulfuric acid is particularly useful because it produces a leachate that is amenable to conventional ion exchange technology for the separation and recovery of uranium. (author)

  10. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  11. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  12. Influence of superplasticizers on the long-term properties of cement pastes and possible impact on radionuclide uptake in a cement-based repository for radioactive waste

    International Nuclear Information System (INIS)

    Wieland, E.; Lothenbach, B.; Glaus, M.A.; Thoenen, T.; Schwyn, B.

    2014-01-01

    Highlights: • We investigate the hydration of different cement mixes containing concrete admixtures. • The concentration of concrete admixtures decreases with time due to sorption on cement phases. • We observe no influence on the phase composition of cement paste and the ion composition of pore fluids. • Uptake of 63 Ni, 152 Eu and 228 Th by cement paste is not affected by the concrete admixtures. - Abstract: Cementitious materials will be used for the construction of the engineered barrier of the planned repositories for radioactive waste in Switzerland. Superplasticizers (SPs) are commonly used to improve the workability of concretes and, along with a set accelerator (Acc), to produce shotcrete. In this study the influence of a polycarboxylate- (PCE) and a polynaphthalene-sulphonate-based (PNS) SP on the hydration process, mineral composition and the sorption behaviour of metal cations has been investigated using an ordinary Portland cement (OPC), a low-alkali cement mix (LAC) consisting of CEM III-type cement and nanosilica, and a shotcrete-type cement mix (ESDRED) consisting of a CEM I-type cement and silica fume prepared in the presence of an alkali-free set accelerator. Both the PCE and PNS SP do not significantly influence the amount and quantity of hydrates formed during hydration. The concentration of both SPs decreased rapidly in the early stage of the hydration process for all cements due to sorption onto cement phases. After 28 days of hydration and longer, the concentration of the PNS SP in the pore fluids of all cements was generally lower than that of the PCE SP, indicating stronger uptake of the PNS SP. The formate present in the Acc sorbs only weakly onto the cement phases, which led to higher aqueous concentration of organics in the ESDRED cement than in OPC and LAC. Sorption experiments with 63 Ni, 152 Eu and 228 Th on a cation exchange resin indicate that, at concentrations above 0.1 g L −1 , the two SPs could reduce sorption of metal

  13. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    International Nuclear Information System (INIS)

    Wong, H.S.; Buenfeld, N.R.

    2009-01-01

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  14. Influence of limestone on the hydration of Portland cements

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen

    2008-01-01

    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO 2 , and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration

  15. Gold cementation with zinc powder from leaching solutions with ammonia-thiosulphate

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Alvarez, R.; Alguacil, F. J.

    2005-01-01

    The cementation of gold with powder of zinc, from solutions with thiosulphate and ammonia, was studied. the variables evaluated were: thiosulphate concentration, ammonia concentration, pH, copper concentration and zinc concentration. the results have revealed the great importance of ammonia/thiosulphate relationship in this process and that the impurities presence like copper and zinc will to inhibit the cementation process. (Author) 16 refs

  16. Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.

    Science.gov (United States)

    Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael

    2012-02-21

    Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.

  17. Stability of reinforced cemented backfills

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Stone, D.M.

    1987-01-01

    Mining with backfill has been the subject of several international meetings in recent years and a considerable research effort is being applied to improve both mining economics and ore recovery by using backfill for ground support. Classified mill tailings sands are the most commonly used backfill material but these fine sands must be stabilized before full ore pillar recovery can be achieved. Normal portland cement is generally used for stabilization but the high cost of cement prohibits high cement usage. This paper considers the use of reinforcements in cemented fill to reduce the cement usage. It is concluded that strong cemented layers at typical spacings of about 3 meters in a low cement content bulk fill can reinforce the fill and reduce the overall cement usage. Fibre reinforcements introduced into strong layers or into bulk fills are also known to be effective in reducing cement usage. Some development work is needed to produce the ideal type of anchored fibre in order to realize economic gains from fibre-reinforced fills

  18. Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes

    Directory of Open Access Journals (Sweden)

    Yufei Yang

    2013-01-01

    Full Text Available To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V and mainly existed as Mg3(AsO42, Ca3(AsO42, and Na2HAsO4.

  19. Integrated energy optimisation for the cement industry: A case study perspective

    International Nuclear Information System (INIS)

    Swanepoel, Jan Adriaan; Mathews, Edward Henry; Vosloo, Jan; Liebenberg, Leon

    2014-01-01

    Highlights: • Integration of all energy-intensive components of a cement plant production process in a simulation package. • Uniquely, the simulation model incorporates constraints such as maintenance, production and dynamic energy costs. • The system was implemented on four different cement plants and a total energy cost saving of 7.1% was achieved. - Abstract: Energy costs play a major role in the cement production process. As much as 60% of total cost is allocated to energy and 18% to the consumption of electrical energy. Historically, energy cost savings were achieved by large infrastructure upgrades. These upgrades are often costly and lead to interruptions in production. In this paper the operation of all the energy intensive components of the cement production process are identified, modelled, integrated and optimised for minimum operational costs while meeting production targets. This integrated approach allows for simulation of the collective effect of individual production components. The system incorporates constraints such as maintenance, production and dynamic energy costs. No published research could be found where these constraints are incorporated into a single operational solution. The system was implemented on four cement plants and a total energy cost saving of 7% was achieved. This highlights the practical significance of an integrated approach to energy cost savings

  20. Dictionary of cement. Manufacture and technology. German-English. English-German. 2. Rev. and enlarged Ed. Zementwoerterbuch. Herstellung und Technologie. Deutsch-Englisch. Englisch-Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Van Amerongen, C

    1986-01-01

    This book deals with the following fields: cement chemistry; chemical and physical testing; quarrying (drilling, blasting, excavating and loading machinery, haulage vehicles); crushing and grinding; sampling; materials handling; blending, homogenizing, storage (blending beds, silos); kilns, preheaters, precalciners; firing technology (fuels, burners); refractories; clinker coolers; air separators (classifiers); dust collecting equipment (filters, electrostatic precipitators); air pollution and noise control; bulk handling installations; sack packing machines; packaging, palletizing, dispatch.

  1. Utilization of lime-dried sludge for eco-cement clinker production: effects of different feeding points.

    Science.gov (United States)

    Cao, Haihua; Liu, Wei; Xu, Jingcheng; Liu, Jia; Huang, Juwen; Huang, Xiangfeng; Li, Guangming

    2018-02-01

    Co-processing lime-dried sludge (LDS) in cement kilns is an appropriate technique to solve the problem of LDS disposal and promote the sustainable development for cement industry. However, there were limited studies that investigated the effects of feeding points on product quality and cement kiln emissions. In this study, simulated experiments were conducted by dividing the feeding points into high-temperature zones (HTZs) and raw mill (RM). Cement quality and major cement kiln emission characteristics were comprehensively investigated. The results showed that in terms of burnability, compressive strength and microstructure, the optimum co-processing amount of LDS were 9 wt% when feeding at RM, while 6% when feeding at HTZs. Meanwhile, the organic emissions of RM samples were mainly low environmental risk compounds of amides and nitrogenous heterocyclic compounds. Inorganic gaseous pollutions of NO X and SO 2 , respectively, were 8.11 mg/g DS and 12.89 mg/g DS, compared with 7.61 mg/g DS and 4.44 mg/g DS for HTZs. However, all the cement kiln emissions concentration were still much lower than standard requirements. Overall, RM had a bigger LDS co-processing capacity and higher, but acceptable, cement kiln emissions. Feeding LDS via RM could dispose larger amounts of sludge and provide more alternative materials for cement manufacturing.

  2. Effect of olive waste (Husk on behavior of cement paste

    Directory of Open Access Journals (Sweden)

    Sharaf Alkheder

    2016-12-01

    Full Text Available Jordan is a famous country in terms of olive trees agriculture that resulted in a mass production of olive oil products. The huge amounts of olive waste (husk that resulted from olives processing to produce olive oil represent an environmental challenge in the country. The idea in this paper comes to use olive waste as a partial replacement for Portland cement in cement paste to conserve the environment, reduce cement consumption and increase cost efficiency. The wastes were burned properly in an oven and maintained for 6 h until it was fully transformed into ashes. Then, the oven was turned off and ashes were allowed to cool. After cooling, the material passed sieve #200 were used. The sieved ashes were used in the cement mix as a partial cement replacement for making the mortar and cement paste. Normal consistency and setting time were determined as well as soundness, compressive strength. Results indicated that normal consistency of the cement pastes containing different percentage of olive waste is somehow lower than that of the ordinary cement paste and slightly decreases with increasing the percentage. The results also indicated that the compressive strength of hardened blended cement paste containing different percentages of olive waste slightly decrease with olive waste content at 3, 7, and 28 days.

  3. Evaluation of cement thixotropy for the cement of oil wells in areas ...

    African Journals Online (AJOL)

    ... economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster. Keywords: cementing; lost circulation; ...

  4. Dynamic Simulation of Random Packing of Polydispersive Fine Particles

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário

    2018-02-01

    In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.

  5. The differences between soil grouting with cement slurry and cement-water glass slurry

    Science.gov (United States)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  6. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  7. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  8. Heat of hydration measurements on cemented radioactive wastes. Part 1: cement-water pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1983-12-01

    This report describes the hydration of cement pastes in terms of chemical and kinetic models. A calorimetric technique was used to measure the heat of hydration to develop these models. The effects of temperature, water/cement ratio and cement replacements, ground granulated blast furnace slag (BFS) and pulverised fuel ash (PFA) on the hydration of ordinary Portland cement (OPC) is reported. The incorporation of BFS or PFA has a marked effect on the hydration reaction. The effect of temperature is also important but changing the water/cement ratio has little effect. Results from cement pastes containing only water and cement yield total heats of reaction of 400, 200 and 100 kJ/kg for OPC, BFS and PFA respectively. Using the results from the models which have been developed, the effect of major salts present in radioactive waste streams can be assessed. Values of the total heat of reaction, the time to complete 50 percent reaction, and the energy of activation, can be compared for different waste systems. (U.K.)

  9. Schedulability-Driven Frame Packing for Multi-Cluster Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2003-01-01

    We present an approach to frame packing for multi-cluster distributed embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In our approach, the application messages are packed into frames such that the application is schedulable. Thus, we have...... also proposed a schedulability analysis for applications consisting of mixed event-triggered and time-triggered processes and messages, and a worst case queuing delay analysis for the gateways, responsible for routing inter-cluster traffic. Optimization heuristics for frame packing aiming at producing...... a schedulable system have been proposed. Extensive experiments and a real-life example show the efficiency of our frame-packing approach....

  10. Treatment of amoxicillin by O3/Fenton process in a rotating packed bed.

    Science.gov (United States)

    Li, Mo; Zeng, Zequan; Li, Yingwen; Arowo, Moses; Chen, Jianfeng; Meng, Hong; Shao, Lei

    2015-03-01

    In this study, simulated amoxicillin wastewater was treated by the O3/Fenton process in a rotating packed bed (RPB) and the results were compared with the Fenton process and the O3 followed by Fenton (O3 + Fenton) process. The chemical oxygen demand (COD) removal rate and the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD5/COD) in the O3/Fenton process were approximately 17% and 26%, respectively, higher than those in the O3 + Fenton process with an initial pH of 3. The COD removal rate of the amoxicillin solution reached maximum at the Fe(II) concentration of 0.6 mM, temperature of 25 °C, rotation speed of 800 rpm and initial pH of 3. The BOD5/COD of the amoxicillin solution increased from 0 to 0.38 after the solution was treated by the O3/Fenton process. Analysis of the intermediates indicated that the pathway of amoxicillin degradation in the O3/Fenton process was similar to that in the O3 + Fenton process. Contrast experiment results showed that amoxicillin degradation was significantly intensified in the RPB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  12. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Sobolev, Konstantin

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  13. Effects of Particle Size and Cement Replacement of LCD Glass Powder in Concrete

    Directory of Open Access Journals (Sweden)

    Seong Kyum Kim

    2017-01-01

    Full Text Available The high quality liquid crystal display (LCD processing waste glass (LPWG generated from the manufacturing process of Korea’s LCD industries, having the world’s highest technological level and production, was finely ground into particles smaller than cement particles (higher fineness than OPC to verify their applicability and performance as a replacement for cement. For a concrete mix having a W/B ratio of 0.44, cement was replaced with LPWG glass powder (LGP at ratios of 5, 10, 15, and 20% (LGP12 and 5 and 10% (LGP5 according to the particle size to prepare test cylinder specimens, which were tested with respect to air contents, slump in fresh concrete, and compressive strength and splitting tensile strength of hardened concrete. The microstructure of the concrete specimens was analyzed through Scanning Electron Microscopy (SEM, Energy Dispersive X-ray (EDX, and a Mercury Intrusion Porosimetry (MIP. Replacement of cement with LGP for cement could effectively decrease the quantity of cement used due to the excellent performance of LGP. It may positively contribute to the sustainable development of the cement industry as well as waste recycling and environment conservation on a national scale.

  14. Global CO2 emissions from cement production

    Science.gov (United States)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  15. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Lucas Pradebon BRONDANI

    2017-04-01

    Full Text Available Abstract Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding, resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  16. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  17. Comparing the efficacy of mature mud pack and hot pack treatments for knee osteoarthritis.

    Science.gov (United States)

    Sarsan, Ayşe; Akkaya, Nuray; Ozgen, Merih; Yildiz, Necmettin; Atalay, Nilgun Simsir; Ardic, Fusun

    2012-01-01

    The objective of this study is to compare the efficacy of mature mud pack and hot pack therapies on patients with knee osteoarthritis. This study was designed as a prospective, randomized-controlled, and single-blinded clinical trial. Twenty-seven patients with clinical and radiologic evidence of knee osteoarthritis were randomly assigned into two groups and were treated with mature mud packs (n 15) or hot packs (n=12). Patients were evaluated for pain [based on the visual analog scale (VAS)], function (WOMAC, 6 min walking distance), quality of life [Short Form-36 (SF-36)], and serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and insulin-like growth factor-1 (IGF-1) at baseline, post-treatment, and 3 and 6~months after treatment. The mud pack group shows a significant improvement in VAS, pain, stifness, and physical function domains of WOMAC. The difference between groups of pain and physical activity domains is significant at post-treatment in favor of mud pack. For a 6 min walking distance, mud pack shows significant improvement, and the difference is significant between groups in favor of mud pack at post-treatment and 3 and 6 months after treatment. Mud pack shows significant improvement in the pain subscale of SF-36 at the third month continuing until the sixth month after the treatment. Significant improvements are found for the social function, vitality/energy, physical role disability, and general health subscales of SF-36 in favor of the mud pack compared with the hot pack group at post-treatment. A significant increase is detected for IGF-1 in the mud pack group 3 months after treatment compared with the baseline, and the difference is significant between groups 3 months after the treatment. Mud pack is a favorable option compared with hotpack for pain relief and for the improvement of functional conditions in treating patients with knee osteoarthritis.

  18. Solidification process for toxic and hazardous wastes. Second part: Cement solidification matrices; Inertizzazione di rifiuti tossici e nocivi (RTN). Parte seconda: Inertizzazione in matrici cementizie

    Energy Technology Data Exchange (ETDEWEB)

    Donato, A; Arcuri, L; Dotti, M; Pace, A; Pietrelli, L; Ricci, G [ENEA - Dipartimento Ciclo del Combustibile, Centro Ricerche Energia, Casaccia (Italy); Basta, M; Cali, V; Pagliai, V [ENEA - Dipartimento Ciclo del Combustibile, Centro Ricerche Energia, Saluggia (Italy)

    1989-05-15

    This paper reports the second part of a general study carried out at the Nuclear Fuel Division aiming at verifying the possible application of the radioactive waste solidification processes to industrial hazardous wastes (RTN). The cement solidification of several RTN types has been taken into consideration, both from the technical and from the economic point of view. After a short examination of the Italian juridical and economical situation in the field, which demonstrates the need of the RTN solidification, the origin and characteristics of the RTN considered in the study and directly provided by the producing industries are reviewed. The laboratory experimental results of the cementation of RTN produced by gold manufacturing industries and by galvanic industries are reported. The cementation process can be considered a very effective mean for reducing both the RTN management costs and the environmental impact of RTN disposal. (author)

  19. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents

    Directory of Open Access Journals (Sweden)

    Dongliang Li

    2015-07-01

    Full Text Available Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08 under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa were obtained. Based on the test results, the effect of the cementing agent content (Cv on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using Cv. The research reveals that when Cv is high (e.g., Cv = 0.03, 0.05 or 0.08, the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as Cv increases, both the peak strength and residual strength of the samples show a significant increase. When Cv is low (e.g., Cv = 0.01, the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of Cv (the cementing agent content with c′ (the cohesion force of the sample and Δϕ′ (the increment of the angle of shearing resistance is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  20. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents.

    Science.gov (United States)

    Li, Dongliang; Liu, Xinrong; Liu, Xianshan

    2015-07-02

    Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC) as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08) under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa) were obtained. Based on the test results, the effect of the cementing agent content ( C v ) on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using C v . The research reveals that when C v is high (e.g., C v = 0.03, 0.05 or 0.08), the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as C v increases, both the peak strength and residual strength of the samples show a significant increase. When C v is low (e.g., C v = 0.01), the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of C v (the cementing agent content) with c ' (the cohesion force of the sample) and Δϕ' (the increment of the angle of shearing resistance) is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  1. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  2. Effectiveness of the Top-Down Nanotechnology in the Production of Ultrafine Cement (~220 nm

    Directory of Open Access Journals (Sweden)

    Byung-Wan Jo

    2014-01-01

    Full Text Available The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h and grinding agent (methanol and ethanol on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle <350 nm and 50% of the cement particle < 220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.

  3. Properties and hydration of blended cements with steelmaking slag

    International Nuclear Information System (INIS)

    Kourounis, S.; Tsivilis, S.; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-01-01

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C 2 S and its low content in calcium silicates

  4. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  5. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  6. Cements in Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, F. P. [University of Aberdeen, Scotland (United Kingdom)

    2013-09-15

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  7. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    Science.gov (United States)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  8. Double porosity model to describe both permeability change and dissolution processes

    International Nuclear Information System (INIS)

    Niibori, Yuichi; Usui, Hideo; Chida, Taiji

    2015-01-01

    Cement is a practical material for constructing the geological disposal system of radioactive wastes. The dynamic behavior of both permeability change and dissolution process caused by a high pH groundwater was explained using a double porosity model assuming that each packed particle consists of the sphere-shaped aggregation of smaller particles. This model assumes two kinds of porosities between the particle clusters and between the particles, where the former porosity change mainly controls the permeability change of the bed, and the latter porosity change controls the diffusion of OH"- ions inducing the dissolution of silica. The fundamental equations consist of a diffusion equation of spherical coordinates of OH"- ions including the first-order reaction term and some equations describing the size changes of both the particles and the particle clusters with time. The change of over-all permeability of the packed bed is evaluated by Kozeny-Carman equation and the calculated radii of particle clusters. The calculated result well describes the experimental result of both permeability change and dissolution processes. (author)

  9. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements

    Directory of Open Access Journals (Sweden)

    Georgeta Voicu

    2016-02-01

    Full Text Available In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h followed by rapid cooling in air. The resulted material (clinker was ground for one hour in a laboratory planetary mill (v = 150 rot/min, in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD, scanning electron microscopy (SEM, infrared spectroscopy (FT-IR and thermal analysis (DTA-DTG-TG. The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1 was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2. The compressive strength values were 18.5 MPa (MTA1 and 22.9 MPa (MTA2. Both MTA cements showed good bioactivity (assessed by an in vitro test, good cytocompatibility and stimulatory effect on the proliferation of cells.

  11. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  12. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  13. Characterisation of cemented/bituminized LAW and MAW waste products

    International Nuclear Information System (INIS)

    Vejmelka, P.; Johnsen, P.; Kluger, W.; Koester, R.

    1987-01-01

    In the context of work for characterising low and medium activity waste products, investigations were carried out to determine the release of radioactivity from binding waste in given accidents, such as mechanical and thermal loading for the operating phase of a final store. The effects of mechanical loads on MAW cement products and the effects of thermal laods on MAW cement and MAW bitumen products were examined. The release of fine dust reaching the lungs, with a particle size of ≤10 μm from a 200 litre roller seam cement binder with a maximum mechanical load of 3x10 5 Nm covering the accident case is about 1.5 g and therefore corresponds to ≅ 10 -4 % of the total radio-activity inventory for homogeneous products. With thermal loading (60 minute oil fire, 800 0 C) ≅ 10 -3 % of the radioactivity inventory is released via the release of water from the waste binder. The activity release of MAW bitumen products containing NaNO 3 (175 litre drum) with thermal load is considerably higher, as due to the NaNO 3 content of the products, after an induction period of about 20 minutes there is an exothermal reaction between the bitumen and the NaNO 3 , which leads to burning of the bitumen with considerable aerosol formation. The Na losses are about 32% and the Pu losses, derived from the results of laboratory experiments with samples containing Eu and Pu and samples containing Eu on the original size, are only 15% maximum, even with complete burn up. It was shown for all the investigations with samples of the original size that the effects of the load cases considered can be reduced or completely avoided by additional packing (concrete shielding). (orig./RB) [de

  14. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  15. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  16. Effect of mineral trioxide aggregates and Portland cements on inflammatory cells.

    Science.gov (United States)

    Shahi, Shahriar; Rahimi, Saeed; Yavari, Hamid Reza; Mokhtari, Hadi; Roshangar, Leila; Abasi, Mehran Mesgary; Sattari, Sahar; Abdolrahimi, Majid

    2010-05-01

    Recently, some studies have compared mineral trioxide aggregate (MTA) with Portland cements, concluding that the principal ingredients of Portland cements are similar to those of MTA. The purpose of the present study was to evaluate the effect of gray MTA, white MTA, and gray and white Portland cements on inflammatory cells in rats. Fresh mixtures mixed with distilled water were placed in polyethylene tubes, which were implanted in the dorsal subcutaneous connective tissue of 60 Sprague-Dawley rats along with empty tubes as controls. Tissue specimens were collected after the rats were sacrificed after 7, 15, 30, 60, and 90 days. The specimens were fixed, stained, processed, and histologically evaluated under a light microscope. Inflammatory reactions were classified as grade 0: without inflammatory cells, grade I: sporadic infiltration of inflammatory cells, grade II: moderate infiltration (125 cells). Data were analyzed with the nonparametric (two factor) analysis of variance and Kruskal-Wallis H-test. All the groups showed grade III inflammation after 7 and 15 days; there was a decrease in the inflammatory process after 30, 60, and 90 days. After 90 days, gray MTA, white MTA, and control groups had grade 0 inflammatory process, but gray Portland cement and white Portland cement groups showed grade 0 to grade I inflammatory processes. MTAs were more biocompatible; however, more studies are required. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. The effect of sand/cement ratio on radon exhalation from cement specimens containing 226Ra

    International Nuclear Information System (INIS)

    Takriti, S.; Shweikani, R.; Ali, A. F.; Rajaa, G.

    2002-09-01

    Portland cement was mixed with different kind of sand (calcite and silica) in different ratio to produce radioactive specimens with radium chloride. The release of radon from these samples was studied. The results showed that radon release from the calcite-cement samples increased with the increases of the sand mixed ratio until fixed value (about 20%) then decreased to less than its release from the beginning, and the release changed with the sand size also. Radon release from silica-cement samples had the same observations of calcite-cement samples. It was found that calcite-cement reduced the radon exhalation quantity rather than the silica-cement samples. The decreases of the radon exhalation from the cement-sand may be due to the creation of free spaces in the samples, which gave the possibility to radon to decay into these free spaces rather than radon exhalation. The daughters of the radon decay 214 Bi and 214 Pb reported by gamma measurements of the cement-sand samples. (author)

  18. Cement for oil well developed from ordinary cement: characterization physical, chemical and mineralogical

    International Nuclear Information System (INIS)

    Oliveira, D.N.S.; Neves, G. de A.; Chaves, A.C.; Mendonca, A.M.G.D.; Lima, M.S. de; Bezerra, U.T.

    2012-01-01

    This work aims to characterize a new type of cement produced from the mixture of ordinary Portland cement, which can be used as an option in the cementing of oil wells. To enable this work we used the method of lineal programming for the new cement composition, then conducted tests to characterize through particle size analysis by laser diffraction, chemical analysis by EDX, TGA, X-ray diffraction, time grip, resistance to compression. The overall result showed that the new cement had made low-C3A, takes more time to the CPP, thermal stability up to 500 ° C, the kinetics of hydration and low levels of major components consistent with the specifications of ABNT. (author)

  19. Use sulfoferritic cements in construction

    Science.gov (United States)

    Samchenko, Svetlana V.; Zorin, Dmitriy A.

    2018-03-01

    Currently, high-rise construction has received increasing attention around the world. In the big cities under construction is less space and one solution is the high-rise construction. However, high-rise buildings use special requirements, such as strength, thermal insulation, wind load and others. When concrete is exposed to continuous loads by wind or to mechanical loads, it undergoes abrasion. Resistance to this process depends on the characteristics of materials that the concrete and finishing seams are made of. Research on increasing impact and abrasion resistance of calcium sulfoferrite-based cement stone from the perspective of formation of cement stone structure will be instrumental in developing durable materials for application in high-rise construction.

  20. Influence of spraying on the early hydration of accelerated cement pastes

    International Nuclear Information System (INIS)

    Salvador, Renan P.; Cavalaro, Sergio H.P.; Cano, Miguel; Figueiredo, Antonio D.

    2016-01-01

    In practice, most of the studies about the interaction between cement and accelerators is performed with hand-mixed pastes. However, in many applications mixing occurs through spraying, which may affect accelerators reactivity and the microstructure of the hardened paste. The objective of this study is to analyze how the mixing process influences the early hydration of accelerated cement pastes. Isothermal calorimetry, X-ray diffraction, thermogravimetry and SEM imaging were performed on cement pastes produced by hand-mixing and by spraying, using equivalent doses of an alkali-free and an alkaline accelerator and two types of cement. Results showed a great influence of the spraying process on the reactivity of accelerators and on the morphology of the precipitated hydrates. Variations in hydration kinetics caused by the mixing method are explained and the results obtained might have a significant repercussion on how future research on the behavior of accelerated mixes will be performed.

  1. Packing force data correlations

    International Nuclear Information System (INIS)

    Heiman, S.M.

    1994-01-01

    One of the issues facing valve maintenance personnel today deals with an appropriate methodology for installing and setting valve packing that will minimize leak rates, yet ensure functionality of the the valve under all anticipated operating conditions. Several variables can affect a valve packing's ability to seal, such as packing bolt torque, stem finish, and lubrication. Stem frictional force can be an excellent overall indicator of some of the underlying conditions that affect the sealing characteristics of the packing and the best parameter to use when adjusting the packing. This paper addresses stem friction forces, analytically derives the equations related to these forces, presents a methodology for measuring these forces on valve stems, and attempts to correlate the data directly to the underlying variables

  2. Influence of clinker grinding-aids on the intrinsic characteristics of cements and on the behaviour of mortars

    Directory of Open Access Journals (Sweden)

    Fernández Luco, L.

    2003-12-01

    Full Text Available In the production of portland cement, grinding aids are used to improve the grinding stage and reduce the energy required to achieve the required fineness. These additives remain in the final product and they might influence the characteristics and properties of the cement, and thus, mortar and concrete. This paper presents an evaluation of two grinding-aid additives used in the production of portland cement ground in a ball mill at a laboratory stage, with suitable proportions of portland cement clinker and gypsum. A control cement mix was also produced without using any admixture and the results are shown on a comparative basis. Conclusions indicate that grinding-aids additives have some influence on the characteristics of portland cement produced, increasing their specific surface and modifying microstructure and its packing ability. Mortars and concretes made with cements ground with the addition of gringing-aids exhibit higher strength at any age and a reduced water demand. Special attention should be taken to consider any interaction with water-reducing admixture in concretes and mortars.

    En la fabricación de cemento portland es una práctica creciente la utilización de aditivos para optimizar el proceso de molienda; éstos quedan incorporados en el producto final y pueden influir sobre las características y propiedades del cemento, morteros y hormigones. En este trabajo se presenta la evaluación de dos aditivos comerciales en la molienda conjunta de clínker de cemento portland y yeso comercial, tratados en un molino a bolas a escala de laboratorio, en forma comparativa con un cemento sin aditivo producido en forma equivalente. Las conclusiones indican que los aditivos de molienda tienen influencia en las características del cemento resultante, incrementando su superficie y modificando su microestructura y estado de agregación; los morteros mejoran sus prestaciones mecánicas a todas las edades y se reduce la demanda de agua

  3. Multi-scale simulation for homogenization of cement media

    International Nuclear Information System (INIS)

    Abballe, T.

    2011-01-01

    To solve diffusion problems on cement media, two scales must be taken into account: a fine scale, which describes the micrometers wide microstructures present in the media, and a work scale, which is usually a few meters long. Direct numerical simulations are almost impossible because of the huge computational resources (memory, CPU time) required to assess both scales at the same time. To overcome this problem, we present in this thesis multi-scale resolution methods using both Finite Volumes and Finite Elements, along with their efficient implementations. More precisely, we developed a multi-scale simulation tool which uses the SALOME platform to mesh domains and post-process data, and the parallel calculation code MPCube to solve problems. This SALOME/MPCube tool can solve automatically and efficiently multi-scale simulations. Parallel structure of computer clusters can be use to dispatch the more time-consuming tasks. We optimized most functions to account for cement media specificities. We presents numerical experiments on various cement media samples, e.g. mortar and cement paste. From these results, we manage to compute a numerical effective diffusivity of our cement media and to reconstruct a fine scale solution. (author) [fr

  4. Evaluation of stainless steel crowns cemented with glass-ionomer and resin-modified glass-ionomer luting cements.

    Science.gov (United States)

    Yilmaz, Yucel; Simsek, Sera; Dalmis, Anya; Gurbuz, Taskin; Kocogullari, M Elcin

    2006-04-01

    To evaluate in vitro and in vivo conditions of stainless steel crowns (SSC) cemented using one luting glass-ionomer cement (Aqua Meron) and one luting resin-modified glass-ionomer cement (Vitremer). In the in vitro part of this study, retentive properties of SSCs cemented using Aqua Meron and Vitremer on extracted primary first molars were tested. In addition, two specimens of each group were used to evaluate the tooth hard tissue-cement, within the cement itself, cement-SSC, and tooth hard tissue-cement-SSC under scanning electron microscope (SEM). In the in vivo part of this study, 152 SSCs were placed on the first or second primary molars of 86 children, and cemented using either Aqua Meron or Vitremer. The crowns were examined for retention. In addition, the clinical views of the crowns were recorded with an intraoral camera. No significant difference was found between the mean retentive forces of Aqua Meron and Vitremer (P> 0.05). SSCs cemented with Aqua Meron and Vitremer had an average lifespan of 26.44 and 24.07 months respectively. Only one (0.66%) of 152 SSCs was lost from the Aqua Meron group during post-cementation periods. Nineteen of the 152 SSCs (12.5%) had dents or perforations.

  5. New pulsating casing collar to improve cementing quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Southwest Petroleum Inst., Nanchong, Sichuan (China); He, K. [JiangHan Petroleum Administration Bureau, Qianjiang, Hubei (China); Wu, J. [Chevron Petroleum Tech. Co., Houston, TX (United States)

    1998-12-31

    This paper presents the design and test results of a new pulsating casing collar which improves cementing quality. The new pulsating casing collar (PCC) is designed according to the Helmholtz oscillator to generate a pulsating jet flow by self-excitation in the cementing process. By placing this new pulsating casing collar at the bottom of casing string, the generated pulsating jet flow transmits vibrating pressure waves up through the annulus and helps remove drilling mud in the annulus. It can therefore improve cementing quality, especially when eccentric annulus exists due to casing eccentricity where the mud is difficult to remove. The new pulsating casing collar consists of a top nozzle, a resonant chamber, and a bottom nozzle. It can be manufactured easily and is easy to use in the field. It has been tested in Jianghan oil-field, P.R. China. The field-test results support the theoretical analysis and laboratory test, and the cementing quality is shown greatly improved by using the new pulsating casing collar.

  6. Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    J. V. Rau

    2016-04-01

    Full Text Available Calcium phosphate bone cements (CPCs with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt % was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP phase into the dicalcium phosphate dihydrate (DCPD took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO33 was detected and Ag (met. was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content.

  7. Influence of nano-dispersive modified additive on cement activity

    Energy Technology Data Exchange (ETDEWEB)

    Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru [Angarsk State Technical University, 60, Tchaykovsky St., 665835, Angarsk (Russian Federation); Skripnikova, Nelli, E-mail: nks2003@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.

  8. Study on properties and testing methods of thermo-responsive cementing system for well cementing in heavy oil thermal recovery

    Science.gov (United States)

    Li, Lianjiang

    2017-08-01

    In this paper, thermo-responsive cement slurry system were being developed, the properties of conventional cement slurry, compressive strength high temperature of cement sheath, mechanical properties of cement sheath and thermal properties of cement sheath were being tested. Results were being used and simulated by Well-Life Software, Thermo-responsive cement slurry system can meet the requirements of heavy oil thermal recovery production. Mechanical and thermal properties of thermo-responsive cement sheath were being tested. Tensile fracture energy of the thermo-responsive cement sheath is larger than conventional cement. The heat absorption capacity of conventional cement sheath is larger than that of thermo-responsive cement sheath, this means more heat is needed for the unit mass once increasing 1.0 °C, which also indicates that thermo-responsive cement own good heat insulating and preservation effects. The heat conductivity coefficient and thermal expansion coefficient of thermo-responsive cement is less than and conventional cement, this means that thermo-responsive cement have good heat preservation and insulation effects with good thermal expansion stabilities.

  9. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    Science.gov (United States)

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p cements reduced the bond strength to Panavia self-etching resin cements only (p cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  10. An Experimental Study of Portland Cement and Superfine Cement Slurry Grouting in Loose Sand and Sandy Soil

    Directory of Open Access Journals (Sweden)

    Weijing Yao

    2018-04-01

    Full Text Available Grouting technology is widely applied in the fields of geotechnical engineering in infrastructure. Loose sand and sandy soil are common poor soils in tunnel and foundation treatments. It is necessary to use superfine cement slurry grouting in the micro-cracks of soil. The different effectiveness of Portland cement slurry and superfine cement slurry in sandy soil by the laboratory grouting experiment method were presented in this paper. The grouting situations of superfine cement slurry injected into sand and sandy soil were explored. The investigated parameters were the dry density, wet density, moisture content, internal friction angle, and cohesion force. The results show that the consolidation effect of superfine cement is better than that of Portland cement due to the small size of superfine cement particles. The superfine cement can diffuse into the sand by infiltration, extrusion, and splitting. When the water–cement ratio of superfine cement slurry is less than 2:1 grouting into loose sand, the dry and wet density decrease with the increase in the water–cement ratio, while the moisture content and cohesive force gradually increase. When the water–cement ratio of superfine cement slurry is 1:1 grouting into loose sand and sandy soil, the dry density, wet density, and cohesive force of loose sand are larger than those of sandy soil. The results of the experiment may be relevant for engineering applications.

  11. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  12. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  13. Push-out bond strengths of different dental cements used to cement glass fiber posts.

    Science.gov (United States)

    Pereira, Jefferson Ricardo; Lins do Valle, Accácio; Ghizoni, Janaina Salomon; Lorenzoni, Fábio César; Ramos, Marcelo Barbosa; Barbosa, Marcelo Ramos; Dos Reis Só, Marcus Vinícius

    2013-08-01

    Since the introduction of glass fiber posts, irreversible vertical root fractures have become a rare occurrence; however, adhesive failure has become the primary failure mode. The purpose of this study was to evaluate the push-out bond strength of glass fiber posts cemented with different luting agents on 3 segments of the root. Eighty human maxillary canines with similar root lengths were randomly divided into 8 groups (n=10) according to the cement assessed (Rely X luting, Luting and Lining, Ketac Cem, Rely X ARC, Biscem, Duo-link, Rely X U100, and Variolink II). After standardized post space preparation, the root dentin was pretreated for dual-polymerizing resin cements and untreated for the other cements. The mixed luting cement paste was inserted into post spaces with a spiral file and applied to the post surface that was seated into the canal. After 7 days, the teeth were sectioned perpendicular to their long axis into 1-mm-thick sections. The push-out test was performed at a speed of 0.5 mm/min until extrusion of the post occurred. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). ANOVA showed that the type of interaction between cement and root location significantly influenced the push-out strength (Pcements and glass ionomer cements showed significantly higher values compared to dual-polymerizing resin cements. In all root segments, dual-polymerizing resin cements provided significantly lower bond strength. Significant differences among root segments were found only for Duo-link cement. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  15. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  16. Study of hydrated Portland cement composition in regard to leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1997-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  17. Corneal permeability for cement dust: prognosis for occupational safety

    Science.gov (United States)

    Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.

    2018-02-01

    The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.

  18. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    OpenAIRE

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  19. Hydration kinetics of cements by Time-Domain Nuclear Magnetic Resonance: Application to Portland-cement-derived endodontic pastes

    International Nuclear Information System (INIS)

    Bortolotti, Villiam; Fantazzini, Paola; Mongiorgi, Romano; Sauro, Salvatore; Zanna, Silvano

    2012-01-01

    Time-Domain Nuclear Magnetic Resonance (TD-NMR) of 1 H nuclei is used to monitor the maturation up to 30 days of three different endodontic cement pastes. The “Solid–liquid” separation of the NMR signals and quasi-continuous distributions of relaxation times allow one to follow the formation of chemical compounds and the build-up of the nano- and subnano-structured C–S–H gel. 1 H populations, distinguished by their different mobilities, can be identified and assigned to water confined within the pores of the C–S–H gel, to crystallization water and Portlandite, and to hydroxyl groups. Changes of the TD-NMR parameters during hydration are in agreement with the expected effects of the different additives, which, as it is known, can substantially modify the rate of reactions and the properties of cementitious pastes. Endodontic cements are suitable systems to check the ability of this non-destructive technique to give insight into the complex hydration process of real cement pastes.

  20. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  1. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    Science.gov (United States)

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Immobilisation of MTR waste in cement (product evaluation). Final report. December 1987

    International Nuclear Information System (INIS)

    Howard, C.G.; Lee, D.J.

    1988-01-01

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. This is stored in stainless steel tanks at DNE. As a result of work carried out under the UKAEA radioactive waste management programme a decision was taken to immobilise the waste in cement. The programme had two main components, plant design and development of the cementation process. The plant for the cementation of MTR waste is under construction and will be commissioned in 1988/9. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. Specimens have been tested up to 1200 days after manufacture and show no significant signs of deterioration even when stored underwater or when subjected to freeze thaw cycling. Development work has also shown that the process can successfully immobilise simulant MTR liquor over a wide range of liquor concentrations. The programme therefore successfully produced a formulation that met all the requirements of both the process and product specification. (author)

  3. Removal of cobalt and nickel from zinc sulphate solutions using activated cementation

    Directory of Open Access Journals (Sweden)

    Boyanov B.

    2004-01-01

    Full Text Available The influence of different parameters (duration, temperature, zinc dust quantity, concentration of activators - copper and antimony on the process of activated cementation of Co and Ni has been studied. We have worked with industrial zinc sulphate solutions. During the process of activated cementation of Co and Ni, copper (involved as CuSO4.5H2O and antimony (involved as Sb2O3 were used as activators. The lowest values of Co content have been obtained at a temperature of 80-85 oC, CCu = 200-300 mg/dm3 and 18 multiple surplus of zinc dust. After adding Cu to the solution, mainly the cementation of Ni is activated, and that of Co is activated to a lower degree. It was found that when GSb : GCo ratio is between 0.5 : 1 and 2 : 1, the solution is purified from Co and Ni to a great degree. After intensive stirring and increasing the duration of the process the cement sediments dissolve reversely. This holds true of Co to a greater extent, as compared to Ni. The results obtained will be used to establish optimal conditions for the carrying out of activated cementation in Zinc Production Plant in KCM SA, Plovdiv.

  4. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers

    International Nuclear Information System (INIS)

    Jacobsson, K.

    1993-09-01

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs

  5. The incorporation of low and medium level radioactive wastes (solids and liquids) in cement

    International Nuclear Information System (INIS)

    Palmer, J.D.; Smith, D.L.G.

    1986-01-01

    The use of cement has been investigated for the immobilization of liquid and solid low and medium level radioactive waste. 220 litre mixing trials have demonstrated that the high temperatures generated during the setting of ordinary Portland cement/simulant waste mixes can be significantly reduced by the use of a blend of ground granulated blast furnace slag and ordinary Portland cement. Laboratory and 220 litre trials using simulant wastes showed that the blended cement gave an improvement in properties of the cemented waste product, e.g. stability and reduction in leach rates compared with ordinary Portland cement formulations. A range of 220 litre scale mixing systems for the incorporation of liquid and solid wastes in cement was investigated. The work has confirmed that cement-based processes can be used for the immobilization of most types of low and medium level waste

  6. Use of petroleum code as fuel in the cement industry

    International Nuclear Information System (INIS)

    Nawaz, S.

    2006-01-01

    The Cement industry is a very energy intensive industry. Each ton of cement produced requires 60 to 130 kilograms of fuel oil or an equivalent fuelling amount also requires an average 110 kWh of electricity as well over 40% of total production cost is the energy requirements in the cement industry (i.2). Normally oil, gas or coal is fired in cement kilns as traditional fuels. However use of waste, both as alternative fuels and raw materials is now common practice in many cement companies. Many different types of wastes are burnt today in cement kilns like used tyres, rubber, paper waste, waste oils, waste wood, paper sludge, sewage, animal meal and animal remains (i,4). The choice of fuel for the purpose is normally based on price and availability considering different properties of the fuel as energy contents, ash contents, moisture and volatiles contents. Petcoke is not yet produced in any petroleum refinery in Pakistan but it is abundantly available in the market worldwide as it is obtained as a waste product during the refining processes. The purpose of the current research is to figure out the suitability of petroleum coke as a fuel for cement industry both on technical and economic basis. (author)

  7. Development of Gradient Cemented Carbides Through ICME Strategy

    Science.gov (United States)

    Du, Yong; Peng, Yingbiao; Zhang, Weibin; Chen, Weimin; Zhou, Peng; Xie, Wen; Cheng, Kaiming; Zhang, Lijun; Wen, Guanghua; Wang, Shequan

    An integrated computational materials engineering (ICME) including CALPHAD method is a powerful tool for materials process optimization and alloy design. The quality of CALPHAD-type calculations is strongly dependent on the quality of the thermodynamic and diffusivity databases. The development of a thermodynamic database, CSUTDCC1, and a diffusivity database, CSUDDCC1, for cemented carbides is described. Several gradient cemented carbides sintered under vacuum and various partial pressures of N2 have been studied via experiment and simulation. The microstructure and concentration profile of the gradient zones have been investigated via SEM and EPMA. Examples of ICME applications in design and manufacture for different kinds of cemented carbides are shown using the databases and comparing where possible against experimental data, thereby validating its accuracy.

  8. Visual nesting system for irregular cutting-stock problem based on rubber band packing algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoping Liao

    2016-05-01

    Full Text Available This article deals with the packing problem of irregular items allocated into a rectangular sheet to minimize the waste. Conventional solution is not visual during the packing process. It obtains a reasonable and relatively satisfactory solution between the nesting time and nesting solution. This article adopts a physical method that uses rubber band packing algorithm to simulate a rubber band wrapping those packing irregular items. The simulation shows a visual and fast packing process. The resultant rubber band force is applied in the packing items to translate, rotate, and slide them to make the area decrease and obtain a high packing density. An improved analogy QuickHull algorithm is presented to obtain extreme points of rubber band convex hull. An adaptive module could set a variable rubber band force and a variable time step to make a proper convergence and no intersection. A quick convex decomposition method is used to solve the problem of concave polygon. A plural vector expression approach is adopted to calculate the resultant vector of the rubber band force. Several cases are compared with the benchmark problems to prove rubber band packing algorithm performance.

  9. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    OpenAIRE

    Auday A Mehatlaf

    2017-01-01

    Cement Klin Dust (CKD) was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40) had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28) d...

  10. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  11. INEL studies concerning solidification of low-level waste in cement

    International Nuclear Information System (INIS)

    Mandler, J.W.

    1989-01-01

    The Idaho National Engineering Laboratory (INEL) has performed numerous studies addressing issues concerning the solidification of low-level radioactive waste in cement. These studies have been performed for both the Nuclear Regulatory Commission (NRC) and the Department of Energy (DOE). This short presentation will only outline the major topics addressed in some of these studies, present a few conclusions, and identify some of the technical concerns we have. More details of the work and pertinent results will be given in the Working Group sessions. The topics that have been addressed at the INEL which are relevant to this Workshop include (1) solidification of ion-exchange resins and evaporator waste in cement at commercial nuclear power plants, (2) leachability and compressive strength of power plant waste solidified in cement, (3) suggested guidelines for preparation of a solid waste process control program (PCP), (4) cement solidification of EPICOR-II resin wastes, and (5) performance testing of cement-solidified EPICOR-II resin wastes

  12. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    Science.gov (United States)

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  13. Hydration kinetics of cement composites with varying water-cement ratio using terahertz spectroscopy

    Science.gov (United States)

    Ray, Shaumik; Dash, Jyotirmayee; Devi, Nirmala; Sasmal, Saptarshi; Pesala, Bala

    2015-03-01

    Cement is mixed with water in an optimum ratio to form concrete with desirable mechanical strength and durability. The ability to track the consumption of major cement constituents, viz., Tri- and Dicalcium Silicates (C3S, C2S) reacting with water along with the formation of key hydration products, viz., Calcium-Silicate-Hydrate (C-S-H) which gives the overall strength to the concrete and Calcium Hydroxide (Ca(OH)2), a hydration product which reduces the strength and durability, using an efficient technique is highly desirable. Optimizing the amount of water to be mixed with cement is one of the main parameters which determine the strength of concrete. In this work, THz spectroscopy has been employed to track the variation in hydration kinetics for concrete samples with different water-cement ratios, viz., 0.3, 0.4, 0.5 and 0.6. Results show that for the sample with water-cement ratio of 0.3, significant amount of the C3S and C2S remain unreacted even after the initial hydration period of 28 days while for the cement with water-cement ratio of 0.6, most of the constituents get consumed during this stage. Analysis of the formation of Ca(OH)2 has been done which shows that the concrete sample with water-cement ratio of 0.6 produces the highest amount of Ca(OH)2 due to higher consumption of C3S/C2S in presence of excess water which is not desirable. Samples with water-cement ratio of 0.4 and 0.5 show more controlled reaction during the hydration which can imply formation of an optimized level of desired hydration products resulting in a more mechanically strong and durable concrete.

  14. A singular methodology to design cement sheath integrity exposed to steam stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, A.; Saint-Marc, J. [Total SA, Paris (France); Bois, A.P. [CurisTec (France); Kermanac' h, Y. [Total E and P Canada Ltd., Calgary, AB (Canada)

    2008-10-15

    Oil well cements must be capable of providing zonal isolation as well as casing support and casing protection. However, steam assisted gravity drainage (SAGD) processes often place significant stresses on well casings and cement sheath boundaries. This paper presented a barrier design developed to ensure long-term cement sheath integrity in shallow reservoir conditions. Rock mechanics simulations were conducted in order to evaluate stresses in the field. The thermal gradient in well components was simulated. Thermo-hydraulic simulations of SAGD processes were conducted in order to evaluate thermal loadings and develop a series of temperature grids. Well trajectory, architecture and geology were considered, as well as formation properties, pore pressures, in situ stress states, and applied loadings. The results of both studies were then analyzed in order to determine the mechanical properties required by the cement in order to withstand thermal stresses. Various cement systems were then triaxial tested in order to validate simulation results. The method was used to design a cement system with low Young's modulus and high tensile strength at a well in the Joslyn field in Canada. The method is now being used by Total in fields throughout the world. 19 refs., 5 tabs., 16 figs.

  15. Polymer-cement interactions towards improved wellbore cement fracture sealants

    Science.gov (United States)

    Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.

    2017-12-01

    Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.

  16. Absorption Characteristics of Cement Combination Concrete Containing Portland Cement, fly ash, and Metakaolin

    Directory of Open Access Journals (Sweden)

    Folagbade S.O.

    2016-03-01

    Full Text Available The resistance to water penetration of cement combination concretes containing Portland cement (PC, fly ash (FA, and metakaolin (MK have been investigated at different water/cement (w/c ratios, 28-day strengths, and depths of water penetration using their material costs and embodied carbon-dioxide (eCO2 contents. Results revealed that, at equal w/c ratio, eCO2 content reduced with increasing content of FA and MK. MK contributed to the 28-day strengths more than FA. Compared with PC, FA reduced cost and increased the depth of water penetration, MK increased cost and reduced the depth of water penetration, and their ternary combinations become beneficial. At equal strengths and levels of resistance to water penetration, most of the cement combination concretes are more environmentally compatible and costlier than PC concrete. Only MK binary cement concretes with 10%MK content or more and ternary cement concretes at a total replacement level of 55% with 10%MK content or more have higher resistance to water penetration than PC concrete.

  17. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  18. American Spirit Pack Descriptors and Perceptions of Harm: A Crowdsourced Comparison of Modified Packs.

    Science.gov (United States)

    Pearson, Jennifer L; Richardson, Amanda; Feirman, Shari P; Villanti, Andrea C; Cantrell, Jennifer; Cohn, Amy; Tacelosky, Michael; Kirchner, Thomas R

    2016-08-01

    In 2015, the Food and Drug Administration issued warnings to three tobacco manufacturers who label their cigarettes as "additive-free" and/or "natural" on the grounds that they make unauthorized reduced risk claims. The goal of this study was to examine US adults' perceptions of three American Spirit (AS) pack descriptors ("Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown Tobacco") to assess if they communicate reduced risk. In September 2012, three cross-sectional surveys were posted on Amazon Mechanical Turk. Adult participants evaluated the relative harm of a Marlboro Red pack versus three different AS packs with the descriptors "Made with Organic Tobacco," "100% Additive-Free," or "100% US Grown Tobacco" (Survey 1; n = 461); a Marlboro Red pack versus these AS packs modified to exclude descriptors (Survey 2; n = 857); and unmodified versus modified AS pack images (Survey 3; n = 1001). The majority of Survey 1 participants rated the unmodified AS packs as less harmful than the Marlboro Red pack; 35.4%-58.8% of Survey 2 participants also rated the modified (no claims) packs as less harmful than Marlboro Red. In these surveys, prior use of AS cigarettes was associated with reduced perceptions of risk (adjusted odds ratio [AOR] 1.59-2.40). "Made with Organic Tobacco" and "100% Additive-Free" were associated with reduced perceptions of risk when comparing the modified versus the unmodified AS packs (Survey 3). Data suggest that these AS pack descriptors communicate reduced harm messages to consumers. Findings have implications for regulatory actions related to product labeling and packaging. These findings provide additional evidence that the "Made with Organic Tobacco," "100% Additive-Free," and "100% US Grown" descriptors, as well as other aspects of the AS pack design, communicate reduced harm to non-, current, and former smokers. Additionally, they provide support for the importance of FDA's 2015 warning to Santa Fe Natural Tobacco Company on

  19. Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Indian cement industry is one of the most efficient in the world. Its efforts to reduce its carbon footprint by adopting the best available technologies and environmental practices are reflected in the achievement of reducing total CO2 emissions to an industrial average of 0.719 tCO2/t cement in 2010 from a substantially higher level of 1.12 tCO2/t cement in 1996. However, because the manufacturing process relies on the burning of limestone, it still produced 137 MtCO2 in 2010 – approximately 7% of India’s total man-made CO2 emissions. Yet opportunity for improvement exists, particularly in relation to five key levers that can contribute to emissions reductions: alternative fuel and raw materials; energy efficiency; clinker substitution; waste heat recovery and newer technologies. This roadmap sets out one pathway by which the Indian cement industry can reach its targets to improve energy efficiency and reduce CO2 emissions by 2050, thereby laying the foundation for low-carbon growth in the years beyond. The Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry builds on the global IEA technology roadmap for the cement sector developed by the IEA and the World Business Council for Sustainable Development’s Cement Sustainability Initiative. It outlines a possible transition path for the Indian cement industry to reduce its direct CO2 emissions intensity to 0.35 tCO2/t cement and support the global goal of halving CO2 emissions by 2050.

  20. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    Science.gov (United States)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to

  1. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    International Nuclear Information System (INIS)

    Jardine, L J

    2003-01-01

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R and D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities

  2. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  3. Prediction of hydroxyl concentrations in cement pore water using a numerical cement hydration model

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    In this paper, a 3D numerical cement hydration model is used for predicting alkali and hydroxyl concentrations in cement pore water. First, this numerical model is calibrated for Dutch cement employing both chemical shrinkage and calorimetric experiments. Secondly, the strength development of some

  4. Material selection and assembly method of battery pack for compact electric vehicle

    Science.gov (United States)

    Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.

    2018-01-01

    Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.

  5. Immobilisation of MTR waste in cement (product evaluation)

    International Nuclear Information System (INIS)

    Howard, C.G.; Lee, D.J.

    1988-01-01

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. (author)

  6. Cementation of nuclear graphite using geo-polymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H.J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2012-01-01

    Geo-polymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geo-polymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geo-polymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geo-polymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated about how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfill the specifications at best. As result geo-polymers have been identified as a promising matrix for graphite containing nuclear wastes. With geo-polymers both favorable properties in the cementation process and a high long time structural stability of the products can be achieved. (authors)

  7. The incorporation of low and medium level radioactive wastes (solids and liquids) in cement

    International Nuclear Information System (INIS)

    Palmer, J.D.; Smith, D.L.

    1985-07-01

    Experimentation has shown that high temperatures generated during the setting of ordinary Portland cement/simulant waste mixes can be significantly reduced by the use of a blend of ground granulated blast furnace slag and ordinary Portland cement. Trials on simulated waste showed that blended cement gave improved stability and a reduction in leach rates, and confirmed that the cement-based process can be used for the immobilisation of most types of low and medium level waste. (U.K.)

  8. A multiphysics-viscoplastic cap model for simulating blast response of cemented tailings backfill

    Directory of Open Access Journals (Sweden)

    Gongda Lu

    2017-06-01

    Full Text Available Although a large number of previous researches have significantly contributed to the understanding of the quasi-static mechanical behavior of cemented tailings backfill, an evolutive porous medium used in underground mine cavities, very few efforts have been made to improve the knowledge on its response under sudden dynamic loading during the curing process. In fact, there is a great need for such information given that cemented backfill structures are often subjected to blast loadings due to mine exploitations. In this study, a coupled thermo-hydro-mechanical-chemical (THMC-viscoplastic cap model is developed to describe the behavior of cementing mine backfill material under blast loading. A THMC model for cemented backfill is adopted to evaluate its behavior and evolution of its properties in curing processes with coupled thermal, hydraulic, mechanical and chemical factors. Then, the model is coupled to a Perzyna type of viscoplastic model with a modified smooth surface cap envelope and a variable bulk modulus, in order to reasonably capture the nonlinear and rate-dependent behaviors of the cemented tailings backfill under blast loading. All of the parameters required for the variable-modulus viscoplastic cap model were obtained by applying the THMC model to reproducing evolution of cemented paste backfill (CPB properties in the curing process. Thus, the behavior of hydrating cemented backfill under high-rate impacts can be evaluated under any curing time of concern. The validation results of the proposed model indicate a good agreement between the experimental and the simulated results. The authors believe that the proposed model will contribute to a better understanding of the performance of hydrating cemented backfill under blasting, and also to practical risk management of backfill structures associated with such a dynamic condition.

  9. Development of low radio-activated cement. Characteristics of cement and clinker that decreased liquid phase content

    International Nuclear Information System (INIS)

    Ichitsubo, Koki

    2008-01-01

    Low radio-activated cement was developed by decreasing the parent elements of radionuclides in the materials. The characteristics of products, decreasing method of Na, Eu and Co in cement, design, tests, evaluation, and analysis of low radio-activated cement clinker are reported. In order to decrease the content of Na, Eu and Co, the raw materials have to include natural materials such as limestone and silica stone. The production method is the same as white cement. The low radio-activated cement produced by rotary kiln showed 4.9% C 3 A, 1.1% C 4 AF, 26.9% C 3 S and 61.0% C 2 S, which values were standardized by the Japanese Industrial Standards (JIS) of low temperature Portland cement. Another product that decreased a little more liquid phase content showed 4.0% C 3 A, 1.0% C 4 AF, 32.3% C 3 S and 56.5% C 2 S, which was standardized by JIS of sulfate resisting Portland cement. In the case of decommissioning reactor constructed by the low radio-activated cement, the whole amount of waste cement will be no more than the clearance level. (S.Y.)

  10. Optimization of cement composites with the use of fillers from the Chechen Republic fields

    Directory of Open Access Journals (Sweden)

    Balatkhanova Elita Mahmudovna

    Full Text Available The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

  11. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    ELsourougy, M R; Zaki, A A; Aly, H F [Atomic energy authority, hot laboratory center, Cairo, (Egypt); Khalil, M Y [Nuclear engineering department, Alexandria university. Alexandria, (Egypt)

    1995-10-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs.

  12. Investigations on cement/polymer Waste packages containing intermediate level waste and organic exchange resins

    International Nuclear Information System (INIS)

    ELsourougy, M.R.; Zaki, A.A.; Aly, H.F.; Khalil, M.Y.

    1995-01-01

    Polymers can be added to cements to improve its nuclear waste immobilization properties. This trend in cementation processes is attracting attention and requiring through investigations. In this work, polymers of different kinds were added to ordinary portland cement for the purpose of solidifying intermediate level liquid wastes and organic ion exchange resins. Epoxy polymer such as Kemapoxy-150 reduced the leaching rate of cesium compared to cement alone. Latex to cement ratio less than 4% caused an increase in leaching rate of cesium. When cesium was absorbed to an organic resin its leachability was improved. 5 figs., 4 tabs

  13. The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Wargocki, Pawel

    2018-01-01

    The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means...... of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect...

  14. Cemented Horizons and Hardpans in the Coastal Tablelands of Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    João Bosco Vasconcellos Gomes

    Full Text Available ABSTRACT Horizons with varying degrees of cementation are a common feature of the soils from the coastal tablelands of Northeastern Brazil. In most cases, these horizons are represented by the following subsurface horizons: fragipan, duripan, ortstein, and placic. The aims of this study were to analyze differences regarding the development and the degree of expression of cementation in soils from the coastal tablelands of Northeastern Brazil: Planossolo Háplico (p-SX, Espodossolo Humilúvico (p-EK, Espodossolo Ferrihumilúvico (p-ESK, and Argissolo Acinzentado (p-PAC pedons. The pedons studied displayed features related to drainage impediments. The cemented horizons from p-SX and p-EK had the same designation (Btgm, displaying a duric character that coincided with gleization features and are under podzolized horizons. In the p-ESK, the podzolization process is of such magnitude that it leads to the cementation of its own spodic horizons, which were both of the ortstein type (Bhsx and Bsm. In the p-PAC cementation is observed in two placic horizons and in the Btx/Bt horizon, as well as in the upper parts of the Bt/Btx horizon. Analysis of the micrographies from the cemented horizons showed predominance of a low porosity matrix. Such porosity is relatively greater in the horizons of “x” subscript than in the horizons with duric character. The Fe segregation lines were notable in the cemented horizons from p-EK and p-PAC, which corroborates the presence of placic horizons in such pedons. The preponderance of kaolinite in the clay fraction was widely verified in all the cemented horizons analyzed. Water immersion tests were the criteria adopted to define the duric character of the Btgm horizons from p-SX and p-EK, and in the Bsm horizon from the p-ESK. These tests were also used to confirm field morphology. In most cases, the maximum values of Fe, Al, and Si, determined by different extractions, occurred in positions overlaying the cemented

  15. Optimization analysis of thermal management system for electric vehicle battery pack

    Science.gov (United States)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  16. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  17. Modernization of Byuzmeyinsky Cement Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, investigations and discussions were given on a modernization project for Byuzmeyinsky Cement Factory, the only cement factory in Turkmenistan. Byuzmeyinsky Cement Factory uses the wet process which consumes a large amount of energy, is inferior in production efficiency and quality, and discharging a great amount of greenhouse effect gas. The present project will execute change of the raw material crusher into a vertical roll mill for one of the four wet kilns, and change of the facilities for raw material powder mixing and storing and clinker manufacturing into dry-type facilities using the NSP system. As a result of the discussions, the energy saving effect would be 86,321 tons of crude oil equivalent annually, and the greenhouse gas emission reducing effect would be 224,467 t-CO2 annually. The total fund amount required for the project is estimated to be 90,211,000 dollars. With regard to the profitability, the internal financial profit rate would be 9.71% after tax, and the ROE would be 18.62%, whereas the project is considered feasible. (NEDO)

  18. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  19. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    International Nuclear Information System (INIS)

    Baranyai, L.

    1983-01-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with 198 Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed. (orig.) [de

  20. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Baranyai, L

    1983-12-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with /sup 198/Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed.

  1. Health hazards of cement dust

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    ven in the 21st century, millions of people are working daily in a dusty environment. They are exposed to different types of health hazards such as fume, gases and dust, which are risk factors in developing occupational disease. Cement industry is involved in the development of structure of this advanced and modern world but generates dust during its production. Cement dust causes lung function impairment, chronic obstructive lung disease, restrictive lung disease, pneumoconiosis and carcinoma of the lungs, stomach and colon. Other studies have shown that cement dust may enter into the systemic circulation and thereby reach the essentially all the organs of body and affects the different tissues including heart, liver, spleen, bone, muscles and hairs and ultimately affecting their micro-structure and physiological performance. Most of the studies have been previously attempted to evaluate the effects of cement dust exposure on the basis of spirometry or radiology, or both. However, collective effort describing the general effects of cement dust on different organ and systems in humans or animals, or both has not been published. Therefore, the aim of this review is to gather the potential toxic effects of cement dust and to minimize the health risks in cement mill workers by providing them with information regarding the hazards of cement dust. (author)

  2. Diffusion-controlled cementation experiments in porous rock analogues using potash alum and halite

    Energy Technology Data Exchange (ETDEWEB)

    Hufe, A.; Hilgers, C. [RWTH Aachen Univ. (Germany). Inst. of Reservoir-Petrology; Stanjek, H. [RWTH Aachen Univ. (Germany). Inst. of Interface and Clay Mineralogy

    2013-08-01

    A good understanding of cementation is critical for reservoir quality predictions. However, studies of core material have shown that cementation may be driven by variations in pore size of the host rock. To better understand the underlying process, we developed a transparent microreactor for diffusion-controlled cementation experiments under the microscope. We studied the effect of different pore sizes and surface charges of solid material at different pH, using rock analogs. High-resolution videos allowed to analyze the nucleation from solution, pore cementation and growth rates of cements. Diffusion - considered the major mass transport during burial diagenesis - was driven along a temperature gradient across the microreactor. Pores were cemented with salt, which is well known to form pore-size dependent seals in silicilastic reservoirs. While halite precipitated primarily in pores bigger than 200 {mu}m, alum nucleated in smaller pores. The growth rate of alum (10{sup -5} mm/s) was one order of magnitude higher than that of halite. However, the dissolution rates of both minerals was similar at about 10{sup -6} mm/s. Authigenic euhdral halite migrated against the bulk diffusion transport and towards the higher-temperature reservoir. Halite growth rates increased by one order of magnitude to 1.8 x 10{sup -5} mm/s, if the phase boundary was vapor-liquid. A comparison nucleation in a 2-phase porous rock analog showed no difference in cementation pattern at a pH 7. However, at a pH of 10.5 the surface energies of the two different solids are altered, and porosity was reduced 60% more by cements in the phase-1 porous layers. Our experiments showed that pore size dependent nucleation and cementation is a process, which may also take place in complex reservoirs. With the successful pore clogging of halite we can now bring our experimental setup to reservoir conditions and establish the processes at elevated p-T conditions. (orig.)

  3. Barium aluminate cement: its application

    International Nuclear Information System (INIS)

    Drozdz, M.; Wolek, W.

    1975-01-01

    The technology of manufacturing barium aluminate cement from barium sulfate and alumina, using a rotary kiln for firing the clinker is described. The method of granulation of the homogenized charge was used. Conditions of using the ''to mud'' method in industry were indicated. The physical and chemical properties of barium aluminate cement are determined and the quality of several batches of cement prepared on a semi-industrial scale and their suitability for making highly refractory concretes are tested. The optimal composition of the concretes is determined as a function of the mixing water and barium aluminate cement contents. Several experimental batches of concretes were used in the linings of furnaces in the steel industry. The suitability of these cements for use in fields other than steelmaking is examined. It is established that calcium aluminate cement has certain limited applications [fr

  4. Comparative evaluation of marginal leakage of provisional crowns cemented with different temporary luting cements: In vitro study.

    Science.gov (United States)

    Arora, Sheen Juneja; Arora, Aman; Upadhyaya, Viram; Jain, Shilpi

    2016-01-01

    As, the longevity of provisional restorations is related to, a perfect adaptation and a strong, long-term union between restoration and teeth structures, therefore, evaluation of marginal leakage of provisional restorative materials luted with cements using the standardized procedures is essential. To compare the marginal leakage of the provisional crowns fabricated from Autopolymerizing acrylic resin crowns and bisphenol A-glycidyl dimethacrylate (BIS-GMA) resin crowns. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin crowns and BIS-GMA resin crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from autopolymerizing acrylic resin (SC-10) crowns cemented with different temporary luting cements. To compare the marginal leakage of the provisional crowns fabricated from BIS-GMA resin crowns (Protemp 4) cemented with different temporary luting cements. Freshly extracted 60 maxillary premolars of approximately similar dimensions were mounted in dental plaster. Tooth reduction with shoulder margin was planned to use a customized handpiece-holding jig. Provisional crowns were prepared using the wax pattern fabricated from computer aided designing/computer aided manufacturing milling machine following the tooth preparation. Sixty provisional crowns were made, thirty each of SC-10 and Protemp 4 and were then cemented with three different luting cements. Specimens were thermocycled, submerged in a 2% methylene blue solution, then sectioned and observed under a stereomicroscope for the evaluation of marginal microleakage. A five-level scale was used to score dye penetration in the tooth/cement interface and the results of this study was analyzed using the Chi-square test, Mann-Whitney U-test, Kruskal-Wallis H-test and the results were statistically significant P provisional crowns cemented with three different luting cements along the axial walls of

  5. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  6. Scenario Study on PM emission Reduction in Cement Industry

    Science.gov (United States)

    Tang, Qian; Chen, Xiaojun; Xia, Xin; Wang, Lijuan; Wang, Huili; Jin, Ling; Yan, Zhen

    2018-01-01

    Cement industry is one of the high pollution industries in China. Evaluation of the primary particulate matter (PM) emission status and the reduction potential is not only important for our understanding of the effectiveness of current pollution control measures but also vital for future policy design. In this study, PM emitted from cement producing process in 2014 was calculated using an emission factor method. Three PM emission control scenarios were set up considering source control, process management and end-of-pipe treatment, and the PM emission reduction by 2020 under the three scenarios was predicted, respectively. In 2014, the primary PM emission from cement industry was 1.95 million tons. By 2020, the productions of cement and clinker were expected to increase by 12% and 7%, respectively, and the PM emission would increase by about 10%. By implementation of GB4915-2013 and comprehensive control of fugitive PM emission, the PM emission would probably be reduced by 34%. Another 7% decrease would be expected from source control. The second scenario can be considered as an assessment of the effectiveness of the revised emission standard, and this research can be used as a technical support to the environmental management authorities to make relevant policies.

  7. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  8. Heavyweight cement concrete with high stability of strength parameters

    Science.gov (United States)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  9. Analysis of CCRL proficiency cements 151 and 152 using the Virtual Cement and Concrete Testing Laboratory

    International Nuclear Information System (INIS)

    Bullard, Jeffrey W.; Stutzman, Paul E.

    2006-01-01

    To test the ability of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software to predict cement hydration properties, characterization of mineralogy and phase distribution is necessary. Compositional and textural characteristics of Cement and Concrete Reference Laboratory (CCRL) cements 151 and 152 were determined via scanning electron microscopy (SEM) analysis followed by computer modeling of hydration properties. The general procedure to evaluate a cement is as follows: (1) two-dimensional SEM backscattered electron and X-ray microanalysis images of the cement are obtained, along with a measured particle size distribution (PSD); (2) based on analysis of these images and the measured PSD, three-dimensional microstructures of various water-to-cement ratios are created and hydrated using VCCTL, and (3) the model predictions for degree of hydration under saturated conditions, heat of hydration (ASTM C186), setting time (ASTM C191), and strength development of mortar cubes (ASTM C109) are compared to experimental measurements either performed at NIST or at the participating CCRL proficiency sample evaluation laboratories. For both cements, generally good agreement is observed between the model predictions and the experimental data

  10. Immobilisation of strontium, nickel and iodide by a sulphate-resisting Portland cement

    International Nuclear Information System (INIS)

    Wieland, E.; Tits, J.; Spieler, P.; Dobler, J.-P.

    1998-01-01

    The interaction of Sr(II), Ni(II) and I(-I) with sulphate-resisting Portland cement was investigated under highly alkaline conditions. Batch-sorption studies were performed by contacting HTS cement (haute teneur en silice, sulphate-resisting Portland cement, Lafarge, France) with artificial cement pore water (ACW). The composition of ACW was 0.18 M KOH, 0.114 M NaOH and 1.2 mM Ca(OH) 2 . 85 Sr, 63 Ni and 125 I were used as tracers. In the experiments with Sr(II) and Ni(II), isosaccharinic acid (ISA) was added to ACW at 10 -5 M to 10 -2 M in order to study the effect of complexing ligands on radionuclide retention. The stability of the tracer solutions and the cement suspensions were first assessed. Moreover, the inventory of the stable elements were determined in cement and cement pore water. We then studied the kinetics of the radionuclide-cement interaction process and measured the dependence of the distribution ratio (R d ) on the concentration of ISA and on the concentration of cement particles (S:L ratio). In the case of 63 Ni and 125 I a strong decrease in the distribution ratio (R d ) with increasing S:L ratio was observed. There is strong indication that the inventory of the stable fraction of an element present in cement pore water accounts for the retention of the radioisotope fraction. The results further indicate that phase transformations may occur in non-pre-equilibrated cement systems (non-equilibrium conditions) which affect 63 Ni uptake by HTS cement. The distribution ratios measured on HTS cement were compared with values obtained from measurements on important cement components (portlandite, CSH/C(A)SH-phases)

  11. Hardness of approximation for strip packing

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...

  12. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    International Nuclear Information System (INIS)

    Yoon, Seyoon; Moon, Juhyuk; Bae, Sungchul; Duan, Xiaonan; Giannelis, Emmanuel P.; Monteiro, Paulo M.

    2014-01-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g −1 and 257 mg g −1 , respectively) of the CLDHs were comparable to the theoretical capacity of Friedel's salt (2 mol mol −1 or 121 mg g −1 ), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. - Highlights: • We examine the adsorption equilibrium and kinetics of CLDH in the hydrated cement. • CLDH capacity to bind chloride ions in the hydrated cement paste is determined. • We model chloride adsorption by CLDH through the cement matrix. • CLDH reforms the layered structure with ion adsorption in the cement matrix

  13. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    Science.gov (United States)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  14. Advanced cementation concepts

    International Nuclear Information System (INIS)

    Howard, C.G.

    1989-10-01

    The purpose of this programme of work was to investigate whether improvements could be made to existing formulations for cement suitable for the immobilization of intermediate level radioactive waste. Two additives were selected, microsilica and limestone flour. Improvements to the cement were only slight. (author)

  15. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  16. Effect of sepiolite on the flocculation of suspensions of fibre-reinforced cement

    International Nuclear Information System (INIS)

    Jarabo, Rocio; Fuente, Elena; Moral, Ana; Blanco, Angeles; Izquierdo, Laura; Negro, Carlos

    2010-01-01

    Sepiolite is used to increase thixotropy of cement slurries for easier processing, to prevent sagging and to provide a better final quality in the manufacture of fibre-reinforced cement products. However, the effect of sepiolite on flocculation and its interactions with the components of fibre cement are yet unknown. The aim of this research is to study the effects of sepiolite on the flocculation of different fibre-reinforced cement slurries induced by anionic polyacrylamides (A-PAMs). Flocculation and floc properties were studied by monitoring the chord size distribution in real time employing a focused beam reflectance measurement (FBRM) probe. The results show that sepiolite increases floc size and floc stability in fibre-cement suspensions. Sepiolite competes with fibres and clay for A-PAMs adsorption and its interaction with A-PAM improves flocculation of mineral particles.

  17. Influence of Cement Particle-Size Distribution on Early Age Autogenous Strains and Stresses in Cement-Based Materials

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede; Hansen, Kurt Kielsgaard

    2001-01-01

    The influence of cement particle-size distribution on autogenous strains and stresses in cement pastes of identical water-to-cement ratios is examined for cement powders of four different finenesses. Experimental measurements include chemical shrinkage, to quantify degree of hydration; internal r...

  18. Modified strip packing heuristics for the rectangular variable-sized bin packing problem

    Directory of Open Access Journals (Sweden)

    FG Ortmann

    2010-06-01

    Full Text Available Two packing problems are considered in this paper, namely the well-known strip packing problem (SPP and the variable-sized bin packing problem (VSBPP. A total of 252 strip packing heuristics (and variations thereof from the literature, as well as novel heuristics proposed by the authors, are compared statistically by means of 1170 SPP benchmark instances in order to identify the best heuristics in various classes. A combination of new heuristics with a new sorting method yields the best results. These heuristics are combined with a previous heuristic for the VSBPP by the authors to find good feasible solutions to 1357 VSBPP benchmark instances. This is the largest statistical comparison of algorithms for the SPP and the VSBPP to the best knowledge of the authors.

  19. Microstructural and bulk property changes in hardened cement paste during the first drying process

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp [Graduate School of Environmental Studies, Nagoya University, ES Building, No. 546, Furo-cho, Chikusa-ku, Nagoya 464–8603 (Japan); Nishioka, Yukiko; Igarashi, Go [Graduate School of Environmental Studies, Nagoya University, ES Building, No. 539, Furo-cho, Chikusa-ku, Nagoya 464–8603 (Japan); Matsui, Kunio [Products and Marketing Development Dept. Asahi-KASEI Construction Materials Corporation, 106 Someya, Sakai-machi, Sashima-gun, Ibaraki, 306–0493 (Japan)

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreased for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.

  20. Cementation of liquid radioactive waste

    International Nuclear Information System (INIS)

    Efremenkov, V.

    2004-01-01

    The cementation methods for immobilisation of radioactive wastes are discussed in terms of methodology, chemistry and properties of the different types of cements as well as the worldwide experience in this field. Two facilities for cementation - DEWA and MOWA - are described in details

  1. The application of CFD modelling to support the reduction of CO2 emissions in cement industry

    International Nuclear Information System (INIS)

    Mikulčić, Hrvoje; Vujanović, Milan; Fidaros, Dimitris K.; Priesching, Peter; Minić, Ivica; Tatschl, Reinhard; Duić, Neven; Stefanović, Gordana

    2012-01-01

    The cement industry is one of the leading producers of anthropogenic greenhouse gases, of which CO 2 is the most significant. Recently, researchers have invested a considerable amount of time studying ways to improve energy consumption and pollutant formation in the overall cement manufacturing process. One idea involves dividing the calcination and clinkering processes into two separate furnaces. The calcination process is performed in a calciner while the clinkering process takes place in a rotary kiln. As this is new technology in the cement manufacturing process, calciners are still in the research and development phase. The purpose of this paper is to demonstrate the potential of CFD to support the design and optimization of calciners, whose use appears to be essential in reduction of CO 2 emission during cement production. The mathematical model of the calcination process was developed, validated and implemented into a commercial CFD code, which was then used for the analysis. From the results obtained by these simulations, researchers will gain an in-depth understanding of all thermo-chemical reactions in a calciner. This understanding can be used to optimize the calciner's geometry, to make production more efficient, to lower pollutant formation and to subsequently reduce greenhouse gas emissions. -- Highlights: ► The potential of CO 2 emissions reduction, by using a cement calciner was presented. ► When a cement calciner is used, CO 2 emissions reduction of 3–4% can be achieved. ► The calcination model was developed, validated, and then used for the analysis. ► Shown method can be applied for investigation and optimization of cement calciners.

  2. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  3. Calculation of calcium diffusion coefficient of cement hardenings using minute pore data

    International Nuclear Information System (INIS)

    Hitomi, Takashi; Takeda, Nobufumi; Iriya, Keishiro

    2009-01-01

    This report describes the calculations of the diffusion coefficient of the Ca ion of cement hardenings using minute pore data. The observed hardenings were ordinary Portland cement (OPC), low-heat Portland cement with fly ash (LPC+FA) and highly fly ash containing silica fume cement (HFSC). The samples were cured in the standard and artificially leached by accelerated test. Minute pore datas of the cement hardenings were acquired with image processing of internal structural information obtained from high resolution X-ray computed tomography observations. Upon analysis, several voxels are combined into one bigger voxel, the diffusion coefficient of the voxels were determined in proportion to the number of voxels which were included in. The results reveal that the change in the calcium diffusion coefficient of OPC due to leaching was large, but the LPC+FA and HFSC cements exhibited even greater changes than OPC. It is suggested that the diffusion coefficients are proportional to the Ca/Si ratio of the samples. (author)

  4. Achievement of 900kgf/cm[sup 2] super workable high strength concrete with belite portland cement. (elevator building of cement silo in Chichibu cement). Part 1. ; Development of cement for super workable high strength concrete. Ko belite kei cement de 900kgf/cm[sup 2] wo tassei (Chichibu cement cement sairo no elevaor to). 1. ; Koryudo kokyodo concrete yo no cement no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.; Fukaya, Y.; Nawa, T. (Chichibu Cement Co. Ltd., Tokyo (Japan))

    1993-08-01

    This paper describes the features of high belite Portland cement which can make the super workable high strength concrete, and the properties of concrete using this. The super workable concrete is required an excellent segregation resistance property as well as high flow property. Since the high belite Portland cement contains a small amount of C[sub 3]S in the clinker, the amounts of C[sub 3]A and C[sub 4]AF can be reduced without hindering the calcination of clinker. Additionally, since it contains a large amount of C[sub 2]S with low heat of hydration, an increase in the temperature of members can be suppressed. 'Chichibu High Flow Cement' having characteristics of this high belite Portland cement was developed for the super workable high strength concrete. The concrete using the High Flow Cement exhibited the maximum flow value of 70cm. It also exhibited the strength of 1,075 kgf/cm[sup 2] at the age of 91 days, and 1,100 kgf/cm[sup 2] at the age of 14 days under insulating. 4 refs., 8 figs., 2 tabs.

  5. Study of chemical additives in the cementation of radioactive waste of PWR reactors

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2011-01-01

    Cementation is a very useful process to solidify radioactive wastes. Depending on the waste it can be necessary to use of chemical additives (admixtures) to improve the cementation process and its product. Admixtures are materials, other than cement, aggregate and water, that are added either before or during the mixing to alter some properties, such as workability, curing temperature range, and setting time. However there are a large variety of these materials that are frequently changed or taken out of the market. In this changeable scenario it is essential to know the commercially available materials and their characteristics. In this research the effects of chemical admixtures in the solidification process has been studied. For the tests it was prepared a solution simulating the evaporator concentrate waste, cemented by two different formulations, and three chemical admixtures from two manufacturers. The tested admixtures were accelerators, set retarders and super plasticizers. The experiments were organized by a planning factorial 23 to quantify the effects of formulations, of the admixtures, its quantity and manufacturer in properties of the paste and products. The measured parameters were the density, the viscosity and the setting time of the paste, and the product compressive strength. The parameter evaluated in this study was the compressive strength at age of 28 days, is considered essential security issues relating to the handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented products. (author)

  6. Development of alkali activated cements and concrete mixture design with high volumes of red mud

    OpenAIRE

    Krivenko, Pavel; Kovalchuk, Oleksandr; Pasko, Anton; Croymans, Tom; Hutt, Mikael; Lutter, Guillaume; Vandevenne, Niels; Schreurs, Sonja; Schroeyers, Wouter

    2017-01-01

    Dedicated cement compositions were formulated to enable the incorporation of large volume fractions of red mud in alkali activated cements, taking into account the role of the aluminosilicate phase in the processes of hydration and hardening. High volume red mud alkali activated cements were synthesized using a proper combination of red mud, low basic aluminosilicate compounds with a glass phase (blast-furnace slag) and additives selected from high-basic Ca-containing cements with a crystalli...

  7. The influence of process parameters in production of lipopeptide iturin A using aerated packed bed bioreactors in solid-state fermentation.

    Science.gov (United States)

    Piedrahíta-Aguirre, C A; Bastos, R G; Carvalho, A L; Monte Alegre, R

    2014-08-01

    The strain Bacillus iso 1 co-produces the lipopeptide iturin A and biopolymer poly-γ-glutamic acid (γ-PGA) in solid-state fermentation of substrate consisting of soybean meal, wheat bran with rice husks as an inert support. The effects of pressure drop, oxygen consumption, medium permeability and temperature profile were studied in an aerated packed bed bioreactor to produce iturin A, diameter of which was 50 mm and bed height 300 mm. The highest concentrations of iturin A and γ-PGA were 5.58 and 3.58 g/kg-dry substrate, respectively, at 0.4 L/min after 96 h of fermentation. The low oxygen uptake rates, being 23.34 and 22.56 mg O2/kg-dry solid substrate for each air flow rate tested generated 5.75 W/kg-dry substrate that increased the fermentation temperature at 3.7 °C. The highest pressure drop was 561 Pa/m at 0.8 L/min in 24 h. This is the highest concentration of iturin A produced to date in an aerated packed bed bioreactor in solid-state fermentation. The results can be useful to design strategies to scale-up process of iturin A in aerated packed bed bioreactors. Low concentration of γ-PGA affected seriously pressure drop, decreasing the viability of the process due to generation of huge pressure gradients with volumetric air flow rates. Also, the low oxygenation favored the iturin A production due to the reduction of free void by γ-PGA production, and finally, the low oxygen consumption generated low metabolic heat. The results show that it must control the pressure gradients to scale-up the process of iturin A production.

  8. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    Science.gov (United States)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  9. Flooding characteristics of Goodloe packing

    International Nuclear Information System (INIS)

    Begovich, J.M.; Watson, J.S.

    1976-08-01

    Experimental flooding data for the countercurrent flow of air and water in a 7.62-cm-diam glass column filled with Goodloe packing were compared with a correlation reported by the packing manufacturer. Flooding rates observed in this study were as low as one-half those predicted by the correlation. Rearranging the packing by inverting the column and removing some packing segments yielded results similar to the correlation for liquid-to-gas (L/G) mass flow rate ratios greater than 10, but the experimental flooding curve fell significantly below the correlation at lower L/G ratios. When the column was repacked with new packing, the results were essentially the same as those obtained in the inverted column. Thus, it is believed that a carefully packed column is more likely to yield flooding rates similar to those obtained in the new or inverted columns rather than rates predicted by the original correlation

  10. A micromechanical four-phase model to predict the compressive failure surface of cement concrete

    Directory of Open Access Journals (Sweden)

    A. Caporale,

    2014-07-01

    Full Text Available In this work, a micromechanical model is used in order to predict the failure surface of cement concrete subject to multi-axial compression. In the adopted model, the concrete material is schematised as a composite with the following constituents: coarse aggregate (gravel, fine aggregate (sand and cement paste. The cement paste contains some voids which grow during the loading process. In fact, the non-linear behavior of the concrete is attributed to the creation of cracks in the cement paste; the effect of the cracks is taken into account by introducing equivalent voids (inclusions with zero stiffness in the cement paste. The three types of inclusions (namely gravel, sand and voids have different scales, so that the overall behavior of the concrete is obtained by the composition of three different homogenizations; in the sense that the concrete is regarded as the homogenized material of the two-phase composite constituted of the gravel and the mortar; in turn, the mortar is the homogenized material of the two-phase composite constituted of the sand inclusions and a (porous cement paste matrix; finally, the (porous cement paste is the homogenized material of the two-phase composite constituted of voids and the pure paste. The pure paste represents the cement paste before the loading process, so that it does not contain voids or other defects due to the loading process. The abovementioned three homogenizations are realized with the predictive scheme of Mori-Tanaka in conjunction with the Eshelby method. The adopted model can be considered an attempt to find micromechanical tools able to capture peculiar aspects of the cement concrete in load cases of uni-axial and multi-axial compression. Attributing the non-linear behavior of concrete to the creation of equivalent voids in the cement paste provides correspondence with many phenomenological aspects of concrete behavior. Trying to improve this correspondence, the influence of the parameters of the

  11. The advantages of hydraulic packing extraction

    International Nuclear Information System (INIS)

    Baker, R.S.

    1991-01-01

    Today's competitive environment, coupled with industry's desire to improve the efficiency of plant maintenance and operations, has management continually seeking ways to save time, money, and, at nuclear plants, radiation exposure. One area where a tremendous improvement in efficiency can be realized is valve packing removal. For example, industry experience indicates that up to 70% of the time it takes to repack a valve can be spent just removing the old packing. In some case, the bonnets of small valves are removed to facilitate packing removal and prevent stem and stuffing box damage that can occur when using packing removal picks. In other cases, small valves are simply removed and discarded because it costs less to replace the valves than to remove the packing using conventional methods. Hydraulic packing extraction greatly reduces packing removal time and will not damage the stem nor stuffing box, thus eliminating the need for bonnet removal or valve replacement. This paper will review some of the more common problems associated with manual packing extraction techniques. It will explain how hydraulic packing extraction eliminates or greatly reduces the impact of each of the problem areas. A discussion will be provided of some actual industry operating experiences related to success stories using hydraulic packing extraction. The paper will also briefly describe the operating parameters associated with hydraulic packing extraction tools. Throughout the paper, actual operating experiences from the nuclear power, fossil power, petrochemical, and refinery industries will be used to support the conclusion that hydraulic packing extraction is an alternative that can save time, money, and exposure

  12. Does cement mantle thickness really matter?

    OpenAIRE

    Caruana, J.

    2008-01-01

    The thickness of the cement mantle around the femoral component of total hip replacements is a contributing factor to aseptic loosening and revision. Nevertheless, various designs of stems and surgical tooling lead to cement mantles of differing thicknesses. This thesis is concerned with variability in cement thickness around the Stanmore Hip, due to surgical approach, broach size and stem orientation, and its effects on stress and cracking in the cement. The extent to which cement mantle thi...

  13. Study of the relation between hydrated portland cement composition and leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1998-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  14. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  15. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  16. Cementation of biodegraded radioactive oils and organic waste

    International Nuclear Information System (INIS)

    Gorbunova, O.; Safonov, A.; Tregubova, V.; German, K.

    2015-01-01

    The possibility of the microbiological pre-treatment of the oil-containing organic liquid radioactive waste (LRW) before solidification in the cement matrix has been studied. It is experimentally proved that the oil containing cement compounds during long-term storage are subject to microbiological degradation due to the reaction of biogenic organic acids with the minerals of the cement matrix. We recommend to biodegrade the LRW components before their solidification, which reduces the volume of LRW and prevent the destruction of the inorganic cement matrix during the long term storage. The biodegradation of the oil containing LRW is possible by using the radioresistant microflora which oxidize the organic components of the oil to carbon dioxide and water. Simultaneously there is the bio-sorption of the radionuclides by bacteria and emulsification of oil in cement slurry due to biogenic surface-active substances of glycolipid nature. It was experimentally established that after 7 days of biodegradation of oil-containing liquid radioactive waste the volume of LRW is reduced by the factor from 2 to 10 due to the biodegradation of the organic phase to the non-radioactive gases (CH 4 , H 2 O, CO 2 , N 2 ), which are excluded from the volume of the liquid radioactive waste. At the same time, the microorganisms are able to extract from the LRW up to 80-90% of alpha-radionuclides, up to 50% of 90 Sr, up to 20% of 137 Cs due to sorption processes at the cellular structures. The radioactive biomass is subject to dehydration and solidification in the matrix. The report presents the following experimental data: type of bacterial flora, the parameters of biodegradation, the cementing parameters, the properties of the final cement compound with oil-containing liquid radioactive waste

  17. Accurate quantitative XRD phase analysis of cement clinkers

    International Nuclear Information System (INIS)

    Kern, A.

    2002-01-01

    . In addition, using latest detector technologies in a new process diffractometer, measurement and evaluation times can be brought down to minutes, enabling real time control of the cement clinker mineralogy. Copyright (2002) Australian X-ray Analytical Association Inc

  18. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  19. Experimental and numerical study of cemented bone-implant interface behaviour

    Directory of Open Access Journals (Sweden)

    P. Zlamal

    2011-01-01

    Full Text Available Although the total hip replacement (THR is a long-proven method of surgical treatment of diseases and disorders of the human hip, the surgery brings some risk of long-term instability of the joint. The aim of the research was to investigate the cemented bone-implant interface behavior. The main problems (cement layer degradation and bone-cement interface debonding during physiological loading conditions have been investigated using a custom hip simulator. The experimental setup was designed to allow cyclic loading of the sample of pelvic bone with implanted cemented acetabular component. The hip contact force of required direction and magnitude was applied to the implant using a spherical femoral component head. The most unfavorable activity (downstairs walking was simulated. The process of damage accumulation in the fixation was monitored by repeated scanning using high resolution micro Computed Tomography (µCT. Use of micro-focus source and large high-resolution flat panel detector allows investigation of structural changes and crack propagation both in the cement layer and the trabecular bone.

  20. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027) into...